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Abstract

We apply Dirac’s square root idea to constraints for embedded 4-
geometries swept by a 3-dimensional membrane. The resulting Dirac-
like equation is then analyzed for general coordinates as well as for
the case of a Friedmann-Robertson-Walker metric for spatially closed
geometries. The problem of the singularity formation at quantum
level is addressed.

1 Motivation

One of the most important problems in modern cosmology is the fact
that according to the Friedmann model the Universe started with the
singularity. It is expected that once the consistent description of Gen-
eral Relativity with Quantum Mechanics is obtained the singularity
will be removed.
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In the 60’ DeWitt [1] addressed this problem by assuming that
the wave functional satisfying the Wheeler-DeWitt equation should
be zero whenever the singularity occurs at classical level. In the case
of a Friedmann Universe this implies that the wave function should
vanish for the scale factor a = 0. DeWitt’s assumption is an example
of one of several boundary conditions (e.g. the no-boundary condition
[2], the tunneling condition [3] the symmetric condition [4] - see [5,
6] for a review on this subject) which one could set to argue that
the singularity can be avoided. More recently, it has been pointed
out that this aim can be also achieved by using techniques of loop
quantum gravity [7], by considering mini-superspace models in D = 11
supergravity [8] or in (string theory inspired) brane models where one
addresses this problem from a different perspective in which the Big
Bang is identified with brane collisions (for a review see [9, 10]).

A similar singularity formation also takes place in much simpler
systems of extended objects forming minimal manifolds embedded in
Minkowski spacetime. These objects will in most cases collapse to a
point after a finite time (there are exceptions e.g. when they rotate
which can prevent the collapse: a rotating closed string on a plane
[11, 12] or a rotating flat torus in R4 [13]). In this paper we firstly dis-
cuss minimal manifolds (Section 2) and then proceed to more general
geometries (Section 3).

The idea that one can consider spacetime as a 4-manifold M em-
bedded in some ambient Minkowski space E, and therefore to quantize
not the metric but the coordinates with give rise to the metric, dates
back to late 70’ [14, 15] - see [16] for a comprehensive list of references
about the subject. Solutions of Einstein’s equations give automati-
cally the solutions for equations of motion for embedded coordinates
- however the converse is not true [15]. More recently it has been
argued that the equivalence can be obtained by modifying the embed-
ding approach [17, 18, 19] in a certain way.

Although it is not clear what is the physical meaning of the em-
bedding space (i.e. it is not known if there are extra dimensions) let
us note that there are several advantages of this approach. The most
crucial used in this paper are related to a clear understanding of

• the time variable (time onM is inherited from E) and therefore
the Hamiltonian formalism

• the notion of the probability density - events, such as a 3-sphere
contraction, take place in E.
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Here, we would like to develop this idea in a novel context: the
method used here is an appropriate generalization of our recent work
[20] (see also earlier attempts in this direction [21, 22]) where we have
undertaken Dirac’s idea [23, 24] to formulate a theory of extended ob-
jects with spin. This approach (different from considering supersym-
metric version of the bosonic theory) is based on the Dirac’s square
root procedure applied to the constraints for extended objects. By
writing the Dirac equation for embedded spacetime, in this way, one
necessarily assumes the existence of the spinor field (actually a func-
tional) of the manifold considered. Therefore the wave function of
the embedded Universe will not be a scalar but a spinor. Intuitively,
this change should make a major difference - after all bosons ”like” to
be in the same state while fermions quite the contrary. Therefore if
one considers a contracting fermionic 3-sphere, one should observe a
repulsion effect when the radius of a sphere is sufficiently small.

A behaviour of this type we find in the case of FRW metric for the
action containing the Einstein-Hilbert term and the cosmological con-
stant term. Equations of motion for embedding coordinates are more
general then Einstein’s equation for the metric - in particular they
allow for singular solutions (at a = 0) in situations where Einstein’s
equations develop no singularities. We find that at quantum level,
when considering the Dirac equation, these singularities are avoided
by showing the the wave function is zero for a = 0.

2 Minimal 4-manifolds

Embedded 4-manifoldM will be described here by coordinatesXA(x),
A = 0, . . . , D − 1 where xµ, µ = 0, 1, 2, 3, is the internal parametriza-
tion of the manifold. The metric of the manifold is induced from E
by

gµν(x) = ηAB∂µX
A(x)∂νX

B(x) (1)

where ηAB is a Minkowski metric (throughout the whole paper we are
using c = ~ = 1 units as well as the conventions of the Landau-Lifshitz
textbook [25], in particular the signature of gµν is (+1,−1,−1,−1)
and correspondingly η00 = 1). Such embedding can be found globally
for many important geometries which are the solutions of Einsteins
equations [26]. Moreover, it is well known that locally one can always
find such embedding in 10 dimensional Minkowski space [27].

For the action describing the dynamics of XA we take the Dirac
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action [23, 24, 28] which, for three dimensional membranes, takes the
form of the cosmological constant term

S =

∫
M
Lλd4x, Lλ = −λ

√
−g, g := det gµν .

Here λ is a tension and is positive - we will discuss negative tension
later on. Varying S with respect to XA gives

∂µ
(√
−ggµν∂νXA

)
= 0. (2)

In addition to the equations of motion, there are constraints

PAPA = −λ2 det grs, r, s = 1, 2, 3 (3)

and PA∂rXA = 0 satisfied by the canonical momenta

PA := ∂Lλ/∂(∂0X
A) = −λ

√
−gg0µ∂µXA. (4)

2.1 Dirac equation

Equation (3) is the counterpart of the mass shell constraint for point-
like particles. Therefore its linear (in PA) form will serve as a Dirac-
like equation for extended objects. The square root of the l.h.s. of (3)
can be easily performed with use of the Dirac gamma matrices γA in
D dimensions. As for the r.h.s. there exist at least two ways of doing
that. Using the identity

det grs =
1

3!
{XA, XB, XC}{XA, XB, XC}

and a related one

M2 = det grs1, M =
1

3!
γABC{XA, XB, XC}

where γABC = 1
3(γABγC + cycl.), γAB = 1

2 [γA, γB] and where we used
the Nambu bracket {f, g, h} = εrst∂rf∂sg∂th, [29], we find that the
constraint (3) can be linearized as(
−iγA δ

δXA
+

√
− 1

3!
λ2{XA, XB, XC}{XA, XB, XC}

)
Ψ = 0 (5)

or (
−iγA δ

δXA
+

1

3!
iλγABC{XA, XB, XC}

)
Ψ = 0 (6)
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where we substituted the functional derivative PA = −iδ/δXA. Let us
note that there is no ordering ambiguity related to functional deriva-
tives which would have taken place if the equation was second order
in PA (this is the case in e.g. the Wheeler-DeWitt equation [5]). To
proceed further a quantum counterpart of the Nambu bracket is re-
quired. In the case of membranes where instead of a Nambu bracket
there is a Poisson bracket, one uses the matrix regularization [30] and
the Poisson bracket is then replaced by −i times the commutator of
SU(N) matrices. Here one faces the unsolved problem of regularizing
the volumes.

Equation (6) seems more elegant due to the lack of the square root.
Moreover, let us observe that it can be solved exactly by

Ψ = eSΨ0, S =
λ

24b
γABCD

∫
XA{XB, XC , XD}d4x

where Ψ0 is a constant spinor, b is such that γABCDγD = bγABC .
This solution is an analog of similar solutions appearing for mem-
branes [20, 31, 32, 33]. It turns out however that equation (5) gives
(more) interesting results - a least when one concentrates on spheri-
cally symmetric case which will be now discussed.

2.2 Spherically symmetric motion

Let us now concentrate on the Friedmann-Robertson-Walker line ele-
ment of spatially closed geometry

gABdx
AdxB = dt2 − a(t)2dΩ2, (7)

dΩ2 = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2),

χ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, 2π).

The corresponding expressions for XA for this geometry are [26]

X0 =

∫ √
ȧ2 + 1dt, X1 = a(t) cosχ, X2 = a(t) sinχ cos θ, (8)

X3 = a(t) sinχ sin θ cosϕ, X4 = a(t) sinχ sin θ sinϕ

so that D = 5 - it is a minimal embedding. In order to find a(t) let us
substitute XA to the equations of motion (2). We obtain

3 + 3ȧ2 + äa = 0 =⇒ −at′′(a) + 3t′(a) + 3t′(a)3 = 0 (9)
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where t = t(a) is the inverse function of a = a(t). Integrating the last
equation we obtain

t(a) = t0 +
A

4
2F1

(
1

2
,
2

3
,
5

3
, A2a4

)
, A2 =

1

a(t0)6(1 + a(t0)2)

where 2F1 is the Gauss’s hypergeometric function. An example of the
solution for the initial conditions a(0) = 1, ȧ(0) = 1 is given in Figure
1. We observe a typical behavior, just like in the case of membranes,

0.2 0.4 0.6
t

0.2
0.4
0.6
0.8
1

a!t"

Figure 1: Solution of equation (9) with a(0) = 1 and ȧ(0) = 1.

that a 3-sphere will collapse to a point after a finite time.

2.2.1 Dirac equation

Let us now proceed to the quantum theory by linearizig the con-
straints. Because of the spherical symmetry there is only one dynam-
ical variable a(t). Therefore the quantum theory will be of quantum-
mechanical type i.e. we are looking for the equation involving deriva-
tives w.r.t. a - not the functional derivatives as in (5) or (6). This
is completely analogous to considering mini-superspace models intro-
duced by DeWitt [1] where instead of a functional Wheeler-DeWitt
equation one considers a partial differential equation involving the
scale factor. Because of that our starting point are not equations (5),
(6) but the constraints (3).

In the spherically symmetric case the determinant det grs is simply
−a6 sin4 χ sin2 θ hence the square root of (3) can be written as

γAPA = −λBa3 sin2 χ sin θ

where B is a matrix s. t. B2 = 1 (we choose B = 1), the minus sign
is a convention. Introducing the canonical momenta pA for the whole
3-sphere

pA :=

∫
t=const.

PAdχdθdϕ
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and going to the quantum theory via pA = −i∂A, we find that

(−iγA∂A|a + 2π2λa3)ψ(a, t) = 0 (10)

where |a means taking the a-dependent part of the operator. Therefore
we have obtained a Dirac equation in (4+1)-dimensions with the cubic
scalar potential.

Four comments are now in order. First, equation (10) is a mini-
superspace counterpart of (5), not (6). The mini-superspace equation
corresponding to (6) would involve the integral of M which turns
out to be 0 for coordinates (8). Therefore one obtains a continuous
spectrum covering the whole real line in this case.

Second, note that the choice of the embedding is not unique since
one could take higher dimensional Minkowski space. However one can
always choose coordinates for which the momenta PA = 0 for A > 4.
For such coordinates the index A in (3) runs from 0 to 4 regardless of
the embedding hence one arrives at (10) for any Minkowski embedding.
Of course other types of geometries in general cannot be embedded in
(4 + 1) Minkowski space so that D = 5 is not special for the generic
case, however every Lorentzian 4-dimensional manifold can be locally
embedded in 10 dimensional Minkowski space [27] - a result which can
be useful for generalizations of the analysis presented below.

Third, there is an ambiguity in interpreting |ψ(a, t)|2. As a prob-
ability density of

• a 3-sphere with the radius ∈ [a, a+ da] at time t

p(a, t) = |ψ(a, t)|2 (11)

• an infinitesimal element d3~x of a 3-sphere being at distance ∈
[a, a + da] from the origin of the coordinate system at time t-
therefore the probability density for the whole 3-sphere would
be

p(a, t) =
4

3
πa3|ψ(a, t)|2. (12)

It is in our opinion disputable which one should be chosen although
the later seems more sensible since equation (10) is written in the
spherical coordinates hence one expects the measure factor to apear
(as it is the case in the Dirac or Schrödinger equation). We will discuss
both (11) and (12) in this paper.

Forth, from (10) one can consider the evolution of wave packets
ψ(a, t), by using the Hamiltonian formulation

i∂tψ(a, t) = Hψ(a, t), H = γ0(γk∂k|a + 2π2λa3), k = 1, 2, 3, 4.
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A detailed analysis of that dynamics will not be discussed in this
paper.

The radial part of the Dirac operator in 4 + 1 dimensions can be
written in general as [34](

∂a +
K

a

)
G = (E+m−V )F,

(
−∂a +

K

a

)
F = (E−m−V )G (13)

where E is the energy, m is the mass term, V is the potential (the
A0 component of the gauge field), K = ±(l + 3/2), l is the angular
momentum (we shall consider l = 0 from now on). The functions F
and G are related to the wave function ψ by

ψ(a, t) = a−3/2e−iEt [F (a)φ1(χ, θ, ϕ) +G(a)φ2(χ, θ, ϕ)] (14)

where φ1 and φ2 are suitably chosen, orthogonal, a independent,
spinors (for more details see [34]). We will normalize them so that

|ψ(a, t)|2 = (F (a)2 +G(a)2)/
4

3
πa3.

It is now clear that the choice of the interpretation of |ψ(a, t)|2 is
crucial for the analysis of the probability density at a = 0.

In our case we have m = 2π2λa3, V = 0, therefore introducing
dimensionless variables x = a(2π2|λ|)1/4, ε = E/(2π2|λ|)1/4 and the
tension signature σ = λ/|λ| = ±1, the spectral problem (13) can be
written in the matrix form

hminφ = εminφ, hmin :=

(
−σx3 ∂x + K

x

−∂x + K
x σx3

)
. (15)

If φT = (F,G) is the eigen vector of hmin for K = 3/2, λ > 0 and
some eigenvalue εmin then φT = (G,F ) solves hminφ = −εminφ for
K = −3/2, λ > 0 and φT = (−F,G) solves hminφ = −εminφ for
K = 3/2, λ < 0. Therefore we choose K = 3/2 and λ > 0 from now
on.

2.2.2 Eigenfunctions at the origin

Let us start with the following ansatz for functions F and G

F (x) = xs1e−x/2(f0 + f1x+ f2x
2 + . . .), f0 6= 0 (16)

G(x) = xs2e−x/2(g0 + g1x+ g2x
2 + . . .), g0 6= 0
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i.e. just like in the Dirac equation with the Coulomb potential (in
which case one obtains s1 = s2). Depending on the choice of the
definition of the probability density one obtains different constraints
on F and G - either F 2 + G2 (cp. (12)) or (F 2 + G2)/x3 (cp. (11))
must be normalizable. Clearly the second choice is more restrictive
(F and G have to be at least such that (F 2+G2)/x3 is finite at x = 0)
therefore to keep the discussion as general as possible we shall assume
the first constraint. A class of functions obeying the first constraint
should a priori be larger then for the second one. We shall now prove
that a careful analysis of the spectral problem (15) actually implies
that these two classes are in fact equal.

First, let us use the fact that F and G can be expanded in the
following orthonormal basis

e(α)n (x) =
1√
Nn,α

xαL
(2α)
n−1(x)e−x/2, (17)

Nn,α =
Γ(n+ α)

(n+ 1)!
, α = min(s1, s2), n ∈ N+.

where L
(α)
n (x) are generalized Laguerre polynomials. Clearly the con-

dition
∫∞
0 (F 2+G2)dx <∞ implies that α > 0 however due to the K/x

term in the operator hmin one in fact needs to assume that α ≥ 1/2
- otherwise the matrix representation of hmin would not exist (i.e.
the scalar products (en,

1
xem) =

∫∞
0

1
xenemdx would be infinite). This

constraint can be further improved by using the expansion (16). Be-
cause of the specific form of the operator hmin (all powers of x are
integers) we may assume that s1 − s2 ∈ Z. Substituting (16) to (15)
and analyzing all the possibilities s1 = s2, s1 = s2 ± 1, s1 = s2 ± 2
et.c. one finds that there is only one possible choice where α > 0 and
it is for s2 = s1 + 1 with s1 = K(= 3/2). Therefore one should choose
α = 3/2 which implies that not only F 2 + G2 but also (F 2 + G2)/x3

is normalizable.
Let us note again that the above conclusion is due to the term K/x

- both the singular behaviour and the coefficient K are important. The
term comes from the coordinate transformation of the kinetic part of
the Dirac operator in (10) and is unremovable i.e. its generic form is
K/x with K = ±(2l+3)/2 hence it persists for all angular momenta l.
Analogous situation would not exist for the bosonic field. There the
corresponding kinetic term would be the Laplace operator which in
spherical coordinates has the centrifugal barrier term l(l − d+ 2)/x2,
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in d spatial dimensions. Therefore in the bosonic case there exist two
sectors of the Hilbert space (for l = 0 and for l = d − 2) where there
is no singularity.

We have just shown that |ψ|2 = (F (a)2 + G(a)2)/a3 is regular
therefore if one uses the definition (12) then it follows that a 3-sphere
cannot have a zero radius since the likelihood of that event is zero
(p(a = 0, t0) = 0). On the other hand our analysis also shows that
|ψ(a, t)|2 is finite for a = 0. Therefore a similar conclusion could not be
obtained when taking (11) as the definition of the probability density.

Let us finally observe a close analogy between those results and
the case of Dirac equation in the Coulomb field where |ψ(a, t)|2 is in
fact singular while F (a)2 +G(a)2 is zero for a = 0.

2.2.3 The spectrum

The Hilbert space of the problem (15) consists of square-integrable
vectors φT = (F,G) on [0,∞) satisfying a condition φ(0) = 0. There-
fore the operator ∂x is antihermitian in this Hilbert space hence hmin
is hermitian which proves that the spectrum of hmin is real.

Let us also observe that the spectrum of h2min is discrete. To see
this we use an identity

h2min = Q2 +
3

4x2

(
1 0
0 5

)
, Q =

(
−x3 ∂x
−∂x x3

)
(18)

hence we have an inequality h2min ≥ Q2. However Q2 is discrete since
introducing a± := F ±G the eigen equation Q2φ = η2φ gives

h±a± = η2a±, h± := −∂2x + x6 ± 3x2,

i.e. a+ and a− decouple and since h+ and h− are discrete, Q2 must
also be discrete. Because h2min is bounded from below by a discrete
operator it follows that h2min itself must be discrete [35] and therefore
hmin is discrete as well.

To find the exact spectrum of hmin we use numerical methods.
First, we calculate the representation of each operator in hmin, in
some orthonormal basis. Our choice is (17) for α = 3/2. Second we
truncate that infinite matrix representation (i.e. truncate each matrix
representation of operators appearing in the entries of the 2×2 matrix
hmin) and then numerically diagonalize the resulting finite matrix.
The spectra and the eigen vectors of the truncated matrices converge
to their exact counterparts when the size of the matrix is increased.
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Figure 2: Convergence of energy levels of hmin (for K = 3/2, σ = 1) with n
- the size of truncated matrix representation - up to n = 300.

The results of this numerical approach are presented in Figure 2. It
follows that the first positive and negative energy levels are

ε ≈ 3.4, 5.0, 6.5, 7.8, 9.0, 10.3, 11.4, . . . ,

−ε ≈ 2.2, 4.1, 5.7, 7.1, 8.4, 9.7, 10.9, . . . .

The plots for F 2(x) +G2(x) are presented in Figure 3. The negative
energy solutions are normalizable therefore one cannot ignore them.
This would be troublesome if the 3-sphere was interacting with some
external field or with another membrane in the embedding space E
- in which case a 3-sphere could loose energy. Because the spectrum
is not bounded from below this would imply that the energy of a
3-sphere could become arbitrary negative. Consistency would require
that there is no such external fields and that there is only one 3-sphere
in E. Otherwise one needs to introduce a Dirac sea (of negative energy
3-spheres) i.e. assume that all the negative energy states are filled.

3 General action

In this section we will generalize previous considerations to the case
of Einstein-Hilbert action with the cosmological constant term and

11
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Figure 3: F 2(x) +G2(x) for first three positive and negative energy states of
hmin.

matter. Therefore we consider

S = Sλ + SEH + Sm (19)

Sλ = −λ
∫
M

√
−g d4x SEH = − 1

2κ

∫
M

√
−gR d4x,

where κ = 8πG, R is the Ricci scalar, Sm is the action for matter. The
tension λ is related to the cosmological constant Λ via λ = Λ/8πG,
from now on we will set G = 1. Our view on the action (19) is
non-standard here. Usually one takes the Einstein-Hilbert term as a
starting point and only then adds ”something else” e.g. Sλ or Sm.
Here we consider space-time as embedded manifold with tension λ
therefore Sλ is a starting point while SEH and Sm are in addition to
it. Moreover the Einstein-Hilbert term is defined on M not in the
embedding space E. As such S can be also viewed as an action for
the vector field XA(x) on M - with no reference to the embedding.

Varying S with respect to the XA one obtains

δXS =
1

2

∫
M

(
−λgµν +

1

κ
Gµν − Tµν

)
δXgµν

√
−gd4x

where Gµν = Rµν − 1
2gµνR is the Einstein tensor, Rµν in the Ricci

tensor (Rµν := Rαµαν) and Tµν := 2δSm/δg
µν is the energy momentum
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tensor. The variation of gµν gives 2∂µXAδ∂νX
A hence the equations

of motion are

∂µ

[√
−g
(
−λgµν +

1

κ
Gµν − Tµν

)
∂νX

A

]
= 0. (20)

These equations can be obtained form the usual Euler-Lagrange equa-
tions [36, 37].

3.1 Spherically symmetric motion

If gµν satisfies Einstein’s equations with the cosmological constant and
matter terms

− λgµν +
1

κ
Gµν = Tµν (21)

then clearly equation (20) is satisfied however it is not so clear if
there exist coordinates XA which give rise to that metric via (1). The
problem lies within the energy-momentum tensor term - if Tµν = 0
then one can always find (locally) the embedding coordinates however
if Tµν 6= 0 such coordinates may not exist. We shall now verify this
remark for the Friedmann-Robertson-Walker line element (7) and the
energy-momentum tensor for a perfect fluid

Tµν = (ρ+ p)δµ0δν0 − pgµν . (22)

There are a priori five equations in (20) for each A however for A =
1, 2, 3, 4 one obtains the same equation which is

N := 3(1+ȧ2)2−3κa2(λ−p+(λ+ρ)ȧ2)−κ(λ+ρ)a3ä+9a(1+ȧ2)ä = 0
(23)

while for A = 0 we find

N − 3κa2(ρ+ p) = 0.

It follows that nontrivial solutions for a exist only if we put ρ+ p = 0
hence it is impossible to find embedding coordinates for for FRW
metric when ρ > 0 and p > 0. On the other hand if we allow the
pressure to be negative then the condition ρ+ p = 0 can be obtained
by considering the matter term Sm for the scalar field φ in a particular
potential V (φ). Then one can show that the equation of state ρ+p = 0
is approximately satisfied for slowly rolling fields (i.e. 1

2 φ̇ << V (φ))
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[38, 39, 40]. Let us therefore assume that p = −ρ. Equation (23) can
be written in a convenient form

3 + 3ȧ2 + aä =
24(1 + ȧ2)2

9− κ(λ+ ρ)a2 + 9ȧ2
(24)

and we see that in the limit κ → ∞ one recovers the equation for
minimal 4-volumes (9). It is now straightforward to verify that (24)
is a consequence of Firedmann equations for ρ + p = 0. Substituting
(22) and (7) to (21) we obtain standard equations(

ȧ

a

)2

= − 1

a2
+
κ(λ+ ρ)

3
,

ä

a
=

1

3
κ(λ+ ρ). (25)

Using expressions for ȧ and ä obtained from (25) we find that the l.h.s.
and the r.h.s. of (24) coincide (giving 4κ(λ+ ρ)a2/3 each). Therefore
we have shown that (25) imply (24). It is reasonable to ask if the
converse is also true i.e. whether (24) are equivalent to (25). We will
now show that this is not true i.e. the space of solutions of (24) is
much larger then the space of solutions of (25).

For simplicity let us assume that ρ = p = 0 i.e. the Universe is
empty. Then the general solution of the Friedmann equations (25) for
λ > 0 are non singular

a(t) =
√

3/λκ cosh(t
√
λκ/3) (26)

(De Sitter solution of spatially closed Universe) while for negative λ
and ρ = 0 equations (25) have no solutions. As shown above (26) is
also the solution of (24) however it is not clear if it is a general solution
of (24) 1.

Let us first analyze the numerical solutions of (24) for ρ = 0 -
Figure 4. We see that not only the solutions do not resemble (26) but
also that there is a critical value of λκ below which the solutions de-
velop singularity in finite time (for the boundary conditions a(0) = 1,
ȧ(0) = 1 the critical value satisfies the bounds 0.056 < λ0κ < 0.057).
This result is rather interesting since we obtained three classes of solu-
tions (asymptotically expanding, asymptotically static or contracting)

1This is not in conflict with the uniqueness of solutions since the space of boundary
conditions for (24) is much larger then the space of boundary conditions of (25). A simple
example of this sort is a pair of equations ȧ = 1, a = t which have general solution
a(t) = t. On the other hand they also imply that ȧa = t the general solution of which is
a(t) =

√
t2 +A.
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Figure 4: A family of solutions of (24) with a(0) = 1, ȧ(0) = 1 for various
(positive and negative) values of λκ. There exists a critical value below which
the solutions develop singularity.

similar to Friedmann solutions however let us point out that unlike
for Friedman solutions there is no matter here. Therefore the embed-
ding equations (20) allow for solution which do not solve the Einstein
equations - in particular they allow for singular solutions for Tµν = 0.

Let us now give more rigorous proof that solutions of (24) are more
general then (26). It is useful to introduce the function F defined as
(ρ = 0)

F :=
3

κλ

ȧ2 + 1

a2
. (27)

In case of Friedmann equations (25) F is simply 1 - we will now be
looking for more general F of the form F = F (a). Expressing ȧ in
terms of F and a and substituting the result to (24) we obtain

ä =
κλ

3

(1− F/3)aF

F − 1/3
. (28)

Equations (27) and (28) are equivalent to (24) for ρ = 0. Using the
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formula ä = 1
2
dȧ2

da and applying it to (28) we obtain

ȧ2 =
2

3
κλ

∫ a

0

ãF (ã)(1− F (ã)/3)

F (ã)− 1/3
dã. (29)

On the other hand ȧ2 from (27) is

ȧ2 =
κλ

3
a2F − 1. (30)

Equating (29) with (30) we obtain an integral equation for F . The
derivative w.r.t. a of that equation gives

aF ′(a) = 8F (a)
1− F (a)

3F (a)− 1
.

Integrating the above equation we obtain a non-linear equation for F

(F − 1)2F = eA/a8, A ∈ R. (31)

We now see that the Friedmann equations case, F = 1, corresponds
to taking the limit A → −∞ in (31). However solutions of (31) are
more general then that. Equation (31) has three roots, two of which
are complex and one is real which is

F (a) =
1

3
(2 + x+ 1/x), x =

(
27eA + 3

√
3
√

27e2A − 4a8eA

a8
− 1

)1/3

To find the solution for a(t) one can use the definition (27) to arrive
at the complicated integral∫ a

a0

dã√
κλ
3 F (ã)ã2 − 1

= t− t0, a0 := a(t0).

This completes the proof that a class of solutions of (24) is larger then
a class of solutions of (25).

3.2 Dirac equation

In this section we shall discuss the singularity formation in the context
of the Dirac equation using similar method as in Section 2. For general
coordinates the canonical momenta for the action (19) are now

ΠA = PA +
√
−g
(

1

κ
G0µ − T 0µ

)
∂µXA

16



where PA are as in (4). The constraint (3) for PA still holds therefore
its linearized form will be

γA
[
ΠA −

√
−g
(

1

κ
G0µ − T 0µ

)
∂µXA

]
Ψ = λ

√
−det grs. (32)

To proceed further we now concentrate on the Friedmann-Robertson-
Walker line element for closed 3-geometry. Let us therefore assume
that the metric is given by (7) and that there is no matter at all
(as shown previously this case contains singular solutions). Following
Section 2 we introduce the average momenta for the whole 3-sphere

πA =

∫
t=const.

ΠAdχdθdϕ

and, as in (10), we will consider the wave equation by substituting
πA → −i∂A. Equation (32) becomes now

(−iγA∂A|a + 2π2λa3)ψ(a, t) + γ0V̂ ψ(a, t) = 0 (33)

where V̂ is an operator corresponding to the classical expression

V = −1

κ

∫
G00√−gdχdθdϕ = −6π2

κ
(ȧ2a+ a)

where we used the fact that Gµν is diagonal and that the integral
over ∂0XA is non zero only if A = 0 (moreover G00 = 3(ȧ2 + 1)/a2

and
√
−g = a3 sin2 χ sin θ). Note that V̂ enters equation (33) in the

same way the zero’th component of the electromagnetic field enters
the Dirac equation with an external field. To find the quantum coun-
terpart of the term involving the time derivatives of a we first calculate
the momenta conjugate to a

pa = −3π

2
ȧa, V = − 1

3π

p2a
a
− 3π

4
a.

The momenta are calculated using a standard method [5] (in deriving
pa one uses the action (19) augmented by a boundary term needed
for the consistent variational procedure - that term does not affect
the equations of motion nor the constraints). Second, there is an
ambiguity in choosing the differential operator corresponding to p2a/a
term. We choose the ordering following DeWitt [1] as

p2a
a
→ − 1

a1/4
∂a

1

a1/2
∂a

1

a1/4
.
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Introducing dimensionless units as in previous section we find that
the eigenvalues of (33) can be obtained from the following spectral
problem

hdSφ = εdSφ, hdS = hmin + v(x)1, (34)

v(x) =
1

2β
∆− 1

2
βx, ∆ =

1

x1/4
∂x

1

x1/2
∂x

1

x1/4

where hmin is as in (15) and β = 3
√
π/Λ is a dimensionless constant.

If we were to substitute the experimental value of Λ then the term
proportional to ∆ would be extremely small while the linear term
would be very large and negative.

Singularity avoidance

As in Section 2 we shall now be looking for functions F and G of
the form (16). The operator ∆ contains terms x−3, x−2∂x and x−1∂2x
which imply that one should take α := min(s1, s2) ≥ 3/2 in order to
have the scalar products (en,∆em) =

∫∞
0 en∆emdx finite. Using the

same analysis as before we find that this condition can be satisfied this
time only when s1 = s2 in which case one finds that the equation for
(say) s1 is s21 + s1 + 7/16 = 0. The roots are 1/4 and 7/4 but α ≥ 3/2
hence we take α = 7/4 which proves that not only the probability
density (12) but also (11) is zero for a = 0, concretely

|ψ(x, t)|2 = (F (x)2 +G(x)2)/
4

3
πx3 =

√
xe−x/2r(x)

where r(x) is regular at x = 0. Clearly, this result is much stronger
then the one obtained in Section 2 - it shows that the eigen functions
are 0 for a = 0.

The Hamiltonian formulation is now

i∂tψ(a, t) = Hψ(a, t), H = γ0(γk∂k|a + 2π2λa3)− V̂ , k = 1, 2, 3, 4

where the wave packets ψ(a, t)’s can be expanded in terms of eigen
functions of which we know that are 0 for a = 0. Therefore, no
matter which definition of the probability density one chooses ((11)
or (12)), one concludes that the 3-sphere cannot have zero radius i.e.
the likelihood of that event is 0. This certainly fulfills the DeWitt’s
requirement and hence we conclude that the singularity is not present.

A contracting 3-sphere will approach a minimal size and then start
expanding. It is likely that this expansion will then be slowed down

18



and stopped due to the x3 terms in hdS therefore the evolution of the
wave packet would be cyclic. To verify this remark one would have to
perform the corresponding numerical analysis.

The spectrum

The operator v(x) is negative definite and it enters hdS with the plus
sign therefore the eigenvalues of hdS will be lowered compared to the
eigenvalues of hmin. Moreover hdS contains a parameter β which in-
fluences the spectrum considerably - that parameter cannot be elim-
inated by some rescaling of coordinate x. Several spectral lines for
β = 10 and β = 20 are presented in Figure 5.

Figure 5: Spectral lines of hdS for β = 10 (left) and β = 20 (right). The cutoff
reached is n = 1000. To obtain reliable positive spectral values for β = 20
one would have to go to higher n. On the other hand negative eigenvalues
converge much quicker.

We observe a discrete spectrum. The positive and negative eigenvalues
obtained for β = 10 are

ε ≈ 0.04, 1.2, 2.2, 3.3, 4.3, 5.2, . . . ,

−ε ≈ 1.2, 2.6, 6.4, 8.5, 10.4, 12.2, . . . .

The eigenvalues, compared to the spectrum of hmin in (15), are shifted
by (roughly) −β/2. Therefore the lowest positive energy state will now
have several ”bumps” instead of just one bump (see Figure 6).

The energies are calculated here in units of (2π2λ)1/4 = (πΛ/4)1/4

therefore the density of spectral lines of hdS and hmin is very large if
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Figure 6: F 2(x) +G2(x) for first three positive and negative energy states of
hdS for β = 10.

one substitutes β ∼ 1060 (i.e. Λ ∼ 10−120). However the appearance
of β in hdS makes the spectrum even more denser (compared to hmin)
so that practically any energy is allowable as if the spectrum was con-
tinuous. Therefore the smallness of the cosmological constant implies
in this model that the empty Universe may have arbitrary energy. On
the other hand if Λ was say ≈ 1 the quantisation of the energies of
the Universe would be noticeable.

4 Summary

By considering spacetimeM as as an embedded Lorenzian 4-manifold
is some ambient, higher-dimensional space E one necessarily faces a
question whether E is in any sense physical. In this paper we make
no arbitrary statements concerning this problem however we do take
advantage of the fact that certain, conceptual problems appearing in
the formulation of Quantum Gravity by considering Wheeler-DeWitt
equation (e.g. the problem of time) are naturally solved within this
approach. Moreover the constraints (3) appearing in such approach
are very similar, in the form, to the mass-shell constraint for point like
particles and therefore one is tempted to apply the Dirac’s ”square-
root” procedure also in this case. By doing so one arrives at the
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functional Dirac-like equation for embedded manifolds which are linear
in momenta. There are at least two distinct ways of doing this ((5)
and (6)) and in our opinion both are important.

We then concentrate on the spherically symmetric motions by con-
sidering S3 with one dynamical variable - a(t) - and make a proposal
(based on (6)) for a quantum mechanical system behind such mini-
superspace model. For minimal 4-volumes we find that the spectrum
of the corresponding Dirac equation (10) is real and discrete - it con-
tains positive and negative eigenvalues which are not bounded form
below. By careful analysis of the wave functions at the origin we
showed that the amplitude |ψ|2 is finite at a = 0 hence it is disputable
whether a 3-sphere can collapse due to the ambiguity of defining the
probability density.

It turns out that considering general action with the Einstein-
Hilbert term one can improve the situation by finding that the ampli-
tude |ψ|2 = 0 for a = 0. It is therefore in accordance with DeWitt’s
boundary condition that the function vanishes for those classical con-
figurations where the singularity appears. This analysis is performed
for the Friedmann-Robertson-Walker metric for closed spatial geome-
tries. One would like to call this model an embedded closed Friedmann
model with no matter (or embedded closed De Sitter model) however
it is important to note that the classical equations of motion of the
embedding picture (24) are much more general then Friedmann equa-
tions (25). In particular they allow for singular solutions for both
positive and negative tension λ = Λ/κ which is not the case in (25)
for ρ = 0. We have shown that in the quantum picture, when one
considers the Dirac equation (33), these singularities are avoided.

To generalize this approach one should consider the case ρ > 0
which can be done by introducing slowly rolling scalar fields.
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