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We apply the Dirac’s square root idea to constraints for embedded four-geometries swept
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metric for spatially closed geometries. The problem of the singularity formation at the
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1. Motivation

One of the most important problems in modern cosmology is the fact that according
to the Friedmann model the Universe started with the singularity. It is expected
that once the consistent description of general relativity with quantum mechanics
is obtained the singularity will be removed.

In the 60’s, DeWitt1 addressed this problem by assuming that the wave func-
tional satisfying the Wheeler–DeWitt equation should be zero whenever the singu-
larity occurs at classical level. In the case of a Friedmann Universe, this implies that
the wave function should vanish for the scale factor a = 0. DeWitt’s assumption
is an example of one of several boundary conditions (e.g. the no-boundary condi-
tion,2 the tunneling condition3 the symmetric condition4 — see Refs. 5 and 6 for
a review on this subject) which one could set to argue that the singularity can be
avoided. More recently, it has been pointed out that this aim can also be achieved by
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using techniques of loop quantum gravity,7 by considering mini-superspace mod-
els in D = 11 supergravity8 or in (string theory inspired) brane models where
one addresses this problem from a different perspective in which the Big Bang is
identified with brane collisions (for a review see Refs. 9 and 10). All of the above
approaches, although different in details, represent certain attempts to apply the
laws of quantum mechanics in gravitational systems. It should be noted, however,
that the true solutions of the problem may lie in modifying quantum mechanics
itself.11

A similar singularity formation also takes place in much simpler systems of
extended objects forming minimal manifolds embedded in Minkowski spacetime.
These objects will, in most cases, collapse to a point after a finite time (there are
exceptions e.g. when they rotate which can prevent the collapse: a rotating closed
string on a plane12,13 or a rotating flat torus in R

4 Ref. 14). In this paper, we
first discuss the minimal manifolds (Sec. 2) and then proceed to the more general
geometries (Sec. 3).

The idea that one can consider spacetime as a four-manifold M embedded in
some ambient Minkowski space E, and therefore to quantize not the metric but the
coordinates with give rise to the metric, dates back to late 70’s (Refs. 15 and 16) —
see also Ref. 17 for a comprehensive list of references about the subject. Solutions
of Einstein’s equations give automatically the solutions for equations of motion for
embedded coordinates — however, the converse is not true.16 More recently, it has
been argued that the equivalence can be obtained by modifying the embedding
approach18–20 in a certain way.

Although it is not clear what is the physical meaning of the embedding space
(i.e. it is not known if there are extra dimensions), let us note that there are several
advantages of this approach. The most crucial used in this paper are related to a
clear understanding of

• the time variable (time on M is inherited from E) and therefore the Hamiltonian
formalism

• the notion of the probability density — events, such as a three-sphere contraction,
take place in E.

Here, we would like to develop this idea in a novel context: the method used
here is an appropriate generalization of our recent work21 (see also earlier attempts
in this direction22,23) where we have undertaken Dirac’s idea24,25 to formulate a
theory of extended objects with spin. This approach (different from considering
supersymmetric version of the bosonic theory) is based on the Dirac’s square root
procedure applied to the constraints for extended objects. By writing the Dirac
equation for embedded spacetime, in this way, one necessarily assumes the existence
of the spinor field (actually a functional) of the manifold considered. Therefore,
the wave function of the embedded Universe will not be a scalar but a spinor.
Intuitively, this change should make a major difference — after all, bosons “like” to
be in the same state while fermions prefer the contrary. Therefore, if one considers
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a contracting fermionic three-sphere, one should observe a repulsion effect when
the radius of a sphere is sufficiently small.a

A behavior of this type we find in the case of Friedmann–Robertson–Walker
(FRW) metric for the action containing the Einstein–Hilbert term and the cosmo-
logical constant term. Equations of motion for embedding coordinates are more
general than Einstein’s equation for the metric — in particular, they allow for
singular solutions (at a = 0) in situations where Einstein’s equation develop no sin-
gularities. We find that at the quantum level, when considering the Dirac equation,
these singularities are avoided by showing the wave function is zero for a = 0.

2. Minimal Four-Manifolds

Embedded four-manifold M will be described here by coordinates XA(x), A =
0, . . . , D−1 where xµ, µ = 0, 1, 2, 3, is the internal parametrization of the manifold.
The metric of the manifold is induced from E by

gµν(x) = ηAB∂µX
A(x)∂νX

B(x), (1)

where ηAB is a Minkowski metric (throughout the paper, we are using c = � = 1
units as well as the conventions of the Landau–Lifshitz textbook,29 in particular, the
signature of gµν is (+1,−1,−1,−1) and correspondingly η00 = 1). Such embedding
can be found globally for many important geometries which are the solutions of
Einstein’s equations.30 Moreover, it is well-known that locally one can always find
such embedding in a 10-dimensional Minkowski space.31

For the action describing the dynamics of XA, we take the Dirac action24,25,32

which, for three-dimensional membranes, takes the form of the cosmological con-
stant term:

S =
∫
M

Lλd
4x, Lλ = −λ√−g, g := det gµν .

Here, λ is a tension and is positive — we will discuss negative tension later on.
Varying S with respect to XA gives

∂µ(
√−ggµν∂νX

A) = 0. (2)

In addition to the equations of motion, there are constraints

PAPA = −λ2 det grs , r, s = 1, 2, 3 (3)

and PA∂rX
A = 0 satisfied by the canonical momenta

PA :=
∂Lλ

∂(∂0XA)
= −λ√−gg0µ∂µXA. (4)

aWe are not claiming, by this argument, that fermionic condensates should not exist. Of course,
they do exist in nature e.g. pairs of fermions (Cooper pairs) in condense matter systems26–28

which give rise to a bosonic states and therefore can condensate. However, the physical context in
this paper is different. We consider a spinorial functional defined on the three-manifold and study
its behavior when the manifold considered shrinks to a point.
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2.1. Dirac equation

Equation (3) is the counterpart of the mass shell constraint for point-like particles.
Therefore, its linear (in PA) form will serve as a Dirac-like equation for extended
objects. The square root of the left-hand side of (3) can be easily performed with
the use of the Dirac gamma matrices γA in D dimensions. As for the right-hand
side, there exist at least two ways of doing that. Using the identity

det grs =
1
3!
{XA, XB, XC}{XA, XB, XC}

and a related one

M2 = det grs1, M =
1
3!
γABC{XA, XB, XC},

where γABC = 1
3 (γABγC + cycl.), γAB = 1

2 [γA, γB] and where we used the Nambu
bracket {f, g, h} = εrst∂rf∂sg∂th,33 we find that the constraint (3) can be linearized
as (

−iγA δ

δXA
+

√
− 1

3!
λ2{XA, XB, XC}{XA, XB, XC}

)
Ψ = 0 (5)

or (
−iγA δ

δXA
+

1
3!
iλγABC{XA, XB, XC}

)
Ψ = 0, (6)

where we substituted the functional derivative PA = −iδ/δXA. Let us note that
there is no ordering ambiguity related to functional derivatives which would have
taken place if the equation was second-order in PA (this is the case in e.g. the
Wheeler–DeWitt equation5). To proceed further, a quantum counterpart of the
Nambu bracket is required. In the case of membranes where instead of a Nambu
bracket there is a Poisson bracket, one uses the matrix regularization34 and the
Poisson bracket is then replaced by −i times the commutator of SU(N) matrices.
Here, one faces the problem of regularizing the volumes.35

Equation (6) seems more elegant due to the lack of the square root. Moreover,
let us observe that it can be solved exactly by

Ψ = eSΨ0, S =
λ

24b
γABCD

∫
XA{XB, XC , XD}d4x,

where Ψ0 is a constant spinor, b is such that γABCDγD = bγABC . This solution is
an analog of similar solutions appearing for membranes.21,36–38 It turns out however
that Eq. (5) gives (more) interesting results — a least when one concentrates on
spherically symmetric case which will be now discussed.

2.2. Spherically symmetric motion

Let us now concentrate on the FRW line element of spatially closed geometry

gABdxAdxB = dt2 − a(t)2dΩ2,
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dΩ2 = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2),

χ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, 2π).

(7)

The corresponding expressions for XA for this geometry are30

X0 =
∫ √

ȧ2 + 1dt, X1 = a(t) cosχ, X2 = a(t) sinχ cos θ,

X3 = a(t) sinχ sin θ cosϕ, X4 = a(t) sinχ sin θ sinϕ
(8)

so that D = 5 — it is a minimal embedding. In order to find a(t), let us substitute
XA to the equations of motion (2). We obtain

3 + 3ȧ2 + äa = 0 ⇒ −at′′(a) + 3t′(a) + 3t′(a)3 = 0, (9)

where t = t(a) is the inverse function of a = a(t). Integrating the last equation, we
obtain,

t(a) = t0 +
A

4 2F1

(
1
2
,
2
3
,
5
3
, A2a4

)
, A2 =

1
a(t0)6(1 + a(t0)2)

,

where 2F1 is the Gauss’s hypergeometric function. An example of the solution for
the initial conditions a(0) = 1, ȧ(0) = 1 is given in Fig. 1. We observe a typical
behavior, just like in the case of membranes, that a three-sphere will collapse to a
point after a finite time.

2.2.1. Dirac equation

Let us now proceed to the quantum theory by linearizing the constraints. Because
of the spherical symmetry, there is only one dynamical variable a(t). Therefore,
the quantum theory will be of quantum-mechanical type i.e. we are looking for the
equation involving derivatives with respect to a — not the functional derivatives as
in (5) or (6). This is completely analogous to considering mini-superspace models
introduced by DeWitt1 where instead of a functional Wheeler–DeWitt equation one

0.2 0.4 0.6
t

0.2

0.4

0.6

0.8

1

a t

Fig. 1. Solution of Eq. (9) with a(0) = 1 and ȧ(0) = 1.
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considers a partial differential equation involving the scale factor. Because of that,
our starting points are not Eqs. (5) and (6) but the constraints (3).

In the spherically symmetric case, the determinant det grs is simply −a6

sin4 χ sin2 θ. Hence, the square root of (3) can be written as

γAPA = −λBa3 sin2 χ sin θ,

where B is a matrix s.t. B2 = 1 (we choose B = 1), the minus sign is a convention.
Introducing the canonical momenta pA for the whole three-sphere

pA :=
∫

t=const.

PAdχdθdϕ

and going to the quantum theory via pA = −i∂A, we find that

(−iγA∂A|a + 2π2λa3)ψ(a, t) = 0, (10)

where |a means taking the a-dependent part of the operator. Therefore, we have
obtained a Dirac equation in (4 + 1)-dimensions with the cubic scalar potential.

Four comments are now in order. First, Eq. (10) is a mini-superspace counterpart
of (5), not (6). The mini-superspace equation corresponding to (6) would involve
the integral of M which turns out to be 0 for coordinates (8). Therefore, one obtains
a continuous spectrum covering the whole real line in this case.

Second, note that the choice of the embedding is not unique since one could take
higher-dimensional Minkowski space. However, one can always choose coordinates
for which the momenta PA = 0 for A > 4. For such coordinates, the index A in
(3) runs from 0 to 4 regardless of the embedding, hence one arrives at (10) for
any Minkowski embedding. Of course, other types of geometries in general cannot
be embedded in (4 + 1) Minkowski space so that D = 5 is not special for the
generic case, however, every Lorentzian four-dimensional manifold can be locally
embedded in 10-dimensional Minkowski space31 — a result which can be useful for
generalizations of the analysis presented below.

Third, there is an ambiguity in interpreting |ψ(a, t)|2. As a probability density of

• a three-sphere with the radius ∈ [a, a+ da] at time t

p(a, t) = |ψ(a, t)|2 (11)

• an infinitesimal element d3x of a three-sphere being at distance ∈ [a, a+da] from
the origin of the coordinate system at time t — therefore the probability density
for the whole three-sphere would be

p(a, t) =
4
3
πa3|ψ(a, t)|2. (12)

It is in our opinion disputable which one should be chosen although the later seems
more sensible since Eq. (10) is written in the spherical coordinates, hence one
expects the measure factor to appear (as it is the case in the Dirac or Schrödinger
equation). We will discuss both (11) and (12) in this paper.
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Forth, from (10), one can consider the evolution of wave packets ψ(a, t), by using
the Hamiltonian formulation

i∂tψ(a, t) = Hψ(a, t), H = γ0(γk∂k|a + 2π2λa3), k = 1, 2, 3, 4.

A detailed analysis of that dynamics will not be discussed in this paper.
The radial part of the Dirac operator in 4 + 1 dimensions can be written in

general as,39(
∂a +

K

a

)
G = (E +m− V )F,

(
−∂a +

K

a

)
F = (E −m− V )G, (13)

where E is the energy, m is the mass term, V is the potential (the A0 component
of the gauge field), K = ±(l + 3/2), l is the angular momentum (we shall consider
l = 0 from now on). The functions F and G are related to the wave function ψ by

ψ(a, t) = a−3/2e−iEt [F (a)φ1(χ, θ, ϕ) +G(a)φ2(χ, θ, ϕ)], (14)

where φ1 and φ2 are suitably chosen, orthogonal, a independent, spinors (for more
details see Ref. 39). We will normalize them so that

|ψ(a, t)|2 =
(F (a)2 +G(a)2)

4
3
πa3

.

It is now clear that the choice of the interpretation of |ψ(a, t)|2 is crucial for the
analysis of the probability density at a = 0.

In our case, we have m = 2π2λa3, V = 0, therefore, introducing dimensionless
variables x = a(2π2|λ|)1/4, ε = E/(2π2|λ|)1/4 and the tension signature σ = λ/|λ| =
±1, the spectral problem (13) can be written in the matrix form.

hminφ = εminφ, hmin :=


 −σx3 ∂x +

K

x

−∂x +
K

x
σx3


 . (15)

If φT = (F,G) is the eigenvector of hmin for K = 3/2, λ > 0 and some eigenvalue
εmin then φT = (G,F ) solves hminφ = −εminφ for K = −3/2, λ > 0 and φT =
(−F,G) solves hminφ = −εminφ for K = 3/2, λ < 0. Therefore, we choose K = 3/2
and λ > 0 from now on.

2.2.2. Eigenfunctions at the origin

Let us start with the following ansatz for functions F and G

F (x) = xs1e−x/2(f0 + f1x+ f2x
2 + · · ·), f0 �= 0,

G(x) = xs2e−x/2(g0 + g1x+ g2x
2 + · · ·), g0 �= 0,

(16)

i.e. just like in the Dirac equation with the Coulomb potential (in which case one
obtains s1 = s2). Depending on the choice of the definition of the probability
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density, one obtains different constraints on F and G — either F 2 +G2 (cp. (12))
or (F 2 + G2)/x3 (cp. (11)) must be normalizable. Clearly, the second choice is
more restrictive (F and G have to be at least such that (F 2 + G2)/x3 is finite at
x = 0), therefore, to keep the discussion as general as possible we shall assume
the first constraint. A class of functions obeying the first constraint should a priori
be larger than for the second one. We shall now prove that a careful analysis of
the spectral problem (15) actually implies that these two classes are in fact equal.

First, let us use the fact that F andG can be expanded in the following orthonor-
mal basis

e
(α)
n (x) =

1√
Nn,α

xαL
(2α)
n−1(x)e

−x/2,

Nn,α =
Γ(n+ α)
(n+ 1)!

, α = min(s1, s2), n ∈ N+,

(17)

where L
(α)
n (x) are generalized Laguerre polynomials. Clearly, the condition∫∞

0
(F 2 +G2)dx <∞ implies that α > 0 however due to the K/x term in the oper-

ator hmin one in fact needs to assume that α ≥ 1/2 — otherwise the matrix repre-
sentation of hmin would not exist (i.e. the scalar products (en,

1
xem) =

∫∞
0

1
xenemdx

would be infinite). This constraint can be further improved by using the expansion
(16). Because of the specific form of the operator hmin (all powers of x are integers),
we may assume that s1 − s2 ∈ Z. Substituting (16) to (15) and analyzing all the
possibilities s1 = s2, s1 = s2 ± 1, s1 = s2 ± 2 etc. one finds that there is only
one possible choice where α > 0 and it is for s2 = s1 + 1 with s1 = K(= 3/2).
Therefore, one should choose α = 3/2 which implies that not only F 2 +G2 but also
(F 2 +G2)/x3 is normalizable.

Let us note again that the above conclusion is due to the term K/x — both the
singular behavior and the coefficient K are important. The term comes from the
coordinate transformation of the kinetic part of the Dirac operator in (10) and is
unremovable i.e. its generic form is K/x with K = ±(2l + 3)/2, hence it persists
for all angular momenta l. Analogous situation would not exist for the bosonic
field. There the corresponding kinetic term would be the Laplace operator which in
spherical coordinates has the centrifugal barrier term l(l − d + 2)/x2, in d spatial
dimensions. Therefore, in the bosonic case there exist two sectors of the Hilbert
space (for l = 0 and for l = d− 2) where there is no singularity.

We have just shown that |ψ|2 = (F (a)2 +G(a)2)/a3 is regular. Therefore, if one
uses the definition (12) then it follows that a three-sphere cannot have a zero radius
since the likelihood of that event is zero (p(a = 0, t0) = 0). On the other hand, our
analysis also shows that |ψ(a, t)|2 is finite for a = 0. Therefore, a similar conclusion
could not be obtained when taking (11) as the definition of the probability density.

Let us finally observe a close analogy between those results and the case of Dirac
equation in the Coulomb field where |ψ(a, t)|2 is in fact singular while F (a)2+G(a)2

is zero for a = 0.
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2.2.3. The spectrum

The Hilbert space of the problem (15) consists of square-integrable vectors φT =
(F,G) on [0,∞) satisfying a condition φ(0) = 0. Therefore, the operator ∂x is
anti-Hermitian in this Hilbert space hence hmin is Hermitian which proves that the
spectrum of hmin is real.

Let us also observe that the spectrum of h2
min is discrete. To see this, we use an

identity

h2
min = Q2 +

3
4x2

(
1 0
0 5

)
, Q =

(
−x3 ∂x

−∂x x3

)
. (18)

Hence, we have an inequality h2
min ≥ Q2. However, Q2 is discrete since introducing

a± := F ±G the eigen equation Q2φ = η2φ gives

h±a± = η2a±, h± := −∂2
x + x6 ± 3x2,

i.e. a+ and a− decouple and since h+ and h− are discrete, Q2 must also be discrete.
Because h2

min is bounded from below by a discrete operator it follows that h2
min

itself must be discrete40 and, therefore, hmin is discrete as well.
To find the exact spectrum of hmin, we use numerical methods. First, we cal-

culate the representation of each operator in hmin, in some orthonormal basis. Our
choice is (17) for α = 3/2. Second, we truncate that infinite matrix representation
(i.e. truncate each matrix representation of operators appearing in the entries of
the 2×2 matrix hmin) and then numerically diagonalize the resulting finite matrix.
The spectra and the eigenvectors of the truncated matrices converge to their exact
counterparts when the size of the matrix is increased. The results of this numeri-
cal approach are presented in Fig. 2. It follows that the first positive and negative
energy levels are

ε ≈ 3.4, 5.0, 6.5, 7.8, 9.0, 10.3, 11.4, . . . ,

−ε ≈ 2.2, 4.1, 5.7, 7.1, 8.4, 9.7, 10.9, . . . .

Fig. 2. Convergence of energy levels of hmin (for K = 3/2, σ = 1) with n — the size of truncated
matrix representation — up to n = 300.
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Fig. 3. F 2(x) + G2(x) for the first three positive and negative energy states of hmin.

The plots for F 2(x) +G2(x) are presented in Fig. 3. The negative energy solutions
are normalizable therefore one cannot ignore them. This would be troublesome if
the three-sphere was interacting with some external field or with another membrane
in the embedding space E — in which case a three-sphere could lose energy. Because
the spectrum is not bounded from below this would imply that the energy of a three-
sphere could become arbitrary negative. Consistency would require that there is no
such external fields and that there is only one three-sphere in E. Otherwise, one
needs to introduce a Dirac sea (of negative energy three-spheres) i.e. assume that
all the negative energy states are filled.

3. General Action

In this section, we will generalize previous considerations to the case of Einstein–
Hilbert action with the cosmological constant term and matter. Therefore, we con-
sider

S = Sλ + SEH + Sm,

Sλ = −λ
∫
M

√−g d4x, SEH = − 1
2κ

∫
M

√−gR d4x,
(19)

where κ = 8πG, R is the Ricci scalar, Sm is the action for matter.b The tension
λ is related to the cosmological constant Λ via λ = Λ/8πG. From now on, we will
set G = 1. Our view on the action (19) is nonstandard here. Usually, one takes

bWe shall not consider, in this paper, generalizations of the Einstein–Hilbert action to higher-
order Lagrangians such as f(R) gravity. Quite surprisingly, these models exhibit a bifurcation
into almost Einsteinian branches41 which provides a different point of view on SEH and hence the
singularity problem.
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the Einstein–Hilbert term as a starting point and only then adds “something else”
e.g. Sλ or Sm. Here, we consider spacetime as embedded manifold with tension λ.
Therefore, Sλ is a starting point while SEH and Sm are in addition to it. Moreover,
the Einstein–Hilbert term is defined on M not in the embedding space E. As such
S can be also viewed as an action for the vector field XA(x) on M — with no
reference to the embedding.

Varying S with respect to the XA, one obtains

δXS =
1
2

∫
M

(
−λgµν +

1
κ
Gµν − T µν

)
δXgµν

√−gd4x,

where Gµν = Rµν − 1
2gµνR is the Einstein tensor, Rµν in the Ricci tensor (Rµν :=

Rα
µαν) and Tµν := 2δSm/δg

µν is the energy–momentum tensor. The variation of
gµν gives 2∂µXAδ∂νX

A hence the equations of motion are

∂µ

[√−g
(
−λgµν +

1
κ
Gµν − T µν

)
∂νX

A

]
= 0. (20)

These equations can be obtained from the usual Euler–Lagrange equations.42,43

3.1. Spherically symmetric motion

If gµν satisfies Einstein’s equations with the cosmological constant and matter terms

−λgµν +
1
κ
Gµν = T µν (21)

then clearly Eq. (20) is satisfied, however, it is not so clear if there exist coor-
dinates XA which give rise to that metric via (1). The problem lies within the
energy–momentum tensor term — if Tµν = 0 then one can always find (locally) the
embedding coordinates however if Tµν �= 0 such coordinates may not exist. We shall
now verify this remark for the FRW line element (7) and the energy–momentum
tensor for a perfect fluid

Tµν = (ρ+ p)δµ0δν0 − pgµν . (22)

There are a priori five equations in (20) for each A. However, for A = 1, 2, 3, 4 one
obtains the same equation which is

N := 3(1 + ȧ2)2 − 3κa2(λ− p+ (λ+ ρ)ȧ2) − κ(λ+ ρ)a3ä+ 9a(1 + ȧ2)ä = 0

(23)

while for A = 0, we find

N − 3κa2(ρ+ p) = 0.

It follows that non-trivial solutions for a exist only if we put ρ+ p = 0. Hence, it is
impossible to find embedding coordinates for FRW metric when ρ > 0 and p > 0.
On the other hand, if we allow the pressure to be negative then the condition
ρ + p = 0 can be obtained by considering the matter term Sm for the scalar field
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φ in a particular potential V (φ). Then, one can show that the equation of state
ρ+ p = 0 is approximately satisfied for slowly rolling fields (i.e. 1

2 φ̇ � V (φ)).44–46

Let us therefore assume that p = −ρ. Equation (23) can be written in a convenient
form

3 + 3ȧ2 + aä =
24(1 + ȧ2)2

9 − κ(λ+ ρ)a2 + 9ȧ2
(24)

and we see that in the limit κ → ∞ one recovers the equation for minimal four-
volumes (9). It is now straightforward to verify that (24) is a consequence of Fried-
mann equations for ρ+p = 0. Substituting (22) and (7) to (21), we obtain standard
equations (

ȧ

a

)2

= − 1
a2

+
κ(λ+ ρ)

3
,

ä

a
=

1
3
κ(λ+ ρ). (25)

Using expressions for ȧ and ä obtained from (25), we find that the left-hand side
and the right-hand side of (24) coincide (giving 4κ(λ+ ρ)a2/3 each). Therefore, we
have shown that (25) imply (24). It is reasonable to ask if the converse is also true
i.e. whether (24) is equivalent to (25). We will now show that this is not true i.e.
the space of solutions of (24) is much larger than the space of solutions of (25).

For simplicity, let us assume that ρ = p = 0 i.e. the Universe is empty. Then,
the general solution of the Friedmann equations (25) for λ > 0 are nonsingular

a(t) =

√
3
λκ

cosh

(
t

√
λκ

3

)
(26)

(de Sitter solution of spatially closed Universe) while for negative λ and ρ = 0
Eq. (25) have no solutions. As shown above, (26) is also the solution of (24), however,
it is not clear if it is a general solution of (24).c

Let us first analyze the numerical solutions of (24) for ρ = 0 — Fig. 4. We see
that not only the solutions do not resemble (26) but also that there is a critical
value of λκ below which the solutions develop singularity in finite time (for the
boundary conditions a(0) = 1, ȧ(0) = 1 the critical value satisfies the bounds
0.056 < λ0κ < 0.057). This result is rather interesting since we obtained three
classes of solutions (asymptotically expanding, asymptotically static or contracting)
similar to Friedmann solutions, however, let us point out that unlike for Friedmann
solutions there is no matter here. Therefore, the embedding equations (20) allow
for solution which do not solve the Einstein equations — in particular they allow
for singular solutions for Tµν = 0.

cThis is not in conflict with the uniqueness of solutions since the space of boundary conditions
for (24) is much larger than the space of boundary conditions of (25). A simple example of this
sort is a pair of equations ȧ = 1, a = t which have general solution a(t) = t. On the other hand,

they also imply that ȧa = t the general solution of which is a(t) =
√

t2 + A.
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0.01

Fig. 4. A family of solutions of (24) with a(0) = 1, ȧ(0) = 1 for various (positive and negative)
values of λκ. There exists a critical value below which the solutions develop singularity.

Let us now give more rigorous proof that solutions of (24) are more general than
(26). It is useful to introduce the function F defined as (ρ = 0)

F :=
3
κλ

ȧ2 + 1
a2

. (27)

In case of Friedmann equations (25), F is simply 1 — we will now be looking for
more general F of the form F = F (a). Expressing ȧ in terms of F and a and
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substituting the result to (24), we obtain

ä =
κλ

3

(
1 − F

3

)
aF

F − 1
3

. (28)

Equations (27) and (28) are equivalent to (24) for ρ = 0. Using the formula ä = 1
2

dȧ2

da

and applying it to (28), we obtain

ȧ2 =
2
3
κλ

∫ a

0

ãF (ã)
(

1 − F (ã)
3

)

F (ã) − 1
3

dã. (29)

On the other hand, ȧ2 from (27) is

ȧ2 =
κλ

3
a2F − 1. (30)

Equating (29) with (30), we obtain an integral equation for F . The derivative with
respect to a of that equation gives

aF ′(a) = 8F (a)
1 − F (a)
3F (a) − 1

.

Integrating the above equation, we obtain a nonlinear equation for F

(F − 1)2F =
eA

a8
, A ∈ R. (31)

We now see that the Friedmann equations case, F = 1, corresponds to taking the
limit A → −∞ in (31). However, solutions of (31) are more general than that.
Equation (31) has three roots, two of which are complex and one is real which is

F (a) =
1
3

(
2 + x+

1
x

)
, x =

(
27eA + 3

√
3
√

27e2A − 4a8eA

a8
− 1

)1/3

.

To find the solution for a(t), one can use the definition (27) to arrive at the com-
plicated integral ∫ a

a0

dã√
κλ

3
F (ã)ã2 − 1

= t− t0, a0 := a(t0).

This completes the proof that a class of solutions of (24) is larger than a class of
solutions of (25).

3.2. Dirac equation

In this section, we shall discuss the singularity formation in the context of the Dirac
equation using similar method as in Sec. 2. For general coordinates, the canonical
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momenta for the action (19) are now

ΠA = PA +
√−g

(
1
κ
G0µ − T 0µ

)
∂µXA,

where PA are as in (4). The constraint (3) for PA still holds, therefore, its linearized
form will be

γA

[
ΠA −√−g

(
1
κ
G0µ − T 0µ

)
∂µXA

]
Ψ = λ

√
− det grs. (32)

To proceed further, we now concentrate on the FRW line element for closed three-
geometry. Let us, therefore, assume that the metric is given by (7) and that there
is no matter at all (as shown previously this case contains singular solutions).
Following Sec. 2, we introduce the average momenta for the whole three-sphere

πA =
∫

t=const.

ΠAdχdθdϕ

and, as in (10), we will consider the wave equation by substituting πA → −i∂A.
Equation (32) becomes now

(−iγA∂A|a + 2π2λa3)ψ(a, t) + γ0V̂ ψ(a, t) = 0, (33)

where V̂ is an operator corresponding to the classical expression

V = − 1
κ

∫
G00√−gdχdθdϕ = −6π2

κ
(ȧ2a+ a),

where we used the fact that Gµν is diagonal and that the integral over ∂0XA is
nonzero only if A = 0 (moreover G00 = 3(ȧ2 + 1)/a2 and

√−g = a3 sin2 χ sin θ).
Note that V̂ enters Eq. (33) in the same way the zeroth component of the electro-
magnetic field enters the Dirac equation with an external field. To find the quantum
counterpart of the term involving the time derivatives of a, we first calculate the
momenta conjugate to a

pa = −3π
2
ȧa, V = − 1

3π
p2

a

a
− 3π

4
a.

The momenta are calculated using a standard method5 (in deriving pa one uses
action (19) augmented by a boundary term needed for the consistent variational
procedure — that term does not affect the equations of motion nor the constraints).
Second, there is an ambiguity in choosing the differential operator corresponding
to p2

a/a term. We choose the ordering following DeWitt1 as

p2
a

a
→ − 1

a1/4
∂a

1
a1/2

∂a
1
a1/4

.

Introducing dimensionless units as in previous section, we find that the eigenvalues
of (33) can be obtained from the following spectral problem

hdSφ = εdSφ, hdS = hmin + v(x)1,

v(x) =
1
2β

∆ − 1
2
βx, ∆ =

1
x1/4

∂x
1

x1/2
∂x

1
x1/4

,
(34)
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where hmin is as in (15) and β = 3
√
π/Λ is a dimensionless constant. If we were to

substitute the experimental value of Λ then the term proportional to ∆ would be
extremely small while the linear term would be very large and negative.

3.2.1. Singularity avoidance

As in Sec. 2, we shall now be looking for functions F and G of the form (16). The
operator ∆ contains terms x−3, x−2∂x and x−1∂2

x which imply that one should
take α := min(s1, s2) ≥ 3/2 in order to have the scalar products (en,∆em) =∫∞
0
en∆emdx finite. Using the same analysis as before we find that this condition

can be satisfied this time only when s1 = s2 in which case one finds that the
equation for (say) s1 is s21 + s1 + 7/16 = 0. The roots are 1/4 and 7/4 but α ≥ 3/2
hence we take α = 7/4 which proves that not only the probability density (12) but
also (11) is zero for a = 0, concretely

|ψ(x, t)|2 =
(F (x)2 +G(x)2)

4
3
πx3

=
√
xe−x/2r(x),

where r(x) is regular at x = 0. Clearly, this result is much stronger than the one
obtained in Sec. 2 — it shows that the eigen functions are 0 for a = 0.

The Hamiltonian formulation is now

i∂tψ(a, t) = Hψ(a, t), H = γ0(γk∂k|a + 2π2λa3) − V̂ , k = 1, 2, 3, 4,

where the wave packets ψ(a, t)’s can be expanded in terms of eigen functions of
which we know that are 0 for a = 0. Therefore, no matter which definition of the
probability density one chooses ((11) or (12)), one concludes that the three-sphere
cannot have zero radius i.e. the likelihood of that event is 0. This certainly fulfills
the DeWitt’s requirement and hence we conclude that the singularity is not present.

A contracting three-sphere will approach a minimal size and then start expand-
ing. It is likely that this expansion will then be slowed down and stopped due to the
x3 terms in hdS therefore the evolution of the wave packet would be cyclic. To verify
this remark, one would have to perform the corresponding numerical analysis.

3.2.2. The spectrum

The operator v(x) is negative definite and it enters hdS with the plus sign. There-
fore, the eigenvalues of hdS will be lowered compared to the eigenvalues of hmin.
Moreover, hdS contains a parameter β which influences the spectrum consider-
ably — that parameter cannot be eliminated by some rescaling of coordinate x.
Several spectral lines for β = 10 and β = 20 are presented in Fig. 5.
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Fig. 5. Spectral lines of hdS for β = 10 (left) and β = 20 (right). The cutoff reached is n = 1000.
To obtain reliable positive spectral values for β = 20 one would have to go to higher n. On the
other hand, negative eigenvalues converge much quicker.
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Fig. 6. F 2(x) + G2(x) for first three positive and negative energy states of hdS for β = 10.

We observe a discrete spectrum. The positive and negative eigenvalues obtained
for β = 10 are

ε ≈ 0.04, 1.2, 2.2, 3.3, 4.3, 5.2, . . . ,

−ε ≈ 1.2, 2.6, 6.4, 8.5, 10.4, 12.2, . . . .

The eigenvalues, compared to the spectrum of hmin in (15), are shifted by (roughly)
−β/2. Therefore, the lowest positive energy state will now have several “bumps”
instead of just one bump (see Fig. 6).

The energies are calculated here in units of (2π2λ)1/4 = (πΛ/4)1/4. Therefore,
the density of spectral lines of hdS and hmin is very large if one substitutes β ∼ 1060

(i.e. Λ ∼ 10−120). However, the appearance of β in hdS makes the spectrum even
more denser (compared to hmin) so that practically any energy is allowable as if
the spectrum was continuous. Therefore, the smallness of the cosmological constant
implies in this model that the empty Universe may have arbitrary energy. On the
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other hand, if Λ was say ≈ 1, the quantization of the energies of the Universe would
be noticeable.

4. Summary

By considering spacetime M as an embedded Lorentzian four-manifold in some
ambient, higher-dimensional space E one necessarily faces a question whether E
is in any sense physical. In this paper, we make no arbitrary statements concern-
ing this problem. However, we do take advantage of the fact that certain, con-
ceptual problems appearing in the formulation of quantum gravity by considering
Wheeler–DeWitt equation (e.g. the problem of time) are naturally solved within
this approach. Moreover, the constraints (3) appearing in such approach are very
similar, in the form, to the mass-shell constraint for point like particles and, there-
fore, one is tempted to apply the Dirac’s “square-root” procedure also in this case.
By doing so, one arrives at the functional Dirac-like equation for embedded man-
ifolds which are linear in momenta. There are at least two distinct ways of doing
this ((5) and (6)) and in our opinion both are important.

We then concentrate on the spherically symmetric motions by considering S3

with one dynamical variable — a(t) — and make a proposal (based on (6)) for
a quantum mechanical system behind such mini-superspace model. For minimal
four-volumes we find that the spectrum of the corresponding Dirac Equation (10)
is real and discrete — it contains positive and negative eigenvalues which are not
bounded form below. By careful analysis of the wave functions at the origin, we
showed that the amplitude |ψ|2 is finite at a = 0. Hence, it is disputable whether a
three-sphere can collapse due to the ambiguity of defining the probability density.

It turns out that considering general action with the Einstein–Hilbert term, one
can improve the situation by finding that the amplitude |ψ|2 = 0 for a = 0. It is,
therefore, in accordance with DeWitt’s boundary condition that the function van-
ishes for those classical configurations where the singularity appears. This analysis
is performed for the FRW metric for closed spatial geometries. One would like to
call this model an embedded closed Friedmann model with no matter (or embedded
closed de Sitter model). However, it is important to note that the classical equations
of motion of the embedding picture (24) are much more general than Friedmann
equations (25). In particular, they allow for singular solutions for both positive and
negative tension λ = Λ/κ which is not the case in (25) for ρ = 0. We have shown
that in the quantum picture, when one considers the Dirac Equation (33), these
singularities are avoided.

To generalize this approach, one should consider the case ρ > 0 which can be
done by introducing slowly rolling scalar fields.
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