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We explore how to extract effective dynamics from loop quantum gravity and spinfoams trun-
cated to a finite fixed graph, with the hope of modeling symmetry-reduced gravitational systems.
We particularize our study to the 2-vertex graph with N links. We describe the canonical data
using the recent formulation of the phase space in terms of spinors, and implement a symmetry-
reduction to the homogeneous and isotropic sector. From the canonical point of view, we construct
a consistent Hamiltonian for the model and discuss its relation with Friedmann-Robertson-Walker
cosmologies. Then, we analyze the dynamics from the spinfoam approach. We compute exactly
the transition amplitude between initial and final coherent spin networks states with support on
the 2-vertex graph, for the choice of the simplest two-complex (with a single space-time vertex).
The transition amplitude verifies an exact differential equation that agrees with the Hamiltonian
constructed previously. Thus, in our simple setting we clarify the link between the canonical and
the covariant formalisms.
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Introduction

Loop quantum gravity [1] and spinfoams [2] form together a proposition for a well-defined framework for quantum
gravity. While loop gravity is the canonical definition of the theory describing the evolution of quantum states of
space geometry, the spinfoam approach provides the covariant formulation of the theory, such that it describes the
quantum structure of space-time. More precisely, in both loop quantum gravity and spinfoams the quantum states
of geometry are given by spin network states which have support on some graphs. The space of spin networks living
on all possible graphs (up to diffeomorphisms) provide a basis for the kinematical Hilbert space of the theory. In the
canonical framework, the evolution is implemented by a Hamiltonian operator. There exist both graph-changing and
non-graph-changing proposals for this operator depending on the precise regularization scheme and implementation
of the Hamiltonian constraint at the quantum level, although it is usually assumed that it acts on the states by
changing the underlying graph. The spinfoam approach, on the other hand, defines transition amplitudes between
spin network states living on arbitrary graphs through the construction of a covariant discretized path integral. This
program towards quantum gravity faces three main issues: a clear definitive definition of the dynamics, the derivation
and analysis of the semi-classical regime of the theory where we should recover fluctuations of the gravitational field
around flat space-time, and a consistent method for extracting quantum gravity corrections and predictions.
Here, we propose to discuss these topics in the context of loop quantum gravity and spinfoams truncated to a finite

fixed graph. From the canonical point of view, this requires defining a Hamiltonian on a fixed graph (without assuming
that it comes from the truncation of a graph-changing or a non-graph-changing Hamiltonian). From the covariant
point of view, this requires considering transition amplitudes between initial and final spin network states with support
on the same graph. The theory restricted to spin network states living on this given graph, is thus truncated to a
finite number of degrees of freedom. Our hope is that restricting the theory to a finite fixed graph would allow to
formulate physically relevant mini-superspace models for (loop) quantum gravity. Indeed, mini-superspace models
in general relativity are restrictions to certain families of 4-metrics parameterized by a finite number of parameters
and satisfying certain symmetries or properties which made them relevant to some particular physical context. We
expect that the development of such mini-superspace models of loop quantum gravity will lead to realistic models for
quantum cosmology and thus allow precise cosmological predictions from loop gravity and spinfoam models.
Our strategy is to choose some simple graph Γ, to analyze and describe both the classical phase space and the

space of quantum states living on this graph, to define and study the dynamics both at the classical and quantum
levels using the loop gravity ansatz for the Hamiltonian or the transition amplitudes of spinfoam models, and finally
to understand how it can be mapped (or not) on some cosmological models (or other interesting situations). Working
on such simplified setting with a fixed underlying graph allows to define rigourously the dynamics of the classical
data and quantum states and more generally to investigate the possible dynamics that one can define. We also
hope that studying such toy models for (loop) quantum gravity will allow to understand more about the geometrical
interpretation of the quantum states and the construction of coherent states, about the transition to the semi-classical
regime, and about the structure of spinfoam amplitudes for the evolution of spin networks. From this point of view,
the fact that such models could lead to realistic cosmological models or to the dynamics of other symmetry-reduced
geometries, and that we could possibly extract quantitative quantum gravity effects in this context would be a bonus.
We discuss the generic procedures and methods behind this fixed finite graph approach, but we focus in practice

on the case of the 2-vertex graph, which has been shown to be somewhat related to Friedmann-Robertson-Walker
cosmology in earlier works [3–8]. The first section describes in detail the classical kinematical structures of loop gravity
on an arbitrary fixed graph Γ. We review the recently developed approach of parameterizing the classical phase space
with spinor variables [7, 9–11] and discuss its relation to the other parameterizations in terms of the standard loop
gravity holonomy-flux variables, in terms of twisted geometries [9, 12], and finally in terms of U(N)-covariant variables
[6, 7, 10, 13–15]. Each set of variables allows to insist on certain aspect of the kinematics and clarifies the geometrical
interpretation of the phase space.
In the second section, we apply the generic method to the particular case of the graph with 2 vertices and N edges

linking them, which is the simplest graph on which one can formulate the theory. We describe the phase space on
this 2-vertex graph and define the symmetry reduction to the homogeneous and isotropic sector, following the U(N)-
symmetry proposal of [6, 7]. Then in section three, we define and implement classical dynamics on this 2-vertex graph
consistent with the reduction to the homogeneous and isotropic sector. We show the relation between this truncated
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loop gravity classical dynamics, the (geometrical part of the) Hamiltonian for Friedmann-Robertson-Walker (FRW)
cosmology and the effective dynamics derived from loop quantum cosmology. Let us remark that here we focus on
the vacuum case. In the future we will need to include matter in order to get true models for cosmology. We further
discuss and explain the limitations of the similarities between our model and cosmology, and the failures of our näıve
2-vertex graph Hamiltonian at large scales when we take into account a non-vanishing curvature or cosmological
constant.
In the fourth and final section, we investigate the effective classical dynamics on the 2-vertex graph induced by the

quantum transition amplitudes of spinfoam models applied to coherent spin network states on the 2-vertex graph.
This clarifies and extends the previous results obtained by Bianchi, Rovelli and Vidotto in [5]. We compute exactly
the spinfoam transition amplitudes and identify the exact differential equations that they satisfy. Then we show
how these differential equations lead back to the 2-vertex Hamiltonian defined previously at the classical level. We
discuss how to generalize these results beyond the 2-vertex graph and how our procedure is related to the study of
recursion relations and invariance of spinfoam amplitudes [16–18]. Indeed, from the spinfoam point of view, such
recursion relations are understood to be equivalent to the dynamics of the theory and have been shown to translate to
differential equations when applied to coherent spin network states. These are exactly the differential equations that
we recover in our 2-vertex graph setting and that we show to be related to the Hamiltonian constraint of flat FRW
cosmology. We also discuss how to modify the spinfoam amplitude to take non-vanishing curvature into account. This
final step finally shows the coherence of the spinfoam cosmology approach initiated in [5] with the canonical point of
view, although much work is needed to go beyond our näıve truncation to the 2-vertex graph and its homogeneous
and isotropic sector.

I. CLASSICAL PHASE SPACE OF LOOP GRAVITY

Loop quantum gravity is formulated in terms of spin network states leaving on graphs. A spin network state on a
graph Γ is defined as a gauge-invariant function of SU(2) group elements ge leaving on the edges e ∈ Γ. The SU(2)
group elements are physically the holonomies of the Ashtekar-Barbero connection along the edges of the graph. The
Hilbert space of these wave-functions ϕΓ(ge) provides a quantization of the phase space of holonomy-flux variables
(ge, Xe), where the holonomies ge act by multiplication and fluxes Xe act as derivation operators. Following recent
developments on the U(N) formalism for intertwiners [6, 7, 13–15, 19] and twisted geometries [9, 12], it has been
understood that the holonomy-flux algebra defined in terms of the (ge, Xe) variables on a given graph Γ can be
re-written using spinor variables zve living around each vertex v on the edges e [7, 9–11]. Then wave-functions will be
holomorphic functions of these spinor variables.
In this section, we will quickly review this construction. We will define the phase space of the spinors zve , provide

an action principle encoding the canonical Poisson structure and constraints generating the SU(2) gauge-invariance,
and explain how to recover the standard holonomy and flux observables from these variables. Finally, we will discuss
how to endow this kinematical structure with dynamics, thus defining effective classical dynamical models of loop
quantum gravity on fixed graphs.

A. Spinor Networks and Phase Space on a Fixed Graph

In loop quantum gravity the spin network states provide an orthonormal basis for the kinematical Hilbert space
of the theory. A spin network state has support on a given closed graph and consists in the coloring of the graph’s
edges and vertices with appropriate quantum numbers. More precisely, every edge is colored with an irreducible
representation of SU(2) and every vertex with an intertwiner, namely a SU(2)-invariant state living in the tensor
product of the SU(2) representations meeting at that vertex. This kinematical Hilbert space is usually formulated as
the quantization of the phase space of holonomy-flux variables, which are discretized observables for the connection
and triad field of loop quantum gravity. Recently, new descriptions for the kinematical phase space of loop gravity
have been devised in order to understand better the geometrical interpretation of the spin network states, also with
the aim of constructing suitable coherent states of discrete geometry. Such descriptions, as the twisted geometries and
the U(N) formalism for intertwiners, have converged to a description of the phase space in terms of spinor networks.
Let us start with a closed oriented graph Γ, with E oriented edges and V vertices. For simplicity’s sake, we choose it

connected, else all the definitions will still apply to each connected component of the graph. Now around each vertex
v, we associate a spinor variable zve ∈ C2 to each edge e attached to v. Equivalently, this amounts to associating to

each edge e two spinors, zse ≡ z
s(e)
e and zte ≡ z

t(e)
e , the former attached to the source vertex s(e) of the edge and the

latter attached to its target vertex.
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The phase space is defined by the canonical bracket on the spinor variables, postulating that each spinor z is
canonically conjugated to its complex conjugate:

{za, zb} = −iδab , (1)

where we have dropped the e, v indices and za with a = 0, 1 stand for the two components of the spinor z. Then we
impose two sets of constraints on these sets of spinors:

• Closure constraints at each vertex v:

∀v, Cv ≡
∑

e∋v

|zve 〉〈zve | −
1

2
〈zve |zve 〉I = 0, (2)

where |z〉〈z| and I are 2×2 matrices and the linear combination |z〉〈z| − 1
2 〈z|z〉 is the traceless part of |z〉〈z|.

• Matching constraints along each edge e:

∀e, Me ≡ 〈zse |zse〉 − 〈zte|zte〉 = 0 . (3)

It is direct to check that these two sets of constraints are first class. The closure constraints generate SU(2)
transformations at each vertex:

|zve 〉 −→ gv |zve 〉 with gv ∈ SU(2) , (4)

while the matching constraints generate U(1) transformations on each edge:

|zse〉 −→ e+iθe |zse〉, |zte〉 −→ e−iθe |zte〉, with e+iθe ∈ U(1) . (5)

Moreover, one easily checks that closure and matching constraints commute with each other. A spinor network is a
set of spinors {zve} satisfying both sets of constraints and up to SU(2) and U(1) transformations, i.e an element in
C4E//(SU(2)V ×U(1)E), where // stands for the symplectic reduction (i.e both solving the constraints and quotienting
by their action).
This constrained phase space structure can be summarized by an action principle:

S(0)[zve ] =

∫
dt
∑

v

∑

e∋v

(
− i〈zve |∂tzve 〉+ 〈zve |Λv|zve 〉

)
+
∑

e

ρe
(
〈zse |zse〉 − 〈zte|zte〉

)
, (6)

where the 2×2 matrices Λv with TrΛv = 0 and the real variables ρe are Lagrange multipliers imposing the closure
and matching constraints. This action S(0) defines the kinematical structure of spinor networks and the phase space
on the fixed graph Γ. We will later add a Hamiltonian term to this action in order to define (classical) dynamics for
these spinor networks, the goal being to construct the Hamiltonian in order to produce effective dynamics for loop
quantum gravity on fixed graphs Γ which can be relevant for symmetry-reduced physical situations such as cosmology.

In order to understand the geometrical meaning of spinor networks, the best is to translate spinors into 3-vectors.

Indeed, each spinor z ∈ C2 determines a 3-vector ~V ∈ R3 through its projection onto the Pauli matrices:

~V = 〈z|~σ|z〉, |z〉〈z| = 1

2

(
〈z|z〉I+ ~V · ~σ

)
, (7)

where the Pauli matrices are normalized such that σ2
i = I, ∀i and the norm of the 3-vector is |~V | = 〈z|z〉. Reversely,

the spinor z is entirely determined by its projection ~V up to a global phase (see in appendix for more details).

Swapping all the spinors zve for their projections ~V v
e , it is straightforward to translate the constraints in terms of the

3-vectors:

• Closure constraints at each vertex v:

∀v,
∑

e∋v

~V v
e = 0 (8)
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• Matching constraints along each edge e:

∀e, |~V s
e | = |~V t

e | (9)

The geometrical interpretation then appears clearly. The closure constraints mean that each vertex v is dual to a

(closed) polyhedron with each edge e dual to a face of the polyhedron. The 3-vector ~V v
e becomes the normal vector to

the face dual to e and the norm |~V v
e | gives the area of that face. Every set of vector satisfying the closure constraint

automatically defines a unique such polyhedron. A detailed reconstruction of the polyhedron from the normal vectors
is achieved through Minkowski theorem and Lasserre’s algorithm [20].
Thus we have one polyhedron (embedded in the flat 3d Euclidean space R3) around each vertex v. Then the

matching constraints impose that the areas of their matching faces along each edge e be equal. Note that this does
not mean that the shape of the faces will match. This would require further constraints (see e.g. [21]). This translation
of the closure and matching constraints in terms of 3-vectors provides spinor networks with a clear interpretation as
discrete 3d geometries.

Now, we would like to define observables and wave-functions over the classical spinor phase space C4E//(SU(2)V ×
U(1)E). Since we have two sets of constraints, there are two natural paths to solving them depending if we first
implement the U(1)-invariance or the SU(2)-invariance. To start with, on the initial unconstrained phase space C4E ,
we have wave-functions ϕ(zve ), which can be defined simply as holomorphic functions of the spinor variables. Then
we have two alternatives:

• We first impose the matching constraints Me:

This is the path to the standard formulation of loop (quantum) gravity and to twisted geometries. Natural
U(1)-invariant observables, constructed from the spinors, are group elements ge ∈ SU(2) attached to each edge

e. Together with the 3-vectors ~V v
e , they allow to entirely parameterize the phase space C4E//U(1)E . These ge

define the SU(2) holonomies along edges of loop gravity and can be taken as the configuration space coordinates.
We will review the reconstruction of these group elements from the spinors in the next subsection IB.

Then we would work with wave-functions ϕ(ge), which are U(1)-invariant. Finally imposing the closure con-
straints on these wave-functions, we would obtain a Hilbert space of SU(2)-invariant wave-functions ϕ(ge), with
the standard spin network functionals as a basis.

This scheme seems to localize the degrees of freedom (at the kinematical level) on the edges of the graph.

• We first impose the closure constraints Cv:
This is the path taken by the U(N) formalism for SU(2) intertwiners [7, 13, 14]. Imposing the closure constraints
at each vertex v, one defines natural SU(2)-invariant observables F v

ef , depending on pair of edges e, f attached
to v, and holomorphic in the spinor variables zve . Their definition will be reviewed below in subsection ID.

Then we would work with wave-functions ϕ(F v
ef ), which are SU(2)-invariant. Finally imposing the matching

constraints on these wave-functions, we obtain a Hilbert space of U(1)-invariant wave-functions ϕ(F v
ef ) on the

graph Γ, which is exactly isomorphic to the standard Hilbert space of spin networks obtained by the other path
of first imposing U(1)-invariance and then SU(2)-invariance [7, 11].

Compared to the previous possibility, this scheme seems to localize the degrees of freedom at the vertices of the
graph.

These two paths provide interesting parameterizations of spinor networks, relevant to discuss their (gauge-invariant)
dynamics and to impose further symmetries such as homogeneity or isotropy, and we will quickly overview these
constructions in the following subsections.

B. Reconstructing Group Elements and Spin Networks

Let us start by identifying U(1)-invariant variables. First, one notices that the 3-vectors commute with the matching
constraints since they are invariant under the action of phases on the spinors:

~V s,t
e = 〈zs,te |~σ|zs,te 〉, {Me, ~V

s,t
f } = 0, ∀e, f. (10)
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Then, in order to make the link, we reconstruct the SU(2) holonomies along the edges following [7, 9]. We define the
unique group element ge ∈ SU(2) which maps the spinor |zse〉 at the source vertex to the dual spinor |zte] living at the
target vertex:

ge|zse〉 = |zte], ge|zse ] = −|zte〉, ge ≡ |zte]〈zse | − |zte〉[zse |√
〈zse |zse〉〈zte|zte〉

. (11)

The dual spinor |z] is defined through the following anti-unitary map (see in appendix for more details):

|z〉 =
(
z0
z1

)
−→ |z] = |ςz〉 ≡

(
−z1
z0

)
= ǫ|z〉, ǫ ≡

(
0 −1
+1 0

)
.

It is clear that the group element ge defined as above is invariant under multiplication of the spinors zs,te by opposed
phases exp(±iθe):

{Me, gf} = 0, ∀e, f. (12)

Following the definition of this group element, it is straightforward to check that it maps the source vector on the
opposite of the target vector:

ge |zse〉〈zse | g−1
e = |zte][zte| , ge ⊲ ~V s

e = −~V t
e , (13)

where g ⊲ denotes the action of SU(2) group elements as three-dimensional rotations acting on R3.
Counting degrees of freedom, the phase space C4E//U(1)E of spinor variables after imposing the matching condition

has dimension 8E − 2E = 2 × 3E, which matches exactly the number of U(1)-invariant variables {ge, ~V s
e } that we

have defined. Furthermore, one can check that it is possible to write the action S(0)[zve ] defined by (6) in terms of
these new variables. Indeed, we first compute:

〈zse |∂tzse〉+ 〈zte|∂tzte〉 = 〈zse |∂tzse〉+ [zse|∂tzse] + [zse |g−1
e ∂tge|zse ] = [zse |g−1

e ∂tge|zse] + ∂t〈zse |zse〉 . (14)

Since ge ∈ SU(2), then the derivative g−1
e ∂tge decomposes on the Pauli matrices ~σ. So its trace vanishes, Tr g−1

e ∂tge =

0, and we can decompose the matrix |zse ][zse | on the Pauli matrices in terms of the vector ~V s
e :

[zse |g−1
e ∂tge|zse ] = −~V s

e · 1
2
Tr~σg−1

e ∂tge .

Then discarding the total derivative term ∂t〈zse |zse〉 from the action principle, we finally obtain:

S(0)[zve ] =

∫
dt

[
i

2
~V s
e · Tr~σg−1

e ∂tge +
∑

e

~ρe · (~V t
e + ge ⊲ ~V s

e ) +
∑

v

~Λv ·
∑

e∋v

~V v
e

]
. (15)

So solving the matching constraints, we can indeed re-express our (kinematical) action principle in terms of the
holonomy-vector variables at the U(1)-invariant level.
Parameterizing explicitly the group elements g = exp(iαû · ~σ) with the class angle α ∈ [0, 2π] and the unit vector

û ∈ S2, we can express the kinematical term i~V s
e · 1

2Tr~σg
−1
e ∂tge in terms of the parameters (αe, ûe) by computing the

derivative:

g−1
e ∂tge = i~σ ·

(
(∂tαe)ûe + cosαe sinαe∂tûe + sin2 αeûe ∧ ∂tûe

)
,

where (û, ∂tû, û ∧ ∂tû) form an orthogonal basis of R3 since û’s norm is fixed. To derive this formula, we have used
the expression g = cosαI + i sinα û · ~σ. Let us point out that this is not equal to the näıve expression given by the
derivative of the Lie algebra element, i∂t(αû) · ~σ .
Furthermore, we can compute the Poisson brackets of the ge, ~V

s,t
e variables with each other and we get after some

slightly tedious but straightforward calculations:

{ge, ge} ≈ 0, {(V s,t
e )i, (V

s,t
e )j} = 2ǫijk(V

s,t
e )k, {~V s

e , ge} = −i ge~σ, {~V t
e , ge} = +i ~σge . (16)

where ≈ refers to weak equality (i.e imposing the matching condition). All brackets between variables attached to
different edges e 6= f vanish trivially. Finally, note that {ge, ge} amounts to the commutators of all the components
of the group element ge with each other.
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This means that this reproduces the usual holonomy-flux algebra on the graph Γ. It also means that it is legitimate

to consider wave-functions of the group elements ϕ(ge) at the quantum level with the 3-vectors ~V s,t
e acting as the

left and right derivative with respect to the ge’s. This leads back to the standard quantization scheme used in loop
quantum gravity.
However we would like to point out that such wave-functions ϕ(ge) are not holomorphic functions of our spinor vari-

ables. Indeed, the group elements ge contains one holomorphic term in the z’s and one anti-holomorphic component.
We can nevertheless define holomorphic holonomy variables:

Ge ≡ |zte〉[zse | . (17)

The matrix Ge still transports the spinors, but is of rank one: it maps |zse ] to |zte〉 but sends |zse〉 to 0. These holomorphic
variables Ge are still clearly U(1)-invariant. They are not SU(2) group elements anymore, but still satisfy the right

Poisson algebra with the 3-vectors ~V s,t
e :

{Ge,Ge} = 0, {(V s,t
e )i, (V

s,t
e )j} = 2ǫijk(V

s,t
e )k, {~V s

e ,Ge} = −iGe~σ, {~V t
e ,Ge} = +i ~σGe , (18)

where the first commutator vanishes exactly and not only on the constrained surface. As it was implicitly implied in
[7] and explicitly shown in [11], the Hilbert space of holomorphic wave-functions ϕ(Ge) is isomorphic to the standard
Hilbert space of spin network functionals ϕ(ge), and the isomorphism can be realized through a non-trivial kernel
K(ge,Ge) allowing back and forth between the two polarizations.

C. From Spinors to Twisted Geometry

Another way to parameterize the U(1)-invariant phase space is to use the twisted geometry variables developed by
Freidel and Speziale [9, 12], which are particularly relevant to building semi-classical coherent spin network states for
spinfoam models.
The starting point of this approach is to define a spinor z through the unique group element which maps the “origin”

spinor Ω ≡
(

1
0

)
onto the normalized spinor z/

√
〈z|z〉. Then we decompose that group element as the product of a

rotation along the z-axis and a rotation with axis in the (0xy) plane:

|z〉 =
√
〈z|z〉n(Z) eiφσ3 |Ω〉 = eiφ

√
〈z|z〉n(Z) |Ω〉 =

eiφ
√
〈z|z〉√

1 + |Z|2

(
1
Z

)
n(Z) =

1√
1 + |Z|2

(
1 −Z
Z 1

)
, (19)

where n(Z) ∈ SU(2) defines a rotation with axis in the (0xy) plane1. This means that we have parameterized the
spinor z with four real numbers φ, 〈z|z〉 ∈ R2 and Z ∈ C, so there shouldn’t be any (continuous) redundancy in this
parametrization. We can furthermore easily check that the map is one-to-one, since we can invert this definition:

Z =
z1
z0
, eiφ =

z0
|z0|

, 〈z|z〉 = z20 + z21

The complex variable Z defines the direction of the 3-vector ~V . Indeed, we have:

|z〉〈z| = 〈z|z〉 n(Z) |Ω〉〈Ω|n(Z)−1,

which is straightforward to translate into 3-vectors:

|z〉〈z| =
1

2

(
|V |I+ ~V · ~σ

)
,

|Ω〉〈Ω| =
1

2
(I+ σ3) =

1

2
(I+ êz · ~σ) ,

1 The SU(2) group element n(Z) is a rotation eα m̂ with m̂ · êz = 0 and |m̂|2 = 1. Indeed we can expand this group element as:

eθ m̂ = cos θI+ i sin θ

(

1 m
m 1

)

, m = mx + imy , |m|2 = 1,

which matches n(Z) for Z = i tan θm.
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Thus we simply have ~V /|~V | = n(Z) ⊲ êz. Finally, it is also useful to write explicitly the dual spinor |z] in terms of
the same variables. Using that ǫhǫ−1 = h for all SU(2) group elements h and in particular for h = n(Z), we easily
get2:

|z]√
〈z|z〉

=
ǫ|z〉√
〈z|z〉

= e−iφn(Z)ǫ |Ω〉 = n(Z)ǫ e−iφσ3 |Ω〉 = n(Z) e+iφσ3 |Ω̃〉, with Ω̃ ≡ |Ω] = ǫΩ =

(
0
1

)
. (20)

Applying these definitions to all the spinors zs,te , we can write all the functions over the C4E phase space in terms
of the new variables φs,te and Zs,t

e . For instance, we can express the holonomy variables ge in terms of these twisted
geometry variables. The group element ge sends |zse〉 back to the origin Ω and then maps it to |zte]:

ge = n(Zt
e) ǫ e

−iφt
eσ3 e−iφs

eσ3 n(Zs
e)

−1 = n(Zt
e) ǫ e

−iξeσ3 n(Zs
e )

−1, with ξe ≡ (φte + φse) , (21)

where the variables Zs,t
e and ξe are all U(1)-invariant.

Finally, we can write the whole action in terms of the twisted geometry variables. First, we compute the kinematical
term for a single spinor, 〈z|∂tz〉 , in terms of the new variables:

〈z|∂tz〉 = i〈z|z〉∂tφ + 〈z|z〉 〈Ω|n(Z)−1∂tn(Z)|Ω〉 +
1

2
∂t〈z|z〉 .

We further compute explicitly the derivative term in the variable complex Z ∈ C 3:

〈Ω|n(Z)−1∂tn(Z)|Ω〉 =
Z∂tZ − Z∂tZ

2(1 + |Z|2) = i
|Z|2

(1 + |Z|2) ∂tθ, with θ = ArgZ . (22)

Applying this formula for z = zs,te and discarding the total derivatives, we obtain:

S(0)[zve ] =

∫
dt
∑

e

Ae∂tξe +Ae

( |Zs
e |2

(1 + |Zs
e |2)

∂tθ
s
e +

|Zt
e|2

(1 + |Zt
e|2)

∂tθ
t
e

)
+ (closure constraints), (23)

where Ae ≡ 〈zse |zse〉 = 〈zte|zte〉 denotes the area dual to the edge e. For the details of the Poisson algebra of the twisted
geometry variables Ae, ξe, |Zs,t

e |, θs,te , the interested reader can find a thorough analysis in [9, 12]. Let us just point out
that although the variables Ae are SU(2)-invariant, all the remaining variables ξe, |Zs,t

e |, θs,te have non-trivial Poisson
brackets with the closure constraints and are thus not SU(2)-invariant. In order to get SU(2)-invariants from the
spinor variables or the twisted geometry variables, you can use cross-ratio observables as introduced in [22], but we
will not go into the details of this construction in the present work.

2 We can actually re-absorb the ǫ factor in the n(Z) group element itself by switching from Z to −1/Z. After a few algebraic manipulations,
we get:

n

(

− 1

Z

)

= n(Z)ǫ−1eiθσ3 , with θ = ArgZ .

Thus, we can re-write the dual spinor as:

|z] = −
√

〈z|z〉 e−i(φ+θ) n

(

− 1

Z

)

|Ω〉 = −
√

〈z|z〉n
(

− 1

Z

)

e−i(φ+θ)σ3 |Ω〉 .

3 This hints that there might be a more convenient choice of complex variable Z = Reiθ instead of Z = Reiθ such that:

R =
R√

1 +R2
∈ [0, 1[ , n(Z) =

(
√

1− |Z|2 −Z̄
Z

√

1− |Z|2
)

.

We can parameterize both variables using a “boost” parameter, thus writing R = sinh η and R = tanh η. Finally the derivative term in
Z simply reduces to:

〈Ω|n(Z)−1∂tn(Z)|Ω〉 = iR2 ∂tθ =
1

2
(Z̄∂tZ − Z∂tZ̄) .

We can even go further and re-absorb the area factor A = 〈z|z〉 into the definition of the complex variable. Indeed since A is real, it
factors out of the anti-symmetric combination Z̄∂tZ − Z∂tZ̄ which is only sensitive to the argument of Z:

√
AZ̄∂t(

√
AZ)−

√
AZ∂t(

√
AZ̄) = A(Z̄∂tZ −Z∂tZ̄) .
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D. Solving the SU(2)-invariance: U(N) Formalism

We have up to now reviewed the path of first implementing the U(1)-invariance on the spinor phase space. This
has lead us to the standard holonomy-flux algebra of loop gravity and to the twisted geometry parameterization. In
this subsection, we will give a quick overview of the other alternative of first implementing the SU(2)-invariance. This
approach has been developed in [6, 7, 13–15, 19] and been referred to as the U(N) formalism for SU(2) intertwiners.
Here, we will not review this whole framework, but will focus on the definition of the classical SU(2)-invariant
observables and how to write our action at the kinematical level in terms of them.
Focusing on the closure constraints at vertices, a natural set of SU(2)-invariant observables at each vertex v is given

by:

Ev
ef = 〈zve |zvf 〉, Ev

fe = Ēv
ef , F v

ef = [zve |zvf 〉, F̄ v
ef = 〈zvf |zve ], F v

fe = −F v
ef . (24)

Calling Nv the valency of the vertex v (number of edges attached to v), the Nv×Nv matrix Ev is Hermitian while the
matrix F v is anti-symmetric and holomorphic in the spinor variables. It is clear that these scalar product between
spinors are invariant under SU(2) transformations at the vertex v. Moreover the Poisson algebra of these observables
closes:

{Ev
ef , E

v
gh} = −i

(
δfgE

v
eh − δehE

v
gf

)
(25)

{Ev
ef , F

v
gh} = −i

(
δehF

v
fg − δegF

v
fh

)
, {Ev

ef , F̄
v
gh} = −i

(
δfgF̄

v
eh − δfhF̄

v
eg

)
,

{F v
ef , F̄

v
gh} = −i

(
δegE

v
hf − δehE

v
gf − δfgE

v
he + δfhE

v
ge

)
,

{F v
ef , F

v
gh} = 0, {F̄ v

ef , F̄
v
gh} = 0.

Actually, the algebra of the E-observables alone closes and the corresponding Poisson brackets actually define a u(Nv)
algebra, thus the name “U(N)-formalism”. One can go further with the U(N) idea and write the E and F observables
in terms of a single unitary matrix Uv ∈ U(Nv):

Ev = λv Uv ∆ tUv, ∆ =




1
1

0Nv−2


 , (26)

F v = λv U
v∆ǫ

tUv, ∆ǫ =




1

−1

0Nv−2


 ,

where λv ∈ R+. It is direct to write the spinors in terms of the couple of variables (λv, Uv):

(zve )0 =
√
λv U

v
e1, (zve )1 =

√
λv U

v
e2, λv =

1

2

∑

e∋v

〈zve |zve 〉 =
Av

2
. (27)

The parameter λv is a global scale factor and measures in fact the total area around the vertex v. The advantage of
this formulation is that the closure constraints on the spinors at the vertex v gets simply encoded in the unitarity of
the matrix Uv, as shown in [7]:

Cv =
∑

e∋v

|zve 〉〈zve | −
1

2
〈zve |zve 〉 = 0 ⇔ (Uv)†Uv = I . (28)

One can check that we have the right number of degrees of freedom. Around a fixed vertex v, we had started
with Nv spinors satisfying the closure constraints and up to SU(2)-transformations, which makes 4Nv − 6 variables.
Working with the unitary matrix, we must first notice that the definition of the matrices E and F are invariant under
U(Nv − 2)× SU(2) (which is the stabilizer group of both ∆ and ∆ǫ matrices). Thus imposing this symmetry and not
forgetting the degree of freedom encoded in λv, we have 1 +N2

v − (Nv − 2)2 − 3 = 4Nv − 6.
One can finally write the action defining the kinematics on the graph Γ in terms of these U(N) variables:

S(0)[zve ] =

∫
dt
∑

v

+iλvTrU
v∆∂tU

−1
v +

∑

v

TrΘv((U
v)†Uv − I) +

∑

e

ρe(E
s
ee − Et

ee), (29)

where the new Lagrange multiplier Θv imposes the unitarity of Uv and the matching constraints generate multiplica-
tions by phases on the matrix elements of the unitary Uv.
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Here, we have replaced the closure constraints on the spinors by the unitarity constraints on the matrices Uv. We
can actually go further and formulate everything entirely in terms of SU(2)-invariants:

S(0)[zve ] =

∫
dt
∑

v

−i
2λv

Tr(F v)†∂tF
v +

∑

e

ρe(E
s
ee − Et

ee), (30)

where both the Ev and λv should be considered as functions of the F -variables:

λv =
1

2

∑

e∋v

〈zve |zve 〉 =
√

1

2
Tr(F v)†F v,

Ev = =
1

λv
(F v)†F v ,

where the equation giving the E-matrix in terms of the F -matrix is part of a system of quadratic equations relating
the Ev

ef and F v
ef observables [7]. This means that we write our action principle entirely in the F v-variables, which

are SU(2)-invariants. However, if we consider the F v
ef as our basic variables, the drawback is that they satisfy specific

constraints. Of course, one must not forget that the matrices F v are anti-symmetric, but furthermore they satisfy
the Plücker relations (e.g. [7, 14, 15]):

F v
ijF

v
kl = F v

ilF
v
kj + F v

ikF
v
jl .

Nevertheless, keeping this in mind, the F v-variables can be very useful, since they were shown to be the natural
variables when quantizing the SU(2)-invariant phase space in order to recover the Hilbert space of SU(2) intertwiners
and to construct coherent intertwiner states [7, 14, 15]. From this perspective, the Plücker relations define the basic
recoupling relations for the spin- 12 representation.
The insights that one has to keep in mind from this formalism are:

• At each vertex v, the unitary matrix Uv up to U(Nv − 2)× SU(2) transformations encodes the SU(2)-invariant
information about the spinors, i.e the shape of the dual polyhedron at the classical level and the intertwiner
state at the quantum level.

• When quantizing, we can replace the wave-functions ϕ(zve ) by wave-functions ϕ(U
v) or actually by wave-functions

ϕ(F v) which already implement the SU(2)-gauge invariance at every vertex. The equivalence between these
formulations have already been studied in [7, 13, 14].

• There is a natural U(Nv) action on the spinors at each vertex. Dropping the index v for simplicity’s sake, it
reads for a transformation V ∈ U(N):

U → Ũ ≡ V U, ze → z̃e ≡ Vef zf .

The closure constraints commute with this U(N) action. These U(N) transformations deform the shape of the
dual polyhedron (or equivalently the intertwiner at the quantum level) while keeping the total boundary area
unchanged. And one can define coherent intertwiners which transforms covariantly under such transformations
[14, 15].

E. Defining LQG Dynamics on a Fixed Graph

Up to now, we have described the loop gravity kinematics on a fixed graph Γ, either in terms of spinors or U(1)-
invariants or SU(2)-invariants. We have discussed the physical interpretation of these variables as defining a discrete
geometry and we have introduced an action principle S(0)[zve ] encoding the kinematical phase space structure together
with the closure and matching constraints generating the U(1) and SU(2) gauge symmetries. The next step is to endow
these kinematical structures with dynamics. The natural way to do so is to add a Hamiltonian term of our action
and define:

S[zve ] = S(0)[zve ]−
∫
dtH , (31)

where the Hamiltonian H will be a gauge invariant functional of the spinors (and possibly depending on the time
t). This is the nice advantage of the spinorial formalism: the kinematics and phase space structure, and thus the
dynamics, can be simply written in an action principle.
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The dynamics defined by H will either be a Hamiltonian constraint or the evolution with respect to an external
or gauge-fixing time parameter. We can construct H by different ways. We could discretize general relativity’s
Hamiltonian constraint on a fixed graph (e.g. [23]), we could truncate the loop quantum gravity dynamics to Γ (e.g.
[3, 4]), we could also extract an effective Hamiltonian evolution from spinfoam transition amplitudes (e.g. [5]), but we
can also consider all the possibilities of gauge-invariant dynamics (compatible with some notion of homogeneity and
isotropy of the chosen graph Γ) and investigate which of these dynamics can be interpreted as the classical evolution
(plus potential quantum corrections) in general relativity of certain 3-metrics.
From this perspective, it is very important to understand what kind of 3-metrics and 4-metrics can be generated

by restricting oneself to a fixed graph Γ in loop gravity. Our point of view is that working on a fixed graph does not
necessarily need to be interpreted as describing the evolution of discrete geometries. Indeed, one can view the fixed
graph and the data living on it as a triangulation of a continuous geometry, a sampling from which we can reconstruct
the whole geometry if the triangulation is refined enough and the geometry is smooth enough to interpolate between the
discrete sampling that the triangulation has defined. The same perspective has been developed recently independently
in [24], where they describe the class of continuum space geometries compatible with the finite-dimensional phase
space structure of loop quantum gravity on a fixed graph. In other words, we consider working on a fixed graph as
defining a mini-superspace model of (loop) quantum gravity4, or possibly a midi-superspace model in the case where
we consider a certain class of graphs (e.g. 2-vertex graphs as in [6]) and look at the limit with infinite number of edges.
In this context, families of geometries defined by a finite number of parameters, as in mini- and midi- superspace
models, can be effectively represented by the data living on a fixed finite graph, even if these geometries are not
intrinsically discrete and even if they are not compact. For example, as we will see in the next sections, following the
original ideas developed in [3, 4, 6], 2-vertex graphs are well-suited to describe homogeneous and isotropic cosmology
of the FRW type (and possibly also some of Bianchi’s models). Then, having fixed the graph Γ defining the geometry
on spatial slices and having identified the geometries that we wish to describe, we would like to define a proper
dynamics of the spinor variables living on Γ in order to reproduce the correct dynamics of general relativity for these
geometries, with possibly effective quantum gravity corrections.
Thus, the interpretation that we propose of truncating the loop quantum gravity dynamics to a fixed graph definitely

lies within mini-superspace models. We do not insist that the classical spinor data or the spin network state living
on this graph defines the entire space itself and its geometry as in standard loop quantum gravity. But we mean that
the kinematics and dynamics of some restricted class of geometries can be effectively modeled by the dynamics of
classical spinor networks on some fixed graph.

FIG. 1: The flower graph with a single vertex and L petals, on the left, and the 2-vertex graph with L+ 1 edges between its
two vertices: both define the Hilbert space of SU(2)-invariant spin network states L2(SU(2)L/AdSU(2)).

A last remark that we would like to do in this section is on the role and relevance of the chosen graph Γ. On the
mathematical level, the phase space of gauge-invariant observables on a fixed graph Γ, defined as C4E//(U(1)E ×
SU(2)V ), turns out not to depend on the particular combinatorics of the graph Γ but only on the number of edges and
vertices. To understand this, let us think in terms of the standard cylindrical functionals of loop quantum gravity,
that is the Hilbert space L2(SU(2)E/SU(2)V ) of SU(2)-invariant functions ϕ({ge}). This space is isomorphic to
L2(SU(2)E−V ) (assuming that E > V , else it is isomorphic to L2(SU(2)/AdSU(2)) when E = V ), which only depends

4 By mini-superspace models, we mean here a truncation of the gravity phase space to a finite number of (kinematical) degrees of freedom.
In the context of cosmology, this is usually achieved by an appropriate symmetry reduction to a homogeneous sector of general relativity.
But it can be more generally understood as the truncation of general relativity to a certain metric ansatz defined by a finite number of
parameters, which then become the degrees of freedom of the mini-superspace model. That’s what is achieved by working on a fixed
graph in our context. Nevertheless, once having fixed the background graph, one can further work out some symmetry reduction, like
the restriction to the homogeneous and isotropic sector for the 2-vertex model.
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on the number of (independent) loops of the graph L ≡ E − V + 1. Going further, the space L2(SU(2)E/SU(2)V ) is
actually isomorphic to any space L2(SU(2)E+n/SU(2)V +n) with n ≥ −V, n ∈ Z. This isomorphism can be realized
exactly through gauge fixing (or “unfixing”) of the SU(2)-invariance at the vertices of the graph Γ (see e.g. [25] for
a rigorous approach to gauge-fixing spin network functionals). From this point of view, the Hilbert space of a fixed
graph is always isomorphic to the space of states on a flower graph L2(SU(2)L/Ad SU(2)) or on a 2-vertex graph
L2(SU(2)L+1/SU(2)2). Thus we can always write, both at the classical and quantum levels, any gauge-invariant
dynamics defined on Γ on a corresponding flower or 2-vertex graph.
The natural question is then why should we bother about using more complicated graphs involving more vertices

and a more complex combinatorial structure. Our point of view is that the combinatorial structure of the graph Γ
provides us with an implicit vision of the space geometry. For instance, through the implicit notion that a vertex
of the graph represents a physical point of space (or region of space) and that edges define directions around these
points, the graph’s structure will define our notions of homogeneity and isotropy. Therefore, even though we can
translate any gauge-invariant observable or Hamiltonian operator from our potentially-complicated graph Γ to any
graph with the same number of loops, the concepts of locality, homogeneity and isotropy of our dynamics crucially
depend on our original choice of Γ. From this viewpoint, different graphs will admit a different implementation of the
symmetry reduction (to e.g. the homogeneous sector), that in turn will lead to different mini-superspace models.

II. CLASSICAL PHASE SPACE ON THE 2-VERTEX GRAPH

Now that we have introduced and reviewed the spinorial formulation of the loop gravity phase space on an arbitrary
fixed graph Γ, and discussed how to recover the standard observables -holonomies, fluxes, twisted geometry variables,
U(N) observables- in this framework, we will now specialize to the case of the 2-vertex graph (see fig.2). Indeed, there
is serious evidence that truncating the loop quantum gravity dynamics to this very simple graph and implementing an
appropriate symmetry reduction leads to Friedmann-Robertson-Walker (FRW) homogeneous and isotropic cosmologies
[3–7]. In this section, we will study the kinematics on the 2-vertex graph, clear up in this simpler context the
geometrical meaning of the variables defined in the previous section and explain how to reduce to the homogeneous
and isotropic sector following the ideas developed in [6, 7]. We will tackle the issue of the dynamics and how the
Hamiltonian generates the four-dimensional FRW metric in the next section.

✶

α β

e1

e2

e3

e4

eN−3

eN−2

eN−1

eN

FIG. 2: The 2-vertex graph with N edges linking the two vertices α and β.

A. Kinematics on the 2-Vertex Graph

Let α and β denote the two vertices of the graph as on fig.2. Following Sec. I, we denote by zi and wi, with
i = 1, ..., N , the collection of spinors living on the N edges respectively attached to the vertex α and to the vertex β.
These spinors are subject to the closure constraints,

∑

i

|zi〉〈zi| = λ(z)I ⇐⇒
∑

i

~V (zi) = 0, (32)

∑

i

|wi〉〈wi| = λ(w)I ⇐⇒
∑

i

~V (wi) = 0,

with λ(z) ≡ 1
2

∑
i〈zi|zi〉 = 1

2

∑
i |~V (zi)|, and to the matching constraints,

〈zi|zi〉 = 〈wi|wi〉 ∀i = 1..N ⇐⇒ |~V (zi)| = |~V (wi)| . (33)
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In particular, the total boundary area is of course the same seen from the two vertices, λ ≡ λ(z) = λ(w),.
The action principle summarizing the phase space structure can be equivalently written as a functional of the

spinors zk, wk or of the vectors ~Vk ∈ R3 and group elements gk ∈ SU(2) :

S(0)[zk, wk] =

∫
dt

N∑

k=1

−i
(
〈zk|∂tzk〉+ 〈wk|∂twk〉

)
+ 〈zk|Λα|zk〉+ 〈wk|Λβ |wk〉+ ρk

(
〈zk|zk〉 − 〈wk|wk〉

)
(34)

=

∫
dt

N∑

k=1

~V (zk) ·
i

2
Tr~σg−1

k ∂tgk + ~Λα ·
N∑

k=1

~V (zk) + ~Λβ ·
N∑

k=1

~V (wk) + ~ρk · (~V (wk) + gk ⊲ ~V (zk)).

We can further re-express this action in terms of the twisted geometry variables or in terms of the SU(2)-invariant
Eα,β and Fα,β living at both vertices.
The interpretation of the 2-vertex graph as a discrete geometry is clearly of two polyhedra glued along their N

faces with matching areas. Nevertheless, the two polyhedra can still have different shapes and this can be interpreted
as local degrees of freedom living at each vertex. We will see below that constraining the two polyhedra to have the
same shape naturally projects us onto the homogeneous and isotropic sector of the phase space.

B. Symmetry Reduction to a Isotropic Cosmological Setting

In [6, 7], a symmetry reduction of the 2-vertex graph model was proposed by requiring a global U(N) invariance of
the spinor networks. Indeed, this invariance leads to an homogeneous and isotropic model parameterized by just one
degree of freedom. Let us see how this reduction works. It is best understood when written in the U(N) observables
which are SU(2)-invariant. Reminding the definitions given above in section ID, we have two sets of SU(2)-invariant
quantities defined at the vertices of the graph:

Eα
ij = 〈zi|zj〉, Fα

ij = [zi|zj〉, Eβ
ij = 〈wi|wj〉, F β

ij = [wi|wj〉.

The matching constraints on the N edges are simply expressed in terms of these observables:

∀i, Mi = Eα
ii − Eβ

ii = 0,

and they generate an invariance under U(1)N as said in the previous section. The point noticed in [6, 7] is that this
symmetry can be naturally enlarged from U(1)N to U(N). Let us indeed introduce:

∀i, j, Eij = Eα
ij − Eβ

ji, Eii = Mi . (35)

Considering the Poisson bracket of the E-observables, it is straightforward to check that these new SU(2)-invariants
form a U(N) algebra:

{Eij , Ekl} = −i (δjkEil − δilEkj) . (36)

Let us further impose these constraints on the phase space of our spinor variables living on the 2-vertex graph:

S
(0)
homo[zk, wk] ≡

∫
dt

N∑

k=1

−i
(
〈zk|∂tzk〉+ 〈wk|∂twk〉

)
+ 〈zk|Λα|zk〉+ 〈wk|Λβ|wk〉+ ρklEkl, (37)

where the matching constraints Mk are taken into account as the diagonal components (when k = l) of the U(N)-
constraints Ekl.
This new set of constraints E geometrically means that the polyedra dual to the two vertices α and β are identical.

Indeed requiring Eα
ij = Eβ

ji for all couple of (possibly identical) edges i, j implies (by taking the norm squared) that

all the scalar products between 3-vectors ~Vi · ~Vj at the two vertices are equal. This tells us that these U(N) constraints
impose homogeneity: the intertwiner states at the two vertices are identical.
Coming back to the spinors, the constraints read 〈zi|zj〉 = [wi|wj ] for all i, j’s, which implies after a little algebra5

that the spinors |zi〉 are equal to the spinors |wi] up to global U(2) transformation (it’s an equality on scalar products)
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(see e.g. [7, 10]). Since both sets of spinors zi and wi are anyway defined up to SU(2) transformations generated by
the closure constraints at the vertices α and β, this means that the spinors |zi〉 are exactly equal to the spinors |wi]
up to a global phase:

∀k, l, Ekl = 0 ⇒ ∀i |wi] = eiφ |zi〉 . (38)

This means that the unitary matrices Uα and Uβ are also equal up to a phase, Uβ = eiφUα (up to SU(2)×U(N − 2)
transformations). We can also translate this condition in the SU(2) group elements gk living on the edges. Just being
careful that eiφI /∈ SU(2), the holonomies read:

gk =
eiφ|zk〉〈zk|+ e−iφ|zk][zk|

〈zk|zk〉
,

thus being the diagonal SU(2) matrix (eiφ, e−iφ) in the |zk〉, |zk] orthonormal basis.

Finally, putting back the solution |wi] = eiφ |zi〉 in the action (53) with U(N) constraints, the action greatly reduces
and we simply get:

S
(0)
homo[zk, wk] = −2

∫
dt λ∂tφ = S(0)[λ, φ] . (39)

The only remaining degrees of freedom are thus the total area A ≡ 2λ and its conjugate angle φ. Thus we have
reduced the 2-vertex graph to its homogeneous and isotropic sector.
By isotropic, we mean that the only relevant degree of freedom is the total area and not the individual areas

Ak = 〈zk|zk〉 = 〈wk|wk〉. So the individual areas are not required to be the same on all edges. On the other hand, it
means that the conjugate variable defined by the angle φ is the same for all edges. We can go further in understanding
the U(N)-constraints Ekl leading to homogeneity. Indeed, they generate the following U(N)-transformations on the
spinors:

zk → (Uz)k =
∑

l

Ukl zl, wk → (Ūw)k =
∑

l

Ukl wl . (40)

It is this huge gauge-invariance that kills the dependence on degrees of freedom living on each edge and effectively
reduces the action to its isotropic sector.
We would also like to point out that the angle φ in the symmetry-reduced sector matches the angle ξ parameterizing

twisted geometries, which provides it with a physical interpretation as related to the extrinsic geometry, i.e. related
to the embedding of our spatial slice -the 2-vertex graph- into the 4d space-time.

Therefore, to conclude this subsection, once we have accomplished the symmetry reduction by the U(N)-constraints,
we are left with homogeneous and isotropic 2-vertex spinor networks, which is described by the holonomies eiφ along
all the edges of the graph and by the total boundary area A = 2λ around both vertices.
Our final comment is that the resulting homogeneous and isotropic sector is independent from the number of edges

N of the original 2-vertex graph. This is normal since imposing isotropy means getting rid of the dependence on the
individual edges. On the other hand, the full theory and anisotropy should crucially depend on the allowed number
of the edges N .

C. On the Choice of Complex Variables

As we have seen, in the isotropic sector, the phase space reduces to a one-dimensional system described by the total
area A = 2λ and its conjugate angle φ:

{A, φ} = 1.

5 For example, we can translate the constraints on the E’s into constraints on the F ’s using the fact that |z〉〈z|+ |z][z| = 〈z|z〉I for any
spinor z:

∀i, j, k, F̄kiFkj = EijEkk −EikEkj .
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Thinking of these as conjugate variables, it is usual to choose a complex structure defined by the variable ζ =
(A− iφ)/

√
2:

{ζ, ζ̄} = i. (41)

This is the standard choice done in the context of twisted geometries [9, 12] and in the spinfoam cosmology approach
of [5] which uses the twisted geometry phase space to describe its boundary states. Another choice, better suited to
the spinor approach used here and to the coherent spin network states based on the spinorial framework [10], is the

complex variable z =
√
2Ae−iφ2 :

{z, z̄} = i. (42)

This is also a canonical choice of complex structure on this two-dimensional phase space. This is actually the choice
that we will make when analyzing the dynamics of the 2-vertex graph phase space induced by the spinfoam amplitudes,
as we will see in section IV.
The advantage of z over ζ is that it reflects the original definition of the variables. Indeed, A is defined as a real

positive number and φ is defined as an angle (modulo 2π) from the holonomy. Then z =
√
2Ae−iφ2 is a more natural

complex number in order to define the unitary matrices Uα,β. On the other hand, using the complex structure defined
by ζ = (A− iφ)/

√
2, and quantizing the system in terms of this variable, means that one has to restrict by hand A to

be positive and φ to be bounded. In simpler terms, z ∈ C parameterizes exactly our phase space taking into account
the constraints A ∈ R+, φ ∈ [0, 2π] while ζ ∈ C leads to some redundancies that have to be dealt with in a nontrivial
way at the quantum level. Finally, as we will see in section IV, the spinfoam transition amplitudes in the isotropic
and homogeneous sector will naturally be holomorphic functions of z.

D. Beyond the Isotropic Sector

In the present work, we focus on the study of the homogeneous and isotropic sector and its dynamics both at
the classical level through the definition of classical Hamiltonians as in the following section III and at the quantum
level through the analysis of the spinfoam transition amplitudes in section IV. Nevertheless, from the perspective of
cosmology, it is necessary to go beyond this simplistic model and study the departures from isotropy and homogeneity.
In particular, we should study the dynamics of the inhomogeneities and their feed-back on the global homogeneous
sector in order to compare to current measurements in cosmology (on the cosmic microwave background for instance).
Extending the analysis of our 2-vertex model to the whole Hilbert space, beyond the U(N)-invariant sector, would
thus allow to test its relevance and validity as a quantum mini-superspace model for cosmology.
One goal would be to parameterize efficiently the reduced gauge-invariant phase space on the 2-vertex graph and

understand how to project the phase space variables onto the spherical harmonics and define a multi-pole expansion
of the corresponding degrees of freedom. For instance, the number of edges N is irrelevant to the kinematics and
dynamics of the homogeneous and isotropic sector since requiring the U(N)-invariance kills any dependence on N . On
the other hand, N will play a non-trivial role out of the U(N)-invariant sector as a cut-off in the number of degrees
of freedom. It would then be interesting to understand how big should N be to model our observed cosmology and,
for example, allow anisotropy as seen in the cosmic microwave background.
Actually, an analysis of the 2-vertex model beyond the isotropic sector has been carried out for the case N = 4

[26]. In that work, the 2-vertex model is regarded as a triangulation of the whole space, that is thus a three sphere.
The reduced gauge-invariant phase space, which in this N = 4 case is formed by twelve degrees of freedom, has
been then identified with the Bianchi IX model (homogeneous and isotropic model with the spatial topology of S3)
plus perturbations. Since the Bianchi IX model is described by six degrees of freedom, those perturbations account
for the remaining six degrees of freedom. Using the fact that S3 is isomorphic to SU(2), in [26] a expansion of the
perturbations in terms of Wigner matrices is considered, and those six remaining degrees of freedom are identified
with the six components forming the diagonal part of the lowest integer mode in that expansion, though the authors
do not give a justification for such identification.
We will not presently investigate in detail how to parameterize the full phase space out of the U(N)-invariant sector

for general N but merely discuss the possibilities from our perspective. We postpone the full analysis to future work.
The degrees of freedom of the 2-vertex graph can be understood from the point of view of both the edges, as the
holonomies defining the curvature between the two vertices, or both the vertices, as the internal geometries of the two
vertices and the correlations between them. If one decides to focus on the holonomies, it seems natural to use the
holomorphic and anti-holomorphic components of the holonomies around the loops of the graph (expressed in terms
of the E and F variables) as introduced in [7] and to look for a way to combine them in order to get a finite Poisson
algebra encoding the whole reduced phase space. The alternative is to start with the unitary matrices Uα,β describing
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the geometry of each vertex. Let us look a bit more into how to construct gauge invariant SU(2) observables from
these matrices.
First of all, as seen in section ID, the observables must be invariant under the right action by SU(2) × U(N − 2)

at both vertices:

Uα → UαV α, Uβ → UβV β , V α, V β ∈ SU(2)×U(N − 2) .

It is thus natural to make Uα and Uβ act on SU(2) × U(N − 2) vectors. Following the previous work [13, 14], we
choose the irreducible representations of U(N) whose highest vector is invariant under SU(2)×U(N − 2). These are
labeled by an integer J ∈ N and correspond to Young tableaux with two horizontal lines of equal length J . Moreover
they have been shown to be exactly the Hilbert spaces of SU(2)-intertwiners (at fixed total area J) resulting from the
quantization of the spinorial phase space [7, 13, 14]. Let us call |J,ΩN 〉 the highest weight vector of these irreducible
representations. As shown in [14], acting with the matrix Uα ∈ U(N) on |J,ΩN 〉 generates a coherent intertwiner
state peaked on the classical phase space point with the spinors given by the first columns of the unitary matrix Uα

according to the classical definition (27):

Uα |J,ΩN 〉 = |J, {zαi }i=1..N 〉 , (43)

where the zαi satisfy the global normalization condition
∑

i〈zαi |zαi 〉 = 1. The highest weight vector can be identified
as the bivalent case, where all spinors vanish except the first two:

|J,ΩN 〉 = |J,
{(

1

0

)
,

(
0

1

)
,

(
0

0

)
, ..

}
〉 (44)

Then acting with the unitary matrix Uα on this state, we generate all coherent intertwiners. We similarly define the
lowest weight vector by acting with the duality map on the spinors:

|J, ςΩN 〉 = |J,
{(

0

1

)
,

(
−1

0

)
,

(
0

0

)
, ..

}
〉

More details on this construction can be found in [14, 15]. Then the scalar product between the states in α and β is
invariant under U(N) (acting as Uα → UUα, Uβ → ŪUβ) and can be computed exactly:

〈ςΩN , J |tUβUα|ΩN , J〉 = 〈J, {ςzβi }|J, {zαi }〉 =

(
det
2

∑

i

|zαi 〉[zβi |
)J

. (45)

The first remark is that the zα,βi are just our spinors zi and wi up to the normalization factor
√
λ defining the total

area. Then the expression simplifies greatly assuming that the zi’s and wi’s satisfy the closure constraints and that
we are in the isotropic sector with |wi] = eiφ|zi〉 and we simply get:

〈ΩN , J |tUβUα|ΩN , J〉 = (e−2iφ)J . (46)

This scalar product can thus be considered as a definition of the conjugate angle φ in the full phase space.
The second remark is that the scalar product 〈ΩN , J |tUβUα|ΩN , J〉 is exactly the evaluation at the identity of the

2-vertex spin network state with coherent intertwiners attached to the vertices α and β. It is then straightforward to
obtain an overcomplete basis of gauge-invariant observables by considering the evaluation of this spin network state
on arbitrary group elements gi ∈ SU(2) living on every edge of the graph. This amounts to inserting these group
elements in the scalar product expression between the two U(N) matrices. Such evaluations are by definition both
SU(2)-invariant at the vertices and U(1)-invariant along the edges. These evaluations and their Poisson algebra might
not be easy to compute, but this procedure still hints towards a parametrization of the gauge-invariant phase space
in terms of U(N) representations. From this viewpoint, it might be interesting to investigate the relation between the
Peter-Weyl expansion in U(N) representation and a multi-pole expansion of the observables in our phase space. We
would then expect to recover the continuum limit (i.e no cut-off in j in the spherical harmonics expansion) as N is
sent to infinity.
A detailed analysis of the full phase space is postponed to future investigation of anisotropy in the 2-vertex model

for cosmology.
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III. CLASSICAL DYNAMICS ON THE 2-VERTEX GRAPH

As said before, the above kinematical setting, namely the U(N)-invariant spinor network defined on the 2-vertex
graph, seems suitable to model effective dynamics for Friedmann-Robertson-Walker (FRW) like cosmologies. In this
section we will face this issue from the canonical point of view, by adding an appropriate Hamiltonian to the action,
as it was done in [7]. We will analyze whether the resulting model can be understood as an effective FRW model,
that introduces corrections coming from the discrete theory.

A. Hamiltonian for FRW Cosmology

Before describing the effective dynamics that arises naturally from the two-vertex model, let us first review the
dynamics of FRW models as dictated by general relativity, so that we can make the link between both theories.
The FRW model represents homogeneous and isotropic spacetimes. Their 4-metric is given by the general form

ds2 = −N 2(t)dt2 + a2(t)dS2, dS2 ≡ oqabdx
adxb. (47)

Here N is the lapse function and a(t) is the scale factor, that we consider with dimensions of length so that the
coordinates xa are dimensionless. The indices a and b go from 1 to 3 and denote spatial indices. Finally, oqab stands
for the 3-metric of a 3-dimensional space of uniform curvature. There exist three such spaces: Euclidean space,
spherical space, or hyperbolic space. In (dimensionless) polar coordinates (r, θ, φ) we simply have

dS2 =
r2

1− kr2
+ r2(dθ2 + sin2 θdφ2), (48)

where k is a constant representing the curvature of the space: k = 1 for the sphere, k = −1 for the hyperboloid, and
k = 0 for the Euclidean space.
In order to get the dynamics of a generic FRW model, the easiest way to proceed is to take the Einstein-Hilbert

action for general relativity with cosmological constant Λ,

SGR =
1

16πG

∫
dt

∫

Σ

d3x
√

det g(R[g] + Λ), (49)

and particularize it to the FRW metric given in Eqs. (47)-(48). After employing a 3+1 ADM decomposition to express
it in the Hamiltonian formalism, the result for SGR[gFRW ] is

SFRW =

∫
dt

∫

Σ

d3x
√

oq
[
πa∂ta−NC

]
, C = −2πG

3

π2
a

a
− 3k

8πG
a+

Λ

8πG
a3. (50)

In the above expressions G denotes the Newton constant, oq denotes the determinant of the fiducial metric oqab, and Σ
stands for a 3-dimensional spatial slice of the space-time. In presence of homogeneity, since all the functions entering
the action are homogeneous, the spatial integral over the slices Σ diverges for the non-compact spatial topologies
corresponding to k = 0,−1. Nonetheless, one usually avoids that divergence by restricting the above spatial integral
just to a finite cell V with finite fiducial volume

Vo ≡
∫

V

d3x
√

oq. (51)

Indeed, because of the homogeneity, the dynamics of the whole spacetime is the same in every point and then a finite
region is enough to capture the dynamics.
Note that the lapse N is a Lagrange multiplier which imposes the Hamiltonian constraint C = 0. Actually, since

this model is homogeneous, the spatial diffeomorphism symmetry of general relativity trivializes and there is only left
the invariance under time reparameterizations, which is implemented by the Hamiltonian constraint.
Remarkably, the FRW cosmologies, being a solution of the equations of motion obtained by varying the reduced

action (50), are also a particular solution of the Einstein equations (that are obtained by varying the full action (49)).
In other words, the FRW model is a symmetry reduction of general relativity, more concretely, its homogeneous and
isotropic sector.
In the vacuum case under study it is very easy to obtain the trajectories in phase space, πa(a), using the Hamiltonian

constraint C = 0. They are given by

πa(a)±
a

4πG

√
3Λa2 − 9k. (52)
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FIG. 3: Trajectories πa(a) in the different vacuum FRW models. In these plots we have used the conventions 4πG = 1, and
Λ = ±1 for the cases with non-vanishing cosmological constant.

In fig. 3 we show them just for positive πa.
This vacuum case is not very interesting as long as there are no degrees of freedom. In fact, the geometry is totally

fixed by the Hamiltonian constraint C = 0. As a consequence many trajectories are rather boring, like e.g that of the
flat case (k = 0) with vanishing cosmological constant. Other trajectories are not even real, as happens for the cases
{Λ = 0, k = 1}, {Λ < 0, k = 0}, {Λ < 0, k = 1}. In order to have more interesting phenomenology one should add
matter to the model. Actually, already the simplest form of matter, a minimally coupled massless scalar, provides a
quite non-trivial evolution. However in this paper we will just focus on the vacuum case, as a step to start with in
our derivation of effective dynamics for cosmology using the 2-vertex graph. In the next section, we will derive this
effective dynamics and discuss if it can be mapped in some regime to the cases occurring in the FRW model. We
leave for the future the study of non-vacuum effective models.

B. Cosmological Hamiltonian on the 2-Vertex Graph

Let us now analyze the addition of an appropriate Hamiltonian to the kinematical action (39). This Hamiltonian
must be, first SU(2)-invarint, so that the gauge invariance of the theory is preserved, and second U(N)-invariant,
so that it is homogeneous and isotropic. In this way, the resulting dynamics will be consistent with the kinematical
setting, and even more, it may be regarded as generating the reduced (homogeneous and isotropic) sector of the full
theory6. In order to construct such an ansatz for the Hamiltonian, the simplest SU(2) invariants to consider are Eα

and Eβ . The next simplest possibility is to consider SU(2)-invariant observables acting on elementary loops made

of two edges. These observables are of the form Eα
efE

β
ef , F

α
efF

β
ef , and F̄

α
ef F̄

β
ef . Now, the symmetry reduction to the

homogeneous and isotropic sector implemented by the U(N)-invariance, reduces the above SU(2) invariants to the
U(N)-invariant terms TrEα = TrEβ , TrtEαEβ ∝ (TrEα)2, TrFαF β, and TrF̄αF̄ β . Made up of these terms, we
will consider the following ansatz for an action with non-trivial dynamics, on the U(N)-invariant two-vertex spinor
network

Shomo[zk, wk] = S
(0)
homo[zk, wk]−

∫
dt Ñ (Hhomo[zk, wk]−Ho),

Hhomo[zk, wk] ≡ γoTrtEαEβ + γ+TrFαF β + γ−TrF̄αF̄ β +
γ1

4
[TrtEα]3 (53)

Here γo, γ+, γ−, and γ1 are some real coupling constants. On the other hand Ñ is a Lagrange multiplier imposing the
Hamiltonian constraint Hhomo[zk, wk]−Ho = 0, with Ho a real constant accounting for the fact that in the quantum

theory the energy of the fundamental state could be nonzero 7. In the following we will take Ñ = 1. The above ansatz

6 As the FRW Hamiltonian does for general relativity.
7 In the same manner as the energy of the fundamental state of the harmonic oscillator or that of the hydrogen atom is not null.
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is actually that studied in [7] plus an additional term, proportional to [TrtEα]3, that it is related with a cosmological
constant term, as we will see in a moment.
If we remember the form of the matrices Ev and F v in terms of λv and Uv, and that the U(N)-invariance implies

Uβ = eiφUα and λα = λβ = λ, the above action reduces to the homogeneous and isotropic action

S[λ, φ] = −2

∫
dtλ∂tφ−

∫
dt(H [λ, φ]−Ho), H(λ, φ) = 2λ2(γo − γ+e−2iφ − γ−e2iφ + γ1λ) (54)

We will further choose γ+ = γ− ≡ γ/2 so that the Hamiltonian is real and given by

H(λ, φ) = 2λ2[γo − γ cos(2φ) + γ1λ]. (55)

We can now compare S[λ, φ] with the action of FRW given in Eq. (50). In order to do that, let us express SFRW

in our variables (λ, φ). Since λ has the interpretation of an area, we can take the following canonical transformation
to relate the variables (a, πa), with Poisson bracket {a, πa} = 1/Vo, with our variables (λ, φ), with Poisson bracket
{λ, φ} = 1/2:

a =
l

V
1/3
o

√
λ, πa =

4

lV
2/3
o

√
λφ, (56)

where l serves as a unity of length defining the relation between our dimensionless area λ with the dimensionless scale
factor a/l. As before, Vo represents the (dimensionless) volume of a finite cell V , measured with respect to the fiducial
metric oqab of the 3-dimensional spaces with constant curvature. Namely, we regard the graph as dual (not to the
whole space but just) to a finite region V , which it is enough for determining the dynamics of the space because of
the homogeneity.
Employing the above canonical transformation we obtain the Hamiltonian of the FRW model in our variables. It

has the form

HFRW ≡ VoNC = −32πG

3l3
λ2φ2 − 3Kl

8πG
λ2 +

Λl3

8πG
λ3, (57)

where, for convenience, we have chosen N = λ3/2, and we have defined K ≡ kV
2/3
o . Furthermore, the trajectories in

phase space in terms of these variables are now given by

φ(λ) = ± l2

4(4πG)

√
3Λl2λ− 9K. (58)

The positive and real trajectories (shown before in fig. 3) have now the graphic shown in fig. 4.

FIG. 4: Trajectories φ(λ) in the different vacuum FRW models. In these plots we have used the conventions Vo = 1, 4πG = 1,
and Λ = ±1 for the cases with non-vanishing cosmological constant.

Now in the limit φ→ 0 we can do the approximation cos(2φ) ≈ 1− 2φ2 and identify our Hamiltonian H with that
of the FRW model. Indeed, upon that approximation both Hamiltonians agree by doing the identifications

γo = −8πG

3l3
− 3Kl

16πG
, γ = −8πG

3l3
, γ1 =

Λl3

16πG
. (59)
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As we said before, the term with coupling constant γ1 represents a cosmological constant term. On the other hand,
the other two terms, with coupling constants γo and γ account for the curvature term and for the other term, the
only term remaining when there is neither cosmological constant nor curvature.
Outside the regime in which the above approximation is valid, the Hamiltonian of the two-vertex model with the

above identifications reads

H(λ, φ) = 2λ2
[
−
(
8πG

3l3
+

3Kl

16πG

)
+

8πG

3l3
cos(2φ) +

Λl3

16πG
λ

]
. (60)

Alternatively, we can express it in the variables {a, πa} commonly employed in cosmology, in which case is given by

H(a, πa) = 2V 4/3
o

a4

l4

[
−
(
8πG

3l3
+

3Kl

16πG

)
+

8πG

3l3
cos

(
V

1/3
o

2

l2πa
a

)
+

Λl3

16πG
V 2/3
o

a2

l2

]
. (61)

We would like to emphasize that here we are pushing forward the identifications of Eq. (59) further from the regime
in which φ→ 0, where they have been obtained.
Our goal is to analyze whether the Hamiltonian of the two-vertex model H(λ, φ) can be regarded as an effective

Hamiltonian for the FRW models. Upon this interpretation, this Hamiltonian introduces corrections to the results
predicted by general relativity. On the one hand we will have corrections coming from the gauge invariance of loop
gravity, and they are negligible whenever the angle φ approaches a vanishing value. On the other hand we are
considering that the Hamiltonian of the two-vertex model is fixed to be equal to some constant value Ho that does
not necessarily vanish, unlike in general relativity. This fact will also induce corrections.
Before doing the comparison between our two-vertex model and the FRW models, we first need to study the phase

space trajectories resulting in the two-vertex model. Using the constraint H(λ, φ) = Ho we easily get

φ(λ) =
1

2
arccos

[
1 +

(
l

4πG

)2(
9K

8
− 3Λl4

8
λ

)
+

l3

4πG

3Ho

4λ2

]
(62)

These trajectories are drawn in fig. 5. The graphics only show the trajectory for φ ∈ [0, π/2]. In the range φ ∈ [π/2, π]
the trajectory is given by the specular image of that in the previous range with respect to the edge φ = π/2, and for
bigger range it is periodic with period π. We show them for different values of Ho. This constant is usually bounded,
either from below or from above, as shown in table I. We see that indeed it can not be zero for many cases.

k = 0 k = 1 k = −1

Λ = 0 Ho < 0 Ho < 0 Ho 6= 0

Λ = −1 Ho < 0 Ho < 0 Ho . 1.9

Λ = 1 Ho & −11 Ho & −42 Ho & −0.9

TABLE I: Ranges of Ho.

Let us now compare the trajectories of the FRW model in the six cases with real solution (fig. 4) with the analog
cases in the two-vertex model:

• Λ = 0, k = 0: The trajectory of the two-vertex model agree with that of the FRW model for increasing values
of λ. Moreover λ is bounded from below. The bound depends on the particualr value of Ho and it is always
bigger than zero.

• Λ = 0, k = −1: For increasing value of λ the trajectory tends to a constant value (independent of Ho), as in
the FRW model. This value is

φ =
1

2
arccos

[
1 +

(
l

4πG

)2
9K

8

]

and agrees with that of the FRW model, φ = 3l2V
1/3
o /16πG, for an appropriate value of the length parameter

l. As in the previous case, λ is strictly positive and its minimum depends on the particular value of Ho.
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FIG. 5: Trajectories φ(λ) in the different 2-vertex models. In these plots we have used the conventions l = 1, Vo = 1, 4πG = 1,
and Λ = ±1 for the cases with non-vanishing cosmological constant.

• Λ < 0, k = −1: Only for Ho ≥ 0, φ is bounded from above, as happens in the FRW model. For Ho = 0 the
trajectory is quite similar to that of the FRW model, approaching it as λ tends to its maximum value. More
interestingly, for values of Ho slightly bigger than zero, the trajectory still agrees with that of FRW for the
maximum value of λ, but it deviates from the FRW trajectory as λ decreases, in such a way that λ is bounded
also from below and it never vanishes.

• Λ > 0, k = 0,±1: In these three cases, in the two-vertex model λ is bounded both from below and from above,
while in the FRW model λ is not bounded from above.

This analysis points out the limitations of the present two-vertex model to provide an effective cosmological model.
Actually, it is not suitable to modelize the FRW models with positive cosmological constant, since the area of the
cell under study can not increase arbitrarily, unlike in the FRW model. However, the other FRW models admit their
analog in the two-vertex model. In these cases, there exists an effective two-vertex model that introduces corrections
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to the FRW trajectories as the area decreases, in such a way that the area turns out to be strictly positive. The
corrections are then unimportant in the classical regime of large areas, as desirable, since in this regime any effective
theory should agree with general relativity. The fact that in the effective model the area has a positive bound resembles
the results obtained in LQC, where the area (or the volume) suffers a bounce so that it never vanishes (see e.g [27–29]).
Indeed, in [7] was already pointed out the possible similarity between the effective dynamics of the two-vertex model
and that of LQC. In Appendix B we review the effective dynamics of LQC and formulate it in our variables to make
clear the comparison.
As said before, this analysis is just a starting point in the derivation of effective cosmological models from loop

gravity formulated on a fixed graph. Already before the introduction of any kind of matter, we see that our 2-
vertex graph model does not provide any effective model for homogeneous and isotropic cosmologies with positive
cosmological constant. The problem does not lead in the fact that the area can display a positive bound, feature
which in turn is a consequence of the dependence of the Hamiltonian in the variable φ through the cosine (which is
a bounded function), but rather in the fact that the semiclassical limit fails to be the correct one, since the large
area limit does not necessarily corresponds to φ→ 0. Therefore, if we want to obtain a successful effective model for
all possible homogeneous and isotropic cosmologies, we need to improve our approach. In the canonical framework
different possibilities seem to be at hand:

• We could redefine the canonical transformation (56) doing

πa → π̃a = πa + f(λ) (63)

such that the canonical commutation relation {a, π̃a} = 1/Vo is preserved. Such a modification would change
the phase space trajectories, but since the function f(λ) is arbitrary we could try to choose it conveniently, such
that the resulting model indeed success in providing any effective FRW model

• So far we have assumed that our variables (λ, φ) are canonically related with the common ones (a, πa). However
a deeper understanding of our model makes us think that our variables, coming from a discrete theory (that in
principle is based on a quantum theory), may not be canonically related with the classical ones (a, πa), but the
canonical relation is only approximately recovered in the regime φ→ 0. Furthermore, related with this issue it
is the fact that the identifications given in Eq. (59) could be non-valid in the regime where the approximation
cos(2φ) ≈ 1−2φ2 is not longer true. The physical meaning of the coupling constants γ0, γ, and γ1 would be then
different for the one assumed in our previous analysis. In consequence, this idea could allow us to drastically
change our two-vertex model to find a successful link between it and the classical FRW cosmologies8.

• Bringing to our framework the ideas of LQC, other possibility is to modify the physical meaning of the angular
variable defined out of the holonomies of the loop formalism. This can be done by rescaling the variable φ by a
function of the area,

φ→ φ̃ =
φ

f(λ)
, (64)

as it is done in the improved dynamics of LQC [29], where one chooses f(λ) ∝
√
λ, or in the lattice refinement

approach [30], where a more general rescaling is considered, but still of potential form f(λ) ∝ λa. In this way

the new angular variable φ̃ is no longer canonically conjugate to the area but to some function of it, for instance
the volume in the case of the improved dynamics of LQC. Note that after the rescaling the large area limit
corresponds to the limit φ̃→ 0, as desired.

• Furthermore, other possibility is to work with a different graph, which admit a different reduction to the
homogeneous and isotropic sector. Actually, it would be very interesting to obtain a model in which the global
variable after the reduction were the volume instead of the area, as in the improved dynamics of LQC (see also
the discussion in Appendix B). From our experience with LQC, such a result suggests that the corresponding
reduced model would succeed in providing a desired FRW effective model, and not only for vacuo but also for
cosmologies coupled to matter.

8 It is worth to point out that a similar strategy could be investigated in the framework of LQC. There, the initial quantum dynamics [28]
failed in providing a successful effective dynamics for FRW models, and then it was improved [29] by modifying the physical meaning
of the angular variable defined out of the considered holonomies. Applying our line of reasoning, one could try to make the initial LQC
dynamics succeed by modifying the commutation relations between the basic phase space observables, such that it is canonical only in
an approximate way in the semiclassical limit.
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In summary, just because of the limitations of the two-vertex model, pointed out from the analysis of the phase
space trajectories, we cannot rule out this model in our aim of modelizing effective FRW cosmologies with it. The
model formulated in the 2-vertex graph is not as simple as it seems, in the sense that we may not yet understand
completely the exact physical meaning of the variables (λ, φ) that describe it, as suggested by the first three points
listed above. We will postpone the investigation of those points for future work, when we will also take into account
the coupling with matter, in order to study true dynamical cosmological models. Instead, in the next section, we will
rather look for the derivation of effective FRW models from loop gravity formulated on the 2-vertex graph following
the ideas of spin foam cosmology [5].

IV. SPINFOAM DYNAMICS

The spinfoam framework defines a path integral formalism for quantum gravity, which allows to compute well-
defined transition amplitudes for spin network states (see e.g. [2] for a review). We propose here to use it to define the
transition amplitudes between coherent spin network states peaked on the classical spinor network data and derive
from this an effective classical dynamics for the spinor networks taking into account the spinfoam quantum gravity
effects.
We will not review the spinfoam framework, and we will assume that the reader is familiar with the various spinfoam

constructions and methods. We will only introduce the necessary concepts for our derivation and refer to the known
literature on the subject for the details.

A. The Spinfoam Cosmology Setting

1. Transition Amplitudes from Spinfoams: the General Framework

Given a boundary graph Γ and a spin network state ΨΓ on that boundary, a spinfoam model defines possible bulk

structure as 2-complexes ∆ whose boundary is Γ and builds a spinfoam probability amplitude A(Γ)
∆ [ΨΓ] for each of

these admissible 2-complexes. The boundary graph Γ and the spin network state define the three-dimensional state
of geometry and metric on the boundary, while the 2-complex ∆ and the spinfoam amplitude A∆ defines the bulk
space-time structure.
More precisely, the spinfoam amplitude are defined as local state-sums. One associates algebraic data to the edges

and faces of ∆, which usually have an interpretation in terms of discrete space-time geometry. Then all the dynamics
is assumed to take place at the vertices σ of the 2-complex and a local amplitude Aσ is defined as a function of the
algebraic data living on the edges and faces meeting at the vertex σ. The spin network state ψΓ is understood as
defining the probability amplitude of the algebraic data on the boundary of ∆: the data associated to edges (resp.
faces) of ∆ meeting the boundary will be associated to the vertices (resp. the links) of the boundary graph Γ. Finally,
the spinfoam amplitude associated to ∆ is defined as the sum over all possible algebraic data of the product of the
vertex amplitudes in the bulk and the spin network state on the boundary, which roughly read as:

A(Γ)
∆ [ΨΓ] =

∑

{jf ,ie}

∏

σ∈∆

Aσ[jf∋σ, ie∋σ]ψΓ(jf∈∂∆, ie∈∂∆), (65)

where we have implicitly defined the algebraic data as representations jf of a certain Lie group (usually SU(2) or the
Lorentz group) on the faces and intertwiners ie between these representations on the edges of ∆.
Now considering a fixed graph Γ, one can use this formalism to define transition amplitudes between two spin

network states living on that graph. Indeed, introducing the disconnected boundary Γ ∪ Γ, one consider a 2-complex
∆ whose boundary is Γ ∪ Γ and which basically interpolates between an initial copy of Γ and the final copy of Γ and
interprets the spinfoam amplitude as a transition amplitude between a initial spin network state ψi

Γ and a final spin

network state ψf
Γ.

Going further we will use coherent spin networks peaked on spinor networks as boundary states. These coherent
spin network states should be considered as coherent wave-packets around the classical spinor networks. Such states
have been defined in [7] and are based on the coherent intertwiner techniques developed earlier in [14, 15, 31]. Let us
label such coherent spin network states by their corresponding classical phase space data |{zve}v,e∈Γ〉. Then spinfoam
models define transition amplitudes between such coherent spin network states, which can be interpreted as defining
an effective dynamics for the corresponding spinor networks. This dynamics should correspond to first order at large
scales to a classical Hamiltonian dynamics plus extra quantum gravity corrections coming from the specific chosen
spinfoam model for quantum gravity.
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Our strategy will be to fix the boundary Γ and the bulk 2-complex ∆ defining the space-time structure interpolating
between the initial space slice and the final space slice, and to study the dynamics resulting from the associated
spinfoam amplitudes. Just the same way, that a fixed simple graph should be enough to describe simple spatial
geometrical structures and metrics, a simple 2-complex should be enough to describe simple space-time structure
defining homogeneous dynamics such as the FRW 4-metric. One goal is then to identify which bulk structure ∆
corresponds to which mini-superspace model of cosmology.
A more involved strategy would be to sum over all 2-complexes, as we will comment below from the perspective

of group field theories for spinfoam models. This would correspond to summing over all possible geometrical and
topological degrees of freedom for the bulk 4-metric. Here, we are aiming to describing symmetry-reduced physical
situations which are defined through a finite number of parameters and degrees of freedom. It thus makes sense to
truncate such a sum over 2-complexes and try to identify the minimal 2-complex faithfully representing the relevant
physical context and the degrees of freedom of the considered mini-superspace model(s).

2. Recursion Relations to Differential Equations: to Einstein equations?

From the procedure described above, we will obtain transition functions AΓ
∆[

izev,
fzev] depending on the fixed graph

Γ, the bulk 2-complex ∆ and the classical initial and final spinor data on the graph Γ. These transition amplitudes will
satisfy some differential equations in the spinor variables z’s. These differential equations encode both the symmetries
and the dynamics of the spinfoam amplitudes. Indeed one must keep in mind that symmetries and dynamics are inti-
mately intertwined in quantum gravity, since the dynamics and evolution are defined by the Hamiltonian constraints
generating space-time diffeomorphisms. In the context of spinfoam models, this relation is also present.
More precisely, focusing on the spinfoam model for topological BF theory and restricting ourselves to the gauge

group SU(2) for the sake of simplicity, one has recursion relations for invariants of SU(2) representations (such as the
6j-symbol and more generally 3nj-symbols). These recursion relations are understood to be related to the topological
invariance of the spinfoam amplitudes (see e.g. [16]). They have also been recently shown to be a quantization of the
Hamiltonian constraint encoding the evolution and projecting on the Hilbert space of physical states [17]. Furthermore,
decomposing explicitly the coherent intertwiners and coherent spin network functionals in representations of SU(2),
one can interpret these coherent spin networks as generating functionals for the SU(2) invariants and corresponding
spinfoam amplitudes [18]. Then the recursion relations for the the SU(2) invariants and spinfoam amplitudes expressed
in terms of SU(2) spins get translated into differential equations satisfied by the spinfoam transition amplitudes for
coherent spin networks on the boundary [18]. These differential equations expresses the invariance of the spinfoam
amplitudes under certain deformations of the boundary geometry. Therefore they should translate symmetries of the
considered spinfoam model. But, since some of these deformations induces diffeomorphisms in the time direction,
they should also encode the dynamics of the theory.
We will not show this mechanism in details here. We will restrict ourselves to the 2-vertex graph Γ and to the

simplest 2-complex ∆ and compute the spinfoam transition amplitudes between homogeneous and isotropic spinor
data. We will show in this restricted setting that the spinfoam amplitudes does satisfy a differential equation, which
can be interpreted as a Hamiltonian constraint for homogeneous and isotropic cosmology and from which one can infer
the classical 4-metric encoded by the spinfoam amplitude. The goal here is to derive the FRW equation and metric
from this procedure. Applying the same method to generic spinfoam amplitudes, the hope is to derive more general
differential equations describing the discrete diffeomorphism invariance at the level of 2-complexes and encoding
general relativity’s Einstein equations for 4-metrics.

3. Spinfoam Transition Amplitudes: a Leading Order Calculation

In the present paper, we will study states on the 2-vertex graph Γ with an arbitrary number of edges and choose the
simplest compatible 2-complex ∆1, made of a single vertex in the bulk, following the spinfoam cosmology approach
introduced in [5]. This 2-complex ∆1 represents single four-dimensional cell interpolating between the initial 2-vertex
graph and the final 2-vertex graph, as illustrated in fig. 6
As explained above, the spinfoam ansatz in this simplest case of a single spinfoam vertex is that the spinfoam

amplitude is given by the evaluation of the boundary spin network. Therefore, we choose our spin network states on
the initial and final 2-vertex graphs and the spinfoam amplitude is the evaluation of these two spin networks. Since
the boundary is disjoint, we simply get the decoupled product of the evaluations:

AΓ∪Γ
∆1

[ψi, ψf ] = ψi
Γ(I)ψ

f
Γ(I) . (66)

In future work, we would like to study the spinfoam amplitudes beyond this leading order 2-complex with a single
vertex. Adding vertices and/or using a non-trivial bulk topology, we will then obtain various more complicated
transition amplitudes beyond this decoupled first order calculation.
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∆1

Γ

Γ ψf

ψi

σ

FIG. 6: Simplest 2-complex ∆1 interpolating between the initial state ψi and the final state ψf . Its disconnected boundary
Γ ∪ Γ coincides with the boundary graph of its single vertex σ.

In the next subsection, we will compute explicitly this first order spinfoam amplitude based on ∆1 for both SU(2)
BF theory and a spinfoam model for quantum gravity taking into account the simplicity constraints using coherent
spin networks on the boundary.

4. The Group Field Theory Point of View and the Issue of Renormalization

Here, we have taken the point of view of fixing both the boundary graph Γ on which our spin networks live and the
bulk spinfoam 2-complex ∆. Our goal is to compute the corresponding spinfoam amplitudes describing the evolution
and dynamics of the spin networks for this fixed choice of bulk structure and interpret as a mini-superspace model
(for cosmology).
An alternative would be to fix the structure of the boundary but sum over all “admissible” bulks. In order to do

this, we need to define the list of admissible 2-complexes and to fix their relative weights in the sum. This is done
automatically by the group field theory formalism which provides us with a non-perturbative definition of the sum
over spinfoam histories for fixed boundaries (see e.g. [32, 33]).
More precisely, the standard group field theory (GFT) partition function is expanded in Feynman diagrams, which

are understood as the spinfoam 2-complexes. These are interpreted as the dual 2-skeleton of (pseudo-)triangulations
made of 4-simplices glued together (along their boundary tetrahedra), with each 4-simplex dual to a spinfoam vertex.
The resulting spinfoam amplitude can be written as a sum over all 2-complexes dual 4d triangulations with fixed
boundary with a statistical weight:

AΓ[ψΓ] =
∑

∆|Γ=∂∆

1

w[∆]
γ#σ∆AΓ

∆[ψΓ], (67)

where the factor w[∆] is the symmetry factor coming from the Feynman diagram expansion, γ is the GFT coupling
constant and #σ∆ counts the number of spinfoam vertices (or 4-simplices) of ∆.

Let us revisit our setting with the fixed 2-complex ∆1 for the 2-vertex graph boundary. It consists in a single
spinfoam vertex and we have chosen the corresponding spinfoam ansatz for such a configuration given by the straight-
forward evaluation of the boundary spin network. However, from the GFT point of view, ∆1 is not dual to a 4d
triangulation made of a single 4-simplex. On the contrary, we would need several 4-simplices to get a bulk topologi-
cally equivalent to ∆1. Thus, if we define the spinfoam amplitudes from the group field theory framework, it seems
that a priori we should not assume the simplest spinfoam ansatz for the amplitude for the 2-complex ∆1. On the other
hand, we should compute the full sum over 4d triangulations compatible with the 2-vertex graph on the boundary
(more exactly whose boundary is the union of both initial and final 2-vertex graphs). Actually, we do not yet know
how to control and compute such a sum, which is likely to be divergent, despite the recent progress on this issue. We
would need to study the coarse-graining of spinfoam amplitudes and the renormalization of the group field theory.
We would need to extract the relevant interaction terms which should be in the effective group field theory at large
scale and study the running of the corresponding coupling constants (with the scale of the boundary geometry).
One possibility is that the leading order term after renormalization is exactly given by the simplest spinfoam ansatz

for the 2-complex ∆1. This is what happens for the topological BF theory if we assume a trivial bulk topology (which
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seems to dominate the GFT partition function in colored group field theory models [32]) and we can expect this to
remain true for spinfoam quantum gravity in a low curvature regime. Nevertheless, one should keep in mind the limits
of our present point of view of fixing the bulk structure and not following the group field theory prescription.

One ingredient from the GFT perspective which we could keep is the zeroth order term of the expansion. This is
the identity map between the initial and final boundary coming from the trivial contribution of the 2-complex directly
interpolating between the initial and final graph without any vertex. Therefore, we could define a truncated transition
amplitude as the sum of the identity term plus the first order contribution coming from the one-vertex 2-complex ∆1:

AΓ∪Γ
∆1

[ψi, ψf ] ≡ AΓ∪Γ
∆0

[ψi, ψf ] + γAΓ∪Γ
∆1

[ψi, ψf ] = 〈ψi
Γ|ψf

Γ〉+ γ ψi
Γ(I)ψ

f
Γ(I) . (68)

This new zeroth order, with a trivial propagation, gives a totally coupled term between the initial and final boundaries
while our first order is totally decoupled. In order to focus on the simplest possibility, we will nonetheless not consider
this zeroth order term but just the first order term when computing the transition amplitude in next sections.

B. Spinfoam Amplitude and Dynamics for BF Spinfoam

Let us start applying our program to the spinfoam model for topological BF theory with gauge group SU(2).
We have already described in great details in section II the classical phase space for SU(2) spin networks on the
2-vertex graph and its reduction to the homogeneous and isotropic sector through a symmetry reduction by U(N).
We have two sets of N spinors, zi and wi, attached to the N edges around respectively the vertex α and the vertex
β. Both sets of spinors satisfy the closure constraint. Moreover they satisfy the matching constraint along each edge,
〈zi|zi〉 = 〈wi|wi〉. Then the homogeneous and isotropic sector is defined as assuming that the spinors wi are equal to
the dual of the spinors zi up to a global phase, |wi] = eiφ |zi〉.
At the quantum level, the components of the spinors are quantized as harmonic oscillators and we recover the

Hilbert space of spin networks on the considered graph (see [7, 10, 13–15] for more details). At the end of the
day, we define coherent spin network states by attaching two coherent intertwiners, |{zi}〉 and ||{ςwi}〉, to both the
source vertex α and the target vertex β respectively. These coherent intertwiners are defined as diagonalizing the
annihilation operators F̂ij and are labeled by the classical phase space points [10, 15]. One can furthermore show
that they transform covariantly under the U(N)-action on the spinors and that they provide a decomposition of
the identify of the space of intertwiners. Finally, they are good semi-classical states, minimally spread about the
corresponding phase space point. Moreover we understand very well their decomposition in terms of the Livine-
Speziale intertwiners |{ji, zi} (labeled by spins ji ∈ N/2 and spinor variables) introduced in [31] or in terms of the
U(N) coherent intertwiners |J, {zi}〉 (labeled by the total area J =

∑
i ji and spinor variables) introduced in [14]. For

instance, it will be useful for computational purposes to remind the formula established in [10, 15]:

|{zi}〉 =
∑

J∈N

1√
J !(J + 1)!

|J, {zi}〉 , (69)

since the scalar product between the U(N) coherent intertwiners |J, {zi}〉 are explicitly known and are homogeneous
of degree J in the spinor variables [14].

Now, we have our initial 2-vertex graph and our final 2-vertex graph, with the bulk in between defined by the
2-complex ∆1 with a single vertex, as shown in figure 7. Our initial spin network state is the coherent spin network
labeled with spinors zi and wi:

ψ{zi,wi}(gi) = 〈{ςwi}| ⊗i gi|{zi}〉,

where the spin network is a gauge-invariant functional of the SU(2) group elements gi on the edges. Our final spin
network state is the coherent spin network labeled with spinors z̃i and w̃i. And the spinfoam amplitude associated to
∆1 is the evaluation of the boundary spin network, which is the decoupled product of the evaluations of the initial
spin network and of the final spin network:

A∆1 [zi, wi, z̃i, w̃i] = ψ{zi,wi}(I)ψ{z̃i,w̃i}(I) = 〈{ςwi}|{zi}〉 〈{ςw̃i}|{z̃i}〉, (70)

where the evaluation of a spin network state on the 2-vertex graph at the identity is simply given by the scalar product
of the intertwiners living at the two vertices.
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{zi}

{z̃i} {w̃i}

{wi}

σ

FIG. 7: Boundary data on the 2-complex ∆1 defining initial and final boundary coherent spin networks. Focusing e.g. in the
initial 2-vertex graph, we attach to the vertex α a coherent intertwiner labeled by the spinors {zi} and to the vertex β another
coherent intertwiner labeled by the spinors {wi}, both consistently matched to form a coherent spin network ψ{zi,wi}.

Let us focus on a single scalar product, W(zi, wi) = ψ{zi,wi}(I) = 〈{ςwi}|{zi}〉. We know how to compute it exactly
[10, 14, 15]:

W(zi, wi) = 〈{ςwi}|{zi}〉 =
∑

J

1

J !(J + 1)!
〈J, {ςwi}|J, {zi}〉

=
∑

J

1

J !(J + 1)!

(
det
∑

i

|zi〉[wi|
)J

=
∑

J

1

J !(J + 1)!


1

2

∑

i,j

[zi|zj〉[wi|wj〉




J

(71)

We can further simplify this expression in the homogeneous and isotropic case by plugging in the relation between
the two sets of spinors |wi] = eiφ|zi〉 and taking into account the closure constraint

∑
i |zi〉〈zi| = λI. We then obtain

a formula depending only on the two conjugate variables λ and φ:

W(zi, wi) =
∑

J

1

J !(J + 1)!
(λe−iφ)2J . (72)

As mentioned earlier in section II C, we define the complex variable:

z = 2
√
λ e−iφ2 , {λ, φ} =

1

2
⇒ {z, z} = i . (73)

Then the spinfoam amplitude is simply a Bessel function in z2:

W(zi, wi) ≡ W(z) =
∑

J

1

J !(J + 1)!

(z
2

)4J
=

4

z2
I1

(
z2

2

)
, (74)

where I1 is the first modified Bessel function (of the first kind). It is known that Bessel functions satisfy a second
order differential equations. Here, one can deduce directly from the expansion of W(z) in J that it satisfies:

Ĉ W = 0, with Ĉ = z2∂2z + 5z∂z − z4 = ∂2zz
2 + z∂z − z4 − 2 = z−3∂zz

5∂z − z4 , (75)

which basically translates the obvious recursion relation on the series’ coefficients, (J + 1)!(J + 2)! = (J + 1)(J +
2)J !(J + 1)!.

This constraint Ĉ satisfied by the spinfoam amplitude expresses an invariance of the amplitude under certain de-
formations of the boundary. From a canonical point of view, it should be interpreted as the Hamiltonian constraint.
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Indeed, it has already been pointed out that the Hamiltonian constraint, as well as the space diffeomorphism con-
straints, get translated into recursion relations and differential equations satisfied by the amplitudes in the spinfoam
framework [16–18]. We will show below that this is indeed the case and that Ĉ is indeed the quantization of the
Hamiltonian constraint (for BF theory).

Considering Ĉ as the quantization of a classical (Hamiltonian) constraint, let us point out that the two relevant
terms in the differential operators are z2∂2z and z4, while the first derivative term z∂z and the constant term come
from ordering ambiguities (for instance, changing the order of the operators in z2∂2z clearly affects those terms).
From this perspective, we also expect this Hamiltonian constraint to express the FRW equation in our present

cosmological setting. Therefore, we look below at the large scale behavior of the spinfoam amplitude W(z) and of the

quantum constraint operator Ĉ and show their relation to FRW cosmology and to the classical effective dynamics on
the 2-vertex graph.

C. Asymptotic Behavior and FRW Equation

It is well-known that the Bessel function is approximate at large argument by a Gaussian, similarly to a Poisson
distribution. Let us apply this to our spinfoam amplitude W(z). More precisely, let us perform a stationary point
approximation of the sum over J . To this purpose, we use the Stirling formula to approximate the factorials for large
J :

1

J !(J + 1)!

(z
2

)4J
∼

J≫1

1

2πJ2
e4J ln( z

2 )−2J(ln J−1). (76)

Then we look for the stationary point(s) of the exponent ϕ(J) ≡ 4J ln( z2 ) − 2J(ln J − 1) and compute the second
derivative:

∂Jϕ = 0 ⇔ J =
z2

4
, ∂2Jϕ|J= z2

4

=
−2

J
=

−8

z2
.

We get a unique stationary point J = z2/4, which justifies that our large J approximation holds when z itself is large
(in modulus). Then approximating the sum over J by a Gaussian integral around this stationary point, we get:

W(z) ∼
z≫1

4

z3
√
π
e

z2

2 ≡W (z) . (77)

We have checked this formula numerically. What is interesting is that W (z) is simply a Gaussian distribution in z
with a pre-factor. Under this form, it is obvious that it satisfies a 2nd order differential equation, which is the same
as W up to a constant shift:

(Ĉ + 3)W (z) = 0. (78)

The fact that it is exactly the same differential operator up to a simple constant shift means that the large scale
behavior is exactly the same at the classical level and that the deviation from the exact amplitude is at small scales
in the quantum regime.
We see that in the asymptotic regime, both the spinfoam amplitude and the constraint operator are very similar to

the one derived previously in the earlier work on spinfoam cosmology [5], except that we do not use the exact same

complex variable (z ∝
√
λe−iφ2 here instead of ζ ∼ λ−iφ) and that we easily control the level of approximation that we

do. Indeed, we know both the exact spinfoam amplitude and constraint operator and their large scale approximations.
Despite these minor differences, the physical interpretation will be exactly the same.

Let us focus on the constraint operator Ĉ = z2∂2z +5z∂z−z4. Considering the canonical Poisson bracket, {z, z} = i,
the differential operator ∂z is the quantization of the classical variable z and thus our differential operator turns out
to be the quantization of the classical Hamiltonian constraint:

C = z2(z2 − z2) + (5zz). (79)

Replacing z by its definition 2
√
λe−iφ2 , we see that the first term goes in λ4 and clearly dominates the second term

which goes in λ2 and can be neglected. This is consistent with the fact that the second term comes from the differential
operator z∂z, which comes from ordering ambiguity in the leading order operator z2∂2z . Therefore, we neglect the
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term in zz in the definition of our classical Hamiltonian and we factor out the pre-factor z2, which leaves us will a
renormalized classical Hamiltonian derived from the spinfoam amplitude:

C̃ ≡ z2 − z2 = 8iλ sinφ . (80)

This is exactly the Hamiltonian for FRW cosmology in the simplest case, with vanishing curvature k = 0 and
cosmological constant Λ = 0, where we don’t have any evolution with φ = 0 and constant λ, as we see by comparing
with the explicit expressions of section III. More precisely, we have derived the effective dynamics on the 2-vertex
graph with the Hamiltonian in λ sinφ instead of the usual λφ of classical FRW (see section III for the comparison
between the effective and standard Hamiltonians).
Going into more details, it is actually to understand how this Hamiltonian constraint comes truly from the dynamics

of BF theory, as we explain below. Since BF theory is a theory of flat connections, this is the reason that we obtain
only the flat cosmology case with k = 0. Let us point out that the terms in zz that we neglected are not with the
correct scaling in λ and do not generate any non-trivial term in k or Λ.

D. Recovering the Hamiltonian Constraint

For now, we have made the link between the spinfoam (transition) amplitude for the quantum dynamics of coherent
spin networks on the 2-vertex graph and the classical dynamics defined in the earlier section III. We can actually
make this link stronger and show that the relation holds at the quantum level and not only in the classical regime
at large scale λ → ∞. More precisely, we show the relation between the differential equation satisfied by the spin
network evaluation derived in the covariant spinfoam context and the quantization of the classical Hamiltonian on
the 2-vertex graph defined from a canonical point of view and worked out in [6].
Considering the evaluation of the coherent spin network state W(zi, wi) = ψ{zi,wi}(I), we remind the method

introduced in [16] and refined in [17, 18] to derive recursion relation or differential equations on the evaluation by
acting with holonomy operators on the spin network state. Indeed, let us consider the holonomy operator around
the loop formed by the two edges j and k. It acts by multiplication on the spin network state ψ{zi,wi}(gi). On the
other hand, it is compute its action on the labels {zi, wi} of the spin network state using the recoupling theory of
representations on SU(2) as discussed in [16–18]. In short, we get:

̂χ(gjg
−1
k )ψ{zi,wi}(gi) = χ(gjg

−1
k )ψ{zi,wi}(gi) = D̂(j,k)

{zi}
ψ{zi,wi}(gi)

⇒ D̂(j,k)
{zi}

W(zi, wi) = χ(gjg
−1
k )ψ{zi,wi}(gi)

∣∣
gi=I

= 2W(zi, wi) , (81)

where the holonomy is taken in the fundamental spin- 12 representation (for the sake of simplicity) and D̂(j,k)
{zi}

is a to-

be-determined differential operator in the spinor variables. Then by evaluating the action of the holonomy operator
on the identity, we obtain a differential equation on the spin network evaluation W(zi, wi).
We can of course consider operators more complicated than a single holonomy operators. However, as soon as it does

not act anymore as a multiplication operator in the group elements gi, one has to be careful with the operator ordering
(e.g. [18]), but the method still works. Here, we will apply it using a U(N)-invariant combination of renormalized
holonomy operator. We consider the classical U(N)-invariant observable:

Q ≡
∑

j,k

√
〈zj |zj〉〈zk|zk〉〈wj |wj〉〈wk|wk〉χ(gjg−1

k )− 2
∑

j,k

√
〈zj|zj〉〈zk|zk〉〈wj |wj〉〈wk|wk〉

=
∑

j,k

(2〈zj|zk〉〈wj |wk〉+ [zj|zk〉[wj |wk〉+ 〈zj|zk]〈wj |wk])− 2


∑

j

〈zj |zj〉




2

=
∑

j,k

(
2Eα

jkE
β
jk + Fα

jkF
β
jk + Fα

jkF
β
jk

)
− 2


∑

j

Eα
jj




2

(82)

, (83)

where we used the expression of the group elements gj and gk in terms of the spinor variables in order to compute

the holonomy χ(gjg
−1
k ) and where we assumed the matching conditions, 〈zi|zi〉〈wi|wi〉 for all edges i, to simplify the

constant term. It is clear that this observable vanishes where the group elements are fixed to the identity gi = I:

Q|gi=I
= 0 .
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Our strategy will be to compute the action of this operator on the spin network state ψ{zi,wi}(gi) at the quantum
level and deduce the differential equation satisfied by the evaluation W(zi, wi) by taking gi = I at the end.
Let us first see how is the value of Q in the homogeneous and isotropic sector, with |wi] = eiφ |zi〉 for all i’s. An

easy calculation gives:

Q = 4λ2(1 + cos 2φ)− 8λ2 = −8λ2 sin2 φ . (84)

We recognize both our classical Hamiltonian (54) on the 2-vertex graph for the special values γo = γ and γ1 = 0

and the square of the constraint C̃ derived in (80) from the spinfoam amplitude. This makes the link between the
canonical formalism with a Hamiltonian and the covariant perspective with the spinfoam amplitude satisfying certain
constraint.
Let us now work out the quantized version Q̂ and check that its action on ψ{zi,wi}(gi) vanishes on trivial holonomies

gi = I. This will also provide us with the exact differential equation generically satisfied by the evaluation W(zi, wi),
even without assuming the homogeneous and isotropic ansatz. We follow the quantization procedure for the spinor
variables: holomorphic coordinates zi and wi are quantized as multiplication operators while the anti-holomorphic
variables zi and wi respectively become the differential operators ∂zi and ∂wi . This leads to the following quantization
for the E and F observables [7, 10]:

Êα
jk = z0k∂z0

j
+ z1k∂z1

j
,

F̂α
jk = (z0j z

1
k − z1j z

0
k),

F̂α
jk

† = (∂z0
j
∂z1

k
− ∂z1

j
∂z0

k
), (85)

and similarly for the operators acting at the vertex β as differential operators in the wi’s. We can then compute the
action of these operators on W(zi, wi) =

∑
J(detX)J/J !(J + 1)! where X is the following 2×2 matrix:

X =
∑

i

|zi〉[wi|, detX =
1

2

∑

jk

Fα
jkF

β
jk .

Following the natural notation as in [6], we will denote the functional (detX)J as the quantum state |J〉. Then the

three components of the Q̂ operator, Êα
jkÊ

β
jk, F̂

α
jkF̂

β
jk and F̂α

jk
†F̂ β

jk
†, respectively act as a number of quanta operator,

a creation operator and an annihilation operator in the |J〉 basis. More precisely, after a lengthy but straightforward
calculation, we get:

∑

j,k

Êα
jkÊ

β
jk |J〉 = 2J(J +N − 2) |J〉 (86)

∑

j,k

F̂α
jkF̂

β
jk |J〉 = 2 |J + 1〉

∑

j,k

F̂α
jk

†F̂ β
jk

† |J〉 = 2J(J + 1)(N + J − 1)(N + J − 2) |J − 1〉 .

It is worth pointing out that the same expressions were computed earlier in a more elegant way in [6] by working out
the commutation relations between these operators in the U(N)-invariant space. Putting these results together, we
define the quantized version of the Q observable:

Q̂ ≡
∑

j,k

(
2Êα

jkÊ
β
jk + F̂α

jkF̂
β
jk + F̂α

jk
†F̂ β

jk
†
)
− 2(Ê +N − 1)2 − 2(N − 1), (87)

where Ê ≡ ∑
i Ê

α
i i is shown to act as Ê |J〉 = 2J |J〉. The last term (Ê + N − 1)2 + (N − 1) corresponds to the

quantization of the classical term (
∑

j E
α
jj)

2 up to sub-leading contributions interpreted as ordering ambiguities. This
specific choice gives the expected result:

Q̂W(zi, wi) = Q̂
∑

J

(detX)J

J !(J + 1)!
= 0. (88)

This is a fourth order differential equation on the spinfoam amplitude W(zi, wi), which correspond to the quantization
of the classical Hamiltonian on the 2-vertex graph.
It is further possible to write all the differential operators in terms of derivative of detX , and thus in terms of the

single complex variable z, then the operator Q̂ should give the square of the differential equation Ĉ2 (up to ordering
terms) satisfied by the spinfoam amplitude.
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E. How to Depart from Flat Cosmology?

Working with the spinfoam model for topological BF theory with gauge group SU(2), we have derived the differential
equation satisfied by the spinfoam amplitude for fixed boundary (the 2-vertex graph Γ) and fixed bulk (the 2-complex
∆1) and shown its relation to the classical Hamiltonian for the dynamics on the 2-vertex graph. The Hamiltonian that
we have obtained corresponds to the flat FRW cosmology (in vacuum). The natural question is whether it is possible
or not to obtain the models of effective dynamics of section III for non-vanishing curvature k 6= 0 and cosmological
constant Λ 6= 0 with this spinfoam cosmology framework.
From the previous analysis, we understand that the flatness of the Hamiltonian k = 0 = Λ, or equivalently γo = γ

and γ1 = 0 in the cosmological Hamiltonian ansatz (54), comes from the definition of the spinfoam amplitude as the
evaluation of the boundary spin network at the identity. This comes from working with the spinfoam path integral
for topological BF theory, which projects onto trivial connections and holonomies. Therefore, in order to obtain
non-flat FRW cosmology, it is clear that we have to depart from BF theory and the trivial spinfoam ansatz defining
the amplitude as the evaluation of the boundary spin network state at the identity. For instance, it is natural to
expect that evaluating the boundary spin network on non-trivial holonomies will produce curvature and lead to FRW
cosmology models with non-vanishing curvature and cosmological constant.
In order to derive such a new spinfoam amplitude, we see two non-exclusive possibilities. First, we can change the

spinfoam model. Either, we can attempt to modify the spinfoam amplitudes by hand and introduce curvature and
cosmological constant terms in the BF amplitude. Or we can use a spinfoam model built for quantum gravity, such as
the EPRL-FK spinfoam amplitudes [34, 35, 37]. However, if we use such a model, the standard spinfoam amplitude
ansatz is still to evaluate the boundary spin network around each vertex at the identity. Therefore, we expect no
difference from topological BF theory if our bulk 2-complex contains a single vertex as considered here with our
simplest 2-complex ∆1. We illustrate this by working out in the next subsection the spinfoam transition amplitude
for the 2-vertex graph still with the single-vertex 2-complex ∆1 for the Dupuis-Livine variant of the EPRL model
based on the holomorphic simplicity constraints [10, 38]. Then the second alternative is to change the bulk 2-complex,
and even the boundary graph, in order to allow for more intricate space-time structure with non-trivial topology and
geometry. By allowing more than one vertex in the bulk 2-complex, we expect to have curvature generated through
the gluing of the dual 4-cells.

Here, we will show how to modify the spinfoam amplitude and depart from the mere evaluation of the boundary spin
network state in order to obtain non-flat FRW cosmology. We will use the realization of the Hamiltonian constraint as
a differential equation satisfied by the spinfoam amplitude. Indeed, we have derived the differential equation satisfied
by the evaluation of the boundary spin network state at the identity. We can now modify this differential equation
to take into account non-vanishing curvature and cosmological constant and investigate how the spinfoam amplitude
changes.

Calling e ≡ 2
∑

j,k Ê
α
jkÊ

β
jk − 2(Ê + N − 1)2 − 2(N − 1), f ≡ F̂α

jkF̂
β
jk and f † ≡ F̂α

jk
†F̂ β

jk
† the operators introduced

above and defined as differential operators in the spinor variables zi and wi, the differential equation satisfied by the

coherent spin network evaluation was simply defined by the operator Q̂ = e+ f + f †:

Q̂ 〈{ςwi}|{zi}〉 = Q̂
∑

J

1

J !(J + 1)!
(detX)J = 0 . (89)

Following our analysis of the classical dynamics on the 2-vertex graph in section III, we consider the modified differ-

ential operator Q̂(κ) = e + κ(f + f †) for κ ∈ R. The corresponding classical constraint (in the large λ regime) in the
homogeneous and isotropic sector is:

Q(κ) = −2 2λ2(1− κ cos 2φ), (90)

which corresponds to our effective FRW Hamiltonian (55) with parameters γo = 1, γ = κ and γ1 = 0 (up to a global
(−2)-factor), thus leading to modified FRW cosmology with non-vanishing curvature k 6= 0. We can easily take into

account a non-vanishing cosmological constant by adding a Ê3 term in our constraint. But for the sake of simplicity,
we will simply describe here the case γ1 = 0.

Let us then solve the constraint Q̂(κ) = 0 at the quantum level. Noting as before |J〉 ≡ (detX)J , we apply the

modified operator Q̂(κ) to a linear combination of the basis vectors |J〉 and we obtain a 2nd order recursion relation
on the coefficients:

Q̂(κ)
∑

J

α
(κ)
J

J !(J + 1)!
|J〉 = 0 ⇔

∣∣∣∣∣
(J +N)(J +N − 1)α

(κ)
J+1 − 1

κ [2J(J +N) +N(N − 1)]α
(κ)
J + J(J + 1)α

(κ)
J−1 = 0

κ(N + 1)α1 = (N − 1)α0

.

(91)
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The spectral properties of similar operators were studied in [6] when analyzing the Hamiltonian dynamics of the
quantum 2-vertex model. Applying the same techniques, we look at the asymptotics of the recursion relation at large
J and solve it at second order (in 1/J). We then get:

αJ ∝
J≫1

1

JN−1
cosωJ, cosω =

1

κ
. (92)

We have checked the accuracy of this asymptotics numerically using Maple 15. For κ = 1, the oscillation frequency ω
vanishes and we recover the flat case which we have already described. For |κ| < 1, the frequency ω becomes purely
imaginary and we have an exponential solution instead of the oscillating behavior.
We can modify slightly the action of the operators e, f, f † on the states |J〉 in order to obtain an exact analytical

expression for the physical state. For instance, we can take:

ẽ |J〉 ≡ −4J2 |J〉
f̃ |J〉 ≡ 2 |J + 1〉
f̃ † |J〉 ≡ 2J2(J − 1)2 |J − 1〉

(93)

and solve the modified equation ̂̃Q
(κ)

≡ ẽ+ κ(f̃ + f̃ †) = 0. Then we get the states:

̂̃Q
(κ) ∑

J

cosωJ

J !2
|J〉 = ̂̃Q

(κ) ∑

J

cosωJ

J !2
(detX)J = 0. (94)

This new operator ̂̃Q
(κ)

has the same classical limit than our original operator Q̂(κ) but can be interpreted as
differing in operator ordering. It is simple to define these modified operators ẽ, f̃ , f̃ † as differential operators in the
single complex variable detX , or equivalently z, but we lose the direct translation as differential operators in the
original spinor variables which allow to define these operators as acting on the whole phase space and not only in the

homogeneous and isotropic sector. Moreover, this hides the relation of the operators ẽ, f̃ , f̃ †, ̂̃Q
(κ)

with the holonomy
operators and the interpretation of the solution state as a coherent spin network evaluation.

Even if we do not have an explicit closed formula for the coefficients α
(κ)
J , this gives the spinfoam amplitude than

we should define in order to get non-flat FRW cosmology. The next step is to understand how this amplitude can be
defined as the evaluation of the coherent spin network on non-trivial holonomies or with an operator insertion, i.e of

the type 〈{ςwi}|O(κ)|{zi}〉. Already the asymptotics of the coefficients α
(κ)
J provide us with some clues about how to

realize this. Indeed, the series based on the asymptotics can be easily realized as the evaluation of the coherent spin
network on some non-trivial holonomies:

∑

J

cosωJ

J !(J + 1)!
(detX)J =

∑

J

1

J !(J + 1)!

1

2

[
(eiω detX)J + (e−iω detX)J

]

=
1

2

[
〈{ςwi}| ⊗i e

iω|{zi}〉+ 〈{ςwi}| ⊗i e
−iω|{zi}〉

]
(95)

where we act with the same U(1) group element eiω , resp. e−iω, on all the legs of the 2-vertex graph. This corresponds
to the evaluation of the coherent spin network states on SU(2) group elements defined as the 2×2 diagonal matrix
[eiω, e−iω] (resp. [e−iω, e+iω ]) in the (|zi〉, |zi]) basis on each edge of the graph. As we have shown above, this
functional satisfies a differential equation, whose classical counterpart at large scale, is Q(κ), and thus corresponds to
our Hamiltonian (55) for the modified FRW cosmology with non-vanishing curvature.
It seems possible to follow the same strategy to take into account a cosmological constant. We expect to find a

spinfoam amplitude similar the one postulated in [8] or/and related to the q-deformation of the spinfoam amplitudes.
Then the goal will be to interpret it as some particular evaluation or operator insertion of the boundary coherent spin
network state. We postpone such a detailed analysis to future investigation.

F. Cosmological Dynamics with Holomorphic Simplicity Constraints

Let us apply our method to analyze the spinfoam amplitude for the Dupuis-Livine (DL) spinfoam model for
Riemannian quantum gravity based on holomorphic simplicity constraints. We will not review the details and the
definition of this model, but we will refer the interested reader to [10] for the full presentation or to [38] for a quick
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summary of the model’s basic features. We will only point out here that the resulting spinfoam amplitudes are very
similar to the ones of the EPRL-FK spinfoam models [35, 37], except that the diagonal simplicity constraints are not
strongly imposed and that the wave-packets for the boundary states are thus slightly enlarged Gaussian distributions
compared to the coherent states used for the EPRL-FK models. This allows for an easier analysis and understanding
of the symmetries, constraints and amplitudes of the model.
The DL model is based on the gauge group Spin(4) = SU(2)L × SU(2)R made of two copies of SU(2). The classical

phase space on a fixed graph is therefore simply two copies of the SU(2) spinor network phase space and the boundary
spin networks at the quantum level are simply tensor products of spin network states for the left copy of SU(2) and the
right copy. The the holomorphic simplicity constraints are easily imposed at both the classical level and the quantum
level. The resulting structure is coherent spin network states labeled by two sets of spinors living on the graph, the
zL,R’s respectively from the left and right sectors:

Ψ{zLv
e ,z

Rv
e}
(gLe , g

R
e ) = ψ{zLv

e}
(gLe )ψ{zRv

e}
(gRe ) , (96)

where (gL, gR) ∈ SU(2)L × SU(2)R represents a Spin(4) group element. Then the holomorphic simplicity constraints
simply impose that all the right spinors are equal to their left counterpart up to a fixed factor, ∀v, e, zRv

e = ρ zLv
e

where ρ > 0 is related to the Immirzi parameter [10]. Therefore, removing the useless subscript L or R for the spinor
variables, the DL spinfoam model is based on the coherent spin network states for Spin(4) defined as:

Ψ{zv
e}
(gLe , g

R
e ) = ψ{zv

e}
(gLe )ψ{ρzv

e}
(gRe ) . (97)

Repeating our derivation of the spinfoam amplitude for the 2-vertex graph and ∆1 2-complex in the bulk, we obtain
once more a decoupled spinfoam amplitude which is the product of the initial and final spin network evaluations:

ADL
∆1

[zi, wi, z̃i, w̃i] = WDL(zi, wi)WDL(z̃i, w̃i),

with WDL(zi, wi) = Ψ{zi,wi}(I) = ψ{zi,wi}(I)ψ{ρzi,ρwi}(I) = 〈{ςwi}|{zi}〉〈{ςρwi}|{ρzi}〉 . (98)

Since these scalar products are known analytically, we can compute exactly these amplitudes. Nevertheless, it is
simpler to have a look at the asymptotic behavior. Using the stationary point approximation derived earlier (77), we
get for the homogeneous and isotropic sector:

WDL(z) ∼ 4

z3
√
π
e

z2

2
4

(ρz)3
√
π
e

(ρz)2

2 =
42

z6ρ3π
e(1+ρ2) z2

2 . (99)

This Gaussian wave-packet is once more solution to a 2nd order differential equation whose leading order is of the
type ∂2z − z2 (up to some global power of z). Considering the large scale regime, we obtain a classical constraint
identical to the BF theory case corresponding to the flat FRW cosmology with no dependence (at leading order) on
the Immirzi parameter ρ.
This confirms that we should study more complicated bulk configurations or change the spinfoam amplitude ansatz

for the simple single-vertex bulk ∆1 in order to obtain some effective dynamics for more generic cosmology, with
possibly curvature and cosmological constant.

V. CONCLUSION AND OUTLOOK

We have discussed the general procedure of truncating loop quantum gravity and spinfoams to a fixed finite graph
and studying the dynamics of the geometry on that fixed graph at both classical and quantum levels. The goal is to
define mini-superspace models that can be interpreted as cosmological models or as toy models to investigate and test
the spinfoam dynamics. Following this logic, we have studied in detail the kinematics and dynamics of loop gravity
on a 2-vertex graph. We have defined the dynamics from both the canonical point of view and using the covariant
spinfoam amplitudes and showed the consistence between the two approaches. We have further defined the reduction
of a homogeneous and isotropic sector at the kinematical level and showed that the dynamics of this sector can be
understood as some modified effective Friedmann-Robertson-Walker (FRW) cosmology. This confirms and improves
the earlier results about the 2-vertex model derived in [3, 5–7]. These results show that the present approach might be
very promising to derive mini-superspace models from spinfoam models and to study the quantum gravity dynamics
and fluctuations in these restricted settings.
Concerning the interpretation of the 2-vertex model as a cosmological mini-superspace model, the limitations of our

approach are clear. First, we absolutely need to include matter in our analysis, both at the canonical level (following
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the earlier work [3]) and in the spinfoam calculations, in order to obtain a realistic FRW model. Second, we have
identified and explained some discrepancies in the large scale behavior of our 2-vertex dynamics with the standard
FRW dynamics when we turn on the curvature k or the cosmological constant Λ. This shows the limits of our current
approach.
Moreover, concerning the derivation of the 2-vertex cosmology from spinfoam amplitudes, we also see two main

issues. On the one hand, we have discussed the effects that curvature and cosmological constant cause on the spinfoam
transition amplitude, but we still need to understand how to encode them in the coherent spin networks living in the
boundary of the two-complex. On the other hand, we need to study the transition amplitudes for more complicated
bulk structures, beyond our calculations for a simple one 4-cell bulk. This involves studying more the spinfoam
amplitudes and their coarse-graining/renormalization in order to understand how the transition amplitudes for more
complex bulks look like and to determine if the one 4-cell bulk is actually the dominating contribution. Both issues are
intertwined since we expect that considering more complicated bulks would (at least) induce curvature. Actually, for
the simplest 2-complex that we have considered, the boundary of the spinfoam vertex coincides with the boundary of
the 2-complex, and then the transition amplitude is just the evaluation of the boundary spin network on the identity
(according with the spinfoam ansazt), meaning that we can only describe a flat model (BF theory) in this simple
setting. Nevertheless, besides these questions to solve, we have shown how to derive differential equations satisfied by
spinfoam amplitudes and how they are equivalent to the Hamiltonian constraint, in the context of the 2-vertex graph.
We hope that this method will be generalizable to more complicated graphs and bulk structures.
Beyond these issues to solve, we would like to point out three promising directions of work. First, we would like

to investigate the freedom in modifying the one 4-cell spinfoam amplitude and study the resulting dynamics and
corresponding Hamiltonian. Second, we would like to apply our methods to more complicated graphs, for example
the 3+N-vertex graph proposed in [6] or possibly graphs with an infinite number of vertices, in order to test the
validity of truncating loop (quantum) gravity to a fixed graph beyond the simplest 2-vertex graphs and to try to
generate more realistic cosmological models, beyond the homogeneous and isotropic FRW cosmology. For instance,
we hope to identify some simple family of graphs with a number of vertices that can be sent to infinity in order to
model midi-superspace models for cosmology with inhomogeneities. Finally, it could be interesting to develop some
simplified group field theory for our 2-vertex graph model, which would admit specific boundary graph and would
sum over a restricted set of 2-complexes, and compare it to the group field theory for the EPRL-FK spinfoam model
[39] and to the spinfoam amplitudes for loop quantum cosmology [40–42].
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Appendix A: Spinors and Notations

In this appendix, we introduce spinors and the related useful notations, following the previous works [6, 9, 15].
Considering a spinor z,

|z〉 =
(
z0

z1

)
, 〈z| =

(
z̄0 z̄1

)
,

we associate to it a geometrical 3-vector ~V (z), defined from the projection of the 2 × 2 matrix |z〉〈z| onto Pauli
matrices σa (taken Hermitian and normalized so that (σa)

2 = I):

|z〉〈z| = 1

2

(
〈z|z〉I+ ~V (z) · ~σ

)
. (A1)

The norm of this vector is obviously |~V (z)| = 〈z|z〉 = |z0|2 + |z1|2 and its components are given explicitly as:

V z = |z0|2 − |z1|2, V x = 2ℜ (z̄0z1), V y = 2ℑ (z̄0z1). (A2)
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The spinor z is entirely determined by the corresponding 3-vector ~V (z) up to a global phase. We can give the reverse
map:

z0 = eiφ

√
|~V |+ V z

2
, z1 = ei(φ−θ)

√
|~V | − V z

2
, tan θ =

V y

V x
, (A3)

where eiφ is an arbitrary phase.
Following [6], we also introduce the map duality ς acting on spinors:

ς

(
z0

z1

)
=

(
−z̄1
z̄0

)
, ς2 = −1. (A4)

This is an anti-unitary map, 〈ςz|ςw〉 = 〈w|z〉 = 〈z|w〉, and we will write the related state as

|z] ≡ ς |z〉, [z|w] = 〈z|w〉.

This map ς maps the 3-vector ~V (z) onto its opposite:

|z][z| = 1

2

(
〈z|z〉I− ~V (z) · ~σ

)
. (A5)

Finally considering the setting necessary to describe intertwiners with N legs, we consider N spinors zi and their

corresponding 3-vectors ~V (zi). Typically, we can require that the N spinors satisfy a closure condition, i.e that the

sum of the corresponding 3-vectors vanishes,
∑

i
~V (zi) = 0. Coming back to the definition of the 3-vectors ~V (zi), the

closure condition is easily translated in terms of 2× 2 matrices:

∑

i

|zi〉〈zi| = A(z)I, with A(z) ≡ 1

2

∑

i

〈zi|zi〉 =
1

2

∑

i

|~V (zi)|. (A6)

This further translates into quadratic constraints on the spinors:

∑

i

z0i z̄
1
i = 0,

∑

i

∣∣z0i
∣∣2 =

∑

i

∣∣z1i
∣∣2 = A(z). (A7)

In simple terms, it means that the two components of the spinors, z0i and z1i , are orthogonal N -vectors of equal norm.

Appendix B: Effective Hamiltonian of the FRW model in LQC

In LQC, following LQG, one starts by describing the metric in triadric form. Therefore we introduce a fiducial
triad oωi

a, being i an internal SU(2) index, and write the fiducial metric of uniform curvature as oqab = oωi
a
oωj

bkij .
Actually, oωi

a denote a basis of left-invariant one forms that satisfy the Maurer-Cartan equation

∂a
oωi

b = −1

2
Ci

jk
oωj

a
oωk

b . (B1)

The three different spaces, defined via Eq. (48), can alternatively be described with the following conventions:

• Euclidean case: oωi
a = δia and kij = δij .

• Spherical case: In this case kij is the Cartan-killing metric of su(2) and oqab is the metric of the round 3-sphere
of radius 2.

• Hyperbolic case: It is characterized by having structure constants Ci
jk = δijδk1 − δikδj1, and kij = δij .

As in LQG, in LQC the phase space is described in terms of the densitized triad, Ea
i , and the Ashtekar-Barbero

connection, Ai
a = Γi

a + γKi
a, being Γi

a the spin connection, γ the Immirzi parameter, and Ki
a the extrinsic curvature

in triadric form. For the FRW model under consideration the densitized triad is parameterized in terms of a single

parameter p, in the form Ea
i = pV

−2/3
o

√
oq oeai . Here oeai denotes the fiducial co-triad, such that oeai

oωj
b = δab δ

j
i . On

the other hand, we parameterize the Ashtekar-Barbero connection in the following way
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• Euclidean case: Ai
a = cV

−1/3
o

oωi
a.

• Spherical case: Ai
a =

(
c+

V 1/3
o

2

)
V

−1/3
o

oωi
a.

• Hyperbolic case: Ai
a = −ǫ1ij oωj

a + cV
−1/3
o

oωi
a, (ǫ

ij
k : totally antisymmetric symbol).

This parameterization is such that, in all the cases, γKi
a = cV

−1/3
o

oωi
a, being

oωi
a the fiducial triad corresponding

to each case. Also, according with the above definitions, we have {c, p} = 8πG/3. For more details we refer the
interested reader to e.g. [27–29, 43–47].
The canonical transformation from the variables (a, πa) to the variables (p, c) is given by

a =
√
roV

−1/3
o

√
p, πa = − 3

4πGγV
2/3
o

√
ro

√
pc, (B2)

where ro = 1 in the flat and open models, and ro = 1/2 in the closed model.
The effective Hamiltonian derived in LQC, in terms of some dimensionless quantity µ whose meaning we will discuss

later, is given by

• Flat case [28, 29, 43]: k = 0, ro = 1

Heff =
N

16πG

{
− 6

γ2
√
p
sin2(µc)

µ2
+ 2Λp3/2

}
. (B3)

• Open case [44, 45]: k = −1, ro = 1

Heff =
N

16πG

{
− 6

γ2µ2

√
p
[
sin2(µc)− γ2µ2V 2/3

o

]
+ 2Λp3/2

}
. (B4)

• Closed case [46, 47]: k = 1, ro = 1/2

Heff =
23/2N

16πG

{
− 6

γ2µ2

√
p

[
sin2(µc)− sin2

(
µV

1/3
o

2

)
+ (1 + γ2)

µ2V
2/3
o

4

]
+

Λ

4
p3/2

}
. (B5)

Note that in the limit µ→ 0 we have Heff → HFRW with

HFRW =
N

16πGr
3/2
o

{
− 6

γ2
√
p
[
c2 + kγ2V 2/3

o r2o

]
+ 2Λr3op

3/2

}
, (B6)

where we have done the approximations

sin2(µc)

µ2
≃ c2,

sin2(µV
1/3
o /2)

µ2
≃ V

2/3
o

4
. (B7)

Introducing the canonical transformation (B2) in Eq. (50), it is straightforward to check that the above Hamiltonian
is indeed the Hamiltonain of the FRW model in the variables (c, p). Therefore the above effective Hamiltonians
introduce corrections to the standard dynamics of the FRW model. Those corrections come from the quantization
and are unimportant as long as the parameter µ is small.
Actually, in the literature of LQC different values of µ have been considered. In the first analyses of the dynamics

of the FRW model µ was fixed to have a constant value µo [27, 28]. Later on the dynamics was “improved” by doing
this parameter dynamical and given by µ̄ ∝ p−1/2 [29]. In this way, the limit µ̄→ 0 corresponds to the limit of large
areas, and then the effective “improved” dynamics coincides with the standard one when the cell of the universe under
consideration is sufficiently large.
Let us now translate the effective Hamiltonians of LQC into our variables (λ, φ). From the canonical transformations

given in Eqs. (56) and (B2) we readily obtain the relations between the variables (c, p) and the variables (λ, φ):

p =
l2

ro
λ, c = −16πGγro

3l2
φ ≡ −σφ. (B8)

Introducing this transformation and choosing again N = λ3/2 we get
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• k = 0:

Heff =
l

16πG

{
− 6

γ2
λ2

sin2(µσφ)

µ2
+ 2Λl2λ3

}
. (B9)

• k = −1:

Heff =
l

16πG

{
− 6

γ2µ2
λ2
[
sin2(µσφ) − γ2µ2V 2/3

o

]
+ 2Λl2λ3

}
. (B10)

• k = 1:

Heff =
l

4πG

{
− 6

γ2µ2
λ2

[
sin2(µσφ) − sin2

(
µV

1/3
o

2

)
+ (1 + γ2)

µ2V
2/3
o

4

]
+

Λ

2
l2λ3

}
. (B11)

Now, in the case of the “improved dynamics”, the parameter µ is given by µ̄ ∝ λ−1/2.
Note that µ needs to be constant for the above Hamiltonians to admit a natural implementation in the spinor

framework, in the sense that they can be writen as a function of the area λ and of the basic holonomy elements of
the spinor framework, hφ ≡ e2iφ, In fact, in that case we can write

sin(µσφ) =
hµσφ − h−µσ

φ

2i
. (B12)

On the other hand, the effective Hamiltonian of the “improved dynamics” does not admit a natural implementation in
our framework. Indeed the expression sin(µ̄σφ) with µ̄ ∝ λ−1/2 is not in the algebra generated by the basic variables
λ and hφ. Nonetheless, the combination µ̄σφ turns out to be canonically conjugate to the volume (up to a constant
factor) [29]. Therefore, the “improved” Hamiltonian would be naturally implementable within the spinor framework
if, after the symmetry reduction, the overall variable were the volume instead of the area. While the 2-vertex graph
that we are considering in this paper is not suitable to hold the improved dynamics of LQC, it might be that a more
complicated graph and a suitable implementation of the symmetry reduction would indeed pick up the volume as the
overall variable. We leave the investigation of this possibility for the future.
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