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Abstract
In the present paper we replicate simulations of infant word

learning and the effect of variation in the input. We then in-
vestigate to what extent the results are influenced by the way in
which the continuous response functions are treated and what
effects the use of thresholds can have on the data. Our results
show that the underlying response pattern, as uncovered by dif-
ferent thresholds, varies greatly. Nonetheless, the overall output
of the model is often correct and able to generalise to unseen
data. Thus, we show that the model can give correct responses
even in uncertain circumstances. Links of this finding to lan-
guage acquisition research are discussed.
Index Terms: First language acquisition, Machine learning,
Modelling infant data

1. Introduction
Language acquisition research is becoming an increasingly in-
terdisciplinary field, ranging from psychology and linguistics to
artificial intelligence and machine learning. These disciplines
make different theoretical assumptions and employ various re-
search methods in investigating the same phenomenon, namely
how an infant can acquire the native language in only a few
years and from what seems essentially incomplete and partly
inconsistent input. As a consequence of the theoretical and
methodological differences, there are substantial gaps between
the disciplines [1], which have to be bridged to allow for mutu-
ally beneficial collaborations and possible cross-fertilisation.

One way in which bridges can be designed (if not built)
is by means of computational simulations of what otherwise
would remain abstract theories. Obviously, this approach re-
quires data from behavioural experiments on which theories can
be constructed, and that can subsequently be used to test compu-
tational implementations of the theories. One example of such
an effort is a number of studies that investigate the internal rep-
resentation of ‘words’ depending on whether infants learn from
a single or from multiple speakers, as reviewed in [2]. In sum-
mary, infants seem to encode speaker identity when they hear a
new word spoken by a single speaker and have difficulty recog-
nising the same word spoken by a different speaker. When in-
fants are familiarised with the new words with speech of multi-
ple speakers, their performance on speech of ‘strangers’ is sig-
nificantly better. One way to interpret these results is as an indi-
cation that children use variability during language acquisition
to learn which part of the information/variation in the input is
critical and which parts of the acoustic signal can be ignored.
Simulation data from a computational model essentially repli-
cate the behavioural data [3, 4].

The results of experiments with infants can only be re-
ported in terms of observable behaviours, even if one is inter-
ested in fundamentally unobservable phenomena such as rep-
resentations in the mental lexicon [1]. However, ‘observable
behaviours’ is a concept that must be carefully defined. In
looking-while-listening paradigms behaviours are usually mea-
sured in terms of discrete categories (e.g., right or left, correct
or wrong). Actually, much richer data is available (e.g., for eye
tracking studies: dynamic information of fixations, saccades,
scanning behaviour, duration of fixations, etc.), which is discre-
tised to make it possible to apply conventional statistical analy-
sis techniques such as ANOVA or t-tests.

A common procedure for discretisation of continuous (fix-
ation) data is the use of thresholds, which determine what is
counted as a fixation, whether a look was on the correct part
of the screen, and so forth. Usually, these thresholds are fixed
and motivated by previous literature that might concern differ-
ent tasks, purposes or even age groups. Thus, the choice of
thresholds is likely to affects outcomes.

The aim of this paper is to investigate the effect of such
decision thresholds on the assessment of infant behaviour in
more detail. Rather than trying to re-analyse data from in-
fant experiments, we investigate the issue by means of com-
putational simulations. The output of computational models
of language acquisition, such as the models developed in the
ACORNS (ACquisition Of Recognition and communicatioN
Skills) project (http://www.acorns-project.org) (e.g. [4]), can be
(semi-)continuous functions, much like the proportion of the
time an infant fixates one of the pictures in a looking-while-
listening experiment. Previous experiments with the ACORNS
models almost invariably discretised the output of the model (a
graded activation vector) into two response categories: correct
or incorrect. In the present paper we replicate model simula-
tions [3] and investigate to what extent the results and the inter-
pretation of the model simulations are influenced by the use and
choice of thresholds.

2. The ACORNSModel
To investigate cross-situational word discovery in young in-
fants, the ACORNS project used computational models. An
important feature of all approaches within the ACORNS project
is the use of continuous real speech as input, without prepro-
cessing steps to discretise the input via segmentation or forced
alignment of phone labels (for a number of recent models that
discretise the input, see [5]). As a consequence, no (unwar-
ranted) lexical, phonetic or phonological knowledge is assumed
in the learner.
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The present paper focuses on a particular implementation of
the ACORNSmodel (ACORNS-NMF), which is based on Non-
negative Matrix Factorisation (NMF) [6]. Until now, studies us-
ing ACORNS-NMF, such as [4], have reported on the model’s
performance in terms of a specific definition of response accu-
racy that is best described as ‘winner-takes-all’: while all words
being learned may be activated to some extent, the hypothesis
with the highest activation is considered as the only response.
Although this can be justified, there are obviously alternative
ways for representing the responses.

2.1. Non-Negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF) [7] simulates learn-
ing by finding a decomposition of an n×m dimensional input
matrix V, consisting of m utterances, each encoded as a vec-
tor �v of total dimension n (representing the acoustic features
�va and conceptual keyword labels �vk of an utterance) into the
product of two smaller matrices W · H ≈ V by minimising
the Kullback-Leibler divergence between the input V and the
product ofW and H. The dimension ofW is n × r, and the
dimension of H is r × m. The constant r (a model parame-
ter) is chosen such that (m + n)r�m×n, i.e., information is
compressed. In the present experiment, r equals 70.

The internal matrixW has the same structure as the input
in �v, namely an acoustic part and a conceptual keyword encod-
ing part. Hence, each column vector inW can be considered to
represent an association between acoustic and semantic infor-
mation of keywords. H contains information about activation
of columns inW during training. In the present paper, an in-
cremental version of NMF is used [6]. This version can claim
substantial cognitive plausibility, because it needs only to mem-
orise a small number of most recent utterances, in addition to
the internal representations in the matrixW of the words that
are being learned.

During testing, a new utterance is given to the model in the
same acoustic encoding �va as in the training [8], but without
providing the corresponding keyword part �vk. The meaning of
the utterance (the identity of the keyword) is then inferred by
first searching ĥ such that �va ≈ Wa · ĥ (via minimising the
Kullback-Leibler divergence). Here, ĥ is estimated using only
the learned acoustic representations withinWa. Next, the miss-
ing keyword information is reconstructed by �̃vk=Wk·̂h, which
uses the conceptual parts of the columns inW weighted by ĥ.
Note that both the activation values in ĥ and the keyword val-
ues in �̃vk take real values, unlike the binary keyword labels in
�vk presented to the learner during training.

2.2. Training and Testing

The model was trained with nine different keywords, embedded
in varying carrier sentences. Recordings of four native speakers
of English, two male and two female, were used. To investi-
gate the possible effects of the way in which the real-valued
keyword labels in the response vectors are converted to deci-
sions whether an utterance was correctly or incorrectly recog-
nised, we replicated parts of a previous study [3]. That study
investigated whether variation during learning aids generalisa-
tion, in particular how learning from one or multiple speakers
affects recognition of unknown talkers (as in infants [2]). The
authors found that when the model learned keyword – speech
associations from one speaker only, recognition accuracies for
the same speaker were very high, but for unknown speakers they
were degraded. However, when learning took place with mul-

tiple speakers, recognition was vastly improved for unknown
speakers.

We ran a variant of the study, modelling the difference that
variation makes by training the model with one speaker at a
time. Thus, the model first experienced no variation and only
learns from utterances spoken by a single speaker. Then, a sec-
ond speaker was used for training, which increased variation in
the model’s input. This held then, too, for the onset of the third
and fourth speaker. The model was first trained with 60 occur-
rences of all keywords spoken by one speaker (for a total of 540
utterances), then by the second speaker, and so forth until the
model was trained with all 2160 utterances. Testing was con-
ducted independently for each speaker, so that the difference in
performance for yet unknown speakers could be assessed. Thus,
we took full advantage of this blocked presentation of speak-
ers during training and could assess the model’s generalisation
abilities to unknown speakers when it has observed one to three
speakers.

To test the model’s recognition performance, a held-out test
set was used containing 20 utterances per keyword and speaker,
amounting to a total of 20 × 9 × 4 = 720 test samples. Dur-
ing testing, the model was frozen in its current state and thus
could not learn from being exposed to the test utterances or new
speakers. Therefore, the sentences and even speakers in the test
set remained unknown to the model and could be used at every
time point. To get insight into the model’s behaviour as training
proceeds, we tested the model at every tenth utterance for 100
utterances from the point of a speaker change onwards. For the
remainder of the training, we assessed the model’s responses
after 90 training utterances had been observed.

2.2.1. Relative and absolute thresholds

To make full use of the model’s response, that is, to take ad-
vantage of the fact that each test utterance yields a vector of
activations instead of a single answer, we assessed the model’s
recognition performance using thresholds for the activation of
the correct concept. To this end, the model’s response for all
nine keywords is normalised to sum up to 1. Then, two thresh-
olds are defined, a relative and an absolute threshold (θrel and
θabs , respectively). Responses of the model that fall below the
thresholds were counted as undecided, a separate response cat-
egory next to correct and incorrect. The thresholds can be inter-
preted as determining the ‘certainty’ of the model regarding its
decoding of a test utterance.

The relative threshold θrel takes into account the differ-
ence in normalised activation of the maximum and the runner-
up. By setting this threshold, a minimal difference between the
two highest activated keyword labels is enforced. The absolute
threshold θabs imposes a minimum on the normalised activa-
tion, irrespective of the competition that the winner faces. Due
to the normalisation, both thresholds depend on each other to a
certain extent. Nonetheless, several scenarios are still possible.
The model can have a high activation and an almost as highly
activated runner-up or have the remaining activation distributed
relatively evenly over all other competitors.

‘Accuracy’ is defined as the ratio of the number of correct
responses (that meet a given threshold criterion) and the num-
ber of test utterances that are presented to the model. Thus,
‘undecided’ responses are counted as incorrect when computing
accuracy. To obtain a complete picture of the performance, ac-
curacy must be combined with the proportion of utterances for
which no decision is made. Accuracy values in previous reports
correspond to θ=0 for both types of thresholds. Due to the nor-
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Figure 1: Recognition accuracies in a winner-takes-all coding
scheme. Speaker changes occur every 540 utterances, indicated
by the increased density of tests after onset of a new speaker.

malisation and the winner-takes-all approach to discretising the
model’s response, it can be expected that an absolute threshold
θabs does not have an impact when it is lower than chance level.
Thus, θabs < 1

9
(for nine keywords) should not have an effect

on the number of correctly recognised items.

3. Results
The ‘traditional’ accuracy results, shown in Fig. 1, show that we
replicated previous findings on the model’s behaviour. Steep
improvements for the speakers currently being trained are ob-
servable, where the accuracy levels quickly approach the ceil-
ing. For speakers not yet trained, a beneficiary effect of varia-
tion during training can be observed, since all speakers perform
above chance level. Performance remains at a high level even
after the model adapts to a new speaker.

However, a decay can be seen for the first speaker (speaker
A), from 100% at utterance 540 to 72% at the end of the training
session. Most probably, previous reports obscured this effect by
only reporting accuracy averaged over all speakers. Hence, this
finding is independent of the introduction of thresholds.

3.1. Activations and Thresholds

In the previous reports only the maximally activated concept
was considered, and if the winning label was equal to the ‘true’
label, the response was counted as ‘correct’. The recognition
accuracies at different relative and absolute thresholds for the
first and the last speaker trained are depicted in Fig. 2.

The most important effect of setting 1

9
< θabs < .2 is that

previously misrecognised stimuli are now being classified as
‘undecided’. Other than the classification of ‘wrong’ responses
as ‘undecided’, small values of θabs have no effect. This can be
seen in Fig. 2, where the accuracy plots for θabs = {.0, .1, .2}
overlap. When further increasing the threshold, recognition per-
formance in terms of items recognised correctly and with a ‘cer-
tainty’ exceeding the threshold begins to degrade.

The amount of items classified as ‘undecided’ is not uni-
form across the whole time course of training. For the period in
which a speaker is trained, θabs =0 shows recognition accura-
cies above 95% already after a small number of training utter-

ances for each keyword. This high level of accuracy is main-
tained throughout training with a particular speaker. However,
when θabs is increased, accuracy improves more gradually. In
the left hand panel of Fig. 2 it can be seen that with θabs = .4 an
accuracy of 100% is only reached after all training utterances of
speaker A have been processed. With θabs = .5 the 100% ceil-
ing is not reached anymore. Contrary to the conclusion in [4]
learning does not saturate after a small number of utterances,
at least not in the sense that the confidence of the model keeps
increasing until the end of training.

When a speaker is not yet trained or the model learns from
new speakers, the recognition accuracies that remained fairly
high with θabs = .0 deteriorate much more rapidly with increas-
ing θabs . For θabs = .5 a final accuracy of only 18% is obtained.
From the dotted lines in Fig. 2 it can also be seen that the bene-
ficial effect for speaker D when the model is trained with speak-
ers A, B, and C rapidly disappears for values of θabs >.2. With
θabs = .5 the performance of speaker D only rises above chance
level after the first training sentences of this speaker have been
processed. So here too we see that the interpretation of the per-
formance of the model strongly depends on the criteria used for
deciding that a response is correct. Obviously, guessing in low
confidence situations is rewarded.

In the right hand panel of Fig. 2 it can be seen that for the
relative threshold θrel , a .1 minimal difference between high-
est and second highest activated keyword label already affects
recognition performance. The curves for θrel =0 and θrel = .1
do not overlap. Furthermore, an increase of θrel leads to all
errors now being marked as ‘undecided’ in all conditions and
for all speakers. Further increasing the relative threshold leads
to degraded performance, similarly to the absolute threshold
θabs > .2. The effects described in the previous paragraphs are
thus present for the relative threshold, albeit to a greater extent
due to its consideration of competitors.

4. Discussion
The present paper addressed the possible difference between a
mere winner-takes-all scoring and the use of thresholds when
assessing responses in a (modelled) psycholinguistic study. Fur-
thermore, the choice of threshold was examined by investigat-
ing the effect that two different types of thresholds at various
values had on the measured responses.

To this end, we trained a word-learning model in a multi-
speaker condition with a blocked presentation of four speak-
ers to replicate effects of variation of recognition that were
found in infant studies reviewed in [2]. Our results in terms
of a pure winner-takes-all measurement of performance repli-
cate both previous infant and modelling studies. In addition,
we could report a decrease in accuracy for speakers that are not
trained any longer.

Using a relative and an absolute threshold for interpreting
the model’s response, a more differentiated picture emerged.
First, the introduction of thresholds led to the discovery that
learning is not complete after only a few utterances. θ = 0,
the pure winner-takes-all assessment, suggested that only a few
training utterances suffice to achieve almost perfect recognition
accuracy of all keywords spoken by a particular speaker. How-
ever, the use of thresholds (corresponding to the confidence of
the model in its decision) revealed that the learner-internal word
representations still profit from additional training, as both rel-
ative and absolute activations steadily increase during training.

Second, our results challenge previous conclusions on the
extent to which the model replicates the finding that infants
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Figure 2: Effect of thresholds on recognition accuracies for the first and the last speaker (speaker A, solid line, and speaker D, dotted
line). The left panel shows the effect of θabs , the right panel depicts increased θrel . Both θ increase in steps of 10% from 0% to 50%.
Since the application of thresholds has a detrimental effect on accuracy, lower lines indicate higher thresholds with the lowest lines in
both panels corresponding to θ=50%.

profit from variation during learning. Whether or not that ef-
fect is replicated depends on the setting of the thresholds. Of
course, this finding also raises questions about the criteria and
thresholds used in the infant experiments for deciding that a re-
sponse was right or wrong.

These results show a very different pattern from what has
been observed and described in previous reports [4]. In addi-
tion, our findings point to the model’s ability to make a cor-
rect overall decision without being too ‘certain’ of its response.
This is most impressive for the yet unknown speakers and for
the early moments of training, where the learner has only ob-
served a few instances of each keyword. Yet, it was possible
for the learner to guess the correct keyword label, albeit with
little certainty. That his guessing behaviour did not lead to ran-
dom chance performance shows that the model can generalise,
cautiously, from only little experience.

The fact that the two thresholds led to a similar behaviour
in the model’s performance is related to the way in which the
ACORN-NMF model computes activations. As absolute acti-
vation of the winner decreases, the activations of the compet-
ing keywords become stronger. While we believe that this be-
haviour is cognitively plausible, other models can be conceived
that would concentrate activations in only a few competitors. In
those models the effect of absolute and relative thresholds will
be different.

When trying to bridge the gap between model output and
‘observable behaviours’, the present study indicates that the use
of fixed thresholds can indeed obscure behaviour. Like in our
study, criteria must be set for deciding whether the proportion
of the response behaviours that corresponds to the expected be-
haviour is large enough to consider the response as ‘correct’.
Here too, using low or high thresholds clearly has a large im-
pact on the proportion of ‘correct’ responses, and can there-
fore lead to different conclusions regarding the plausibility of
some theory about underlying processes. Moreover, as in our
study, using low thresholds may obscure the fact that children
are learning over time, perhaps even during the course of an
experiment.

To conclude, we show that considering the structure of the
responses and exploring different possibilities of grading re-
sponses can lead to insights that are not immediately visible
in the mere accuracy data, mean values, or the likes. Thus, our
results are in line with the studies on data treatment summarised
in [9].
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