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Abstract

The Einstein-Boltzmann system is studied, with particular attention to the non-negativity
of the solution of the Boltzmann equation. A new parametrization of post-collisional momenta
in general relativity is introduced and then used to simplify the conditions on the collision
cross-section given by Bancel and Choquet-Bruhat in [3]. The non-negativity of solutions of
the Boltzmann equation on a given curved spacetime has been studied by Bichteler [4] and
Tadmon [20]. By examining to what extent the results of these authors apply in the framework
of Bancel and Choquet-Bruhat, the non-negativity problem for the Einstein-Boltzmann system
is resolved for a certain class of scattering kernels. It is emphasized that it is a challenge to
extend the existing theory of the Cauchy problem for the Einstein-Boltzmann system so as to
include scattering kernels which are physically well-motivated.
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1 Introduction

To understand how the gravitational field and matter interact in general relativity it is necessary to
specify a suitable matter model. One frequently used type of model comes from kinetic theory, where
matter is considered as a collection of particles described statistically. The Vlasov and Boltzmann
equations are the equations describing this type of model and coupling to the gravitational field gives
the Einstein-Vlasov and the Einstein-Boltzmann systems respectively. We refer to [I] and [16] and
their references for basic information about the Einstein-Vlasov system and the Einstein equations
coupled to many different matter models. The present paper considers only the Einstein-Boltzmann
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system. Compared to the Einstein-Vlasov system, the Einstein-Boltzmann (EB) system has not been
studied much in the decades since local existence was proven by Bancel and Choquet-Bruhat [2] [3].
Recently several further results have been obtained for the EB system. Mucha [IT], 12] showed that
the initial regularity conditions given in [2] [3] can be weakened. Noutchegueme and Dongo [13] and
Noutchegueme and Takou [15] proved some global existence results for certain classes of spacetimes
with symmetries. The relativistic Boltzmann equation on a given curved spacetime was studied in
[4, 14, 20]. As for the nonrelativistic or special relativistic Boltzmann equations, one can find plenty
of references, and we only refer to [5l [6l [§].

The EB system is a system of equations where the Einstein equations and the Boltzmann equation
are coupled to each other. In harmonic coordinates, the Einstein equations take the form of the
system of quasilinear wave equations
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for a Lorentzian metric gog5, where H? is a rational function of gag and 0,95 with denominator
a power of the determinant |g|, and T°? is the stress-energy tensor of matter described by the
Boltzmann equation. The Boltzmann equation describes the dynamics of a relativistic gas, the
particles of which interact through binary collisions. The unknown is the distribution function f
defined on the phase space, which is the tangent bundle T'(M) of a four-dimensional manifold M with
a metric go3. If we assume that all the particles considered have the same mass, then momentum
is confined to a submanifold P(M) C T(M), which is defined by g.sp®p® = —1, when the mass
is normalized to unity. This submanifold is called the mass hyperboloid. As a consequence of this
assumption the distribution function turns out to be a function of seven variables. The Boltzmann
equation takes the form
(e 8f 7 a, B 8f

P g~ That"p e = QU ) (12)

where foﬁ are the Christoffel symbols of the metric gog, and the collision operator @,

0= [ [ sra(16)7@) - 10)5@) 02 dg (1.3

qo

will be studied in detail in the next section. Here, for simplicity we abbreviate f(z,p’) as f(p’),
f(z,q") as f(¢'), and so on. The stress-energy tensor 77 is defined as

1
2
Tf = / )’ —|gz|90 dp, (14)
s -

where the integration over R? is understood as integration on the mass hyperboloid at z. The
equations ([I)—(T4) form the EB system [7, [17].

In this paper, we are interested in the strong solutions of the EB system constructed in [3]
by Bancel and Choquet-Bruhat. In Section 2, the Boltzmann equation in a curved spacetime is
studied and an alternative formulation using an orthonormal frame is explained. (Its relevance is
discussed in Section 4.) Returning to the equations written in a coordinate frame as in [3] we
introduce a new parametrization of the post-collisional momenta. Unlike in the nonrelativistic case,
the post-collisional momenta can usefully be parametrized in many different ways in the relativistic
case [0, (18] [19]. The parametrization in Section 2.1 can be thought of as a generalization of that
in [9). With this parametrization, we consider the original result of Bancel and Choquet-Bruhat,
and simplify some conditions in their paper. The distribution function in the Boltzmann equation
should be non-negative because of its interpretation as a number density. In mathematical terms
this means that a solution f of the Boltzmann equation arising from non-negative initial data



should itself be non-negative. This important property was not proved in [3]. A central aim of
the present paper is to clarify this question, taking into the account the available results in the
literature. This non-negativity problem for the EB system is considered in Section 3. In the case of
the Boltzmann equation on a given curved spacetime, there are two results known [4} 20] concerning
the non-negativity problem. If a solution of the EB system is given, in particular a four-dimensional
manifold and a metric as a part of a solution, a result on non-negativity of solutions of the Boltzmann
equation on suitable curved spacetimes implies a non-negativity result for the EB system. Thus in
order to settle this question for the solutions obtained by Bancel and Choquet-Bruhat in [3] it suffices
to examine whether the conditions assumed in [4] 20] hold in the framework of [3].

In Section 3.1, a result of Tadmon [20] is considered. Although [20] cites [3] it does not discuss
the applicability of the results obtained to the solutions of that paper. The conditions in [20] are
quite complicated, but it is shown in Section 3.1 that they are satisfied in the framework of Bancel
and Choquet-Bruhat. In Section 3.2 it is pointed out that the assumptions assuring non-negativity
of solutions of the Boltzmann equation in the work of Bichteler [4] do not follow from those of [3].
It is shown, however, that non-negativity of the distribution function in the solutions of [3] can be
proved using a method simpler than that of Tadmon.

Section 4 contains some further general considerations on the EB system. The topics discussed
include the advantages of a formulation using orthonormal frames, the issue of identifying physically
relevant scattering kernels and how the non-negativity result can be made global.

1.1 Notation

In this part, we collect the notation which is used in this paper. Greek indices run from 0 to 3, while
Latin indices run from 1 to 3. The spatial variable x denotes a four-vector, while the momentum
variable p denotes a three-dimensional vector, i.e.,

x= (202t 2% %), p=0"0"p")
The metric g, has signature (—, +, +, +), g denotes its determinant, and the Minkowski metric is
denoted by 145. Throughout the paper, the speed of light ¢ and mass of the particles are assumed to
be unity and hence the momentum p® lies on a hypersurface defined by the equation ga,@po‘p'@ = -1,
which is called the mass shell. Due to the mass shell condition, p° and py are represented by p’ as
follows.

1 . ) .
P’ = (goz'pl + \/(901']91)2 — goo(gi;p'p? + 1)) ,
900 (1.5)

po = —\/ (90ip")? — goo(gi;p'p? +1).
In some places, we use the Euclidean norm in R, i.e.,

d

pl> =Y _(")* for peR?,
=1

and - will denote the usual inner product in R%, i.e.,
d
p-g=)Y_p'¢" for pqeR™
i=1

We also collect the function spaces which are used in this paper and which were originally
introduced in [3]. The spaces are basically Sobolev spaces weighted in the momentum variables.
Two kinds of weight functions are used, (pO)N/?*"iCI and epo, where N is a positive integer and |]A€| is
the number of derivatives which are taken with respect to momentum variables. For simplicity, we
write hy(p) = (pO)N/2+";| and h(p) = e?’, which can be understood as the case N = oo.



1. Let wp be a domain of R3, i.e., z° = 0 in R*, and &g = wy x R3.

2. Let H,(wo) and H, n(&o) be the Sobolev spaces whose norms are defined as

||U||§1M(w0) = Z ||DI;UH%2(WO)7
[k|<p

||f||%{M,N(@0) = Z ||hk(p)D’;7pr%2(@0),
[k|<p

where k is a multi-index such that D’;)p = DgDﬁ in the latter case.
3. Let © be a domain of R* and Q2 = Q x R®.

4. Let H,(Q) and H, x(Q) be the Sobolev spaces whose norms are defined as

lullr, ) = Z I D5ull7 2

[kl<p
[k|<p

where k is a multi-index such that D’;)p = D§D§ in the latter case.

5. 9ap(0), dogap(0), and f(0) will denote the initial data for g,g and f respectively.

2 The Boltzmann equation in a curved spacetime

In this section, we focus on the Boltzmann part of the EB system. We assume that a four-dimensional
manifold and a metric are given, and consider the Boltzmann equation in this spacetime. Let
x® € R, p® € R*, and p® satisfy gaﬁpo‘pﬁ = —1. For a given metric gog, the Boltzmann equation

reads of of
a V) i o, BY) _
P s~ Tasp™p o Qf, f),
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Here I, 5 are the Christoffel symbols defined by

(04955 + 095 — Ds9+),

1
a
Iy = 59
and S is called the collision cross-section and is a non-negative function,

S =MXoo with o=0(p,0). (2.1)

Q1 is a point of S2, thought of as the unit sphere in R3 with standard measure df2 and polar angle
6. The quantities o and 0 are called the scattering kernel and the scattering angle respectively. The
scalar quantities A and p are defined by

A=V=(pa+6)P*+¢), 0=vV{Pa— )P —q%). (2.2)




The variables p'®, ¢'“, p®, and ¢* denote the momenta of two colliding particles, i.e., post-collisional
momenta p'® and ¢’*, and pre-collisional momenta p® and ¢%, and they satisfy

p/a + q/Ot :pa _"_ qOL7

which expresses energy-momentum conservation. The collision operator ) can be written as Q =
Q4+ — Q_ where

o[ S(:v,p,q,ﬂ)f(p’)f(q’)dfl% da,

-~ 1) [[ sGra2@ dﬂ% dg.

Q4+ and @Q_ are called the gain term and the loss term respectively. Note that Q4 and @_ are
non-negative.
In the case gng = 7Mag, the above Boltzmann equation reduces to the well-known special rela-

tivistic Boltzmann equation. In this case, the Christoffel symbols vanish, |g| = 1, and —go = ¢°, so
we obtain

Pt of _ N
i = [ [ verte.0) (16 10) - 1) @) d2da
where vy is called the Mgller velocity,
_ e
U¢ = po—qo

The general relativistic Einstein-Boltzmann system can be written in an alternative way which
makes it look more similar to the special relativistic case and which is more convenient for some
purposes. The idea is to introduce an orthonormal frame ej; on spacetime with dual coframe 6%.
Here the indices from the beginning of the Greek alphabet like a: are coordinate indices as before
whereas the indices like p from the middle of the Greek alphabet label the vectors of the frame.
In formulating the EB system the metric is described by its components in a coordinate frame as
before but the coordinates (z®,p®) used to parametrize the mass shell are replaced by coordinates
(x™,v") where v¥ = 0%p“. By abuse of notation we will write f(xz®,v*) for the representation of
the distribution function in the new coordinates. An advantage of the new coordinates is that the
collision term no longer contains any explicit dependence on the metric and is identical in form to
what it is in special relativity. On the other hand the transport part of the Boltzmann equation
becomes more complicated and the Christoffel symbols are replaced by the components of the Levi-
Civita connection in the chosen frame. Thus we obtain the equation

e T g sl Bsef + i o O = (. p). (23)

If the EB system is to define a closed system for the quantities gop(z?) and f(x7,v™) then the
orthonormal frame must be fixed in terms of the metric and the coordinates by some condition. This
can be done in such a way that it depends only on the components g, and does not contain any
direct dependence on the coordinates. One way of doing this is to use the Gram-Schmidt process.
This algorithm for producing an orthonormal frame from a general frame is best known in the case
of positive definite metrics but it works just as well for pseudo-Riemannian metrics provided the
starting frame is non-degenerate in the sense that the pull-back of the metric to the subspace spanned
by any non-empty subset of the vectors of the frame is a non-degenerate quadratic form. This process
can be applied to the coordinate frame 9/0x® to get the frame ej}. Then the components ef; are
algebraic functions of the components g,3. In the case of the first two elements of the basis, for



instance, we get

3 (2.4)
(2.5)

eo —5 (—g00)
el = (—goodt + 90185)((900)*911 — go0(g01)?)

=

It then follows that the components v are also algebraic functions of the components g,g. The
coeflicients in the transport part of the Boltzmann equation are algebraic functions of the components
Jap and their first order partial derivatives.

2.1 The post-collisional momenta

A parametrization of the post-collisional momenta p’* and ¢’* in general relativity has been obtained
in [3] using an orthonormal frame {e#} associated to a point of the mass shell. Note that this is a
different type of object from the orthonormal frame introduced above. In the frame considered in
B] p* = etv®, ¢* = etw® and v* +w® = (A,0,0,0). The post-collisional momenta in this frame are
represented by

VU= S ne0), W= (D),

where Q € S2. Consequently, p* is given by

p'* = = (eh XA+ el ocosh + psinb(eh cos p + €} sin p)),

1
5 (
where 2 = (cos 8, sin 6 cos ¢, sin 0 sin ), and a similar expression is obtained for ¢’#. It is a natural
approach to choose an orthonormal frame and then use formulae from special relativity, but in some
points it has an inconvenient aspect concerning the orthonormal frame. In this paper, we consider
the Sobolev spaces of order greater than five. Hence, high order derivatives of some quantities are
taken, and we need to estimate derivatives of the orthonormal frame chosen. If we follow the result
of [3], then derivatives of the post-collisional momenta are estimated as follows.

IT\JrISIJrl/2

w%\)’

3

k f\k\
<
|D ,pp| Z )\2|r1\g

where k is a multi-index such that D’;)p = D§D§, the sum is over all the possible multi-indices

r1, To, s satisfying |r + s| < |k| and r; + r2 = r, and the term gU*D) will be defined later. We
can see that singularities appear in the denominator, which are certainly due to the choice of the
orthonormal frame. This problem might be removed by taking another orthonormal frame at the
singular points, but it would be quite complicated to find such an orthonormal frame that behaves
well at those singularities. We instead use a different approach to parametrize the post-collisional
momenta, where the above problem does not arise.

We introduce a new parametrization of post-collisional momenta. Suppose that p® and ¢% are
given, and consider the following four-vectors.

Y =p+¢* and t* = (nw', —now) for weS? (2.6)

Note that ¢t is orthogonal to n®. Then p'® and ¢’* can be parametrized by

/o« tﬁ(pﬁ - qﬁ)t 4P 5qﬁ
L T 15tP
5 4 5 (2.7)
qla:qa+tﬂ(p —q )ta: 2t6q
tgth tﬁtﬁ



where we used t,n® = 0. It can be easily shown that they satisfy
p/a +q/a =p® +¢* and p:lp/a _ q(/lq/a - 1.

We can use another parametrization for p'® and ¢'®

o PY+He* o 7 o PO+ o 7
_ L@ — _£ 2.8
2 2 tgt 7 2 2 «/tgt (28)

where ¢ and t* are defined by (Z2) and (20) respectively. We can see that the parametrizations
@) and (28) are very similar to those of the nonrelativistic case. In the nonrelativistic case,
post-collisional momenta p’ € R? and ¢’ € R? are represented in two ways.

P=p—((p—q)  -ww, ¢=q¢+((p—q) ww for wes?

or

,_ptaq Ip—d y_pta |p—d
Pt 17 2
Hence, (27) and (2:8)) can be thought of as natural generalizations from the nonrelativistic case.
We remark that a well-known parametrization of p’® and ¢’“ in the special relativistic case by
Glassey and Strauss [9] is exactly the same as ([2.7). In the special relativistic case, gog = 73, We

have

w for weS?

tat® = —(n-w)* + (n°)* = (0° +¢°)* = ((p +q) - w)*,
and by direct calculations,
taq® = —¢’n-w+n’w-g=—¢"(p-w) —¢’(q-w) +p’(w-q) + " (w-q)
= —°¢°(p/p" - w) +°°(¢/d" - w) = —p°°((h — @) - w).
Defining p = p/p” and ¢ = ¢/q° we obtain the following expression.
i, 2" —0) W)’ +4°)
P°+¢°)? = ((p+q) - w)?

This is the parametrization given in [9].
We close this subsection with a simple lemma, which shows that p® and —pg are equivalent in a
curved spacetime when its metric is close to the Minkowski metric.

Lemma 2.1 Consider a momentum p® satisfying ga,@po‘p'@ = —1. Suppose that there exists a small
€ such that the metric gop satisfies

3 3
9ap = Tapl <& and (1—) ) (X')* < gy X'X7 < (142)) (X')
i=1 i=1

for any three dimensional vector X. Then we have
pl < (1 +e)min{p®, —po} and (1 —e1)p’ < —po < (1 +e1)p’
for some small €1 > 0.

Proof. By solving the equation gagpo‘p'@ = —1, pY and py can be expressed as functions of g,z and
p* as in ([CH). Hence, by direct calculations,

P> < (1+)gip'p’ < (1+2)((90i0")* — goo(gip'p” + 1)) = (L +¢€)(po)?,

—po = —goop’ — goip' < (1 +)p” + elp|,
Wthh imply that |p| < Cpo and [p| < Cp° for some constant C' ~ 1. From the identity py =
goop° + goip® and the conditions on g.g, we get the desired equivalence between p® and —py. O



2.2 Derivatives of the post-collisional momenta

In this paper, we use (7)) for p’® and ¢’*. Since the parametrization (2.7)) depends on z, p, and ¢,
derivatives of the post-collisional momenta are not trivial to compute, but we can see that derivatives
of p'® and ¢’* depend only on t®. To calculate derivatives of p’® and ¢’®, we use the notation ¢(™)
of Bancel and Choquet-Bruhat from [3].

A function A is said to be a ¢("™ function, if 4 is any linear combination of products, 11 j DFi Guvs
with 37 |k;| < m and coefficients in the algebra of bounded functions on © x R? x R? generated by

p*/p°, p*/Po, 4*/4°, and ¢*/qo.
Lemma 2.2 Let t* be a four-vector defined by ([Z8) for some w € S%. Then, for D* = Dka with
maulti-index k = k + k, we have

2+2/k|

DF |2 [ tﬁqﬁta] — (p°)I* Z (po)i(q0)3+2‘ng(\E|)
tgth prt (tot) 1] i
where ggm) are some g\*D functions.

Proof. We first note that p-derivatives of p® and p, are ¢(9) functions as follows,

A T
329’C Do Po o 329’C m
Opo _ Op° 3191' p

a5 2 5900 T 57 Gi :_p_g k90a T gk
3pk 8]) 8 L Jia o BkY0a s

while their z*-derivatives are p®¢(") functions,

o’ dps _ O’ 7
— =—-——-0, 70, —0 70, .
Oz 2p0 9B Oz 8 a.QOﬂ +p 9By = 2p0 a9~v8908 +p 9By
Hence, we can deduce that
69(7”) _ g(m) and 6g(m) _ mt))
opk pY Oz~
To prove the lemma, we use induction on |k|. Since n® = p* 4 ¢%, the four-vector t* is of the form

t* = (niw', —now) = n'@(giﬁwia —gopw) = pogé )4+ q9g

and g%o), which are ¢g(*) functions. Hence, we obtain for |k| = 0,

0 (0)

for some g(o)

2 .
o169 o _ > W)@ o)
tgth — tat® E

We use t,t* = Zfzo(po) (¢")* lg( ) to show that for |k + 1.

3 2+2W Y32kl =i
K [ot84° ] _ i ( (&)
DyoD hﬁtﬂt ] = Dya Z DI
2+2\k\ i B
— |k Z )( )3+2‘k‘ (Ik1+1)
BYI+A] 9i
2+2\k\ 3+2|k|—i _
[ # 87 (kD
Z 2-‘1-‘]{}‘ Dma I:tﬂt }gl .



Since Dy [tst?] = 7 O(po)i(qo)zﬂgfl), we obtain

=

442|k| kl—i
tpq” Y () (¢°) 2= gy
D[22 = gyt S PP iy
¥ B B)2+]k i
tgt —  (tptP)2tIK
Similarly,
2+2|k|
tag® ( )3+2|k| i
Dk |9t8Y - D L] (kD)
D,;D {2t3t/3 7] = D, Z —H‘k‘gi
2+2/k| i i
:(p0)7|fc|71 Z (p°)'(¢%)* ¥ g(\k\)
B\1+|k i
—  (tat?)'HIH
2+2\k\

)( )3+2\k\ i

" Z —2+\k\Dpj [t1"] 9.

Since Dy [tt?] = ()71 370 (1) (¢°)> 9", we obtain

4+2|k|

taaP e (p°)( 0)5+2|k|7i _
k BA” | _ . 0\—|k|-1 Z p-)\q (1k1)
DzaD |:2 t :| - (p ) — (tﬂtB)Q-Hkl g'L

)

and this completes the proof of the lemma.

O

To estimate derivatives of the post-collisional momenta, we need to obtain a lower bound for the
quantity t,t“, which appears in the denominator in the expressions coming from Lemma 2.2. Note

that ¢,t® is non-negative, because t,n® = 0 and n® = p® + ¢ is a timelike vector.

Lemma 2.3 Let t* be a four-vector defined by (Z.6) for some w € S%. Suppose that there ervists a

small € such that the metric gopg satisfies

3 3
|go¢ﬂ 77(1,@|<€ and 1—82 <g XXJ< 1+EZ
=1 =1

for any three dimensional vector X, then we have the following lower bound.

(po)® + (%)2) .

tat® > 2(goiw®)? — goo(gsiw'w? (2+
a (g i ) g (gZJ ) 3podo

Proof. The proof is a direct calculation. Since t* = (n;w?, —now), we have

tot® = (no)z(gijwiwj) — 2(niwi)no(golwi) + goo(niwi)2

= (n0)?(gi;w'w?) + goo((gijn'w’)? + 2(giyn'w’ )n® (goiw’) + (n°)?(goiw")?

2((91]” w )nO(QOZ ) + nOnO(gOiwi)Q)u

(2.9)

where we used n;w’ = g;;nw? +n°(go;w?). There are six terms on the right hand side of (Z9). The

first two of these terms can be estimated as follows using the Cauchy-Schwarz inequality.

(n0)?(gijw'w?) + goo(gijn'w’)? > (no)?(gijw'w’) + goo(gijn'n?)(gijw'w?),



We continue the estimation as follows

(no)z(gijwiwj) + goo(gijniwj)2

> (gij0'w?) ((p0)? + (90)? + 2p0q0 + 9oo(9i;0'P”) + 900(9i54°¢) + 2900(g:;0°¢))
= (gijw'w”) ((g0ip")? + (90i9")* — 2900 + 2P0g0 + 2900(9i;P"¢")), (2.10)

using

Do = _\/(Qini)2 = goo((9ijp'p7) + 1)
and the analogous formula for gg. The fourth and the sixth terms on the right hand side of (Z9)
are calculated as follows.
(90iw)? (900 (n°)? = 2n"ng)
= (g0iw")*(900(P°)* + g00(4°)* + 29000°¢” — 20°po — 20°q0 — 2¢°po — 2¢°q0)
= (g0iw")*(=g00(r")* = 900(¢")? = 29001°¢° — 2p°(g0in’) — 2¢°(goin")),

where we used pg = goop®+(go:p’) and the analogous formula for go. To proceed with the calculation,
we use the formula

1 : ; —
P = —— <90ipl + \/ (90iP*)* = goo(gisp'p? + 1))

and the corresponding formula for ¢". After a long calculation we obtain

(g0iw")?(goo(n°)? — 2n°nyg)

= (g0iw")* ((9i;0"P?) + (915 ¢°) + 2)

+ 2(90iwi)2%\/(90ipi)2 — goo((gi;p"p7) + 1)\/(90iqi)2 — 900((9i54°¢7) + 1)

- 2(goiw")? 90i0") (90:q")- (2.11)

—900(
The third and the fifth terms on the right hand side of (Z9) are estimated as follows.
(goiw") (gign'w’ ) (2goon’ — 2n0) = —2(goiw")(gijn'w’)(goin’)
_2|90iwi|\/gijninj \/gijwiwj|90ini|
> —(goiw")* (gign'n’) — (gijw'w?)(goin')?, (2.12)

Y%

where we used the Cauchy-Schwarz inequality. Hence all terms on the right hand side of ([2.9) have
been estimated by (ZI0)-@2I2). Moreover, since n* = p® + ¢%, the first two terms on the right
hand side of (ZI0) are partially cancelled by the second term on the right hand side of (212), and
similarly the first two terms on the right hand side of ([ZI1l) are partially cancelled by the first term
on the right hand side of (212) as follows.

(gijw'w?)((g0ip")? + (90:q")* — (goin")?) = —2(gi;w'w?)(goir*) (90iq"); (2.13)
and

(g0iw")*((9:;0"P") + (9i4°d) — (gizn'n”)) = —2(goiw")* (90" ¢)

—2(goiw")*\/ 9iiP' P\ 9ij €' - (2.14)

Y]
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As a consequence, (Z9) is estimated by (ZI3)-(2I4) and the other terms of (ZI0)-@II), i.e

tat® > (giw'w?)(—2900 + 2pogo + 2900(9i;p'¢”) — 2(g0ip") (goid*))
(goiw") ( 24/9i;p'P\/ 9ij4"¢" + 2>

2o )2%\/(9011’ 2 = g00((gi5p'p?) + 1)y (90:0")2 — g0 (9150°07) + 1)

— 2(goiw")* ——(goir*) (90iq");
—goo

and we rewrite it as follows.

tat® > —=2(gi;w'w’)goo + 2(goiw")?
+ 2(gijw'w? ) (Pogo + goo(9:0°¢’) — (90ip")(90iq"))

+ 2(901‘001)2—\/(901']91)2 — goo((gs50'p?) + 1)\/(901'(11)2 — goo((9i;4'¢?) + 1)
—4goo

- 2(901'601)2% (_900\/gijpzpj\/giquqj + (901‘?1)(901'(11)) : (2.15)

Note that the first line of ([2IH]) is strictly positive, and the sum of the third and the fourth lines is
non-negative because of the following calculation.

2
(_900\/9ijpipj \/ 9i54° ¢ + (goip") (gmq’))
(900)*(9650'P" )(9i54° ") + (90ip")* (90i4")* = 2900(90i0" ) (90i4°)\/ 940" D7\ 9ij4° ¢

< (900)*(9i;0'P")(9554' @) + (90i0")*(90i0")* — goo((90ip")* (934" @) + (90i0")* (gi;"P"))-

We now have only the second line of ([2.I5)), which is explicitly calculated as follows. Note that the
coefficient g;;w’w? is strictly positive, and we have

Pogo + 9oo(9:;0°d’) — (goip*)(9oiq")
> pogo — < goo\/ 930"/ 91544 + |g0ip’l|90id’ I)
. N\ 2
(Pogo)* — (—goox/gijpzpj V9i0° 97 + Igmpzllgqul)
Poqo + (—goox/ 9P\ 9i50° 47 + |90ipi||90iqi|>

1
2 3 <(poqo - < 900\ 950"\ 9550 + |g0ip’l|90id’ I) ) (2.16)
D040

where we used Lemma 2.1. Note that

(POQO)2 = (Qini)z(QOiqi)2
— 900(90i0")*(9:54'a”) — goo(g0i")* — goo(90:4")*(9:50"P") — goo(goiq")?
+ (900)* (930" )93 a'd”) + 9isp'D” + gid’d” + 1),
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and
) ) 2
<—900\/ 9iiP'P'\/ 9i54°¢7 + |90ip1||90iq1|)
= (900)*(9:0'P")(9:54'¢’) — 2900|900 ||90:0" |\/ 9:50'P7 \/ 9150 ¢ + (90i0")* (90:0")?

< (900)*(9:9'")(9134'A’) — go0(90i0")* (9i54" @) — goo(90:a")*(9550"P") + (g0ir")*(g0ia")*-
Then, (2.16]) is estimated as follows.

Pogo + 900(9i;0°¢’) — (9oip*)(goiq")

25— (—g00(90i0")* = goo(90ia")* + (900)* (930"’ + gija'd’ + 1))
Podo
—9go0 2 2
> + , 2.17
6p00 ((po) (90)7) ( )
where we used the explicit formula ([[3]) for pg and go. We apply the estimate 217 to (2IH), and
obtain the desired lower bound. O

Remark 2.1 In the special relativistic case, we have a more refined result,
1+ pl* +af
V1+I[p2y/1+ g2

which was obtained in [9]. This inequality implies that tot® > p°/q" in the special relativistic case,
and Lemma 2.3 shows that a similar inequality holds in a curved spacetime, i.e.,

tat® > Cpo/qo or tot™ > Cp®/q° (2.18)

tal® > 2+ |px w? +]g x w* +

for some positive constant C.

We apply the inequality (2I8) to the result of Lemma 2.2, and obtain the following estimate.
Under the same assumptions as in Lemma 2.2, we have

t
’Dk[ BQﬁt]
gt

2+2|k]

—1-2|k]| Z z+|k\ 0y4-+3[k|—i

<C(p )1+|k\(q )4+3|k| ’g &) ‘

(Ikl)‘

for some g(‘E‘) and a positive constant C. Since p’® and ¢’* are parametrized by (2.71) and it can

be easily shown that DFp® = (p0)17|1%\ g(‘f“‘)7 we obtain the following result on derivatives of the
post-collisional momenta.

Lemma 2.4 Let t* be a four-vector defined by [Z0) for some w € S%, and p'® and ¢'“ be two
post-collisional momenta parametrized by [2.71). Suppose that there exists a small € such that the
metric gog satisfies

3 3
|90 — Nap|l <€ and 1—52 2 < g XX < ( 1+EZ
=1 i=1

for any three dimensional vector X. Then, derivatives of p'® and ¢'* can be estimated as follows.
D]+ [DRq| < Cp)HFI (g Ik gD

for some g(m') and DF = DﬁDﬁ with multi-index k = k + k.

12



2.3 The pu— N regularity of the collision operator

In [3], the authors introduced a regularity property of @ called p — N regularity, and showed that
the Cauchy problem for the EB system is well-posed when @ satisfies it. The collision operator @
is said to satisfy u — N regularity if there exists a constant C' satisfying for each @y,

1
0

To obtain p — N regularity, the collision cross-section .S should satisfy suitable conditions, and by
following the calculations of [3], we can see that the following inequality also holds under the same
conditions on S.
1
’ p’

where Q(f, g) is defined by

<CIfFOIF, x@o-
H, n(&:)

Q.10

S CNFOa, w@ IO H, x @0) (2.19)
HM,N(‘D’L)

Q.00

:/ / S(f,qu,Q)(f(p’)g(q’)—f(p)g(q)) dQ@d
R3 J g2

—dqo

In the previous section, we obtained a new estimate of DFp'® and D*¢’® in Lemma 2.4. This
leads to a corresponding new set of conditions on S which imply the y — N regularity of Q). Note
that high order derivatives D’;m [ f(z,p )} are linear combinations of the following quantities.

(Dif)(x,p/)(Djlp/) .. (Djip/) with  j1 4+ +7j; = |]€|7 (220)
where D? denotes some differential operator Dy , satisfying |r| = i. Lemma 2.4 gives the estimate
|DE (£, p)]| £ C YD ), o)) HF (g0 41 ||
where the sum is over all the possible i satisfying (Z20). Consider the following quantity which

arises from estimation of the gain term Q.. Let the multi-indices k, r, and s satisfy k +r + s =1
with |I] < p.

( // Dy [ (0] D3y [ (a))] m%@

<CZ(//ID PSID () (0°) H1 (g0) 317l I
_ L o B 1 2
< | D3 £(q')] ()13 (q0)13+315 | )
Poqo
<oy [[nwnzenio s ’>|2\g<"“'> I 1) o] a0 2o g,
Poqo
D 82h2 p/ hf2 q/ pO 2(i+7)+2|r+s| qO 8(i+37)+6|r+s| dO dq,
/ DSR2 h 2 (0 () (") e

and if the second integral is bounded, then we multiply the first integral by the weight function
h?(p) and integrate it over z and p with Z 222 dpdq = dp’ dq’, to obtain the inequality (2:19) when
1 > 5. Hence, the boundedness of the second integral should be the condition on S for the u — N
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regularity of ). The second integral is estimated as follows. In the case where N is finite,

- i+j)+2(rTs i+)+6[rFs 1
[ 1% SPH b0 2@ T gy g
Po4pPoq0
(pO)N+2|[\ _
<C |D _ (p0)2|r+s\+2\r+s\—2(q0)14|r+s\—1 dQ dg
p/0 N+2z(q/0)N+2j
< C//le S| 2|z\( )2\r+s|+2|rTs\—2(q0)14\r+s|—1 dQdgq
< C// |D 2|k\( )4\r+s|72(q0)14|r+s\71 deq, (221)
where we used —pg < Cpjqpy and p° < Cp'0q¢’®. For the case N = oo,
/ D% SI2h2(p)h =2 (p')h 2 (g ) (p°) 2+ ATl (0BG EITES] ) .
PodoPodo
< O/ |D S| B2 )( )4\T+s|72(q0)14\r+s|71 dQ dq, (222)

where we used p'® + ¢ = p° + ¢° and —py < Cpfg). The boundedness of the integrals (221
and ([Z22)) are the conditions on S for the gain term. The arguments for the loss term are much
simpler, and it is easily shown that the condition for the gain term implies that for the loss term.
Consequently, we obtain the following lemma.

Lemma 2.5 [3] Let p > 5, and suppose that the collision cross-section S satisfies the following
conditions for multi-indices k + r =1 satisfying || < p.

//|D’1p5| 0 Ir=1 40y dg < C(P°)2 =2k for N < oo,

// IDE S22 () =1 drdg < C(p°)* " for N = oo
Then, the collision operator Q satisfies p — N regularity.

Remark 2.2 Note that the condition on S for finite N is stronger than that for the case N = oo,
and that the former condition implies the latter one.

/ |D§1ps|26—2q0(q0)14\r|—1 dQ dg
/ |D 14\ -1 40 dg < C(p )2—4|r\—2|1%| < C(p0)2—4\r|'

In other words, if the collision cross-section S satisfies the condition for finite N, then it also satisfies
the condition for the case N = oco.

3 The non-negativity problem for the Einstein-Boltzmann
system

We now consider the EB system and the question of the non-negativity of its solutions for non-
negative initial data. The Cauchy problem for the EB system was first studied by Bancel and

Choquet-Bruhat [2] [3]. We apply Lemma 2.5 to the results of [2, [3] to obtain the following existence
theorem.

14



Theorem 3.1 [2 3] Suppose that Cauchy data are prescribed as

9ap(0) € Hyy1(wo),  909as(0) € Hu(wo), f(0) € Hy, n (o),

such that
|9 (0) = nag| <e—46, &>0.

If u>5, N > 6, and the collision cross-section S satisfies the conditions of Lemma 2.5, then there
exist a domain Q in R, which admits wy as a Cauchy surface, and a function f on Q such that

1. gap € Hup1(Q2) and f € Hy N ($2).

2. gap Satisfies |gap — Nap| < € on Q.

3. gap and f satisfy the EB system.

4. gap and f induce the prescribed Cauchy data on w and w respectively.
This solution is unique in  and depends continuously on the Cauchy data.

In this section we consider the non-negativity of the distribution function constructed in the above
theorem. Note that we already have a solution (f, gag, 2) of the EB system, while the non-negativity
problem concerns only the distribution function f. Hence, it is enough to consider the Boltzmann
equation on a given curved spacetime and show non-negativity in this case. Conditions for the non-
negativity of solutions of the Boltzmann equation on a given spacetime have been given by Bichteler
[] and Tadmon [20]. We will investigate to what extent the arguments for non-negativity given in
[4, 20] apply to the solutions of the EB system constructed in [2] [3].

Theorem 3.1 holds for any weighted spaces with N > 6, but we will only consider the case
N = oo, i.e., the exponentially bounded case. Firstly, any functions that have polynomial decay
rates can be approximated by functions having exponential decay rates. Hence, non-negativity of
the case NV = oo implies the corresponding result in the case of finite NV by suitable approximations.
Secondly, as we checked in Remark 2.2, a collision cross-section which satisfies the condition for the
case of finite IV also satisfies the condition for the case N = co. So, any property that holds under
the condition for the case N = oo holds under the condition for the case of finite V.

3.1 The result of Tadmon

The original method for the non-negativity problem introduced by Lu and Zhang [I0] has recently
been applied to the general relativistic case by Tadmon [20]. A curved spacetime was assumed to be
given, and mild solutions of the Boltzmann equation were considered, which are defined as follows.
Consider the vector field (p®, —I‘%,Ypﬁpv) as in [4], and parametrize its integral curves by 2° = s on
the mass hyperboloid. Let (X(s), P(s)) € R?® x R? denote an integral curve with X*(0) = 2% and
P(0) = p parametrized by s. This has the physical interpretation of a particle path. Along this
curve, the Boltzmann equation is written as follows.

ft, X(8), P(t) = £(0) +/0 K(f)(s, X(s), P(s)) ds, (3.1)
where f(0) is an initial datum evaluated at (z°,p), and K denotes

K(f)(,p) = I%Q(f, (. p).

Mild solutions are now defined as follows: a function f is called a mild solution of the Boltzmann
equation with measurable initial value f(0), if f is measurable, K(f) is Li .(Ry) along the integral
curves, and B holds.

15



For the rest of this section, z will denote three-dimensional vector consisting of the spatial

components ! where ‘
2 = (2%, 2%) = (t,2) € Ry x R,

and the distribution function will be written as f(¢,x,p) instead of f(z,p). The main theorem of
[20] can be stated as follows.

Theorem 3.2 Let f be a mild solution of the Boltzmann equation with a non-negative initial datum
f(0). Assume the following conditions.

(i) S(tvxvpv%ﬂ) _ S(taxa%paﬂ)

P°qo 7°po
(i) St zp,q,)  dpq) St,pqQ)
P0q o', q") 90

Sqo 1 1
iii) esssup ——|f(t,x,q 2 dQdg =: a(t) € Li,.(Ry),
(i) L. Gl (1) € Lhe(R,)

x,p
I(t J
(iv) esssﬂ)l ( yz})ol (y,v)

=: ﬁ(t) € Llloc(R-‘r)a
where [ is defined by
I(s, X (), P(s)) := 0, [PO(S)J—l(X(s), P(s))

with J, the Jacobian for
dx dp = ’

Then, f is non-negative.

Remark 3.1 The conditions on a(t) and B(t) should be replaced by o, 8 € Li _(I) for some finite

loc
interval I, because the solutions in Theorem 3.1 are local in time. Hence, it is enough to show the

boundedness of o and B on I.

In this part, we will show that, with an extra assumption, the solution of Theorem 3.1 satisfies
the conditions (i)—(iv). Since, as explained below, the extra condition can be arranged by making a
coordinate change, non-negativity for the EB case is ensured. We remark that the strong solutions
in Theorem 3.1 satisfy the definition of mild solutions.

Non-negativity of f. We consider the conditions (i)—(iv) separately in the following.
(i)—(ii) The collision cross-section S is given by (Z1I), which implies

S(t,z,p,q,) = S(t,z,q,p,Q) = S(t, 2,9, ¢, Q),
and it is well known that the Jacobian in (ii) is given by

9(p,4) _ podo
o', d)  podp

Hence, the conditions (i)—(ii) can be written as po/p° = qo/q° = py/p"® for any p and q. However,
this leads to
goi =0, (3.2)
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which is not assumed in Theorem 3.1 and is the extra condition referred to above.

(iii) For the metric gop given in Theorem 3.1, its determinant |g| is bounded, and go and ¢° are
equivalent. Therefore, (iii) is estimated as follows.

< O [ S1stta0l iy
< C@ <// S22 deq>% (//62q0|f(t,x,q)|2dﬂdq)%,

where e?” is the weight function for N = oo case. Since f € H,MN(Q) with p > 5, the second integral
above is bounded. The condition on S given in Lemma 2.5 implies the boundedness of the first
integral, and this shows that the condition (iii) holds in Theorem 3.1.

(iv) As for the last condition, we recall that the integral curve (X (s), P(s)) is defined as follows.
Let X (s) and P(s) denote for each = and p,

X(s) = X(s,0,z,p), P(s)=P(s,0,z,p),

and they satisfy _
P'(s)

0:X(s) = PO(s)’ X40) =27,
(3.3)
. . (g 8 S . .
0.'(5) = iy L P =

where the Christoffel symbols are evaluated at X*(s) = (s, X (s)). We first consider the quantity

0 [ P(s)| = (020 P*)()(D: X (5)) + (0 P") (5) (0, P'(5))

(
 PAs)P(s) Po(s) | Ps) . P(s)P(s)
= TR I B TR T Py

where we used 0,ep® = —p®p?9,98,/(2p0) and O,xp® = —pi/po as in the proof of Lemma 2.2 with
the equations B3). Since gas € Hyuy1(Q) with p > 5, dags, and T 5 are bounded. Lemma 2.1
then gives the estimate

0, [PO(S)} < CP(s). (3.4)

Consider now 9(X (s), P(s))/0(x,p). We need the following calculations. Differentiate the first
equation of (3.3)) with respect to 27 to obtain

0ys P P(s
000 %'6) = L = o St [P0
0, Pl(S) Pi(s) _Pﬁ(s)P’Y(s) sy Pis),, i‘s
PO(s)  (PY(s))2 < 2P(s) (0agp~y) (04 X*(s)) Pos) (045 P( ))),

and as a consequence we obtain the estimate

0510. X (s)] < C0. X (s)] +c |02 P(s)). (3.5)

()

Similarly we have

0510, X (s)] < C|9p X ()| + C |0pP(s)]. (3.6)

()
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Differentiate the second equation of (3.3) with respect to 27 to obtain

. ) ()PP (s . B (s
050, P'(s5) = —(avrgﬁ)(aﬂm(s))%g)() - 2%5];0—25))% [Pa(s)}

- P*(s)P8(s
4 PQBW@ [Pos)].

By similar arguments, we have
050, P(s)] < CP%5)|0,X(s)] + C|0.P(s)], (3.7)

and similarly again
0510, P(s)] < CP%(5)|0,X ()| + Cl0,P(s)]. (3.8)

Due to (34), the inequalities (3.5)-(B.8]) can be combined as follows.
0, | |P°(8)0, X (s)| + [0 P(s)|| < C(IP*(5)0. X (5)] + [0 P(5)] )
0. [[P*(5)0,X (5)] + 0, P(5)]| < C(IP*(5)9,X ()| + 0, P(5)] ).
We now use Gronwall’s lemma with the conditions X (0) = z and P(0) = p to obtain
[PO()0, X (5)| +10: P(5)] < C(IP*(0)2,X (0)] + 10, P(0)]) < Cp",
[PO()0,X (5)| + 1, P(s)] < C(|P°(0)8, X (0)| + (8, P(0)]) < C,
which imply the estimates
p° 1

0. X (s)| < CPO—(S), |0p X (5)] < OPO—(S),

0. P(s)] < Cp°, |0,P(s)] < C.

(3.9)

If we apply B9) to B0)-B.8) again, we can see that s-derivatives of the above quantities satisfy
the same estimates. 0
P 1
05|0:X (s)] < C=—, 050X (s)| < C——,
0s|0:P(s)| < Cp°,  04|0,P(s)| < C

On the other hand, we can consider the following integral curves. Let Y (s) and V(s) denote for
each y and v,

(3.10)

Y(S) = Y(S’t7y5v)’ V(S) = V(S7t’y7 ’U),
and they satisfy

0.Y(5) = yary. V(O =
. . Alg B S . .
2 V'i(s) = —F;ﬂ%&(), Vi(t) =,

where the Christoffel symbols are evaluated at Y*(s) = (s,Y(s)). Then, by the same arguments as
above, we obtain

0, [[VO()0,Y ()| + 10,V ()| < C(IVO ()9, ()| + 10,V (3)] )

0 [IV(£)0,Y (5)] + 10,V (5)]] < C(IVO()0,Y (5)] + 10,V (5)]),
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and use Gronwall’s lemma with Y (t) = y and V(¢) = v,
V)0, Y ()] + 10,V ()] < C(IV(0)8,Y (9] + [0,V (1)]) < O,
VO)DY (5)] + 10,V (5)] < IV ()] + 19,V ()]) < C,
and as a consequence the following estimates are obtained.

20 1
|0,Y (s)] < CVO—(s)’ 0,Y (s)] < CvO(S)’ (3.11)

|0,V (s)] < CcP, |0,V (s)] < C.

We now consider the quantity
I(s, X (s), P(s)) = 0, [PO(S)] J7H(X(s), P(s)) + P°(s)0, [J-l(X(s), P(s))] ,
from which we have for y = X (¢) and v = P(t),

1ty 0)T(y,0) = 0, [P(s)| 40" (y,0)0, [ (X (s), P(s))] . (3.12)

s=t s=t

By applying [3.4]) to the first quantity above, we obtain

< C°, (3.13)

0s [Po(s)}

s=t

Note that J(y,v) is written as

J(y,v) = J(X(5), P(5))aet = ‘

where we used
x=Y(0,t,X(t), P(t)) =Y (0,t,y,v) =Y (0) and similarly p = V(0).

Thanks to the multilinearity of determinant, J(y,v) is estimated by (BI1]) as follows.

Ty <C (V_())_ e <p_) (3.14)

On the other hand, as for J~1(X(s), P(s)), we have the same estimates for 9, X (s) and 959, X (s),
0pX (s) and 050, X (s), and so on, as in (BI) and (BI0). Thanks to the multilinearity again, the

following estimate is obtained.
0 \°3 0\ 3
p D
<C|—=—— =C|=] . 3.15
s=t (PO(S)>S_t (vo) (315)

We combine (BI3)-BI5) and BI2)) to obtain
12, 3, 0)|T (9,0) < O,

0. |71 (X (), P(s))]

This gives boundedness of 3 on I, and therefore it is proved that the condition (iv) holds in Theorem
3.1.
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It remains to discuss the extra condition go; = 0 which is required to ensure that the conditions of
Tadmon’s theorem are satisfied. We are concerned here with a solution on a local region, where the
components of the metric in a certain coordinate system are close to those of the Minkowski metric.
Let the original coordinates be (t,2%). Now choose new coordinates (¢,#%) with the properties that
7' agrees with 2 for ¢ = 0 and the z* are constant along the integral curves of the unit normal
vector field to the family of hypersurfaces of constant ¢. Then the components of the metric in the
new coordinate system satisfy the desired condition. The new coordinates might not be defined
on exactly the same region as the old ones so that non-negativity is obtained on a slightly smaller
domain. Given the fact that the non-negativity theorem being discussed here is local in nature, this
is not a major disadvantage.

3.2 The result of Bichteler and a new approach

In Bichteler’s paper [4], it was proved that under certain hypotheses a local solution of the Boltzmann
equation exists on a given curved spacetime, and that it is non-negative. A four-dimensional manifold
M and a Lorentzian metric g,s were assumed to be given, and the Boltzmann equation was written
in the form

Laf = ///W(12 30500+ 2 -3 4)(FB)F(A) - FFQ)) d2d3ds,  (3.16)

where 1, 2, 3, and 4 stand for p®, ¢%, p’®, and ¢'* respectively. The left hand side of ([B.I6) means
that the derivative of f along the integral curves of the vector field X = (p%, —I‘g,ypﬂp"y) exists at
almost all points of the domain of f. The transition rate W is given as

W(12 — 34) = ko (12 — 34),

where k is some kinematical factor, and o can be regarded as the same quantity as the scattering
kernel defined in (21]). The volume forms d2, d3, and d4 are same as in our case.

1
_ Loz
—dqo

d2 dq,

and d3 and d4 are similarly defined. The main theorem of [4] is the following.

Theorem 3.3 [4] Let f(0) be a measurable function on &g, and suppose that there exists a contin-
uous timelike vector field 8*(x) on wgy such that

f(xap) S Ce,@a(m)pa on (:-)Oa

and the scattering kernel satisfies the following property.

//0(12 —34)6(1 42— 3 —4)d3d4 < const. (3.17)

Then, there exists a solution f to the Boltzmann equation (BI0) on a domain Q, which is again
exponentially bounded. Moreover, if f(0) > 0, then also f > 0.

The condition (BI7T) can be stated in our notation as

/ o(p,0)dQ < const. (3.18)
S2

The corresponding conditions on the scattering kernel for the EB case are given in Lemma 2.5
with the relation (2I) between the scattering kernel and the collision cross-section. Although the
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conditions in Lemma 2.5 are much more complicated than (3I8]), we can see that they do not imply
(BI8). Hence Theorem 3.2 cannot be applied directly to prove Theorem 3.1.

If there exists a solution of the Boltzmann equation with non-negative initial data which becomes
negative at some point in phase space then it is natural to follow the particle path through that
point backwards in time. This curve must meet the Cauchy surface and thus there is at least one
point on it where f is non-negative. Hence there exists a point (t«, z«, px) on the curve where it is
zero and immediately afterwards negative. At this point the derivative of f in the direction of the
particle path is non-negative because the loss term vanishes. It might however be zero. This type
of consideration plays a role in the proof of positivity in [4]

A small modification of this idea can be used to give a relatively simple proof of non-negativity
for the EB system. We first introduce the following notation,

L= 2 E 6 7 papB i
ot ' p0 gz apf PO opt’

and write the Boltzmann equation as £f = (p°)~1Q(f, f). We then modify the Boltzmann equation
by adding a small quantity on the right hand side.

£y = 25 QUefy) e (3.19)

where 1 > 0 is a small parameter. The above equation is understood to be defined on Q) with a
metric gog constructed as in Theorem 3.1. Since the quantity 776_‘1"2 is sufficiently smooth and
square integrable on ), existence of solutions is easily proved by the same argument of [3] using the
following lemma.

Lemma 3.1 [2] Let gop and Q be the metric and the domain given in Theorem 3.1, and consider
the Cauchy problem for Lf = g with f(0) defined on wo. Then, for any 0 < s < t, there exists a
solution in H, n(§2) satisfying the energy inequality,

t
LBy o <C (||f<o>||%#,m> + [ 19l e dT) ,

where C is a constant depending only on gag, £, and .

As a result, we have two distribution functions f and f; in a common domain Q, and we can
see that f, is non-negative by reasoning as above. For in the case of the modified equation the
derivative of f along the particle path is strictly positive at the point (¢.,x«,p«), a contradiction.
Non-negativity of f is now proved by showing continuous dependence on 7 for f;,.

Non-negativity of f. We subtract the modified equation from the original one and write F' = f—f,
to get

L L ~ 1ol
LF = EQ(J‘, f) - EQ(fmfn) —ne P

By applying Lemma 3.1, we obtain the following integral inequality.

]%Q(f, i) - ]%Q(fm ()

t 2
IEON, y@o <C <” + / dT) |
; Hy, n(@r)

where we used F'(0) = f(0) — f,(0) = 0. From the bilinearity of @, the above difference of collision
terms can be written

Q(fvf) _Q(fnufn) = Q(faF)+Q(Fafn)
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We now apply Lemma 2.5 to obtain

t
PO, o0 <C <n+ / PO o df) ,

which implies that %13}) IF' () &, x (@) = 0, and consequently 717133) ||F(t)HHu,N(Q) = 0. Since p > 5,
we obtain
%ig% If - anLoo(Q) =0,

and this proves non-negativity of f.

The above argument actually proves a stronger statement. Consider a situation where the initial
data are not everywhere non-negative. If (¢,xz,p) is a point of phase space such the distribution
function is non-negative at the point where the particle path through (¢,z,p) meets the Cauchy
surface then we can argue as before to get a contradiction. Thus a statement is obtained about the
non-negativity of f at certain points of phase space.

4 Further considerations

An important concept in general relativity is that of general covariance. In the context of mathe-
matical relativity this means that it should be possible to express the Einstein-matter equations in a
form which is invariant under diffeomorphisms. This assertion applies in particular to the Einstein-
Boltzmann system. The results of the previous sections are concerned with solutions of the EB
system expressed in a local coordinate system. In other words they are results about the reduced
Einstein equations in a harmonic coordinate system. These can be used to establish properties of
the Einstein-Boltzmann sytem which are diffeomorphism invariant by standard procedures (cf. [16],
Chapter 9). From this point of view it is natural to prove a global positivity result for the EB system
and for this it is enough to show that a solution of the Boltzmann equation on a globally hyperbolic
spacetime with non-negative initial data is non-negative. A problem in formulating a theorem of
this kind is to identify a suitable class of collision cross-sections.

The conditions on the collision cross-section used in [3] and in the previous sections are conditions
on the function S and, as such, are coordinate dependent. For a global theorem it is necessary to
formulate an invariant condition and the function S is not invariant since it depends explicitly on
the spacetime coordinates. A better alternative would be to formulate a condition on ¢. In the
formulation of the reduced EB system using a coordinate basis the function o still depends on the
metric components. If instead the EB system is formulated in an orthonormal frame in the way
explained in the introduction this dependence on the metric is eliminated. This formulation also
has an advantage for the consideration of the question of what collision cross-sections are physically
reasonable. When the orthonormal frame approach is used the scattering kernel in general relativity
is identical to that in special relativity. Thus the problem of identifying physically reasonable
scattering kernels is reduced to the corresponding problem in special relativity which is better
understood.

What has just been said provides a strong motivation for considering the reduced system in the
orthonormal frame formulation in more detail. The method of proof of the theorems of [3] extends
easily to this case. The inequalities on the derivatives D’;)pS in Lemma are replaced by the
analogous estimates for DFS which are actually somewhat simpler. In fact there is one estimate
which is necessary for those proofs which is not included in [3]. In the iteration used in that paper
there is a new metric in each step of the iteration. In estimating the differences of iterates it is
in particular necessary to estimate the change resulting from making a change of the metric in
the collision term. This is not mentioned in [3]. The orthonormal frame formulation eliminates
this problem since in that case the collision term does not depend on the metric components. The

22



conditions on DFS which are analogous to those of Lemma are coordinate independent and
are thus appropriate for formulating a global theorem. Let us call these the orthonormal frame
regularity conditions. From the point of view of comparing with physical conditions on the collision
term it would be of interest to know what conditions on ¢ are required to imply the orthonormal
frame regularity conditions. For instance, as a simple case an assumption on the support of ¢ can be
made. Let us consider the orthonormal frame regularity conditions in more detail. The conditions
of Lemma [2.5] are replaced as follows for the case N = co. Under the same conditions on u, k, and
r, the following inequality should hold.

i A i—4|k'|  —2q¢° T r|—
/ / 106 (0, 0)]2 21N 124" (Y141 21K (0811 4 dg < ©,

where ¢ < |E/| < |k| and, motivated by the form of the expression S = Ago, the quantity 6 = go
has been introduced. Suppose now that ¢ is a smooth function and has support contained in the
set defined by m < ¢ < M for some positive numbers m and M. Then, the term g2i*4‘k/‘ is clearly
bounded. Moreover, the condition ¢ < M gives the following estimate. Since we are working in an
orthonormal frame, it implies that

o|’_‘

1 1
P’ < Gla-p+t M) < Gllallpl + M) for M= M+ 1.

q
After some calculations and using the inequality |p| < p® we obtain |p| < 2M’¢%, and this implies in
turn that p® < Cq° for some C. Hence the orthonormal frame regularity conditions hold.

Consider a solution f of the Boltzmann equation on a globally hyperbolic spacetime and suppose
that the scattering kernel satisifes the orthonormal frame regularity conditions. If the initial data
are non-negative then f is non-negative. We suppose that the statement is false and obtain a
contradiction. If the statement is false there is a point (¢1,21,p1) with f(¢t1,21,p1) < 0. Let v be
the particle path passing through (¢1,z1,p1). If (¢, 2, p) is a point of v sufficiently close to the initial
hypersurface then local coordinates can be defined such that (¢, ) is contained in their domain of
definition and the conditions of the theorem of [3] are satisfied. Hence f(¢,z,p) > 0 close to the
initial hypersurface. Let (t2,x2,p2) be a point on v with f(¢, x,p) > 0 for all points on v with ¢ < 9
and f(t,x,p) < 0 for some points on v with ¢ arbitrarily close to to. We can choose a local Cauchy
surface through the point (t2,z2) and a local coordinate system on a neighbourhood of (t2, z2) such
that the conditions of the theorem of [3] are satisfied. It then follows by the result stated at the end
of Section 3 that f > 0 at all points on v with ¢ slightly greater than ¢, a contradiction.

It should be noted that as soon as results on well-posedness of the Cauchy problem for the
EB system can be extended to wider classes of scattering kernels the positivity result can also be
extended, provided the theorem includes a statement about continuous dependence of the solution
on the scattering kernel in a suitable sense. For then it suffices to approximate a scattering kernel
of the new class by a sequence of kernels of the class previously treated.

We hope that by clarifying a number of issues the results of this paper will contribute to the
development of a mature theory of the local and global Cauchy problem for the Einstein-Boltzmann
system in the near future.
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