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Abstract. The Einstein–Boltzmann (EB) system is studied, with particular attention
to the non-negativity of the solution of the Boltzmann equation. A new parametrization
of post-collisional momenta in general relativity is introduced and then used to simplify
the conditions on the collision cross-section given by Bancel and Choquet-Bruhat. The
non-negativity of solutions of the Boltzmann equation on a given curved spacetime has
been studied by Bichteler and Tadmon. By examining to what extent the results of
these authors apply in the framework of Bancel and Choquet-Bruhat, the non-negativity
problem for the EB system is resolved for a certain class of scattering kernels. It is
emphasized that it is a challenge to extend the existing theory of the Cauchy problem
for the EB system so as to include scattering kernels which are physically well-motivated.
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1. Introduction

To understand how the gravitational field and matter interact in general relativ-
ity it is necessary to specify a suitable matter model. One frequently used type
of model comes from kinetic theory, where matter is considered as a collection of
particles described statistically. The Vlasov and Boltzmann equations are the equa-
tions describing this type of model and coupling to the gravitational field gives
the Einstein–Vlasov and the Einstein–Boltzmann (EB) systems respectively. We
refer to [1, 16] and their references for basic information about the Einstein–Vlasov
system and the Einstein equations coupled to many different matter models. This
paper considers only the EB system. Compared to the Einstein–Vlasov system,
the EB system has not been studied much in the decades since local existence
was proven by Bancel and Choquet-Bruhat [2, 3]. Recently several further results
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have been obtained for the EB system. Mucha [11, 12] showed that the initial
regularity conditions given in [2, 3] can be weakened. Noutchegueme and Dongo
[13] and Noutchegueme and Takou [15] proved some global existence results for
certain classes of spacetimes with symmetries. The relativistic Boltzmann equation
on a given curved spacetime was studied in [4, 14, 20]. As for the nonrelativistic or
special relativistic Boltzmann equations, one can find plenty of references, and we
only refer to [5, 6, 8].

The EB system is a system of equations where the Einstein equations and the
Boltzmann equation are coupled to each other. In harmonic coordinates, the Ein-
stein equations take the form of the system of quasilinear wave equations

−1
2
gγδ ∂2gαβ

∂xγ∂xδ
+ Hαβ = T αβ − 1

2
(gγδTγδ)gαβ , (1.1)

for a Lorentzian metric gαβ , where Hαβ is a rational function of gαβ and ∂γgαβ

with denominator a power of the determinant |g| and T αβ is the stress-energy
tensor of matter described by the Boltzmann equation. The Boltzmann equation
describes the dynamics of a relativistic gas, the particles of which interact through
binary collisions. The unknown is the distribution function f defined on the phase
space, which is the tangent bundle T (M) of a four-dimensional manifold M with
a metric gαβ. If we assume that all the particles considered have the same mass,
then momentum is confined to a submanifold P (M) ⊂ T (M), which is defined by
gαβpαpβ = −1, when the mass is normalized to unity. This submanifold is called the
mass hyperboloid. As a consequence of this assumption the distribution function
turns out to be a function of seven variables. The Boltzmann equation takes the
form

pα ∂f

∂xα
− Γi

αβpαpβ ∂f

∂pi
= Q(f, f), (1.2)

Q(f, f) =
∫

R3

∫
S2

S(x, p, q, Ω)(f(p′)f(q′) − f(p)f(q))dΩ
|g| 12
−q0

dq, (1.3)

where Γi
αβ are the Christoffel symbols of the metric gαβ and the collision operator

Q will be studied in detail in Sec. 2. For simplicity we abbreviate f(x, p′) as f(p′),
f(x, q′) as f(q′) and so on. The stress-energy tensor T αβ is defined as

T αβ =
∫

R3
f(x, p)pαpβ |g|

1
2

−p0
dp, (1.4)

where the integration over R
3 is understood as integration on the mass hyperboloid

at x. Equations (1.1)–(1.4) form the EB system [7, 17].
In this paper, we are interested in the strong solutions of the EB system con-

structed in [3] by Bancel and Choquet-Bruhat. In Sec. 2, the Boltzmann equation in
a curved spacetime is studied and an alternative formulation using an orthonormal
frame is explained. (Its relevance is discussed in Sec. 4.) Returning to the equa-
tions written in a coordinate frame as in [3] we introduce a new parametrization of
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the post-collisional momenta. Unlike in the nonrelativistic case, the post-collisional
momenta can usefully be parametrized in many different ways in the relativistic
case [9, 18, 19]. The parametrization in Sec. 2.1 can be thought of as a general-
ization of that in [9]. With this parametrization, we consider the original result
of Bancel and Choquet-Bruhat, and simplify some conditions in their paper. The
distribution function in the Boltzmann equation should be non-negative because of
its interpretation as a number density. In mathematical terms this means that a
solution f of the Boltzmann equation arising from non-negative initial data should
itself be non-negative. This important property was not proved in [3]. A central aim
of this paper is to clarify this question, taking into the account the available results
in the literature. This non-negativity problem for the EB system is considered in
Sec. 3. In the case of the Boltzmann equation on a given curved spacetime, there
are two results known [4, 20] concerning the non-negativity problem. If a solution
of the EB system is given, in particular a four-dimensional manifold and a metric
as a part of a solution, a result on non-negativity of solutions of the Boltzmann
equation on suitable curved spacetimes implies a non-negativity result for the EB
system. Thus in order to settle this question for the solutions obtained by Bancel
and Choquet-Bruhat in [3] it suffices to examine whether the conditions assumed
in [4, 20] hold in the framework of [3].

In Sec. 3.1, a result of Tadmon [20] is considered. Although [20] cites [3] it does
not discuss the applicability of the results obtained to the solutions of that paper.
The conditions in [20] are quite complicated, but it is shown in Sec. 3.1 that they are
satisfied in the framework of Bancel and Choquet-Bruhat. In Sec. 3.2 it is pointed
out that the assumptions assuring non-negativity of solutions of the Boltzmann
equation in the work of Bichteler [4] do not follow from those of [3]. It is shown,
however, that non-negativity of the distribution function in the solutions of [3] can
be proved using a method simpler than that of Tadmon.

Section 4 contains some further general considerations on the EB system. The
topics discussed include the advantages of a formulation using orthonormal frames,
the issue of identifying physically relevant scattering kernels and how the non-
negativity result can be made global.

1.1. Notation

In this part, we collect the notation which is used in this paper. Greek indices run
from 0 to 3, while Latin indices run from 1 to 3. The spatial variable x denotes
a four-vector, while the momentum variable p denotes a three-dimensional vector,
i.e.

x = (x0, x1, x2, x3), p = (p1, p2, p3).

The metric gαβ has signature (−, +, +, +), g denotes its determinant and the
Minkowski metric is denoted by ηαβ . Throughout the paper, the speed of light
c and mass of the particles are assumed to be unity and hence the momentum pα
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lies on a hypersurface defined by the equation gαβpαpβ = −1, which is called the
mass shell. Due to the mass shell condition, p0 and p0 are represented by pi as
follows:

p0 =
1

−g00
(g0ip

i +
√

(g0ipi)2 − g00(gijpipj + 1)),

p0 = −
√

(g0ipi)2 − g00(gijpipj + 1).

(1.5)

In some places, we use the Euclidean norm in R
d, i.e.

|p|2 =
d∑

i=1

(pi)2 for p ∈ R
d,

and · will denote the usual inner product in R
d, i.e.

p · q =
d∑

i=1

piqi for p, q ∈ R
d.

We also collect the function spaces which are used in this paper and which were
originally introduced in [3]. The spaces are basically Sobolev spaces weighted in the
momentum variables. Two kinds of weight functions are used, (p0)N/2+|k̂| and ep0

,
where N is a positive integer and |k̂| is the number of derivatives which are taken
with respect to momentum variables. For simplicity, we write hk(p) = (p0)N/2+|k̂|

and h(p) = ep0
, which can be understood as the case N = ∞.

(1) Let ω0 be a domain of R
3, i.e. x0 = 0 in R

4, and ω̂0 = ω0 × R
3.

(2) Let Hµ(ω0) and Hµ,N (ω̂0) be the Sobolev spaces whose norms are defined as

‖u‖2
Hµ(ω0) =

∑
|k|≤µ

‖Dk
xu‖2

L2(ω0)
,

‖f‖2
Hµ,N(ω̂0) =

∑
|k|≤µ

‖hk(p)Dk
x,pf‖2

L2(ω̂0)
,

where k is a multi-index such that Dk
x,p = Dk̄

xDk̂
p in the latter case.

(3) Let Ω be a domain of R
4 and Ω̂ = Ω × R

3.
(4) Let Hµ(Ω) and Hµ,N (Ω̂) be the Sobolev spaces whose norms are defined as

‖u‖2
Hµ(Ω) =

∑
|k|≤µ

‖Dk
xu‖2

L2(Ω),

‖f‖2
Hµ,N(Ω̂)

=
∑
|k|≤µ

‖hk(p)Dk
x,pf‖2

L2(Ω̂)
,

where k is a multi-index such that Dk
x,p = Dk̄

xDk̂
p in the latter case.

(5) gαβ(0), ∂0gαβ(0) and f(0) will denote the initial data for gαβ and f respectively.
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2. The Boltzmann Equation in a Curved Spacetime

In this section, we focus on the Boltzmann part of the EB system. We assume that
a four-dimensional manifold and a metric are given, and consider the Boltzmann
equation in this spacetime. Let xα ∈ R

4, pα ∈ R
4 and pα satisfy gαβpαpβ = −1.

For a given metric gαβ, the Boltzmann equation reads

pα ∂f

∂xα
− Γi

αβpαpβ ∂f

∂pi
= Q(f, f),

Q(f, f)(x, p) =
∫

R3

∫
S2

S(x, p, q, Ω)(f(p′)f(q′) − f(p)f(q))dΩ
|g| 12
−q0

dq.

Here Γi
αβ are the Christoffel symbols defined by

Γα
βγ =

1
2
gαδ(∂γgδβ + ∂βgδγ − ∂δgβγ)

and S is called the collision cross-section and is a non-negative function,

S = λ�σ with σ = σ(�, θ). (2.1)

Ω is a point of S2, thought of as the unit sphere in R
3 with standard measure dΩ

and polar angle θ. The quantities σ and θ are called the scattering kernel and the
scattering angle respectively. The scalar quantities λ and � are defined by

λ =
√
−(pα + qα)(pα + qα), � =

√
(pα − qα)(pα − qα). (2.2)

The variables p′α, q′α, pα and qα denote the momenta of two colliding particles, i.e.
post-collisional momenta p′α and q′α, and pre-collisional momenta pα and qα, and
they satisfy

p′α + q′α = pα + qα,

which expresses energy-momentum conservation. The collision operator Q can be
written as Q = Q+ − Q− where

Q+ =
∫∫

S(x, p, q, Ω)f(p′)f(q′)dΩ
|g| 12
−q0

dq,

Q− = f(p)
∫∫

S(x, p, q, Ω)f(q)dΩ
|g| 12
−q0

dq.

Q+ and Q− are called the gain term and the loss term respectively. Note that Q+

and Q− are non-negative.
In the case gαβ = ηαβ , the above Boltzmann equation reduces to the well-known

special relativistic Boltzmann equation. In this case, the Christoffel symbols vanish,
|g| = 1 and −q0 = q0, so we obtain

pα

p0

∂f

∂xα
=
∫∫

vφσ(�, θ)(f(p′)f(q′) − f(p)f(q))dΩ dq,
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where vφ is called the Møller velocity,

vφ =
λ�

p0q0
.

The general relativistic EB system can be written in an alternative way which
makes it look more similar to the special relativistic case and which is more con-
venient for some purposes. The idea is to introduce an orthonormal frame eα

µ on
spacetime with dual coframe θµ

α. Here the indices from the beginning of the Greek
alphabet like α are coordinate indices as before whereas the indices like µ from
the middle of the Greek alphabet label the vectors of the frame. In formulating
the EB system the metric is described by its components in a coordinate frame as
before but the coordinates (xα, pa) used to parametrize the mass shell are replaced
by coordinates (xα, vu) where vν = θν

αpα. By abuse of notation we will write
f(xα, vu) for the representation of the distribution function in the new coordi-
nates. An advantage of the new coordinates is that the collision term no longer
contains any explicit dependence on the metric and is identical in form to what
it is in special relativity. On the other hand the transport part of the Boltzmann
equation becomes more complicated and the Christoffel symbols are replaced by the
components of the Levi-Civita connection in the chosen frame. Thus we obtain the
equation

vµeα
µ

∂f

∂xα
− ηkσgαβeα

σeδ
λ(∂δe

β
µ + Γβ

δεe
ε
µ)vλvµ ∂f

∂vk
= Q(f, f). (2.3)

If the EB system is to define a closed system for the quantities gαβ(xγ) and
f(xγ , vu) then the orthonormal frame must be fixed in terms of the metric and the
coordinates by some condition. This can be done in such a way that it depends only
on the components gαβ and does not contain any direct dependence on the coordi-
nates. One way of doing this is to use the Gram–Schmidt process. This algorithm
for producing an orthonormal frame from a general frame is best known in the case
of positive definite metrics but it works just as well for pseudo-Riemannian met-
rics provided the starting frame is non-degenerate in the sense that the pull-back
of the metric to the subspace spanned by any non-empty subset of the vectors of
the frame is a non-degenerate quadratic form. This process can be applied to the
coordinate frame ∂/∂xα to get the frame eα

µ. Then the components eα
µ are algebraic

functions of the components gαβ. In the case of the first two elements of the basis,
for instance, we get

eµ
0 = δµ

0 (−g00)−
1
2 , (2.4)

eµ
1 = (−g00δ

µ
1 + g01δ

µ
0 )((g00)2g11 − g00(g01)2)−

1
2 . (2.5)

It then follows that the components vα are also algebraic functions of the compo-
nents gαβ. The coefficients in the transport part of the Boltzmann equation are
algebraic functions of the components gαβ and their first-order partial derivatives.
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2.1. The post-collisional momenta

A parametrization of the post-collisional momenta p′µ and q′µ in general relativity
has been obtained in [3] using an orthonormal frame {eµ

α} associated to a point of
the mass shell. Note that this is a different type of object from the orthonormal
frame introduced above. In the frame considered in [3] pµ = eµ

αvα, qµ = eµ
αwα and

vα +wα = (λ, 0, 0, 0). The post-collisional momenta in this frame are represented by

v′α =
1
2
(λ, �Ω), w′α =

1
2
(λ,−�Ω),

where Ω ∈ S2. Consequently, p′µ is given by

p′µ =
1
2
(eµ

0λ + eµ
1� cos θ + � sin θ(eµ

2 cosϕ + eµ
3 sinϕ)),

where Ω = (cos θ, sin θ cosϕ, sin θ sinϕ), and a similar expression is obtained for q′µ.
It is a natural approach to choose an orthonormal frame and then use formulae from
special relativity, but in some points it has an inconvenient aspect concerning the
orthonormal frame. In this paper, we consider the Sobolev spaces of order greater
than five. Hence, high-order derivatives of some quantities are taken, and we need
to estimate derivatives of the orthonormal frame chosen. If we follow the result of
[3], then derivatives of the post-collisional momenta are estimated as follows:

|Dk
x,pp

′| ≤ (p0)−|k̂|∑ (p0q0)|r|+|ŝ|+1/2

λ2|r1|�2|r2||p × q||ŝ| |g
(|k̄|)|,

where k is a multi-index such that Dk
x,p = Dk̄

xDk̂
p , the sum is over all the possible

multi-indices r1, r2, s satisfying |r + s| ≤ |k| and r1 + r2 = r and the term g(|k̄|) will
be defined later. We can see that singularities appear in the denominator, which
are certainly due to the choice of the orthonormal frame. This problem might be
removed by taking another orthonormal frame at the singular points, but it would
be quite complicated to find such an orthonormal frame that behaves well at those
singularities. We instead use a different approach to parametrize the post-collisional
momenta, where the above problem does not arise.

We introduce a new parametrization of post-collisional momenta. Suppose that
pα and qα are given, and consider the following four-vectors:

nα = pα + qα and tα = (niω
i,−n0ω) for ω ∈ S2. (2.6)

Note that tα is orthogonal to nα. Then p′α and q′α can be parametrized by

p′α = pα − tβ(pβ − qβ)
tβtβ

tα = pα + 2
tβqβ

tβtβ
tα,

q′α = qα +
tβ(pβ − qβ)

tβtβ
tα = qα − 2

tβqβ

tβtβ
tα,

(2.7)

where we used tαnα = 0. It can be easily shown that they satisfy

p′α + q′α = pα + qα and p′αp′α = q′αq′α = −1.
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We can use another parametrization for p′α and q′α,

p′α =
pα + qα

2
+

�

2
tα√
tβtβ

, q′α =
pα + qα

2
− �

2
tα√
tβtβ

, (2.8)

where � and tα are defined by (2.2) and (2.6) respectively. We can see that the
parametrizations (2.7) and (2.8) are very similar to those of the nonrelativistic
case. In the nonrelativistic case, post-collisional momenta p′ ∈ R

3 and q′ ∈ R
3 are

represented in two ways:

p′ = p − ((p − q) · ω)ω, q′ = q + ((p − q) · ω)ω for ω ∈ S2

or

p′ =
p + q

2
+

|p − q|
2

ω, q′ =
p + q

2
− |p − q|

2
ω for ω ∈ S2.

Hence, (2.7) and (2.8) can be thought of as natural generalizations from the non-
relativistic case.

We remark that a well-known parametrization of p′α and q′α in the special
relativistic case by Glassey and Strauss [9] is exactly the same as (2.7). In the
special relativistic case, gαβ = ηαβ , we have

tαtα = −(n · ω)2 + (n0)2 = (p0 + q0)2 − ((p + q) · ω)2

and by direct calculations,

tαqα = −q0n · ω + n0ω · q = −q0(p · ω) − q0(q · ω) + p0(ω · q) + q0(ω · q)
= −p0q0(p/p0 · ω) + p0q0(q/q0 · ω) = −p0q0((p̂ − q̂) · ω).

Defining p̂ = p/p0 and q̂ = q/q0 we obtain the following expression:

p′ = p − 2p0q0((p̂ − q̂) · ω)(p0 + q0)
(p0 + q0)2 − ((p + q) · ω)2

ω.

This is the parametrization given in [9].
We close this subsection with a simple lemma, which shows that p0 and −p0 are

equivalent in a curved spacetime when its metric is close to the Minkowski metric.

Lemma 2.1. Consider a momentum pα satisfying gαβpαpβ = −1. Suppose that
there exists a small ε such that the metric gαβ satisfies

|gαβ − ηαβ | ≤ ε and (1 − ε)
3∑

i=1

(X i)2 ≤ gijX
iXj ≤ (1 + ε)

3∑
i=1

(X i)2

for any three-dimensional vector X. Then we have

|p| ≤ (1 + ε1)min{p0,−p0} and (1 − ε1)p0 ≤ −p0 ≤ (1 + ε1)p0

for some small ε1 > 0.
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Proof. By solving the equation gαβpαpβ = −1, p0 and p0 can be expressed as
functions of gαβ and pi as in (1.5). Hence, by direct calculations,

|p|2 ≤ (1 + ε)gijp
ipj ≤ (1 + ε)((g0ip

i)2 − g00(gijp
ipj + 1)) = (1 + ε)(p0)2,

−p0 = −g00p
0 − g0ip

i ≤ (1 + ε)p0 + ε|p|,
which imply that |p| ≤ Cp0 and |p| ≤ Cp0 for some constant C ≈ 1. From the
identity p0 = g00p

0+g0ip
i and the conditions on gαβ, we get the desired equivalence

between p0 and −p0.

2.2. Derivatives of the post-collisional momenta

In this paper, we use (2.7) for p′α and q′α. Since the parametrization (2.7) depends
on x, p and q, derivatives of the post-collisional momenta are not trivial to compute,
but we can see that derivatives of p′α and q′α depend only on tα. To calculate
derivatives of p′α and q′α, we use the notation g(m) of Bancel and Choquet-Bruhat
from [3].

A function h is said to be a g(m) function, if h is any linear combination of
products,

∏
j Dkj gµν , with

∑
j |kj | ≤ m and coefficients in the algebra of bounded

functions on Ω × R
3 × R

3 generated by pα/p0, pα/p0, qα/q0 and qα/q0.

Lemma 2.2. Let tα be a four-vector defined by (2.6) for some ω ∈ S2. Then, for
Dk = Dk̄

xDk̂
p with multi-index k = k̄ + k̂, we have

Dk

[
2
tβqβ

tβtβ
tα
]

= (p0)−|k̂|
2+2|k|∑

i=0

(p0)i(q0)3+2|k|−i

(tαtα)1+|k| g
(|k̄|)
i ,

where g
(|k̄|)
i are some g(|k̄|) functions.

Proof. We first note that p-derivatives of pα and pα are g(0) functions as follows,

∂p0

∂pk
= −pk

p0
= −pα

p0
gαk,

∂pi

∂pk
= δi

k,

∂pα

∂pk
=

∂p0

∂pk
g0α +

∂pi

∂pk
giα = −pβ

p0
gβkg0α + gkα,

while their xα-derivatives are p0g(1) functions,

∂p0

∂xα
= −pβpγ

2p0
∂αgβγ ,

∂pβ

∂xα
=

∂p0

∂xα
g0β + pγ∂αgβγ = −pγpδ

2p0
∂αgγδg0β + pγ∂αgβγ .

Hence, we can deduce that

∂g(m)

∂pk
=

g(m)

p0
and

∂g(m)

∂xα
= g(m+1).
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To prove the lemma, we use induction on |k|. Since nα = pα + qα, the four-vector
tα is of the form

tα = (niω
i,−n0ω) = nβ(giβωi,−g0βω) = p0g

(0)
0 + q0g

(0)
1

for some g
(0)
0 and g

(0)
1 , which are g(0) functions. Hence, we obtain for |k| = 0,

2
tβqβ

tβtβ
tα =

2∑
i=0

(p0)i(q0)3−i

tαtα
g
(0)
i .

We use tαtα =
∑2

i=0(p
0)i(q0)2−ig

(0)
i to show that for |k| + 1.

DxαDk

[
2
tβqβ

tβtβ
tγ
]

= Dxα


(p0)−|k̂|

2+2|k|∑
i=0

(p0)i(q0)3+2|k|−i

(tαtα)1+|k| g
(|k̄|)
i




= (p0)−|k̂|
2+2|k|∑

i=0

(p0)i(q0)3+2|k|−i

(tβtβ)1+|k| g
(|k̄|+1)
i

+ (p0)−|k̂|
2+2|k|∑

i=0

(p0)i(q0)3+2|k|−i

(tβtβ)2+|k| Dxα [tβtβ ]g(|k̄|)
i .

Since Dxα [tβtβ ] =
∑2

i=0(p
0)i(q0)2−ig

(1)
i , we obtain

DxαDk

[
2
tβqβ

tβtβ
tγ
]

= (p0)−|k̂|
4+2|k|∑

i=0

(p0)i(q0)5+2|k|−i

(tβtβ)2+|k| g
(|k̄|+1)
i .

Similarly,

Dpj Dk

[
2
tβqβ

tβtβ
tγ
]

= Dpj


(p0)−|k̂|

2+2|k|∑
i=0

(p0)i(q0)3+2|k|−i

(tαtα)1+|k| g
(|k̄|)
i




= (p0)−|k̂|−1

2+2|k|∑
i=0

(p0)i(q0)3+2|k|−i

(tβtβ)1+|k| g
(|k̄|)
i

+ (p0)−|k̂|
2+2|k|∑

i=0

(p0)i(q0)3+2|k|−i

(tβtβ)2+|k| Dpj [tβtβ ]g(|k̄|)
i .

Since Dpj [tβtβ] = (p0)−1
∑2

i=0(p
0)i(q0)2−ig

(0)
i , we obtain

DxαDk

[
2
tβqβ

tβtβ
tγ
]

= (p0)−|k̂|−1

4+2|k|∑
i=0

(p0)i(q0)5+2|k|−i

(tβtβ)2+|k| g
(|k̄|)
i

and this completes the proof of the lemma.
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To estimate derivatives of the post-collisional momenta, we need to obtain a
lower bound for the quantity tαtα, which appears in the denominator in the expres-
sions coming from Lemma 2.2. Note that tαtα is non-negative, because tαnα = 0
and nα = pα + qα is a timelike vector.

Lemma 2.3. Let tα be a four-vector defined by (2.6) for some ω ∈ S2. Suppose
that there exists a small ε such that the metric gαβ satisfies

|gαβ − ηαβ | ≤ ε and (1 − ε)
3∑

i=1

(X i)2 ≤ gijX
iXj ≤ (1 + ε)

3∑
i=1

(X i)2

for any three-dimensional vector X, then we have the following lower bound.

tαtα ≥ 2(g0iω
i)2 − g00(gijω

iωj)
(

2 +
(p0)2 + (q0)2

3p0q0

)
.

Proof. The proof is a direct calculation. Since tα = (niω
i,−n0ω), we have

tαtα = (n0)2(gijω
iωj) − 2(niω

i)n0(g0iω
i) + g00(niω

i)2

= (n0)2(gijω
iωj) + g00((gijn

iωj)2 + 2(gijn
iωj)n0(g0iω

i) + (n0)2(g0iω
i)2)

− 2((gijn
iωj)n0(g0iω

i) + n0n0(g0iω
i)2), (2.9)

where we used niω
i = gijn

iωj + n0(g0iω
i). There are six terms on the right-hand

side of (2.9). The first two of these terms can be estimated as follows using the
Cauchy–Schwarz inequality:

(n0)2(gijω
iωj) + g00(gijn

iωj)2 ≥ (n0)2(gijω
iωj) + g00(gijn

inj)(gijω
iωj).

We continue the estimation as follows:

(n0)2(gijω
iωj) + g00(gijn

iωj)2

≥ (gijω
iωj)((p0)2 + (q0)2 + 2p0q0 + g00(gijp

ipj) + g00(gijq
iqj) + 2g00(gijp

iqj))

= (gijω
iωj)((g0ip

i)2 + (g0iq
i)2 − 2g00 + 2p0q0 + 2g00(gijp

iqj)), (2.10)

using

p0 = −
√

(g0ipi)2 − g00((gijpipj) + 1)

and the analogous formula for q0. The fourth and the sixth terms on the right-hand
side of (2.9) are calculated as follows:

(g0iω
i)2(g00(n0)2 − 2n0n0)

= (g0iω
i)2(g00(p0)2 + g00(q0)2 + 2g00p

0q0 − 2p0p0 − 2p0q0 − 2q0p0 − 2q0q0)

= (g0iω
i)2(−g00(p0)2 − g00(q0)2 − 2g00p

0q0 − 2p0(g0in
i) − 2q0(g0in

i)),
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where we used p0 = g00p
0 + (g0ip

i) and the analogous formula for q0. To proceed
with the calculation, we use the formula

p0 =
1

−g00
(g0ip

i +
√

(g0ipi)2 − g00(gijpipj + 1))

and the corresponding formula for q0. After a long calculation we obtain

(g0iω
i)2(g00(n0)2 − 2n0n0)

= (g0iω
i)2((gijp

ipj) + (gijq
iqj) + 2)

+ 2(g0iω
i)2

1
−g00

√
(g0ipi)2 − g00((gijpipj) + 1)

√
(g0iqi)2 − g00((gijqiqj) + 1)

− 2(g0iω
i)2

1
−g00

(g0ip
i)(g0iq

i). (2.11)

The third and the fifth terms on the right-hand side of (2.9) are estimated as follows:

(g0iω
i)(gijn

iωj)(2g00n
0 − 2n0)

= −2(g0iω
i)(gijn

iωj)(g0in
i) ≥ −2|g0iω

i|
√

gijninj

√
gijωiωj |g0in

i|
≥ −(g0iω

i)2(gijn
inj) − (gijω

iωj)(g0in
i)2, (2.12)

where we used the Cauchy–Schwarz inequality. Hence all terms on the right-hand
side of (2.9) have been estimated by (2.10)–(2.12). Moreover, since nα = pα + qα,
the first two terms on the right-hand side of (2.10) are partially cancelled by the
second term on the right-hand side of (2.12), and similarly the first two terms on the
right-hand side of (2.11) are partially cancelled by the first term on the right-hand
side of (2.12) as follows:

(gijω
iωj)((g0ip

i)2 + (g0iq
i)2 − (g0in

i)2) = −2(gijω
iωj)(g0ip

i)(g0iq
i) (2.13)

and

(g0iω
i)2((gijp

ipj) + (gijq
iqj) − (gijn

inj))

= −2(g0iω
i)2(gijp

iqj) ≥ −2(g0iω
i)2
√

gijpipj

√
gijqiqj . (2.14)

As a consequence, (2.9) is estimated by (2.13)–(2.14) and the other terms of (2.10)–
(2.11), i.e.

tαtα ≥ (gijω
iωj)(−2g00 + 2p0q0 + 2g00(gijp

iqj) − 2(g0ip
i)(g0iq

i))

+ (g0iω
i)2(−2

√
gijpipj

√
gijqiqj + 2)

+ 2(g0iω
i)2

1
−g00

√
(g0ipi)2 − g00((gijpipj)+ 1)

√
(g0iqi)2 − g00((gijqiqj)+ 1)

− 2(g0iω
i)2

1
−g00

(g0ip
i)(g0iq

i)

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

01
3.

10
:7

7-
10

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

04
/0

8/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 19, 2013 11:51 WSPC/S0219-8916 JHDE 1350003

The Einstein–Boltzmann System and Positivity 89

and we rewrite it as follows.

tαtα ≥ −2(gijω
iωj)g00 + 2(g0iω

i)2

+ 2(gijω
iωj)(p0q0 + g00(gijp

iqj) − (g0ip
i)(g0iq

i))

+ 2(g0iω
i)2

1
−g00

√
(g0ipi)2 − g00((gijpipj)+ 1)

√
(g0iqi)2 − g00((gijqiqj)+ 1)

− 2(g0iω
i)2

1
−g00

(−g00

√
gijpipj

√
gijqiqj + (g0ip

i)(g0iq
i)). (2.15)

Note that the first line of (2.15) is strictly positive, and the sum of the third and
the fourth lines is non-negative because of the following calculation:

(−g00

√
gijpipj

√
gijqiqj + (g0ip

i)(g0iq
i))2

= (g00)2(gijp
ipj)(gijq

iqj) + (g0ip
i)2(g0iq

i)2

− 2g00(g0ip
i)(g0iq

i)
√

gijpipj

√
gijqiqj

≤ (g00)2(gijp
ipj)(gijq

iqj) + (g0ip
i)2(g0iq

i)2

− g00((g0ip
i)2(gijq

iqj) + (g0iq
i)2(gijp

ipj)).

We now have only the second line of (2.15), which is explicitly calculated as follows.
Note that the coefficient gijω

iωj is strictly positive, and we have

p0q0 + g00(gijp
iqj) − (g0ip

i)(g0iq
i)

≥ p0q0 − (−g00

√
gijpipj

√
gijqiqj + |g0ip

i||g0iq
i|)

=
(p0q0)2 − (−g00

√
gijpipj

√
gijqiqj + |g0ip

i||g0iq
i|)2

p0q0 + (−g00

√
gijpipj

√
gijqiqj + |g0ipi||g0iqi|)

≥ 1
3p0q0

((p0q0)2 − (−g00

√
gijpipj

√
gijqiqj + |g0ip

i||g0iq
i|)2), (2.16)

where we used Lemma 2.1. Note that

(p0q0)2 = (g0ip
i)2(g0iq

i)2

− g00(g0ip
i)2(gijq

iqj) − g00(g0ip
i)2 − g00(g0iq

i)2(gijp
ipj) − g00(g0iq

i)2

+ (g00)2((gijp
ipj)(gijq

iqj) + gijp
ipj + gijq

iqj + 1)

and

(−g00

√
gijpipj

√
gijqiqj + |g0ip

i||g0iq
i|)2

= (g00)2(gijp
ipj)(gijq

iqj) + (g0ip
i)2(g0iq

i)2

− 2g00|g0ip
i||g0iq

i|
√

gijpipj

√
gijqiqj
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≤ (g00)2(gijp
ipj)(gijq

iqj) + (g0ip
i)2(g0iq

i)2

− g00(g0ip
i)2(gijq

iqj) − g00(g0iq
i)2(gijp

ipj).

Then, (2.16) is estimated as follows:

p0q0 + g00(gijp
iqj) − (g0ip

i)(g0iq
i)

≥ 1
3p0q0

(−g00(g0ip
i)2 − g00(g0iq

i)2 + (g00)2(gijp
ipj + gijq

iqj + 1))

≥ −g00

6p0q0
((p0)2 + (q0)2), (2.17)

where we used the explicit formula (1.5) for p0 and q0. We apply the estimate (2.17)
to (2.15), and obtain the desired lower bound.

Remark 2.4. In the special relativistic case, we have a more refined result,

tαtα ≥ 2 + |p × ω|2 + |q × ω|2 +
1 + |p|2 + |q|2√
1 + |p|2√1 + |q|2 ,

which was obtained in [9]. This inequality implies that tαtα ≥ p0/q0 in the special
relativistic case, and Lemma 2.3 shows that a similar inequality holds in a curved
spacetime, i.e.

tαtα ≥ Cp0/q0 or tαtα ≥ Cp0/q0 (2.18)

for some positive constant C.

We apply the inequality (2.18) to the result of Lemma 2.2, and obtain the
following estimate. Under the same assumptions as in Lemma 2.2, we have∣∣∣∣Dk

[
2
tβqβ

tβtβ
tα
]∣∣∣∣ ≤ (p0)−1−2|k|

2+2|k|∑
i=0

(p0)i+|k̄|(q0)4+3|k|−i|g(|k̄|)
i |

≤ C(p0)1+|k̄|(q0)4+3|k||g(|k̄|)|
for some g(|k̄|) and a positive constant C. Since p′α and q′α are parametrized by
(2.7) and it can be easily shown that Dkpα = (p0)1−|k̂|g(|k̄|), we obtain the following
result on derivatives of the post-collisional momenta.

Lemma 2.5. Let tα be a four-vector defined by (2.6) for some ω ∈ S2, and p′α and
q′α be two post-collisional momenta parametrized by (2.7). Suppose that there exists
a small ε such that the metric gαβ satisfies

|gαβ − ηαβ | ≤ ε and (1 − ε)
3∑

i=1

(X i)2 ≤ gijX
iXj ≤ (1 + ε)

3∑
i=1

(X i)2

for any three-dimensional vector X. Then, derivatives of p′α and q′α can be esti-
mated as follows:

|Dkp′α| + |Dkq′α| ≤ C(p0)1+|k̄|(q0)4+3|k||g(|k̄|)|
for some g(|k̄|) and Dk = Dk̄

xDk̂
p with multi-index k = k̄ + k̂.
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2.3. The µ − N regularity of the collision operator

In [3], the authors introduced a regularity property of Q called µ−N regularity, and
showed that the Cauchy problem for the EB system is well-posed when Q satisfies
it. The collision operator Q is said to satisfy µ − N regularity if there exists a
constant C satisfying for each ω̂t,∥∥∥∥ 1

p0
Q(f, f)(t)

∥∥∥∥
Hµ,N (ω̂t)

≤ C‖f(t)‖2
Hµ,N (ω̂t)

.

To obtain µ − N regularity, the collision cross-section S should satisfy suitable
conditions, and by following the calculations of [3], we can see that the following
inequality also holds under the same conditions on S:∥∥∥∥ 1

p0
Q(f, g)(t)

∥∥∥∥
Hµ,N (ω̂t)

≤ C‖f(t)‖Hµ,N (ω̂t)‖g(t)‖Hµ,N (ω̂t), (2.19)

where Q(f, g) is defined by

Q(f, g) =
∫

R3

∫
S2

S(x, p, q, Ω)(f(p′)g(q′) − f(p)g(q))dΩ
|g| 12
−q0

dq.

In the previous section, we obtained a new estimate of Dkp′α and Dkq′α in
Lemma 2.5. This leads to a corresponding new set of conditions on S which imply
the µ−N regularity of Q. Note that high-order derivatives Dk

x,p

[
f(x, p′)

]
are linear

combinations of the following quantities:

(Dif)(x, p′)(Dj1p′) · · · (Djip′) with j1 + · · · + ji = |k|, (2.20)

where Di denotes some differential operator Dr
x,p satisfying |r| = i. Lemma 2.5 gives

the estimate

|Dk
x,p[f(x, p′)]| ≤ C

∑
|(Dif)(x, p′)|(p0)i+|k̄|(q0)4i+3|k̄||g(|k̄|)|,

where the sum is over all the possible i satisfying (2.20). Consider the following
quantity which arises from estimation of the gain term Q+. Let the multi-indices
k, r and s satisfy k + r + s = l with |l| ≤ µ:(

1
p0

∫∫
(Dk

x,pS)Dr
x,p[f(p′)]Ds

x,p[f(q′)]dΩ
|g| 12
−q0

dq

)2

≤ C
∑(∫∫

|Dk
x,pS||Dif(p′)|(p0)i+|r̄|(q0)4i+3|r̄||g(|r̄|)|

×|Djf(q′)|(p0)j+|s̄|(q0)4j+3|s̄||g(|s̄|)|dΩ
1

p0q0
dq

)2

≤ C
∑∫∫

h−2
l (p)h2

i (p
′)|Dif(p′)|2|g(|r̄|)|2h2

j(q
′)|Djf(q′)|2|g(|s̄|)|2dΩ

p′0q′0
p0q0

dq

×
∫∫

|Dk
x,pS|2h2

l (p)h−2
i (p′)h−2

j (q′)(p0)2(i+j)+2|r+s|(q0)8(i+j)+6|r+s| dΩ dq

p′0q′0p0q0
,
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and if the second integral is bounded, then we multiply the first integral by the
weight function h2

l (p) and integrate it over x and p with p′
0q′

0
p0q0

dp dq = dp′ dq′, to
obtain the inequality (2.19) when µ ≥ 5. Hence, the boundedness of the second
integral should be the condition on S for the µ − N regularity of Q. The second
integral is estimated as follows. In the case where N is finite,∫∫

|Dk
x,pS|2h2

l (p)h−2
i (p′)h−2

j (q′)(p0)2(i+j)+2|r+s|(q0)8(i+j)+6|r+s| dΩdq

p′0q
′
0p0q0

≤ C

∫∫
|Dk

x,pS|2
(p0)N+2|l̂|

(p′0)N+2̂i(q′0)N+2ĵ
(p0)2|r+s|+2|r+s|−2(q0)14|r+s|−1dΩdq

≤ C

∫∫
|Dk

x,pS|2(p0)2|l̂|(p0)2|r+s|+2|r+s|−2(q0)14|r+s|−1dΩdq

≤ C

∫∫
|Dk

x,pS|2(p0)2|k̂|(p0)4|r+s|−2(q0)14|r+s|−1dΩdq, (2.21)

where we used −p0 ≤ Cp′0q
′
0 and p0 ≤ Cp′0q′0. For the case N = ∞,∫∫

|Dk
x,pS|2h2(p)h−2(p′)h−2(q′)(p0)2(i+j)+2|r+s|(q0)8(i+j)+6|r+s| dΩdq

p′0q
′
0p0q0

≤ C

∫∫
|Dk

x,pS|2h−2(q)(p0)4|r+s|−2(q0)14|r+s|−1dΩdq, (2.22)

where we used p′0+q′0 = p0+q0 and −p0 ≤ Cp′0q′0. The boundedness of the integrals
(2.21) and (2.22) are the conditions on S for the gain term. The arguments for the
loss term are much simpler, and it is easily shown that the condition for the gain
term implies that for the loss term. Consequently, we obtain the following lemma.

Lemma 2.6 ([3]). Let µ ≥ 5, and suppose that the collision cross-section S satisfies
the following conditions for multi-indices k + r = l satisfying |l| ≤ µ:∫∫

|Dk
x,pS|2(q0)14|r|−1dΩdq ≤ C(p0)2−4|r|−2|k̂| for N < ∞,

∫∫
|Dk

x,pS|2e−2q0
(q0)14|r|−1dΩdq ≤ C(p0)2−4|r| for N = ∞.

Then, the collision operator Q satisfies µ − N regularity.

Remark 2.7. Note that the condition on S for finite N is stronger than that for
the case N = ∞, and that the former condition implies the latter one:∫∫

|Dk
x,pS|2e−2q0

(q0)14|r|−1dΩdq

≤
∫∫

|Dk
x,pS|2(q0)14|r|−1dΩdq ≤ C(p0)2−4|r|−2|k̂| ≤ C(p0)2−4|r|.

In other words, if the collision cross-section S satisfies the condition for finite N ,
then it also satisfies the condition for the case N = ∞.
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3. The Non-negativity Problem for the
Einstein–Boltzmann System

We now consider the EB system and the question of the non-negativity of its solu-
tions for non-negative initial data. The Cauchy problem for the EB system was first
studied by Bancel and Choquet-Bruhat [2, 3]. We apply Lemma 2.6 to the results
of [2, 3] to obtain the following existence theorem.

Theorem 3.1 ([2, 3]). Suppose that Cauchy data are prescribed as

gαβ(0) ∈ Hµ+1(ω0), ∂0gαβ(0) ∈ Hµ(ω0), f(0) ∈ Hµ,N (ω̂0),

such that

|gαβ(0) − ηαβ | ≤ ε − δ, δ > 0.

If µ ≥ 5, N ≥ 6, and the collision cross-section S satisfies the conditions of
Lemma 2.6, then there exist a domain Ω in R

4, which admits ω0 as a Cauchy
surface, and a function f on Ω̂ such that

(1) gαβ ∈ Hµ+1(Ω) and f ∈ Hµ,N (Ω̂).
(2) gαβ satisfies |gαβ − ηαβ | ≤ ε on Ω.
(3) gαβ and f satisfy the EB system.
(4) gαβ and f induce the prescribed Cauchy data on ω and ω̂ respectively.

This solution is unique in Ω and depends continuously on the Cauchy data.

In this section we consider the non-negativity of the distribution function con-
structed in the above theorem. Note that we already have a solution (f, gαβ , Ω)
of the EB system, while the non-negativity problem concerns only the distribution
function f . Hence, it is enough to consider the Boltzmann equation on a given curved
spacetime and show non-negativity in this case. Conditions for the non-negativity
of solutions of the Boltzmann equation on a given spacetime have been given by
Bichteler [4] and Tadmon [20]. We will investigate to what extent the arguments for
non-negativity given in [4, 20] apply to the solutions of the EB system constructed
in [2, 3].

Theorem 3.1 holds for any weighted spaces with N ≥ 6, but we will only consider
the case N = ∞, i.e. the exponentially bounded case. First, any functions that
have polynomial decay rates can be approximated by functions having exponential
decay rates. Hence, non-negativity of the case N = ∞ implies the corresponding
result in the case of finite N by suitable approximations. Second, as we checked in
Remark 2.7, a collision cross-section which satisfies the condition for the case of finite
N also satisfies the condition for the case N = ∞. So, any property that holds under
the condition for the case N = ∞ holds under the condition for the case of finite N .

3.1. The result of Tadmon

The original method for the non-negativity problem introduced by Lu and Zhang
[10] has recently been applied to the general relativistic case by Tadmon [20]. A
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curved spacetime was assumed to be given, and mild solutions of the Boltzmann
equation were considered, which are defined as follows. Consider the vector field
(pα,−Γα

βγpβpγ) as in [4], and parametrize its integral curves by x0 = s on the mass
hyperboloid. Let (X(s), P (s)) ∈ R

3 × R
3 denote an integral curve with X i(0) = xi

and P (0) = p parametrized by s. This has the physical interpretation of a particle
path. Along this curve, the Boltzmann equation is written as follows:

f(t, X(t), P (t)) = f(0) +
∫ t

0

K(f)(s, X(s), P (s))ds, (3.1)

where f(0) is an initial datum evaluated at (xi, p) and K denotes

K(f)(x, p) =
1
p0

Q(f, f)(x, p).

Mild solutions are now defined as follows: a function f is called a mild solution of
the Boltzmann equation with measurable initial value f(0), if f is measurable, K(f)
is L1

loc(R+) along the integral curves, and (3.1) holds.
For the rest of this section, x will denote three-dimensional vector consisting of

the spatial components xi where

xα = (x0, xi) = (t, x) ∈ R+ × R
3

and the distribution function will be written as f(t, x, p) instead of f(x, p). The
main theorem of [20] can be stated as follows.

Theorem 3.2. Let f be a mild solution of the Boltzmann equation with a non-
negative initial datum f(0). Assume the following conditions:

(i)
S(t, x, p, q, Ω)

p0q0
=

S(t, x, q, p, Ω)
q0p0

,

(ii)
S(t, x, p′, q′, Ω)

p′0q′0
=

∂(p, q)
∂(p′, q′)

S(t, x, p, q, Ω)
p0q0

,

(iii) ess sup
x,p

∫∫
R3×S2

Sq0

(p0)2q0
|f(t, x, q)||g| 12 dΩdq =: α(t) ∈ L1

loc(R+),

(iv) ess sup
y,v

|l(t, y, v)|J(y, v)
v0

=: β(t) ∈ L1
loc(R+),

where l is defined by

l(s, X(s), P (s)) := ∂s[P 0(s)J−1(X(s), P (s))]

with J, the Jacobian for

dxdp =
∣∣∣∣ ∂(x, p)
∂(X(s), P (s))

∣∣∣∣ dX(s)dP (s) =: J(X(s), P (s))dX(s)dP (s).

Then, f is non-negative.
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Remark 3.3. The conditions on α(t) and β(t) should be replaced by α, β ∈ L1
loc(I)

for some finite interval I, because the solutions in Theorem 3.1 are local in time.
Hence, it is enough to show the boundedness of α and β on I.

In this part, we will show that, with an extra assumption, the solution of The-
orem 3.1 satisfies the conditions (i)–(iv). Since, as explained below, the extra con-
dition can be arranged by making a coordinate change, non-negativity for the EB
case is ensured. We remark that the strong solutions in Theorem 3.1 satisfy the
definition of mild solutions.

Non-negativity of f . We consider the conditions (i)–(iv) separately in the
following.

(i)–(ii) The collision cross-section S is given by (2.1), which implies

S(t, x, p, q, Ω) = S(t, x, q, p, Ω) = S(t, x, p′, q′, Ω)

and it is well known that the Jacobian in (ii) is given by
∂(p, q)
∂(p′, q′)

=
p0q0

p′0q
′
0

.

Hence, the conditions (i)–(ii) can be written as p0/p0 = q0/q0 = p′0/p′0 for any p

and q. However, this leads to

g0i = 0, (3.2)

which is not assumed in Theorem 3.1 and is the extra condition referred to above.

(iii) For the metric gαβ given in Theorem 3.1, its determinant |g| is bounded, and
q0 and q0 are equivalent. Therefore, (iii) is estimated as follows:

α(t) ≤ C
1

(p0)2

∫∫
S|f(t, x, q)|dΩdq

≤ C
1

(p0)2

(∫∫
S2e−2q0

dΩ dq

)1
2
(∫∫

e2q0 |f(t, x, q)|2dΩdq

) 1
2

,

where eq0
is the weight function for N = ∞ case. Since f ∈ Hµ,N (Ω̂) with µ ≥ 5, the

second integral above is bounded. The condition on S given in Lemma 2.6 implies
the boundedness of the first integral, and this shows that the condition (iii) holds
in Theorem 3.1.

(iv) As for the last condition, we recall that the integral curve (X(s), P (s)) is defined
as follows. Let X(s) and P (s) denote for each x and p,

X(s) = X(s, 0, x, p), P (s) = P (s, 0, x, p)

and they satisfy


∂sX
i(s) =

P i(s)
P 0(s)

, X i(0) = xi,

∂sP
i(s) = −Γi

αβ

Pα(s)P β(s)
P 0(s)

, P i(0) = pi,

(3.3)
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where the Christoffel symbols are evaluated at Xα(s) = (s, X(s)). We first consider
the quantity

∂s[P 0(s)] = (∂xαP 0)(s)(∂sX
α(s)) + (∂piP 0)(s)(∂sP

i(s))

= −P β(s)P γ(s)
2P0(s)

(∂αgβγ)
Pα(s)
P 0(s)

+
Pi(s)
P0(s)

Γi
αβ

Pα(s)P β(s)
P 0(s)

,

where we used ∂xαp0 = −pβpγ∂αgβγ/(2p0) and ∂pkp0 = −pk/p0 as in the proof of
Lemma 2.2 with Eq. (3.3). Since gαβ ∈ Hµ+1(Ω) with µ ≥ 5, ∂αgβγ and Γi

αβ are
bounded. Lemma 2.1 then gives the estimate

∂s[P 0(s)] ≤ CP 0(s). (3.4)

Consider now ∂(X(s), P (s))/∂(x, p). We need the following calculations. Differ-
entiate the first equation of (3.3) with respect to xj to obtain

∂s∂xj X i(s) =
∂xj P i(s)
P 0(s)

− P i(s)
(P 0(s))2

∂xj [P 0(s)]

=
∂xj P i(s)
P 0(s)

+
P i(s)

(P 0(s))2

×
(

P β(s)P γ(s)
2P0(s)

(∂αgβγ)(∂xj Xα(s)) +
Pi(s)
P0(s)

(∂xj P i(s))
)

and as a consequence we obtain the estimate

∂s|∂xX(s)| ≤ C|∂xX(s)| + C
1

P 0(s)
|∂xP (s)|. (3.5)

Similarly we have

∂s|∂pX(s)| ≤ C|∂pX(s)| + C
1

P 0(s)
|∂pP (s)|. (3.6)

Differentiate the second equation of (3.3) with respect to xj to obtain

∂s∂xj P i(s) = −(∂γΓi
αβ)(∂xj Xγ(s))

Pα(s)P β(s)
P 0(s)

− 2Γi
αβ

P β(s)
P 0(s)

∂xj [Pα(s)] + Γi
αβ

Pα(s)P β(s)
(P 0(s))2

∂xj [P 0(s)].

By similar arguments, we have

∂s|∂xP (s)| ≤ CP 0(s)|∂xX(s)| + C|∂xP (s)| (3.7)

and similarly again

∂s|∂pP (s)| ≤ CP 0(s)|∂pX(s)| + C|∂pP (s)|. (3.8)

Due to (3.4), the inequalities (3.5)–(3.8) can be combined as follows:

∂s[|P 0(s)∂xX(s)| + |∂xP (s)|] ≤ C(|P 0(s)∂xX(s)| + |∂xP (s)|),
∂s[|P 0(s)∂pX(s)| + |∂pP (s)|] ≤ C(|P 0(s)∂pX(s)| + |∂pP (s)|).
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We now use Grönwall’s lemma with the conditions X(0) = x and P (0) = p to
obtain

|P 0(s)∂xX(s)| + |∂xP (s)| ≤ C(|P 0(0)∂xX(0)| + |∂xP (0)|) ≤ Cp0,

|P 0(s)∂pX(s)| + |∂pP (s)| ≤ C(|P 0(0)∂pX(0)| + |∂pP (0)|) ≤ C,

which imply the estimates

|∂xX(s)| ≤ C
p0

P 0(s)
, |∂pX(s)| ≤ C

1
P 0(s)

,

|∂xP (s)| ≤ Cp0, |∂pP (s)| ≤ C.

(3.9)

If we apply (3.9) to (3.5)–(3.8) again, we can see that s-derivatives of the above
quantities satisfy the same estimates:

∂s|∂xX(s)| ≤ C
p0

P 0(s)
, ∂s|∂pX(s)| ≤ C

1
P 0(s)

,

∂s|∂xP (s)| ≤ Cp0, ∂s|∂pP (s)| ≤ C.

(3.10)

On the other hand, we can consider the following integral curves. Let Y (s) and
V (s) denote for each y and v,

Y (s) = Y (s, t, y, v), V (s) = V (s, t, y, v)

and they satisfy

∂sY
i(s) =

V i(s)
V 0(s)

, Y i(t) = yi,

∂sV
i(s) = −Γi

αβ

V α(s)V β(s)
V 0(s)

, V i(t) = vi,

where the Christoffel symbols are evaluated at Y α(s) = (s, Y (s)). Then, by the
same arguments as above, we obtain

∂s[|V 0(s)∂yY (s)| + |∂yV (s)|] ≤ C(|V 0(s)∂yY (s)| + |∂yV (s)|),
∂s[|V 0(s)∂vY (s)| + |∂vV (s)|] ≤ C(|V 0(s)∂vY (s)| + |∂vV (s)|)

and use Grönwall’s lemma with Y (t) = y and V (t) = v,

|V 0(s)∂yY (s)| + |∂yV (s)| ≤ C(|V 0(t)∂yY (t)| + |∂yV (t)|) ≤ Cv0,

|V 0(s)∂vY (s)| + |∂vV (s)| ≤ C(|V 0(t)∂vY (t)| + |∂vV (t)|) ≤ C

and as a consequence the following estimates are obtained.

|∂yY (s)| ≤ C
v0

V 0(s)
, |∂vY (s)| ≤ C

1
V 0(s)

,

|∂yV (s)| ≤ Cv0, |∂vV (s)| ≤ C.

(3.11)

We now consider the quantity

l(s, X(s), P (s)) = ∂s[P 0(s)]J−1(X(s), P (s)) + P 0(s)∂s[J−1(X(s), P (s))],
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from which we have for y = X(t) and v = P (t),

l(t, y, v)J(y, v) = ∂s[P 0(s)]s=t + v0J(y, v)∂s[J−1(X(s), P (s))]s=t. (3.12)

By applying (3.4) to the first quantity above, we obtain

|∂s[P 0(s)]s=t| ≤ Cv0. (3.13)

Note that J(y, v) is written as

J(y, v) = J(X(s), P (s))s=t =
∣∣∣∣ ∂(x, p)
∂(X(s), P (s))

∣∣∣∣
s=t

=
∣∣∣∣∂(Y (s), V (s))

∂(y, v)

∣∣∣∣
s=0

,

where we used

x = Y (0, t, X(t), P (t)) = Y (0, t, y, v) = Y (0) and similarly p = V (0).

Thanks to the multilinearity of determinant, J(y, v) is estimated by (3.11) as
follows:

J(y, v) ≤ C

(
v0

V 0(s)

)3

s=0

= C

(
v0

p0

)3

. (3.14)

On the other hand, as for J−1(X(s), P (s)), we have the same estimates for ∂xX(s)
and ∂s∂xX(s), ∂pX(s) and ∂s∂pX(s) and so on, as in (3.9) and (3.10). Thanks to
the multilinearity again, the following estimate is obtained:

|∂s[J−1(X(s), P (s))]|s=t ≤ C

(
p0

P 0(s)

)3

s=t

= C

(
p0

v0

)3

. (3.15)

We combine (3.13)–(3.15) and (3.12) to obtain

|l(t, y, v)|J(y, v) ≤ Cv0.

This gives boundedness of β on I, and therefore it is proved that the condition (iv)
holds in Theorem 3.1.

It remains to discuss the extra condition g0i = 0 which is required to ensure
that the conditions of Tadmon’s theorem are satisfied. We are concerned here with
a solution on a local region, where the components of the metric in a certain coordi-
nate system are close to those of the Minkowski metric. Let the original coordinates
be (t, xi). Now choose new coordinates (t, x̃i) with the properties that x̃i agrees
with xi for t = 0 and the xi are constant along the integral curves of the unit nor-
mal vector field to the family of hypersurfaces of constant t. Then the components
of the metric in the new coordinate system satisfy the desired condition. The new
coordinates might not be defined on exactly the same region as the old ones so that
non-negativity is obtained on a slightly smaller domain. Given the fact that the
non-negativity theorem being discussed here is local in nature, this is not a major
disadvantage.
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3.2. The result of Bichteler and a new approach

In Bichteler’s paper [4], it was proved that under certain hypotheses a local solu-
tion of the Boltzmann equation exists on a given curved spacetime, and that it is
non-negative. A four-dimensional manifold M and a Lorentzian metric gαβ were
assumed to be given, and the Boltzmann equation was written in the form

LXf =
∫∫∫

W (12 → 34)δ(1 + 2 − 3 − 4)(f(3)f(4) − f(1)f(2))d2 d3 d4, (3.16)

where 1, 2, 3 and 4 stand for pα, qα p′α and q′α respectively. The left-hand side of
(3.16) means that the derivative of f along the integral curves of the vector field
X = (pα,−Γα

βγpβpγ) exists at almost all points of the domain of f . The transition
rate W is given as

W (12 → 34) = kσ(12 → 34),

where k is some kinematical factor and σ can be regarded as the same quantity as
the scattering kernel defined in (2.1). The volume forms d2, d3 and d4 are same as
in our case:

d2 =
|g| 12
−q0

dq

and d3 and d4 are similarly defined. The main theorem of [4] is the following.

Theorem 3.4 ([4]). Let f(0) be a measurable function on ω̂0, and suppose that
there exists a continuous timelike vector field βα(x) on ω0 such that

f(x, p) ≤ Ceβα(x)pα

on ω̂0

and the scattering kernel satisfies the following property:∫∫
σ(12 → 34)δ(1 + 2 − 3 − 4)d3d4 ≤ const. (3.17)

Then, there exists a solution f to the Boltzmann equation (3.16) on a domain Ω̂,

which is again exponentially bounded. Moreover, if f(0) ≥ 0, then also f ≥ 0.

The condition (3.17) can be stated in our notation as∫
S2

σ(�, θ)dΩ ≤ const. (3.18)

The corresponding conditions on the scattering kernel for the EB case are given in
Lemma 2.6 with the relation (2.1) between the scattering kernel and the collision
cross-section. Although the conditions in Lemma 2.6 are much more complicated
than (3.18), we can see that they do not imply (3.18). Hence Theorem 3.2 cannot
be applied directly to prove Theorem 3.1.

If there exists a solution of the Boltzmann equation with non-negative initial
data which becomes negative at some point in phase space then it is natural to
follow the particle path through that point backwards in time. This curve must
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meet the Cauchy surface and thus there is at least one point on it where f is non-
negative. Hence there exists a point (t∗, x∗, p∗) on the curve where it is zero and
immediately afterwards negative. At this point the derivative of f in the direction
of the particle path is non-negative because the loss term vanishes. It might however
be zero. This type of consideration plays a role in the proof of positivity in [4].

A small modification of this idea can be used to give a relatively simple proof
of non-negativity for the EB system. We first introduce the following notation,

L =
∂

∂t
+

pi

p0

∂

∂xi
− Γi

αβ

pαpβ

p0

∂

∂pi

and write the Boltzmann equation as Lf = (p0)−1Q(f, f). We then modify the
Boltzmann equation by adding a small quantity on the right-hand side.

Lfη =
1
p0

Q(fη, fη) + ηe−|p|2 , (3.19)

where η > 0 is a small parameter. The above equation is understood to be defined
on Ω̂ with a metric gαβ constructed as in Theorem 3.1. Since the quantity ηe−|p|2

is sufficiently smooth and square integrable on Ω̂, existence of solutions is easily
proved by the same argument of [3] using the following lemma.

Lemma 3.5 ([2]). Let gαβ and Ω̂ be the metric and the domain given in The-
orem 3.1, and consider the Cauchy problem for Lf = g with f(0) defined on ω̂0.
Then, for any 0 ≤ s ≤ t, there exists a solution in Hµ,N (Ω̂) satisfying the energy
inequality,

‖f(s)‖2
Hµ,N (ω̂s)

≤ C

(
‖f(0)‖2

Hµ,N(ω̂0)
+
∫ t

0

‖g(τ)‖2
Hµ,N (ω̂τ )dτ

)
,

where C is a constant depending only on gαβ, Ω and µ.

As a result, we have two distribution functions f and fη in a common domain Ω̂,
and we can see that fη is non-negative by reasoning as above. For in the case of the
modified equation the derivative of f along the particle path is strictly positive at
the point (t∗, x∗, p∗), a contradiction. Non-negativity of f is now proved by showing
continuous dependence on η for fη.

Non-negativity of f . We subtract the modified equation from the original one
and write F = f − fη to get

LF =
1
p0

Q(f, f) − 1
p0

Q(fη, fη) − ηe−|p|2 .

By applying Lemma 3.5, we obtain the following integral inequality:

‖F (t)‖2
Hµ,N (ω̂t)

≤ C

(
η +

∫ t

0

∥∥∥∥ 1
p0

Q(f, f)(τ) − 1
p0

Q(fη, fη)(τ)
∥∥∥∥

2

Hµ,N (ω̂τ )

dτ

)
,
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where we used F (0) = f(0) − fη(0) ≡ 0. From the bilinearity of Q, the above
difference of collision terms can be written as

Q(f, f) − Q(fη, fη) = Q(f, F ) + Q(F, fη).

We now apply Lemma 2.6 to obtain

‖F (t)‖2
Hµ,N (ω̂t)

≤ C

(
η +

∫ t

0

‖F (τ)‖2
Hµ,N (ω̂τ )dτ

)
,

which implies that limη→0 ‖F (t)‖Hµ,N (ω̂t) = 0, and consequently limη→0

‖F (t)‖Hµ,N (Ω̂) = 0. Since µ ≥ 5, we obtain

lim
η→0

‖f − fη‖L∞(Ω̂) = 0

and this proves non-negativity of f .
The above argument actually proves a stronger statement. Consider a situation

where the initial data are not everywhere non-negative. If (t, x, p) is a point of phase
space such the distribution function is non-negative at the point where the particle
path through (t, x, p) meets the Cauchy surface then we can argue as before to get a
contradiction. Thus a statement is obtained about the non-negativity of f at certain
points of phase space.

4. Further Considerations

An important concept in general relativity is that of general covariance. In the
context of mathematical relativity this means that it should be possible to express
the Einstein-matter equations in a form which is invariant under diffeomorphisms.
This assertion applies in particular to the EB system. The results of the previous
sections are concerned with solutions of the EB system expressed in a local coor-
dinate system. In other words they are results about the reduced Einstein equa-
tions in a harmonic coordinate system. These can be used to establish properties
of the EB system which are diffeomorphism invariant by standard procedures (cf.
[16, Chap. 9]). From this point of view it is natural to prove a global positivity
result for the EB system and for this it is enough to show that a solution of the
Boltzmann equation on a globally hyperbolic spacetime with non-negative initial
data is non-negative. A problem in formulating a theorem of this kind is to identify
a suitable class of collision cross-sections.

The conditions on the collision cross-section used in [3] and in the previous
sections are conditions on the function S and, as such, are coordinate dependent.
For a global theorem it is necessary to formulate an invariant condition and the
function S is not invariant since it depends explicitly on the spacetime coordinates.
A better alternative would be to formulate a condition on σ. In the formulation of
the reduced EB system using a coordinate basis the function σ still depends on the
metric components. If instead the EB system is formulated in an orthonormal frame
in the way explained in the introduction this dependence on the metric is eliminated.
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This formulation also has an advantage for the consideration of the question of
what collision cross-sections are physically reasonable. When the orthonormal frame
approach is used the scattering kernel in general relativity is identical to that in
special relativity. Thus the problem of identifying physically reasonable scattering
kernels is reduced to the corresponding problem in special relativity which is better
understood.

What has just been said provides a strong motivation for considering the reduced
system in the orthonormal frame formulation in more detail. The method of proof
of the theorems of [3] extends easily to this case. The inequalities on the derivatives
Dk

x,pS in Lemma 2.6 are replaced by the analogous estimates for Dk
vS which are

actually somewhat simpler. In fact there is one estimate which is necessary for those
proofs which is not included in [3]. In the iteration used in that paper there is a
new metric in each step of the iteration. In estimating the differences of iterates it
is in particular necessary to estimate the change resulting from making a change
of the metric in the collision term. This is not mentioned in [3]. The orthonormal
frame formulation eliminates this problem since in that case the collision term does
not depend on the metric components. The conditions on Dk

vS which are analogous
to those of Lemma 2.6 are coordinate independent and are thus appropriate for
formulating a global theorem. Let us call these the orthonormal frame regularity
conditions. From the point of view of comparing with physical conditions on the
collision term it would be of interest to know what conditions on σ are required to
imply the orthonormal frame regularity conditions. For instance, as a simple case an
assumption on the support of � can be made. Let us consider the orthonormal frame
regularity conditions in more detail. The conditions of Lemma 2.6 are replaced as
follows for the case N = ∞. Under the same conditions on µ, k and r, the following
inequality should hold:∫∫

|∂i
�σ̂(�, θ)|2�2i−4|k′|e−2q0

(q0)14|r|+2|k|(p0)4|r|−1dΩ dq ≤ C,

where i ≤ |k′| ≤ |k| and, motivated by the form of the expression S = λ�σ, the
quantity σ̂ = �σ has been introduced. Suppose now that σ is a smooth function and
has support contained in the set defined by m ≤ � ≤ M for some positive numbers
m and M . Then, the term �2i−4|k′| is clearly bounded. Moreover, the condition
� ≤ M gives the following estimate. Since we are working in an orthonormal frame,
it implies that

p0 ≤ 1
q0

(q · p + M ′) ≤ 1
q0

(|q||p| + M ′) for M ′ =
1
2
M2 + 1.

After some calculations and using the inequality |p| ≤ p0 we obtain |p| ≤ 2M ′q0,
and this implies in turn that p0 ≤ Cq0 for some C. Hence the orthonormal frame
regularity conditions hold.

Consider a solution f of the Boltzmann equation on a globally hyperbolic space-
time and suppose that the scattering kernel satisfies the orthonormal frame regu-
larity conditions. If the initial data are non-negative then f is non-negative. We

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

01
3.

10
:7

7-
10

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

04
/0

8/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 19, 2013 11:51 WSPC/S0219-8916 JHDE 1350003

The Einstein–Boltzmann System and Positivity 103

suppose that the statement is false and obtain a contradiction. If the statement is
false there is a point (t1, x1, p1) with f(t1, x1, p1) < 0. Let γ be the particle path
passing through (t1, x1, p1). If (t, x, p) is a point of γ sufficiently close to the initial
hypersurface then local coordinates can be defined such that (t, x) is contained in
their domain of definition and the conditions of the theorem of [3] are satisfied.
Hence f(t, x, p) ≥ 0 close to the initial hypersurface. Let (t2, x2, p2) be a point on γ

with f(t, x, p) ≥ 0 for all points on γ with t ≤ t2 and f(t, x, p) < 0 for some points
on γ with t arbitrarily close to t2. We can choose a local Cauchy surface through
the point (t2, x2) and a local coordinate system on a neighborhood of (t2, x2) such
that the conditions of the theorem of [3] are satisfied. It then follows by the result
stated at the end of Sec. 3 that f ≥ 0 at all points on γ with t slightly greater than
t2, a contradiction.

It should be noted that as soon as results on well-posedness of the Cauchy
problem for the EB system can be extended to wider classes of scattering kernels
the positivity result can also be extended, provided the theorem includes a statement
about continuous dependence of the solution on the scattering kernel in a suitable
sense. For then it suffices to approximate a scattering kernel of the new class by a
sequence of kernels of the class previously treated.

We hope that by clarifying a number of issues the results of this paper will
contribute to the development of a mature theory of the local and global Cauchy
problem for the EB system in the near future.
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