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Abstract

This thesis reports on the progress towards the preparation of an ultracold three-
component Fermi gas of 6Li in a two-dimensional optical lattice.
An optical dipole trap was set up and filled with ultracold atoms from a magneto-
optical trap, which were then evaporatively cooled. In a trap with an average trap
frequency of 146 Hz at an aspect ratio of 1:9:42 a degenerate, non-interacting Fermi
gas of 150 000 atoms was created with a lifetime of 42 s. In the same trap a molecular
Bose-Einstein condensate of approximately 25 000 6Li2 dimers was achieved.
Radio frequency pulses were applied to a two-component thermal gas to populate
the third component and determine the maximum achievable Rabi frequency with
this setup.
In the next step we want to transfer the evaporatively cooled cloud from the dipole
trap into a two-dimensional potential. As this will be created by an interference pat-
tern of two intersecting laser beams, tests were performed concerning the short- and
long-term stability of the optical setup. On the basis of these measurements a com-
pact and stable interferometer casing was designed and will be integrated into the
experiment very soon.

Abstract

Diese Arbeit beschreibt den Fortschritt zur Herstellung eines ultrakalten drei-kom-
ponentigen Fermi-Gases aus 6Li in einem zweidimensionalen optischen Gitter.
Eine optische Dipolfalle wurde aufgebaut und mit ultrakalten Atomen aus einer ma-
gneto-optischen Falle gefüllt. In einer Falle mit einer mittleren Fallenfrequenz von
146 Hz bei einem Aspekt-Verhältnis von 1:9:42 wurde durch evaporatives Kühlen ein
entartetes, nicht wechselwirkendes Fermi Gas aus 150 000 Atomen mit einer Lebens-
dauer von 42 s hergestellt. In derselben Falle wurde ein molekulares Bose-Einstein
Kondensat aus etwa 25 000 6Li2 Dimeren erreicht.
Radiofrequenz-Pulse wurden in ein zwei-komponentiges thermisches Gas einges-
trahlt, um die dritte Komponente zu bevölkern und die mit diesem Aufbau maximal
erreichbare Rabi-Frequenz zu bestimmen.
Im nächsten Schritt soll das evaporativ gekühlte Gas aus der Dipolfalle in ein zwei-
dimensionales Potential transferiert werden. Da dieses aus dem Interferenzmuster
zweier sich kreuzender Laserstrahlen ensteht, wurden die Kurz- und Langzeitstabi-
lität des optischen Aufbaus getestet. Auf Grundlage dieser Messungen wurde ein
kompaktes und stabiles Interferometer-Gehäuse entwickelt, das in naher Zukunft in
den Experiment-Aufbau integriert wird.
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1 Introduction

One of the most active areas of research in ultracold quantum gases today is the
preparation and study of strongly correlated systems, trying to observe exotic phe-
nomena such as polarons, the Tonks-Girardeau state or d-wave superfluidity. Iron-
ically, what made ultracold quantum gases so successful in the first place was the
possibility to study fundamental quantum mechanical effects in dilute and weakly
interacting systems.

This enabled a better understanding of the detailed properties of quantum degener-
ate systems, which had long been the subject of extensive research since they play an
important role in such diverse fields as condensed matter, atomic, nuclear and astro-
physics. In the past this proved difficult as the particles in such systems are generally
quite densely packed and are thus in many cases strongly interacting, which makes
theoretical descriptions very difficult. Earlier approaches to circumvent this problem
studied Bose-Einstein condensation in excitonic systems where interactions are weak
[Lin93]. However, they were only poorly understood and difficult to probe. Then, in
1995 three independent research groups were successful in preparing a dilute atomic
gas exhibiting one of the most striking quantum mechanical phenomena, the phase
transition of a Bose gas into a Bose-Einstein condensate. This had been predicted by
Satyendra Nath Bose and Albert Einstein in 1925 [Ein25, And95, Bra95, Dav95]. What
set this new approach apart was that by cooling the gas to very low temperatures
quantum degeneracy could be reached although the gas was very dilute and thus
only weakly interacting.

In the following years ultracold Bose and Fermi gases were found to be ideally suited
to understand quantum phenomena from first principles, and thus facilitating the
understanding of more complex, strongly interacting quantum systems. Important
milestones were the first observation of a degenerate Fermi gas [DeM99], the prepa-
ration of a molecular Bose-Einstein condensate [Joc03, Gre03, Zwi03] and measure-
ments across the BEC-/BCS crossover [Bar04]. Key advantages of ultracold atomic
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1 Introduction

gases were their easy accessibility by optical imaging and their great tunability: By
preparing the system in optical traps magnetic fields could be used to tune the inter-
particle interactions across a Feshbach resonance [Ino98].
In recent years ultracold Fermi gases have gained substantial interest as model sys-
tems with unequaled controllability promising insight into many fundamental effects
known from other branches of physics as well as completely new phenomena. For
instance they are used in the simulation of solid-state systems [Hof02, Ess10]: Two-
component Fermi gases can exhibit the same fundamental physics as a solid without
being influenced by the environment or hindered by unwanted perturbations like
defects and impurities in the atomic lattice. Fermionic atoms in two hyperfine states
represent the electrons in their two possible states, spin up and spin down. The key
link between the two systems are optical lattices, providing an environment for the
atoms equivalent to that of a crystal lattice for electrons.
But ultracold Fermi gases are not just limited to the study of solid-state effects. Simply
by adding atoms in a third state ultracold Fermi gases can also provide experimental
access to a wealth of completely different phenomena. With a three-component Fermi
gas a system with approximate SU(3) symmetry can be created, with which questions
related to high-energy physics such as color superfluidity or baryon formation from
quarks can be studied [Rap07, Wil07]. The atomic species we use in our experiments,
6Li, is uniquely suited for this, as the interactions between the three states can all be
made resonant at the same time.
Our group was the first to study three-component Fermi gases of 6Li atoms in the
three lowest hyperfine substates [Ott08]. In this system experimental evidence of a
universal trimer state predicted by Vitaly Efimov in 1970, the Efimov trimer [Wen09],
was found. Its binding energy could be measured for the first time using radio fre-
quency spectroscopy [Lom10]. However, three-component Fermi gases are subject to
three-body loss rates which make the system unstable as soon as interactions become
too strong. Thus studying a degenerate three-component Fermi gas with resonant
interactions has so far been unattainable.
This impediment can be overcome by providing a periodic lattice potential for the
atoms. In an optical lattice a quantum-Zeno effect is predicted to suppress tunneling
and with it three-body loss [Kan09]. In order to prepare such a lattice system for two-
and three-component Fermi gases of ultracold 6Li we decided to build an entirely new
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Figure 1.1: Milestones in the realization of a two-dimensional optical lattice system
for 6Li. First we will cool the atoms in an optical dipole trap (1) from where we will
transfer them into a two-dimensional pancake shaped trap (2). This is then over-
lapped with an optical lattice creating a two-dimensional plane of lattice sites (3).

experimental apparatus based on the design which had already proven so successful
in the first experimental setup. We decided to make the lattice two-dimensional since
this enables a direct observation of the sample.
To this end we will load an optical dipole trap with atoms from a magneto-optical
trap and evaporatively cool them. In the next step we will load the cold atomic cloud
into a pancake shaped dipole trap creating a homogeneous two-dimensional system.
In the last step we will superpose this with an optical lattice. The combination of
the two-dimensional trap and the optical lattice provides us with a two-dimensional
plane of lattice sites which the atoms can occupy. Figure 1.1 illustrates these three
milestones on the way towards a three-component Fermi gas in a two-dimensional
optical lattice.

In this thesis I will present the progress that has been made in the last year in this
project. First I will give a brief theoretical introduction presenting the key features
of degenerate Bose and Fermi gases in Chapter 2 concluding with a summary of the
properties of 6Li important for our experiments. In Chapter 3 I will discuss optical
dipole traps as our main tool for trapping atoms and present the considerations which
went into the design of the dipole traps in our experiment.
After that the experimental setup will be explained in detail, concentrating on those
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1 Introduction

components which were designed or built in the course of this thesis (Chapter 4).
Starting from an atomic cloud in a magneto-optical trap we have built an optical
dipole trap, transfered the atoms into it and evaporatively cooled them down to the
Nanokelvin range. Working towards a two-dimensional trapping potential we have
developed and thoroughly tested a new interferometer setup to produce the pancake
shaped trap which will be installed in the experiment very soon.
With the newly built dipole trap we have produced a molecular Bose-Einstein con-
densate of 6Li 2 and have used radio frequency spectroscopy to populate different
of the three lowest hyperfine states of 6Li, laying the basis for the preparation of a
three-component Fermi gas. The observation of the molecular BEC will be presented
in Chapter 5 while the results of the radio frequency spectroscopy are discussed in
Chapter 6.
In the last chapter (Chapter 7) I summarize the results of this thesis and give an out-
look on the next steps to follow in the completion of the experimental apparatus as
well as the goals of the project and what fascinating and exciting phenomena we in-
tend to study with it.
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2 Ultracold quantum gases

Contents

2.1 Non-interacting quantum gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Introducing interactions — Scattering at low temperatures . . . . . . . . . . . . . . . 10

2.3 Tuning interactions — The Feshbach resonance . . . . . . . . . . . . . . . . . . . . . 16

2.4 Properties of 6Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this chapter we give a brief overview of the physics of ultracold Fermi and Bose
gases based on the more detailed discussions in [Ket99, Ket08, Chi10, Gio08, Dal98].
First we discuss the key properties of ideal, non-interacting Bose and Fermi gases
before turning to the scattering properties of interacting systems and introducing the
concept of Feshbach resonances. Finally we discuss some of the properties of 6Li
which are important for the work presented in this thesis.

2.1 Non-interacting quantum gases

All particles in nature are either fermions with half-integer spin or bosons with inte-
ger spin. Fermions are subject to Pauli’s exclusion principle which tells us that every
quantum state in a system can be occupied by only one identical fermion. Bosons
on the other hand do not obey this law, they follow Bose statistics instead. The to-
tal wavefunction of a fermionic system is antisymmetric with respect to particle ex-
change while a bosonic system has a symmetric total wavefunction.

Every particle can be described as a wave packet of the size of the de Broglie wave-
length λdB = hc/E where E is the particle’s energy, h is Planck’s constant and c is the
speed of light. In a thermal ensemble the mean de Broglie wavelength is related to the
temperature of the ensemble and we can define the thermal de Broglie wavelength of

5



2 Ultracold quantum gases

the system as

λT =

√
2πh̄2

mkBT
(2.1)

with 2πh̄ = h Planck’s constant, m the particle mass, kB the Boltzmann constant and T
the temperature of the system. From the dependence of the thermal de Broglie wave-
length on the temperature λT ∝ T−1/2 it follows that the wave packets describing the
atoms in a gas grow smaller the higher the temperature. At room temperature the
de Broglie wavelength is on the order of 10−12 m which is even smaller than an atom
(∼ 10−10 m). In this regime any atomic gas can be described as a system of distinct
hard balls and the distinction between bosons and fermions has no effect. At a tem-
perature where the de Broglie wavelength is comparable to the distance between the
atoms the wave packets begin to overlap. Here the classical description breaks down
and the atomic gas reveals its quantum statistical behavior. Now it becomes impor-
tant whether a system is bosonic or fermionic in nature since this strongly affects its
quantum mechanical properties.

In the following we discuss the basic aspects of the behavior of non-interacting bosons
and fermions at low temperature.

2.1.1 Bosons

The quantum statistics of bosons are described by the Bose-Einstein distribution:

fB(r, p) =
1

exp
(

p2/2m+V(r)−µ
kBT

)
− 1

(2.2)

where r, p and m are the particle’s position, momentum and mass, V(r) is the ex-
ternal potential and µ the chemical potential. The value of fB is the mean occupa-
tion number of the quantum state with energy εk fulfilling the Schrödinger equation(

p2/2m + V(r)
)

ψk = εkψk.

The Bose-Einstein distribution allows for more than one particle in the same quan-
tum state, there is however a maximum number of particles in excited states Nex,max

depending on the temperature of the system. This follows from the condition that the
occupation number of any state cannot be negative and thus µ ≤ εk ≤ ε0 has to hold
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2.1 Non-interacting quantum gases

for the chemical potential. It is [Pit08]

Nex,max =
∞

∑
k=0

1

exp
(

εk−ε0
kBT

)
− 1

. (2.3)

If the total number of particles N exceeds this limit all other particles have to go into
the ground state. Thus for sufficiently small temperature the particles accumulate in
the ground state where they form a coherent cloud of atoms, which is called a Bose-
Einstein condensate (BEC).

For a Bose gas in a harmonic trap with trap frequencies ωi the external potential reads

V(r) =
1
2

mω2
xx2 +

1
2

mω2
yy2 +

1
2

mω2
z z2. (2.4)

In such a trap the critical temperature for Bose-Einstein condensation is calculated
from the condition N ≥ Nex,max and is given by [Pet02]

Tc =
h̄ω̄

kB

(
N

ζ(3)

)1/3

≈ 0.94
h̄ω̄

kB
N1/3 (2.5)

where ω̄ = (ωxωyωz)1/3 is the average trap frequency and ζ(3) ≈ 1.202 is Riemann’s
zeta function ζ(x) = ∑∞

k=1 k−x.

In a Bose-Einstein condensate the bosons cannot be treated as single particles with
distinct wave packets anymore, instead they form a single matter wave which ex-
hibits quantum mechanical behavior on a macroscopic scale. The wavefunction of
the BEC is just given by the single-particle ground state scaled with the number of
condensed particles N0:

ΨBEC =
N0

∏
i=1

ψ0eiϕi (2.6)

where ϕi is the phase of each single-particle wavefunction. For a non-interacting
system the spatial density distribution is also given by the wavefunction of the single-
particle ground state:

n(r) = N0|ψ0|2. (2.7)

The number of condensed particles in the system can be deduced from N0 = N −
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2 Ultracold quantum gases

Nexc(T). For a bosonic gas in a harmonic trap this yields [Pet02]

N0 = N

[
1−

(
T
Tc

)3
]

. (2.8)

We see that in the limit of zero temperature all the particles in the system are con-
densed in the BEC, whereas for T > 0 a thermal fraction remains.

2.1.2 Fermions

Fermions have a different quantum statistical behavior than bosons. They are subject
to the Pauli principle, which states that every quantum state can be occupied by only
one identical fermion. The mean occupation number in a fermionic system is given
by the Fermi-Dirac distribution:

fF(r, p) =
1

exp
(

p2/2m+V(r)−µ
kBT

)
+ 1

. (2.9)

In the limit of zero temperature all states with an energy smaller than the chemical
potential are occupied by one fermion, it is f (r, p) = 1, all states above that are unoc-
cupied and hence f (r, p) = 0 (see Figure 2.1).

The energy of the highest occupied state is called the Fermi energy EF = µ(T = 0).
It is related to the number of particles in the system, which can be calculated by
integrating f (r, p) over all possible r and p:

N =
1

2πh̄

x
f (r, p)drdp (2.10)

where 1/2πh̄ is the spacing of states in phase space, i.e. the density of states.

For a Fermi gas in a harmonic trap the Fermi energy is given by

EF = (6N)1/3h̄ω̄ (2.11)

where ω̄ = (ωxωyωz)1/3 is again the average trap frequency.

The spatial density and momentum distribution of an ideal, non-interacting Fermi

8



2.1 Non-interacting quantum gases

f(r,p) 1

E

EF

Figure 2.1: Sketch of the Fermi-Dirac distribution at zero temperature (black curve)
and T > 0 (red curve) and the resulting occupation of quantum states in a harmonic
trap filled with fermions. Every quantum state can be occupied by only one identical
fermion, thus for T = 0 all states up to the Fermi energy EF are filled, all states with
higher energy are empty. For non-zero temperature the Fermi-Dirac distribution be-
comes smooth, states with energy above the Fermi energy now have a non-zero prob-
ability to be occupied while states below EF have an occupation probability smaller
than unity.

gas can be calculated by integrating Equation 2.9 over r and p, respectively [Gio08]:

n(r) = 1
2πh̄

∫
f (r, p)dp T→0−−→ 8N

π2xFyFzF

(
1− x2

x2
F
− y2

y2
F
− z2

z2
F

)
(2.12)

n(p) = 1
2πh̄

∫
f (r, p)dr T→0−−→ 8N

π2p3
F

(
1− p2

p2
F

)
. (2.13)

Here we have used the relation EF =
p2

F
2m = 1

2 m
(

ω2
xx2

F + ω2
yy2

F + ω2
z z2

F

)
. From this

we see that the momentum distribution of a non-interacting Fermi gas in a trap is
isotropic even if the trap itself is not. Anisotropic expansion of an atomic cloud re-
leased from its trap would thus be a sign of interaction effects in the Fermi gas. More
specifically, hydrodynamic behavior of a Fermi gas in an anisotropic trap leads to an
inversion of the aspect ratio of the cloud during time-of-flight [O’H02, Tre11].
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2 Ultracold quantum gases

2.2 Introducing interactions — Scattering at low temperatures

The key to understanding the behavior of any physical system is to understand its
inter-particle interactions. In atomic gases interactions are mediated by collisions,
hence it is important to examine the scattering properties of such systems.

In general one needs to distinguish between elastic collisions between two atoms
which allow the gas to thermalize and inelastic collisions which lead to particle loss.
The only inelastic process open to two atoms in an ultracold Fermi gas is a spin-
changing collision. Fortunately, in our system it is possible to prepare the atoms in
states where spin-changing collisions are suppressed due to energy and momentum
conservation. In that case the most important kind of inelastic collision is three-body
loss where two atoms form a deeply bound molecule while the third scattering part-
ner carries away the binding energy as kinetic energy and all three are lost from the
trap.

It is now quite intuitive to understand that the rate of elastic collisions in an atomic
gas should scale with the square of the density n, since there are two particles in-
volved in the process, whereas inelastic collisions scale with n3, if we can prepare the
atoms in states which are stable against dipolar relaxation. This scaling with density
means that there is an upper limit for the density below which elastic collisions dom-
inate over inelastic ones, or in other words the thermalization rate is larger than the
rate for three-body loss. This is a necessary requirement for trapping and cooling of
atomic gases.

However, this need to have a dilute system is also the reason why atomic quantum
gases have to be "ultracold". From Equation 2.5 we know that the critical temperature
for quantum degeneracy grows with the number of particles in the system and hence,
for a constant trap volume, with the density of the gas:

Tc ∝ n1/3. (2.14)

This means that if the gas is too dilute Tc becomes experimentally inaccessible, thus
the gas has to be sufficiently dense to allow us to observe quantum effects. Typical
densities where both constraints, small three-body loss rates and high Tc, are met lie
in the range of n ∼ 1012 − 1015 cm−3 depending on the atomic species [SK11].

10



2.2 Introducing interactions — Scattering at low temperatures

When considering scattering in an ultracold Fermi gas we can therefore assume the
limit of low temperature, i.e. low energy of the scattering particles, and large inter-
particle spacing. Fortunately in this regime scattering is rather simple to describe
using a single parameter, the scattering length a. The simplicity of interactions in
ultracold quantum gases is in fact one important reason why they are so successful in
the study of fundamental quantum mechanical phenomena. In the following section
we will introduce the concept of the scattering length and discuss its importance.

2.2.1 Two-body scattering in a spherically symmetric potential

In a two-body scattering event we can separate center-of-mass and relative motion
and only need to solve the Schrödinger equation describing one particle with the
reduced mass µr = m/2 scattering off the potential V(r):(

− h̄2

2µr
∇2 + V(r)

)
ψk(r) = Ekψk(r) (2.15)

with a positive energy Ek = h̄2k2

2µr
. If, as in our case, the potential is a spherically

symmetric short-range potential with a range r0 the solution in the asymptotic region
r � r0 reads

ψk(r) ∝ eikr + f (k, θ)
eikr

r
. (2.16)

The physical interpretation of this is the superposition of an incoming plane wave
and an outgoing scattered spherical wave with wavevector k. The function f (k, θ)

is the scattering amplitude, which is the probability amplitude for the particle to be
scattered in the direction r/r under an angle θ with respect to its initial direction k/k.

The scattering amplitude contains all the information about the scattering event and
is related to the differential cross section:

dσ

dΩ
= | f (k, θ)|2. (2.17)

However, this is only true for distinguishable particles. If the scattering particles
are identical both scattering processes shown in Figure 2.2 yield the same result and
thus both have to be considered in the calculation of the scattering wavefunction.
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2 Ultracold quantum gases

A A

B B

θ

θ - π 

Figure 2.2: Two scattering processes which have the same result if the particles A and
B are identical. Picture adapted from [Dal98]

For bosons (fermions) the wavefunction has to be (anti-)symmetric under particle
exchange such that Equation 2.16 becomes

ψk(r) ∝
1√
2

(
eikr ± e−ikr

)
︸ ︷︷ ︸
incoming plane wave

+
1√
2
[ f (k, θ)± f (k, π − θ)]

eikr

r︸ ︷︷ ︸
scattered wave

(2.18)

with the plus sign for bosons and the minus for fermions, respectively. Consider-
ing this the differential cross section for bosons (fermions) is then given by the sum
(difference) of the two interfering terms:

dσ

dΩ
=


| f (k, θ)|2 for distinguishable particles
| f (k, θ) + f (k, π − θ)|2 for identical bosons
| f (k, θ)− f (k, π − θ)|2 for identical fermions.

(2.19)

Since the scattering potential is spherically symmetric we can write ψk(r) in spherical
coordinates and expand it in terms of partial waves with angular momentum l:

ψk(r) =
∞

∑
l=0

ul(r)
r

Pl(cos θ) (2.20)

12



2.2 Introducing interactions — Scattering at low temperatures

with Pl(x) being the Legendre polynomials. Solving this for ul(r) yields

ul(r) ∝ sin
(

kr− lπ
2

+ δl

)
(2.21)

which corresponds to the incoming wave with a phase shift δl acquired in the scatter-
ing event.

If we now use this in Equation 2.20 and compare the result with Equation 2.16 we get
for the scattering amplitude [Wac05]

f (k, θ) =
1
k

∞

∑
l=0

(2l + 1)eiδl sin δlPl(cos θ) (2.22)

and for the cross section using Equation 2.19 and integrating over Ω [Dal98]:

σ =


4π
k2 ∑∞

l=0(2l + 1)sin2(δl) for distinguishable particles
8π
k2 ∑l even(2l + 1)sin2(δl) for identical bosons
8π
k2 ∑l odd(2l + 1)sin2(δl) for identical fermions.

(2.23)

Due to the (anti-)symmetry of the Legendre polynomials for even (odd) angular mo-
mentum Pl(cos θ) = (−1)lPl(cos(π− θ)) all odd (even) terms cancel out in the calcu-
lation of Equation 2.19 while all even (odd) terms gain a factor of two.

2.2.2 The limit of low energy and the scattering length

Considering that the scattering phase shift for small k behaves like δl ∝ k2l+1 [Wac05]
we see that for low energy (small k) only partial waves with angular momentum l = 0
contribute to the scattering process and all other terms l > 0 can be neglected. In this
case of pure s-wave scattering we have

f (k, θ) =
1
k

eiδ0 sin(δ0). (2.24)

This is independent of θ, thus the scattering amplitude is isotropic for small energy.

All the information about the scattering event is now contained in the wavevector k
and the phase shift δ0. Since we are in the low energy limit we can expand δ0 in terms
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a

ψ

~1µm

~ 10nm

Figure 2.3: The graph shows the scattered wave at long range. The inset shows
the short-range effect of the scattering process on the wavefunction. It illustrates the
definition of the scattering length as the distance the wave function is pushed out of
the scattering center by the acquired phase shift. Picture adapted from [Wei09].

of k2 and truncate the expansion after the first order:

k cot δ0(k) = −
1
a
+

1
2

rek2 + ... ≈ −1
a

. (2.25)

This serves as the definition of the effective range of s-wave scattering re and the
scattering length a. In the limit k→ 0 the latter is defined as

a = − tan δ0

k
. (2.26)

The scattering length corresponds to the distance the wavefunction gets pushed out
of the scattering center due to the phase shift it acquires in the scattering event. This
is illustrated in Figure 2.3.

Now we can determine the scattering cross section (Equation 2.23) in terms of this
new parameter:

σ =


4πa2

1+k2a2 for distinguishable particles
8πa2

1+k2a2 for identical bosons

0 for identical fermions.

(2.27)

This is an important result as it shows that identical fermions at low temperatures do
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2.2 Introducing interactions — Scattering at low temperatures

not interact. Hence in order to prepare an ultracold fermionic system with interac-
tions we need to use atoms in two different spin states. In that case we can apply the
result for distinguishable particles.

In the limit ka� 1 Equation 2.27 yields

σdist = 4πa2 (2.28)

for distinguishable particles. This is just the classical scattering cross section of hard
spheres with radius a. With our system we usually are in this regime, where the de
Broglie wavelength λdB = 2π/k is much larger than the scattering length. However
in an ultracold gas it is also possible to reach the regime where ka � 1 and thus a �
λdB. In this case the scattering cross section becomes independent of the scattering
length and for distinguishable particles is given by

σ =
4π

k2 . (2.29)

2.2.3 Mean field interaction

When two atoms approach each other in a scattering event their wavefunction varies
rapidly on short range which is difficult to calculate. However, as we have said be-
fore, in the limit of low energy the scattering process depends only on the scattering
length. Then we can neglect the short-range correlations and sum up their effect in
the distance the wavefunction is pushed out of the scattering center (see inset in Fig-
ure 2.3). We can introduce an effective interaction per particle which characterizes the
scattering and depends on the scattering length a [Pet02]. Multiplying this with the
density yields the mean-field energy of the system:

Eint ∼
4πh̄2a

m
k3

F (2.30)

where we have used that the inter-particle spacing n−1/3 in a degenerate quantum
gas is comparable to the de Broglie wavelength and thus it is n ∼ k3

F.

To identify the regimes of weak and strong interaction we can compare this mean-
field interaction energy with the relevant energy scale of our system, the Fermi energy
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EF = h̄2k2
F/2m. This is equivalent to considering the dimensionless parameter kFa.

For kFa � 1 we have Eint � EF and every scattering event has only a small effect on
the system. This is the regime of weak interactions. Here the scattering cross section
is given by Equation 2.28.
On the other hand, when mean-field and Fermi energy become comparable and it
is kFa ≈ 1, interactions dominate the system. For kFa � 1 the gas is in the so-
called unitary regime. The cross section is now given by Equation 2.29, thus the
scattering length drops out of the problem and the physics becomes independent of
length scales. This tells us that once we have reached the unitary regime, further
enhancing the scattering length will not lead to stronger interactions.
More information on scattering can be found in the literature [Sch05, Wac05, Gio08,
Dal98].

2.3 Tuning interactions — The Feshbach resonance

One of the key features of ultracold atomic gases is the tunability of their inter-particle
interactions. This is made possible by so-called Feshbach resonances where the scat-
tering length diverges. In the following we will discuss the basic physics of this phe-
nomenon, more thorough studies can be found in [Chi10, Ket08].
Before and after a collision the scattering partners are in a quantum state described
by the internal state of the atoms and the interaction potential between them. For ex-
ample this could be a spin polarized triplet state of two 6Li atoms in an external mag-
netic field interacting via a van-der-Waals potential. Such a quantum state is called
a scattering channel. We distinguish between open and closed channels depending
on whether the atoms are allowed to poulate the scattering channel or whether this is
energetically forbidden. If the incoming channel, which is open by definition, is the
only open channel the atoms come close to each other, scatter and leave again in the
same channel. In such a scattering event the atomic wavefunction acquires a constant
phase shift which gives rise to the background scattering length associated with the
scattering process.
If there is a closed scattering channel present the atoms cannot populate it. Never-
theless, if there is a coupling between the open and closed channel and the closed
channel supports a bound state close to the energy of the two incoming atoms (in
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abg Δ

Figure 2.4: Origin of a Feshbach resonance. a) Sketch of a two-channel system includ-
ing an open channel (black) and a closed one (red) which supports a bound state close
to the continuum of the open channel. The binding energy of the bound state can be
tuned with respect to the open channel by applying an external magnetic field. b)
When the bound state is tuned to coincide with the incident energy of the scattering
atoms the scattering length diverges. c) The coupling induces an avoided crossing
of the open channel continuum and the closed channel molecular state on resonance.
This allows to transform two free atoms into a molecule and vice versa by ramping
across the Feshbach resonance.

ultracold gases this can usually be approximated as zero energy) the scattering event
is influenced by the presence of this bound state. The coupling of the open channel
to the bound state in the closed channel induces a further phase shift to the scatter-
ing wavefunction which changes the scattering length. A sketch of such a scattering
scenario is shown in Figure 2.4.

If the scattering channels have different magnetic moments one can tune the binding
energy of the bound state with respect to the continuum energy of the open channel
by changing the external magnetic field. In 6Li such an open channel is a spin po-
larized triplet state |↑↑〉 with magnetic moment µ↑↑ = µB while the closed channel
bound state is a singlet state |↑↓〉 with µ↑↓ = 0. If the bound state coincides with the
incident energy of the scattering atoms the scattering length is resonantly enhanced.
This divergence of a is called a Feshbach resonance.

The behavior of the scattering length in dependence of the external magnetic field is
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shown in Figure 2.4b and is mathematically described by

a(B) = abg

(
1− ∆

B− B0

)
(2.31)

with abg the background scattering length and ∆ and B0 the width and position of the
resonance, respectively. The width of a Feshbach resonance is defined as the differ-
ence in magnetic field between B0 and the zero-crossing of a.

Figure 2.4c shows the change of the binding energy of the closed channel molecular
state with respect to the open channel continuum across the Feshbach resonance:

• B < B0: Below resonance the bound state lies below the closed channel contin-
uum as depicted in Figure 2.4a, the scattering length is positive and the interac-
tion between the atoms in an ultracold Fermi gas is effectively repulsive. This
side of the resonance is called the BEC side, since the atoms can form molecules
and these can condense into a molecular Bose-Einstein condensate (see Chap-
ter 5).

• B = B0: On resonance the energies of bound state and open channel continuum
are degenerate and the scattering length diverges. The coupling induces an
avoided crossing of the open channel continuum and the closed channel bound
state. This enables the transformation of free atoms into molecules and vice
versa by adiabatically ramping across the Feshbach resonance.

• B > B0: On the BCS side of the Feshbach resonance the bound state sits above
the open channel continuum, the scattering length takes negative values and
the atoms experience an attractive mean-field interaction. As described by BCS-
theory the atoms form Cooper pairs and become superfluid [Bar57].

The fact that we can use Feshbach resonances to tune the interaction between atoms
in an ultracold quantum gas gives us unique control over the behavior of the system.
This is one of the reasons why ultracold atomic gases are so successful in the study of
fundamental few- and many-body systems today.
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2.3 Tuning interactions — The Feshbach resonance

2.3.1 Weakly bound dimers

On the BEC side of the Feshbach resonance the bound state in the closed scattering
channel has lower energy than the state of two free atoms in the open channel con-
tinuum. For magnetic fields far below the Feshbach resonance this molecular state is
so deeply bound that we cannot detect it with our imaging systems. Close to reso-
nance however it is a weakly bound dimer state with universal properties. Its binding
energy depends on the scattering length a and is given by [Pet04]

EB =
h̄2

ma2 . (2.32)

The size of the weakly bound dimers is on the order of a.

As this weakly bound dimer state is important for our experiments with gases of
ultracold 6Li, e.g. for the preparation of a molecular Bose-Einstein condensate (see
Chapter 5), we will now examine its scattering properties and stability.

Just as we have derived a scattering length to describe collisions between free atoms
in the gas one can find scattering lengths associated with the interactions between a
dimer and a free atom and two dimers. These atom-dimer and dimer-dimer scatter-
ing lengths are directly related to the atom-atom scattering length [Pet04, Pet05]:

aad = 0.6 a (2.33)

add = 1.2 a. (2.34)

As a > 0 on the BEC side of the resonance, the interactions of atoms with dimers and
dimers with each other are repulsive.

The stability of the dimers is determined by the rate of atom-dimer and dimer-dimer
collisions in which the dimer can relax into a deeply bound state. In a two-component
Fermi gas such a collision necessarily includes at least two identical fermions which
do not interact (see Equation 2.27). If the dimer is deeply bound it behaves like a
composite boson and the relaxation into a lower-lying state is allowed. However, in a
weakly bound dimer the constituents are resolved in the collision and the relaxation
is suppressed by Pauli blocking. Thus the dimer is more stable the smaller its bind-
ing energy. D. Petrov et al. determined from this suppression a dependence of the
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relaxation rate constant on the scattering length [Pet04]:

αrel = a−s. (2.35)

For collisions involving a weakly bound dimer and one free atom the parameter
s = 3.33 while for dimer-dimer scattering it is s = 2.55. Both relaxation processes
consequently are more strongly suppressed for larger a which means that the gas
gains stability for stronger interactions.

Another important parameter is the ratio of this relaxation rate to the rate of elastic
collisions in the gas. For 6Li this can take values of αrel/αel ∼ 10−4 which is uniquely
small for a Fermi gas. This makes it possible to prepare long-lived molecular samples
and conduct experiments.

2.4 Properties of 6Li

For our experiments we use 6Li atoms. In this section we give an overview of the
properties of 6Li which are important for optical trapping and cooling of this atomic
species. All of the information given here and much more can be found in [Geh03,
Chi10].

2.4.1 Level structure

6Li belongs to the group of alkali metals which means that it has only one valence
electron. Hence its spin quantum number is S = 1/2 and its energy spectrum is
relatively simple (Figure 2.5). Its nuclear spin is I = 1, hence 6Li has a half-integer
total spin quantum number making it a fermion.

For trapping and cooling purposes we use the D2 transition from the electronic ground
state 22S1/2 to the 22P3/2 state at a wavelength of approximately 671nm. The 22S1/2

state is split into two, the 22P3/2 state into three hyperfine substates with a splitting
of 228.2MHz and only 4.4MHz respectively (see Figure 2.5). As the D2 transition has
a natural linewidth of 5.9MHz, the hyperfine structure of the 22P3/2 state is not re-
solved. Thus we can address two transitions { 2S1/2, F = 3/2 }→ 2P3/2 and { 2S1/2,
F = 1/2 }→ 2P3/2 called cooler and repumper, respectively. This yields a closed cycle
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F=3/2

F=1/2

F=3/2

F=1/2

F=1/2

F=3/2

F=5/2

2 2S1/2

2 2P1/2

2 2P3/2

D2 = 670.977 nm

repumpercooler

228.2 MHz

26.1 MHz

4.4 MHz

Figure 2.5: Level scheme of 6Li. For trapping and cooling of the atoms we use the
D2 transition. As the hyperfine splitting of the 22P3/2 state cannot be resolved we
can address two transitions labeled cooler and repumper which couple the resolved
hyperfine states of the ground state to the hyperfine manifold of the 22P3/2 state in a
closed cycle. Picture adapted from [Geh03]

between the ground and second excited state.

Under the influence of a homogeneous external magnetic field the hyperfine structure
of the 22S1/2 state is split up according to magnetic quantum number as shown in
Figure 2.6. In the low field regime electron spin S and nuclear spin I couple to the new
quantum number F = S+ I = {1/2, 3/2}. The Zeeman effect then splits up the states
according to the magnetic quantum number mF = {−F, .., F} into six states |F, mF〉
which we label |1〉 to |6〉. In the high field regime – for 6Li this is reached already at
magnetic fields of 30 G and higher – F no longer is a good quantum number and S
and I decouple. Following the Paschen-Back effect the six states |S, I, mS, mI〉 are split
into two groups with three states mI = 0,±1 each. The three states with mS = +1/2
(|4〉 to |6〉) are low-field seekers, their energy is higher at larger magnetic fields. On
the other hand the three states with mS = −1/2 (|1〉 to |3〉) are high-field seekers, their
energy is minimized for strong external fields. Mixtures of atoms in states |4〉, |5〉 and
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Figure 2.6: Magnetic splitting of the hyperfine states of 6Li in the ground state 22S1/2.
The states |4〉 - |6〉 are high-field seekers, the states |1〉 - |3〉 are low-field seekers. The
latter ones are the states we use in our experiments.

|6〉 are unstable and decay into the states |1〉, |2〉 and |3〉 via spin-changing collisions.
Mixtures of atoms in the three lower states cannot decay in two-body collisions due
to the laws of energy and momentum conservation, thus they can be used for the
preparation of an atomic Fermi gas.
Hence, we do experiments with atoms in states |1〉, |2〉 and |3〉. To transfer atoms
between these three states we use radio frequency signals to flip their nuclear spin.
The energy differences between the states (see Figure 2.6) are approximately ∆E12 ≈
2πh̄ · 76 MHz and ∆E23 ≈ 2πh̄ · 82 MHz around 750 G which is a typical value for the
magnetic offset field in our experiments.

2.4.2 Feshbach resonances

In a Fermi gas with three spin components there is a scattering length describing the
interactions between each of the two components. In 6Li a12, a13 and a23 all diverge
at a Feshbach resonance in roughly the same magnetic field region (see Figure 2.7).
All s-wave Feshbach resonances between 6Li atoms in states |1〉, |2〉 and |3〉 at ex-
perimentally accessible magnetic fields are listed in Table 2.1. The three Feshbach
resonances shown in Figure 2.7 each have an unusually large width which allows for
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Figure 2.7: Scattering lengths aij of 6Li between atoms in the three lowest hyperfine
states as a function of the magnetic field strength.

greater accuracy in tuning the interaction potential between the atoms. It also leads
to an overlap of the resonances of the three different spin mixtures. This overlap
is a feature unique in 6Li and means that the interactions between all components
in a three-component Fermi gas are resonantly enhanced in the same magnetic field
region. Only for this reason is it possible to produce a strongly interacting three-
component Fermi gas with 6Li.

s-wave Feshbach resonances of 6Li

interacting states resonance position width

|1〉-|2〉 834 G -300 G
543 G 0.1 G

|1〉-|3〉 690 G -122.3 G
|2〉-|3〉 811 G -222.3 G

Table 2.1: Positions and widths of the s-wave Feshbach resonances in 6Li between
atoms in states |1〉-|3〉. Additionally there are four p-wave resonances. These are not
listed here as they are not important in our measurements. Numbers are taken from
[Chi10].
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So far we have discussed how atoms behave and interact at low temperature. In
order to prepare such a system, we need to confine the atoms in space and cool them
down from several hundred Kelvin to temperatures in the Nanokelvin range. This
cannot be done in one step, instead we need to employ a number of cooling schemes
and confine the atoms in different traps for different temperature ranges. Most of the
work done in the course of this thesis was concerned with the development and setup
of different optical dipole traps. Hence in this chapter we will discuss the working
principle and properties of optical dipole traps before presenting the key design goals
for the traps in our experiment.

3.1 Essential properties of optical dipole traps

As their name implies optical dipole traps use the electric dipole interaction between
atoms and the strong electric field of a laser beam to spatially confine atoms. Large
detuning of the trapping light with respect to the atomic transition ensures that the
scattering of photons and optical excitations of the atoms are negligible compared to
the dipole force.

In the following we use a classical model to derive the main equations governing op-
tical dipole traps [Gri00]. As 6Li is an alkali atom with a single valence electron, it can
be treated as a classical oscillator with an eigenfrequency ω0 equal to the frequency
of the optical transition. In this classical picture the laser light is treated as an electric
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field oscillating with the frequency ω:

E(r, t) = ê
(

E0(r)e
−iωt + E∗0(r)e

iωt
)

(3.1)

where ê is the unit vector of the polarization of the light. This classical approach is a
good approximation if the atomic transition is strongly dipole allowed and the laser
light is far detuned from resonance and thus saturation effects can be neglected.

The atom has no permanent dipole moment since the valence electron occupies an s-
orbital. However, if an atom is placed into an electric light field, this field induces an
atomic dipole moment which oscillates with the frequency ω of the light and depends
on the complex polarizability α(ω) of the atom:

p(r, t, ω) = α(ω)E(r, t). (3.2)

This induced dipole moment in turn interacts with the light field via a dipole potential

Udip(r) = −
1
2
〈pE〉T = −Re(α)|E0(r)|2 = − 1

2ε0c
Re(α)I(r) (3.3)

where the angular brackets represent the time average over one oscillation period
T = 2π/ω, which makes all terms with a factor e±2iωt vanish. In the last step we
have introduced the intensity of the laser defined as I = 2ε0c|E0|2 with ε0 being the
vacuum permittivity and c the speed of light.

The force acting on the atom in the presence of the laser light is then given by the
gradient of the dipole potential:

Fdip(r) = −∇Udip(r) =
1

2ε0c
Re(α)∇I(r). (3.4)

Hence the atom feels a force proportional to the intensity gradient of the laser beam.

The only unknown parameter left is the polarizability of the atom which we can deter-
mine from Larmor’s formula for the power radiated by an accelerated charge [Wac05]

P(t) =
e2ẍ(t)2

6πε0c3 (3.5)
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where e is the particle’s electric charge and ẍ(t) its acceleration. Here the accel-
erated particle is the electron oscillating around the atomic core on the trajectory
x(t) = x0 sin(ωt). From this we can calculate the average quadratic acceleration
over one oscillation 〈ẍ2〉T and use it in Equation 3.5. Separating the energy of the
harmonic oscillator Eho = 1/2mω2x2

0 we get [Foo07]

〈P〉T =
e2ω2

6πε0mc3 Eho = ΓωEho. (3.6)

Here Γw is the damping rate of the harmonic oscillator defined as Ėho = −ΓωEho.
Now we can write down the equation of motion of the electron as a damped harmonic
oscillator driven by the force on a charge e in an electric field F = −eE. Considering
that the dipole moment is given by the displacement of the charge p = ex we can
write the equation of motion in terms of p

p̈ + Γωṗ + ω2
0p = −e2 E(t)

m
. (3.7)

Solving this for the polarizability finally yields [Gri00]

α(ω) = 6πε0c3 Γ
ω0

1
ω2

0 −ω2 − i(ω3/ω2
0)Γ

(3.8)

where we have introduced the resonant damping rate Γ = (ω0/ω)2Γω which is
equivalent to the lifetime of the excited state. This gives us the final result for the
dipole potential an atom experiences in the electric field of a laser:

Udip(r) = −
3πc2

2ω3
0

(
Γ
∆
+

Γ
∆ + 2ω0

)
I(r). (3.9)

This expression diverges at the resonance frequency ω0 where the detuning ∆ = ω−
ω0 vanishes. If the detuning is much smaller than the resonance frequency |∆| � ω0

the second term can be neglected and we get

Udip(r) =
3πc2

2ω3
0

Γ
∆

I(r). (3.10)
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a) b)

U0

kBT

U0

kBT

Figure 3.1: Illustration of optical dipole traps with red (a) and blue (b) detuning. The
trap depth U0 is given by the dipole potential and atoms are pulled toward potential
minima. On the left side the laser is red detuned and atoms are trapped in the center
of a Gaussian beam, on the right side the laser is blue detuned and a "donut" shaped
beam can be used to spatially confine the atoms. Picture adapted from [Gri00].

However, the laser light we use for our dipole traps has a wavelength of 1064 nm
while the atomic transition lies at approximately 671 nm. Thus we have |∆| ≈ 1/2ω0,
which means the second term gives a 20 % correction on the dipole potential. Never-
theless we can use Equation 3.10 for some qualitative analysis.
We see that the sign of the potential depends on the sign of the detuning: For red
detuned light (∆ < 0) the dipole potential is negative and has its minimum value
where the intensity is largest. Thus atoms will be pulled into the laser beam towards
the point of maximum intensity. On the other hand if the laser is blue detuned (∆ >

0) the potential minimum is at the point of minimum intensity and atoms will be
repelled by the light field, i.e. pushed out of the laser beam. Thus, to spatially confine
atoms with an optical dipole trap one can either use light at a frequency below the
atomic transition (red detuned) and trap the atoms in the focus of a laser beam with a
Gaussian intensity distribution or use light above resonance (blue detuned) and trap
them in the center of a "donut" shaped beam (see Figure 3.1). For the dipole traps in
our experiment we have chosen the first possibility since a laser beam with Gaussian
beam shape is much easier to produce.
The intensity distribution of a laser beam with Gaussian shape traveling in the z-
direction is

I(x, y, z) =
2P

πwxwy
exp

(
−2

x2

w2
x
− 2

y2

w2
y

)
. (3.11)

Here wx, wy are the radial distances to the center where the intensity is 1/e2 of its

28



3.1 Essential properties of optical dipole traps

peak value. They depend on the axial coordinate as

wi(z) = w0,i

√
1 +

(
z

zR,i

)2

(3.12)

with the minimum radius w0 at the focus, the so-called beam waist, and the Rayleigh
range zR,i = πw2

0,i/λ. The beam waists and Rayleigh ranges determine the region of
confinement for the atoms, i.e. the trapping volume. The Rayleigh range is always
larger than the beam waist resulting in weaker axial than radial confinement. An
illustration of such a single beam dipole trap can be seen in Figure 3.2a. The quadratic
dependence of zR on the beam waist limits the trapping volume of the single beam
dipole trap. If the beam waists are increased for a larger trapping volume, the aspect
ratio increases as well and the confinement in axial direction decreases quadratically.
A solution to this problem would be to use a crossed-beam trap (see section 3.2).

If the thermal energy of the sample kBT is much smaller than the trap depth U0 the
extension of the trapped cloud is even smaller than the trapping volume . This is the
case in most of our experiments. Thus we can approximate the center of the Gaussian
trap by expanding the exponential to the second order (x � wi). This has the form of
a three-dimensional harmonic oscillator:

Udip(x, y, z) ≈ −U0

[
1− 2

(
x

w0,x

)2

− 2
(

y
w0,y

)2

−
(

z
zR

)2
]

(3.13)

where U0 is the trap depth proportional to the peak intensity Imax = 2P/(πw0,xw0,y).
The harmonic oscillator frequencies which characterize the trap and give the level
spacing in every direction are

ωx,y =

√
4U0

mw2
0,x,y

and ωz =

√
2U0

mz2
R

(3.14)

with ωz � ωx,y. We see that smaller beam waists, i.e. stronger confinement, corre-
spond to larger trap frequencies. The scaling with the laser power goes as ωi ∝

√
P.

Similarly to the derivation of the dipole potential above we can calculate the rate with
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Figure 3.2: Illustration of three different types of red detuned optical dipole traps. a)
A single beam trap confines atoms inside its focus. The size of the trapping volume
is given by the waists in radial and the Rayleigh range in axial direction. b) Crossed
beam trap with orthogonal polarization of the beams: The axial confinement is given
by the intersection, thus it is stronger than in a single beam trap. c) Crossed beam trap
with parallel polarization: The beams interfere which yields a periodic trapping po-
tential where each interference fringe provides a pancake shaped trap for the atoms.
The spacing between the fringes depends on the angle of intersection.

which the atom scatters photons of the light field with energy h̄ω [Gri00]:

Γsc =
〈ṗE〉
h̄ω

∝
(

Γ
∆
+

Γ
∆ + 2ω0

)2

I(r) ≈
(

Γ
∆

)2

I(r) (3.15)

Here 〈ṗE〉 is the power absorbed by the atom inside the light field. Γsc should be
be kept small in experiments as it causes heating of the sample. Comparing Equa-
tion 3.15 with Equation 3.10 we see that we need a large detuning of the laser to
suppress photon scattering which in turn demands large light intensity in order to
make the dipole potential sufficiently strong to build deep optical traps.
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3.1 Essential properties of optical dipole traps

3.1.1 Evaporative cooling

Once we have trapped atoms inside a dipole trap, for example by transfer from a
magneto-optical trap (see Section 4.1.3), we can cool them to degeneracy (∼ 100nK)
using a technique called evaporative cooling.

This technique is based on the fact that the temperature of a thermal cloud depends on
the mean velocity of the atoms, while the velocities of single atoms follow a thermal
distribution. The fastest atoms have more energy than the mean, they occupy higher
trap levels and can be found more often outside the center of the trap.

The idea of evaporative cooling is to slowly lower the depth of the trap, i.e. decrease
the intensity of the laser, and let the hottest atoms — the tail of the velocity distribu-
tion — escape from the trap. Basically this is the same idea as blowing on a hot cup of
tea in order to cool it. The remaining atoms then re-thermalize in collisions until they
follow a thermal velocity distribution again, only now with a lower mean velocity
and thus temperature. If we make sure that we lower the trap slowly enough for the
atoms to re-thermalize we can cool the atomic cloud without loosing too many atoms.
Here high elastic collision rates are advantageous. For this we need distinguishable
fermions in two states in the trap and the magnetic offset field tuned to a value where
the scattering length is large.

Typically an atomic gas becomes degenerate around T/TF ≈ 0.5, today temperatures
on the order of T/TF ≈ 0.1 can be reached with evaporative cooling.
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3 Optical dipole traps

3.2 Crossed beam traps

In a single beam trap the confinement in axial direction is usually much weaker than
in radial direction. This produces highly anisotropic traps which in many cases are
not desirable. One way to enhance the confinement in axial direction is to cross two
beams with the same waist and power under an angle φ with respect to the axial
direction z of the single beam. The trapping volume is then given by the intersection
of the two beams.

3.2.1 Perpendicular polarization

If the beams are polarized perpendicular to each other as shown in Figure 3.2b the
two beams do not interfere in the intersection, the electric fields of the single beams
are added quadratically E2

tot = E2
1 + E2

2 and the overall intensity is just the sum of the
single beam intensities. Hence the trap depth is twice that of the single beam trap:

U0(y) ∝
4P

πw0,xw0,y
. (3.16)

Thus, in addition to stronger axial confinement, one gains a factor of two in trap
depth, and a factor of

√
2 in trap frequency, by crossing the laser with itself under an

angle of 2φ and effectively recycling the power in the beam.

3.2.2 Periodic potentials

If the two beams have the same polarization there will be interference effects in the
intersection resulting in an intensity modulation with period

d =
λ

2 sin φ
. (3.17)

The trap depth is then given by

U0(y) ∝
8P

πw0,xw0,y
cos2

(π

d
y
)

. (3.18)
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3.2 Crossed beam traps

a) b) c) 

Figure 3.3: Illustration of standing wave traps. a) One retro-reflected beam produces
a one-dimensional lattice of pancake shaped traps. b) Two orthogonal standing waves
yield a two-dimensional array of one-dimensional tubes. c) A three-dimensional op-
tical lattice with an array of zero-dimensional lattice sites can be realized with three
orthogonal standing waves.

which means that the atoms can be trapped in the anti-nodes of this interference
pattern. This yields a stack of pancake shaped traps with strong confinement in y-
direction as shown in Figure 3.2c. The trap depth in each pancake is four times that
of a single beam trap.

Optical lattices

For the special case of φ = 90◦, which can be realized by retro-reflecting the laser
beam, the interfering electric fields form a standing wave in axial direction. The re-
sulting periodic trapping potential is called an optical lattice with lattice constant
d = λ/2. By superposing two such standing wave traps with perpendicular polar-
ization under an angle of 90◦ the trapping potential forms a two-dimensional array of
one-dimensional tubes. Three orthogonal standing waves form a three-dimensional
array of zero-dimensional lattice sites. These kinds of traps are called a one-, two- and
three-dimensional lattice, respectively, an illustration of each is shown in Figure 3.3.
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3 Optical dipole traps

3.3 Design criteria for the dipole traps in our experiment

In our experiment we load the atoms from a magneto-optical trap (MOT) into a dipole
trap in which we evaporatively cool the atoms to quantum degeneracy. The next step
is to transfer the sample into a two-dimensional pancake and finally superpose this
with a two-dimensional optical lattice (see Figure 1.1). In the course of this thesis
we built the dipole trap for evaporation (which we simply call "the dipole trap") and
developed and tested a design for the pancake trap, which will be integrated into
the experiment in the near future. In the following we want to present the main
considerations which determined the design of these traps.

3.3.1 Dipole trap for evaporation

As the first step on the way to a two-dimensional optical lattice we transfer the atoms
from the MOT to a dipole trap for evaporative cooling. In order to make better use
of the available beam power and strengthen the confinement in axial direction, this
should be a crossed-beam trap with perpendicular polarization of the beams. The
beams should travel horizontally and intersect in the horizontal plane as this is easiest
to set up. In this orientation the direction of the magnetic offset field used to tune the
interactions in the sample is parallel to gravity which simplifies magnetic levitation.
The angle of intersection is limited to 6◦ by the numerical aperture of the viewport of
the vacuum chamber (see Figure 4.1).

Since we are working towards a two-dimensional system it is desirable to increase
the confinement in one direction with respect to the others in order to make the trap
a little flat already. Such a flat trap can be accomplished by making the beam shape
elliptical. We want to align the two-dimensional trap horizontally, as optical access
for imaging is better from above the experiment chamber. This allows us to image the
two-dimensional system with high resolution. Thus the focal waist should be smaller
in vertical than in horizontal direction. For reasons of feasibility the aspect ratio was
chosen to be approximately 1:5 with waists of w0,vert = 20 µm and w0,hor = 100 µm.
The length of the trap is then given by the intersection rather than the Rayleigh range,
in our case this is l = w0,hor sin−1 φ = 960 µm while zR,vert ≈ 1 mm and zR,hor ≈ 3 cm.

Using a beam with elliptical shape not only provides us with a slightly flatter trap,
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3.3 Design criteria for the dipole traps in our experiment

it also enhances the confinement along the axial direction. After the transfer into the
dipole trap some atoms will be trapped not in the intersection itself, but in the single
branches of the intersecting beams. Due to the smaller waist in one direction, corre-
sponding to a shorter Rayleigh range, these atoms will be pulled more strongly into
the intersection during evaporation and thus ensure a more efficient cooling cycle.

As mentioned before the laser light for our dipole traps has a wavelength of 1064 nm.
In order to realize a trap deep enough to capture the atoms from the MOT (T ≈
200 µK, see Section 4.1.3) we use a laser power of 200 W. During the transfer this
yields a trap depth of 3.8 mK in the intersection.

3.3.2 Pancake trap

After the sample has been sufficiently cooled in the dipole trap we want to transfer
it into a pancake shaped trap which confines the atoms to two dimensions. Such
a trapping potential can be realized by loading atoms into one of the interference
fringes which appear in a crossed-beam trap with parallel polarization. As explained
above we want the pancakes to be aligned horizontally, this means that the beams
must cross vertically.

Since we want the pancakes to be as flat as possible we need a large angle of intersec-
tion. However, in this we are again limited by the numerical aperture of the vacuum
viewport. Hence we choose an angle of φ = 7◦. At a laser wavelength of 1064nm this
results in a fringe spacing of 4.2 µm (see Equation 3.17).

Now let us estimate the size of the pancakes. The width of the pancake is given by
the beam waist b = 2w0,hor while its length is either given by the Rayleigh range or
by the length of the intersection

l =
2w0,vert

sin φ
. (3.19)

With an angle of 7◦ we have l < zR for beam waists above 5 µm, thus the pancake
length is limited by l and amounts to l ≈ 16 w0,vert. In order to give the trap the shape
of a round, flat pancake we again need to make the beam shape elliptical. In this case
the aspect ratio should be approximately 1:8 to make the pancakes as wide as they
are long b ≈ 2 · 8 w0,vert ≈ l.

The most important parameter for the pancake trap is the maximum number of atoms
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3 Optical dipole traps

that can be trapped without populating excited trap levels in the strongly confined
axis, which would make the trap effectively three-dimensional. Being fermions N
identical 6Li atoms will at zero temperature populate the N trap states with lowest
energy. If ni is the number of populated trap levels in direction i and we demand all
atoms to be in the ground state in vertical direction (nvert = 1) the total number of
populated levels is

n = nhor · nax. (3.20)

Maximizing this under the condition that the overall energy of each populated state
is lower than that of the first excited state in vertical direction

h̄ωhor

(
nhor +

1
2

)
+

1
2

h̄ωvert + h̄ωax

(
nax +

1
2

)
<

3
2

h̄ωvert (3.21)

yields nhor = ωvert/(2ωhor) and nax = ωvert/(2ωax) which means we can trap

N = nmax =
ω2

vert
4 ωhorωax

(3.22)

atoms per hyperfine state in such a way that the trap is still effectively two-dimen-
sional. This result shows that the dimensionality of the trap does not depend on
the absolute values of the trap frequencies but only on their ratio, it is therefore in-
dependent of the power in the laser beams. In the experiment we want N to be as
large as possible and we choose the beam waists accordingly. We get N ≈ 24 000 for
w0,vert = 75 µm and thus w0,hor = 600 µm and l = 1, 23 mm. At a power of 2 W per
beam this yields a trap depth of U0 = 6.8 µK.

Another interesting consideration is how many atoms can be in the dipole trap such
that all of them are transferred into only one pancake. This depends on the overlap
between the two trapping potentials, i.e. how many atoms in the dipole trap are
inside the volume of one pancake. This can be determined by calculating the number
of trap levels of the dipole trap in vertical direction ndip,vert which fit into y = 2 µm of
space, which is the approximate height of the pancakes:

1
2

mω2
dip,verty

2 =

(
ndip,vert +

1
2

)
h̄ωdip,vert (3.23)
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3.3 Design criteria for the dipole traps in our experiment

where ωdip,vert is the trap frequency of the dipole trap in vertical direction. This de-
pends on the power in the dipole trap (via the trap frequency) and yields 900 atoms
per hyperfine state for a transfer at P = 0.25 W, where the dipole trap has a depth of
9.56 µK comparable to that of the pancake trap.
It is not feasible to prepare a dipole trap with so few atoms and we would like to be
able to conduct our experiments with more atoms in the pancake. One way around
this would be to first make a molecular BEC of the atoms in the dipole trap (see Chap-
ter 5) and then transfer this into the pancake trap. Since the density in a molecular
BEC is higher than in a cold thermal gas or a degenerate Fermi gas this would allow
us to load more atoms into only one pancake.
Another way to prepare a single two-dimensional trap would be to transfer atoms
from a full dipole trap into a stack of pancakes and then empty all but the center
pancake. This would load more atoms into the center pancake since atoms in higher
excited states in the dipole trap still have a non-zero probability to be in the center of
the trap. Emptying the off-center pancakes could be done by driving transitions to
one of the states |4〉-|6〉 which are then lost from the trap in spin-changing collisions.
With the help of a magnetic-field gradient shifting the frequencies of the hyperfine
transitions the microwave pulse can be made resonant only outside of the center pan-
cake. At the moment, we are planning to use this method of preparation as it seems
to be the most effective and easy way.
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To trap and cool a gas of atoms to quantum degeneracy a complex experimental ap-
paratus is required. The vacuum chamber in which the experiments take place needs
to provide an UHV environment with a pressure P ≤ 10−11 mbar. Intricate optical se-
tups are used to provide laser light at the appropriate wavelengths and with just the
right power and geometry to produce the desired trapping potentials. And finally,
strong electromagnets are used to create the required magnetic offset fields. In this
chapter we describe the experimental setup needed for every step of the way from a
chunk of solid 6Li to a degenerate Fermi gas in two dimensions.

4.1 The starting point

At the beginning of the work for this thesis the group had already assembled the vac-
uum chamber and succeeded in the preparation of a magneto-optical trap for 6Li. De-
tailed information on this can be found in the Diploma theses by Martin Ries [Rie10]
and Philipp Simon [Sim10], here we will present only the main features of the appa-
ratus they built.

4.1.1 The vacuum chamber

The vacuum chamber consists of an oven chamber and an experiment chamber. In
the oven a chunk of solid 6Li is heated to T ≈ 335 ◦C above its melting point at
T ≈ 180 ◦C. Hot 6Li atoms emerge through the aperture in front of the oven and
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Figure 4.1: Model of the vacuum chamber. The oven (1) is filled with 6Li. When
it is heated to ∼ 335 ◦C hot 6Li atoms leave the oven and travel through the Zee-
man slower (2) to the heart of the setup, the experiment chamber (3). There they
are trapped first in a MOT and later in a succession of dipole traps. The laser light
needed to produce the trapping potentials and image the atoms can be shone into
the spherical octagon through six viewports on the sides of the octagon and two re-
entrant viewports on its top and bottom. The two towers (4) connect the oven and
experiment chamber with the ion pumps (5) and serve as gettering surfaces for the
titanium sublimators.

travel towards the experiment chamber. The two chambers are connected by a dif-
ferential pumping stage which also serves as a drift tube for the Zeeman slower. The
differential pumping stage allows for ultra-high vacuum in the experiment chamber
(Pexp ≈ 10−11 mbar) whereas the pressure in the oven chamber is slightly higher due
to outgassing of the hot oven (Poven ≈ 3 · 10−11 mbar). The vacuum is maintained by
two ion pumps and two titanium sublimators. The ion pumps are connected to oven
and experiment chamber by towers which also serve as gettering surfaces for the ti-
tanium sublimators. A three-dimensional model of the vacuum chamber is shown in
Figure 4.1.

The heart of the apparatus is the experiment chamber, this is where all experiments
take place. The chamber is a spherical octagon with six vacuum viewports on its sides
and two re-entrant viewports on top and bottom. These windows are used to shine in
the laser light necessary to produce the required trapping potentials and the light for
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4.1 The starting point

Figure 4.2: Vertical cut through a model of the experimental chamber. The atoms
enter the chamber from the right and are trapped in the center of the octagon. The
MOT coils (red) are fixed directly onto the octagon, while the coils used to produce
strong magnetic offset fields (green) are positioned around the re-entrant viewports
so as to be very close to the center of the octagon.

imaging of the atomic cloud. The numerical aperture of the viewports on the sides of
the octagon is NAhor = 0.15 which limits the optical resolution for horizontal imaging
to r = 2.78 µm. It also restricts the maximum angle of intersection for any crossed-
beam dipole traps used in the experiment (see section 3.3). The numerical aperture
of the re-entrant viewports is much larger with NAvert = 0.88, this is possible since
they are installed very close to the center of the chamber, as can be seen in Figure 4.2.
The re-entrant viewports will later be used to provide optical access for a NA = 0.6
objective with a resolution for vertical imaging at 671nm of r = 750 nm. The objective
was designed in our group and is currently being tested (see Friedhelm Serwane’s
PhD thesis [Ser11]).

4.1.2 The Zeeman slower

When the atoms emerge from the oven they are too fast to be trapped by the magneto-
optical trap, hence they need to be slowed down before they reach the MOT. For
this purpose a Zeeman slower was installed between oven and experiment chamber.
This produces an atomic beam slow enough to be trapped by the MOT which has a
maximum capture velocity of approximately 50 m/s.
In a Zeeman slower the atoms are decelerated by the interaction with a laser beam:
Every time an atom absorbs a photon it is excited and experiences a recoil of h̄k in
the propagation direction of the photon. After some time the atom relaxes back to
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the ground state and emits a photon h̄k in a random direction. Over many cycles
of absorption and emission the net momentum from emission vanishes, whereas the
recoil from absorption is always in the same direction and thus adds up. Hence the
atom experiences an effective force in the direction of the propagation of the laser
light given by

〈F〉 = h̄kΓsc (4.1)

where Γsc is the scattering rate from Equation 3.15. In order to slow down the atoms
most efficiently we need a resonant laser beam counter-propagating with respect to
the atomic beam. As the atoms are moving towards the light, the laser has to be
red-detuned to compensate for the Doppler shift of the transition. Since the atoms
decelerate on their way through the Zeeman slower the detuning needs to be adapted
to their current velocity at different positions along the way. This can be achieved
by applying a magnetic offset field whose strength decreases along the propagation
direction. This induces a Zeeman shift to the atomic resonance frequency and ensures
that the atoms are continuously resonant with the counter-propagating laser beam
while traveling the length of the Zeeman slower.
The Zeeman slower in our experiment decelerates the atoms from a mean longitu-
dinal velocity of v̄ ≈ 1500 m/s at the oven aperture to approximately 50 m/s at the
center of the experiment chamber. There the atoms are slow enough to be trapped in
the MOT [Sim10].

4.1.3 Magneto-optical trap

When the atoms enter the experiment chamber they are confined in space and cooled
down by the magneto-optical trap. A MOT is a hybrid trap based on the combination
of an inhomogeneous magnetic field and circularly polarized laser beams.
To cool the atoms a MOT exploits the same effect as a Zeeman slower: the net recoil
force experienced by an atom when moving towards a red-detuned laser beam. The
difference in a MOT is that the laser beams are directed onto the atoms from all six
directions (up and down, right and left, back and front). This slows down atomic
movement in every direction and thus cools the sample. An atom sitting at rest inside
the MOT experiences the same amount of recoil from every beam. However, if an
atom has a velocity in a certain direction, the light from that direction is tuned closer
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to resonance due to the Doppler shift while the opposite beam is even more red-
detuned. Now the recoils from the two beams do not cancel out anymore and a net
force acts on the atom and slows it down.

So far this only cools the atoms but does not trap them. To achieve spatial confine-
ment one can exploit the Zeeman splitting of the excited state in an external magnetic
field. Installing two coils in an anti-Helmholtz configuration (the distance of the coils
is the same as their radius, the currents flow through them in opposite direction)
produces a linear magnetic field gradient in all directions:

dB(x)
dx

=
dB(y)

dy
= 2

dB(z)
dz

= const. (4.2)

This results in a Zeeman splitting of the excited state proportional to the distance
from the center of the trap z = 0. At a certain distance r0 in any direction the de-
tuning of the laser beam shone in from that direction is compensated by the Zeeman
shift of the excited state and the transition is resonantly enhanced. Then the net force
acting on the atom points in the direction of the beam. In principle every beam fulfills
the resonance condition at two points ±r0, in one case the net force pushes the atom
into the trap region, in the other case the atoms would be pushed out of the trap. The
latter can be avoided by adjusting the polarization of the laser beams and making
use of the selection rule ∆m = −1 for σ− light and vice versa. An appropriate po-
larization configuration for a magneto-optical trap is shown in Figure 4.3. From the
combination of six circularly polarized laser beams we get a spatially dependent total
force which pushes the atoms into the center of the trap from all directions.

Unfortunately with this method atoms cannot be cooled down to T = 0, since the
absorption of every photon heats the atom by kBT = h̄2k2/2m. The minimum tem-
perature of the sample is reached when the heating rate from absorption equals the
cooling rate from the net recoil force. This is called the Doppler limit, it depends
on the detuning of the laser Γ, and if the light intensity is small enough to neglect
saturation effects it is given by [Fox06]

TD = − h̄Γ
2kB

1 + 4δ2/Γ2

4δ/Γ
(4.3)
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a) b) 

Figure 4.3: a) Illustration of a MOT. Six laser beams and two coils in anti-Helmholtz
configuration produce spatial confinement in all directions and cool the atoms to the
Doppler limit. b) Working principle of a MOT. The laser with frequency h̄ω is reso-
nant with the atomic transition at the distance ±r0 from the center. At the center the
magnetic field changes sign and with it the quantization axis of the atoms. Due to the
polarization of the light the beams can only interact with the atoms on one side of the
MOT (at r0 or −r0). With the correct polarization configuration the net force on the
atoms always points toward the center of the MOT.

where Γ is the linewidth (FWHM) of the excited state and δ the detuning of the light.
The Doppler temperature has a minimum for δ = −Γ/2 and in this case we have for
6Li TD = 137.6 µK.

The magneto-optical trap in our experiment consists of two water-cooled coils pro-
viding the magnetic field gradient and three laser beams which are red-detuned by
40 MHz from the atomic transition at approximately 671 nm (see Section 2.4.1). The
laser light for Zeeman slower and MOT is produced by a TA PRO system (TOPTICA)
which consists of a grating stabilized diode laser and a tapered amplifier providing
approximately 350 mW of laser power with a linewidth of less than 1 MHz. The fre-
quency of the laser is stabilized by a beat offset lock to a frequency reference. The
latter is obtained from Doppler free frequency-modulation spectroscopy of Li vapor
[Ser07]. The Zeeman slower light and all three MOT beams are prepared on a sep-
arate optical table, where acousto-optical modulators (AOM, CRYSTAL TECHNOL-
OGY 30100-125 and 3080-125) allow to adjust the power of the beams. The light is
coupled into polarization maintaining single-mode optical fibers which transport it
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to the experimental apparatus [Rie10]. Fiber couplers placed in front of the vacuum
windows of the octagon point the MOT light into the experiment chamber, on the op-
posite side the light passes a λ/4-waveplate and is retro-reflected back through the
chamber by a mirror (see Figure 4.5). Passing the waveplate twice ensures that the
polarization of the beam is flipped on its way back.

Since 6Li is not a simple two-level system an excited atom does not always relax
back to the same state and in that case needs to be excited again in order not to lose
it from the cooling cycle (see Figure 2.5). Thus the laser light consists of two parts
with slightly different detuning called cooler and repumper. The beams have a 1/e2

diameter of 11 mm and are made up of three parts cooler and two parts repumper
with a total power of approximately 22 mW after the optical fiber. With a current
of 34 A flowing through the coils we achieve a magnetic-field gradient of dB/dz ≈
30 G/cm. This configuration produces a magneto-optical trap with a loading rate of
3 · 108 atoms/s at an oven temperature of approximately 350 ◦C which means that
in only one second we can load as many atoms into the MOT as we need for our
experiments. Thanks to the ultra-high vacuum in the experiment chamber (Pexp ≈
10−11 mbar) the MOT has a vacuum lifetime of 23 min which is much longer than
any experimental timescale since typical experiment cycles are on the order of 10 s
[Rie10]. Figure 4.4 shows a photograph of our MOT.

Figure 4.4: Photograph of the MOT in our experiment.

45



4 Experimental Setup

4.1.4 Imaging setup

In order to conduct experiments with our system we need a way to image the atomic
cloud inside the experiment chamber. For this we use near-resonant light from a DL
PRO diode laser (TOPTICA) which emits approximately 15mW of power. An AOM
(CRYSTAL TECHNOLOGY 3080-125) is used to adjust the power of the imaging light
and as a fast switch to create short light pulses. The imaging light is split into two
parts and coupled into optical fibers. The fiber couplers at the experiment emit col-
limated imaging beams. One of those is pointed through the experimental chamber
horizontally for imaging of the atoms from the side, the other one is coupled out of
the fiber above the re-entrant viewport on top of the octagon to provide a second
imaging axis. On the other side of the experiment chamber the imaging light is di-
rected onto CCD cameras. With this technique we can take fluorescence as well as
absorption images of the atomic cloud in two axes. More information on the imaging
setup can be found in [Rie10]

4.1.5 RF setup

Since we want to conduct experiments with three-component Fermi gases of 6Li we
need to drive transitions between the three lowest hyperfine states with the help of
radio frequency (rf) signals (see Figure 2.6). For this purpose we installed a single
loop rf coil inside the experiment chamber. Compared to installing the antenna out-
side of the chamber, the main advantage of the rf coil inside the vacuum is that it can
be placed closer to the atoms and optimally oriented with respect to their position.
This allows for stronger rf fields in the trapping region and thus for more efficient
transitions between the hyperfine states. Recently, a bachelor thesis has been com-
pleted in our group which was concerned with optimizing the rf driving signal to
maximum efficiency at the transition frequencies between the states [Heu11].

4.2 The dipole trap

After cooling down the atoms to ∼ 200 µK in the MOT we transfer them into the
dipole trap where we cool the system to degeneracy (∼ 100 nK). Our dipole trap is a
far red-detuned crossed-beam trap where the power in the trapping beam is recycled
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by directing the beam through the chamber twice under an angle of 6◦ with respect
to the symmetry axis of the octagon.

We use a diode pumped single-mode, linearly polarized continuous-wave Ytterbium
fiber laser (IPG Photonics YLR-200-LP) with a rather broad wavelength range of sev-
eral nanometers around a center of 1068 nm. The laser has a maximum output power
of 200 W at an initial 1/e2 beam diameter of approximately 2.6 mm.

4.2.1 Optical setup

To produce a dipole trap of the required dimensions the laser beam needs to be
shaped appropriately to yield a focus of 20 µm× 100 µm at the position of the MOT
inside the experiment chamber. We will now present the optical setup built for this
purpose, a sketch of the beam path is shown in Figure 4.5.

The outcoupler of the fiber laser emits a collimated beam with a diameter of approx-
imately 2.6 mm and linear polarization. We mount the coupler in such a way that the
polarization axis is in horizontal direction. First the beam waist is reduced to approx-
imately 500 µm to fit through the aperture of two acousto-optical modulators, one of
which is mounted horizontally, the other vertically. We align the AOMs for maximum
deflection efficiency into the first order (∼ 80 % overall) and use this for the dipole
trap. By changing the power of the radio frequency signal driving the AOMs we can
decrease the deflection efficiency and thus stabilize and control the intensity of the
trapping light, i.e. the depth of the optical trap. The combination of two perpendic-
ularly mounted AOMs allows a two-dimensional deflection of the beam. This can be
used to create a larger, more homogeneous trap by changing the driving frequency
of the AOMs, and thus the deflection angle of the beam, fast enough that the atoms
experience a time-averaged intensity distribution and trapping potential. In the fu-
ture this could be used to further flatten the trap to simplify the loading of a single
pancake.

Behind the AOMs all light but the (1,1) deflection order is dumped onto a water-
cooled beam dump. This is necessary since up to 40 W are dumped here during most
of one experiment cycle.

In the next step the beam waist is increased as required to produce the right focal
waists with the final f = 300 mm focusing lens. To obtain a 1 : 5 elliptical beam
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Figure 4.5: Beam path for the optical dipole trap. In the background a sketch of
the optical table around the experimental apparatus is shown, on which the optical
setup is installed. The dipole trap beam (red) is passed through two AOMs, deflect-
ing the beam in horizontal and vertical direction, which are used for manipulating
the power in the beam. Then the beam is given its elliptical shape with a telescope
of cylindrical lenses and focused into the experiment chamber under an angle of 6◦.
On the other side of the octagon the polarization is turned by 90◦ and focused back
through the chamber to create a crossed-beam dipole trap. The dashed red line repre-
sents the small part of the beam transmitted by the mirror which is focused onto two
photodiodes in order to monitor the power in the beam. The blue line represents the
horizontal imaging beam, the green lines are two of the three MOT beams.
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we then pass it through a telescope of cylindrical lenses which increases the beam
waist in one direction while leaving the other unchanged. Just before the last lens
which focuses the beam into the experiment chamber, a Brewster polarizer cleans the
polarization to avoid interference effects at the intersection.

The focused beam enters the octagon under an angle of 6◦ with respect to its symme-
try axis. Here we took care to overlap the cross-section of the beam with the MOT. The
beam emerges on the far side where an f = 400 mm lens collimates it again. Then a
λ/2-waveplate turns the polarization by 90◦ so as to avoid interference in the crossed
beam trap and finally another f = 400 mm lens directs the beam back through the
chamber. The beam crosses with itself in the center of the experiment chamber at
the position of the MOT under a total angle of 12◦ and is finally dumped on another
water-cooled beam dump after emerging from the octagon.

For the preparation of a degenerate Fermi gas and during experiments we need to
vary the depth of the optical dipole trap. During transfer from the MOT the laser
runs at its maximum power of 200 W. After the transfer this is quickly ramped down
to about 40 W which is the minimum power at which the laser runs stable. A fur-
ther reduction of the intensity of the trapping beam is done with the AOMs in the
beam path. By gradually decreasing the rf signal strength we can tune the deflection
efficiency and thus the intensity of the trapping beam. This tuning of the rf signal
strength is stabilized with a feedback loop: We use the small amount of light trans-
mitted by a mirror (≤ 0.01 %) and focus it onto two photodiodes to detect any change
in power in the trapping beam (dashed red line in Figure 4.5). One of the photodi-
odes is optimized for the detection of high laser power signals (∼ 3 − 40 W in the
main trapping beam), the other one for low power signals (∼ 0− 3 W in the main
trapping beam). Their response is evaluated by the experiment control system in a
PID loop. A signal of 1 V on the high power photodiode corresponds to a trapping
beam of 4.06 W, for the low power photodiode 1 V corresponds to a beam power of
350 mW. The photodiode setup allows us to tune the intensity of the trapping beam
in a quick and controlled manner.

Figure 4.6 shows a photograph of the complete optical setup for the dipole trap.
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Figure 4.6: Photograph of the optical setup for the dipole trap. The arrows mark the
outcoupler for the dipole trap light (A), the AOMs (B) and a water-cooled beam dump
(C). To the left of this is the cylindrical telescope. The Brewster polarizer and the final
focusing lens (D) can be seen on the left in front of the octagon (E). The photodiode
setup (F) is between the beam dump and the outcoupler.

4.2.2 Magnetic offset fields

To control the scattering length inside the atomic cloud we need a homogeneous mag-
netic field across the trapping region with a magnetic field strength on the order of
1 000 G. Such a field can be produced by two coils in or near Helmholtz configuration,
where the distance of the coils equals their radius. In order to achieve strong fields
one can either use large coils installed far away or small coils close to the atoms. To
reduce the strength of the current and the number of windings required to produce
a certain magnetic field at the position of the atoms we decided to mount the coils
in the space between the re-entrant viewports and the octagon which is as close to
the atoms as possible (1.44 cm, see Figure 4.2). Since space is rather limited at this
position we need to use a very compact design for the coils. To enable fast magnetic
field ramps during the experiment cycle the coils should have a small inductance.

The magnetic field coils are made from 30 windings of copper wire isolated with
capton with a total cross section of 7 x 0.6 mm2. The overall diameter of the coils is
9.29 cm. During experiments currents of up to 200 A have to flow through these coils,
which requires very effective cooling. Hence the coils are glued onto a water-cooled
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Figure 4.7: Simulation of the magnetic field component in axial direction of the coils
depending on the vertical coordinate. The coils are slightly farther apart than in
Helmholtz configuration creating an anti-trapping saddle (atoms are in high-field
seeking states) in vertical direction. The field in the horizontal plane has a weakly
trapping magnetic potential.

copper heat sinks. The combination of strong currents and small coils makes the
production technically very challenging.

To avoid overheating of the coils during experiments we installed an interlock system
which measures the resistance of the coils in short time intervals and turns off the
power supply if the resistance becomes too large. The interlock is adjusted such that
the coils cannot become hotter than approximately 75 ◦C

Before the coils were installed in the experiment they were thoroughly tested. We
measured the temperature at the bottom of the coil depending on the current strength
using an infrared thermometer (VOLTCRAFT IR-1001A). Additionally we checked
for how long high currents can flow through the coils before the interlock shuts down
the power supply. Currents of 200 A can continuously flow for approximately 4 s
which is long enough for all experimental cycles.

The coils are not mounted in an exact Helmholtz configuration but slightly farther
apart. This produces a magnetic field saddle and hence a weak anti-trapping po-
tential in vertical direction and a trapping potential in the horizontal plane. This is
desirable as it strengthens the confinement in the axis of weakest optical confinement
(axial to laser beams). The desired magnetic field strength in the vertical direction
B(z) is shown in Figure 4.7, around the center the x and y dependence of the field is
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given by −1/2B(z). This results in horizontal trap frequencies of up to 10 Hz.
Unfortunately, one of the coils originally installed in the experiment did not have
the desired 30, but only 29 windings. Thus the magnetic field was not as required,
but had a gradient across the center of the trap instead of a saddle shape. This was
detected during the experiments presented in this thesis and has since been mended
by installing a new coil.

4.2.3 Characterization of the dipole trap

Before directing the beam through the experiment chamber we took a picture of the
focus produced by the last lens before the octagon. The picture was taken with a
beam profiler camera (DataRay, WinCamD) and is shown in Figure 4.8.

Figure 4.8: Elliptical focus produced by the final f = 300 lens before the experiment
chamber.

The beam profiler software (DataRay) automatically fits the two axes of the beam
with a Gaussian distribution. The waists obtained from this fit are w0,vert = 22.4 µm
and w0,hor = 79.6 µm. This yields an aspect ratio of 1 : 3.6 which is slightly smaller
than the desired ratio of 1 : 5. Since the trap is given by the intersection of two beams
and not directly by this focus, this can be only a first estimate of the aspect ratio of the
actual trap. A reliable measure of this should be obtained from measurements of the
trap frequencies. These will be presented in the following.

Trap frequencies

To measure the confinement which the optical dipole trap imposes on the atomic
cloud we excite a collective motion of the cloud inside the trap. From Equation 3.13
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Figure 4.9: Measurement of the trap frequency at a certain trap depth (1 V low power
control voltage ≈ 350 mW) in vertical, horizontal and axial direction. The fit to the
data is a damped sine function, the errorbars are the statistical error of multiple mea-
surements.

we know that the dipole potential looks harmonic in the center of the trap and the as-
sociated trap frequency scales with the square root of the beam power (Equation 3.14).

In this experiment we load the optical dipole trap and evaporatively cool the atoms
by decreasing the trap depth to a certain value. Then we quickly ramp the magnetic
field to B ≈ 523 G, which is close to the zero-crossing of the scattering length, where
the atoms do not interact, and suddenly make the dipole trap twice as deep. This
excites a collective motion of the atoms in the trap, where the width of the atomic
cloud oscillates with twice the trap frequency. The atomic cloud is allowed to follow
its collective motion for a certain amount of time before we turn off the trap entirely
and take an in-situ image of the cloud. Now we evaluate the width of a Gaussian fit to
the cloud shape for different times and fit the oscillation with a damped sine function.
Half of the fitted frequency equals the trap frequency. We observe a damping of the
signal which is probably due to a dephasing of the collective motion. This might be
caused by collisions of the atoms with each other if the magnetic field is not tuned
perfectly to the zero-crossing of the scattering length.

By doing one experiment imaging the cloud from the side and one from above, we
can evaluate the frequency of the breathing motion in all three directions and thus
get a measure for the trap frequency in all three trap axes. In Figure 4.9 we show the
results for one value of the trap depth. Surprisingly, the measured trap frequencies
are a factor of two smaller than expected.
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Figure 4.10: Plot of the horizontal trap frequency of the dipole trap measured for
different values of the final trap depth measured in terms of the control voltage of the
low power photodiode. The error bars are the errors from the fits to the individual
trap frequency measurements. The red line represents a square root fit to the data
according to ωi ∝

√
P.

From these results we can also calculate the anisotropy of the trap. For the trap depth
shown in Figure 4.9 we get an aspect ratio ωax : ωhor : ωvert of 1 : 9 : 42. The
planned aspect ratio of the waists and the length of the trap (Section 3.3.1) is w0,vert :
w0,hor : l = 1 : 5 : 48. Since the trap frequency is inversely proportional to the beam
waist (Equation 3.14) we expect an aspect ratio for the trap frequencies of 1 : 9.6 : 48.
Our measurement agrees with this expectation reasonably well, which means that the
dipole trap indeed has the desired ellipiticity.

By doing this measurement of the trap frequencies in all three axes for different val-
ues of the trap depth we can further characterize the dipole trap. In Figure 4.10 we
plot this together with a square root fit to the data according to ωi ∝

√
P (see Equa-

tion 3.14). Since the trapping due to the slightly inhomogeneous magnetic offset field
is negligible compared to the optical trap frequencies we fixed ωhor(P = 0) = 0. The
fit matches the data reasonably well, discrepancies could be due to the anharmonicity
of the trap. Thus it seems that the trap frequencies are systematically too small by a
factor of two. This could be explained if the focal beam waists were each a factor of√

2 larger than planned.
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Figure 4.11: Measurement of the change in temperature and atom number over time
for three values of the laser power, i. e. trap depth: a) P ≈ 28.4 W, b) P ≈ 2.66 W and
c) P ≈ 350 mW. The change in atom number can be fitted by an exponential decay
function with time constant τ.

Lifetime measurements

To make sure that the dipole trap is working correctly we had a closer look at the
evaporation. We measured the lifetime and temperature of the atoms in the trap at
three points during and after evaporation by ramping to the desired trap depth and
there monitoring atom number and temperature over a time of ten seconds. During
evaporation the magnetic offset field was chosen such that molecule formation was
suppressed. After evaporation, while the cloud was held in the trap, we chose a
magnetic offset field of B ≈ 526 G close to the zero-crossing of the scattering length.
There interactions between the atoms in the trap are suppressed. The results of these
measurements are shown in Figure 4.11 for three values of the final laser power P ≈
28.4, 2.66 and 0.35 mW. Using the trap frequencies measured in the last section this
corresponds to a trap depth of U0 ≈ 600, 50 and 6 µK, respectively.

We see that the loss of atoms over time can be fitted by a simple exponential decay
function with time constant τ. This tells us that the dominant loss channel is a one-
body process, while two- and three body events are negligible. From past experience
we know that if the polarization of the two beams is not perfectly perpendicular,
strong one-body losses lead to a significantly decreased lifetime of the atoms in the
trap [Lom08]. Hence we attribute the short decay time constant at high laser power
to a small polarization component parallel in both beams. As the light intensity and
thus the trap depth is reduced during evaporation, the lifetime increases. At the end
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of evaporation the decay time constant is much larger than the duration of a typical
experiment cycle (∼ 10 s). Hence experiments will not be impeded by loss of atoms
from the trap.
In this measurement we also monitored the temperature of the atomic cloud. At the
beginning of evaporation heating is quite strong, the temperature rises by 300 % in ten
seconds. However, when the gas is cooled further, heating slows down. We attribute
this to thermal lensing effects: During transfer from the MOT into the dipole trap, the
dipole trap laser runs at a power of 200 W. This causes thermal lensing in the optical
setup and shifts the foci of the beams out of the intersection, effectively making the
trap more shallow. When the power is ramped down to P ≈ 28.4 W the thermal
lensing effects decrease and the foci move back into the intersection. This makes the
trap deeper and compresses the cloud inside the trap which causes heating.
At the end of the evaporation, thermal lensing has stopped and the trap has again
the desired depth. In the last measurement at P ≈ 350 mW the temperature of the
sample even seems to go down a little bit with time. However, using Equation 2.11
we can calculate the Fermi temperature and see that we have T/TF ≈ 0.48. Thus in
this measurement we have prepared a degenerate Fermi gas and we are observing
a decrease in the Fermi energy due to particle loss over time rather than an actual
decrease in temperature.

4.3 The pancake trap

Once we have cooled down the atoms in the dipole trap we want to transfer them
into a two-dimensional potential. To generate this we will use a crossed beam dipole
trap with interfering laser beams (see Section 3.3.2). The interference pattern in the
intersection of the beams yields a stack of two-dimensional traps for the atoms. In
Section 3.3.2 we have explained that the two beams should cross vertically under an
angle of 7◦ and have focal waists of w0,vert = 75 µm and w0,hor = 600 µm resulting in
a pancake length of l = 1.23 mm
The technical challenge for the setup of the pancake trap lies in the stability of the
interference pattern. Since every measurement of any observable in our system is
inherently destructive (sending in resonant light for imaging heats up the cloud) we
need to be able to prepare the same system under the same conditions many times.
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Such reproducibility can only be guaranteed if we load atoms into the same pancake
every time, which means the interference pattern is not allowed to drift on the order
of fractions of the fringe spacing d ≈ 4 µm. We estimated that a path difference of the
two beams of∼ 10 cm would already result in drifts of the interference pattern on the
order of a wavelength, if the atmospheric pressure changed due to normal weather.
Hence, as a first measure we decided to make the beam path symmetric for the two
intersecting beams.

4.3.1 Optical setup

The simplest way to set up the interferometer is by shaping the beam waists appro-
priately, splitting the beam into two equally intensive ones with a non-polarizing
beam splitter and then using two mirrors to reflect the beams through the experiment
chamber under an angle of 7◦ each. To focus the beams into the center of the octagon
we can either use one lens before the beam splitter or two identical lenses after the
beam is split in two.

As light source for the pancake trap we will use a NUFERN 50 W fibre amplifier
seeded by a low-noise continuous-wave single-frequency 1064 nm laser with an out-
put power of 500 mW (INNOLIGHT Mephisto S 500 NE). To get a sufficiently deep
trapping potential in the pancake we will need up to 4 W of power in the beam before
it is split up. The rest of the 50 W of power supplied by the NUFERN will be used
for the two-dimensional optical lattice. In order to stabilize and regulate the power
in the beam we plan to send it through an AOM and use the first deflection order,
as we do for the dipole trap. Then we want to couple the light into an optical fibre
to clean the beam shape and be able to install the lasers away from the experimental
chamber. Since it is difficult to couple a laser with this much intensity into an optical
fiber without damaging it, we plan on using polarization maintaining single-mode
fibers with high-power connectors (OZ Optics).

After the fiber the beam waists will be shaped as required before the light enters the
interferometer. We want the focal beam waists at the intersection to be w0,vert = 75 µm
and w0,hor = 600 µm (see Section 3.3.2). One easy way to produce this is by making
the beam elliptical and then focusing it with a spherical lens with large focal length
before the beam is split in two. Alternatively we could shape the beam to 600 µm
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in both directions and use two cylindrical lenses inside the interferometer two focus
the vertical waist down to 75 µm. At the moment we plan on using the first method,
we have however designed the interferometer such as to allow a change of plans in
this respect. Hence we shape the beam appropriately with the fiber outcoupler, then a
cylindrical telescope widens the beam vertically with an aspect ratio of approximately
1 : 8 and finally a f = 1000 mm lens focuses the beam.

In order to build a feedback loop for the AOM used to regulate the light intensity, we
will also need to integrate a photodiode setup after the fiber just as we have done in
the dipole trap setup.

4.3.2 Stability tests

To get a measure of how stable we can make the pancakes we wanted to monitor the
interference pattern in a test setup. As a light source we used a single frequency laser
with 1 mW output power at a wavelength of 1064 nm (Lightwave Technology) and
coupled this into a fiber. To make things easier we did not shape the beam waists
in any way, apart from focusing the beams with two lenses, and decided to install
the optical elements horizontally on a breadboard. At the point of intersection we
placed a microscope objective with a × 40 magnification and imaged the magnified
interference pattern onto a CCD camera (GUPPY F-503) with a pixel size of 2.2 ×
2.2 µm2. A sketch of the optical setup can be found in the inset of Figure 4.13.

First we qualitatively tested the reaction of the interference pattern to different distur-
bances. We leaned on the optical table, simulated air drafts and temperature changes
with a blow dryer and knocked against the mounts of each optical element. From
these tests we learned that the interference pattern is generally quite sensitive to such
disturbances. The stability of some optical elements however seems to be more cru-
cial for the stability of the interference pattern than others. While any optical element
before the beam is split in two (e.g. the fiber coupler) have a rather weak influence
on the fringes, the beam splitter seems to be the most sensitive element. This was to
be expected since any disturbance before splitting the beams influences both in the
same way, while any disturbance at the point of splitting can influence the relative
path difference and for example change the angle of intersection. We learned that us-
ing pedestal posts (THORLABS 1 inch pedestal pillar posts) instead of normal posts
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Figure 4.12: A typical image of the interference pattern in the test setup taken with
a × 40 microscope objective and a CCD camera is shown on the left. The plot on the
right shows the data extracted from the region of interest approximately marked by
the dashed box and a fit to the data with a squared sine function.

(THORLABS 1/2 inch optical posts and post holders) increases the robustness of the
setup quite significantly with respect to such disturbances as described above.

Finally we wanted to examine the stability of the pancakes over a long period of time
without introducing any disturbances on purpose. For this we set the CCD camera
to take an image of the interference pattern every minute for more than five days. A
typical image taken during this measurement is shown in Figure 4.12. Additionally
to the horizontal fringes of the interference pattern we can see an inhomogeneities
along the fringes. These were not examined further in this test measurement as they
are probably caused by the imaging setup.

We analyzed the fringe pattern with MATLAB. First we cut out a region of interest
containing approximately ten fringes and integrated over ten pixels along the fringes
to get an average fringe pattern for every image. Then we fitted this with a squared
sine function. The frequency of the fits is equivalent to the pancake spacing while
the change of the fitted phase over time is a measure of the drift of the interference
pattern in space. The fitted values for the phase during the entire measurement are
plotted in Figure 4.13.
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Figure 4.13: Drifts of the interference pattern in the test setup over a period of five
days. The inset shows a sketch of the optical setup we used for this experiment.

The data shows shot-to-shot fluctuations of approximately 1/20 π which is equal to
5 % of the pancake spacing. We think that this would be acceptable in the experiment.
However, we can also see a slow drift of the pattern over π, or equivalently one
pancake spacing, in the first two days. After that the pattern stays relatively stable
for two more days before it starts to drift again. Since the range of this slow drift
is as large as an entire pancake spacing this would limit the reproducibility of our
experiments, as we could not be sure if we were loading atoms into the same pancake
in every experiment cycle. One way to overcome this would be to actively stabilize
the pattern by monitoring it during experiments and slightly correct the beam path
if necessary. This would be possible since the large, problematic drifts are very slow
while fast shot-to-shot fluctuations are small.

From this test measurement we cannot be sure that all of the observed are in fact
caused by drifts in the interference pattern, the imaging setup could contribute to the
instabilities as well. Nevertheless we decided to design a special apparatus for the
optics of the interferometer which offers improved stability on both short and long
timescales.
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Figure 4.14: Three-dimensional model of the final design for the casing of the inter-
ferometer. In the experiment the casing will be closed off with a lid and all aluminum
parts will be anodized.

4.3.3 Design of a compact interferometer casing

Our goal was to build a compact, closed and very stable casing in which the opti-
cal elements necessary to produce two focused, vertically intersecting beams (beam
splitter, mirrors and lenses) can be installed in correct alignment with each other, and
which itself can be fixed onto the optical table in front of the experiment chamber.

At first we tried to design a solid aluminum frame with very precise cut-outs into
which the optical elements could be fixed with screws. However, during the design
we found that this would be impossible to engineer to the required precision, even
more so considering that we expected — from practical experience — that things
could change from the initial plan in the actual implementation. Hence we decided
to go for a more modular, variable design where we would have the possibility to
change single components of the apparatus without having to build a new one from
scratch. Nevertheless, the final design was still quite intricate and challenging to
build. A three-dimensional model is shown in Figure 4.14.
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In the final design for the casing the beam enters the apparatus under and angle of 45◦

with respect to the horizontal plane. Inside it is split up by a 50 : 50 non-polarizing
beam splitter cube (Edmund Optics). The two beams are reflected off two 1/2 inch
mirror mounts (THORLABS KS05 1/2” Precision Kinematic Mirror Mount) with an
angle of 7◦ to the horizontal plane each. Optionally we can install two cylindrical
lenses in the beam path after the mirrors to produce the right focus at the intersec-
tion. As can be seen in Figure 4.14 all optical components are fixed onto aluminum
mounts which in turn are precisely fitted into the massive aluminum main piece of
the casing. This leaves us the freedom to change single components, e.g. use a beam
splitting plate instead of a cube which would need a different mount. Additionally
we included more space along the beam path for the mounts of the cylindrical lenses
to be able to adjust the focus as needed. For higher alignment precision we asked the
workshop to engrave scales along the cut-outs.
The front plate of the casing has two holes where the beam enters and the two beams
emerge. The back plate also has a clearance, this was included since at this position a
mirror of the dipole trap optics would be in the way of the interferometer. The main
piece, front and back plate are screwed and doweled onto the base plate which can be
fixed onto the optical table with screws through elongated holes. This allows to align
the entire casing with respect to the experimental chamber. Finally an aluminum lid
closes off the casing. In order to be able to make fine adjustments to the alignment of
the mirrors after the casing has been closed, we put holes into the casing in the right
positions to reach all set and lock screws of the mirror mounts with an Allen key.
Figure 4.15 shows a photograph of the completed apparatus. When this picture was
taken we were testing whether we could shape the beams as required and align ev-
erything as planned before having all aluminum parts anodized black. Overall the
design worked as planned, however two small adjustments were made: We needed
an additional mirror in front of the casing to correctly direct the beam into the casing.
For this we fixed one 45◦ mirror mount (THORLABS H45B2 45◦ Optic Mount) di-
rectly onto the front plate of the apparatus and used a custom-made mirror mount to
then point the beam 45◦ upwards. Since such a large casing takes up a large amount
of space in front of the experimental chamber where space is limited, we decided to
fix another 45◦ mirror mount directly onto the front plate at the height of the atoms
inside the chamber (10 cm above the optical table) which we can later use to direct
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Figure 4.15: Photograph of the completed interferometer without the lid and before
being anodized. In front of the casing some optical elements of the beam path on a
height of 25 mm above the optical table can be seen. The not yet anodized aluminum
mirror mount was custom-made to produce the 45◦ angle of the beam when entering
the apparatus.

the imaging light for the horizontal imaging axes into the octagon.
Now the casing has been anodized and a new test setup has been built, this time in-
cluding the entire beam path needed to shape the correct focal waists. In this setup
we can thoroughly test the stability and homogeneity of the interference pattern we
can produce with this interferometer. The results of these measurements will be pub-
lished in a Bachelor thesis [Sta12].
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One of the first experiments performed with the new dipole trap was to prepare a
molecular Bose-Einstein condensate (mBEC) of 6Li atoms. By evaporatively cooling
the trapped atomic cloud it was possible to observe a molecular BEC. We could thus
verify that we are indeed able to cool down the atoms to degeneracy with our setup.
In the following we will briefly explain the observed experimental signature of a BEC,
a bimodal density distribution after time-of-flight. Then we will describe the exper-
imental procedure we used and finally present our first molecular BEC and discuss
the experimental results.

5.1 Properties of the mBEC

We evaporatively cool a mixture of 6Li atoms in states |1〉 and |2〉 while the homoge-
neous magnetic offset field is set to 786 G, which is just below the Feshbach resonance
of the two states. Here the atoms are strongly interacting, which is favorable for ef-
ficient evaporation since thermalization due to collisions is fast. As the scattering
length is positive, the interaction potential supports a bound state and the atoms can
form |12〉molecules.

As the polarizability of the molecules is twice that of the atoms, at the same laser
power the trap is twice as deep for molecules. During evaporation this effect sup-
presses the loss of molecules compared to the loss of atoms. If the trap depth is low-
ered slowly enough for the cloud to thermalize the ratio of molecule to atom number
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5 Preparation of a molecular BEC

reaches an equilibrium which depends on the temperature of the cloud [Chi04]:

Nmol

Nat
= φateEB/kBT (5.1)

where φat is the phase-space density of the atoms EB is the binding energy of the
molecules. When the thermal energy of the gas is comparable to the molecular bind-
ing energy (Equation 2.32)

kBT ∼ h̄2

ma2

6Li−−→ T ≈ 750nK (5.2)

molecules are accumulated in the trap and the atomic gas of fermions becomes a gas
of bosonic molecules. When these composite bosons are cooled down even more at a
critical temperature Tc (Equation 2.5) they form a Bose-Einstein condensate.

Above the transition temperature the gas forms a thermal cloud. At low temperatures
the bosonic nature of the molecules has to be taken into account when calculating the
density of the thermal gas. It is determined by the Bose function g3/2(x) = ∑i xi/i3/2

instead of a Maxwell-Boltzmann distribution [Ket99]:

nth(r) =
1

λT
g3/2

(
e(µ−V(r))/kBT

)
. (5.3)

In the analysis we will use a Gaussian distribution instead, which is a good approxi-
mation at least for hight temperature.

When the trap is turned off the cloud expands according to the particles’ momenta
and the interaction energy is transformed into kinetic energy in the expansion. We
can calculate the temperature of the thermal cloud from the width of the distribution
after time-of-flight t as

wth =

√
w2

0 +
kBT
m

t2. (5.4)

We estimate the initial width w0 of the cloud inside our trap from in-situ absorption
images to be approximately 10− 15 µm. For a sufficiently long time-of-flight w0 can
be neglected. At a typical temperature of 100 nK the second term in the equation
dominates over the first one after a time-of-flight of 1ms. In this experiment we took
absorption images of the cloud after a time-of-flight of t = 5 ms. Thus neglecting
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5.1 Properties of the mBEC

w0 in the calculation of the temperature works well for our measurements at higher
temperature, but introduces some inaccuracy for the lowest two data points.

Below the critical temperature the molecules condense into a Bose-Einstein conden-
sate. To find the density distribution of a BEC of interacting particles one has to solve
the time-independent Gross-Pitaevskii equation [Pet02]:(

p̂2

2m
+ Vext(r) + g|Ψ(r, t)|2

)
Ψ(r) = µΨ(r) (5.5)

with the chemical potential µ. This is a non-linear Schrödinger equation with a mean-
field interaction term depending only on the density and the mean-field interaction
gδ(r − r0) where g = 4πh̄2a/m. This mean-field interaction energy density is the
same as in Equation 2.30 and can only be used to describe the system if na3 � 1.

Solving Equation 5.5 analytically is hard since it is a nonlinear differential equation.
In our system the interaction energy is much larger than the kinetic energy of the
particles, thus we can neglect the latter in the so-called Thomas-Fermi approximation.
This yields for the spatial density distribution:

nBEC(r) = |Ψ(r)|2 = max
(

µ−Vext(r)
g

, 0
)

. (5.6)

Figuratively speaking the condensate fills the bottom of the trap up to the chemi-
cal potential. In a harmonic trap the density thus has the shape of an upside-down
parabola [Ket99]:

nBEC(r) =
15N
8πR̄3 max

(
1−

3

∑
i=1

x2
i

R2
i

, 0

)
. (5.7)

Here Ri = 2µ/mω2
i is the Thomas-Fermi radius with R̄ = (RxRyRz)1/3. At the

Thomas-Fermi radius the wavefunction of the BEC goes to zero, it is thus a measure
of the size of the condensate.

As we have said above, neglecting the particles’ kinetic energy to use the Thomas-
Fermi approximation is justified in our case. However, interactions might even be so
strong that na3 � 1 is no longer true. This means that the Gross-Pitaevskii equation
does not necessarily apply to our system. Nevertheless, we can use Equation 5.7 as a
first approximation in the analysis of our data.
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5 Preparation of a molecular BEC

When the cloud is released from the trap for a time-of-flight measurement, it expands
as interaction energy is converted into kinetic energy. The stronger the interaction in
the gas, the faster the expansion. This expansion simply rescales the parabolic shape
of the cloud [Ket99]. In an anisotropic trap, expansion is fastest in the direction of
strongest confinement, in a time-of-flight image a cloud released from such a trap
thus inverts its aspect ratio during expansion.
In a harmonic trap not all of the molecules condense at the same time. When we cool
the trapped cloud the molecules in the center of the trap condense first while particles
farther out are still in the normal phase. The condensate fraction grows with decreas-
ing temperature. When the trap is turned off both the condensed and thermal part of
the cloud expand in their typical shape of a parabola and an approximate Gaussian,
respectively. Observing a bimodal density distribution of an upside-down parabola
with Gaussian wings in time-of-flight measurements would be clear experimental
evidence of a molecular BEC.

5.2 Experiment Sequence

Now that we know what to look for to find the mBEC — a bimodal density distribu-
tion — let us briefly explain the experimental procedure we used to observe this. A
timing graph of the most important steps is shown in Figure 5.1.
The first step in the experiment is to load the MOT from the atomic beam entering
the experiment chamber. After a loading time of one second we have enough atoms
in the MOT for the experiment (∼ 108). We turn off the Zeeman slower and prepare
the MOT for the transfer of the atoms into the dipole trap.
To get optimal starting conditions for evaporation in the dipole trap we want the
MOT to be very cold and dense. We can achieve this by ramping the detuning of the
cooler and repumper light closer to resonance. A detuning of δ = −Γ/2 yields the
minimum temperature with maximum confinement (see Equation 4.3). As a smaller
detuning leads to increased photon scattering, we need to lower the power in the
MOT beams at the same time. Here the intensity of the repumper is lowered more
slowly than that of the cooler to allow the repumper to transfer more atoms out of the
states |3〉 − |6〉 such that the atoms are accumulated in states |1〉 and |2〉. This yields
the desired |1〉-|2〉-mixture in the trap.
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load MOT evaporation

transfer
abs.

image
time of
flight
5 ms

Zeeman slower

MOT light intensity

off

off

MOT detuning

1000 ms 200 + 150 + 2200 ms 

anti-Helmholtz field

off

IPG light intensity

Helmholtz field

off

~40 W ~100mW200 W

0 G

786 G
857 G

714 G

Imaging light off

Figure 5.1: Illustrative timing graph of the experimental procedure to produce and
observe a BEC of 6Li2 molecules. At the top the main steps in the experiment are
shown: loading of the MOT, transfer into the dipole trap, evaporative cooling, time-
of-flight expansion and finally absorption imaging of the cloud. Below that each step
is explained in more detail. The green lines explain the laser light and magnetic fields
for the MOT, red ones show the dipole trap light and the Feshbach field, the blue line
represents the imaging light. Times and amplitudes are not to scale.
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5 Preparation of a molecular BEC

Right before the transfer we turn on the laser for the dipole trap and tune it to its max-
imum power of 200 W. Then we turn off the anti-Helmholtz field and the light for the
MOT and switch on the magnetic offset field. Now we have trapped approximately
106 atoms in the intersection of the dipole trap with a Helmholtz field of 786 G. At
this magnetic field value the |1〉-|2〉-mixture of atoms has a large positive scattering
length of about 7 000 a0 (see Figure 2.7). This is a strongly interacting gas which is
necessary for efficient evaporative cooling.
We leave the dipole trap laser running on high power for 200 ms of plain evaporation
during which the hottest atoms escape from the trap. Afterwards we ramp down the
power of the laser to approximately 40 W in 150 ms to avoid thermal lensing effects
of the optical elements. Then we lower the intensity of the trapping beam even more
with the help of the two AOMs in the beam path (see Section 4.2.1). We drive two
linear ramps to cool down the sample. The first ramp goes from 40 W to∼ 3 W in one
second, the second one takes the intensity in 1200 ms from there to the desired final
trap depth on the order of 100 mW. The timings for the evaporation sequence have
been optimized for a maximum ratio of atom number to temperature at the end of
the evaporation.
After the evaporation and before the cloud is released from the trap we ramp the
magnetic offset field to a lower value of 714 G where the scattering length is approx-
imately a third of its former value with a ≈ 2 000 a0. This is done in order to better
observe the bimodal density distribution: The thermal cloud expands according to
its temperature while the condensate expands as interaction energy is turned into
kinetic energy. Thus for a smaller scattering length the condensate expands more
slowly resulting in a stronger separation of the two phases making the observation of
the typical bimodal shape easier. After the magnetic field ramp the cloud is released
from the trap by switching off the dipole trap laser entirely.
After one millisecond of time-of-flight most of the interaction energy of the conden-
sate should have been transformed into kinetic energy. Now the molecular BEC ex-
pands with a constant velocity and we can tune the magnetic field to a different value
again.
In order to image both the thermal and condensed part of the cloud at the same time
we need to dissolve the molecules into atoms again. We can do this by ramping
the magnetic field across the Feshbach resonance, to a value where the scattering
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length is negative and no molecular state exists. Here we chose B = 857 G with
a ≈ −20 000 a0. After 5ms of time-of-flight we take an absorption image by shining
the resonant imaging light onto the cloud for a short time (10 µs) and imaging the
transmission onto a CCD camera. For this experiment we use the vertical imaging
axis. Comparing this with a reference (no atoms) and a background picture (no atoms,
no imaging light), taken in quick succession after the actual absorption picture, yields
the density of the cloud integrated along the imaging axis.

Imaging destroys the sample, as photon scattering causes heating and for the next
measurement we have to repeat the experiment cycle again.

5.3 Results and Analysis

We performed the measurement explained above several times for different values
of the final trap depth. For the analysis we took the average of 159 images for each
value of the final trap depth. Then we integrated the images along the y-direction
and analysed the resulting one-dimensional, twice-integrated distribution. The two-
dimensional images and the twice-integrated data can be seen in Figure 5.2, it shows
the condensation of the cloud as the trap depth, and thus the temperature, is lowered.

We fitted the data with a bimodal fit of a Gaussian for the thermal wings and the
square of an upside-down parabola for the condensate. The fitted function is

f (x) = Ath exp

(
− (x− x0)

2

2w2
th

)
+ Ac

(
1− (x− x0)

2

w2
c

)2

(5.8)

where the fit parameters are the width of the thermal cloud wth and the BEC wc, re-
spectively, and the center x0 of the distribution. The square to the condensate density
is due to the integration along the imaging and y axes. Integrating the density of the
thermal cloud twice yields a Gaussian function again. The amplitudes of the Gaus-
sian and the squared parabola contain the remaining fit parameters

Ath =
1− fc√
2πwth

Atot (5.9)

Ac =
15

16wc
fc Atot (5.10)
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Figure 5.2: Averaged false-color absorption images of the sample after 5ms of time-
of-flight together with the twice-integrated normalized density distribution obtained
from the images (black data points). For decreasing final trap depth the bimodal
shape of the cloud becomes apparent as a kink in the density distribution. The red
curve is a Gaussian fit to the wings of the distribution, the blue shaded area shows
the deviation of the bimodal distribution (blue curve) from the Gaussian.
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with the condensate fraction fc = N0/N and the total area defined by Atot =
∫

f (x)dx.
As expected the cloud changes its shape during evaporation from a thermal gas with
a Gaussian density distribution at high trap depth to an almost completely condensed
cloud with parabolic shape at the lowest value of the trap depth. During the con-
densation the bimodal distribution emerges as a kink in the twice-integrated density
ditribution (see Figure 5.2).

Setting up the bimodal distribution as a simple sum of condensate and thermal distri-
bution neglects interaction effects: In truth, the condensate pushes the thermal part of
the cloud out of the center of the trap. However, a bimodal fit including these effects
would involve coupled equations for the two parts and be very hard to solve.

In Table 5.1 the condensate fraction and width of the thermal cloud obtained from
the fits are listed according to the final trap depth. From these parameters together
with the trap frequencies measured in experiments as in section 4.2.3 we can calculate
the actual and the critical temperature for each trap depth. Also, by integrating over
the twice-integrated density distribution one more time we can estimate the atom
number in state |1〉 for each measurement.

The signal the CCD camera measures in an absorption image is the optical column
density nopt in the direction of the imaging beam. This is related to the total number
of atoms in the sample by the pixel area of the camera A, the magnification of the
imaging setup M and the resonant absorption cross section of the atoms σ0:

N =
A

M2 σ0
∑
x,y

nopt. (5.11)

We estimate that the magnification is unity to an accuracy of 10 %, this leads to a
relative error in the atom number of 20 %. Since the imaging light is only resonant
with one transition, by changing the detuning we can image atoms in state |1〉, |2〉 or
|3〉 but never more than one state at the same time. In this experiment we should have
an approximately balanced mixture of atoms in states |1〉 and |2〉. The total number
of atoms in the sample should thus be roughly a factor of two of the number obtained
from the measurement via Equation 5.11.

The atom number in state |1〉 obtained from the data is shown in Table 5.1. The cold-
est cloud, which is an almost pure condensate, contains approximately 25 000 atoms
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in each state. This would just be sufficient to load the two-dimensional trap, which
cannot hold more than 24 000 atoms in two dimensions (see Section 3.3.2). However,
it should be possible to improve on this number quite significantly. We think that the
number of atoms in the condensate will increase now that we have installed the new
coil for the magnetic offset field. Also, we could improve the efficiency of evapora-
tion by lowering the trap depth following an optimized formula [Luo06] instead of
driving simple linear ramps.

The temperature of the sample can be obtained from the width of the Gaussian fit
to the thermal wings of the twice-integrated density distribution using Equation 5.4
with w0 ≈ 0. The critical temperature for the sample in each measurement follows
from Equation 2.5. As input parameters we use the atom numbers from above and
the trap frequencies obtained from the measurements described in section 4.2.3. It
was not possible to fit thermal wings to the twice-integrated density at the lowest
trap depth since the cloud was almost completely condensed in this measurement.
Nonetheless, we can at least say that T/Tc in this measurement should be between
zero and T/Tc for the next higher trap depth where we could still fit a Gaussian to
the thermal wings.

Since our sample is far from non-interacting (a ≈ 2 000 a0) we do not expect the equa-
tions introduced in section 2.1 to describe our system. However, finding a correct
theoretical description for a strongly-interacting molecular BEC is much too difficult
for our purposes. We only want to characterize evaporative cooling in our new dipole
trap and show that we can use it to prepare a degenerate quantum gas. For this we
compare our results to Equation 2.8. Re-written in terms of our fitting parameters this
reads

fc =

(
1−

(
T
T0

c

)3
)

. (5.12)

Here T0
c is the critical temperature for condensation in a non-interacting gas, for

which this equation holds true. In Figure 5.3 we have plotted Equation 5.12 as well
as the condensate fractions obtained from our measurements over T/T0

c .

Clearly, and as was to be expected, our data does not match this theory. This can be
the case due to a number of reasons. One of them is that we probably do not have
a perfectly balanced mixture of states |1〉 and |2〉 in the sample. Atoms without a
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Figure 5.3: Condensate fraction over T/T0
c for the data taken in our experiment.

The data points are obtained from the Gaussian fits to the thermal wings of each
sample. The blue shaded area represents the confidence interval we can give for the
measurement at the lowest trap depth where we could not fit a temperature. The
black line represents Equation 5.12 which is valid for an ideal non-interacting Bose
gas. Taking interactions in the gas into account as a shift to the critical temperature
for condensation, and fitting this to the data leads to the red dashed line.

"partner" in the other state cannot form a molecule and can thus not condense into
the molecular BEC. This would lead to a condensate fraction smaller than expected
at higher temperatures. However, once the trap is so far evaporated that the trap
depth reaches the chemical potential of the atoms they are lost from the trap while
the molecules stay trapped. This allows us to prepare an almost entirely condensed
cloud starting from an imbalanced thermal gas.

Much more important is the fact that our molecular BEC is not at all non-interacting
which not only limits the reliability of our fit results but also means that Equation 5.12
is simply not applicable to describe our data. Interactions in the system lead to a
change in the critical temperature: Tc = T0

c + ∆Tc. For a harmonically trapped cold
gas this interaction shift of the critical temperature has two contributions. On the
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one hand repulsive interactions enhance condensation which leads to a shift of Tc

to higher temperatures. On the other hand there is a mean-field effect reducing the
critical temperature. This has been studied for example by S. Giorgini, L. P. Pitaevskii
and S. Stringari [Gio96]. Their research determined the overall ∆Tc including both
effects to be negative.
More recent research in the group of Z. Hadzibabic reveals beyond-mean-field effects
of critical correlations on Tc [Smi11]. These critical correlations seem to stabilize the
condensate and lessening the negative shift. Unfortunately, they were only able to
measure the shift in a weakly interacting Bose gases, however we have to assume
that our gas of composite bosons is in the strongly interacting regime. Thus, from
their data we cannot get an estimate of the ∆Tc in our experiment, however it seems
reasonable to expect an overall negative shift of Tc.
Fitting a function of the form

fc =

(
1−

(
T

T0
c + ∆Tc

)3
)

(5.13)

to our data yields the red dashed line in Figure 5.3 with ∆Tc/T0
c = −0.33. Even

if we cannot interpret this quantitatively, it is tending in the right direction. Thus
interaction effects seem a plausible explanation for the deviation of our data from the
theory valid for ideal Bose gases.
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By applying a radio frequency field to the atoms we can drive transitions between
different hyperfine substates. As the energy splitting between these states depends
on the magnetic offset field, we can use radio frequency spectroscopy to calibrate the
magnetic field in our experiment. Most importantly though, we can use it for the
controlled preparation of a three-component mixture of 6Li atoms. This is the basis
for doing experiments with ultracold three-component Fermi gases, which our exper-
iment is designed for. RF spectroscopy is also an essential tool to probe properties of
the sample under study, for example by measuring the binding energy of molecules.
In this chapter we will first give a brief summary of the effects of near-resonant light
on a two-level system before presenting our rf spectroscopy measurements.

6.1 Rabi oscillations in a two-level system

The states in the two-level model of an atom can be coupled by an electro-magnetic
field oscillating at the resonance frequency ν = (E|e〉 − E|g〉)/h, where E|g〉 and E|e〉
are the energy of the ground and excited state, respectively. This coupling leads to
an oscillation between the two states as the oscillating field drives the atom in a cycle
of excitation and relaxation processes. In a sample of two-level atoms the occupation
probability of the excited state oscillates with half the Rabi frequency [Foo07, Met02]:

p|e〉(t) = sin2
(

Ωt
2

)
(6.1)
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if at t = 0 all atoms were in the ground state, i.e. p|e〉(0) = 0.
In our experiment we usually want to transfer atoms between the three substates |1〉,
|2〉 and |3〉 of the {22S1/2,ms = −1/2} ground state. The three states differ in the mag-
netic quantum number of the nuclear spin mI , thus driving transitions between them
corresponds to flipping the nuclear spin of the atom. The Rabi frequency depends on
the strength of the oscillating magnetic field B as

Ω ∝ µBS. (6.2)

Here S is the spin being flipped and µ its magnetic moment. In our case nuclear and
electron spin are not entirely decoupled which means that µ is larger than the nuclear
magnetic moment. For the |1〉 − |2〉 transition it is µ ≈ 1/100 µB where µB is Bohr’s
magneton.
The larger the Rabi frequency, the faster it is possible to prepare the atoms in a certain
state. Hence to be able to prepare states with a short lifetime we need a large Rabi
frequency. Since the amplitude of the oscillating magnetic field depends on the power
of the radio frequency signal as B ∝

√
P, the maximum Rabi frequency is limited by

the power we can apply and the efficiency with which this is transmitted to the single
loop coil. A Bachelor thesis has been written on the optimization of the setup to this
end [Heu11].
If the driving frequency is not exactly on resonance, but has a detuning ∆, the Rabi
frequency changes. Time-dependent perturbation theory yields [Met02]

Ωeff =
√

Ω2 + ∆2 (6.3)

and p|e〉(t) =

(
Ω

Ωeff

)2

sin2
(

Ωefft
2

)
. (6.4)

The Rabi frequency increases while the maximum occupation in the excited state de-
creases.

6.2 Driving transitions between states

For this experiment we again prepared the atomic cloud in the crossed beam dipole
trap and cooled it down by evaporation. Since we want to transfer free atoms between
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Figure 6.1: Frequency sweeps across the resonance for the transitions a) |2〉 − |3〉
and b) |1〉 − |2〉. The fit to the data is a Lorentzian, the magnetic offset field was
determined from the fitted resonance frequency via the Breit-Rabi equation.

the states we stopped the evaporation before molecules could be accumulated in the
gas. To find the resonance frequency of the |2〉 − |3〉 transition we applied a 50 ms
long radio frequency pulse with a power of 20 mW to the atoms and monitored the
remaining atom number in state |2〉. Scanning the frequency across the resonance
we observe a dip in the population of state |2〉 as atoms are transferred into state
|3〉. Figure 6.1a shows an example of such a measurement. To find the resonance
frequency we can fit a Lorentzian to the data. Then we can use the Breit-Rabi formula
to calculate the magnetic offset field at which the transition between state |2〉 and |3〉
has this frequency. From the data in Figure 6.1a we calibrate the magnetic field to be
B=786 G in this measurement.

To find the resonance frequency of the |1〉 − |2〉 transition we can do the same mea-
surement. However, to keep the condition p|e〉(0) = 0, we have to remove all atoms
in state |2〉 before applying the rf pulse. This can be achieved by exposing the sample
to imaging light for a short time. If the detuning of the imaging beam is chosen for
imaging of state |2〉, these atoms will absorb the light and consequently be heated up
until they are lost from the trap. The atoms in state |1〉 will not be affected by this as
long as the imaging pulse is not too strong. Figure 6.1b shows a measurement of this
transition using an rf pulse 2 ms long with a power of 6 mW at a magnetic offset field
of 1070 G.

By doing such frequency scans across the resonance for different values of the current
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Figure 6.2: a) Rabi oscillation of atoms between state |2〉 and |3〉 at a magnetic offset
field of 786 G and an rf frequency of 81.99008 MHz. The power of the rf pulse in
this measurement was 200 mW. b) Dependence of the effective Rabi frequency on the
detuning of the rf pulse.

flowing through the Helmholtz field coils, we can calibrate the magnetic offset field
in our experiment.

6.3 Measuring the Rabi frequency

Once we approximately know the resonance frequency of a transition from measure-
ments as presented in the last section we can observe Rabi oscillations of the popu-
lation in one of the states by varying the length of the rf pulse. Figure 6.2a shows an
example of such an experiment for an rf pulse with frequency ν = 81.99008 MHz and
a power of 200 mW at B = 786 G. We fitted the data with a damped sine function to
obtain the effective Rabi frequency. The damping of the oscillation is due to deco-
herence effects as atoms in different states collide or feel a slightly different magnetic
field.

Varying the frequency of the rf signal yields the effective Rabi frequency for the
|2〉 − |3〉 transition depending on the detuning with respect to resonance. This is
plotted for a magnetic offset field of B = 786 G in Figure 6.2b together with a fit of
Equation 6.3 to the data. From this we get for the resonance frequency at B = 786 G
ν23 = 81.99009 MHz and a Rabi frequency of Ω23 = 2π · 0.396 kHz.
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6.3 Measuring the Rabi frequency

The experiments presented here were performed by applying an rf pulse of 200 mW
to the single loop coil in the vacuum chamber. In the future we want to increase this
to 100 W. However, to avoid overheating of the wire inside the vacuum by dissipation
of some of the power, which could compromise the ultra-high vacuum, we wanted
to implement an interlock system to shut down the rf signal if the vacuum cable
gets too hot. During the above measurements the interlock system was still being
developed. Thus we only used low power rf signals to eliminate the risk of damaging
the experimental setup.
To get an estimate of the Rabi frequencies achievable in the experiment once we can
apply high-power pulses, we can scale our result with the square-root of the power.
At Prf = 100 W this yields Ω23 = 2π · 8.85 kHz. This is slightly larger than the Rabi
frequencies measured in the old experiment of Ω23 = 2π · 7 kHz, where the single
loop coil was not installed inside the vacuum chamber but at the re-entrant viewport
below the chamber. We hoped that by positioning the new single loop coil closer and
optimally oriented with respect to the position of the atoms we could achieve larger
Rabi frequencies. So far our results look promising, but to verify this we need to
do some experiments with the rf setup at full power and directly measure the Rabi
frequencies for both transitions |1〉 − |2〉 and |2〉 − |3〉.
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7 Conclusion and outlook

At the beginning of this diploma thesis in March 2011 our group had completed the
setup of the vacuum chamber built a magneto-optical trap with fast loading rates and
an excellent vacuum lifetime.

During the last year we have further developed the experiment towards its final
setup. We have built an optical dipole trap in a crossed-beam configuration using
a 200 W Ytterbium fiber laser with a wavelength of 1064 nm and transfered a mix-
tures of ∼ 106 atoms in two different states from the MOT into the dipole trap. We
also installed two coils in approximate Helmholtz configuration around the re-entrant
viewports of the experiment chamber with which we can apply strong, homogeneous
magnetic offset fields. By changing the amount of current flowing through the coils,
and thus the magnetic field in the experiment chamber, we can tune the inter-particle
interactions in the Fermi gas.

With this setup we were able to evaporatively cool the two-component atomic mix-
ture down to the Nanokelvin regime where the sample became quantum degenerate.
Experimental proof for this was the observation of a molecular Bose-Einstein conden-
sate when the gas was cooled at large values of the scattering length just below the
Feshbach resonance. We were able to prepare almost completely condensed clouds of
approximately 25 000 atoms per spin state. Here we were limited by a residual mag-
netic field gradient across the trapping region. The installation of a new Helmholtz
field coil should significantly increase the number of atoms in the trap after evapora-
tion.

In the next step we put the radio frequency setup into operation and performed rf
spectroscopy on the trapped atomic gas. With these measurements we calibrated the
magnetic field in our experiment and got a first estimate of the Rabi frequencies we
can achieve with this rf setup.

In the near future we want to test the rf setup with higher power and better determine
the Rabi frequencies we can achieve. Then we will prepare a three-component Fermi
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7 Conclusion and outlook

Figure 7.1: × 7.3 magnified CCD camera image of the interference pattern produced
with the custom-made interferometer. The fringes have a distance of 4.95 µm, they
are quite flat and homogeneous, no curvature or internal structure is discernible.

gas and do some experiments with it to further test the setup.

While putting the dipole trap into operation we were already working on the next
step, developing the setup for the interferometer which will produce the pancake
shaped trapping potential for the atoms. Only recently the fiber amplifier, which
we will use as the laser light source for the pancake trap, arrived. And by now the
tests on our custom-made interferometer concerning the stability and homogeneity
of the pancakes have been completed as well. As can be seen in Figure 7.1 there is
no discernible structure on the fringes, they look very homogeneous. The pattern has
a periodicity of 4.95 µm and is quite stable. Shot-to-shot fluctuations are still on the
order of 1/20 π, but long-term stability has improved significantly with the custom-
made interferometer, no drifts larger than 0.6 π could be observed during two weeks
of continuous observation [Sta12]. The results of these latest test measurements look
very promising and we want to integrate the two-dimensional trap setup into the
experiment very soon. Then we can transfer the cold atomic gas prepared in the
dipole trap into the two-dimensional trap. Developing a technique to empty all but
one pancake, or only load a single one to begin with, may take some time. However,
we can already do some interesting experiments with a stack of two-dimensional
gases, which the imaging process would average over.

The high-resolution objective designed in our group has recently arrived as well and
can be installed above the experiment chamber very soon. The objective has a res-
olution of 750 nm over a field of view of �200 µm and will be used to image the
two-dimensional cloud from above.
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Figure 7.2: Illustration of the optical lattice. The green laser beams create the 2D
pancake trap, the red beams the lattice potential. The brown Helmholtz field coils are
used to tune the magnetic offset field. We image the two-dimensional system from
above using a custom-made high-resolution objective.

After the preparation of a homogeneous two-dimensional Fermi gas in the pancake
trap we will overlap this with a two-dimensional optical lattice. For this we will
use two retro-reflected 1064 nm laser beams under an angle of 90◦ which results in
a lattice spacing of 532 nm. This is too small to allow for single-site imaging with
the high-resolution objective. However, in the future we could also use the objective
together with a spatial light modulator to project the lattice potential onto the two-
dimensional cloud from above. With this we could increase the lattice spacing to
enable single-site imaging or locally adapt the trap depth for lattice cooling schemes.
In Figure 7.2 the setup to produce the optical lattice is shown together with the high-
resolution objective.
In the two-dimensional optical lattice we will first do some experiments with two-
component Fermi gases. A first milestone would be to observe the transition from a
superfluid to a fermionic Mott insulator. In the next step we will then study three-
component Fermi gases in the two-dimensional lattice system. In this system we are
hoping to observe lattice phenomena like loss-blocking due to a quantum Zeno effect
and exotic quantum phases like color superfluidity [Kan09].
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