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A theoretical model is developed describing high-order harmonic generation (HHG) from a gas
of multiply-charged ions driven by a laser field of relativistic intensity. Macroscopic propagation of
harmonics is investigated in a relativistic HHG setup where the relativistic drift is suppressed by
means of x-ray field assistance of the driving laser field. The possibility of phase-matched emission
of the harmonics is shown. The laser field geometry is optimized to maximize the HHG yield with
the corresponding phase-matching schemes. Crucial issues determining the macroscopic HHG yield
are discussed in detail.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a reliable
source of coherent soft x-ray radiation in the nonrela-
tivistic regime. With the state-of-the-art technology, co-
herent x-rays of up to ∼ 3 keV [1] of photon energy
can be generated. The most favorable conversion effi-
ciency for nonrelativistic multi-keV harmonics is antici-
pated with mid-infrared driving laser fields at high gas
pressures [2–4]. A further increase of the photon energy
can in principle be achieved by increasing the laser in-
tensity. However, the applicable laser intensity is limited
in two ways [5]. First, the relativistic electron drift pre-
vents recollision and results in a dramatic suppression of
the HHG efficiency. And second, the strong field causes
rapid ionization of the medium leading to a large free
electron dispersion and along with a significant phase-
mismatch. The electron recollision is suppressed when
the drift distance becomes larger than the electron wave
packet size at the moment of recollision [6]. This happens
when the laser intensity exceeds 1016 − 1017 W/cm2 for
infrared (IR) wavelengths. The ponderomotive potential
of the laser field in this case amounts to Up ≈ 3 keV and
the achievable cutoff frequency for HHG to ωc ≈ 10 keV.
This indicates the limit of nonrelativistic HHG.

Various methods to counteract the relativistic drift
have been proposed. To suppress the drift, different laser
field geometries, in some cases with an additional field,
can be applied [7–20]. Highly charged ions moving rela-
tivistically [21, 22] or a gas of positronium atoms [23, 24]
can also be employed for this purpose. However, all these
efforts have only addressed the drift suppression problem
for the emission from a single atom rather than coher-
ent emission from a macroscopic gas target where phase-
matching becomes crucial. For the first time both prob-
lems of relativistic HHG, namely, the relativistic drift
and the phase-matching, have been solved at the same
time in [25] where the macroscopic yield of HHG has
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been calculated in the setup consisting of two counter-
propagating attosecond pulse trains [19]. In this setup,
the relativistic drift caused by the ionizing laser pulse is
reverted by the counter-propagating pulse inducing re-
combination. It appears that, specific to this setup, an
additional harmonic phase exists which depends on the
time delay between the driving pulse trains. We have
shown in [25] that this additional phase of the emitted
harmonics can be tuned to compensate the phase mis-
match caused by the free electron background. How-
ever, the setup of counter-propagating pulses is rather
challenging, for instance, the requirement for a small
pulse distortion imposes a rather strong restriction on
the medium length. Additionally, a precise modulation
of the laser intensity along the propagation direction is
required.

Another appealing scheme for relativistic HHG ex-
ists based on XUV assistance [18] which seems experi-
mentally less demanding than the scheme with counter-
propagating attosecond pulses. The usefulness of XUV
light assisting a strong laser field has been demonstrated
in the nonrelativistic regime for various purposes. It has
been used to enhance HHG by many orders of magnitude
compared with the case via a fundamental laser pulse
alone [26, 27]. When the XUV field has the form of an
attosecond pulse train a single quantum path can be se-
lected to contribute to HHG and in this way allowing
to manipulate the time-frequency properties of harmon-
ics as well as to enhance a selected bandwidth of har-
monics [28–30]. Tuning the XUV field to a resonance
between a core and valence state can lead to the emer-
gence of a second plateau that is shifted to higher energies
by the former resonance energy with respect to the first
plateau [31].

In the relativistic regime the XUV/x-ray assistance
can be employed to overcome the relativistic drift mo-
tion [18]. Thereby, the XUV frequency requires to ex-
ceed the ionization energy to liberate the electron with
a single photon and to deliver a significant initial mo-
mentum to the freed electron. This way, the electron
can obtain sufficient momentum in the direction oppo-
site to the laser propagation direction to compensate for
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subsequent drift motion and return to the atomic core,
recombine and emit harmonics after the excursion in the
relativistically strong laser field. The medium is a gas
of multiply charged ions with an ionization energy large
enough to withstand the strong optical laser field. How
much the XUV assisted setup for relativistic HHG fa-
vors phase-matching needs investigation. Formalisms de-
scribing macroscopic effects due to ionization and phase
matching in HHG are restricted to the non-relativistic
regime, for a recent review see, e.g., [32].

In this paper, we investigate the feasibility of phase-
matched emission and the macroscopic yield of harmon-
ics in the relativistic regime of the x-ray assisted HHG
setup in a strong IR laser field. Generally, the efficiency
of HHG is rather small even in the nonrelativistic regime
due to the wave packet spreading. In the relativistic
regime, the single-atom HHG emission rate continues
to decrease even when the relativistic drift is compen-
sated [25]. Thus, a large phase-matching volume is cru-
cial in order to achieve a significant HHG yield. Fur-
thermore, the large ponderomotive potential is likely to
result in rapid phase changes if ions emit under different
conditions. For generating relativistic harmonics both
challenges have to be met: circumventing the drift and
having the setup stable against phase changes. Our pre-
sented setup overcomes both issues and renders a mea-
surable HHG yield in the relativistic regime possible.

The structure of the paper is the following. In Sec. II,
the theory of macroscopic HHG is presented applica-
ble for any field geometry in the relativistic regime. In
Sec. III, the developed theory is applied to calculate the
macroscopic HHG yield for the setup of x-ray assisted
relativistic HHG. Our conclusion is presented in Sec. IV.

II. MACROSCOPIC MODEL FOR
RELATIVISTIC HHG

A. Macroscopic HHG yield

In this section, our model is presented for the cal-
culation of the harmonic spectrum from a macroscopic
gas target suitable for relativistic laser intensities. In
the non-relativistic regime, the standard approach for
the calculation of the macroscopic HHG response in-
corporates the single-atom contribution via the time-
dependent dipole moment [32–34]. However, employing
the dipole moment for the radiation response assumes
that an emitted harmonic wavelength is much longer than
the spatial extensions of the emitter. This approach fails
for sufficiently small wavelengths because then the re-
tardation between different points of the emitting wave
packet becomes important [35, 36]. Our approach uses
the complete current density distribution of each atom
rather than the dipole moment. Retardation between
different emission points within the distribution is taken
into account by a phase factor. The link between the mi-
croscopic (atomic) current density j and the macroscopi-

cally emitted harmonic electric field EH is obtained from
Maxwell’s equations similar to the non-relativistic ap-
proaches [32–34]. The Fourier component of the emitted
harmonic electric field from a gas target is given by [37]

ẼH(x′, ωH) = i
ωH

c2

∫
d3x

n′ × (̃j(x, ωH)× n′)

R
eikHR , (1)

where j̃(x, ωH) is the Fourier component of the current
density, ωH is the frequency of the emitted harmonic
light, kH = kHn

′ the wave vector, R = |x − x′| the
distance between the emission and observation point, x′

the coordinate of the observation point and n′ = x′/|x′|
the unit vector in the observation direction (see Fig. 1).
Absorption of the harmonic photons is neglected [34] be-
cause their energy is much higher than the largest atomic
transition energy. The current density j is exclusively
determined by the HHG process. For the evaluation of
Eq. (1), we restrict ourselves to the far-field zone which
is sufficient for calculating the overall HHG photon yield.
The far-field zone is determined by the conditions that
the distances from the emitters to the observation point
are larger than the wavelength of the emitted radiation
as well as the size a of the emitting region (kHR � 1
and R � a). We thus can expand Eq. (1) over a small
parameter a/R using R = |x − x′| ' |x′| − x · n′ [37].
When inserting this expression into Eq. (1), the expo-
nential function splits up into two parts. One term con-
tains x′ and is thus a general phase factor depending
on the constant observation point that can be separated:
ẼH(x′, ωH) = eikH|x

′|ẼH,0(n′, ωH). In the following we

consider ẼH,0(n′, ωH) only and find

ẼH,0(n′, ωH) = i
ωH

c2R

∫
d3xn′ × (̃j(x, ωH)× n′)e−ikH·x .

(2)
The total current density distribution consists of a sum of
the current densities of the single atoms ja(xa,x, t) with
positions xa:

j̃(x, ωH) =

∫
d3xaρ(xa)

∫
dt ja(xa,x, t)e

iωHt (3)

where ρ(xa) is the atomic number density. Inserting

x

z detector

R

medium

laser pulse

n ¢

Θ' Θ'

yield

FIG. 1: (color online). Geometry of the medium and detector
including the definitions of the coordinates. The dashed lines
denote the divergence angle of the harmonic radiation. The
box on the right schematically shows the measured angular
distribution.
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Eq. (3) into Eq. (2) yields the final expression for the
macroscopically emitted harmonic field

ẼH,0 (n′, ωH)

= i
ωH

Rc2

∫
d3xaρ(xa)

∫
d3x∫

dtn′ × (ja(xa,x, t)× n′)e−ikHx·n′+iωHt

= i
ωH

Rc2

∫
d3xa ρ(xa)n′ × (̃ja(xa,n

′, ωH)× n′) ,(4)

where j̃a(xa,n
′, ωH) ≡

∫
d3x

∫
dtja(xa,x, t) exp{−ikHx ·

n′+ iωHt}. Note that the combination of outer products
in Eq. (4) prevents mathematically from emission in the
direction of the current density vector. However, due
to phase-matching, the macroscopic emission is in many
cases mainly along the propagation direction of the laser
n′ ≈ ẑ, (see Fig. 1). When the laser is linearly polarized
in x̂ direction, the current density vector is parallel to the
x̂ − ẑ plane. Thus, we can approximate n′ × (̃j × n′) =

j̃ − (n′ · j̃)n′ ≈ j̃xx̂ and can restrict ourselves to the x̂
component

ẼH,0,x(n′, ωH) = i
ωH

Rc2

∫
d3xa ρ(xa)j̃a,x(xa,n

′, ωH) (5)

to describe emission in this case.
The overall emitted energy can be obtained via inte-

grating the Poynting vector S(r, t) = c
4πE

2
H(x′, t)n′ over-

all emission directions in the far field

W =
cR2

4π

∫
dt

∫
dΩE2

H(x, t) . (6)

By inserting

EH(x′, t) =
1

2π

∫ ∞
−∞

dωHe−iωHtẼH(n′, ωH) (7)

into Eq. (6), the energy can be calculated via an inte-
gration over the spectrum [38]:

W =
cR2

(2π)2

∫
dΩ

∫ ∞
0

dωH|ẼH,0(n′, ωH)|2. (8)

The emitted spectral photon number per solid angle from
Eq. (8) is given by:

dN

dωHdΩ
=

cR2

(2π)2ωH
|ẼH,0(n′, ωH)|2. (9)

B. Single-atom current density

In Sec. II A, the macroscopic HHG yield has been cal-
culated via classical electrodynamics. Since the expres-
sion Eq. (5) for the emission field relies on the current
densities of a single atom in the gas, we continue to derive
the single-atom current density quantum mechanically

in the relativistic regime via the Klein-Gordon equation.
The Klein-Gordon current density of a particular atom
at position xa in the laser field is given by [39]

ja(xa,x, t) =
(

Ψ∗xa
(x)̂jΨxa(x) + Ψxa(x)̂j∗Ψ∗xa

(x)
)

(10)

where ĵ = p̂ + AL(x)/c and Ψxa(x) is the solution of
the Klein-Gordon equation when the binding potential
is centered around xa. In the following, the time-space
coordinate is x = (ct,x), the wave four-vector of the
laser field kL = (ωL/c,kL), and the metric tensor gµν =
diag(1,−1,−1,−1).

By a Fourier transformation of Eq. (10) and partial
integration, the spectral current is obtained:

j̃a(xa, ωH,n
′)

=
1

c

∫
d4x eikHx

(
Ψ∗xa

(x)̂jΨxa(x) + Ψxa(x)̂j∗Ψ∗xa
(x)
)

=
2

c

∫
d4x eikHxΨ∗xa

(x)(̂j− 1
2kH)Ψxa

(x) (11)

We calculate the electron wave function in the field of
the laser and the ionic core by means of the strong-field
approximation (SFA) [40, 41]

Ψxa(x) = φ(x−xa, t)+

∫
d4x′GL(x, x′)VI(x

′)φ(x′−xa, t
′)

(12)
where VI = 2i(AL(η)/c)∇ − A2

L(η)/c2) is the term in
the Hamiltonian describing the electron interaction with
the laser field with the vector-potential AL(η) and phase
η = kL · x. The Volkov propagator GL(x, x′) in a plane
wave laser field is given by [42, 43]

GL(x, x′) = −i θ(t− t′)
∫

cd3q

2εq(2π)3
exp

[
− iSL(x, x′)

]
(13)

with the classical action of an electron in the laser field

SL(x, x′) = q·(x− x′)+
∫ η

η′
dη̃

[
(q + AL(η̃)/2c) ·AL(η̃)/c

kL · q

]
,

(14)
the energy-momentum four-vector q = (εq/c,q),

the energy εq =
√
c2q2 + c4. Here φ(x) =

φ0(x)c√
2(c2−Ip)

exp{−i[(c2 − Ip)t + x · AL/c]}, where φ0(x)

is the nonrelativistic ground-state wave function. Insert-
ing Eq. (12) into Eq. (11) and applying the usual assump-
tions [43, 44] of neglecting bound–bound and continuum–
continuum transitions and the time–inverted process, we
obtain

j̃a(xa, ωH,n
′)

≈ 2

c

∫
d4x

∫
d4x′eikH·xφ∗(x− xa, t)(̂j− 1

2kH)

×GL(x, x′)VI(x
′)φ(x′ − xa, t

′) . (15)
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C. Electron wave function in a distorted plane
wave laser field

The Volkov propagator Eq. (13) describes the evolu-
tion of the wave function of an electron in a plane wave
laser field with vector potential AL(η). However, in many
practical situations this assumption on the laser field is
not met, in particular, when a focused laser field or mul-
tiple laser beams are applied [45–47], or when the disper-
sion distorts the laser pulse. For this reason, we need to
find the electron wave function in an external laser field
where the vector potential depends not only on phase η
but also on the position z along propagation. The devia-
tion of the laser field from the plane wave form is assumed
to be a perturbation, so that the total vector potential
reads

A(η,x) = AL(η) + AP(η,x), (16)

with |AP(η,x)| � |AL(η)|. We find the solution of the
Klein-Gordon equation in the field of Eq. (16) using the
eikonal approximation, see e.g. [48, 49], in which the im-
pact of the perturbation onto the wave function is taken
into account by an expansion of the wave function phase.
The electron wave function is described by the Klein-
Gordon equation

(∂µ∂µ + c2)Ψ(x) = VΨ(x) , (17)

with V = 2i(A(η)/c)∇ − A2(η)/c2. In order to solve
Eq. (17), the ansatz

Ψ(x) =

√
c√

2(2π)3εp
exp{−i[SL(x, x0) + SP(x, x0)]} .

(18)
is employed. Here, SL(x, x0) is defined in Eq. (14),
with an arbitrary constant x0, and, consequently,
exp(−iSL(x, x0)) solves the unperturbed equation (17)
with A(η, z) = AL(η). Inserting the ansatz Eq. (18) into
Eq. (17), one finds

1

c2
[−i∂2t SP − 2∂tSL∂tSP − (∂tSP)2]

−[−i∇2SP − 2∇SL∇SP − (∇SP)2]

= 2
AL

c
∇SP + 2

AP

c
∇(SL + SP)

−A
2
P

c2
− 2

ALAP

c2
. (19)

In the applied approximation, |∇Sp| � |AP/c| and
|∂tSP| � |AP |, which allows to neglect the (∇SP)2

and (∂tSP)2 terms. When additionally ξ ≡ EL/cωL �
ωL/c

2, one has |∇2Sp| � |(AP /c)∇Sp| and |∂2t Sp| �
|∂tSL∂tSp|. Then, ∇2SP, ∂2t SP terms also can be ne-
glected, yielding

2
ALAP

c2
+
A2

P

c2
+ 2

AP

c
∇SL (20)

=
2

c2
∂tSL∂tSP +

[
−2∇SL +

2

c
(AL + AP)

]
∇SP .

The equations for the characteristics of the first order
partial differential equation (20) are

∂t(u)

∂u
=

2

c2
∂tSL (21)

∂r(u)

∂u
= −2∇SL +

2

c
(AL + AP). (22)

It follows from Eq. (21) and Eq. (22) that

− 2kL · p = kL
∂r

∂u
− ωL

∂t

∂u
(23)

and

u = −(kLr− ωLt)/(2kL · p) = η/(2kL · p) . (24)

Integrating Eq. (20) and employing Eq. (24) we derive

SP(x, x0)=

∫ η

η0

dη̃
1

kL · p

[
∇SL +

AL(η̃)

c
+

AP(η̃, x̃L(x, η̃, η))

2c

]
×AP(η̃, x̃L(x, η̃, η))/c (25)

with

x̃L(x, η̃, η) = x−
∫ η

η̃

dη′
1

kL · p

{
p +

AL(η′)

c
+

kL

kL · p

×
[
px +

AL(η′)

2c

]AL(η′)

c

}
. (26)

The integral in Eq. (26) can be omitted in the case if the
z-dependence of AP along the classical trajectory of the
particle in the laser field is negligible. For the total phase
of the wave function, we therefore find

ST(x, x0) = SL(x, x0) + SP(x, x0)

= p · (x− x0) (27)

+

∫ η

η0

dη̃

[
p + A(η̃,x̃L(x,η̃,η))

2c

]
A(η̃,x̃L(x,η̃,η))

c

kL · p
,

where η0 and x0 are arbitrary constants. We derive the
propagator as follows

GT(x, x′) ≈ −i θ(t− t′)
∫

cd3q

2εq(2π)3
exp

[
− i Φ(x, x′)

]
,

(28)
where Φ(x, x′) ≡ ST(x, x0) − ST(x′, x0). The latter can
be represented as

Φ(x, x′) = ST(x, x′) + ∆T(x, x′) (29)

with

∆T(x, x′)

=
1

kL · p

∫ η

η0

dη̃

{[
p +

A(η̃, x̃L(x, η̃, η))

2c

]
A(η̃, x̃L(x, η̃, η))

c

−
[
p +

A(η̃, x̃L(x, η̃, η′))

2c

]
A(η̃, x̃L(x, η̃, η′))

c

}
. (30)
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The two terms in the integrand of Eq. (30) deviate only in
x̃L(x, η̃, η) and x̃L(x, η̃, η′). Within the saddle-point ap-
proximation applied later, η and η′ are the phase of recol-
lision and ionization, respectively. Therefore, x̃L(x, η̃, η)
and x̃L(x, η̃, η′) differ only by the distance in space be-
tween ionization and recollision which is zero. Thus, we
can omit ∆T(x, x′).

III. RELATIVISTIC PHASE-MATCHED X-RAY
ASSISTED HHG

In this section, the theory developed in Sec. II is em-
ployed to investigate macroscopic harmonic emission in
the relativistic regime for a HHG setup where an IR laser
field of relativistic intensity is assisted by an x-ray field.
In this scheme, the x-ray frequency ωX exceeds the bind-
ing energy Ip,x of the electron and thus delivers an initial
momentum to the freed electron which can balance the
subsequent drift motion. The laser alignment of the setup
and an example of a classical trajectory that recollides
are illustrated in Fig. 2. The weak counterpropagating
IR field (brown) is important for a phase-matched macro-
scopic response and can be ignored when discussing the
process for a single atom. The HHG medium is a macro-
scopic gas of multiply-charged ions.

A. Current density

We begin with adapting the general equation for the
current density Eq. (15) to the present setup. Presum-
ing that for the realization of phase-matching additional
weak fields AP(η,x) will be required, we employ the
Green functionGT(x, x′) of Eq. (28) instead of the Volkov
propagator GL(x, x′) in the general expression for the

laser
HHG

X-rays

electron

parent ion weak IR

x

z

FIG. 2: (color online). Geometry of the HHG process for
a collinear alignment of the x-ray and laser field. The co-
propagating x-ray field (orange) has a frequency above the
ionization energy to achieve drift compensation. The weak
IR field (brown) is employed to accomplish phase-matching.

current density of Eq. (15):

j̃a(xa, ωH,n
′)

=
2

c

∫
d4x

∫
d4x′eiωHt−ikHrφ∗(x− xa)

×(̂j− 1
2kH)GT(x, x′)VI(x

′)φ(x′ − xa) .(31)

In this expression, the x-ray field enters only into the
potential VI(x) = 2x · (EX + EL) in the Klein-Gordon
formalism. Ignoring tunnel ionization by the IR laser
field which is justified in the considered setup, we drop
the laser field in this term and approximate VI(x) ≈
2x ·EX ≈ x ·EX0e−i(ωXt−kX·x). In the last step, the ex-
ponential function with the positive argument is dropped
because it leads to an unphysical solution of the saddle
point equations [30]. Due to its negligible ponderomotive
potential, EX can be neglected for the continuum prop-
agation of the electron and, thus, it is neglected in the
propagator.

The dependence of the current density Eq. (31) on
the position of the atom xa is given by the bound wave
functions φ(x − xa, t). To separate out phase factors
that highly oscillate with xa, a coordinate transforma-
tion is applied: x̃ = x − xa. Thereafter, time integra-
tion is transformed to an integration over the laser phase:
η = ωLt − kL · x = ωLt − kL · xa − kL · x̃. Finally, we
obtain an expression for the current density that can be
evaluated within the saddle-point approximation:

j̃a(xa, ωH,n
′) =

∫ ωLTP

0

dη

∫ η

−∞
dη′
∫

d3qmj(q, η, η′,xa)

× exp

[
−i(S̃P(q, η, η′,xa) +

ωX

ωL
η′ − ωH

ωL
η)

]
× exp

[
i(
ωH

ωL
kL − kH + kX −

ωX

ωL
kL)xa

]
(32)

where TP is the laser pulse duration and

mj(q, η, η′,xa) = −i
c2(q + A(η,xa)

c − kL

ωL
εq − 1

2kH)

εqω2
L

×
〈

0|q +
A(η,xa)

c
− kL

ωL
(εq + Ip,x − c2) +

ωH

ωL
kL − kH

〉
×
〈
q +

A(η′,xa)

c
− kL

ωL
(εq + Ip,x − c2)

+
ωX

ωL
kL − kX |x ·EX0| 0

〉
; (33)

Further,

S̃P(p, η, η′,xa) =

∫ η

η′
dη̃
(
ε̃Pq(η̃, x̃(xa, η̃, η))− c2 + Ip,x

)
/ωL

(34)
with the relativistic energy of the electron in the position
dependent laser field given by

ε̃Pq(η,x) = εq +
ωL

kL · q

(
q +

A(η,x)

2c

)
· A(η,x)

c
. (35)
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The wave vector of the laser is kL = nref
ωL

c êz and

nref =

√
1−

ω2
p

ω2
L

(36)

is the refractive index of the plasma, with the plasma fre-
quency ωp =

√
4πZρ and the ion charge number Z. This

way, we take into account the change of the phase velocity
caused by the free electrons but ignore pulse deformation.
Further, we restrict ourselves to a weakly focused laser
field which can be treated as a plane wave and ignore the
transversal variation of the vector potential with respect
to the propagation direction.

The propagation direction and the frequency of the as-
sisting x-ray field EX have to be chosen in such a way to
facilitate the phase-matching and to counteract the rela-
tivistic drift effectively. Let us first consider the feasibil-
ity of phase-matching by analyzing the harmonic emis-
sion phase of different ions in the medium via Eq. (32).
Generally, the vector potential consists of two terms as
in section II C

A(η,x) = AL(η) + AP(η,x). (37)

To understand the most favorable condition for phase-
matching, let us assume for a moment that there are
no additional fields for facilitating quasi-phase matching
and ignore deformation of the laser pulse. Then, we can
omit AP(η,x) in Eq. (37) [a modified setup where the
additional AP(η,x) field is taken into account will be
considered in Sec. III C]. In this case, we have no xA de-

pendence of mj(q, η′, η′′,xA) and S̃P(q, η′, η′′,xA). The
only contribution to the variation of the harmonic emis-
sion phase along the medium comes from the exponential
function exp(i∆k ra) in Eq. (32) determining the coher-
ence length lcoh = π/|∆k|, with the phase-mismatching
wave-vector

∆k =
ωH

ωL
kL − kH + kX −

ωX

ωL
kL , (38)

caused by the refractive index difference between the
fields. The phase-mismatch Eq. (38) can be split up in
two parts. One is due to the phase-mismatch between
the harmonics and the laser and the other one due to
the phase-mismatch between the ionizing x rays and the
laser. Interestingly, due to the different signs both can
partially cancel out. This fact also holds true for this
setup in the non-relativistic regime. Note that ωH

ωL
kL

and kH are much larger than the other two terms left
in Eq. (38) for the case ωH � ωX. The phase mismatch
is smallest in the case of a collinear alignment of the x-
ray and laser fields kH ‖ kL (see Fig. 2) with propagation
in the z direction. Accordingly, only the x component of
the spectral current density of Eq. (32) will contribute to
the harmonic emission in the z direction.

The drift compensation can be achieved with an appro-
priate choice of the x-ray frequency which is considered
in Sec. III B 2.

B. Single-atom response

1. Singe-atom HHG rate

The single-atom photon emission rate per solid angle
of the nth harmonic can be calculated from

dwn
dΩ

=
1

TP

∫ nωL+ωL

nωL−ωL

dωH
dN

dωHdΩ
(39)

=
cR2

(2π)2ωHTP

∫ nωL+ωL

nωL−ωL

dωH|ẼH,0(n′, ωH)|2 ,

using Eq. (5) for ẼH,0(n′, ωH) and the density ρ(xa) =
δ(xa) which yields

dwn
dΩ

=
ω2
LωH

(2πc)3
|̃ja(0, nωL,n

′)|2 , (40)

where in the expression for j̃a(0, nωL,n
′) given by

Eq. (32), TP is replaced by 2π
ωL

to confine the emission

to one laser period [the rate of Eq. (40) is identical to
ones in Refs. [18, 19]].

A typical HHG spectrum for the considered setup cal-
culated within the saddle-point approximation is dis-
played in Fig. 3 (a) in blue for the set of parameters
denoted in the caption of the figure. In this paper we
employ a zero-range potential [50] to model the binding
potential. Analytical expressions of the matrix elements
which appear in Eq. (33) can be found in, e.g., [17, 51].
The ionization potential Ip,x = 8 a.u. is chosen large
enough such that tunnel ionization by the strong opti-
cal laser field does not lead to depletion of the bound
wave function. We compare the spectrum obtained from
the x-ray assisted setup (blue line) with the spectrum of
a conventional HHG setup where no x-ray field is present,
calculated either fully relativistically [17] (dashed black)
or within the dipole approximation (DA) [51] (gray). The
ionization matrix elements for the conventional HHG se-

tups was multiplied by the factor
2
√
2κ3

t

|EL(t′)| [52] to account

for the underestimation of the tunneling rate when em-
ploying the zero-range potential. Here, t′ is the ioniza-
tion time and κt =

√
2Ip,t, with Ip,t being the ionization

potential in the case of the conventional setup. In or-
der to have a fair comparison of the x-ray assisted setup
with the conventional one, we have to choose the ioniza-
tion potential of the conventional setup (Ip,t) different
from that of the x-ray assisted one (Ip,x) such that the
ionization rates of both setups were the same. For this
purpose, the ionization rate for the conventional setup is
calculated from the Perelomov, Popov, Terent’ev (PPT)
tunneling rate [53, 54], while the single-photon ioniza-
tion rate from the zero-range potential is derived using
the differential photoionization cross section in nonrel-
ativisitic, dipole approximation and approximating the
ionized electron wave function by a plane wave (in anal-
ogy to Ref. [55]):

dσx,1ph
dΩ

=
p

2πcωX
|〈p|z|0〉|2 =

24p3ωXκz
c

cos2 θ

(κ2x + p2)4
(41)
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FIG. 3: (color online). (a) Single-atom emission proba-
bility for E0 = 2.5 a.u., Ip,x = 8 a.u., ωX = 14 a.u. and
EX = 0.65 a.u. (blue, dark gray) and a conventional laser
field (EX = 0) with E0 = 2.5 a.u. and Ip,t = 4.8 a.u. (dashed
black) and the same configuration in the DA (gray). For
the second configuration, Ip,t is chosen such that the average
tunnel-ionization rate is the same as the single-photon ioniza-
tion rate in the case before. (b) Separate HHG yields of the
three contributing quasi-classical trajectories for the discussed
setup [blue line in (a)]. The dotted red contribution (long
trajectory) is suppressed because the drift for the trajectory
is not completely compensated (as discussed in Sec. III B 2).
The short trajectory contributions (solid lines in dark blue,
dark gray and orange, gray) are nearly identical.

where θ is the angle between the electron momentum p
and the polarization direction ẑ of the x-ray field. An
integration over all emission angles yields the total cross
section

σδ,1ph =
4κxπ

3c

(2ωX − κ2x)3/2

ω3
X

, (42)

where we used p =
√

2ωx − κ2x.
The main message of Fig. 3 (a) is that the relativis-

tic drift can be fully compensated in the x-ray assisted
HHG setup (in the case of the chosen x-ray frequency
ωX − Ip,x = 6 a.u., the gray and blue curve are of com-
parable order, small suppression arises from the different
spreading behavior). The yield of the considered setup is
much higher than that for the conventional setup (dashed
black), the latter being suppressed by the drift.

In the next section, we explain how the single-x-ray-
photon ionization provides the necessary initial momen-

tum for the electron (opposite to the IR laser propagation
direction) to counteract the relativistic drift in the case
when the x-rays propagates along the strong IR laser
field. We discuss also the optimization of the applied
x-ray frequency for the HHG process.

2. Drift compensation and influence of x-ray frequency

The integration in Eq. (32) is carried out via the
saddle-point integration method [44, 56]. This means
that instead of the integration we only need to sum the in-
tegrand over a small number of saddle points for each en-
ergy ωH. A saddle point (η, η′,q) determines the ioniza-
tion and recollision times and the canonical momentum
for the electron classical trajectory leading to the har-
monic energy under consideration. In general, they are
complex expressing non-classical dynamics during tun-
neling ionization. For the parameters chosen above, 3
quantum paths (saddle points) contribute to the spec-
trum for each energy being equivalent to three classical
trajectories that recollide with that energy. The separate
contributions of each quantum path to the spectrum are
shown in Fig. 3 (b). The two paths marked in blue and
orange (solid lines) have nearly the same yield whereas
the dotted red line is suppressed by several orders of mag-
nitude. In the following we explain the reason for the dif-
ference and discuss the influence of the x-ray frequency
on the dynamics.

In order to understand the number of contributing
trajectories in Fig. 3 (b), we calculate the saddle-point
solutions for different x-ray frequencies ωX for the har-
monic emission at 50 keV and show the ionization phase
saddle point in Fig. 4 (a). For small initial energies
ωX−Ip,x, two saddle points contribute to harmonic emis-
sion as in the usual case of HHG in a laser field only.
Both saddle points, the long (Re η2 ≈ −1.345) and short
(Re η2 ≈ −1.115) trajectory, are complex [their real part
is shown in the graph] and their HHG amplitude is very
tiny due to the missing drift compensation which is in-
dicated by the complex value. When increasing ωX, first
the short trajectory and then the long trajectory split
up into two parts. These branches are called uphill and
downhill trajectories, respectively, because their initial
momentum component along the laser polarization is ei-
ther positive or negative [30]. After the splitting at about
ωX−Ip,x ≈ 4 a.u. and ωX−Ip,x ≈ 8.5 a.u., the respective
ionization phase is purely real which indicates that the
initial momentum is sufficient to compensate the subse-
quent relativistic drift. The short trajectory reaches drift
compensation earlier because it spends less time in the
continuum and, therefore, undergoes a smaller drift that
requires compensation.

The dashed line in Fig. 4 (a) denotes the x-ray fre-
quency ωX that was chosen in Fig. 3 (b). The short tra-
jectory has two contributions (blue and orange) whereas
the long trajectory (dotted) has only one contribution
(red). The contribution of the long trajectory is sup-
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FIG. 4: (color online). (a) We show the ionization phase
saddle points of the 50 keV trajectory for different x-ray fre-
quencies which is the same as ionization time in units of ra-
dian. The dashed line indicates the value chosen in Fig. 3.
The dotted and solid lines belong to the long and short tra-
jectories, respectivly. (b) displays the initial momentum di-
rection for different initial energies ωX − Ip,x [as indicated in
a.u. next to the respective arrow] needed for the emission
of a 50 keV photon. The uper and lower branch correspond
to the short up- and downhill trajectories, respectivly, where
the color indication coincides with the one in (a). Note that
the ionization phases η2 are different for the up- and downhill
trajectories. x̂ and ẑ are the propagation and polarization
directions of the laser, respectively. (c) Differential ionization
rate depending on the initial energy ωX − Ip,x from Eq. (41).
The considered direction is in the initial momentum direction
determined by the saddle point equations. From (b) we see
that the z-component is approximately pz,c = 2.9 a.u. and the
x-component depends on ωX − Ip,x.

pressed by about 3 orders of magnitude compared to
the short contributions which is visible from Fig. 3 (b).
This is because the long trajectory spends more time in
the continuum and experiences a larger relativistic drift
which cannot be fully compensated for. In this case, the
ionization saddle point is complex leading to a damp-
ing in the exponential function in the respective ampli-
tude Eq. (32). By increasing ωX above ωX−Ip ≈ 8.5 a.u.,
the drift compensation could also be achieved for the long
trajectory and the dashed red contribution in the spec-
trum could be enhanced leading to a larger single-atom
yield. However, only one of the trajectories can be phase-
matched in many cases and the enhancement of the other
trajectories would not be useful.

In Fig. 4 (b), the initial momentum vectors of the ion-

ized electron p(η′,q) = q + A(η′)
c − k

ωL
(εq + Ip,x − c2),

which correspond to solutions of the saddle-point equa-
tions, are displayed for different ωX. When ωX − Ip,x ≈
4.2 a.u., the momentum required for drift compensation
of the short trajectories is just reached [see Fig. 4 (a)]. In
this case, the initial momentum is directed mainly along
the z-direction [arrows marked with 4.2 in Fig. 4 (b)].
When ωX is increased, only the px component changes;
the pz component approximately remains constant be-
cause it is determined by the drift compensation condi-
tion. The electrons with an appropriate initial momen-
tum vector can be provided by the x-ray single-photon
photoionization because the latter happens with a large
angular distribution with a maximum around x-ray po-
larization direction as can be seen from the differential
ionization cross section of Eq. (41). Because the HHG
amplitude for each trajectory contains the differential
ionization cross section Eq. (41), the efficiency in each
case depends on the scalar product between required ion-
ization direction p and x-ray field polarization direction.
This results in some freedom in choosing the direction
of EX. Only if p and EX were close to perpendicular
[θ ≈ π/2 in Eq. (41)], the differential ionization prob-
ability would be close to zero. For realization of phase-
matching, as it is shown above in Sec. III A, the collinear
propagation of the laser and x-ray field is advantageous.
For this case of a collinear alignment, we show the differ-
ential ionization probability dσx,1ph/dΩ from Eq. (41) for
different x-ray frequencies ωX in Fig. 4 (c). The emission
angle of interest is estimated by the initial momentum
p =

√
2(ωX − Ip,x) and its z-component pz,c = 2.9 a.u.

taken from Fig. 4 (b) via sin θ = pz,c/p. For initial en-
ergies just above 4 [e.g., 4.2 corresponding to the nearly
horizontal vectors in Fig. 4 (b)], dσx,1ph/dΩ is vanish-
ing because the momentum direction and the direction
of EX are perpendicular. The angle of emission θ will
increase with rising ωX , increasing the ionization prob-
ability. On the other side, large values for ωX decrease
the overall ionization probability due to the denominator
of Eq. (41). These two competing tendencies creates the
maximum in the ionization probability in Fig. 4 (c). We
see that the chosen value ωX − Ip,x = 6 a.u. (ωX = 14) is
close to the optimal conditions.
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The former trajectory-based discussion can also be
seen from a wave packet perspective. The single-photon
ionization mechanism with a large initial kinetic energy
obeys a dipole angular distribution of the ejected wave
packet, i.e. the wave packet has an increased spreading
velocity compared to tunnel ionization. The increased
spatial dimension of the recolliding wave packet is ex-
ploited to overcome the drift.

C. Macroscopic HHG emission

After discussing the single-atom yield of the x-ray as-
sisted setup, we continue to elaborate on the macroscopic
aspect of the emission from a gas target.
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FIG. 5: (color online). (a) Real part of spectral component of
the locally emitted HHG field at 48.6 keV at different positions
along the propagation direction. The blue dashed line is for
HHG without the quasi-phase-matching scheme. The red line
is for the case of adding the weak counterpropagating field
to achieve QPM. (b) The macroscopically emitted spectral
photon number via Eq. (9) is displayed for the QPM scenario.

We inspect the emission from a Be3+ gas of homoge-
neous density ρ = 5 × 1016/cm3 with the same parame-
ters as in Fig. 3. The plasma refractive index at the laser
frequency is nL = 5 × 10−5. The phase mismatching
wave-vector of Eq. (38) at the harmonic emission energy
of 50 keV is then ∆k = 6 × 10−4 a.u. and the coherence
length lcoh = π/∆k = 0.25µm. In order to increase
the coherence length, a quasi-phase matching (QPM)
scheme can be employed [45–47]. We propose to use a
weak counterpropagating IR field with the parameters
E2 = 5×10−5 a.u. and ω2 = 0.0418 a.u. to achieve quasi-
phase matching (QPM). The additional field is denoted

by a brown line in Fig. 2. It is included into our mathe-
matical formalism by AP(η,x) in Eq. (37). In that way a

dependence on xa is introduced into S̃P(q, η, η′,xa) and
the saddle points for the integration in Eq. (32) depend
on the position within the medium. Thereby, x̃(xa, η̃, η)
in Eq. (34) contains the variation of the weak field seen by
the electron along the z-direction. For the chosen set of
parameters, the approximation of x̃(xa, η̃, η) by xa does
not lead to a significant change of the final results and,
thus, can be done to save computation time. The impact
of the additional field can be observed in Fig. 5 (a). The
real part of the spectral current density Eq. (32) at the
respective position is shown. The emitted total field is
given by a spatial integral over all contributions of the
current density [see Eq. (4)]. Without QPM (blue dashed
line), the single-atom contributions oscillate on the scale
of the coherence length estimated previously. An inte-
gration over all contributions results in extensive can-
cellation. However, when applying the additional field,
the symmetry between the positive and negative contri-
butions is broken (see the red line) and both parts only
partially cancel thus achieving quasi-phase-matching and
a nonzero value of the integral. The parameters of the
additional field were chosen to optimize the photon en-
ergy at 48.6 keV. A medium length of 100 µm was chosen
whereas the diameter is 500 µm. The assumed laser and
x-ray pulse duration is 10 cycles. The length is limited
due to the assumed bandwidth of the weak QPM field
∆ω2 ∼ 0.1%. The spectrum is shown in Fig. 5 (b) and
an integral over the spectrum yields the final result of
5 × 10−7 emitted photons per shot. The number is of
similar order of magnitude as in the other relativistic
HHG setup based on the counterpropagating attosecond
pulse trains for driving harmonics [25].

D. Efficiency analysis

We continue with a discussion about the small HHG
yield in the relativistic regime and identify several rea-
sons for it that are either general to the relativistic regime
or specific to this setup. First, we specify an estimate ex-
pression for the emitted photon number:

N =
dwn
dΩ
×∆n×∆Ω×∆t× V 2ρ2. (43)

It allows in a simple way to estimate the HHG yield by
an order of magnitude and to single out the different is-
sues influencing the HHG yield. In Eq. (43), dwn/dΩ is
the single-atom emission rate, ∆n is the number of har-
monics within the phase-matched frequency bandwidth,
∆t the interaction time that is approximately the delay
between both pulses, ∆Ω the solid angle of emitted har-
monics, V the volume of coherently emitting atoms [per-
fect phase-matching is assumed in this volume], ρ the
atomic density.

First, we demonstrate the usefulness of the expres-
sion by estimating the photon number for the proposed
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setup and show that the result of the former exact cal-
culation can be reproduced. We estimate the terms in
Eq. (43) as follows: the single atom emission rate is
dwn/dΩ ≈ 10−21 [see Fig. 3 (b)]; the phase-matched
frequency bandwidth can be deduced from Fig. 5 (b):
∆ωH ≈ 0.2 keV which gives ∆n ∼ 102; the solid an-
gle of phase-matched emission in the far field is deter-
mined by the interference pattern of a circular aperture
∆Ω ∼ π(2πc/DωH)2 ≈ 10−14, where ωH = 50 keV and
medium radius ra = 5 × 106a.u. are assumed; the in-
teraction time ∆t ≈ 103 a.u. is the laser pulse duration;
the volume is cylindrical V = πr2a∆za = 1020; the plasma
density restricted by dispersion is ρ = 5×1016/cm3. Tak-
ing all pieces together, the emitted photon number under
phase-matched conditions is

N50 keV
rel =

dwn
dΩ

∣∣∣
x,s
×∆n×∆Ω×∆t× V 2ρ2 (44)

= 10−21 × 102 × 10−14 × 103 × 1040 × 10−16

= 10−6

in agreement with the previous accurate calculation. The
subindex x stands for the x-ray assisted setup whereas s
denotes that the short trajectory contribution is taken
into account only.

To explain the low yield in the relativistic regime we
perform the same kind of estimation for a state-of-the-
art HHG experiment [57] in the non-relativistic regime
where 80 as pulses were generated from harmonics below
100 eV. We can estimate the emitted photon number in
this case:

N50 eV
non−rel =

dwn
dΩ

∣∣∣
t,s
×∆n×∆Ω×∆t× V 2ρ2 (45)

= 10−16 × 101 × 10−7 × 102 × 1041 × 10−12

= 109

The single-atom contribution dwn/dΩ|t,s was calculated
from [51] where we additionally inserted a correction fac-
tor accounting for the underestimation of the tunneling
rate when using the zero-range potential as described
in [25]. By comparing Eq. (44) and Eq. (45), one observes
a dramatic suppression of 15 orders of magnitude when
rising the HHG energy by about 3 orders of magnitude.
It arises mainly due to the single-atom yield dwn/dΩ,
the phase-matched emission angle ∆Ω and the gas den-
sity. The single-atom contribution will be investigated
separately below. The estimated solid angle emission
angle decreases quadratically with the harmonic energy.
This is because a smaller harmonic wavelength leads to a
smaller angle of the first interference minimum. The gas
density depends on the phase-matching conditions which
are much more difficult to fulfill in the relativistic regime
and thus the gas density is lower in this case.

In the following, we inspect the ratio between the
single-atom yields dwn/dΩ of Eq. (44) and Eq. (45)
closer. In each case, we concentrate on a single (short)
trajectory at 50 eV and 50 keV, respectively. Then each

single-atom rate can be estimated [18, 19],

dwn
dΩ

∣∣∣
x,s

=
1

(2πc)3ω2
L

ω2
H

∣∣∣√ (−2πi)5

D(q, η, η′)

∣∣∣2 (46)

×
∣∣∣c2px(η,q)

εq
√
ωH
〈0|p(η,q)〉

∣∣∣2∣∣∣〈p(η′,q)|EXx|0〉
∣∣∣2

for the considered relativistic setup [see also Eq. (40)],
and by [51]

dwn
dΩ

∣∣∣
t,s

=
ω2
L

(2πc)3
ω2
H

∣∣∣∣∣ 1

ω2
L

√
(−2πi)5

D(p, η, η′)

∣∣∣∣∣
2

×
∣∣∣√ωH〈0|x|px +A(η)/c〉

∣∣∣2 (47)

×
∣∣∣ 2√2κ3

|E(η′)|
〈px +A(η′)/c|V |0〉e−i(S̃(q,η,η

′)+
ωX
ωL

η′−ωH
ωL

η)
∣∣∣2

for a conventional nonrelativistic setup where we inserted
the tunneling correction factor of Ref. [52] and where

D(p, η, η′) = det∂S̃(p,η,η
′)

∂(p,η,η′) is the functional determinant

of the respective action. Both, Eq. (46) and Eq. (47)
are evaluated at the saddle point belonging to the short
trajectory of the respective energy. All factors in Eq. (46)
and Eq. (47) were ordered in the same way and a distinct
physical meaning can be assigned to them [25, 58]:

dwn
dΩ
∝ ω2

H

(
|pf |

∂ωH

∂ti

)−1
|arec(pf)|2

d3wi(ti,pi)

dpi
3

. (48)

The factor ω2
H accounts for the phase space and converts

the matrix element into the probability, d3wi(ti,pi)/dpi
3

is the differential ionization rate with the ionization time
ti in momentum direction pi, arec(pf) is the recombina-
tion amplitude and the last factor accounts for the dy-
namical properties of the wave, pf is the final momentum
at recollision, ∂ωH/∂ti is the electron wave packet chirp-
ing factor discussed in [25].

We compare all factors in Eq. (48) between the two
cases, to identify the reasons for the five orders of mag-
nitude suppression of the single-atom yield in the rela-
tivistic regime. Since the harmonic energy increases by a
factor of 103 by going to relativistic case, the factor ω2

H
yields an increase of 6 orders of magnitude. The differ-
ential ionization rate of the particular trajectory is re-
duced by a factor of 10−2. Three properties contribute
to estimate this ratio: The electron angular distribution
of ionization is much broader for the one-photon ioniza-
tion p2 ∼ (ωX − Ip,x) ∼ 6 than for tunneling ionization

p2 ∼ 3E√
2Ip,t

∼ 0.23 [19] yielding a factor of 4 × 10−2.

On the other hand, the total (constant) ionization rate
of the relativistic example [see Eq. (42)] is by a factor
2 higher than the instantaneous rate of non-relativistic
example [53, 54]. Third, in the relativistic setup, the rel-
evant electron trajectory starts with a certain angle θ off
the x-ray field direction resulting in a factor cos2 θ ≈ 0.3
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in Eq. (42). Together, we find the ratio of the differen-
tial rate 0.3 × 2 × 4 × 10−2 ≈ 10−2. Note that the total
time-average ionization rate is a factor of 10 lower for the
non-relativistic example than for the relativistic one [see
Eq. (42)]. The recombination amplitude is reduced by a
factor of 10−5 as discussed in [25]. The factors pf and
∂ωH/∂ti contained in the functional determinant reduce
the relativistic yield by 10−4. Collecting all factors, we
find the suppression of 106× 10−2× 10−5× 10−4 = 10−5

of the single-atom yield according to ratio between the
respective terms in Eq. (44) and Eq. (45).

IV. CONCLUSION

Extending table-top HHG to the hard x-ray domain is
an exciting prospect, especially because many research
labs already use HHG as a XUV sources and other ap-
proaches to generate hard x rays, like free electron lasers,
require large scale facilities.

The present study discussed several difficulties that
need to be overcome in order to realize the idea. The
relativistic drift has been extensively discussed in the lit-
erature. Each proposed geometry has its own advantages
and disadvantages regarding phase-matching. Generally,
increasing the harmonic energy renders phase-matching
more difficult for many reasons: the emission phase of
the harmonics depends approximately linearly on the in-
tensity (φ ∼ Upτ). Small intensity variation, e.g., in a
Gaussian focus, immediately results in phase difference
much larger than π. On the other hand, differences in
the phase velocities between the harmonics and the laser
wave lead to a slip in space between both waves. This
results in phase-mismatch as soon as the slip is compara-
ble to the harmonic wavelength which happens earlier for
shorter harmonic wavelengths. Additionally, relativistic
HHG is always accompanied by a large ionization lead-

ing to an enormous plasma dispersion. For these reasons,
in the best case, we obtain realizable medium lengths of
only a few tens of µm reducing the expectable macro-
scopic yield.

Apart from the relativistic drift and phase-matching,
we identified further issues decreasing the harmonic emis-
sion in relativistic HHG connected with the single-atom
yield. First, recombination of the recolliding electron be-
comes less likely for high momenta: scattering is favored
instead. Secondly, the electronic wave function is spread
over a larger energy bandwidth. If phase-matching can-
not be achieved for the whole bandwidth, however, a
large part of the harmonic radiation is lost. This was ex-
pressed by the chirping factor. Third, the solid emission
angle decreases quadratically with the harmonic energy
increase.

Regarding the harmonic yield, the present setup for
relativistic HHG as well as the one in [25] yield a small
photon number for emitted harmonics that are both of
similar order. On the bottom line, we think that the
setup considered in this paper is more promising than
that of [25] because the required laser intensities are lower
and the phase-matching scheme is more practical.

One important conclusion of the paper is that phase-
matching favors the collinear alignment of the laser and
x-ray beams for the x-ray assisted relativistic HHG setup.
This co-propagation is sufficient to induce drift compen-
sation and no perpendicular alignment of both beams is
required. Note that the collinear geometry has already
been used in various experiments [26, 27, 29].
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[22] C. C. Chirilă, C. J. Joachain, N. J. Kylstra, and R. M.

Potvliege, Phys. Rev. Lett. 93, 243603 (2004).
[23] B. Henrich, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.

Rev. Lett. 93, 013601 (2004).
[24] K. Z. Hatsagortsyan, C. Müller, and C. H. Keitel, EPL

76, 29 (2006).
[25] M. C. Kohler, M. Klaiber, K. Z. Hatsagortsyan, and C. H.

Keitel, EPL 94, 14002 (2011).
[26] K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003).
[27] E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa,

and K. Midorikawa, Phys. Rev. Lett. 99, 053904 (2007).
[28] K. J. Schafer, M. B. Gaarde, A. Heinrich, J. Biegert, and

U. Keller, Phys. Rev. Lett. 92, 023003 (2004).
[29] M. B. Gaarde, K. J. Schafer, A. Heinrich, J. Biegert, and

U. Keller, Phys. Rev. A 72, 013411 (2005).
[30] C. Figueira de Morisson Faria and P. Salières, Laser Phys.

17, 390 (2007).
[31] C. Buth, M. C. Kohler, J. Ullrich, and C. H. Keitel, Opt.

Lett. 36, 3530 (2011).
[32] M. B. Gaarde, J. L. Tate, and K. J. Schafer, J. Phys. B

41, 132001 (2008).
[33] A. L’Huillier, K. J. Schafer, and K. C. Kulander, J. Phys.

B 24, 3315 (1991).
[34] E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Sil-

vestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci,
R. Bruzzese, et al., Phys. Rev. A 61, 063801 (2000).
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