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1. Introduction

1.1. New laws from old ones

If general relativity is “probably the most beautiful of all existing physical theories”
[14], it is certainly thanks of its geometric character, which reduces the dynamics
of test bodies in a gravitational field to pure kinematics.‡ This feature makes it an
unprecedented heuristic machine: to uncover the effect of gravity on a given physical
phenomenon, consider the old law which describes it in the absence gravity, phrase it
in kinematical terms (times lapses and distance intervals), replace “time” by “proper
time” and “distance” by “proper distance”, and read off the new law in the presence
of gravity. For instance, the Fermat principle states that, in the absence of gravity,
light rays follow the paths which extremize time. Then general relativity immediately
generates a new law from Fermat’s principle: in the presence of gravity, light rays
follow the paths which extremize proper time. The bending of light in the presence of
spacetime curvature follows immediately from this new law.

It is interesting to note that the generative character of general relativity is
actually more general than general relativity itself. Indeed, it relies neither on local
Lorentz invariance, nor on the absence of a preferred foliation of spacetime, nor on
the Einstein equation, nor even on the relationship between stress-energy density and
spacetime curvature. This is particularly clear in the example mentioned above: the

‡ “Kinematics” has several, inconsistent, meanings in the physics literature. Here, we use this term
to intend the description of a phenomenon purely in terms of space and time.

http://arxiv.org/abs/1104.3303v4
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spacetime curvature responsible for the bending of light could come from a refractive
index gradient as well as from the vicinity of a massive star. In other words, whether
spacetime curvature is fundamental or effective is irrelevant to the generation of new
law from old ones: all that matters is that a curved spacetime, seen through geodesic
coordinates, appears flat.

This circumstance is all the more important that a growing number of condensed-
matter systems are now understood to behave as effective, or analogue, spacetimes.
Besides Gordon’s refractive optical medium, one can mention Unruh’s dumb hole (a
supersonic fluid flow), but also corrugated graphene sheets, Bose-Einstein condensates,
slow light systems, superfluids, metamaterials, etc. (See [1] for an updated review
of analogue gravity.) The fruitfulness of this connection between condensed-matter
physics and general relativity goes both ways: gravitational analogues provide valuable
model systems to emulate otherwise out-of-reach relativistic phenomena [25]; vice
versa, the geometric setup of general relativity sheds a new light on venerable fields
such as optics [16], hydrodynamics [12] – or diffusion phenomena, as this paper intends
to demonstrate.

1.2. The Tolman-Ehrenfest law of thermal equilibrium

That the “new law from old ones” principle does not restrict to the realm of mechanics,
or electrodynamics, is demonstrated by the early history of general relativity. Indeed,
one the first problems which Einstein analyzed in terms of gravitational redshift
was one of thermodynamics : the problem of finding the equilibrium temperature
distribution T ∗ in a static gravitational field. As early as 1912, that is three years
before the completion of general relativity, he speculated that, because in a curved
spacetime proper time does not run at the same rate in different places, T ∗ should not
be homogeneous [9]. This remarkable intuition was put on firm ground by Tolman
and Ehrenfest, who showed that

χT ∗ = const., (1)

where χ = (−ξaξa)1/2 is the redshift factor and ξa a timelike Killing vector [24].
From our perspective, the Tolman-Ehrenfest relation (1) is a prototype of these

kinematical laws which follow directly from the geometrical setup of general relativity.
In their original paper, however, Tolman and Ehrenfest gave it a complicated
dynamical proof, which relied both on the Einstein equation and the equation of state
of thermal radiation. Several authors later pointed out this anomaly, and proposed
more minimalist derivations [6, 23]. One, due to Rovelli and the author, goes like this
[21]:

• In the non-relativistic canonical ensemble, the equilibrium temperature T ∗ can
be computed as the rate of the modular flow generated by a thermal state ρ (the
Hamiltonian flow of ln ρ) with respect to time.

• Hence in a stationary spacetime, T ∗ can be computed locally as the rate of the
modular flow generated by a thermal state ρ (the Hamiltonian flow of ln ρ) with
respect to proper time.

• By stationarity, the modular flow generated by ρ is proportional to the Killing
flow, hence T ∗(σ) ∝ dt(σ)/ds(σ), where t(σ) is the Killing parameter at a spatial
point σ and s(σ) the local proper time.

• By definition, this ratio is the inverse of the redshift factor χ(σ), hence T ∗(σ) ∝
1/χ(σ).
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In other words, the equilibrium temperature distribution T ∗ is such that the
combination χT ∗ satisfies the non-relativistic equilibrium criterion. Can this reasoning
be extended to non-equilibrium processes such as heat conduction, or more general
diffusion processes? How far does the “new laws from old ones” principle lead us
when we leave the equilibrium regime?

1.3. The stochastic route to diffusion

As already emphasized, the key step to address this question is to frame the diffusion
problem in kinematical terms. Unsurprisingly, the most direct route to that effect is
the one laid down by Einstein himself, in his 1905 work on Brownian motion [8]: write
the master equation for a stochastic process, and derive the corresponding Fokker-
Planck equation in the diffusive limit.

In this stochastic approach, the basic concept is that of transition rates : the
probability that a random walker will jump from one position to another per unit time.
These are kinematical in nature (they are expressed in terms of distance and time),
and are therefore easily amenable to the “new laws from old ones” principle. Precisely
by this token, we will derive in this article the curved-spacetime generalization of
the Fokker-Planck equation, applicable to any kind of diffusive transport (atomic and
molecular diffusion, photon diffusion, thermal and electronic conduction, etc.), in any
kind of fundamental or analogue spacetime. In the case of pure Brownian motion and
static spacetimes, it reads

ξ̂a∇a(χp) = κ∆(χp), (2)

where p is the probability density of Brownian motion, ξ̂a = ξa/χ the hydrostatic
4-velocity, ∆ the spatial Laplace-Beltrami operator and κ the diffusivity. Note that
equation (2) is nothing but the standard diffusion equation, with p replaced by χp, as
in the Tolman-Ehrenfest relation – plain and simple.

Although (to our knowledge) it was never written in this form, equation (2)
is actually well-known in relativistic hydrodynamics: it is the phenomenological heat
equation of Eckart [7] and Landau and Lifschitz [15]. Here, it is derived from stochastic
mechanics, rather than postulated to satisfy the second law of thermodynamics – just
like Einstein derived the diffusion equation postulated by Fourier and Fick.

1.4. On causality

The notion of “relativistic Brownian motion” has been discussed by many authors in
the past decades [5]. What is usually meant by this expression is a formulation of
Brownian motion that is consistent with special-relativistic causality. Our goal here
is different: we wish to understand the effect of a non-trivial spacetime geometry on a
diffusion process.

As is already apparent from our equation (2), which is parabolic and hence permits
superluminal propagation, we do not attempt to include causality in our framework.
Instead, our setup is the following. We consider a fluid flow in spacetime – the bath
within which the stochastic process takes place – and fix the associated orthogonal
foliation of spacetime. In this foliation, each hypersurface is the “instantaneous space”
relative to fiducial observers comoving with the flow; at each instant t, a random
walker dragged by the flow can jump from one point to another point of the same
hypersurface.
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Thus, the sole difference between our approach and the non-relativistic theory is
the inclusion of a non-trivial spacetime geometry, viz. the presence of a gravitational
field. That is to say that we consider the c → ∞ limit of a fully relativistic theory
of Brownian motion, in the same sense in which Newton-Cartan gravity [10, 2] is the
c→ ∞ limit of general relativity.

Of course, this acausal approach is at variance with the textbook notion that
special relativity precedes general relativity. Yet, it is by no means unreasonable. It
simply expresses a physical approximation, namely that the relaxation of the bath
occurs on time scales much shorter than that of the diffusion process itself. This
regime is well-known in the context of kinetic theory, where it is referred to as the
“hydrodynamic limit”, and is also the regime in which Eckart’s dissipative relativistic
hydrodynamics applies.§ We refer the reader to [3] for an interesting discussion on
why an acausal equation like (2) is not inconsistent with microscopic causality.

1.5. Results

Besides deriving the master and Fokker-Planck equations for stochastic processes in
curved spacetimes, our results in this paper are the following.

• We provide a microscopic justification to Eckart’s heat-flux ansatz, and extend it
to more general diffusion processes.

• We generalize the Tolman-Ehrenfest relation to non-equilibrium stationary states,
with arbitrary boundary conditions.

• We compute the gravitational corrections to the mean squared displacement of
Brownian motion in static isotropic spacetimes.

The last item is particularly interesting. In a curved spacetime, the usual scaling law
〈x2〉t ∝ t holds only in the t→ 0 asymptotic limit. At later times, spacetime curvature
corrections show up and modify the growth rate of 〈x2〉t. This suggests that diffusive
transport in gravitational analogues could perhaps be tailored, by tuning the effective
metric coefficients [22].

1.6. Plan of the paper

The paper is organized as follows. Sec. 2 consists of preliminaries on the
D+1 formalism for relativistic hydrodynamics and on the non-relativistic theory
of stochastic processes. Our theory of stochastic processes in curved spacetimes is
developed in sec. 3, and the limit case of Brownian motion is studied in sec. 4. In sec.
5, we obtain a small-time asymptotic expansion for the mean squared displacement of
Brownian motion in static isotropic spacetimes. Our conclusion follows in sec. 6.

2. Preliminaries

Throughout this paper, we consider a (D + 1) dimensional spacetime with signature
(− + + · · ·). (We keep D unspecified to include lower dimensional analogue

§ Eckart’s theory is often considered “unacceptable” because of its acausal character, and its alleged
instability [11]. As far as the author can see, this judgement is completely misled: Eckart’s heat
equation is a perfectly well-behaved parabolic PDE, whose status with respect to a fully relativistic
dissipative hydrodynamics is the same as that of Newton-Cartan gravity with respect to general
relativity: an excellent approximation in most physical situations. See [13] for a mathematical
argument to this effect.
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spacetimes in the discussion.) We denote ∇ the spacetime Levi-Civita connection,
and a, b, c..., i, j, ... are abstract indices.

The standard references for general relativity and the D+1 formalism are [17, 28];
stochastic processes and Fokker-Planck equations are exposed in [27, 20].

2.1. The D+1 formalism

Consider a relativistic fluid with velocity ua. Assume its flow is irrotational, viz.

u[a∇buc] = 0. (3)

Then, according to the Frobenius theorem, there is a foliation of spacetime by
hypersurfaces Σt orthogonal to ua. Furthermore, the slices Σt are the level sets of
a time functions t : M → R such that

ua = −N∇at (4)

for some non-negative function N . The function N is called the lapse function, and
the slices Σt have the interpretation of “instantaneous space” relative to observers
comoving with the fluid. In the following, we will denote σ a flow line of ua (a “spatial
point”), and σt its intersection with Σt.

The intrinsic geometry of the spatial hypersurfaces Σt is coded by the induced
metric

hab = gab + uaub, (5)

and its associated covariant derivative‖ Da and Laplace-Beltrami operator ∆, while
their embedding in spacetime is measured by the (symmetric) extrinsic curvature
tensor

Kab = ∇aub. (6)

The trace θ = Ka
a = ∇au

a of the extrinsic curvature tensor is called the expansion
scalar. It measures the fractional rate of change of an infinitesimal volume δV about
a spatial point along the flow, viz.

θ = ua∇a ln δV =
1

N

1

δV

d(δV )

dt
. (7)

The factor 1/N above converts the proper time along the flow to the global time
coordinate t.

A situation of particular interest is the hydrostatic equilibrium: the vector
ξa = ∇at = −ua/N is then Killing, i.e. generates timelike isometries. In this context,
the lapse function N is usually denoted χ, and called the redshift factor. It satisfies
ua∇aχ = 0, and gives the acceleration ab = uc∇cu

b of the flow by

ab = ∇b lnχ. (8)

Moreover, the time-time component of the Ricci tensor E = Rabu
aub (sometimes

called the Raychaudhuri scalar), is given in this case by

E = Dba
b + aba

b. (9)

In general relativity, this scalar is tightly related to the local mass-energy density, by
virtue of the Einstein equation. We will see that E plays an interesting rô in diffusion
phenomena.

‖ The covariant derivative Da associated to hab acts on a tensor field T
a1···an

b1···bm
according to

DcT
a1···an

b1···bm
= h a1

e1
· · · h dm

bm
h f
c ∇fT

d1···dn
e1···em

.
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2.2. Markov processes

Let Σ be a Riemannian manifold with metric hij and covariant derivative Di,
representing a curved space, and denote σt ∈ Σ the instantaneous position of a random
walker at time t. In the Markovian setup, we assume that σt completely determines
its later positions σt′ (t′ > t), according to transition rates Γ(σ → σ′). By definition,
these are such that the elementary probability for the walker to jump from a volume
dV (σ) about σ ∈ Σ to a volume dV (σ′) about σ′ ∈ Σ in time dt is given by

Γ(σ → σ′)dV (σ)dV (σ′)dt. (10)

As a rule, the transition rates are implicit functions of the metric hij .
Let pt(σ) denote the probability density that the walker is in neighborhood of σ

at time t, i.e. σt = σ, and

jt(σ → σ′) = pt(σ)Γ(σ → σ′). (11)

the corresponding probability fluxes. Balancing the incoming and outgoing fluxes at
σ, we can immediately write the evolution equation for pt as

∂tpt(σ) =

∫

Σ

dV (σ′)
(
jt(σ

′ → σ) − jt(σ → σ′)
)
, (12)

i.e.

∂tpt(σ) =

∫

Σ

dV (σ′)
(
pt(σ

′)Γ(σ′ → σ) − pt(σ)Γ(σ → σ′)
)
, (13)

where dV (σt) is the Riemannian volume element on Σt. This integro-differential
equation is known master equation, and the operator M such that ∂tpt = Mpt as
the master operator.

In this stochastic framework, the notion of equilibrium state has a clear-cut
definition: a steady-state solution p∗ is an equilibrium distribution if the corresponding
probability fluxes cancel pairwise, i.e.

p∗(σ)Γ(σ → σ′) = p∗(σ′)Γ(σ′ → σ) (14)

This condition is known as the detailed balance condition.
Under certain regularity conditions for the rates Γ, one can show that the paths

(σt) are discontinuous: for this reason one often speaks of jump processes in this case.
The situation changes in the limit where the jumps become infinitely frequent and
short-ranged (with respect to some relevant coarse-graining scale). Then Γ becomes
distributional, and the master operator M reduces to its second-order truncation  L in
a moment expansion, reading

Lpt = −Di(w
i
1pt) +

1

2
DiDj(w

ij
2 pt). (15)

Here wi
1 is a vector field on Σ, the drift vector, and wij

2 a symmetric and positive-
definite rank-2 tensor field, the diffusion tensor. Note that the transition rates Γ are
related to L according to

Γ(σ′ → σ) = Lδ(σ′, σ), (16)

where δ is the Dirac distribution on Σ and L acts on the σ′ variable. Stochastic
processes described by such Fokker-Planck equations are called diffusion processes.

The simplest example of such a diffusion process is Brownian motion, for which
(by definition) wj

1 = 0 and wij
2 = 2κhij for some positive constant κ. The

corresponding Fokker-Planck equation ∂tpt = Lpt is the well-known diffusion equation

∂tp = κ∆pt. (17)
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3. Master and Fokker-Planck equations in curved spacetimes

In this section we describe the curved spacetime generalization of the master and
Fokker-Planck equations for Markov processes.

3.1. Markovian setup

Consider a Markov process defined by stationary transition rates Γ(σ′ → σ), depending
parametrically on a Riemannian metric hab. In the case of Brownian motion, for
instance, Γ(σ′ → σ) = κ∆δ(σ, σ′), with ∆ the Laplace-Beltrami operator associated
to hab.

Following the general “new law from old ones” ansatz, we take this process as
defining the instantaneous dynamics of a random walker in spacetime, in proper time.
In other words, given an irrotational flow ua, we consider the associated orthogonal
foliation (Σt), evaluate Γ on the induced metric hab,¶ and assume that the probability
that a random walker carried by the flow ua will jump from the position σt to the
position σ′

t in proper time ds(σt) is given that

Γ(σt → σ′
t)dV (σt)dV (σ′

t)ds(σt), (18)

where ds(σt) is the proper time along σ.

3.2. Master equation

Now, to write the corresponding probability equation, which is necessarily global, we
must convert the proper time s(σt) in (18) into the time coordinate t. This is achieved
thanks to the lapse function N , as

ds(σt) = N(σt)dt. (19)

Hence, we can rewrite (18) as

Γ(σt → σ′
t)dV (σt)dV (σ′

t)N(σt)dt. (20)

Denoting p(σt) the probability density of the stochastic process, the probability flux
is therefore

j(σt → σ′
t) = N(σt)p(σt)Γ(σt → σ′

t). (21)

This expression is physically intuitive: where proper time runs faster (high N), the
walker jumps more frequently (high j).

From this simple argument, we get that, if M is the master operator associated
to the rates Γ, the right-hand side of the curved-spacetime master equation should be
M(Np), i.e.

∫

Σt

dV (σ′
t)
(
N(σ′

t)pt(σ
′
t)Γ(σ′

t → σt) −N(σt)pt(σ)Γ(σt → σ′
t)
)
. (22)

A moment of reflection shows that the left-hand side of the master equation should
also be modified in a curved spacetime. Indeed, recall that in a curved spacetime, the
time-variation of an integrated density does not coincide with the integral of the time-
derivative of the density: it Vt is a region in Σt, then

d

dt

∫

Vt

dV (σt)pt(σt) 6=

∫

Vt

dV (σt)∂tpt(σt). (23)

¶ If spacetime is not static, this makes the transition rates implicit functions of time.
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This is due to the fact that the volume element dV (σt) itself depends on time. The
correct formula follows from the relationship (7) defining the expansion scalar, and
reads

d

dt

∫

Vt

dV (σt)pt(σt) =

∫

Vt

dV (σt)
(
∂tpt(σt) +Nθpt

)
. (24)

Shrinking the volume Vt down to zero, we thus find that the left-hand side of the
master equation should be ∂tp+Nθp instead of ∂tpt.

Combining both insights, we find that the master equation in a curved spacetime
with lapse N and expansion θ is

∂tp+Nθp = M(Np). (25)

It is easy to check that this equation conserves the total probability
∫
Σt

dV (σt)pt(σt),
as it should.

3.3. Detailed balance condition

Note that, in the case of static spacetimes (θ = 0 and N = χ is the redshift factor), we
can read off from (21) the generalized detailed balance condition: for an equilibrium
distribution p∗, the probability fluxes cancel pairwise if

Γ(σ′ → σ)χ(σ′)p∗(σ′) = Γ(σ → σ′)χ(σ)p∗(σ). (26)

Hence, the product χp∗ must satisfy the usual detailed balance condition defined by
the rates Γ(σ → σ′), instead of p∗ itself, as in the non-relativistic case. This is the
stochastic counterpart of the Tolman-Ehrenfest relation (1), where χT ∗ itself satisfies
the usual homogeneity condition instead of T ∗.

3.4. Diffusive limit

Assume from now on that the stochastic process is of diffusive type (or can be
approximated by one+) and denote L the Fokker-Planck operator defined by the rates
Γ, as in (15). Then from (25) it follows immediately that the Fokker-Planck equation
reads

∂tp+Nθp =  L(Np), (27)

i.e.

∂tp+Nθp = −Da(wa
1Np) +

1

2
DaDb(w

ab
2 Np) (28)

where wa
1 and wab

2 are the drift vector and diffusion tensor associated to the rates Γ,
as in sec. 2.2. This is the curved-spacetime Fokker-Planck equation.

Note that (28) can be given a more hydrodynamical flavor, by replacing the
unphysical derivative ∂t by the convective derivative ua∇a, which evolves the
probability distribution in proper time rather than in coordinate time; it then becomes

ua∇ap+ θp = −
Da(wa

1Np)

N
+

1

2

DaDb(w
ab
2 Np)

N
. (29)

This equation is the main result of this paper.

+ We recommend van Kampen’s note [26] for a discussion of the applicability of this approximation.
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4. The case of Brownian motion

In this section we focus on the properties of Brownian motion in curved spacetimes.

4.1. The general-relativistic diffusion equation

We saw in sec. 2 that Brownian motion is characterized among diffusion processes by
the vanishing of the drift vector, wa

1 = 0, and by wab
2 = κhab, with κ the diffusivity.

The corresponding Fokker-Planck equation is therefore

∂tp+Nθp = κ∆(Np) (30)

or

ua∇ap+ θp = κ
∆(Np)

N
. (31)

The remainder of this article is concerned with the properties of this curved-spacetime
diffusion equation.

4.2. Comments in the hydrostatic case

Consider the hydrostatic case, where (31) reduces to

ua∇ap = κ
∆(χp)

χ
. (32)

Several comments can be made about this equation. First, since ua∇aχ = 0, this
equation indeed coincides with (2), as announced in the introduction. Second, using
the relation ab = Db logχ between the acceleration of the congruence ab and the
spatial gradient of the redshift factor, the equation (32) can be reorganized as

(ξ̂b − 2κab)∇bp = κ∆p+ κEp, (33)

where E is the Raychaudhuri scalar. In addition to the usual diffusion term ∆p, this
equation contains two remarkable terms, which have no analogue in the non-relativistic
diffusion equation.

• Drift. The term 2κab∇bp is a drift term. Unlike the drift term in the classical
Fokker-Planck equation (15), it vanishes in the limit κ → 0, and is therefore a
genuine effect of diffusion.

• Source. The term κEp, where E = Dba
b + aba

b, is a source term. It implies that
the probability density appears to comoving observers as sourced by (κ times)
the Raychaudhuri scalar E.∗

Both terms, which result from the non-homogeneity of χ in space, can be interpreted
as stochastic gravitational redshift effects.

∗ That is not to say that the total probability is not conserved; we saw that it is.
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4.3. Derivation of Eckart’s constitutive relation

Another interesting consequence of our stochastic derivation of the diffusion equation
in curved spacetimes is the vindication of Eckart’s phenomenological constitutive
relation for the heat flux in general relativity [7]:

qb = −κ(DbT + Tab). (34)

This relation was postulated by Eckart on the basis of thermodynamical arguments,
and can be used to write the relativistic heat equation as

ua∇aT +
(
Db + ab

)
qb = 0. (35)

Consider now the diffusion equation (32) for the probability density of Brownian
motion in a static spacetime, and compare it with Eckart’s heat equation (35): they are
the same. In other words, we have reappraised Eckart’s heat equation as a probabilistic
equation – just like Einstein did with Fick’s diffusion equation.

4.4. The non-equilibrium Tolman-Ehrenfest condition

Another straightforward consequence of the lapsed heat equation is the generalization
of the Tolman-Ehrenfest condition to non-equilibrium steady-state solutions. Indeed,
we see from (30)-(31) that the the steady-state solution T∞ is given by (1) only in
the absence of an external forcing on the boundary; in general, it satisfies instead

∆(χT∞) = 0. (36)

Hence, steady-state solutions can be described as T∞ = ψ/χ, where ψ is a harmonic
function. (Equilibrium distributions corresponding to the case ψ = const.) To our
knowledge, this characterization of steady-state temperature distributions in static
spacetimes was not derived before.

5. Corrections to the mean square displacement

In this section we compute the gravitational corrections to the mean square
displacement of Brownian motion as a function of time.

5.1. Assumptions

To avoid dealing with the drift effect mentioned in sec. 4.2, we assume from now
on that space is radially symmetric about o, the origin of the Brownian motion. We
also assume that the metric is quenched, i.e. evolves at a much slower rate than
the diffusion process itself. In this approximation, the lapse function N and spatial
geometry hab are essentially independent of t, and the expansion scalar θ is negligible
with respect to the (inverse) diffusion time, hence (30) reduces to

∂tKt = κ∆(χKt). (37)

Hereafter, we shall denote Σ the time-independent spatial section, and 〈T, φ〉 the
pairing between a distribution T and a test function φ on Σ. We also assume (without
loss of generality) that N(o) = 1. Finally, we disregard the possible existence of cut
loci in Σ, and effectively restrict our attention to a convex normal neighborhood of o,
where the (spatial) Riemannian distance ρ(σ) = d(σ, o) is a smooth function of σ.



Diffusion in Curved Spacetimes 11

5.2. Green function and mean square displacement

The most significant observable of Brownian motion is the mean square displacement
(MSD). It is defined as the expected value of the squared distance between the position
of the Brownian walker at time t and its initial position:

〈ρ2〉t = 〈Kt, ρ
2〉. (38)

Here Kt is the Green function (or heat kernel) of the diffusion equation (37), namely
the solution with initial condition

lim
t→0

Kt(σ) = δ(σ, o), (39)

where δ(σ, o) is the Dirac distribution on the spatial slice Σ with support at o. (Note
that, with the definition (38), the MSD is measured as a function of the t coordinate,
which coincides with proper time only at the origin o: unlike the non-relativistic
situation, there is no global physical time parameter in a curved spacetime.)

5.3. Asymptotic expansion of the MSD

Let us denote D the differential operator κ∆q(χ·). Then the equation (37) can be
solved formally as

Kt(σ) = etDδ(σ, o) =

∞∑

n=0

tn

n!
Dnδ(σ, o). (40)

The MSD, in turn, can be computed by evaluating this distribution the squared
distance function ρ2. To this effect, note that

〈Dδ, ρ2〉 = 〈δ,D†ρ2〉 = D†ρ2(o), (41)

where D† = κχ∆q is the formal adjoint of D. Hence

〈ρ2〉t = 〈Kt, ρ
2〉 =

∞∑

n=0

tn

n!
(D†)nρ2(o), (42)

i.e.

〈ρ2〉t =

∞∑

n=0

(κt)n

n!
(χ∆)nρ2(o). (43)

This formula provides the asymptotic expansion of the MSD in the small time limit
t→ 0. Up to second order in t, it gives

〈ρ2〉t = 2κDt
{

1 +
(∆χ(o)

2
−
R(D(o)

3D

)
κt+ O

(
t2
)}
. (44)

To arrive at this expression we used the geometric identities ∆ρ2(o) = 2D and
∆2ρ2(o) = −4R(D)(o)/3.♯ At this order, we thus see that diffusion is enhanced by a
convex lapse profile about o, and by negative spatial curvature.

♯ The higher order terms involve higher derivatives of the squared distance function, which can also
be expressed in terms of local curvature invariants [4, 18].
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5.4. The backward equation

Note that the expansion (42) can be resummed formally as

〈ρ2〉t = etD
†

ρ2(o). (45)

Thus, the MSD 〈ρ2〉t can also be obtained as the solution ut to the adjoint, or backward,
equation

∂tut = κχ∆ut (46)

with initial condition u0(σ) = ρ2(σ). This differential formulation can be useful to
obtain the MSD in concrete situations, by means of a numerical integration of (46).

5.5. Two examples

We close this section with two explicit examples where the MSD is altered by the
spacetime geometry. The first one is the simplest general-relativistic star model, and
the second one is inspired by condensed-matter gravitational analogues such as graded-
index optical fibers.

• Schwartzschild’s constant density star. This is a static solution of the Einstein
equation with uniform mass-energy density. It has two parameters R and M , the
radius and mass of the star respectively. (See [19] for the explicit expression
of the line element.) If o is the center of the star (r = 0), one computes
∆χ(o) = 3GM/R3 and R3(o) = 12GM/R3, and therefore

〈ρ2〉t = 6κt
(

1 +
GM

6R3
κt+ O(t2)

)
. (47)

Thus, a Brownian motion initialized at the center of the star spreads slightly
faster than in flat spacetime. This result might seem paradoxical: doesn’t gravity
attract? Recall however that Brownian motion takes place within the stellar
medium, which is not free-falling but static. The infinitely frequent collisions
between this medium and the Brownian particle prevent the latter from falling
down to the center of the star – on the contrary, we see here that they actually
increase the MSD. Furthermore, this effect is small: a simple computation shows

that the Brownian motion hits the surface of the star (〈ρ2〉
1/2
t ≃ R) long before

the corrective term (GM/6R3)κt becomes of order 1.

• Parabolic lapse profile. Interestingly, this speed-up effect can be emulated, and
amplified, in a gravitational analogue with flat spatial geometry and a parabolic
lapse profile

χ(ρ) = 1 + ǫρ2/R2. (48)

Here ǫ = ±1 indexes the convexity/concavity of the profile. Such lapse profiles
arise e.g. in graded-index optical fibers, or in Kerr media controlled by intense
laser pulses. (In these optical contexts, the lapse function is nothing but the
inverse of the refractive index.) Moreover, this case has the advantage that the
asymptotic expansion (42) can be resummed explicitly. Indeed, we have

∆χ = ǫ∆ρ2/R2 = 2ǫD/R2, (49)

hence the formula (42) gives

〈ρ2〉t = 2D

∞∑

n=1

κntn

n!

(2ǫD

R2

)n−1

(50)
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i.e.

〈ρ2〉t = ǫR2
(
e2ǫDκt/R2

− 1
)
. (51)

In the convex case (ǫ = 1), the MSD therefore grows exponentially with time,
while in the concave case (ǫ = −1), it slows down and eventually reaches the
finite limit R2 on the “infinite redshift surface” {χ = 0}. This effect becomes
significant on the time scale R2/κ. Materials where R can be tuned at will could
therefore provide experimental benchmarks for the results discussed in this paper.

6. Conclusion

Let us conclude. From a theoretical standpoint, our reasoning in this paper is very
straightforward: it simply consists in incorporating gravitational redshift and spatial
curvature effects into the standard master equation for a Markov process – in short,
Einstein 1905 [8] amended by Einstein 1912 [9].

Simple as it is, though, this approach has allowed us to derive Eckart’s constitutive
relation for heat transfer, to generalize it to non-thermal diffusion processes, and to
compute the gravitational correction to the diffusion square-root law. In particular,
we have obtained the general asymptotic expansion of the mean-squared displacement
in static spacetimes, and concluded from two explicit examples that experiments are
more likely to reveal such corrections in analogue gravitational systems. Given the
ubiquity of diffusion phenomena in condensed-matter physics, we are hopeful that
these results will prove useful in applications. This would confirm – if that was needed
– that general relativity remains as fertile as ever.
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[6] R. Ebert and R. Göbel. Carnot cycles in general relativity. Gen. Relat. Gravit., 4(5):375–386,

Sept. 1973.
[7] C. Eckart. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple

Fluid. Phys. Rev., 58(10):919–924, Nov. 1940.
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