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Abstract

We present detailed arguments and calculations in support of our recent proposal to identify the axion
arising in the solution of the strong CP problem with the Majoron, the (pseudo-)Goldstone boson of sponta-
neously broken lepton number symmetry. At low energies, the associated U(1)L becomes, via electroweak
parity violation and neutrino mediation, indistinguishable from an axial Peccei–Quinn symmetry in rela-
tion to the strong interactions. The axionic couplings are then fully computable in terms of known SM
parameters and the Majorana mass scales. The determination of these couplings involves certain three-loop
diagrams, with a UV finite neutrino triangle taking over the role of the usual triangle anomaly. A main nov-
elty of our proposal is thus to solve the strong CP problem by a non-local term that produces an anomaly-like
term in the IR limit.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we provide detailed arguments and calculations for our recent proposal to iden-
tify the axion with the Majoron [1]. This proposal rests on very special features of the neutrinos
and their mixing which, to the best of our knowledge, have not been fully exhibited in the ex-
isting literature. The present work grew out of an earlier attempt [2] to incorporate classical
conformal symmetry into the Standard Model (henceforth abbreviated as ‘SM’), and thereby re-
solve some of the outstanding issues of SM physics in a minimalistic fashion, that is, without
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introducing any large intermediate mass scales or unobserved new particles beyond the known
SM spectrum other than right-chiral neutrinos and one new complex scalar field (and, in partic-
ular, no low energy supersymmetry).1 Any such proposal must in particular account for the two
phenomena whose explanation is commonly attributed to new scales intermediate between the
electroweak scale and the Planck scale, namely light neutrino masses and axion couplings. In
fact, it was understood already some time ago [3] that the first item can be achieved by taking
the neutrino Yukawa couplings to be ∼ O(10−5) (an acceptable fine-tuning in view of the fact
that the mass ratio mu/mt is of the same order of magnitude). The present work, then, addresses
the question whether one can likewise solve the strong CP problem without new mass scales
of order >1010 GeV. Consequently, the model that we will study in this paper is a minimal ex-
tension of the SM with only right-chiral neutrinos and one new complex scalar field φ(x), but
without explicit mass terms for the fermions (and in particular, no explicit Majorana mass). For
definiteness we will refer to it as the Conformal Standard Model (abbreviated as ‘CSM’) in the
remainder.

Apart from underlining the potential importance of conformal symmetry in the SM, the
present proposal furnishes an (in our view) intriguing link between strong interaction physics,
where the axion is needed to solve the strong CP problem [15–18], and the electroweak sector of
the SM, where the Majoron arises as the Goldstone boson of spontaneously broken lepton num-
ber symmetry [19,20] (a possible link between axions and neutrinos had already been suggested
in [21–23]). This link is encapsulated in the relation [1]

f −1
a ∝ α2

w

M2

∑
mν (1)

tying the axion coupling fa to the ratio of the sum of the light neutrino masses and a (mass)2

parameter M2, where M is of order MW or the largest of the heavy neutrino mass eigenvalues;
αw is the SU(2)w gauge coupling (the estimate (1) is based on the formula (85), which is obtained
from a three-loop calculation and more complicated, see the final section of this paper). The
weakness of axionic couplings can thus be naturally understood and explained, without adducing
any large intermediate scale.

The main new features of our proposal can be summarized as follows:

• If the axion is identified with the Majoron, all its couplings arise as effective couplings via
loop corrections with the insertion of a triangle diagram involving neutrinos on the internal
lines. There is consequently no need for new global symmetries beyond the global symme-
tries already present in the CSM (baryon and lepton number symmetry).

• This triangle diagram, though superficially reminiscent of the well-known anomalous trian-
gle diagrams in QED and QCD, is UV finite and produces a non-local contribution to the
effective action, which however reduces to the (local) anomaly-like amplitude in the low
momentum limit. Hence, a main novelty of our proposal is to solve the strong CP problem
via a non-local term that coincides with the usual anomaly only in the IR limit.

• The non-vanishing result for the amplitude hinges on the spontaneous breaking of lepton
number symmetry (as well as on electroweak symmetry breaking), and on the fact that parity

1 For alternative proposals in this direction, see [4–13] and references therein. In particular, our model is similar to
the so-called νMSM first introduced in [14] and further studied in [7,8], except that the extra scalar field φ(x) here is
complex and not supposed to be identified with the inflaton.
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is maximally violated in the SM. If lepton number symmetry were restored, the relevant
diagrams would vanish identically even if electroweak symmetry remained broken.

• If spontaneous symmetry breaking and the emergence of mass scales can be accounted
for by a Coleman–Weinberg-type mechanism, starting from a conformal classical La-
grangian, all effects can be viewed as ultimately resulting from the associated conformal
anomaly.

We here concentrate on the link with strong interaction physics, while the discussion of pho-
ton couplings, as well as implications for cosmology, especially with the axion as a Dark Matter
candidate, will be analyzed elsewhere. However, before entering into any details of the calcu-
lation it is perhaps worthwhile to clearly state what the result provided at the end of this paper
actually means. We want to calculate the effective coupling of the axion to two gluons in lowest
non-vanishing loop order. The term ‘effective’ in this context means that in the effective La-
grangian we leave only massless or almost massless particles, namely axions, light neutrinos,
gluons and photons (but the latter will not be considered in this paper, as we said), and therefore
‘integrate out’ all massive fields, whose masses are much larger than the external momenta, and
which do not appear on the external legs (i.e. charged leptons and right-chiral neutrinos, quarks,
massive gauge bosons, and all scalar fields). As we will see, there are many diagrams that should
be considered at one and two loops, but it turns out that almost all of them give vanishing contri-
bution to the coupling at hand because of the powerful fact that all gauge anomalies cancel in the
SM. Therefore only the three-loop diagrams studied in the last section actually contribute to the
effective coupling. Nevertheless, we find it convenient to divide the calculation into three steps
associated to the different loop orders, but it is important to keep in mind that the results of these
intermediate calculations are not the effective couplings of the axions to W - or Z-bosons, or to
quarks, at least not in a proper technical sense.

The organization of this paper is as follows. In the next section we briefly review the standard
axion scenarios and the role of the Peccei–Quinn U(1)PQ symmetry in them, also sketching why
and how our proposal differs from the standard scenario. In Section 3 we summarize the basic
features of the CSM needed for our calculation; an alternative Lagrangian (‘picture’) giving the
same results and based on a redefinition of the fermionic fields by a global U(1)B−L rotation is
presented in Section 4. The requisite ‘neutrino technology’, based on the systematic use of Weyl
spinors and off-diagonal neutrino propagators, is developed in the following section, followed by
a brief discussion of neutrino mass matrices in Section 6; here we also mention some interesting
physical implications, such as the possibility of light neutrino decays via emission of ‘soft ax-
ions’ (or ‘soft Majorons’). Section 7 deals with the issue of aZ mixing and the role of anomaly
cancellations in the SM in the present proposal. The remaining sections address the main topic
of this paper, with the calculation of the neutrino triangle diagram in Section 8, the axion–quark
diagrams in Section 9, and finally the axion–gluon vertex in Section 10.

A main technical novelty is our consistent use of two-component (Weyl) spinors for loop
computations with neutrinos on the internal lines. Indeed, our results would be rather cumber-
some to rephrase in terms of 4-component (Dirac) spinors for the neutrinos, so this formalism
affords an efficient and elegant method for computing higher order corrections in the presence of
significant mixing between the neutrino components. However, for those parts of the diagrams
not involving neutrinos, there is not much of a technical simplification, so we will return to the
use of 4-spinors for the quark loops in the last section. A short appendix explaining our notations
and conventions for two-spinors is included at the end (see also [24]).
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2. Axions: the ‘Standard Model’, and beyond

To contrast our proposal with current ideas and to make our presentation self-contained, let us
first recall some key features of axion models leading to the standard Lagrangian governing the
coupling of axions to gauge fields

Laxion(x) = 1

fa

αs

4π
a(x)TrGμνG̃μν(x) (2)

(see also [18] for a general introduction, and [25] for a review of the phenomenology of axions).
As commonly argued [15,16], such a coupling can be generated if a(x) is a Goldstone boson
associated with a spontaneously broken global U(1) symmetry. As we briefly explain below, this
symmetry must furthermore be assumed anomalous in order to give rise to the above term. This,
then, is the famous Peccei–Quinn symmetry U(1)PQ, which is necessarily an extra global sym-
metry beyond the known global symmetries already present in the SM. The strong CP problem
is then solved by arguing that the vacuum expectation value of a(x) dynamically adjusts itself to
the value 〈a〉 = 0 [17].

There are several axion models in the literature, all of which require extra and so far unob-
served new particles and scales in order to render the axion ‘invisible’ [26–29]; see also [22,23,
30] where the breaking of the Peccei–Quinn symmetry is linked to neutrino physics. Here, we
briefly describe only the simplest model of this type. This consists in enlarging the SM by a set
of heavy color triplet quarks Qa ≡ (Qa

Lα, Q̄α̇a
R ) (where a, . . . are SU(3)c indices), which couple

in the standard way to QCD, but do not transform under electroweak SU(2)w × U(1), and hence
carry no electromagnetic charge. In addition we introduce a complex scalar field φ which is a
color and electroweak singlet, and couples to the new quarks via (in terms of two-component
Weyl spinors)

L = φεαβQa
LαQRβa + h.c. (3)

with the convention that a lower color index a transforms in the 3̄ of SU(3)c . At the classical
level, the full Lagrangian (including the terms we have not written) is invariant under the global
U(1)PQ symmetry

φ → e2iωφ, Qa
Lα → e−iωQa

Lα, QRαa → e−iωQRαa. (4)

In 4-spinor notation this is equivalent to the transformation Qa → e−iωγ 5
Qa , whence the U(1)PQ

symmetry is chiral. If we now represent the scalar field as

φ(x) = ϕ(x) exp
(
ia(x)/

√
2μ

)
(5)

and assume the U(1)PQ to be spontaneously broken with vacuum expectation value 〈ϕ〉, we
can make the new quarks as heavy as we like by arranging 〈ϕ〉 to be large enough; this is, in
fact, necessary in order to avoid immediate conflict with observation. The phase factor a(x),
on the other hand, is turned into a Goldstone boson. The coupling (2) then effectively arises
via the diagram in Fig. 1. Observe that this diagram gives a non-zero result precisely because
of the anomaly: if this anomaly were cancelled by further contributions from other fields the
effect would disappear. This is the reason why in all available models the U(1)PQ is necessarily
anomalous.

By and large, all existing axion scenarios are variants or more elaborate extensions of this
basic model. For instance, if one wants the axion to also couple to photons one must allow the
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Fig. 1. Anomalous axion–gluon effective vertex with heavy quarks.

new scalar field to also transform under electroweak symmetries, e.g. by introducing further
Higgs doublets into the theory, as happens to be the case for supersymmetric extensions of the
SM, thereby making room for extra global symmetries. A feature common to all these scenarios
is that one must tune the relevant scales by hand to very large (or small) values in order to achieve
the required invisibility of the axion.

As a general feature we note that (2) is the only possibility to reconcile unbroken SU(3)c
gauge invariance with the fact that a(x) is a Goldstone boson, which requires all its couplings
to be via derivatives. This is because the gluonic topological density can be represented as the
divergence of a local quantity, the Chern–Simons current J μ

CS, according to

TrGμνG̃μν = ∂μJ μ
CS (6)

whence the coupling (2) is equivalent by partial integration to the derivative coupling ∂μaJ μ
CS.

This argument and the Goldstone nature of a(x) imply in particular that, with unbroken gauge
invariance, couplings ∝ a TrGμνGμν (or higher dimension couplings of this kind) can never be
generated. With regard to the unbroken SU(3)c × U(1)em gauge sector, that is, its coupling to
gluons and photons, the axion a(x) therefore effectively behaves like a pseudoscalar.

In this paper we present a scenario which differs from the one above in some essential regards.
Nevertheless the basic mechanism of identifying the axion a(x) with the Goldstone boson of a
spontaneously broken global U(1) symmetry and of generating the desired coupling (2) via a
loop diagram remains in force. Yet, we here do not assume φ(x) to be a new scalar field; rather,
we propose to identify it with the extra field already present in the CSM, whose non-vanishing ex-
pectation value provides the Majorana mass term for the right-chiral neutrinos, while its phase is
identified with the so-called Majoron, alias the Goldstone boson of spontaneously broken lepton
number symmetry. This field is a natural ingredient of any ‘minimal’ extension of the SM where
this mass term is not simply put in by hand via an explicit Majorana mass term, and generally
occurs in classically conformal versions of the SM with right-chiral neutrinos. Consequently, we
claim that the role of the Peccei–Quinn symmetry can be taken over by a known symmetry, lep-
ton number symmetry U(1)L, whose associated Goldstone boson thus becomes identified with
the axion.

Evidently, our proposal runs counter to accepted wisdom as outlined above in several aspects.
First of all, we here propose to cancel the strong CP term not by a strictly local term like (2),
but by a non-local term which arises as a contribution to the effective action via the diagrams in
Fig. 1, and which reduces to the local expression (2) only in the long distance (infrared) limit.
In fact, (2) is the only term that on general grounds can survive this limit: like for the standard
axion scenarios, the Goldstone nature of a(x) and the unbroken SU(3)c gauge invariance imply
that (2) is the only possible local coupling that can emerge. These two principles are, however,
not at all in contradiction with non-local interactions, which an expansion in momenta of the full
effective can and does produce.

Secondly, lepton number symmetry U(1)L is non-chiral, and (B − L) symmetry is non-
anomalous. As we will explain in much detail below, the effective coupling (2) nevertheless
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Fig. 2. Contribution to axion–gluon effective vertex.

does arise in the long wave-length limit due to the very special features of the neutrinos and their
mixing. More specifically, the anomalous triangle involving heavy quarks (cf. Fig. 1) is here re-
placed by a set of three-loop diagrams (an exemplary one of which is displayed in Fig. 2) with a
neutrino triangle diagram at one end. As we will show, the latter, though UV finite, can give rise
in the long distance limit to anomaly-like amplitudes due to the mixing of neutrino components
and the fact that parity is maximally violated in the SM, and therefore plays the same role as the
anomalous triangle in the usual models. One difference should be noted, though: while we make
do here with an uncorrected quark box on the left side of the diagram, the actual value of the ef-
fective coupling could is affected by higher order QCD corrections, because αS is large at small
momenta (there is no analog of the Adler–Bardeen Theorem in the present situation). Although
such corrections could change our prediction for fa , this is not a main concern here because the
precise value of fa does not matter so much for the solution of the strong CP problem, as long
as it is different from zero, as shown to be the case by our explicit calculation.

An altogether different option starting from the present model would be to promote (B −L) to
a local symmetry by gauging U(1)B−L (see [31] and references therein, and [10] for more recent
work). In this case, the Majoron would be swallowed by the U(1)B−L gauge boson to give it a
mass, and could thus not become an axion. The possibility of gauging U(1)B−L is naturally
suggested by the fact that the U(1)B−L symmetry is non-anomalous, and this is apparently the
point of view taken in much of the pertinent literature on this subject, where the possibility
of keeping the Majoron as an ‘uneaten’ Goldstone boson was never seriously considered, and
effective vertices of the type analyzed in this paper were not computed (though known to exist).

3. Basic properties of the CSM

We refer readers to [32,33] for the SM Lagrangian, enlarged by a family triplet of right-chiral
neutrinos, and to [34] for an up-to-date overview. The scalar sector of the model consists of the
SM Higgs doublet and in addition a complex electroweak singlet scalar field φ(x) coupled to
the right-chiral neutrinos via the usual Majorana term. Consequently the Yukawa couplings are
given by

−LY = L̄iΦYE
ij Ej + Q̄iΦYD

ij Dj + Q̄iεΦ∗YU
ij Uj

+ L̄iεΦ∗Y ν
ijN

j + 1

2
φNiT CYM

ij Nj + h.c. (7)

Here Qi and Li are the left-chiral quark and lepton doublets, viz.

Qi ≡
(

ui
L

di
L

)
, Li ≡

(
νi
L

ei
L

)
(8)

while Ui and Di are the right-chiral up- and down-like quarks, Ei the right-chiral electron-like
leptons, and Ni ≡ νi the right-chiral neutrinos (we suppress all indices except the family indices
R
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i, j = 1,2,3; summation over double indices will be understood2). The Yukawa matrices Y

ij

in (7) are general complex 3-by-3 matrices, except for YM
ij which is complex and symmetric.

Φ is the usual Higgs doublet, and φ is the new complex scalar field; note that this field has no
direct couplings to the other SM fields (but such couplings will arise either through mixing or
higher loop effects).3

Since we are going to use two-spinors mostly let us spell out the relation with the four-
dimensional spinors, in order to be completely explicit about our notation (see also Appendix A):

ui ≡
(

ui
Lα

ūiα̇
R

)
, d ′ i ≡

(
d ′ i
Lα

d̄ ′ iα̇
R

)
, ei ≡

(
ei
Lα

ēiα̇
R

)
, νi ≡

(
νi
α

N̄ iα̇

)
(9)

where we find it convenient to define the down-quarks with an extra rotation involving the CKM
matrix V ij

d ′ i
Lα ≡ V †ij d

j
Lα, d̄ ′ iα̇

R ≡ V ij d̄
j α̇
R (10)

see (11) below. Also for later convenience, we have chosen to label the independent neutrino
Weyl spinors by different letters ν and N , while for the other fermions we adopt the con-
vention of labeling the independent two-component Weyl spinors by the subscripts L and R.
Using the formulae of Appendix A, one then has the usual relations between 4-spinor and
two-spinor expressions, such as for instance ūiui ≡ uiα

L ui
Rα + ūi

Rα̇ūiα̇
L = uiα

R ui
Lα + ūi

Lα̇ūiα̇
R or

ūiγ 5ui ≡ uiα
L ui

Rα − ūi
Rα̇ūiα̇

L , and so on.
As is well known, one can use global unitary redefinitions of the fermion fields Li,Ei,Qi,Ui

and Ni to transform the Yukawa matrices YE
ij , YU

ij and YM
ij to real diagonal form. To simplify

the remaining (still general complex) matrices YD
ij and Y ν

ij we still have three phase [= U(1)3]
rotations on (Li,Ei), and another three on (Qi,Ui) at our disposal, as well as the remaining
unitary rotation of the down-quarks Di . The latter can be used to represent the matrix YD as

YD = V RDV † (11)

where RD is real diagonal and V is the CKM matrix (with three angles and one phase); the
extra factor V † here is related to our definition (10) for the down-quarks. Finally, exploiting all
remaining phase rotations, the neutrino Yukawa matrix can be brought to the form

Y ν = KR
ν P R

ν RνK
L
ν P L

ν (12)

where Rν is real diagonal, KL,R
ν are CKM-like matrices (each with three angles and one phases),

and P
L/R
ν are diagonal phase matrices of unit determinant. The matrix Y ν thus represents alto-

gether 15 free parameters (three real parameters, six angles and six phases). Moreover, and in
contrast to the CKM matrix, KL,R

ν may (and KL
ν is expected to) exhibit strong mixing.

The scalar sector is governed by the usual Lagrangian

Lscalar = −DμΦ†DμΦ − ∂μφ∗∂μφ −P(H,ϕ) (13)

where H 2 ≡ Φ†Φ and ϕ2 ≡ φ∗φ. We do not further specify the potential here, but only make the
usual assumption that the fields Φ and φ acquire non-vanishing vacuum expectation values by

2 For clarity, we will, however, suspend the summation convention for flavor indices occasionally, and also use capital
letters I, J, . . . for the quark flavors in sections 8ff.

3 More generally, one might replace the ‘flavor neutral’ complex scalar φ(x) in (7) by a field φij (x) transforming as a
sextet under a horizontal (family) symmetry SU(3)H [22].
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spontaneous symmetry breaking (which may occur either via the standard Mexican hat potential,
or via a Coleman–Weinberg-type breaking from a classically conformal Lagrangian; in the latter
case, P(H,ϕ) would also contain logarithmic terms). The breaking in particular entails Dirac
and Majorana mass matrices for the neutrinos

mij := 〈H 〉Y ν
ij , Mij := 〈ϕ〉YM

ij (14)

where H 2 ≡ Φ†Φ . With our choice of phases Mij becomes a real diagonal 3-by-3 matrix.
The matrix mij stays complex, but from (11) we see that it can be represented in the form
m = V mDV †, with the diagonal matrix mD = 〈H 〉RD . As we already pointed out the vacuum
expectation value 〈ϕ〉 need not be several orders of magnitude above the electroweak scale, but
can be taken of the same order as 〈H 〉; the smallness of the masses of light neutrinos is then
achieved by taking the neutrino Yukawa couplings to be Y ν ∼O(10−5).4 We also note that with
the representation (5) and 〈ϕ〉 �= 0 the canonical normalization of the kinetic term is obtained
with μ = 〈ϕ〉 and ϕ = 〈ϕ〉 + (1/

√
2)ϕ′ such that

−∂μφ∗∂μφ = −1

2
∂μϕ′∂μϕ′ − 1

2
∂μa∂μa + · · · . (15)

The field ϕ′(x) will not play a significant role in the remainder.
Besides the (local) SU(3)c × SU(2)w × U(1)Y symmetries, the CSM Lagrangian admits two

global U(1) symmetries, lepton number symmetry U(1)L and baryon number symmetry U(1)B .
These are, respectively, associated with the Noether currents

J μ
L := L̄iγ μLi + Ēiγ μEi + N̄ iγ μNi − 2iφ†

↔
∂μφ

≡ ēiγ μei + ν̄iγ μνi − 2iφ†
↔
∂μφ ≡ J

μ
L − 2iφ†

↔
∂μφ (16)

and

J μ
B := 1

3
Q̄iγ μQi + 1

3
Ū iγ μUi + 1

3
D̄iγ μDi

≡ 1

3
ūiγ μui + 1

3
d̄ iγ μdi = 1

3
ūiγ μui + 1

3
d̄ ′ iγ μd ′ i (17)

(where by ui, di, ei and νi we here denote the full Dirac 4-spinors, see above). Evidently both
currents are purely vector-like. Furthermore, the scalar φ carries two units of lepton number
charge, hence lepton charge can ‘leak’ from the fermions into the scalar channel. For sponta-
neously broken lepton number the total current J μ

L remains conserved, but its fermionic part is
not conserved (even at the classical level) because

∂μJ
μ
L = −iMij

(
NiαNj

α − N̄ i
α̇N̄ j α̇

) �= 0 (18)

where the mass matrix Mij defined in (14) is non-vanishing for 〈ϕ〉 �= 0. An important (and well-
known) fact is that the (B − L) current is free of anomalies, whereas J μ

L and J μ
B are anomalous

separately.
Finally, we write out those terms in the CSM Lagrangian relevant for the computation. After

symmetry breaking and diagonalization of all mass matrices except neutrino ones, the electron
and quark mass terms read

4 In this case, the heavy neutrinos generally have masses < O(1 TeV). Also, there are then no large corrections to the
Higgs mass from the exchange of heavy neutrinos [35].
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Lmass = −
∑

i

(
mei

ēiei + mdi
d̄ ′ id ′ i + mui

ūiui
)

(19)

where, of course, {mei
} ≡ (me,mμ,mτ ), and so on. Using two-spinors the mass terms for neu-

trinos and the axion interactions read

L(1)
int = −

(
νiαmijNj

α + ν̄i
α̇

(
m∗)ij

N̄ j α̇ + 1

2
NiαMijNj

α + 1

2
N̄ i

α̇

(
M∗)ij

N̄ j α̇

)

− ia

2
√

2〈ϕ〉
(
NiαMijNj

α − N̄ i
α̇

(
M∗)ij

N̄ j α̇
)
. (20)

The interactions of the leptons with W - and Z-bosons are given by

L(2)
int = − g2√

2
W+

μ ν̄i
α̇ σ̄ μα̇βei

Lβ − g2√
2
W−

μ ēi
Lα̇σ̄ μα̇βνi

β

− g2

cos θw

Zμ

[
1

2

(
ν̄i
α̇ σ̄ μα̇βνi

β − ēi
Lα̇σ̄ μα̇βei

Lβ

)
+ sin2 θw

(
ēi
Lα̇σ̄ μα̇βei

Lβ + eiα
R σ

μ

αβ̇
ē
iβ̇
R

)]
, (21)

while for the quarks they read

L(3)
int = − g2√

2
W+

μ V ij ūi
Lα̇σ̄ μα̇βd

′ j
Lβ − g2√

2
W−

μ

(
V †)ij

d̄ ′ i
Lα̇σ̄ μα̇βui

Lβ

− g2

cos θw

Zμ

[
1

2

(
ūi

Lα̇σ̄ μα̇βui
Lβ − d̄ ′ i

Lα̇σ̄ μα̇βd ′ i
Lβ

)
+ sin2 θw

(
1

3
d̄ ′ i
Lα̇σ̄ μα̇βd ′ i

Lβ + 1

3
d ′ iα
R σ

μ

αβ̇
d̄

′ iβ̇
R − 2

3
ūi

Lα̇σ̄ μα̇βui
Lβ − 2

3
uiα

R σ
μ

αβ̇
ū

iβ̇
R

)]
(22)

with the CKM matrix V ij . Here g2 is, of course, the SU(2)w gauge coupling.

4. Alternative picture

Although we will use (7) to calculate the effective couplings, we should mention that there
exists an equivalent approach (or ‘picture’) that emphasizes the fact that the phase of the complex
field φ(x) becomes a Goldstone boson after spontaneous symmetry breaking. Using (5) and
redefining the fermionic fields according to

(
Li(x),Ei(x),Ni(x)

) → exp

(
− ia(x)

2
√

2μ

)(
Li(x),Ei(x),Ni(x)

)
,

(
Qi(x),Ui(x),Di(x)

) → exp

(
ia(x)

6
√

2μ

)(
Qi(x),Ui(x),Di(x)

)
(23)

we can replace the complex field φ(x) by the real field ϕ(x). The phase a(x) then occurs only
via its derivatives in the redefined Lagrangian, as appropriate for a Goldstone boson. Defining
the total (B − L) current

J μ
B−L := J μ

B −J μ
L ≡ J

μ
B−L + 2iφ†

↔
∂μφ (24)

and using (5) with μ = 〈ϕ〉 �= 0, this current assumes the universal form
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J μ
B−L = J

μ
B−L − 〈ϕ〉√

2
∂μa (25)

for a current with a Goldstone boson a(x), with corresponding Lagrangian

LGoldstone = −1

2
∂μa∂μa +

√
2

〈ϕ〉∂μaJ
μ
B−L. (26)

Varying this Lagrangian w.r.t. a(x), the resulting equation of motion implies the conservation of
the total current in the form

〈ϕ〉√
2
�a − ∂μJ

μ
B−L = 0. (27)

It is worth emphasizing that the redefinition (23) is also well-defined quantum mechanically,
precisely because the (B − L) current is anomaly free in the SM, unlike the currents J μ

B and
J μ

L separately — this was our reason for including the quark fields in the redefinition (23).
Therefore the change of variables (23) does not affect the fermionic functional measure, ensuring
the mutual consistency of the two pictures also at the quantum level. In other words, it does not
make any difference whether we base our calculation on the Yukawa Lagrangian (7) or on the
vertex ∂μaJ

μ
B−L: the final result must be the same.

Importantly, the conservation condition (27) for the generalized current says nothing about
how the two contributions ∂μJ

μ
B−L and �a conspire to produce overall current conservation by

using the classical or quantum equations of motion. All it says is that, whenever �a �= 0, there
must be a corresponding contribution to ∂μJ

μ
B−L �= 0 for (27) to be satisfied. Thus

�a =
√

2

〈ϕ〉X ⇒ ∂μJ
μ
B−L = X (28)

for the full classical or quantum equations of motion. At the classical level and with spontaneous
symmetry breaking we have

∂μJ
μ
B−L = X = iMij

(
NiαNj

α − N̄ i
α̇N̄ j α̇

)
(29)

as a consequence of (18). One easily checks that the Lagrangian (7) gives rise to a corresponding
contribution to �a which just cancels the above term in the divergence of the total current to give
∂μJ μ

B−L = 0.
This cancellation mechanism persist at the quantum level. Here, we determine the effective

couplings of a(x) to other fields by evaluating the matrix elements

〈Ψ |a∂μJ
μ
B−L|a〉1PI (30)

where |Ψ 〉 can be any (multi-particle) state involving excitations other than a, and where the
subscript indicates that we amputate the external legs in the usual fashion. To get the correspond-
ing contribution to the quantum equation of motion we stick on the classical fields χ1, . . . , χn

associated to the particular state |Ψ 〉. Schematically, this turns the effective equation of motion
for a (resulting from the full quantum effective action) into

〈ϕ〉√
2
�a + · · · + χ1 · · ·χn〈Ψ |∂μJ

μ
B−L|0〉1PI + · · · = 0 (31)

where the new terms above and beyond (29) appear at higher orders in h̄ and represent the
quantum corrections to the classical equation of motion. Note that the terms involving χ ’s are
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non-local in general, but we are here primarily interested in the quasi-local approximation where
we integrate out all massive fields, and look only at long wave-length (low momentum) excita-
tions. Furthermore, in the case at hand, all these corrections are due to neutrino mixing, that is,
the non-vanishing r.h.s. of (29); if it did vanish, a(x) would be a free field.

In this paper, we will compute various such quantum corrections to the classical equation of
motion �a = · · · using the Lagrangian (7), but the above considerations show that the ‘picture’
of this section would give the same results. Schematically, the corrections (ordered in powers
of h̄) are of the form

X̂ = X + h̄(WW + ZZ) + h̄2(f̄ f + FF̃ ) + h̄3GG̃ + · · · (32)

where the letter f stands for quarks and electrons, and by F,W,Z and G, we schematically
denote the field strengths of the associated vector bosons. There is nothing that forbids such local
couplings to appear in the long distance limit. Equally important, the different terms ‘kick in’
at different energies, in accord with what we said in the introduction to this paper. For instance,
at low momenta only the h̄2FF̃ and h̄3GG̃ terms are present. At higher energies (integrating
out fewer degrees of freedom), these vertices ‘dissolve’ to become non-local, while the WW̃

contribution is still effectively local at energies ∼ MW . For the aWW vertex, the equivalence of
the two pictures has now been explicitly confirmed in [36].

5. Neutrino propagators

Using two-component spinors, and after symmetry breaking, the free part of the neutrino
Lagrangian is

L = i

2

(
ναi/∂αβ̇ ν̄β̇i + ν̄i

α̇ /̄∂
α̇β

νi
β + Nαi/∂αβ̇N̄ β̇i + N̄ i

α̇ /̄∂
α̇β

Ni
β

)
− mij ν

αiNj
α − m∗

ij ν̄
i
α̇N̄ α̇j − 1

2
MijN

αiNj
α − 1

2
M∗

ij N̄
i
α̇N̄ α̇j (33)

where, as before, the indices i, j = 1,2,3 label the family (the sum over which is understood).
As already pointed out above, by making a unitary rotation on the fields Ni , we can bring the
Majorana mass matrix Mij to real diagonal form, with strictly positive eigenvalues, viz.

Mij = δijMj , Mj > 0. (34)

By contrast, the Dirac mass matrix mij remains a general complex 3-by-3 matrix. Let us em-
phasize, however, that the results to be presented do not depend on choices of phases or specific
representations of these matrices, which are therefore mainly a matter of convenience.

At this point we have two options. The first is to diagonalize the neutrino mass term (33) by
redefining the neutrino spinors

ν′ i
α = U ij

1 νj
α + U ij

2 Nj
α , N ′ i

α = U ij

3 νj
α + U ij

4 Nj
α (35)

by means of a unitary 6-by-6 matrix

U =
[
U1 U2
U3 U4

]
, UU† = 1 (36)

preserving the kinetic terms in (33). In this way the quadratic terms become diagonal, but the
vertices coupling neutrinos to SM fields become off-diagonal. We will refer to this description as
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the ‘propagator picture’. In the following section, we will discuss the neutrino mass matrices in
somewhat more detail, and also return to Eqs. (35) and (36).

Alternatively, however, one may adopt another description (the ‘vertex picture’) where the
vertices remain diagonal (i.e. in the form of the Lagrangian (20)), but the propagators are
off-diagonal. This ‘vertex picture’ has the advantage that we can simply use the original SM
Lagrangian for the interaction vertices. For this purpose we need to invert the (manifestly hermi-
tian) operator

K =

⎡
⎢⎢⎢⎢⎣

i/̄∂
α̇β

0 0 −m∗δα̇

β̇

0 i/∂αβ̇ −mδ
β
α 0

0 −m†δα̇

β̇
i/̄∂

α̇β −Mδα̇

β̇

−mT δ
β
α 0 −Mδ

β
α i/∂αβ̇

⎤
⎥⎥⎥⎥⎦ . (37)

This operator is to be sandwiched between the multi-spinors [ν̄α̇, να, N̄α̇,Nα] on the left and
[νβ, ν̄β̇ ,Nβ, N̄ β̇ ]T on the right. Because each entry here is a 3-by-3 matrix in family space, the
operator K is thus represented as a 12-by-12 matrix operator. It is convenient at this point to
adopt the form (34), and this will be assumed from now on, while the matrix m is left in the
general complex form. The matrix inversion can be performed in momentum space by iterated
use of the formula[

A B

C D

]−1

=
[

A−1(A + B(D − CA−1B)−1C)A−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(38)

where the sub-matrices A and D−CA−1B are assumed to be invertible (we can arrive at different

forms of this identity by acting with the matrix
[

0 1
1 0

]
on one or both sides of the original matrix

and identifying sub-matrices in a different way). Identifying

A ≡
[

/̄p 0
0 /p

]
, D ≡

[
/̄p −M

−M /p

]
, B ≡

[
0 −m∗

−m 0

]
, C ≡ B†, (39)

we get the result for the inverse sub-matrix

(
D − CA−1B

)−1 =
[D(p)(p2 − mT m∗)M−1/p D(p)p2

D(p)∗p2 M−1(p2 − m†m)D(p)/̄p

]
(40)

where the 3-by-3 matrix D(p) is defined by

D(p) := [(
p2 − mT m∗)M−1(p2 − m†m

) − Mp2]−1 =D(p)T . (41)

A useful alternative form is

D(p) := M1/2[p4 − p2(M2 + M1/2mT m∗M−1/2 + M−1/2m†mM1/2)
+ M1/2mT m∗M−1m†mM1/2]−1

M1/2. (42)

Therefore (not forgetting an extra factor of i in front) the results for the propagator components
read:

〈
νi
α(x)νjβ(y)

〉 = i
∫

d4p

(2π)4

[
m∗D(p)∗m†]ij δβ

α e−ip(x−y),

〈
νi
α(x)ν̄

j

β̇
(y)

〉 = i
∫

d4p

4

[
1 + m∗M−1(p2 − m†m

)
D(p)mT

]ij /pαβ̇

2
e−ip(x−y),
(2π) p
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〈
νi
α(x)Njβ(y)

〉 = i
∫

d4p

(2π)4

[
m∗M−1(p2 − m†m

)
D(p)

]ij
δβ
α e−ip(x−y),

〈
νi
α(x)N̄

j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
m∗D(p)∗

]ij
/pαβ̇e−ip(x−y),

〈
ν̄iα̇(x)νjβ(y)

〉 = i
∫

d4p

(2π)4

[
1 + mD(p)

(
p2 − mT m∗)M−1m†]ij /̄p

α̇β

p2
e−ip(x−y),

〈
ν̄iα̇(x)ν̄

j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
mD(p)mT

]ij
δα̇

β̇
e−ip(x−y),

〈
ν̄iα̇(x)Njβ(y)

〉 = i
∫

d4p

(2π)4

[
mD(p)

]ij
/̄p

α̇β
e−ip(x−y),

〈
ν̄iα̇(x)N̄

j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
mD(p)

(
p2 − mT m∗)M−1]ij δα̇

β̇
e−ip(x−y),

〈
Ni

α(x)νjβ(y)
〉 = i

∫
d4p

(2π)4

[
D(p)

(
p2 − mT m∗)M−1m†]ij δβ

α e−ip(x−y),

〈
Ni

α(x)ν̄
j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
D(p)mT

]ij
/pαβ̇e−ip(x−y),

〈
Ni

α(x)Njβ(y)
〉 = i

∫
d4p

(2π)4

[
p2D(p)

]ij
δβ
α e−ip(x−y),

〈
Ni

α(x)N̄
j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
D(p)

(
p2 − mT m∗)M−1]ij /pαβ̇e−ip(x−y),

〈
N̄ iα̇(x)νjβ(y)

〉 = i
∫

d4p

(2π)4

[
D(p)∗m†]ij /̄pα̇β

e−ip(x−y),

〈
N̄ iα̇(x)ν̄

j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
M−1(p2 − m†m

)
D(p)mT

]ij
δα̇

β̇
e−ip(x−y),

〈
N̄ iα̇(x)Njβ(y)

〉 = i
∫

d4p

(2π)4

[
M−1(p2 − m†m

)
D(p)

]ij
/̄p

α̇β
e−ip(x−y),

〈
N̄ iα̇(x)N̄

j

β̇
(y)

〉 = i
∫

d4p

(2π)4

[
D(p)∗p2]ij δα̇

β̇
e−ip(x−y) (43)

where SL(2,C) indices are to be raised and lowered from the left, as explained in Appendix A.
The bracket notation 〈· · ·〉 ≡ 〈0|T(· · ·)|0〉 is short-hand for the time-ordered two-point function.
The iε prescription for D(p) (not written out here) is always such that the analytic continuation
to Euclidean propagators works in the usual way. Note that one cannot simply use hermitian con-
jugation to check these expressions, because hermitian conjugation turns a time-ordered product
into an anti-time-ordered product. One can check, however, that all expressions are consistent
with the anti-commutation properties of the fermionic operators.

As a crucial feature of these propagators we note the fall-off properties of the off-diagonal
components at large momenta: unlike the usual Dirac propagator, these decay like |p|3 or even
|p|4, and it is this feature which will account for the UV finiteness of all the diagrams that we
will compute in later sections. Alternatively, the UV finiteness can also be seen in the ‘propagator
picture’ with diagonal propagators from (35): there, the propagators have the usual fall-off prop-
erties, while the softened UV behavior of the diagrams is due to cancellations between different
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Fig. 3. Neutrinoless double beta decay.

diagrams arising from the vertices, which are now off-diagonal. Of course, these cancellations,
as well as the final results for the amplitudes, are independent of specific choices such as (34).

Let us mention one possible application that demonstrates the utility of the formalism de-
veloped here, namely neutrinoless double β decay, see [35] for a very recent discussion and
bibliography. Inspection of the relevant diagram (see Fig. 3) shows that the amplitude for this
process directly ‘measures’ the propagator components 〈νi

αν
j
β〉 and 〈ν̄i

α̇ ν̄
j

β̇
〉 listed in (43). The

|p|−4 decay of the 〈νi
αν

j
β〉 and 〈ν̄i

α̇ ν̄
j

β̇
〉 propagators for large momenta is different from the |p|−2

behavior in models without right-chiral neutrinos, where the Majorana mass is induced by a
(non-renormalizable) dimension-5 operator ∼ εαβXij (Φ

T εLi
α)(ΦT εL

j
β) + h.c. In the neutrino-

less double beta decay the external momenta are very small, but for larger momenta this behavior
could be used in principle to discriminate between our model, and one where the left-chiral neu-
trino is treated as a Majorana particle.

6. Light vs. heavy neutrinos

Although our main result does not depend on such choices, it is occasionally useful to repre-
sent the fermion neutrino matrices in a specific form; we refer readers to [37,38] for up-to-date
discussions of neutrino masses and mixing. In particular, assuming the real diagonal form (34)
it is not difficult from our formulae to recover the usual seesaw mass formula [39–42] from
the poles of the propagator matrix D(p). More precisely, the mass eigenvalues are obtained by
replacing p2 in (41) with the parameter λ, and demanding

det
[(

λ − mT m∗)M−1(λ − m†m
) − Mλ

] = 0. (44)

In this form, the small and large eigenvalues (whose reality follows from the manifest her-
miticity of the mass term in (37)) are still ‘entangled’. For this reason we factorize the total mass
matrix by ordering it in powers of the ‘small’ matrix m as follows,5

det
[(

λM−1 − M − mT m∗M−1 − M−1m†m + M−2mT m∗M−1m†m + · · ·)
× (

λ − M−1mT m∗M−1m†m + · · ·)] = 0 (45)

where dots stand for higher powers of the small matrix mM−1. It is then obvious that, in very
good approximation, the determinant equation factorizes into a product of a factor det(λ − M2)

5 We here assume (mainly for simplicity) that all eigenvalues of M2 are large in comparison with those of m†m; for
other mass patterns these arguments may have to be revisited.
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yielding the large eigenvalues (M2
1 ,M2

2 ,M2
3 ) in (34) for the heavy neutrinos, and a second factor

for the light neutrinos. The latter can be cast in the form

det
(
λ −m†m

) = 0, m := mM−1mT + · · · = mT , (46)

yielding the mass eigenvalues of the light neutrinos (here we have used the fact that, for arbitrary
square matrices A and B , the matrices AB and BA have the same eigenvalues). The (mass)2

matrix mm† thus represents a matrix generalization of the usual seesaw formula.
Instead of looking for the poles of D(p), we can also arrive at this result by direct consider-

ation of the neutrino mass matrix. The parametrization of mass vs. interaction eigenstates of the
light neutrinos is usually given as(

νe

νμ

ντ

)
= Ũ

(
ν1
ν2
ν3

)
(47)

where Ũ is a unitary matrix. In our case this formula is incomplete, due to the admixture of
the heavy neutrinos. To spell out the precise relation between the 3-by-3 matrix Ũ and the uni-
tary 6-by-6 matrix U introduced in (36), we substitute the redefined fields from (35) into (33),
demanding the mass term [= second formula of (35)] to be diagonal in the redefined neutrino
fields. Keeping in mind that this redefinition does not mix spinors with dotted and undotted
SL(2,C) indices, we obtain the condition

U∗
[

0 m

mT M

]
U† =

[
m′ 0
0 M ′

]
= U

[
0 m∗

m† M

]
UT (48)

where m′ and M ′ are real diagonal 3-by-3 matrices. This implies[
m′2 0

0 M ′2

]
= U

[
0 m∗

m† M

]
UT U∗

[
0 m

mT M

]
U†

= U
[

m∗mT m∗M
MmT m†m + M2

]
U†. (49)

To relate Ũ to U , we make the ansatz

U =
[
U1 U2
U3 U4

]
=

[
Ũ 0
0 ŨM

]
R (50)

where Ũ and ŨM are both unitary 3-by-3 matrices. Inserting this ansatz into (48) and expanding
in powers of the ‘small’ matrix mM−1 up to second order, we obtain

R=
[

1 − 1
2m∗M−2mT −m∗M−1

M−1mT 1 − 1
2M−1mT m∗M−1

]
+ O

((
mM−1)3) (51)

and, up to diagonal phase redefinitions, the matrices Ũ and ŨM are determined by the conditions

m′ = −Ũ∗mM−1mT Ũ† ≡ −Ũ∗m Ũ†,

M ′ = Ũ∗
M

(
M + 1

2
mT m∗M−1 + 1

2
M−1m†m

)
Ũ†

M. (52)

Multiplying these matrices by the complex conjugate matrices and using the reality of m′ and M ′,
we see again that Ũ diagonalizes the generalized seesaw (mass)2 matrix m†m. In other words,
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Fig. 4. One-loop axion–Z0 mixing.

we have now rather explicit expressions for the eigenvalues of mass matrices of light (m′) and
heavy (M ′) neutrinos, as well as for the unitary matrix relating the ‘propagator picture’ and the
‘vertex picture’. In lowest approximation the matrix Ũ in (47) is equal to U1 in (36).

Obviously, the mixing of light and heavy neutrinos has several interesting physical implica-
tions. For instance, the heaviest among the light neutrinos can decay into the lightest neutrino
via the emission of ‘soft axions’. This process is possible because in our scenario the axion is
expected to be almost massless [for instance, with a mass maxion =O(10−8 eV)], and thus much
lighter than even the lightest neutrino.

7. aZ mixing

We are here concerned with the effective couplings of the ‘invisible axion’ a(x) to ‘visible’
SM fields. Such couplings must arise through loop diagrams (with the exception of couplings to
neutrinos through the mixing described in the previous section), as there are no direct couplings
at the tree level, a fact which according to our proposal can explain the extreme smallness of
the axion couplings to standard matter. Assuming 〈ϕ〉 �= 0 we now fix the free normalization
parameter in (5) once and for all to the value μ = 〈ϕ〉, as in (15), in order to obtain the canonical
normalization for the kinetic term of a(x) in the classical Lagrangian.

However, before we proceed to the actual computation we need to discuss the mixing of a with
Z-bosons. The result described in this section shows that in principle, there can be large effects
(in this case at one loop). As we will see, these fail to contribute to the axion–gluon coupling
only because of the vanishing chiral anomaly of the SM, but they can nevertheless dominate in
other processes. There is a similar mixing between the Z-boson and the scalar ϕ′(x), as well as a
mixing between a(x) and the standard Higgs boson, but these couplings turn out to be suppressed
by an extra factor of the light neutrino masses, and can thus be neglected.

The mixing of axions with gauge bosons, which may arise at one loop or higher loop orders,
may in principle occur between a(x) and any neutral gauge field Aμ(x) at the quadratic level,
leading to extra terms ∝ ∂μaAμ in the effective Lagrangian. However, gauge invariance imme-
diately forbids such couplings if the gauge symmetry is unbroken, whence a(x) cannot couple in
this way to either photons or gluons. For the broken sector, this argument does not hold, and by
charge conservation, we are therefore left with possible quadratic couplings of a to the Z-boson,

Lmix = ε∂μaZμ (53)

where the parameter ε is of dimension one.
We now determine the mixing coefficient ε at one loop (with right-chiral neutrinos in the

loop), and show that ε is proportional to the sum of the light neutrino masses. The relevant
diagram is shown in Fig. 4, and involves the off-diagonal 〈Nν〉 and 〈Nν̄〉 (〈N̄ν〉 and 〈N̄ ν̄〉 in the
second amplitude) components of the neutrino propagators in the loop.



612 A. Latosiński et al. / Nuclear Physics B 868 (2013) 596–626
The diagram in Fig. 4 gives rise to the following Feynman integral which can be evaluated in
the standard fashion; note that, while naive power counting would suggest the presence of diver-
gences, this diagram is actually UV finite because of the fast decay of the propagator components
〈Nν〉, 〈Nν̄〉, 〈N̄ν〉 and 〈N̄ ν̄〉 at large momenta.

−iMμ
aZ(q)

= (−1)
∑
i,j

∫
d4k

(2π)4

{(
−i

g2

2 cos θW

σ̄μα̇1β1

)

×
[〈

νi
β1

Njα2(k)
〉( Mj√

2〈ϕ〉
)〈

Nj
α2

ν̄i
α̇1

(k + q)
〉

+ 〈
νi
β1

N̄
j
α̇2

(k)
〉( −Mj√

2〈ϕ〉
)〈

N̄jα̇2 ν̄i
α̇1

(k + q)
〉]}

= (−1)
∑
i,j

∫
d4k

(2π)4

{(
−i

g2

2 cos θW

σ̄μα̇1β1

)

×
[(

i
[
m∗D(k)∗

(
k2 − m†m

)
M−1]ij δα2

β1

)( Mj√
2〈ϕ〉

)

× (
i(/k + /q)α2α̇1

[
D(k + q)mT

]ji)
+ (

i
[
m∗D(k)∗

]ij
/kβ1α̇2

)( −Mj√
2〈ϕ〉

)

× (
i
[
M−1((k + q)2 − m†m

)
D(k + q)mT

]ji
δ
α̇2
α̇1

)]}

= −i
g2

2
√

2〈ϕ〉 cos θW

∑
i

∫
d4k

(2π)4
Tr

(
σ̄ μσ ν

)
× [

m∗D(k)∗
[(

k2 − m†m
)
(k + q)ν − kν

(
(k + q)2 − m†m

)]
D(k + q)mT

]ii
= −i

g2√
2〈ϕ〉 cos θW

∫
d4k

(2π)4

× Tr
[
m∗D(k)∗

[
qμ

(
k2 − m†m

) − kμ
(
2kq + q2)]D(k + q)mT

]
≈ i

g2√
2〈ϕ〉 cos θW

∑
i

(
mT m∗)ii

∫
d4k

(2π)4

[kμ(2kq + q2) − qμk2]M2
i

k2(k2 − M2
i )(k + q)2[(k + q)2 − M2

i ] . (54)

We are here interested only in the result for small axion momentum qμ, in which case the integral
can be worked out to be

−iMμ
aZ(q) ≈ iqν

g2√
2〈ϕ〉 cos θW

∑
i

(
mT m∗)ii

∫
d4k

(2π)4

(2kμkν − ημνk2)M2
i

[k2(k2 − M2
i )]2

= −qμ g2

(4π)22
√

2〈ϕ〉 cos θW

∑
i,j

∣∣mij
∣∣2

. (55)

Remembering (14) and making the (reasonable) assumption YM ∼O(1) we see that
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Fig. 5. Potential two-loop contribution to axion–gluon vertex.

∑
i,j

|mij |2
〈ϕ〉 ∼

∑
i,j

|mij |2
M

∼
∑

mν (56)

whence we arrive at the claimed result ε ∼ ∑
mν , that is, the mixing is proportional to the sum

of the light neutrino masses. For the mixing between Zμ and the scalar ϕ′ the two contributions
to the above integral would appear with opposite signs, leading to a further cancellation, with a
mixing parameter of order O(m2

ν) (which hence can be ignored).
The aZ mixing described above can lead, via subsequent Z couplings, to further couplings of

the axion to other SM fields like quarks and leptons. When considering physical effects such as
axion cooling in stars from axion emission from leptons or quarks, these contributions must be
taken into account. For the same reason, one would also expect the above mixing to contribute
to the effective coupling of axions to gluons via the anomaly diagram (Fig. 5) which, if non-
vanishing, would be more important than the three-loop computation we are going to perform in
the final section of this paper! However, here we meet a pleasant surprise, which will simplify
our subsequent considerations substantially: when summing over the quarks in this diagram one
obtains a vanishing result because of the cancellation of all gauge anomalies in the SM. In other
words, when determining the effective coupling of the axion to gluons we can ignore the above
mixing (and similar diagrams). The same conclusion holds for the couplings of the axion to
photons, when all SM fermions are summed over. The important fact is therefore that the non-
vanishing effective couplings arise solely via the three-loop diagrams with an attached neutrino
triangle which we will work out in the remaining sections.

8. The aW+W− triangle at one loop

Our main proposal relies essentially on a new effect producing an ‘anomaly-like’ amplitude
from a triangle diagram involving neutrino triangles, which in turn gives rise to the effective
coupling of a(x) to W -bosons; the relevant diagram is depicted in Fig. 6. The similarity of this
triangle diagram with the well-known one producing the triangle anomaly is obvious, yet the
anomaly-like effect here is not due to a linear UV divergence, but rather to the mixing of the
neutrino components. Technically speaking, one reason for this is that the neutrino propagators
involve σ -matrices rather than γ -matrices, and the trace

tμνρλ ≡ Tr σ̄ μσ νσ̄ ρσ λ = 2
(
ημνηρλ − ημρηνλ + ημληνρ + iεμνρλ

)
(57)

over σ -matrices generates both parity even as well as parity odd terms, unlike the corresponding
γ -matrix trace Trγ μγ νγ ργ λ.

In this section we take the first step towards our final goal of determining the effective axion–
gluon coupling by calculating the aW+W− vertex; this result will then be used as an input in the
calculation of the axion–quark diagram in the following section, which in turn will be substituted
in the final step into the three-loop diagram yielding the effective axion–gluon vertex. Once more,
we emphasize that all diagrams in this and the following sections are UV finite, even though naive
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Fig. 6. Axion–W+–W− vertex.

power counting might suggest otherwise. Let us also point out that there are similar diagrams
with two external Z-bosons, where the triangle is ‘purely neutrino’ (that is, all internal lines are
neutrino propagators). In accordance with our basic strategy for computing effective couplings
outlined in the introduction, we will however disregard these diagrams, because they necessarily
contain a light neutrino propagator (〈νν〉 or 〈νν̄〉 or 〈ν̄ν̄〉) on the internal line connecting the two
Z-boson vertices.

The Feynman diagram in Fig. 6 corresponds to the integral

−iMμν
aWW(p,q)

= (−1)
∑
i,j

∫
d4k

(2π)4

{(
−i

g2√
2
σ̄ μα̇1β1

)〈
ei
Lβ1

ēi
Lα̇2

(k − p)
〉(−i

g2√
2
σ̄ να̇2β2

)

×
[〈

νi
β2

Njα3(k)
〉( Mj√

2〈ϕ〉
)〈

Nj
α3

ν̄i
α̇1

(k + q)
〉

+ 〈
νi
β2

N̄
j
α̇3

(k)
〉( −Mj√

2〈ϕ〉
)〈

N̄jα̇3 ν̄i
α̇1

(k + q)
〉]}

= (−1)
∑
i,j

∫
d4k

(2π)4

{(
−i

g2√
2
σ̄ μα̇1β1

)(
i

(/k − /p)β1α̇2

(k − p)2 − m2
ei

)(
−i

g2√
2
σ̄ να̇2β2

)

×
[(

i
[
m∗D(k)∗

(
k2 − m†m

)
M−1]ij δα3

β2

)( Mj√
2〈ϕ〉

)

× (
i(/k + /q)α3α̇1

[
D(k + q)mT

]ji)
+ (

i
[
m∗D(k)∗

]ij
/kβ2α̇3

)( −Mj√
2〈ϕ〉

)

× (
i
[
M−1((k + q)2 − m†m

)
D(k + q)mT

]ji
δ
α̇3
α̇1

)]}

= −i
g2

2

2
√

2〈ϕ〉
∑

i

∫
d4k

(2π)4

(k − p)λ

(k − p)2 − m2
ei

((
σ̄ μ

)α̇1β1σλ
β1α̇2

(
σ̄ ν

)α̇2β2σ
ρ
β2α̇1

)
× [

m∗D(k)∗
[(

k2 − m†m
)
(k + q)ρ − kρ

(
(k + q)2 − m†m

)]
D(k + q)mT

]ii
= i

g2
2

2
√

2〈ϕ〉
∑

i

∫
d4k

(2π)4

(k − p)λ

(k − p)2 − m2
ei

Tr
{
σ̄ μσλσ̄ νσ ρ

}
× [

m∗D(k)∗
[
kρ

(
2kq + q2) − qρ

(
k2 − mT m∗)]D(k + q)mT

]ii
. (58)

As before, we are here interested in the leading terms for small axion momentum qμ and small m,
in a basis where M is real diagonal; in this approximation the integral simplifies to
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−iMμν
aWW(p,q) ≈ iqτ g2

2

2
√

2〈ϕ〉
∑
i,j

∣∣mij
∣∣2 × Tr

{
σ̄ μσλσ̄ νσ ρ

}

×
∫

d4k

(2π)4

(k − p)λ

(k − p)2 − m2
ei

(2kρkτ − ηρτ k
2)M2

j

[k2(k2 − M2
j )]2

. (59)

This integral can be evaluated by means of Feynman parameters, with the result

−iMμν
aWW(p,q) ≈ −qτ g2

2

32π2
√

2〈ϕ〉
∑
i,j

∣∣mij
∣∣2

M2
j tμλνρ

1∫
0

dy

1∫
0

dx x(1 − x)y3

×
[ [(−1 + 2y)pλητρ + (1 − y)(pτ ηρλ + pρητλ)]

[−y(1 − y)p2 + (1 − y)m2
ei

+ yxM2
j ]2

+ 2y(1 − y)2pλ(−p2ητρ + 2pτpρ)

[−y(1 − y)p2 + (1 − y)m2
ei

+ yxM2
j ]3

]
(60)

where we made use of the definition (57) (note that the denominator in the integrand will become
positive definite after Wick rotation to Euclidean momenta pμ). Although we do need the full
expression (for large pμ) below, it is nevertheless instructive to specialize this result to small p

to get

−iMμν
aWW(p,q)

≈ − g2
2

32π2
√

2〈ϕ〉
∑
i,j

∣∣mij
∣∣2

M2
j tμλνρqτ

×
1∫

0

dy

1∫
0

dx
x(1 − x)y3[(−1 + 2y)pλητρ + (1 − y)(pτ ηρλ + pρητλ)]

[(1 − y)m2
ei

+ yxM2
j ]2

= − α2

8π
√

2〈ϕ〉 t
μλνρqτ

∑
i,j

∣∣mij
∣∣2

×
[
pλητρ

M2
j (M2

j − 5m2
ei
) log

M2
j

m2
ei

+ (M2
j + 3m2

ei
)(M2

j − m2
ei
)

6(M2
j − m2

ei
)3

+ (pτ ηρλ + pρητλ)

M2
j (M2

j + m2
ei
) log

M2
j

m2
ei

− 2M2
j (M2

j − m2
ei
)

6(M2
j − m2

ei
)3

]
. (61)

The singularity in this expression for m2
ei

= M2
j is spurious.

Let us pause to put this result in perspective. The trace over σ -matrices contains both parity
even as well as parity odd terms. The former lead to non-gauge invariant contributions for the
amplitude, proportional to qμpν + qνpμ and (qρpρ)ημν , respectively. As we already pointed
out, such contributions are to be expected because the electroweak symmetry SU(2)w × U(1)Y
is broken. In addition we get a gauge invariant anomaly-like term ∝ εμνρσ pρqσ . The presence
of both these terms is in accord with the fact that parity is maximally violated in the SM. By
contrast, for gauge bosons associated with an unbroken gauge invariance on the external lines,
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Fig. 7. Axion–up-quark and axion–down-quark vertices.

only the gauge invariant anomaly-like contribution can survive by the general arguments given
in Section 2. Consequently, insertion of the above triangle as a sub-diagram into a higher loop
diagram with external photons or gluons will yield only the gauge invariant anomaly-like ampli-
tude, as we shall explicitly verify. In particular, for the axion–gluon amplitude we can anticipate
that the result will be proportional to iεμνλσ qλpσ , as SU(3c) remains unbroken. This is the core
effect which justifies our claim as to the emergence of the effective coupling (2). In the following
sections we will verify this claim by explicit computation.

9. Axion–quark diagrams at two loops

The next step is the calculation of the axion–quark diagram, which is given by the two-loop
diagrams in Fig. 7. Since these diagrams involve the gauge boson propagators on the internal
lines we have to specify the gauge. In the so-called Rξ gauge the propagator reads

〈
W+μW−ν

〉
(k) = 1

k2 − M2
W

(
ημν + (ξ − 1)

kμkν

k2 − ξM2
W

)
. (62)

In the full calculation one must also include the diagrams with charged Goldstone bosons from
the Higgs doublet whose propagator behaves as 1/(k2 − ξM2

W), and whose contribution vanishes
only in the limit ξ → ∞. The calculation then gets very involved even by comparison with the
formulae of this and subsequent sections (the full calculation and all details will be given in [43]).
The estimate shows that the contribution of these terms is of the same order of magnitude as what
we calculate because of the large Yukawa coupling of the top quark. Therefore the final result
that we get by neglecting both kμkν parts of the propagators and the contributions from charged
Higgs particles is only an estimate of the value of the actual result.

To make the formulae more transparent, we will use capital indices I, J, . . . for the quark fla-
vors in the remainder, and now also write out the explicit sums over them. With this convention,
the diagrams in Fig. 7 correspond to the following Feynman integrals

−iMIJ
auu(p, q)

=
∑∫

d4k2

(2π)4

(
−i

g2√
2
V IKσ̄ν

)
i(/p − /k2)

(p − k2)2 − m2

(
−i

g2√
2

(
V †)KJ

σ̄μ

)

K dK
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× i

(k2 + q)2 − M2
W

i

k2
2 − M2

W

(−iMμν
aWW(k2, q)

)

= i
g2

2

2

∑
K

V IK
(
V †)KJ

∫
d4k2

(2π)4

(p − k2)τ

(p − k2)2 − m2
dK

1

(k2 + q)2 − M2
W

1

k2
2 − M2

W

× σ̄ νσ τ σ̄ μ × (−iMμν
aWW(k2, q)

)
(63)

and

−iMIJ
add(p, q)

=
∑
K

∫
d4k2

(2π)4

(
−i

g2√
2

(
V †)IK

σ̄μ

)
i(/k2 − /p)

(k2 − p)2 − m2
uK

(
−i

g2√
2
V KJ σ̄ν

)

× i

(k2 + q)2 − M2
W

i

k2
2 − M2

W

(−iMμν
aWW(k2, q)

)

= i
g2

2

2

∑
K

(
V †)IK

V KJ

∫
d4k2

(2π)4

(k2 − p)τ

(p − k2)2 − m2
uK

1

(k2 + q)2 − M2
W

1

k2
2 − M2

W

× σ̄ μσ τ σ̄ ν × (−iMμν
aWW(k2, q)

)
. (64)

Using the Mμν
aWW result already calculated before together with

σ̄ νσ τ σ̄ μ × tμλνρ = 8δλ
τ σ̄ ρ (65)

we get, as always for small qμ,

−iMIJ
auu(p, q)

= −iqρσ̄ σ g4
2

8π2
√

2〈ϕ〉
∑
K

V IK
(
V †)KJ

∑
ij

∣∣mij
∣∣2

M2
j

1∫
0

dy

1∫
0

dx x(1 − x)y3

×
∫

d4k

(2π)4

−(k − p)λ

(k − p)2 − m2
dK

1

(k2 − M2
W)2

×
[ [(−1 + 2y)kληρσ + (1 − y)(kρησλ + kσ ηρλ)]

[−y(1 − y)k2 + (1 − y)m2
ei

+ yxM2
j ]2

+ 2y(1 − y)2kλ(−k2ηρσ + 2kρkσ )

[−y(1 − y)k2 + (1 − y)m2
ei

+ yxM2
j ]3

]
(66)

and

−iMIJ
add(p, q)

= −iqρσ̄ λ g4
2

8π2
√

2〈ϕ〉
∑
K

(
V †)IK

V KJ
∑
ij

∣∣mij
∣∣2

M2
j

1∫
0

dy

1∫
0

dx x(1 − x)y3

×
∫

d4k

(2π)4

(k − p)σ

(k − p)2 − m2

1

(k2 − M2 )2

uK W
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×
[ [(−1 + 2y)kληρσ + (1 − y)(kρησλ + kσ ηρλ)]

[−y(1 − y)k2 + (1 − y)m2
ei

+ yxM2
j ]2

+ 2y(1 − y)2kλ(−k2ηρσ + 2kρkσ )

[−y(1 − y)k2 + (1 − y)m2
ei

+ yxM2
j ]3

]
. (67)

Again we employ Feynman parameters to obtain

−iMIJ
auu(p, q)

= qρσ̄ σ g4
2

64
√

2π4〈ϕ〉
∑
i,j,K

V IK
(
V †)KJ ∣∣mij

∣∣2
M2

j

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

×
{

f u
1 (x, y, z, t)ηρσ

[M2
ijK(x, y, z, t;p)]2

+ f u
2 (x, y, z, t)p2ηρσ + f u

3 (x, y, z, t)pρpσ

[M2
ijK(x, y, z, t;p)]3

+ f u
4 (x, y, z, t)p4ηρσ + f u

5 (x, y, z, t)p2pρpσ

[M2
ijK(x, y, z, t;p)]4

}
(68)

and

−iMIJ
add(p, q)

= qρσ̄ σ g4
2

64
√

2π4〈ϕ〉
∑
i,j,K

(
V †)IK

V KJ
∣∣mij

∣∣2
M2

j

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

×
{

f d
1 (x, y, z, t)ηρσ

[M̃2
ijK(x, y, z, t;p)]2

+ f d
2 (x, y, z, t)p2ηρσ + f d

3 (x, y, z, t)pρpσ

[M̃2
ijK(x, y, z, t;p)]3

+ f d
4 (x, y, z, t)p4ηρσ + f d

5 (x, y, z, t)p2pρpσ

[M̃2
ijK(x, y, z, t;p)]4

}
(69)

where various functions depending on the Feynman parameters are defined by

f u
1 (x, y, z, t) = 1

2
x(1 − x)y3z(1 − z)t3(−1 + 3y + 3tz),

f u
2 (x, y, z, t) = x(1 − x)y4(1 − y)z(1 − z)t4(1 − t)

[−1 + 2y + tz(1 − y)(−3 + 5t)
]
,

f u
3 (x, y, z, t) = 2x(1 − x)y4(1 − y)2z(1 − z)t4(1 − t)

[
1 + tz(3 − 4t)

]
,

f u
4 (x, y, z, t) = −3x(1 − x)y5(1 − y)3z2(1 − z)t5(1 − t)3,

f u
5 (x, y, z, t) = 6x(1 − x)y5(1 − y)3z2(1 − z)t5(1 − t)3 (70)

for the up-like quarks, and

f d
1 (x, y, z, t) = 1

4
x(1 − x)y3z(1 − z)t3[4 − 3y − 3(1 − y)zt

]
,

f d
2 (x, y, z, t) = x(1 − x)y4(1 − y)2z(1 − z)t4(1 − t)

[
1 − 1

2
z(1 + t)

]
,

f d
3 (x, y, z, t) = x(1 − x)y4(1 − y)z(1 − z)t4(1 − t)

[
y + 2(1 − y)z

(
5 − 2t

)]
,

2
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f d
4 (x, y, z, t) = 0,

f d
5 (x, y, z, t) = 3x(1 − x)y5(1 − y)3z2(1 − z)t5(1 − t)3 (71)

for the down-like quarks. We also introduced the short-hand notation

M
2
ijK(x, y, z, t;p) := xyztM2

j + (1 − y)ztm2
ei

+ y(1 − y)(1 − z)tM2
W

+ y(1 − y)(1 − t)m2
dK

− y(1 − y)t (1 − t)p2

and

M̃
2
ijK(x, y, z, t;p) := xyztM2

j + (1 − y)ztm2
ei

+ y(1 − y)(1 − z)tM2
W

+ y(1 − y)(1 − t)m2
uK

− y(1 − y)t (1 − t)p2.

Notice the difference between up-like and down-like quarks in these expressions (apart from the
different masses of up- and down-like quarks): although the integrals (66) and (67) look almost
the same, the indices on qμ, σρ and the loop momentum kλ are contracted differently

For small p we arrive at

−iMIJ
auu(p, q)

= qρσ̄ρ

g2
2
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√

2π4〈ϕ〉
∑
i,j,K

V IK
(
V †)KJ ∣∣mij

∣∣2
M2

j

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

× x(1 − x)y3z(1 − z)t3(−1 + 3y + 3tz)

[xyztM2
j + (1 − y)ztm2

ei
+ y(1 − y)(1 − z)tM2

W + y(1 − y)(1 − t)m2
dK

]2
(72)

and

−iMIJ
add(p, q)

= qρσ̄ρ

g2
2

256
√

2π4〈ϕ〉
∑
i,j,K

(
V †)IK

V KJ
∣∣mij

∣∣2
M2

j

1∫
0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

× x(1 − x)y3z(1 − z)t3[4 − 3y − 3(1 − y)zt]
[xyztM2

j + (1 − y)ztm2
ei

+ y(1 − y)(1 − z)tM2
W + y(1 − y)(1 − t)m2

uK
]2

. (73)

In good approximation we can now put mup = mdown = 0 (there are no IR divergences);
then the sum over K can be performed, and by the unitarity of CKM matrix the amplitudes
become proportional to δIJ , i.e. flavor diagonal. The non-degeneracy of the quark masses makes
possible quark flavor change in the interaction with the axion, but the off-diagonal amplitudes
are suppressed by factors of order O(m2

quark/M
2
j ). Note that the difference between the integrals

involving up- and down-quarks, respectively, is due not only to the CKM matrix and the different
quark masses, but also to the different isospin and the different topology of the diagrams; this
leads to different formulae for the two cases. Also, it appears that both the gauge invariant and
non-invariant parts of the aWW amplitude are important, as both of them contribute to this
amplitude, as we can check in relations (65).
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Fig. 8. Axion–gluon vertex with up-quarks in the loop.

Fig. 9. Axion–gluon vertex with down-quarks in the loop.

Fig. 10. Axion–gluon vertex with non-planar loop.

10. Axion–gluon vertex

After these preparations, we are ready at last to tackle the final part of the computation, which
will yield the coupling of a(x) to gluons. In leading order, this coupling is given by the set
of three-loop diagrams depicted in Figs. 8, 9 and 10. The first set consists of diagrams with
insertions of the axion–quark diagram determined before, with either up-quarks running in the
loop (see Fig. 8) or with down-quarks (see Fig. 9). However, there are also non-planar diagrams
(see Fig. 10).

We first of all see that the part of the total (summed) amplitude linear in q is antisymmetric
under the simultaneous exchange μ ↔ ν, p → −p. This means that the only possible tensor
structures in the amplitude are either proportional to pμqν − pνqμ or to εμνλσ pλqσ . As we
already explained, the first structure can be excluded by gauge invariance, which leaves only the
second contribution. Of course, this claim is confirmed by the explicit calculation. Hence, the
effective interaction of axion and gluons for sufficiently small q is indeed of the form (2), with a
non-vanishing (but small) coefficient.
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The full integrals are now very cumbersome, so we try to present the result in a compact
form. As already mentioned in the introduction, we revert to 4-spinor notation for the loops not
involving neutrino lines. For the first two diagrams we have, to leading order in q ,

−iMabμν

(agg)(through up-quarks)

= −iδab
g2

3

2

∑
I

∫
d4k

(2π)4

×
[

Tr

{
/k + /q + muI

(k + q)2 − m2
uI

γ μ /k − /p + muI

(k − p)2 − m2
uI

γ ν /k + muI

k2 − m2
uI

[−iMII
auu(k, q)

]}

+ (μ ↔ ν,p → −p − q)

]

= −iqρδab
g2

3g4
2

128
√

2π4〈ϕ〉
∑

i,j,I,K

∣∣V IK
∣∣2∣∣mij

∣∣2
M2

j

×
1∫

0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

∫
d4k

(2π)4

×
[

Tr

{
/k + muI

k2 − m2
uI

γ μ /k − /p + muI

(k − p)2 − m2
uI

γ ν /k + muI

k2 − m2
uI

γ σ PL

}
+ (μ ↔ ν,p → −p)

]

×
{

f u
1 (x, y, z, t)ηρσ

[M2
ijK(x, y, z, t; k)]2

+ f u
2 (x, y, z, t)k2ηρσ + f u

3 (x, y, z, t)kρkσ

[M2
ijK(x, y, z, t; k)]3

+ f u
4 (x, y, z, t)k4ηρσ + f u

5 (x, y, z, t)k2kρkσ

[M2
ijK(x, y, z, t; k)]4

}
(74)

where the expression for MIJ
auu(k, q) obtained in the foregoing section has been used. The re-

maining momentum space integral can be done in the standard way, introducing yet another
Feynman parameter u (so there are now altogether five Feynman parameters x, y, z, t, u). Pack-
aging the previous results into various new functions we get, after some calculations,

−iMabμν

(agg)(through up-quarks)

= iεμνξσ pξqσ δab
g2

3g4
2

32
√

2(2π)6〈ϕ〉
∑

i,j,I,K

∣∣V IK
∣∣2∣∣mij

∣∣2
M2

j

×
1∫

0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

1∫
0

du
F1(x, y, z, t, u)

[M2
ijKI ]2

+ O
(
p2) (75)

where

M2
ijKI = xyztuM2

j + (1 − y)ztum2
ei

+ y(1 − y)(1 − z)tuM2
W

+ y(1 − y)(1 − t)um2
dK

+ y(1 − y)t (1 − t)(1 − u)m2
uI

(76)

and the function
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F1(x, y, z, t, u) = u(1 − u)

[
(−4u)f u

1 + [
(−2 + 6u)f u

2 − f u
3

] u

y(1 − y)t (1 − t)

+ [
(4 − 8u)f u

4 − f u
5

] u2

[y(1 − y)t (1 − t)]2

]
(77)

itself depends on the previous Feynman parameter functions (70) and (71), but now with an extra
dependence on the fifth Feynman parameter u.

Similarly, the third and fourth diagrams give

−iMabμν

(agg)(through down-quarks)

= iεμνξσ pξqσ δab
g2

3g4
2

32
√

2(2π)6〈ϕ〉
∑

i,j,I,K

∣∣V IK
∣∣2∣∣mij

∣∣2
M2

j

×
1∫

0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

1∫
0

du
F2(x, y, z, t, u)

[M̃2
ijKI ]2

+ O
(
p2). (78)

Here we have subsumed the previous results into the functions

M̃2
ijKI = xyztuM2

j + (1 − y)ztum2
ei

+ y(1 − y)(1 − z)tuM2
W

+ y(1 − y)(1 − t)um2
uI

+ y(1 − y)t (1 − t)(1 − u)m2
dK

(79)

and

F2(x, y, z, t, u) = u(1 − u)

[
(−4u)f d

1 + [
(−2 + 6u)f d

2 − f d
3

] u

y(1 − y)t (1 − t)

+ [
(4 − 8u)f d

4 − f d
5

] u2

[y(1 − y)t (1 − t)]2

]
. (80)

Finally, the last two diagrams must be computed directly. To leading order in q , they are given
by formulae

−iMabμν

(agg)(non-planar diagrams)

= −δab
g2

3g2
2

4

∑
I,K

∣∣V IK
∣∣2

∫
d4k1

(2π)4

∫
d4k2

(2π)4

(−iMκλ
aWW (k2, q)

)( 1

k2
2 − M2

W

)2

× 1

(k1 + p)2 − m2
dK

1

k2
1 − m2

dK

1

(k1 + k2)2 − m2
uI

1

(k1 + k2 + p)2 − m2
uI

× Tr
{
(/k1 + /p + mdK

)γ μ(/k1 + mdK
)γκPL

× (/k1 + /k2 + muI
)γ ν(/k1 + /k2 + /p + muI

)γλPL

}
− δab

g2
3g2

2

4

∑
I,K

∣∣V IK
∣∣2

∫
d4k1

(2π)4

∫
d4k2

(2π)4

(−iMκλ
aWW (−k2, q)

)( 1

k2
2 − M2

W

)2

× 1

(k1 + p)2 − m2
dK

1

k2
1 − m2

dK

1

(k1 + k2)2 − m2
uI

1

(k1 + k2 + p)2 − m2
uI

× Tr
{
(−/k1 − /p + mdK

)γ ν(−/k1 + mdK
)γκPL

× (−/k1 − /k2 + mu )γ μ(−/k1 − /k2 − /p + mu )γλPL

}

I I
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= −δab
g2

3g2
2

4

∑
I,K

∣∣V IK
∣∣2

∫
d4k1

(2π)4

∫
d4k2

(2π)4

(
1

k2
2 − M2

W

)2

× 1

(k1 + p)2 − m2
dK

1

k2
1 − m2

dK

1

(k1 + k2)2 − m2
uI

1

(k1 + k2 + p)2 − m2
uI

× T
μν
κλ (k1, k2,p)

[−iMκλ
aWW (k2, q)

]
(81)

where

T
μν
κλ (k1, k2,p) := (k1 + p)α(k1 + k2 + p)β

× [
Tr

{
γαγ μ/k1γκ(/k1 + /k2)γ

νγβγλPL

} − (μ ↔ ν)
]

+ m2
uI

(k + p)α
[
Tr

{
γαγ μ/k1γκγ νγλPL

} − (μ ↔ ν)
] +O

(
m2

dK

)
. (82)

After a tedious calculation we obtain the result

−iMabμν
agg (non-planar diagrams)

= iεμνρσ pρqσ δab
g2

3g4
2

32
√

2(2π)6〈ϕ〉
∑

I,K,i,j

∣∣V IK
∣∣2∣∣mij

∣∣2
M2

j

×
1∫

0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

1∫
0

du
F3(x, y, z, t, u)

[M̃2
ijKI ]2

(83)

where

F3(x, y, z, t, u)

= 3x(1 − x)y3z(1 − z)t2u2(1 − u)
{
2t2u(9 − 4u)(1 − y)z

− t
[
z(1 − y)

(−8u2 + 15u + 1
) + 2(1 − u)(1 − 2y)

] − u(1 − y)(z + 2)
}
.

In total, we thus arrive at the final result equivalent to (2)

−iMabμν
agg (total) = −i

g2
3

16π2fa

εμνρσ pρqσ δab (84)

where the axion coupling is given by

f −1
a = − g4

2

128
√

2π4〈ϕ〉
∑

I,K,i,j

∣∣V IK
∣∣2∣∣mij

∣∣2
M2

j

×
1∫

0

dx

1∫
0

dy

1∫
0

dz

1∫
0

dt

1∫
0

du

(
F1

[M2
ijKI ]2

+ F2 + F3

[M̃2
ijKI ]2

)
. (85)

This integral cannot be evaluated in closed form, but we can easily get a numerical estimate.
First, to recover the order of magnitude estimate (1) quoted in the introduction, we take the
heavy neutrino masses degenerate, that is, Mj = M , so we can exploit the unitarity relation∑

K |V IK |2 = 1. Then using αw = g2
2/(4π) and

∑
i,j |mij |2 ≈ 〈ϕ〉∑

mν , we see that the remain-

ing integral is of order M−2 where M is the larger of the two values M and MW . For the actual
numerical evaluation we can also neglect the quark and lepton masses. Setting MW = 80.4 GeV,
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mtop = 172.9 GeV,
∑

mν = 1 eV, and (as an example) 〈ϕ〉 = 400 GeV we get for the full result
(including diagrams with charged Higgses) for various values of M the following numbers

M [GeV] fa [1016 GeV]
100 3.1
150 2.6
300 2.2
500 2.1
700 2.2

1000 2.3

As we already pointed out in the introduction, these values may be affected by higher order
QCD corrections, because αs is large at small momenta.
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Appendix A. Weyl-spinor conventions

Since we heavily use two-spinor notation throughout this paper we here briefly summarize our
conventions and notations, see [24] for more information. Employing the ‘mostly minus’ metric
ημν = diag(+1,−1,−1,−1) we define

σ
μ
αα̇ = (

1, σ i
)
, σ̄ μα̇α = εα̇β̇εαβσ

μ

ββ̇
≡ (

1,−σ i
)

where ε12 = ε21 = −ε12 = −ε21 = 1 and ε11 = ε22 = 0, hence εαγ εγβ = δ
β
α (the definitions for

εα̇β̇ are the same). Then we have

σμσ̄ ν + σνσ̄μ = 2ημν

as well as the completeness relations

Trσμσ̄ ν = 2ημν, σ
μ
αα̇σ̄ β̇β

μ = 2δβ
α δ

β̇
α̇ .

Furthermore

Trσμσ̄ νσ ρσ̄ λ = 2
(
ημνηρλ − ημρηνλ + ημληνρ − iεμνρλ

)
where ε0123 = 1. To relate 2-spinors to 4-spinors we need the Dirac γ -matrices and the charge
conjugation matrix C, which are given by, respectively,

γ μ =
( 0 σ

μ

αβ̇

σ̄ μα̇β 0

)
, γ 5 = iγ 0γ 1γ 2γ 3 =

(
δ
β
α 0

0 −δα̇

β̇

)
, C =

(
εαβ 0

0 εα̇β̇

)
.

A Dirac 4-spinor Ψ then decomposes into two Weyl spinors via

Ψ ≡
(

ϕα

χ̄ α̇

)
≡

(
ΨLα

Ψ̄ α̇
R

)
⇒ Ψ̄ ≡ Ψ †γ 0 = (

χα, ϕ̄α̇

)
where the indices on Weyl spinors are always pulled up and down from the left, e.g. ϕα =
εαβϕβ ⇒ ϕα = εαβϕβ ; furthermore (ϕα)† = ϕ̄α̇ , etc. The charge conjugate spinor is

Ψ c ≡ CΨ̄ T =
(

χα

α̇

)

ϕ̄
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so Ψ is Majorana if ϕα = χα . Note that in the main text we label the independent Weyl spinors by
the subscripts L and R, as in (8) and (9), with the exception of the neutrino 4-spinor, for which
we use different letters ν and N . This is done mainly in order not to encumber the notation with
too many different letters, although it does not quite conform to standard usage, where ΨL,R are
usually defined as the degenerate (projected) 4-component spinors 1

2 (1∓γ 5)Ψ . Finally, we recall
that hermitian conjugation inverts the position of the (anti-commuting) fermionic operators, i.e.
(ϕχ · · ·ψ)† = ψ† · · ·χ†ϕ†.
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