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Abstract. Using simple kinematical arguments, we derive the Fokker–Planck
equation for diffusion processes in curved spacetimes. In the case of pure
Brownian motion, this equation coincides with Eckart’s relativistic heat equation
(albeit in a simpler form) and therefore provides a microscopic justification of
his phenomenological heat-flux ansatz. Furthermore, it is easy to derive from
it the small-time asymptotic expansion of the mean square displacement of
Brownian motion in static spacetimes. Beyond general relativity itself, this result
has potential applications in analogue gravitational systems.

New Journal of Physics 14 (2012) 023019
1367-2630/12/023019+15$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:smerlak@aei.mpg.de
http://www.njp.org/


2

Contents

1. Introduction 2
1.1. New laws from old ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. The Tolman–Ehrenfest law of thermal equilibrium . . . . . . . . . . . . . . . . 3
1.3. The stochastic route to diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. On causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Plan of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Preliminaries 6
2.1. The D + 1 formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. The master and Fokker–Planck equations in curved spacetimes 8
3.1. The Markovian setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. The master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. Detailed balance condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4. Diffusive limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. The case of Brownian motion 10
4.1. The general-relativistic diffusion equation . . . . . . . . . . . . . . . . . . . . 10
4.2. Comments on the hydrostatic case . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Derivation of Eckart’s constitutive relation . . . . . . . . . . . . . . . . . . . . 11
4.4. The non-equilibrium Tolman–Ehrenfest condition . . . . . . . . . . . . . . . . 11

5. Corrections to the mean square displacement (MSD) 11
5.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2. Green function and MSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3. Asymptotic expansion of the MSD . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4. The backward equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5. Two examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6. Conclusion 14
Acknowledgments 14
References 14

1. Introduction

1.1. New laws from old ones

If general relativity is ‘probably the most beautiful of all existing physical theories’ [12], it
is certainly thanks to its geometric character, which reduces the dynamics of test bodies in
a gravitational field to pure kinematics1. This feature makes it an unprecedented heuristic
machine: to uncover the effect of gravity on a given physical phenomenon, consider the old
law that describes it in the absence of gravity, phrase it in kinematical terms (times lapses and
distance intervals), replace ‘time’ by ‘proper time’ and ‘distance’ by ‘proper distance’ and read
off the new law in the presence of gravity. For instance, the Fermat principle states that, in

1 ‘Kinematics’ has several, inconsistent, meanings in the physics literature. Here, we use this term to refer to the
description of a phenomenon purely in terms of space and time.
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the absence of gravity, light rays follow the paths that extremize time. Then general relativity
immediately generates a new law from Fermat’s principle: in the presence of gravity, light rays
follow the paths that extremize proper time. The bending of light in the presence of spacetime
curvature follows immediately from this new law.

It is interesting to note that the generative character of general relativity is actually more
general than general relativity itself. Indeed, it relies neither on local Lorentz invariance, nor
on the absence of a preferred foliation of spacetime, nor on the Einstein equation, nor even
on the relationship between stress-energy density and spacetime curvature. This is particularly
clear in the example mentioned above: the spacetime curvature responsible for the bending of
light could come from a refractive index gradient as well as from the vicinity of a massive
star. In other words, whether spacetime curvature is fundamental or effective is irrelevant to the
generation of a new law from old ones.

This circumstance is all the more important because a growing number of condensed-
matter systems are now understood to behave as effective, or analogue, spacetimes. In addition
to Gordon’s refractive optical medium, one can mention Unruh’s dumb hole (a supersonic fluid
flow), but also corrugated graphene sheets, Bose–Einstein condensates, slow light systems,
superfluids, metamaterials, etc. (See [1] for an updated review of analogue gravity.) The
fruitfulness of this connection between condensed-matter physics and general relativity goes
both ways: gravitational analogues provide valuable model systems to emulate otherwise out-
of-reach relativistic phenomena [23]; conversely, the geometric setup of general relativity sheds
new light on venerable fields such as optics [14], hydrodynamics [10]—or transport theory, as
this paper intends to demonstrate.

1.2. The Tolman–Ehrenfest law of thermal equilibrium

That the ‘new law from old ones’ principle is not confined to the realm of mechanics, or
electrodynamics, is demonstrated by the early history of general relativity. Indeed, one of the
first problems which Einstein analyzed in terms of gravitational redshift was a thermodynamical
one: the problem of finding the equilibrium temperature distribution T ∗ in a static gravitational
field. As early as 1912, that is, three years before the completion of general relativity, he
speculated that, because in a curved spacetime proper time does not run at the same rate in
different places, T ∗ should not be homogeneous [8]. This remarkable intuition was put on a
firm ground by Tolman and Ehrenfest [22], who showed that

χT ∗
= const, (1)

where χ = (−ξ aξa)
1/2 is the redshift factor and ξ a a timelike Killing vector.

From our perspective, the Tolman–Ehrenfest relation (1) is a prototype of these kinematical
laws which follow directly from the geometrical setup of general relativity. In their original
paper, however, Tolman and Ehrenfest gave it a complicated dynamical proof, which relied on
both the Einstein equation and the equation of state of thermal radiation. Several authors later
pointed out this anomaly, and proposed more minimalist derivations [5, 21]. One, due to Rovelli
and the present author, goes like this [19]:

• In the non-relativistic canonical ensemble, the equilibrium temperature T ∗ can be
computed as the rate of the modular flow generated by a thermal state ρ (the Hamiltonian
flow of ln ρ) with respect to time.
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• Hence, in a stationary spacetime, T ∗ can be computed locally as the rate of the modular
flow generated by a thermal state ρ (the Hamiltonian flow of ln ρ) with respect to proper
time.

• By stationarity, the modular flow generated by ρ is proportional to the Killing flow; hence
T ∗(σ )∝ dt (σ )/ds(σ ), where t (σ ) is the Killing parameter at a spatial point σ and s(σ )
the local proper time.

• By definition, this ratio is the inverse of the redshift factor χ(σ); hence T ∗(σ )∝ 1/χ(σ ).

Thus, the equilibrium temperature distribution T ∗ is such that the combination χT ∗ satisfies
the non-relativistic equilibrium criterion. Can this reasoning be extended to non-equilibrium
processes such as heat conduction or more general diffusion processes? How far does the ‘new
laws from old ones’ principle lead us when we leave the equilibrium regime?

1.3. The stochastic route to diffusion

As already emphasized, the key step to address this question is to frame the diffusion problem in
kinematical terms. With this aim, we can follow the path opened by Einstein himself in his 1905
work on Brownian motion [7]: write the master equation for a stochastic process and derive the
corresponding Fokker–Planck equation in the diffusive limit.

In this stochastic approach, the basic concept is that of transition rates: the probability that
a random walker will jump from one position to another per unit time. These are kinematical in
nature (they are expressed in terms of distance and time), and are therefore easily amenable
to the ‘new laws from old ones’ principle. Precisely by this token, we will derive in this
paper the curved-spacetime generalization of the Fokker–Planck equation, applicable to any
kind of diffusive transport (atomic and molecular diffusion, photon diffusion, thermal and
electronic conduction, etc), in any kind of fundamental or analogue spacetime. In the case of
pure Brownian motion and static spacetimes, it reads

ˆξ a∇a(χp)= κ1(χp), (2)

where p is the probability density of Brownian motion, ξ̂ a
= ξ a/χ the hydrostatic four-velocity,

1 the spatial Laplace–Beltrami operator and κ the diffusivity. Note that equation (2) is nothing
but the standard diffusion equation, with p replaced by χp, as in the Tolman–Ehrenfest
relation—plain and simple.

Although (to our knowledge) it was never written in this form, equation (2) is actually well
known in relativistic hydrodynamics: it is the phenomenological heat equation of Eckart [6].
Here, it is derived from stochastic mechanics, rather than postulated to satisfy the second
law of thermodynamics—just like Einstein derived the diffusion equation postulated by Fourier
and Fick.

1.4. On causality

The notion of ‘relativistic Brownian motion’ has been discussed by many authors in recent
years [4]. What is usually meant by this expression is a formulation of Brownian motion that is
consistent with special-relativistic causality. Our goal here is different: we wish to understand
the effect of a non-trivial spacetime geometry on a diffusion process.
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As is already apparent from our equation (2), which is parabolic and hence permits
superluminal propagation, we do not attempt to include causality in our framework. Instead,
our setup is the following. We consider a fluid flow in spacetime—the bath within which the
stochastic process takes place—and fix the associated orthogonal foliation of spacetime. In this
foliation, each hypersurface is the ‘instantaneous space’ relative to fiducial observers comoving
with the flow. Our assumption is that, at each instant t , a random walker dragged by the flow
can jump from one point to another point of the same hypersurface.

Of course, this acausal approach is at variance with the textbook notion that special
relativity precedes general relativity. However, it is by no means unreasonable. It simply
expresses a physical approximation, namely that microscopic relaxations occurs on time scales
much shorter than that of the diffusion process itself. This regime is well known in the context of
kinetic theory, where it is referred to as the ‘hydrodynamic limit’, and is also the regime in which
Eckart’s dissipative relativistic hydrodynamics applies2. See [2] for an interesting discussion on
why an acausal equation such as (2) is not inconsistent with microscopic causality.

1.5. Results

Besides deriving the master and Fokker–Planck equations for stochastic processes in curved
spacetimes, our results in this paper are the following.

• We provide a microscopic justification to Eckart’s heat-flux ansatz, and extend it to more
general diffusion processes.

• We generalize the Tolman–Ehrenfest relation to non-equilibrium stationary states, with
arbitrary boundary conditions.

• We compute the gravitational corrections to the mean squared displacement of Brownian
motion in static isotropic spacetimes.

The last item is particularly interesting. In a curved spacetime, the usual scaling law
〈x2

〉t ∝ t holds only in the t → 0 asymptotic limit. At later times, spacetime curvature
corrections show up and modify the growth rate of 〈x2

〉t . This suggests that diffusive transport in
gravitational analogues could perhaps be tailored by tuning the effective metric coefficients [20].

1.6. Plan of the paper

The paper is organized as follows. Section 2 consists of preliminaries on the D + 1 formalism
for relativistic hydrodynamics and on the non-relativistic theory of stochastic processes. Our
theory of stochastic processes in curved spacetimes is developed in section 3, and the limit
case of Brownian motion is studied in section 4. In section 5, we obtain a small-time asymptotic
expansion for the mean squared displacement of Brownian motion in static isotropic spacetimes.
Our conclusion follows in section 6.

2 Eckart’s theory is often considered ‘unacceptable’ because of its acausal character and its alleged instability [9].
As far as the author can see, this judgment is completely misled: Eckart’s heat equation is a perfectly well-behaved
parabolic PDE, whose status with respect to a fully relativistic dissipative hydrodynamics is the same as that of the
Newton–Cartan gravity with respect to general relativity: an excellent approximation in most physical situations.
See [11] for a mathematical argument to this effect.
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2. Preliminaries

Throughout this paper, we consider a (D + 1) dimensional spacetime with signature (− + + · ·· ).
(We keep D unspecified to include lower dimensional analogue spacetimes in the discussion.)
We denote by ∇ the spacetime Levi–Civita connection, and a, b, c, . . . , i, j, . . . are abstract
indices.

The standard references for general relativity and the D + 1 formalism are [15, 26];
stochastic processes and Fokker–Planck equations are exposed in [18, 25].

2.1. The D + 1 formalism

Consider a relativistic fluid with velocity ua. Assume that its flow is irrotational, namely

u[a∇buc] = 0. (3)

Then, according to the Frobenius theorem, there is a foliation of spacetime by hypersurfaces 6t

orthogonal to ua. Furthermore, the slices 6t are the level sets of time functions t : M → R such
that

ua = −N∇at (4)

for some non-negative function N . The function N is called the lapse function, and the slices6t

have the interpretation of ‘instantaneous space’ relative to observers comoving with the fluid.
In the following, we will denote by σ a flow line of ua (a ‘spatial point’), and σt its intersection
with 6t .

The intrinsic geometry of the spatial hypersurfaces 6t is coded by the induced metric

hab = gab + uaub, (5)

and its associated covariant derivative3 Da and Laplace–Beltrami operator 1, while their
embedding in spacetime is measured by the (symmetric) extrinsic curvature tensor

Kab = Daub. (6)

Its trace θ = Daua
= ∇aua is the expansion scalar, and measures the fractional rate of change

of an infinitesimal volume δV about a spatial point along the flow, namely

θ = ua
∇a ln δV =

1

N

1

δV

d(δV )

dt
. (7)

The factor 1/N above converts the proper time along the flow into the global time coordinate t .
A situation of particular interest is the hydrostatic equilibrium: the vector ξ a

= ∇
at =

−ua/N is then Killing, i.e. generates timelike isometries. In this context, the lapse function
N is usually denoted by χ , and is called the redshift factor. It satisfies ua

∇aχ = 0, and gives the
acceleration ab

= uc
∇cub of the flow by

ab
= ∇

b lnχ. (8)

Moreover, the time–time component of the Ricci tensor E = Rabuaub (sometimes called the
Raychaudhuri scalar) is given in this case by

E = Dbab + abab. (9)

3 The covariant derivative Da associated with hab acts on a tensor field T a1···an
b1···bm

according to

DcT a1···an
b1···bm

= h a1
e1

· · · h dm
bm

h f
c ∇ f T d1···dn

e1···em
.
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In general relativity, this scalar is tightly related to the local mass-energy density, by virtue of
the Einstein equation. We will see that E plays an interesting role in diffusion phenomena.

2.2. Markov processes

Let 6 be a Riemannian manifold with metric hi j and covariant derivative Di , representing a
curved space, and denote by σt ∈6 the instantaneous position of a random walker at time t . In
the Markovian setup, we assume that σt completely determines its later positions σt ′ (t ′ > t),
according to transition rates 0(σ → σ ′). By definition, these are such that the elementary
probability for the walker to jump from a volume dV (σ ) about σ ∈6 to a volume dV (σ ′)

about σ ′
∈6 in time dt is given by

0(σ → σ ′)dV (σ )dV (σ ′)dt. (10)

As a rule, the transition rates are implicit functions of the metric hi j .
Let pt(σ ) denote the probability density that the walker is in the neighborhood of σ at time

t , i.e. σt = σ , and

jt(σ → σ ′)= pt(σ )0(σ → σ ′) (11)

the corresponding probability fluxes. Balancing the incoming and outgoing fluxes at σ , we can
immediately write the evolution equation for pt as

∂t pt(σ )=

∫
6

dV (σ ′)( jt(σ
′
→ σ)− jt(σ → σ ′)), (12)

i.e.

∂t pt(σ )=

∫
6

dV (σ ′)(pt(σ
′)0(σ ′

→ σ)− pt(σ )0(σ → σ ′)), (13)

where dV (σ ) is the Riemannian volume element on 6. This integro-differential equation is
known as the master equation, and the operatorM such that ∂t pt =Mpt is the master operator.

In this stochastic framework, the notion of equilibrium state has a clear-cut definition: a
steady-state solution p∗ is an equilibrium distribution if the corresponding probability fluxes
cancel pairwise, i.e.

p∗(σ )0(σ → σ ′)= p∗(σ ′)0(σ ′
→ σ). (14)

This condition is known as the detailed balance condition.
Under certain regularity conditions for the rates 0, one can show that the paths (σt) are

discontinuous: for this reason one often speaks of jump processes in this case. The situation
changes in the limit where the jumps become infinitely frequent and short-range (with respect
to some relevant coarse-graining scale). Then 0 becomes distributional, and the master operator
M reduces to its second-order truncation L in a moment expansion, reading

Lpt = −Di(w
i
1 pt)+ 1

2 Di D j(w
i j
2 pt). (15)

Here wi
1 is a vector field on 6, the drift vector, and wi j

2 is a symmetric and positive-definite
rank-2 tensor field, the diffusion tensor. Equation (15) is called the Fokker–Planck equation.
Note that the transition rates 0 are related to L according to

0(σ ′
→ σ)= Lδ(σ ′, σ ), (16)
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where δ is the Dirac distribution on 6 and L acts on the σ ′ variable. Stochastic processes
described by such Fokker–Planck equations are called diffusion processes.

The simplest example of such a diffusion process is Brownian motion, for which
(by definition) w j

1 = 0 and w
i j
2 = 2κhi j for some positive constant κ . The corresponding

Fokker–Planck equation ∂t pt = Lpt is the classical diffusion equation

∂t p = κ1pt . (17)

3. The master and Fokker–Planck equations in curved spacetimes

In this section, we describe the curved spacetime generalization of the master and
Fokker–Planck equations for Markov processes.

3.1. The Markovian setup

Consider a Markov process defined by stationary transition rates 0(σ ′
→ σ), depending

parametrically on a Riemannian metric hab. In the case of Brownian motion, for instance,
0(σ ′

→ σ)= κ1δ(σ, σ ′), with 1 being the Laplace–Beltrami operator associated with hab.
Following the general ‘new law from old ones’ ansatz, we take this process as defining the

instantaneous dynamics of a random walker in spacetime, in proper time. In other words, given
an irrotational flow ua, we consider the associated orthogonal foliation (6t), evaluate 0 on the
induced metric hab

4, and assume that the probability that a random walker carried by the flow
ua will jump from the position σt to the position σ ′

t in proper time ds(σt) is given by

0(σt → σ ′

t ) dV (σt) dV (σ ′

t ) ds(σt), (18)

where s(σt) is the proper time along σ .

3.2. The master equation

Now, to write the corresponding probability equation, which is necessarily global, we must
convert the proper time s(σt) in (18) into the time coordinate t . This is achieved thanks to the
lapse function N , as

ds(σt)= N (σt) dt. (19)

Hence, we can rewrite (18) as

0(σt → σ ′

t ) dV (σt) dV (σ ′

t )N (σt) dt. (20)

Denoting by p(σt) the probability density of the stochastic process, the probability flux is
therefore

j (σt → σ ′

t )= N (σt)p(σt)0(σt → σ ′

t ). (21)

This expression is physically intuitive: where proper time runs faster (high N), the walker jumps
more frequently (high j).

From this simple argument, we find that, ifM is the master operator associated with the
rates 0, the right-hand side of the curved-spacetime master equation should beM(N p), i.e.∫

6t

dV (σ ′

t )(N (σ
′

t )pt(σ
′

t )0(σ
′

t → σt)− N (σt)pt(σ )0(σt → σ ′

t )). (22)

4 If spacetime is not static, this makes the transition rates implicit functions of time.
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A moment of reflection shows that the left-hand side of the master equation should also be
modified in a curved spacetime. Indeed, recall that in a curved spacetime, the time variation of
an integrated density does not coincide with the integral of the time derivative of the density: if
Vt is a region in 6t , then

d

dt

∫
Vt

dV (σt)pt(σt) 6=

∫
Vt

dV (σt)∂t pt(σt). (23)

This is due to the fact that the volume element dV (σt) itself depends on time. The correct
formula follows from the relationship (7) defining the expansion scalar and reads

d

dt

∫
Vt

dV (σt)pt(σt)=

∫
Vt

dV (σt)(∂t pt(σt)+ Nθpt). (24)

Shrinking the volume Vt down to zero, we thus find that the left-hand side of the master equation
should be ∂t p + Nθp instead of ∂t pt .

Combining both insights, we find that the master equation in a curved spacetime with lapse
N and expansion θ is

∂t p + Nθp =M(N p). (25)

It is easy to check that this equation conserves the total probability
∫
6t

dV (σt)pt(σt), as it
should.

3.3. Detailed balance condition

Note that, in the case of static spacetimes (θ = 0 and N = χ is the redshift factor), we can read
off from (21) the generalized detailed balance condition: for an equilibrium distribution p∗, the
probability fluxes cancel pairwise if

0(σ ′
→ σ)χ(σ ′)p∗(σ ′)= 0(σ → σ ′)χ(σ )p∗(σ ). (26)

Hence, the product χp∗ must satisfy the usual detailed balance condition defined by the rates
0(σ → σ ′), instead of p∗ itself, as in the non-relativistic case. This is the stochastic counterpart
of the Tolman–Ehrenfest relation (1), where χT ∗ satisfies the usual homogeneity condition
instead of T ∗ itself.

3.4. Diffusive limit

Assume from now on that the stochastic process is of diffusive type (or can be approximated
by one5) and denote by L the Fokker–Planck operator defined by the rates 0, as in (15). Then
from (25) it follows immediately that the Fokker–Planck equation reads

∂t p + Nθp = L(N p), (27)

i.e.

∂t p + Nθp = −Da(w
a
1 N p)+ 1

2 Da Db(w
ab
2 N p), (28)

where wa
1 and wab

2 are the drift vector and diffusion tensor associated with the rates 0, as in
section 2.2. This is the curved-spacetime Fokker–Planck equation.

5 We recommend van Kampen’s note [24] for a discussion of the applicability of this approximation.
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Note that (28) can be given a more hydrodynamical flavor, by replacing the unphysical
derivative ∂t by the convective derivative ua

∇a, which evolves the probability distribution in
proper time rather than in coordinate time; it then becomes

ua
∇a p + θp = −

Da(w
a
1 N p)

N
+

1

2

Da Db(w
ab
2 N p)

N
. (29)

This equation is the main result of this paper.

4. The case of Brownian motion

In this section we focus on the properties of Brownian motion in curved spacetimes.

4.1. The general-relativistic diffusion equation

We saw in section 2 that Brownian motion is characterized among diffusion processes by the
vanishing of the drift vector, wa

1 = 0, and by wab
2 = 2κhab, with κ being the diffusivity. The

corresponding Fokker–Planck equation is therefore

∂t p + Nθp = κ1(N p) (30)

or

ua
∇a p + θp = κ

1(N p)

N
. (31)

The remainder of this paper is concerned with the properties of this curved-spacetime diffusion
equation.

4.2. Comments on the hydrostatic case

Consider the hydrostatic case, where (31) reduces to

ua
∇a p = κ

1(χp)

χ
. (32)

Several comments can be made about this equation. Firstly, since ua
∇aχ = 0, this equation

indeed coincides with (2), as announced in the introduction. Secondly, using the relation
ab = Db logχ between the acceleration of the congruence ab and the spatial gradient of the
redshift factor, equation (32) can be reorganized as

(ξ̂ b
− 2κab)∇b p = κ1p + κEp, (33)

where E is the Raychaudhuri scalar. In addition to the usual diffusion term 1p, this equation
contains two remarkable terms, which have no analogue in the non-relativistic diffusion
equation.

• Drift. The term 2κab
∇b p is a drift term. Unlike the drift term in the classical Fokker–Planck

equation (15), it vanishes in the limit κ → 0 and is therefore a genuine effect of diffusion.
• Source. The term κEp, where E = Dbab + abab, is a source term. It implies that

the probability density appears to comoving observers as sourced by (κ times) the
Raychaudhuri scalar E .6

Both terms, which result from the non-homogeneity of χ in space, can be interpreted as
stochastic gravitational redshift effects.
6 That is not to say that the total probability is not conserved; we saw that it is.
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4.3. Derivation of Eckart’s constitutive relation

Another interesting consequence of our stochastic derivation of the diffusion equation in curved
spacetimes is the vindication of Eckart’s phenomenological constitutive relation for the heat
flux in general relativity [6]:

qb
= −κ(DbT + T ab). (34)

This relation was postulated by Eckart on the basis of thermodynamical arguments, and can be
used to write the relativistic heat equation as

ua
∇aT + (Db + ab)q

b
= 0. (35)

Consider now the diffusion equation (32) for the probability density of Brownian motion
in a static spacetime, and compare it with Eckart’s heat equation (35): they are the same. In
other words, we have reappraised Eckart’s heat equation as a probabilistic equation—just like
Einstein did with Fick’s diffusion equation.

4.4. The non-equilibrium Tolman–Ehrenfest condition

Another straightforward consequence of equation (32) is the generalization of the
Tolman–Ehrenfest condition to non-equilibrium steady-state solutions. Indeed, we see
from (30)–(31) that the steady-state solution T ∞ is given by (1) only in the absence of an
external forcing on the boundary; in general, it satisfies instead

1(χT ∞)= 0. (36)

Hence, steady-state solutions can be described as T ∞
= ψ/χ , where ψ is a harmonic

function. (Equilibrium distributions correspond to the case ψ = const.) To our knowledge, this
characterization of steady-state temperature distributions in static spacetimes was not derived
before.

5. Corrections to the mean square displacement (MSD)

In this section we compute the gravitational corrections to the MSD of Brownian motion as a
function of time.

5.1. Assumptions

To avoid dealing with the drift effect mentioned in section 4.2, we assume from now on that
space is radially symmetric about o, the origin of the Brownian motion. We also assume that
the metric is quenched, i.e. evolves at a much lower rate than the diffusion process itself. In this
approximation, the lapse function N and spatial geometry hab are essentially independent of t ,
and the expansion scalar θ is negligible with respect to the (inverse) diffusion time; hence (30)
reduces to

∂t K t = κ1(χK t). (37)

Hereafter, we shall denote by 6 the time-independent spatial section, and by 〈T, φ〉 the
pairing between a distribution T and a test function φ on 6. We also assume (without loss of
generality) that χ(o)= 1. Finally, we disregard the possible existence of cut loci in 6, and
effectively restrict our attention to a convex normal neighborhood of o, where the (spatial)
Riemannian distance ρ(σ)= d(σ, o) is a smooth function of σ .

New Journal of Physics 14 (2012) 023019 (http://www.njp.org/)

http://www.njp.org/


12

5.2. Green function and MSD

The most significant observable of Brownian motion is the MSD. It is defined as the expected
value of the squared distance between the position of the Brownian walker at time t and its
initial position:

〈ρ2
〉t = 〈K t , ρ

2
〉. (38)

Here K t is the Green function (or heat kernel) of the diffusion equation (37), namely the
solution with the initial condition

lim
t→0

K t(σ )= δ(σ, o), (39)

where δ(σ, o) is the Dirac distribution on the spatial slice 6 with support at o. (Note that, with
the definition (38), the MSD is measured as a function of the t coordinate, which coincides with
proper time only at the origin o: unlike the non-relativistic situation, there is no global physical
time parameter in a curved spacetime.)

5.3. Asymptotic expansion of the MSD

Let us denote byD the differential operator κ1q(χ ·). Then equation (37) can be solved formally
as

K t(σ )= etDδ(σ, o)=

∞∑
n=0

tn

n!
Dnδ(σ, o). (40)

The MSD, in turn, can be computed by evaluating this distribution of the squared distance
function ρ2. To this effect, note that

〈Dδ, ρ2
〉 = 〈δ,D†ρ2

〉 = D†ρ2(o), (41)

where D†
= κχ1q is the formal adjoint of D. Hence

〈ρ2
〉t = 〈K t , ρ

2
〉 =

∞∑
n=0

tn

n!
(D†)nρ2(o), (42)

i.e.

〈ρ2
〉t =

∞∑
n=0

(κt)n

n!
(χ1)nρ2(o). (43)

This formula provides the asymptotic expansion of the MSD in the small time limit t → 0. Up
to second order in t , it gives

〈ρ2
〉t = 2κDt

{
1 +

(1χ(o)
2

−
R(D)(o)

3D

)
κt +O(t2)

}
. (44)

To arrive at this expression we used the geometric identities 1ρ2(o)= 2D and 12ρ2(o)=

−4R(D)(o)/3.7 At this order, we thus see that diffusion is enhanced by a convex lapse profile
about o and/or by negative spatial curvature.

7 The higher-order terms involve higher derivatives of the squared distance function, which can also be expressed
in terms of local curvature invariants [3, 16].
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5.4. The backward equation

Note that the expansion (42) can be resummed formally as

〈ρ2
〉t = etD†

ρ2(o). (45)

Thus, the MSD 〈ρ2
〉t can also be obtained as the solution ut to the adjoint, or backward, equation

∂tut = κχ1ut (46)

with the initial condition u0(σ )= ρ2(σ ). This differential formulation can be useful in obtaining
the MSD in concrete situations, by means of a numerical integration of (46).

5.5. Two examples

We close this section with two explicit examples where the MSD is altered by the spacetime
geometry. The first one is the simplest general-relativistic star model, and the second one is
inspired by condensed-matter gravitational analogues such as graded-index optical fibers.

• Schwartzschild’s constant density star. This is a static solution of the Einstein equation
with uniform mass-energy density. It has two parameters R and M , the radius and mass of
the star, respectively. (See [17] for the explicit expression of the line element.) If o is the
center of the star (r = 0), one computes 1χ(o)= 3G M/R3 and R3(o)= 12G M/R3, and
therefore

〈ρ2
〉t = 6κt

(
1 +

G M

6R3
κt +O(t2)

)
. (47)

Thus, a Brownian motion initialized at the center of the star spreads slightly faster than
in flat spacetime. This result might seem paradoxical: does not gravity attract? Recall,
however, that Brownian motion takes place within the stellar medium, which is not free-
falling but static. The infinitely frequent collisions between this medium and the Brownian
particle prevent the latter from falling to the center of the star. In contrast, we see here
that they actually increase the MSD. However, this effect is small: a simple computation
shows that the Brownian motion hits the surface of the star (〈ρ2

〉
1/2
t ' R) long before the

corrective term (G M/6R3)κt becomes of the order of 1.

• Parabolic lapse profile. Interestingly, this speed-up effect can be emulated, and amplified,
in a gravitational analogue with flat spatial geometry and a parabolic lapse profile

χ(ρ)= 1 + ερ2/R2. (48)

Here ε = ±1 indexes the convexity/concavity of the profile. Such lapse profiles arise, for
example, in graded-index optical fibers or in Kerr media controlled by intense laser pulses.
(In these optical contexts, the lapse function is nothing but the inverse of the refractive
index.) Moreover, this case has the advantage that the asymptotic expansion (42) can be
resummed explicitly. Indeed, we have

1χ = ε1ρ2/R2
= 2εD/R2

; (49)

hence the formula (42) gives

〈ρ2
〉t = 2D

∞∑
n=1

κntn

n!

(2εD

R2

)n−1
(50)
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i.e.

〈ρ2
〉t = εR2(e2εDκt/R2

− 1). (51)

In the convex case (ε = 1), the MSD therefore grows exponentially with time, while in
the concave case (ε = −1), it slows down and eventually reaches the finite limit R2 on the
‘infinite redshift surface’ {χ = 0}. This effect becomes significant on the time scale R2/κ .
Materials where R can be tuned experimentally could therefore provide benchmarks for
the results discussed in this paper.

6. Conclusion

From a theoretical standpoint, our reasoning in this paper is very straightforward: it simply
consists in incorporating gravitational redshift and spatial curvature effects into the standard
master equation for a Markov process—in short, Einstein (1905) [7] amended by Einstein
(1912) [8].

Simple as it is, however, this approach has allowed us to derive Eckart’s constitutive
relation for heat transfer, to generalize it to non-thermal diffusion processes and to compute
the gravitational correction to the diffusion square-root law. In particular, we have obtained
the general small-time asymptotic expansion of the mean-squared displacement in static
spacetimes, and concluded from two worked-out examples that experiments are more likely
to reveal such corrections in analogue gravitational systems. Given the ubiquity of diffusion
phenomena in condensed-matter physics, we are hopeful that these results will prove useful in
applications. This would confirm—if that was needed—that general relativity remains as fertile
as ever.
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