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Abstract-In the present paper we investigate the effect of 
categorising raw behavioural data or computational model re
sponses. In addition, the effect of averaging over stimuli from 
potentially different populations is assessed. To this end, we 
replicate studies on word learning and generalisation abilities 
using the ACORNS models. Our results show that discrete 
categories may obscure interesting phenomena in the continuous 
responses. For example, the finding that learning in the model 
saturates very early at a uniform high recognition accuracy 
only holds for categorical representations. Additionally, a large 
difference in the accuracy for individual words is obscured 
by averaging over all stimuli. Because different words behaved 
differently for different speakers, we could not identify a phonetic 
basis for the differences. Implications and new predictions for 
infant behaviour are discussed. 

I. INTRODUCTION 

In language acquisition research, be it child experiments 

or computational simulations, one must decide how to mea

sure and report behaviours. Most research relies on accuracy 

measures, averaged over groups of stimuli or participants. 

However, this averaging might both obscure potentially rel

evant effects and give rise to false assumptions. [1] showed 

that an overall average, implying the assumption that par

ticipants and stimuli in (psycho )linguistic experiments are 

drawn from essentially homogeneous populations, may lead 

to potentially misleading conclusions about the processes that 

yielded the observation data. Participants and/or stimuli may 

actually come from different populations that show different, 
yet systematic behaviours, which may be masked by only 

investigating mean values [2]. 

For example, [3] found that while infants can discriminate 

the minimally different sound pattern [bIll] and [dIll], they 

seemed unable to distinguish those two syllables in a word

learning task. However, upon closer inspection of the data, 

Fikkert found that her participants succeeded in half of the 

learning task: they noticed the change from the familiar 'gin' 

to the new word 'Qin', but the reverse case appeared to go 

unnoticed. By reporting only gross average results, the success 

for the 'Qin' to 'Qin' change is not detectable. 

[4] reported interesting insights into the errors children 

make during pronoun comprehension. A separate analysis of 

test items by (1) verb frequency and (2) gender of the pronoun 

revealed diverging performances across both factors. In previ

ous studies, verb frequency and pronoun gender have not been 

analysed separately and were thought to have no influence on 

children's performance. This assumption was, however, solely 

based on theoretical accounts and only supported by group 

averages. A difference in performance based on verb frequency 

and pronoun gender is a challenge for all current models of 

pronoun comprehension and acquisition. 

The assumption that participants and items are drawn from 

a single homogeneous population is not the only problem. 

In language acquisition experiments the behaviours of the 

participants are often quantified in two categories: correct 

(for example if the infant looks in the predicted direction) or 

wrong (if the infant looks in a different direction). Although 

such a binary classification is intuitively appealing, it is to a 

large extent arbitrary. Collapsing 'not looking in any specific 

direction' and fixating on the 'wrong' picture in a preferential 

looking task may or may not be warranted. Also, infants 

seldom fixate exclusively on a single part of the screen; 

rather, they focus on a picture for 'most of the time'. Here, 
too, a binary choice may ignore relevant data, which might 

indicate the confidence of the participant in reacting to a 

specific stimulus. The time course of the fixations also contains 

important information, which cannot be accounted for in a 

'correct/incorrect' classification of a response. 

In this paper we address the interaction between the repre

sentation of the behavioural data used in statistical analyses 

and the details of the analyses. To this end, we first investigate 

whether binary scoring of responses suggests different conclu

sions than a representation that retains information about the 

confidence of a participant. In this part of the research we 

still use mean values computed over all test items. Second, 

we investigate whether different ways of quantifying the data 
may have an impact on the assumption that all stimuli in an 

experiment come from a homogeneous population by compar

ing item-based analyses to assessments based on averages. 

Rather than trying to re-analyse behavioural data from infant 

experiments, we investigate the issue by means of compu

tational simulations. The output of computational models of 

language acquisition (see [5] for a summary of recent models) 

can be (semi-)continuous functions, like the proportion of 

time an infant fixates on parts of a picture in a looking

while-listening experiment. For example, some of the models 

investigated in [5] return activations, but to report on the mod

els' performance in terms of precision and recall, discretising 

thresholds are applied. 

In this paper, we examine one of the models developed in 

the ACORNS (ACquisition Of Recognition and communica-
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tioN Skills) project!. The model uses real speech and simu

lated visual representations of a scene as input and assumes 

only general cognitive (learning) abilities [6]. In the ACORNS 

project it was shown that it is possible to learn associations 

between speech utterances and visual representations of ob

jects without the need to first segment the speech signal into 

phone-like units. Furthermore, experiments suggested that few 

exposures to utterances containing a given word, paired with 

a label to represent cross-modal (visual) input, were sufficient 

to obtain a very high overall recognition accuracies. 

The ACORNS model has been used to simulate learn

ing of up to 25 content words. For each test stimulus the 

model returns an activation value for all the words that are 

being learned. Previous experiments with the model almost 

invariably categorised the 'raw' output of the model into 

two response categories: correct or incorrect. In this paper 

we replicate model simulations [6] and investigate to what 

extent the results and the interpretation of the simulations are 

influenced if the 'raw' (continuous, real-valued) activations 
are analysed directly, omitting the binary classification. In 

addition, we investigate whether there are differences between 

speakers from which the model learns and between target 
words (keywords) to examine whether a more detailed analysis 

confirms the assumption of a homogeneous performance. 

To assess the impact of the representation of the model's 

output and of the way that the 'raw' model output is used in 

subsequent statistical processing, we replicated computational 

simulations that address a specific question in language ac

quisition: does a larger degree of variation during learning aid 

generalisation? In particular, does learning from one or from 

multiple speakers affect recognition of unknown talkers [7], 

[8]? Previous simulations with the ACORNS model in an 

experiment in which nine keywords were learned seemed to 

corroborate the conclusion of behavioural experiments that 

learning from multiple speakers facilitates recognition of new 
speakers more than learning from a single speaker [6], [9]. 

II. EXPERIMENTS 

A. Non-Negative Matrix Factorisation 

Learning in the ACORNS model is based on Non-negative 
Matrix Factorisation (NMF) [10]. NMF simulates learning by 

finding a decomposition of an n x m dimensional input matrix 

V, consisting of m utterances, each encoded as a vector v of 

dimension n (representing the acoustic features Va and concep

tual keyword labels Vk of an utterance). NMF decomposes this 

matrix into the product of two smaller matrices W . H R:j V 

by minimising the Kullback-Leibler divergence between the 

input V and the product of W and H. The dimension of W 

is n x r, and the dimension of H is r x m. The constant r 

is chosen such that (m + n) r « m x n, i.e., information is 

compressed. In the present experiments, r equals 70, which 

means the model has ample space to accommodate all learned 

keywords internally. 

1 http://www.acoms-project.org 

The matrix W has the same structure as the input in 

V, namely an acoustic and a conceptual keyword encoding 

part. Hence, each column vector in W can be considered 

as representing an association between acoustic and semantic 
information of keywords. Thus, W contains the internal repre

sentations that emerge during learning. H contains information 

about activation of columns in W during training. We used 

an incremental version of NMF [10], which only needs to 

memorise the most recent utterances in addition to the internal 

representations in the matrix W. 

During testing, a new utterance is given to the model in the 

same acoustic encoding Va as in the training [11], but without 

providing the corresponding keyword part Vk. The missing 

keyword information has to be reconstructed by the learner 

based on the stored internal representations. This can be done 

by approximating Vk R:j Wk· h (via minimising the Kullback

Leibler divergence), where h is estimated using only the 

acoustic information in the learned representations in W. The 

activation values of the keyword labels in the reconstructed 

vector h take real values, unlike the binary keyword labels 

Vk presented to the learner in training. During testing the 

incremental learning is switched off, so that the processing 

of test utterances does not affect the internal representations. 

Thus, the same test stimuli can be used repeatedly to track the 

progress of the learning process. 

B. Response Scoring 

To take advantage of the fact that each test utterance 
yields a vector of real-valued activations instead of a binary 

'correct/wrong' value, we assessed the model's recognition 

performance in terms of activations for all nine keywords. 

The activation can be interpreted as the confidence of the 

learner's associations of acoustic stimuli with its internal word 

representations. 

The performance of the model was assessed by generating 

a confusion matrix. In each experiment, two such matrices 

were generated. The first matrix accumulated the the number 

of times that a given stimulus was recognised as one of the 

nine keywords. Thus, the diagonal of this matrix contains the 

number of times a keyword was recognised correctly. Dividing 

the counts by the number of test utterances yields proportional 

accuracy. In the remainder of the paper we will indicate the 

results obtained with this matrix as crisp accuracy. In the 

second matrix we accumulated the normalised activations of 

all keywords given a specific test sentence. The values on 

the main diagonal of this matrix will be referred to as fuzzy 

accuracy. In the fuzzy measurement, values can only be 1 (or 

100%) if all test tokens of a given keyword receive activations 

from only one column in the learner-internal W matrix. 

C. Training and Testing 

As in previous experiments (e.g., [6]), we investigate 
whether learning from multiple speakers aids generalisation 

to new speakers more than learning from a single speaker. 

For this purpose we train the learner in two conditions. In 

the first, the model learns from four speakers in a row. In 



the second condition, the model learns from all four speakers 

intermixed. These two conditions are termed speaker-blocked 

and speaker-mixed. The model had to learn nine different 

keywords, which were always embedded in short but varying 

carrier sentences. These sentences were recorded in a virtually 

noise-free environment by four native speakers of English, two 

male and two female. Each keyword occurred 60 times spoken 

by one of the four speakers (for a total of 540 utterances per 

speaker, summing to 2160 utterances in total). These sentences 
were identical across conditions and merely presented to the 

learner in different sequences. 

In the speaker-blocked condition the model was trained with 

one speaker at a time. Thus, the model first experienced no 

speaker variation and only learned from utterances spoken by 

a single speaker. The training utterances were ordered in such 

a way that each block of nine utterances contained all nine 

words to be learned. The carrier sentences in which the words 

were embedded were randomised. When all 540 utterances of 

the first speaker were processed, a second speaker was used for 

training, thereby increasing introducing additional variation in 

the model's input. This held then, too, for the onset of the third 

and fourth speaker. In the speaker-mixed condition, learning 

stimuli were randomised across speakers so that the model 

could learn from all four speakers simultaneously. 

To test the model's recognition performance, a fixed held

out test set was used containing 20 utterances per keyword 

and speaker. This test set was identical for both training 

conditions. During testing, the model was frozen in its current 

state and thus could not learn from being exposed to the 

test utterances or to new speakers. Testing was conducted 

independently for each speaker, so that the difference in 

performance for yet unknown speakers could be assessed in 
the speaker-blocked condition. Thus, we took full advantage 

of this blocked presentation of speakers during training and 

could assess the model's generalisation abilities to unknown 

speakers when it has observed one to three speakers. 

To get insight into the model's behaviour as training pro

ceeds, we tested the model at regular time intervals during 

learning. In the beginning of the learning stage, the model 
was tested at every tenth utterance for 90 utterances from the 

point of a speaker change onwards. For the remainder of the 

training, we assessed the model's responses after a new block 

of 90 training utterances had been observed. 

D. Research Questions 

The expectation regarding performance is that fuzzy accu

racy is lower than the crisp, count-based measurement used in 

previous studies. This is due to the fact that the crisp accuracy 
assumes that the representation with the highest activation 

is uniquely selected, effectively reducing the activation of 

competing representations to zero. Furthermore, and more 

important here, the shape of the fuzzy learning curve will not 

only be determined by the number of test items recognised 

correctly, but also by the strength of activation and thus the 

amount of competition during recognition. 
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Fig. 1: Crisp and fuzzy accuracy results for all four speakers 

in the speaker-mixed condition. The upper lines denote crisp 

accuracy, the lower the fuzzy measurement. Speaker identities 
are consistently denoted with the given line styles in thick 

(fuzzy accuracy) and thin (crisp accuracy) lines. 

We expect that a more detailed analysis uncovers possible 

differences between speakers, specifically in the speaker

blocked condition. Regarding the group of keywords, the 

implicit assumption of previous studies [6] was that they stem 
from a homogeneous group and to not elicit systematically 

different responses. 

Previous studies showed that both training schemes, namely 

speaker-mixed versus speaker-blocked training, reach ceiling 

accuracy at or near 100% in the crisp measurement quickly [6]. 

III. RESULTS 

A. Crisp Accuracy 

1) Speaker-Mixed: Conventional, crisp accuracy indicates 
very high performance across training for the speaker-mixed 

case (top lines of Fig. I). Each speaker seems to be recognised 

equally well and the learning curves are comparably steep. 
Accuracies above 80% are reached within 180 utterances, after 

540 utterances all speakers reach accuracies above 90%. 
2) Speaker-Blocked: For the speaker-blocked condition, 

depicted in Fig. 2, it appears that the speaker currently trained 

quickly reaches very high accuracy performance in the range 

of 98 - 100%. Speakers not yet trained seem to profit to some 
extent from training with one speaker and even more so from 

switching speakers. However, the size of the effect seems to 

differ for each speaker. Another notable result in the speaker

blocked condition is the decrease in accuracy after a speaker 

is no longer used for training. Most notably, the first speaker 

drops to an accuracy level of about 70% at the end of training. 

To facilitate comparability with previous studies, Fig. 2 also 

contains the average recognition accuracy across all speakers 

(square-marked solid line), which was used to report the 

model's performance in [6]. This measure shows steadily 

increasing performance with each speaker change. Further

more, the overall average can be used to compare the model's 
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Fig. 2: Crisp accuracy performance in the speaker-blocked 

condition for each of the four speakers. Speaker changes 

occur every 540 utterances, in alphabetical speaker order. The 

average performance over all speakers is denoted in the square

marked grey line plot. 

performance across conditions. Since the difference between 

speakers in the speaker-mixed condition is small, the overall 

average is at the same level as speaker accuracy. A comparison 

of both averages over speakers shows that the model performs 
better in the speaker-mixed condition than in the speaker

blocked condition throughout training. 

B. Fuzzy Accuracy 

1) Speaker-Mixed: When comparing the two different scor

ing systems described in Sec. II-B, the expectation of overall 

lowered performance in terms of relative activation is con

firmed, as shown in Fig. 1. This plot depicts the performance 

in the speaker-mixed condition, both according to crisp and 

fuzzy accuracy measurements. It can be seen that all speakers 

perform on a similar level within one measurement. However, 

while the crisp measurement indicates a ceiling effect after 

only 180 training utterances have been observed, the fuzzy 
assessment shows that activations for the correct keyword label 

continue to increase throughout learning. This is evident in 

the ongoing upward trend, starting from 30% at utterance 180 
and roughly doubling activation at the end of training for all 

speakers. 

2) Speaker-Blocked: The performance for two of the speak
ers in the speaker-blocked condition is shown in Fig. 3; 

performance for the remaining two speakers was comparable 
and is omitted to ensure clarity of the figure. Comparing the 

first and last speaker in training, Speaker A and Speaker D in 

Fig. 2 and in Fig. 3, the finding that there is no ceiling effect 

is confirmed across conditions. 

Additionally, the beneficial effect of training with more 

than one speaker in the speaker-blocked condition in the crisp 

measurement almost vanishes in the fuzzy assessment. Thus, 

the model seems to increase the amount of correct responses, 

albeit with only slight changes in the activation pattern. This 
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Fig. 3: Performance of the first and last speaker trained in 

the speaker-blocked condition based on the fuzzy accuracy. 

Additionally, the highest and lowest performing keyword for 

each speaker is depicted to illustrate the range of keyword 

performances contributing to the overall learning curves for 
each speaker. 

seemingly marginal shift has a severe impact on crisp accuracy 

performance (cf. the increase from 40% to 70% correct for 
Speaker D between utterances 540 and 810 in Fig. 2 compared 

to an increase of 10% in the same time frame for the same 

speaker in Fig. 3). 

C. Keyword Accuracy 

When analysing the performance for single speakers and 

keywords, differences emerge that were not predicted from the 

overall accuracy scores reported in the previous sections. As 

an example of the variation between keywords, Fig. 3 depicts 

the highest and lowest performing keyword for Speaker A and 

Speaker D, the first and last speaker trained in the speaker

blocked condition. The figure shows that different keywords 

can be affected in various ways by the blocked training. First, 

the increase in activation strength during training with the 

same speaker varies greatly across speakers and keywords. 

Second, in the fuzzy accuracy condition the decrease when 

a speaker is no longer observed during training and the 

model learns from new speakers, seems to be very steep and 

sudden for Speaker A's lowest performing keyword, but more 

gradual for the best keyword. Third, the beneficial effect of 

variation on Speaker D seems more pronounced for the high 

performing keyword, whereas the low performing keyword 

does not seem to be affected until that speaker is used for 

training. To summarise, not all keywords reach the same level 
of either gross accuracy or relative activation strength, showing 

a difference of internal representations and a non-uniform 

effect of training. 

These findings hold not only across speaker-blocked and 

mixed conditions, but also for both types of model assessment. 
Using crisp accuracy, as depicted in Fig. 4, the range of key

word performances is even wider than in the fuzzy assessment 
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Fig. 4: Overview over the crisp recognition performance for 

each keyword per speaker in the speaker-blocked condition. 

Speaker were trained in alphabetical order with changes occur

ring every 540 utterances. Each line denotes the crisp accuracy 

for one of the keywords spoken by a single speaker. 

depicted in Fig. 3, when a speaker is not currently trained in 

the speaker-blocked condition. When a speaker is currently 

not used for training, the range of keyword performances 

extends from chance level to perfect accuracy at 100%. Again, 

the identity of those keywords varies across speakers and 
conditions. The overview given in Fig. 4 illustrates the high 

variability according to speakers and between keywords, which 

is only diminished when the respective speaker is currently 

used to train the model. 

IV. DISCUSSION 

The most salient results are that (I) two types of training 
schemes (speaker-blocked and speaker-mixed) led to high 

accuracies, albeit with different final performance. Gross aver
ages showed that the speaker-mixed condition led to a higher 

final accuracy than the speaker-blocked condition. This was 

on one hand due to decreasing accuracies for speakers trained 

early on and on the other hand caused by low accuracies 

for speakers not yet trained in the speaker-blocked condition. 

These speaker-dependent differences only showed up in a more 
detailed examination. 

From the fuzzy accuracy measurement, which is closer 

to the model's actual output and requires almost no post

processing, it became apparent that the high crisp accuracy 

values do not necessarily coincide with saturated learning. 

Even though the model performs at a high crisp accuracy level, 

more training led to increased fuzzy values. 

A. Crisp Accuracy 

The learner could profit from variation in the input in two 

ways. In the speaker-blocked condition yet unknown speakers 

performed above chance level and increased in recognition 

accuracy when more than one speaker has been observed by 

the model. In addition, the performance for all speakers in the 

speaker-mixed condition was above the average performance 

in the speaker-blocked condition. This means that the model 

could learn from all four speakers at the same time and 
was able to build representations that led to high recognition 

accuracies for all trained speakers at the same time in the 

speaker-mixed condition. The speaker-blocked condition could 

not reach an overall comparable level of accuracy. However, 

the speaker currently being trained reached almost perfect 
accuracy in the speaker-blocked condition, thus outperforming 

the speaker-mixed condition when considering single-speaker 

performance. This shows that only observing one speaker at a 

time leads to a better adaptation to that given speaker, whereas 

more variant training allows for high recognition performance 
for a greater range of stimuli. 

B. Fuzzy Accuracy 

Taking into account the model's real-valued output and 

inspecting what was termed fuzzy accuracy in the present 

paper, it became apparent that learning was not saturated 
even though the model achieved very high crisp recognition 

accuracies. This is evident from the continuing increase in 

fuzzy accuracy, denoting a sharpened activation pattern, long 

after ceiling performance is reached in the crisp accuracy 

assessment (e.g., Fig. 1). This finding points towards the 

model's ability to recognise the correct keyword even in 

uncertain circumstances. This is most pronounced for the 

improvements of yet unseen speakers in the speaker-blocked 

condition. While crisp accuracy shows a sharp rise for Speaker 

D, the last speaker trained, when the second speaker comes 

in (Fig. 2), the fuzzy measurement showed that activations re

mained on a comparatively low level (Fig. 3). This shows that 

confidence and accuracy are genuinely different measurements 

of performance that can lead to diverging impressions. 

C. Keyword Accuracy 

When further investigating possible effects on the level of 

keywords, a high variation in performance was uncovered. 

This is most evident in the speaker-blocked condition, as 

depicted in Fig. 4 for the crisp accuracy measurement. Some 

words only reached a recognition accuracy on chance level, 

while others were recognised in almost all tests throughout 

training. Averaging performance over items, as is the case in 

linguistic studies [2], obscures this high variability. However, 

we did not discover distinct groups of keywords that seemed 

to fall into two or more categories. Rather, performance was 
spread out over a large range. There was also only little 

systematicity regarding which keywords performed at a high 

or low level. Thus, we did discover that single keywords 

do not necessarily perform at the same level, but we could 

not discover inherent properties of the keywords that lead to 

fundamentally distinct recognition performance. 

D. Word Learning in Models and Infants 

To relate this finding to (psycho)linguistic studies, a binary 

assessment of response data (e.g., fixations, answers) can 



yield an incomplete picture. By considering the graded nature 

of responses, such as reaction times or fixation duration, 

new insights might be gained. The continuing increase in 

activation found in the model, even after a very high crisp 

accuracy level had been reached, might correspond to de

creased processing cost with increased exposure to a given 
keyword in infants. When analysing known words according 

to their frequency, a difference in dynamic measurements such 

as fixation data or reaction times of overall highly accurate 

responses should emerge. Such frequency effects have been 

observed in adults [12] and might be at work in children as 

well, even though they are only beginning to acquire their 

native language. 

Another finding regards the potentially beneficial effect of 

variation on a learner's generalisation abilities [7], [8], [13]. 

Both the speaker-mixed and the speaker-blocked condition let 

the model learn from the same set of utterances spoken by 
four different speakers, providing the learner eventually with 

the same amount of variation, merely structured differently. 

Our results, both averaged and on the speaker- and keyword

level, show that the type of short-range variation influences 

general recognition accuracy. The blocked training scheme led 

to overall worse performance than the mixed presentation of 

speakers, with decreasing recognition accuracies for the first 

speakers after they were no longer trained. This finding points 

towards two opposing tendencies when a learner has to build 

representations that allow for reliable word recognition: On 

one hand, adaptation to a single speaker favours more specific 

representations, whereas on the other hand broader, less spe

cific representations allow for increased generalisability. These 

two trends come to bear in different ways in the two training 

schemes presented here. 

Based on the results presented above, we would expect 
that in (psycho)linguistic studies infants' ability to generalise 

is modulated by the order of presentation of the learning 

stimuli. Depending on whether speakers change at every item 

or are blocked, infants should show a difference in recognition 

behaviour. Only the truly mixed case has so far been tested 

systematically (c.f. [7], [8]) and this evidence supports the 

claim that variation drives generalisation abilities (without 

specific requirements regarding this variation), whereas a more 
blocked variation of speakers seems to be more natural in the 

infants' input. 

The difference between the effects of blocked and inter

mixed presentation on performance can affect infant studies at 

a very different point as well. Consider paradigms relying on 

habituation or familiarisation, such as the Headturn Preference 

Procedure [8], [14], where possibly variant stimuli can be 

presented in an intermixed or blocked order in the first phase. 

These two possibilities might, according to our results, affect 

infant's behaviour in the test phase. This, however, has to be 

assessed systematically to first verify that the effect is present 

in children and to second quantify where it applies and has 

measurable consequences. 
However, all predictions can only be made with caution, 

as some of our findings might be due to the way learning 

is simulated in this specific model and the way acoustic and 
visual information is presented to the learner, as described in 

Sec. II-A. To be able to fully generalise the present findings to 

infant behaviour, future investigations into the model's inner 

workings and the analogies in infants are necessary. 

E. Conclusion 

The present study compared two ways of assessing per

formance of a computational word learner and showed that 

considering only categorised output might lead to wrong 

conclusions. In this specific case, we found that learning was 

not saturated in terms of activations of the correct response. At 

the same time, the overall, crisp performance was at ceiling. In 

addition, averaging accuracy over keywords could be justified 

in the current study, because we could not uncover distinct 

keyword sub-populations. However, averaging over speakers 

obscured effects in one condition, namely when presenting 

speakers in a blocked fashion. There, both the decreasing 
accuracy after training and the only partial gain from variation 

for yet unknown speakers was not visible in the overall data. 

These findings underline the need to assess underlying data 

and justify when and when not to report only average results. 
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