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Abstract

We provide evidence for a duality between color and kinematics in three-
dimensional supersymmetric Chern–Simons matter theories. We show that
the six-point amplitude in the maximally supersymmetric,N = 8, theory can
be arranged so that the kinematic factors satisfy the fundamental identity
of three-algebras. We further show that the four- and six-point N = 8 am-
plitudes can be “squared” into the amplitudes of N = 16 three-dimensional
supergravity, thus providing evidence for a hidden three-algebra structure in
the dynamics of the supergravity.

1 Introduction

Scattering amplitudes have provided a rich vein of insight into the hidden structures underly-
ing our theories of gauge and gravitational interactions. One particularly suggestive result is
the color-kinematics duality discovered by Bern, Carrasco, and Johansson (BCJ) [1]. At tree-
level, color dressed scattering amplitudes in Yang–Mills (YM) theories can, quite generally,
be written as a sum over cubic graphs

An = gn−2
∑

i∈graphs

nici
∏

ℓi
p2ℓi
, (1)

where the ci’s are color structures made from the usual Lie algebra structure constants, and
the ni’s are kinematic factors from which we have removed products of inverse propagators
p2ℓi associated to internal lines of the respective cubic diagram. BCJ proposed that there
exists a representation of the amplitude such that for any set of color structures related by
a Jacobi identity, there is a corresponding relation between their numerator factors, i.e.

c1 + c2 + c3 = 0 ⇒ n1 + n2 + n3 = 0 . (2)

This duality implies non-trivial relations between different tree-level color-ordered subam-
plitudes, so-called BCJ relations [1].

Moreover, as is well known, via the Kawai–Lewellen–Tye (KLT) relations [2, 3], such
Yang–Mills amplitudes can be used to express tree-level scattering in related gravity theories.
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BCJ [1, 4] proposed that it is possible to express gravity amplitudes in terms of the gauge
theory data by simply replacing the color factors by another copy of the kinematic numerators
and summing over the same cubic diagrams.

In this note, we provide evidence for a non-trivial analogue of the color-kinematics duality
in supersymmetric Chern–Simons matter (SCS) theories and for a corresponding “double-
copy” construction leading to the E8(8) symmetric, three-dimensional N = 16 supergravity.

2 N = 8 SCS scattering amplitudes

The maximally supersymmetric Chern–Simons theory, the Bagger–Lambert–Gustavsson
(BLG) theory, constructed in [5, 6, 7], is the unique three-dimensional gauge theory with
OSp(8|4) superconformal symmetry. The on-shell, physical states comprise eight scalars,

XI , in the 8v of SO(8) and eight fermions, Ψİ , in the 8c. An important feature of the orig-
inal construction was the appearance of three-algebras. Briefly, a three-algebra is a vector
space, T a, a = 1, . . . , N , with a trilinear product

[T a, T b, T c] = fabcdT
d ,

where the structure constants fabcd satisfy the fundamental three-algebra identity,

f efgdf
abc

g = f efagf
bcg

d + f efbgf
cag

d + f efcgf
abg

d . (3)

Moreover there is a trace form, hab = Tr(T aT b), which can be used to raise and lower indices.
The structure constants with all indices raised are completely anti-symmetric, fabcd = f [abcd].
All on-shell fields are three-algebra valued fundamental fields, e.g. XI =

∑N
a=1(X

I)a T a.
The only known finite-dimensional example is where the three-algebra is four-dimensional,
while the structure constants are proportional to the invariant four-index tensor fa1a2a3a4 ∝
ǫa1a2a3a4 .

As we are interested in scattering amplitudes, it is convenient to make use of the spinor-
helicity formalism, whereby three-momenta are expressed as the product of two-component
real spinors:1 pαβ = λαλβ where α, β = 1, 2. The on-shell fields can be grouped into a single
superfield,2 by introducing four Graßmann parameters γi, i = 1, . . . , 4. This construction
breaks manifest SO(8) R-symmetry by rewriting the 8v scalars as XI = {X̄,X [ij],X} and

similarly for the fermions, ΨȦ = {ψi, ψ̄
i}, so that the on-shell superfield is

ΦBLG = X̄ + γiψi +
1

2
ǫijklγ

iγjX [kl]

+
1

3!
ǫijklγ

iγjγkψ̄l +
1

4!
ǫijklγ

iγjγkγlX . (4)

OSp(8|4) invariant four-point scattering amplitudes,

A4 =
4πi

k

δ(3)(P )δ(8)(Q)

〈12〉〈23〉〈31〉 fa1a2a3a4 , (5)

have previously been constructed [9]. In this formula, the delta-functions impose conservation

of momenta, Pαβ =
∑4

j=1 p
αβ
j , and supermomenta, Qαi =

∑4
j=1 λ

α
j γ

i
j , while the kinematic

1In fact, only particles with positive energy correspond to real spinors. For negative energies, λ is taken
to be purely imaginary.

2Our construction closely parallels the oscillator construction of the OSp(8|4) algebra [8] and so is only
U(4|2) covariant, corresponding to the Jordan decomposition of OSp(8|4) with respect to a U(1) ∈ U(4|2).
An equivalent on-shell superfield formulation of BLG was constructed in [9].
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Figure 1: Six point quartic diagram.
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Figure 2: Graphical expression of the fundamental identity.

invariants are defined as 〈jk〉 = ǫαβλ
α
j λ

β
k . The overall form of the amplitude is fixed by

the superconformal symmetries, while the normalization, dependence on the Chern–Simons
coupling k, and color structure, are fixed by explicit Feynman diagram calculation of any
component amplitude.

Quite generally we can write an n-point amplitude in the BLG theory in the form (1), but
with the ci corresponding to three-algebra color structures.3 The sum is now over diagrams
with quartic vertices, and the color structures are found by associating to each vertex a
factor fabcd, and to each internal line a metric hab. For example, Fig. 1 corresponds to
c(123)(456) := fa1a2a3bhbcf

ca4a5a6 .
A key feature is that due to the fundamental identities (3) not all of the color struc-

tures are independent. Namely, given cs = . . . f efgdf
abc

g . . . , ct = . . . f efagf
bcg

d . . . , cu =
. . . f efbgf

cag
d . . . and cv = . . . f efcgf

abg
d . . . , where the “. . . ” denote factors common to all

diagrams, then cs = ct+ cu+ cv. Our first proposal is that corresponding numerators ns, nt,
nu and nv can always be found such that (see Fig. 2)

cs = ct + cu + cv ⇒ ns = nt + nu + nv . (6)

We do not have a general proof for these relations, instead we will provide evidence for
their existence by considering the first non-trivial case, i.e. six points.

At six points, all color structures consist of the contractions of two tensors as in Fig. 1.
Accounting for the anti-symmetry of fabcd, there are ten distinct color structures ci, labeled
by partitions of the six color labels into groups of three, e.g. c1 = c(123)(456) .

4 At six points
there are five independent three-algebra relations between different color structures. Our
claim is that there is a choice of numerators such that they satisfy the same three-algebra
fundamental identities, however the numerators are not uniquely defined and finding explicit
forms is not straightforward. Instead, we will show the existence of such numerators, and
give a recipe for calculating them, by considering the color-ordered subamplitudes of N = 6
Aharony–Bergman–Jafferis–Maldacena (ABJM) theory [10].

3Note that the gauge field is non-dynamical and thus only fundamental matter fields appear as external
states.

4To be explicit we will also choose c2 = c(156)(234) , c3 = c(612)(345) , c4 = c(125)(436), c5 = c(136)(245) ,
c6 = c(145)(236) , c7 = c(124)(356) , c8 = c(143)(256) , c9 = c(146)(235) , c10 = c(135)(246) . We use the same notation
for labeling the numerators.
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3 New relations for color-ordered subamplitudes

As is well known, the BLG theory can be rewritten [11] as a special case (N = 2) of the
SU(N)×SU(N) N = 6 Chern–Simons theories with bi-fundamental matter, that is ABJM-
theories. The ABJM on-shell fields can be grouped into two superfields, Φ̂A

Ā
, transforming

as (N, N̄ ), and ˆ̄ΦB̄

B
, transforming as (N̄ ,N) [12]. This formalism is manifestly U(3) sym-

metric, making use of three Graßmann parameters γ î, î = 1, 2, 3. For N = 2 the conjugate

representations are equivalent and the two superfields can be combined: ΦBLG = Φ̂ + γ4 ˆ̄Φ.
Scattering amplitudes in BLG theory can be found from those of ABJM by identifying

the appropriate fields and color structures. ABJM scattering amplitudes can however be
decomposed into color-ordered subamplitudes. Each color-ordered subamplitude will con-
tribute to several kinematical coefficients of the BLG color structures ci. We claim that every
color-ordered ABJM subamplitude can be written as a certain combination of numerators ni
with propagators, in such a way that the corresponding BLG amplitudes take the form (1),
with the numerators satisfying the three-algebra identities (6). This implies non-trivial re-
lations among the color-ordered ABJM subamplitudes, and thus is a slightly stronger claim
than the proposition that the BLG amplitudes decompose as (1) with (6) satisfied. In the
following, we provide evidence for this proposal by examining the six-point amplitudes.

Four-point amplitudes in ABJM5 were considered in [13], the six-point color-ordered
subamplitude for ABJM were first calculated in [12], see also [14]. As a representative com-
ponent amplitude, we consider the six-point amplitude involving a single flavor of complex
scalar φ(p)A

Ā
and its conjugate φ̄(p)B̄B ,

Â6φ = A(1, 2, 3, 4, 5, 6) δ
B̄2
Ā1
δ
A2
B2
δ
B̄4
Ā3
δ
A5
B4
δ
B̄6
Ā5
δ
A1
B6

+ . . . , (7)

with the ellipses denoting other color orderings.
At six points, we propose that the color-ordered ABJM subamplitudes take the form

A(i, j, k, p, q, r) =
n(ijk)(pqr)

p2ijk
+
n(qri)(jkp)

p2qri
+
n(rij)(kpq)

p2kpq
.

There are six independent subamplitudes, all others are related to those by cyclic double-
shifts and by inversions, e.g.

A(3, 4, 5, 6, 1, 2) = A(1, 2, 3, 4, 5, 6) ,

A(1, 2, 5, 6, 3, 4) = A(1, 4, 3, 6, 5, 2) .

If, as we claim, it is possible to choose numerators satisfying (6), we can solve for five of the
numerators, for example by setting

n9 = −n1 + n10 + n4 , n8 = −n2 + n3 + n4

n7 = n1 − n3 − n4 , n6 = n10 − n2 + n4

n5 = −n1 + n10 + n3 + n4 .

We can now solve for four further numerators n2, n3, n4 and n10 in terms of known ex-
pressions [12, 14] for A(1, 2, 3, 4, 5, 6), A(1, 2, 3, 6, 5, 4), A(1, 2, 5, 4, 3, 6), and A(1, 4, 3, 6, 5, 2).
We thus derive identities for A(1, 4, 5, 2, 3, 6) and A(1, 4, 3, 2, 5, 6) in terms of these sub-
amplitudes and the undetermined numerator n1. The expressions for the numerators and
correspondingly the identities are rather complicated, however it is straightforward to nu-
merically check, by choosing explicit numerical values for external momenta, that they are

5Actually of a one parameter family of mass deformed theories.
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in fact satisfied. Importantly, the undetermined kinematical factor, n1, does not appear in
any of these relations and so corresponds to a generalized gauge freedom analogous to that
found in the YM case [1].

4 E8(8) supergravity theory

The three-dimensional N = 16 supergravity with E8(8) symmetry (E8-theory), originally
constructed by Marcus and Schwarz [15], consists of 128 scalar bosons and 128 fermions which
are in inequivalent real spinor representations of SO(16), the maximal compact subgroup of
E8(8). An immediate consequence of this, as explained in [15], is that non-trivial scattering
amplitudes must have an even number of external particles, as products of odd numbers
of spinors cannot form a singlet. Consequently the S-matrix is naively different than the
dimensional reduction of the four-dimensional N = 8 supergravity with E7(7) symmetry
(E7-theory). However, as is long known, e.g. [16], on-shell the two theories are related by
performing a duality transformation, after dimensional reduction, of all the vector fields
into scalars, which then combine with the scalars from dimensional reduction, including
those originally in the E7(7)/SU(8) coset of the N = 8 supergravity, to become those of the
E8(8)/SO(16) coset.

The E8(8) algebra comprises 120 compact SO(16) generators XIJ , I, J = 1, . . . , 16, and

128 non-compact generators Y A, A = 1, . . . , 128.
It is convenient to fix the unitary-gauge, whereby a generic group element is written as

g = eϕ
AY A

with ϕA the physical scalars. The E8(8)/SO(16)-coset action is constructed from

the algebra-valued current Pµ = 1
2 (e

−ϕ∂eϕ − eϕ∂e−ϕ). The bosonic action is [15],

Lbos =
1

4κ2
√−gR− 1

4κ2
√−ggµνPA

µ P
A
ν , (8)

where the first term is the usual gravity action. Using this action (the fermionic terms are
also known), with appropriate gauge fixing, one can straightforwardly calculate scattering
amplitudes using Feynman diagrams. At four-points such amplitudes for four scalars receive
contributions from graviton exchange and from contact interactions that arise upon expand-
ing the coset term to quartic order in fields, Lϕ4 ∼ (ϕΓIJ∂µϕ)(ϕΓ

IJ∂µϕ). In the simplest
case we can consider the scattering of four scalars all carrying the same coset index, e.g. all
fields being ϕ1, in which case there is no contribution from contact terms. Combining all
graviton exchange diagrams we find

M4 =
iκ2

4

(

s2 + u2

t
+
t2 + u2

s
+
s2 + t2

u

)

. (9)

It is not difficult to calculate other component amplitudes, however we can make use of the
supersymmetry to determine the full four-point superamplitude.

For the E8-theory we can define an on-shell superfield by using eight Graßmann parame-
ters ηI , I = 1, . . . , 8 which breaks the SO(16) R-symmetry to U(8). Splitting the 128 scalars
ϕA into the fields {ξ, ξ̄, ξIJ , ξ̄IJ , ξIJKL} with, for example ξ = 1

2(ϕ
1 + iϕ2), and similarly for

the fermionic fields, we can write the superfield6

Ξ = ξ + ηIψI +
1

2
ηIηJξIJ + · · ·+ 1

8!
η8ξ̄ . (10)

6This superfield is very similar to that of the E7-theory and indeed making the formal identification ξ = h,
ξ̄ = h̄, ξIJ = BIJ , ξ̄

IJ = B̄IJ , ξIJKL = DIJKL to the fields of the E7-theory this becomes more apparent.
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By using super-Poincaré symmetry and matching to the component amplitude, the four-
point superamplitude is

M4 =
iκ2

4

δ(16)(Q)δ(3)(P )

(〈12〉〈23〉〈31〉)2 . (11)

Here, the 16-dimensional fermionic delta-function is given by the product of two eight-
dimensional fermionic delta-functions, δ(16)(Q) ∼ δ(8)(Q1)δ(8)(Q2), such as appeared in (5).
Stripping off the overall normalization and momentum delta-function we see that this is the
“square” of (5). This then suggests an analogue of the KLT relation [2, 3] between N = 4
supersymmetric Yang–Mills (SYM) and the E7 supergravity theory to one between N = 8
BLG and the E8-theory. As zeroth order checks, we note that the spectra of the E8-theory
and that of the BLG theory squared match; furthermore in both cases all non-trivial ampli-
tudes have even numbers of legs. Of course the direct dimensional reduction of N = 4 SYM
and the E7-theory amplitudes to three dimensions are related by the usual KLT relations,
and for fields which are unchanged by the duality transformation, in particular the scalars
originating in the E7(7)/SU(8) coset, the three-dimensional scattering amplitudes are just
those of the four-dimensional theory evaluated on three-dimensional kinematics. However,
after the duality transformation to the E8-theory, this ceases to be the case for all ampli-
tudes; as a simple example there is no E8-theory three-point amplitude corresponding to the
square of the three-dimensional SYM three-point amplitude. As N = 8 BLG theory can be
found from supersymmetric three-dimensional Yang–Mills [17] via a “Higgsing”-procedure
reminiscent of the duality transformation, it is perhaps not surprising that it should be thus
related to the E8 supergravity theory.

5 Three-dimensional gravity as the square of Chern–Simons

Given the suggestion that the BLG amplitudes can be written in terms of numerators sat-
isfying the three-algebra color-kinematics duality, it is natural to ask if the gravity theory
amplitudes can be written as a “double-copy” as in [1],

Mn = i
(κ

2

)n−2∑

i

nini
∏

ℓi
p2ℓi

, (12)

where the ni’s are the numerators appearing in the BLG amplitude (1) and the sum is
over the same n-point quartic diagrams. This relation obviously holds at four points for
the superamplitudes, and at six points we can perform an explicit check by making use of
the numerators calculated from the six-point color-ordered ABJM subamplitudes for specific
components. For example, the pure scalar ABJM amplitude Â6φ (7) can be used to calculate
the numerators for the A6(X1X̄2X3X̄4X5X̄6) in the BLG theory, which potentially squares
into theM6(ξ1ξ̄2ξ3ξ̄4ξ5ξ̄6) gravity amplitude. That this is indeed the case can in principle be
shown by comparing with the result of a direct Feynman diagram calculation. Equivalently,
but significantly more efficiently, one can take this complex scalar to have originated in the
E7(7)/SU(8) coset, so that the squared amplitude can be compared with the dimensional
reduction of the six-scalar E7 supergravity amplitude. The latter can be found from a
scalar component of N = 4 SYM Next-to-Maximally-Helicity-Violated (NMHV) amplitude,
conveniently written as a sum of the so-called R-invariants, multiplied by an MHV pre-
factor [18],

ANMHV
6 = AMHV

6 ×
∑

3≤s+1<t≤5

R6st
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and by making use of the KLT relations [2, 3]. It is then straightforward to check, again by
choosing a range of numerical values for external momenta, that the resulting pure scalar
amplitude in fact agrees with the squared BLG amplitude (12).

For higher-point amplitudes it would be possible to prove, along the lines of [19], that (12)
holds if there were Britto–Cachazo–Feng–Witten (BCFW) recursion relations [20, 21] for the
E8-theory. Recursion relations for ABJM theories, and thus BLG theories, have been proven
in [14]. The key step is proving that the superamplitude falls off sufficiently fast for large
deformations of the momenta under a complex non-linear shift: Â({λ1(z), λl(z)}) ∼ O (1/z)

as z → ∞ with λ1(z) =
z+z−1

2 λ1 − z−z−1

2i λl, λl(z) =
z−z−1

2i λ1 +
z+z−1

2 λl and similar shifts for
the Graßmann parameters. The proof of a sufficient fall-off for E8 superamplitudes does not
currently exist. However, it is possible to naively apply the method of [14] and use the four-
point amplitude (11) to construct a candidate six-point superamplitude in E8 supergravity.
We find that the relevant scalar component, M6(ξ1ξ̄2ξ3ξ̄4ξ5ξ̄6), of this superamplitude agrees
with the amplitude calculated by squaring the numerators (12). This shows that at least to
six points the BCFW recursion relations of [14] hold for the E8-theory.

6 Outlook

In order to confirm the proposed “double-copy” relations for the E8-theory, it would be very
useful to prove in general the BCFW relations for the three-dimensional supergravity. Relat-
edly, numerator identities for YM and squaring relations for gravity have been conjectured to
extend to all-loop diagrams [4], and it would be interesting to check whether similar relations
hold for the three-dimensional Chern–Simons and gravity theories beyond tree-level. If this
does indeed hold it would demonstrate the existence of a hidden three-algebra structure in
three-dimensional gravity. This is interesting as a non-trivial model for similar structures
in four dimensional gravity, particularly with regard to knotty issues of quantum gravity,
and as an important intermediary step to two-dimensions where gravity is known to posses
infinite dimensional symmetries [22, 23].
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