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Zusammenfassung

In dieser Arbeit werden hydrodynamische Instabilitdten in neuen kiinstlichen Materialien, Fer-
rofluide und Ferronematen, theoretisch untersucht. Ferrofluide sind kolloidale Suspensionen
magnetischer Nanoteilchen in einer gewohnlichen Fiissigkeit, wie Wasser oder Benzol. Benutzt
man einen nematischen Fliissigkristall als Tragerfliissigkeit, so erhélt man Ferronematen. Ferro-
fluide sind in vielerlei Hinsicht sehr spezielle Fliissigkeiten. Sie sind superparamagnetisch, d.h.
obwohl im Gleichgewicht die magnetischen Momente der Nanoteilchen ungeordnet sind, gentigt
schon ein schwaches Magnetfeld, um diese Momente auszurichten und eine grofie induzierte
Sattigungsmagnetisierung zu erhalten. Diese Figenschaft wird vor allem bei technischen und
medizinischen Anwendungen benutzt. Ferner ist die Mobilitdt der Nanopartikel sehr gering
verglichen mit der der Fliissigkeitsmolekiile, was zu einer extrem langsamen Diffusionsdynamik
fithrt. Sehr grof sind dagegen die Dichteunterschiede zwischen Kolloid und Fliissigkeit. Diese
beiden Eigenschaften, die sich in einer Beschreibung als bindre Mischung durch eine kleine
Lewis-Zahl und einen grossen Thermodiffusions- oder Soretkoeffizienten bemerkbar machen,
sind wesentlich fiir das spezielle Verhalten bei thermischen Konvektionsinstabilitaten, welches
in Kapitel 2 (ohne) und in Kapitel 3 (mit Magnetfeld) diskutiert wird. Ferronematen zeich-
nen sich, verglichen mit gewohnlichen Nematen, durch eine grofie Suszeptibilitat gegeniiber
Magnetfeldern aus, was es erlaubt, auch tiblicherweise vernachlassigte Magnetfeldeffekte in der
Nematodynamik zu betrachten. Die Auswirkung solcher Effekte auf hydrodynamische Insta-
bilitaten wird im 4. Kapitel behandelt.

Ferrofluide werden wegen der geringen Diffusivitat der Magnetpartikel oft als Einkomponen-
tenfliissigkeiten beschrieben. Wir zeigen in Kapitel 2, dass dies fiir die Beschreibung thermischer
Konvektion nicht ausreicht. Beschreibt man das System als binare Mischung mit der Konzen-
tration der Nanoteilchen als zweiter Spezies, so machen sich die besonderen Eigenschaften der
Ferrofluide bemerkbar. Insbesondere hat man nicht die Stabilitat eines Zustands mit voll ent-
wickeltem linearen Konzentrationsprofil zu betrachten, sondern es ist von einem sich gerade
erst entwickelnden Profil auszugehen, das abgesehen von einer sehr diinnen Randschicht fast
iiberall konstant ist. Fiir den hier betrachteten Fall, bei dem der angelegte Temperaturgradi-
ent und die Thermodiffusion in dieselbe Richtung zeigen, fiihrt der grofle Soret-Koeffizient zu
einer drastischen Verringerung der Instabilitatsschwelle. Dies ist aber nicht beobachtbar, da
hier die Dynamik der sich entwickelnden Konvektionsstruktur extrem langsam ist. Betrachtet
man das System in der Nahe der viel h6heren Einkomponentenfliissigkeitsschwelle (welche man
ohne Soret-Koeffizienten hétte) so ist das System dort instabil. Es ist dann sinnvoll, die lin-
earen Anwachsraten der Instabilitdt (und nicht die Schwelle selbst) zu betrachten. In diesem
Bereich sind die Zeitskalen wieder kurz genug und experimentell zugénglich. Als néchstes wird
das nichtlineare Verhalten mittels eines normalen Galerkinverfahrens untersucht. Dabei zeigt

sich, dass die Amplitude einer Storung des Grundzustands in Form von stationdren Konvek-
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tionsrollen sattigt. Dies ist im Widerspruch zu einer kiirzlich aufgestellten Hypothese einer
konvektiven Oszillation auf Grund der stark verschiedenen Zeitskalen von Warmeleitung und
Diffusion, stimmt aber mit Messungen von S. Odenbach iiberein, der unser Bild dieser speziellen
bindren Mischungs-Instabilitat in Ferrofluiden bestétigt.

Im folgenden Kapitel wird die thermische Konvektion von Ferrofluiden im externen Magnet-
feld beschrieben. Dafiir wird zuerst das volle System der hydrodynamischen Gleichungen fiir
magnetische binare Mischungen ausgehend von fundamentalen thermodynamischen Prinzipien
hergeleitet. Wir zeigen, dass die Beschreibung als binare Mischung beschrankt ist, da fiir
sehr hohe Magnetfelder das System thermodynamisch instabil wird. Moglicherweise hangt
dies mit Teilchenagglomeration und Kettenbildung zusammen, wobei aber solche Aussagen
eigentlich vom makroskopischen Standpunkt aus nicht zu machen sind. Fiir erlaubte Magnet-
felder bestimmen wir die Sattigungsamplitude der thermischen Konvektion. Auf Grund der
magnetischen Randbedingung spielt nun die Grenzschicht eine wichtige Rolle (im Gegensatz
zum feldfreien Fall) und muss explizit betrachtet werden. Das Grenzschichtproblem wird
analytisch behandelt unter zu Hilfenahme der numerischen Lésung. Die numerische Unter-
suchung der nichtlinearen Zeitentwicklung der konvektiven Stromung zeigt, dass wie im feld-
freien Fall die Amplitude im Zustand eines stationdren Rollenmusters sattigt. Mit Hilfe der
analytischen Grenzschichtlosung lésst sich analytisch eine genédherte implizite Formel fiir die
Sattigungsamplitude herleiten, die die Abhangigkeit von den Systemparametern angibt.

Im abschliefenden Kapitel betrachten wir Instabilitdten in Ferronematen. Wie kiirzlich
gezeigt wurde, gibt es in Ferronematen Zusatze zu den hydrodynamischen Materialtensoren,
die linear im externen Feld sind. Im Prinzip existieren solche Effekte auch in gewchnlichen Ne-
maten, aber in Ferronematen kann man erwarten, dass die phanomenologischen Transportko-
effizienten, die diese Effekte bestimmen, viel grofler sind. Es ist ziemlich schwierig, diese neuen
Effekte direkt zu messen, da sie sehr kompliziert sind. Deshalb ist es experimentell evtl. ein-
facher, solche Materialparameter indirekt mittels Instabilitdten zu bestimmen, wo sie fiir neue
Aspekte des Instabilitdtsverhaltens verantwortlich sind, insbesondere wenn es sich um quali-
tativ neuartige Phanomene handelt. Wir untersuchen theoretisch den Einfluss solcher neuer
Terme auf die thermische Konvektions- (Rayleigh-Bénard) und die Fingerinstabilitét (Saffman-
Taylor) in Ferronematen im starken externen Magnetfeld. Wir finden, dass diese Instabilitaten
ihren Charakter qualitativ verandern, da eine endliche Vortizitatsstromungskomponente paral-
lel zum Feld auftritt — ein Phédnomen, das in gewohnlichen Fliissigkeiten bekannt ist fiir den
Fall einer aufgeprigten Rotation (statt des Feldes). Die daraus resultierenden Zusatzeffekte
(Stromung entlang der Konvektionsrollen, Schrigrollen, Rotation der Instabilititsfinger) kann
fiir die Messung der besagten phanomenologischen Transportparameter genutzt werden. Da
diese Effekte linear im aufleren Feld sind und sich damit umkehren, wenn das Feld umgekehrt
wird, sind sie deutlich von allen Feldeffekten zu unterscheiden, die auf intrinsischen Magnet-
feldabhéngigkeiten konventioneller Materialparameter beruhen, da letztere quadratisch im Feld
und damit invariant bei Feldumkehr sind.

(translated by H. Pleiner)
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Chapter 1

Introduction

1.1 Ferrofluids

Ferrofluids are suspensions of nano-sized ferromagnetic particles in some carrier liquid [1].
Without an applied external magnetic field the orientations of the magnetic moments of the
particles are random resulting in a vanishing macroscopic magnetization (magnetic disorder).
An external magnetic field, however, easily orients the particles’ magnetic moments and a large
(induced) magnetization is obtained. This ”superparamagnetic” property is the basis for many
applications [1].

The preparation of the magnetic particles is itself a complicated task. The main problem is
that the ferroparticles should be more or less homogeneously distributed in the carrier liquid -
the problem of stability. This problem appears due to the fact that particles attract each other
due to van der Vaals and dipole moment interactions. For different purposes different kind of
carrier liquids and magnetic particles are used. The carrier liquid can be water, oil, mercury etc.
and one can also use different kind of particles - cobalt, magnetite etc. [1]. For each combination
carrier-ferroparticles the problem of stability has to be solved independently. There are two
most widely used ways of stabilization - steric stabilization and electrostatic stabilization. In
electrostatic stabilization one uses charged particles to compensate the attractive forces by
electrostatic repulsion. In steric stabilization repulsion forces due to a polymer coating of the
particles are employed. When particles come close to each other the excluded volume repulsion
becomes effective.

A major feature of ferrofluids is the bulk Kelvin force, which acts when a gradient of a
magnetic field is present. This new force being incorporated into the equations of the fluid
motion leads to many different effects, some of which have found technical applications. For
example, viscous damping in loudspeakers, sealing and lubrication of hard disc axes etc. [1].
But probably most important are applications of ferrofluids in the medical domain. Applying
the Kelvin force, for example, ferrofluids can be used to deliver certain drugs to a certain area
of the body [2]. There is also the idea to use ferrofluids for cancer treatment by heating the
tumor soaked in ferrofluids by means of an alternating external magnetic field [3].

In ferrofluids there are new kinds of instabilities. Rosensweig surface instability is a rep-
resentative example [1]. But even the instabilities well-known from non-magnetic fluids, like
Faraday [4-6], Rayleigh-Bénard [7-11], Couette-Taylor [12-14], and Safman-Taylor instabili-
ties [15-17], show qualitatively new behavior, when considered for ferrofluids in the presence of
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a magnetic field.

Apart from the Kelvin force, there are a lot of interesting physical effects involved with
ferrofluids, for example, agglomeration and chain formation of magnetic grains [18] with drastic
consequences like a complex rheological behavior [19-21], the different types of the relaxation of
the magnetization - Neel and Brownian, that manifest themselves in the rotational viscosity [1],
and thermodiffusion effects, which lead to binary mixture behavior [9-11].

There are many publications, which give a description of ferrofluids on the macroscopic,
continuum level [1,22]. To give a complete description, which reflects all the features of the
macroscopic ferrofluid behavior, is probably a too complicated and unnecessary task, since
many effects exist in principle, but can be neglected depending on the ferrofluid and external
conditions present. But it is very important to find out what kind of description is appropriate
for a certain ferrofluid under certain conditions. The investigation of instabilities in ferrofluids
gives a good chance to test different approaches in the ferrofluid description and to determine
what kind of effects are to be taken into account and which of them can safely be disregarded
given the special ferrofluid and external conditions.

Ferrofluids have two constituents — carrier liquid and magnetic grains. In some cases diffu-
sion of the magnetic grains can be important. It has been shown, for example, that the Soret or
thermodiffusion effect is rather pronounced in ferrofluids [23]. A flux of particles [24] can also
be created by a magnetic field gradient, the so called magnetophoretic effect. In these cases,
when the flux of magnetic particles takes place, the appropriate way to describe ferrofluids is
to use the model of a binary mixture.

Although ferrofluids are a very specific kind of binary mixture [9-11], there is a lot they have
in common with the conventional well-studied binary mixtures, like an ethanol-water mixture,
for example.

1.2 Binary mixtures

Thermal convection in binary mixtures like ethanol-water, 3He-*He, or various gas mixtures
shows a rich spectrum of pattern formation behavior [25-27]. The spatiotemporal properties of
convection in mixtures are more complex than those of one-component fluids due to the influ-
ence of Soret-sustained concentration gradients. The structural dynamics of the concentration
distribution in mixtures results from an interplay between three competing mechanisms: non-
linear advection and mixing, weak solutal diffusion, and the Soret or thermodiffusion effect.
The relative importance of the Soret effect is measured by the separation ratio ¢). When ¢ = 0,
we have a one-component liquid. In this case any concentration variations diffuse away. For non
vanishing 1, however, the external temperature gradient sustains the concentration variations
against the advective and diffusive homogenization.

The concentration variation creates the buoyancy force. Depending on the sign of the
separation ratio 1, the solutal buoyancy force may act in the same direction as the usual
temperature buoyancy force (the case, when ¢ > 0), or counteract to this force (the case, when
1 < 0). Via the solutal buoyancy force, concentration field changes the momentum balance of
the fluid and directly influence the flow, which in turn changes and mixes the concentration.
This feedback causes different effects that cannot be observed in the one-component liquid
convection.
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For positive separation ratio (1) > 0), the bifurcation from the conductive state is supercrit-
ical and stationary, as it is in the one-component liquid. But close to onset we have different
kinds of patterns and secondary instabilities — square to roll instability, oscillatory instability,
cross roll instability and others, depending on the combination of the binary mixture parame-
ters [28-31].

When the separation ratio is negative (1) < 0), the bifurcation picture and nonlinear struc-
tures are more complicated. In this case we have subcritical bifurcation and oscillatory bifurca-
tion [25-27]. In nonlinear regimes we can have traveling waves, standing waves, and localized
traveling waves (solitons) [27,32-36].

1.3 Ferronematics

Nematic liquid crystals doped with single-domain ferro- or ferrimagnetic grains, usually de-
noted as ferronematics, are of great interest for potential applications, but also under the scope
of fundamental research. Starting with the pioneering work of Brochard and de Gennes [37]
the idea is to intensify the ponderomotive response of a nematic liquid crystal by doping it
with a small amount of ferromagnetic particles. The strong orientational coupling between
the magnetic grains and the surrounding nematogen matrix enhances the susceptibility of the
director dynamics. Indeed, the magnetic field strength necessary to affect the director is de-
creased by several orders of magnitude giving control over the orientational state of the liquid
crystal by magnetic fields as weak as 100 Oe. This "superparamagnetic” response is the basis of
many applications. The original expectation that the nematic ordering induces magnetic order
and thus leads to a spontaneous macroscopic magnetization (ferromagnetic state) has not been
materialized until now.

Considerable efforts were undertaken in the preparation of various colloidal dispersions of
ferromagnetic particles in liquid crystals during recent years. Starting with the first report in
1970 of mixing magnetic grains with the nematic phase of MBBA [38], there was a number
of reports on the production of mixtures of rod-like and disk-like, thermotropic as well as
lyotropic nematics with magnetic grains [38-41]. However, these systems were more like dirty
liquid crystals, where the magnetic additives served for a better orientation of the nematics in an
external field. Problems were the stability of these mixtures and the mutual orientation of the
director and the magnetization. The experimental situation changed considerably, when it was
possible to make stable emulsions, first as ferrosmectic systems [42-45], were the ferromagnetic
nano-particles are embedded in the smectic layers. These ferrosmectics are very dilute systems,
which prevents their use in applications. Recently, stable ferronematic systems, where the
liquid crystal and the magnetic aspects are on equal footing, have drawn increasing attention
(apart from other rather exotic phases, like ferrovesicles [46]). Birefringence [47-49] behavior in
homogeneous electric [50], and magnetic fields (including the Frederiks transition [48,51-53])
in inhomogeneous fields [54], and under the influence of bounding surfaces [55] have been
investigated.

In their original work Brochard and de Gennes started from the so-called "rigid anchoring”
approximation, implying that the directions of the director n and the local magnetization M are
perfectly co-aligned. However, with the synthesis of thermotropic ferronematics [56] it became
evident that the rigid-anchoring approximation might not be generally applicable. Within the
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framework of a microscopic model of rod-like ferromagnetic grains Burylov and Raikher [48]
reconsidered the surface interaction between the liquid crystalline nematogens and derived an
expression for the free energy of a ferronematic.

Apart from the strong response to external magnetic fields that shows up in a possible
dependence of all susceptibilities and transport parameters on the square of the field strength,
there are additional dynamic effects linear in the field strength [57] . In ordinary nematics those
effects are always neglected, but in ferronematics with their strong sensitivity to magnetic fields
there is the expectation that these effects are sufficiently enhanced. They can be described as
linear-field-dependent additions to ordinary dynamic material tensors describing, for example,
heat conduction, diffusion, electric conductivity, viscosity, flow alignment and relaxation of
the director. Since a magnetic field is odd under time reversal symmetry, these new effects
are reversible (non-dissipative), if the field-free part of the tensor describes a dissipative effect
and vice versa. In isotropic systems a few of such effects are known (Hall and Righi-Leduc
effect [58]).

The macroscopic description of ferronematics is given in Refs. [57,59]. The main problem
is that the most general form of these equations is too complicated creating problems in the
experimental evaluation of the many phenomenological parameters. In such a situation it seems
worthwhile to work out some indirect ways to measure the phenomenological parameters. To
this goal the investigation of various instabilities can serve as a very convenient tool.

1.4 Scope of this thesis

In chapter 2 we consider the ferrofluid as a binary mixture without an external magnetic
field. We show that when we deal with thermal convection instabilities the binary mixture
consideration is the appropriate one. This is due to the fact that a rather pronounced Soret
effect in combination with very different densities of the magnetic grains and the carrier fluid
create a considerable buoyancy force that change the picture of the instability qualitatively.
We show that the real threshold of the instability is well bellow the usual value for a one-
component liquid. But this threshold is experimentally inaccessible due to the extremely long
time scale involved. On the other hand, when we are close to the threshold of the usual one-
component convection the effect of the binary mixture nature of ferrofluids shows up on time
scales compatible to those in usual thermal convection. Using a simple Galerkin model we
describe the nonlinear behavior of our system.

In chapter 3 we consider the thermal convection of ferrofluids in the presence of a magnetic
field. To do so we first derive the equations for the binary mixtures in the presence of a magnetic
field from most general thermodynamic principles. Then, based on these equations we describe
the non-linear behavior of the system using a Galerkin model. The problem is addressed
numerically and analytically. By the analytical considerations we show the importance of the
boundary layer when a magnetic field is present. Due to this fact the numerical solution becomes
more complicated than it was without a magnetic field.

In chapter 4 we consider how linear magnetic field effects appear in different instabilities of
ferronematics. We consider Rayleigh-Bénard and Saffman-Taylor instabilities. In both cases we
show that these magnetic field effects lead to a qualitatively different picture of these instabilities
in ferronematics.



Chapter 2

Thermodiffusion effects in convection
of ferrofluids

2.1 Introduction

Thermal convection in binary mixtures has attracted much research activity in the past (see [25—
27] for areview). In comparison to the pure fluid case, the dynamics and the bifurcation scenario
are more complicated due to the extra degree of freedom associated with the concentration
field. Thereby solutal currents are not only driven by concentration gradients, they occur
also in response to temperature inhomogeneities. This is denoted as the thermo-diffusive or
Soret, effect. Its influence on the convective buoyancy force is quantified by the dimensionless
separation ratio 1. The sign of v indicates whether temperature- and solutal-induced density
gradients are co-aligned (4) or opposed to each other (—). At negative 1 the motionless
conductive state experiences an oscillatory instability, saturating in a nonlinear state of traveling
waves [27]. On the other hand, at positive ¢ the convective instability remains stationary, but
the critical Rayleigh number for the onset of convection is dramatically reduced as compared
to the pure-fluid reference value Ra® = 1708. This is a result of the joint action of thermal and
solutal buoyancy forces. The present paper is dedicated to the case of positive ¢ in colloidal
suspensions.

A typical property of binary mixture convection is the formation of concentration boundary
layers [28]. This is a consequence of the fact that the concentration diffusivity D. in mixtures
is usually much smaller than the heat diffusivity x. For molecular binary mixtures the dimen-
sionless Lewis number L = D,./k adopts typical values between 0.1 and 0.01 [60]. If colloidal
suspensions are under consideration, the time scale separation is even more dramatic. In this
context magneto-colloids, also known as ferrofluids, are a canonical example. These materials
are dispersions of heavy solid ferromagnetic grains suspended in a carrier liquid [1]. With a
typical diameter of 10 nm the particles are pretty large on molecular length scales, resulting
in an extremely small particle mobility. This feature is reflected by Lewis numbers as small as
L = 107* [61]. The smallness of L leads to a situation where separation effects (if any) take
place on time scales far beyond any reasonable observation time. Thus, in those experiments,
where thermodiffusion is irrelevant, ferrofluids can safely be treated as single-component fluid
systems.

However, ferrofluids are also known to exhibit a very large separation ratio 1. This ob-
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servation is due to the pronounced thermo-diffusivity of these materials in combination with
the fact that the specific weights of the two constituents (magnetite and water/oil) are quite
distinct. Following investigations of Blums et al. [61], who carried out experiments with a
thermo-diffusion chamber, ¢ can adopt values up to about 100. Recent light scattering investi-
gations of Bacri et al. [23], reveal i-values between around —200 (for ionic ferrofluids) and up
to +30 (cyclohexane carrier) at a volume concentration of 10%. Meanwhile the Soret effect in
ferrofluids has also been studied under the influence of an external magnetic field [62-64].

A fairly small number of papers deals with convection in ferrofluids. Most of them treat these
liquids as single-component fluids, focusing on the extra drive associated with the temperature
dependence of the magnetization (pyro-magnetic effect) [7,8,65]. An experimental study with a
binary system of ordinary ¢ and L values has been reported some time ago [66]. Quite recently
Shliomis and Souhar [11] studied the influence of the concentration field on thermal convection
in ferrofluids without an external magnetic field. Using linear arguments they predicted a novel
kind of relaxation-oscillation convection to appear at Rayleigh numbers below Ra?. Meanwhile,
magnetic field related effects have also been investigated in this problem [67].

The purpose of the present chapter is to work out more closely the role of the concentration
field. For the sake of concreteness we phrase the discussion in terms of ferrofluids but point out
that the results apply equally well to any binary mixture with small L and large positive v [9].

Provided no magnetic field is applied, thermal convection in a perfectly intermixed ferrofluid
is usually believed [11] to behave as a single-fluid system. However, our investigation reveals
that this is not correct. Rather it is the combination of both, the weak solutal diffusivity
and the pronounced solutal buoyancy force, which renders the convective dynamics distinct
from the pure fluid case. It will be demonstrated below that a Rayleigh-Bénard setup will
become unstable at Rayleigh numbers well below Ral. Within a time, small compared to the
creeping solutal diffusion time, convective perturbations are found to grow up and saturate in
a stationary convective state.

The rest of this chapter is organized as follows. In the next section the problem is set up
along with the governing equations and boundary conditions. Sec. 2.3 presents a linear analysis
specially tailored to account for the slow concentration diffusion. In Sec. 2.4 a Galerkin model
is employed for predicting the long time nonlinear convective behavior.

2.2 Setting up the problem

Let us consider a laterally infinite horizontal layer of an incompressible ferrofluid (density p,
kinematic viscosity v) bounded by two rigid impermeable plates (see Fig. 2.1). The setup is
heated from below with a temperature difference 77 — T between the plates. In the present
chapter we do not consider magnetic field related effects, thus the evolution equations for non-
magnetic binary mixtures can be adopted. Taking C(r,t) as the concentration of the solid
constituent of the suspension, the dimensionless equations for the Eulerian fields of velocity
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Figure 2.1: Sketch of the setup. For details see text.

v(r,t), temperature T'(r,t), and C(r,t) read in Boussinesq approximation [68-70]

V.v = 0, (2.1)
dv+v-Vv = —Vp+PrVv+PrRa[(T-T)—¢(C-0)e. (2.2)
OT +v-VT = VT, (2.3)
0,C+v-VC = L(VC+V°T). (2.4)

Here we have scaled length by the layer thickness d, time by the characteristic heat diffusion
time h?/k, temperature by Bod (By = (T} — Tp)/d), and the concentration by (Ds/D.)Bd. The
scale for the pressure p is x%p/d?. Thereby x, D,, D, are the coefficients for heat, concentration
and thermo-diffusion, respectively. The quantities 7" and C' are reference values defined as the
mean values for temperature and concentration. Apart from the Prandtl number Pr = v/x and
the Lewis number L = D,/k there is a third dimensionless material parameter, the separation
ratio ¥ = Dsa./(D.ay), where oy = —(1/p)0p/0T and a. = (1/p)0p/Oc are the thermal and
solutal expansion coefficient. The dimensionless Rayleigh number Ra = aggd*3y/(kv) is the
control parameter measuring the strength of the thermal drive. In Eq. (2.4) we have suppressed
the Dufour-effect (heat current driven by a concentration gradient) as it is significant in gas
mixtures, only.

The equations of motion are to be completed by boundary conditions: Taking the bounding
plates to be no-slip for the velocity, highly heat conducting, and impermeable for concentration
currents we have at the upper (z = 1/2) and the lower (z = —1/2) plates

'U|z::|:1/2 = 0, (2-5)

-1
T|z::|:l/2 = TF b% (2.6)
(V.C+V.T)zz1pp = 0. (2.7)

Eq. (2.7) guarantees that a concentration current cannot penetrate the plates. Owing to the
Soret, effect the applied temperature difference enforces a finite concentration gradient at the
boundaries. The above equations (2.1)-(2.4) together with the boundary conditions (2.5)-(2.7)
complete the system of hydrodynamic equations for the variables v, T, C.
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2.3 Linear stability analysis

2.3.1 Basic state and time scale separation

It is easy to show that the above boundary-value problem has a simple stationary solution, the so
called conductive state. It is represented by linear temperature and concentration distributions

v = 0, (2.8)
Teona(z) = T—z, )
Coona = C+2z (2.10)

In order to check for the stability of this solution one usually proceeds by introducing small
perturbations around the conductive state and following their time evolution as governed by
the linearized equations of motion. However, owing to the smallness of the Lewis number,
the time necessary to establish C.,,q exceeds the equilibration time for T,,,s by a factor 1/L.
Take for instance [11] a layer with a depth of d = 3 mm. Then T, is adopted after a few
thermal diffusion times t;y = d?/k (= 1 in dimensionless units). With the heat diffusivity of
water, k = 1.5 x 1077 m?/s, this period amounts to about one minute. On the other hand, for
L = 10~* the equilibration of the linear conducting concentration profile Ceo,q takes d?/(kL), i.e.
several days! Clearly, this tops any reasonable time scale at which convection experiments are
carried out. Accordingly, a linear stability analysis, suitable for a comparison with experiments,
has to account for the creeping solutal diffusivity. This can be accomplished by taking the
slowly establishing concentration profile ¢(z,t) as the effective basic state rather than the fully
developed profile C,,,4. For times larger than the evolution time of the temperature profile,
t > tyq, co(z,t) obeys the linear partial differential equation

8tC0 = LVECO (2].1)
with the inhomogeneous boundary condition

V.colo=s12 = 1. (2.12)

resulting from Eq. (2.9). On the creeping time scale of the evolution of cy(z,t), 7 = Lt, the
validity condition of Egs. (2.11,2.12) reads 7 > L ~ 10~

Egs. (2.11,2.12) reflect the evolution of the upcoming conductive concentration profile Ceopg.
However, as outlined at length above, the system has not enough time to reach this state. At
best the Soret driven concentration current is able to pile up thin concentration boundary layers
along the plates, the depth ¢ of which remains small in comparison to the distance between the
plates (0 < 1). This is somewhat difficult to see from the exact solution of (2.11,2.12)

4 OO n+l
co(z,t) = + - Z 2n + g exp (—(2n + 1)*7%7) sin(2n + 1)7z (2.13)

:0

since for the small 7’s we are interested here, the sum converges extremely slowly. A better
feeling of ¢y can be obtained by the solution of the somewhat simpler problem where the
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boundary conditions (2.12) are replaced by V.col.——1/2 = 1 and V.cg|.s—1/2 = 0 [11]. The
solution of this problem is

approx 1/2 + z
Volron) (4 1) =1 — erf ( NG ) , (2.14)
which for 7 2 107 describes the development of the boundary layer close to z = —1/2 very

well. (erf(x) denotes the error function [71].) As long as each boundary layer does not feel
the presence of the opposite one, the superposition of (2.14) with the corresponding solution
at z = 1/2 gives the realistic picture of ¢g. We will also corroborate this scenario within the
nonlinear calculations below.

2.3.2 Linear deviations

To probe the stability of the ground state, deviations are added whose time evolution is inves-
tigated. To that end we impose [72]
C(r,t) = co(z,t)+c(r,t), (2.15)
T(r,t) = Tena(z)+0(r,t), (2.16)

and the velocity field v(r,t). Linearizing the equations of motion for the convective perturba-
tions v, 0, c yields

OV*w = PrRa(V.+ V.)[0 —¢c] + Prviw, (2.17)
00 —w = V20, (2.18)
Oc+wV.co = L[Vic+ V3. (2.19)

Here we have taken twice the curl of the Navier-Stokes equation to derive the equation for the
vertical component w of the velocity field.
The boundary conditions read as

w’z::tl/2 0
Vzw|z:i1/2 = 0,
Ol.=412 = 0
(Voe+V.0)|o12 = 0.

Eqgs. (2.17-2.19) together with (2.20-2.23) are to be solved for a given c.

Since the temporal evolution of the boundary layers takes place on the stretched time scale
1/L we consider the profile ¢q(z,7) as being stationary within the period at which convec-
tive perturbations grow up to saturation, i.e. c¢o(z,t) ~ ¢o(2). The self-consistency of this
assumption has to be checked at the end of the calculations. With this approximation of a
stationary ¢ all coefficients in Eqgs. (2.17-2.19) are time-independent and solutions in the form
0, c,w o e cos kr can be adopted. This leads to

ANV2 = k) w = —PrRak*6 —vc)+ Pr (V2 — k) w, (2.24)
MN—w = (V2-k)0, (2.25)
Ae+wV.eo = L(VZ—k)(c+0). (2.26)
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Note that the above ordinary differential system is not autonomous since co(z) entails an ex-
plicit z-dependence. Only in the limiting cases where either V,co = 1 (fully developed conduc-
tive concentration profile, i.e., ¢cg = Ciong) or V,co = 0 (uniform concentration distribution),
Egs. (2.24-2.26) adopt an autonomous form. These two situations will be discussed in turn
below.

2.3.3 Threshold for a fully developed conductive concentration pro-
file

Although the fully developed conductive profile is of minor significance for the present inves-
tigation let us briefly review [26,27] the situation when ¢y = Cippnq or equivalently V,co =1 is
the ground state. To identify the threshold of the stationary instability we impose A = 0. We
obtain (V2 — k)0 = —w from Eq. (2.25) and (V2 — k?)c ~ w/L from (2.26), since L < 1. This
allows to neglect thermal vs. solutal buoyancy forces in Eq. (2.24) leading to

L (Vz—k2)3c—¢Rak2c:0 (2.27)

with the boundary conditions
V.lomt1p = 0 (2.28)
(Vg - k2)c|z::|:1/2 = VZ(Vz - k‘2>C|Z::|:1/2 =0. (229)

The solution of this eigenvalue problem is known [73] to provide a stationary instability with a

critical wave number £ = k. = 0 at

L

Ra’ =720 —. (2.30)

(8
Taking L = 107* and ¢ = 10 we obtain Ra%® ~ 1072, indicating that the threshold of Soret
driven convection is smaller by a factor of 10° as compared to the pure fluid threshold Ra® ~
1708. Note however, that in order to experimentally verify this drastic onset reduction one has
to wait for about a week after any temperature step before the linear conductive concentration
profile has fully equilibrated. This case will not be pursued further.

2.3.4 Threshold at a uniform concentration distribution

We now turn to the opposite limit when the concentration boundary layer had no time to
develop, thus ¢y = C' or equivalently V,cy = 0. Imposing again zero growth rate A\ = 0 we
obtain from Eqs. (2.26,2.23) the equality ¢ = 6. Substituting this into (2.24) yields

(V2 —k*)?w — Rak*(1+4)0 = 0, (2.31)
(V2—k)0+w = 0. (2.32)

In combination with the boundary conditions (2.20,2.22) we recover the known boundary value
problem for pure-fluid thermo-gravitational convection, however with an extra prefactor (1 +
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1Y) in front of the Rayleigh number. Taking this renormalization into account and following
Chandrasekhar’s solution [74] yields an exchange of stability at

Ra? (2.33)

with a critical wave number k. = 3.117 and Ra? ~ 1708.

The appreciable value of the separation ratio ¢) implies a significant onset reduction. Strictly
speaking, the determination of Ra. by imposing zero growth rate A = 0 is void, since the
creeping diffusion of ¢y can only be disregarded for times ¢ < L~!. In other words, the
exponential amplification of the convective perturbation ¢ has to proceed much faster than the
diffusive evolution of ¢g. This is always true for Rayleigh numbers sufficiently off from Ra,, i.e.,
when A is non-zero with |A(Ra)| > L. It is this inequality which guarantees the validity of the
time scale separation. And it is also the experimentally relevant case because extreme waiting
times are circumvented. This situation will be focused on in the following.

2.3.5 Linear growth rate

The preceding discussion reveals that a linear stability theory, suitable to compare with a con-
vection experiment, has to rely on the growth rates of the convective perturbations rather than
the threshold value. To that end we assume that the spatial profiles of velocity and tempera-
ture are only slightly disturbed by the concentration dynamics. Accordingly we represent their
dependencies in terms of simple trigonometric test functions in the form

w(x,z,t) = A(t)cos (kx)cos®(nz), (2.34)
O(x,z,t) = B(t)cos(kx)cos(mz). (2.35)

In contrast, for the convective concentration field ¢ we allow for a steep boundary layer behavior,
which we account for by the following multi-mode expansion

c(x,z,t) = —0(x, z,t) + cos(kx) 3 b, (t) cos(2mnz). (2.36)

n=0

Again we assume that the conductive concentration boundary layers had not enough time to
pile up thus imposing V,cq = 0. It is easy to see that (2.36) satisfies the boundary conditions
(2.7). Furthermore it conserves the mirror symmetry of ¢ with respect to the mid-plane between
the boundaries (z — —z). Substituting (2.36) into (2.17-2.19), and projecting the equations
with the respective Galerkin modes reveals that only the first two concentration modes by and
b, enter the evolution equation for A. The remaining concentration modes b; with i > 2 are
decoupled. Summarizing the Galerkin model for the relevant modes A(t), B(t), bo(t), bi(¢)
leads to the following system of equations
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3k* + 4m? 3k* 2 9 4
4k? k?
4 4 3
= —AB+ —(n? HB-=-A 2.
0 377A +37T(7r + k°) 3 (2.38)
2 2 k2
0 = )\bo+Lk2bo+MB—gA (2.39)
T 16
4
0 = )\bl+L(k2+4w2)bl+3—(w2+k2)3—SA (2.40)
s

To check the reliability of the above 4-mode approximation we solved the linearized bound-
ary value problem of equations (2.17-2.23) exactly by means of the numerical method outlined
in Ref. [75] (cf. App. 2.6.1). Comparing the results for the growth rate A we found that the
Galerkin technique is accurate by about 10%.

For A > L and ¢ > 1 (with the approximation k£ ~ 7) an analytical expression for A as an
implicit function of the material and the control parameters (¢, L, Pr, and Ra, respectively)
can be obtained from Egs. (2.37-2.40)

3Ra Pr(\ + 212Lap) = (2% + \) (2772 Pr + 7)). (2.41)

linear growth rate A

-0.5 -0.25 0
reduced Rayleigh number ¢

Figure 2.2: The linear growth rate A (¢) for convective perturbations as a function of the reduced
Rayleigh number ¢ = Ra/Ral — 1. Here Ra? is the threshold for the onset of convection in a
single-component fluid. Within the present Galerkin approximation Ra? = 1752

Without these approximations numerical results in Fig. 2.2 illustrate the dependence of A on
the reduced Rayleigh number e = Ra/Ra? — 1 for different values of the separation ratio. The
dashed line bifurcating at ¢ = 0 indicates the reference case of single-fluid convection. From
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Eq. (2.41) and Fig. 2.2 it becomes clear that A depends for large 1) on the product ¢ L rather
than L alone. Thus decreasing the concentration diffusivity L makes the curve A\(¢) approach
to the pure fluid case. On the other hand, increasing the solutal buoyancy force by rising ¢ has
the opposite effect. Assuming that the experimental observation time is long enough to detect
an unstable convective mode with a growth rate A ~ 0.1 (i.e. waiting time of about 10 heat
diffusions times, which in a layer of thickness A = 3 mm corresponds to about 10 minutes, and
which is still much shorter than L=!, the time scale of ¢;), then convective motion is detectable
at Rayleigh numbers 10-50% below Ra? depending on the value ).

To corroborate the validity of the time scale separation we have also solved the linear
problem, where the approximative uniform concentration distribution V,cy = 0 was replaced
by the true profile as given by Eq. (2.14) at ¢ = 10. Re-evaluating the growth rate yields a
value for A which differs from the previous one by less than 10%.

Regarding typical ¢-values in the range ¢ ~ 10-100, Eq. (2.33) indicates that the convec-
tive onset threshold Ra. for a homogeneously intermixed ferrofluid experiences a significant
reduction relative to the pure-fluid value Ral (cf. Sec. 2.3.4). This result appears somewhat
counter-intuitive: As long as the initial concentration profile is approximately uniform, one
might expect convection to behave as in single-component liquids [11]. But it turns out here
that this argument is not generally applicable: Provided the applied Rayleigh number is not
too far below the reference value Ra?, Fig. 2.2 reveals that the effective profile co(z,7) and the
convective one ¢(r,t) evolve on strongly distinct time scales. While the former always proceeds
on the creeping time scale 1/L, the quantity ¢(r,t) grows up much more rapidly proportional
to e, in unison with # and w. Then, owing to the pronounced 1)-value, solutal buoyancy forces
significantly contribute to the destabilization of the conductive state.

Our observations shed new light on a state of relaxation-oscillation convection predicted re-
cently by Shliomis and Souhar [11]. In that paper it was argued that after a sudden application
of Ra < Ra? to a ferrofluid with an initial uniform concentration distribution, a concentration
boundary layer along the plates piles up slowly, making the instantaneous convective thresh-
old Ra.(t) gradually sink below the applied Ra-value. Then the increasing convective motion
mixes up the ferrofluid, sweeping out the concentration boundary layers. With the concentra-
tion profile being re-homogenized, the ferrofluid was argued to behave like a single-component
liquid, returning to the conductive state since the applied Rayleigh number is smaller than Ra?.
Thereafter this relaxation-oscillation cycle can start again. The present investigation reveals
that such a cycle cannot work: This is because it was proven that convective perturbations in a
homogeneously mixed ferrofluid do not decay at Ra, < Ra < Ral. Rather they may experience
a considerable positive growth rate (cf. Fig. 2.2) even at Rayleigh numbers 50% below Ra?,
say. We conclude that there is no mechanism, which drives the system back to the conductive
state. Once initiated, convection will persist (rather than oscillate) and saturate in a stationary
nonlinear state. This will be shown in the following section.

2.4 Nonlinear behavior
The preceding linear analysis reveals that for Rayleigh numbers well below Ra?, convective

fluctuations are exponentially amplified on a time scale, which is experimentally relevant. It can
therefore be expected that these fluctuations saturate quickly in a nonlinear convective pattern.
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To work out whether this final state is stationary or oscillatory we solved the nonlinear problem
by use of numerical methods. To that end we make the following ansatz of a 2-dimensional
pattern, which is laterally (in x-direction) periodic with wave number k

C(x,z,t) = colz,t)+c(z,2,1)

= co(z,t) + c1(2,t) cos kx, (2.42)
T(x,2,t) = Teopa+0(x,z2,1)

= Teona + 6o (2,t) + 01 (z,t) cos kx, (2.43)
ve(z,2,t) = —(1/k)V,wi(z,t)sinkz, (2.44)
v.(x,2,t) = wi(z,t)coskz. (2.45)

with incompressibility already built in. Substituting (2.42)-(2.45) into the nonlinear equations
of motion (2.2-2.4) and sorting for different lateral dependences yields the following system of
equations

1

50 (V=) w = (D’ =) wi = Ra k(0 —ver), (2.46)

1
8tCO + §VZ (wlcl) = LVi (CO + 90) s (247)
8,501 + UJ1VZCO = L (Vg - k’Q) (Cl + 01) s (248)

1
8t 00 + ivz (w16’1) = Vgeo, (249)
901 —wi +wi Vb = (VI—k?) 6y, (2.50)

with the boundary conditions

V. (a+ 61)|z:j:1/2 = 0, (2.51)
V. (co + 90)|z:j:1/2 = 1 (2.52)
01|z::|:1/2 = 90|z:il/2 = 0, (2.53)
wl‘z:il/Q = val'z:il/Q =0 (2.54)

To solve this boundary-value problem we adopt vertical profiles wq, 6y, 01, ¢o, and ¢; in the
form

wy(z,t) = A(t)cos® (nz2), (2.55)
01(z,t) = B (t)cosmz, (2.56)
Oo(z,t) = G (t)sin2nz, (2.57)
co(z,t) = z—"0p(z,t) + S ay (t)sin (2n + 1) 7z, (2.58)
c(z,t) = —01(z,t) + S by, (t) cos 2nmz, (2.59)

=0

3

which satisfy the boundary conditions (2.51-2.54) identically. The above equations describe
two-dimensional convection in the form of parallel rolls along the y axis in an infinite slab of
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Figure 2.3: The time dependence of the velocity amplitude A(t) for positive and negative values
of ¢ = Ra/Ral — 1 in terms of the thermal diffusion time ;4 (for Pr = 7 and L = 7 x 1079).
The dashed gray line corresponds to single-component fluid (¢» = 0) ¢ = 0.056.

thickness 1. We point out that for ¥» = 0, the concentration fields decouple from temperature
and velocity. This reduces Egs. (2.55-2.57) to the 3-mode model introduced by Lorenz [76] to
mimic the dynamics of convective rolls in single-component Rayleigh-Bénard convection. At
non-zero 1, convection is modified by the concentration field but we can adopt the above few-
mode expansions for temperature and velocity without modifications, because the diffusivities
for heat and momentum are large enough to prevent the appearance of strong gradients. By
way of contrast, owing to the small Lewis number, the concentration field does build up steep
boundary layers, which we account for by multi-mode Fourier series as given in (2.58,2.59). For
co the modes are antisymmetric in z and resemble the solution (2.13), while for ¢; symmetric
modes are appropriate. The number N of contributing modes was taken large enough to
ensure that the results are insensitive against a further increase of N. For the parameter values
considered here, N = 20 turned out to be sufficient.

The equations for the mode amplitudes A, B, G, a,,, b, have been solved by a Runge-Kutta
integration. The wave number £, usually taken to be the mode of maximum linear growth rate
A(k, Ra) varies between 3 and 3.5 within the investigated Rayleigh number regime. However,
since the final predictions of our model turned out not to depend sensitively on the k-value
chosen we adopted in all of our simulations & = 7. All runs were started form an initial
configuration characterized by a undisturbed linear temperature profile T' = T,,,4, a uniform
concentration distribution V.cy = ¢; = 0, and small random velocity fluctuations. The time
evolution of the velocity amplitude A (¢) as obtained from a typical simulation run is presented
in Fig. 2.3 for two different values of the Rayleigh number (¢ = Ra/Ral—1 = +5.7%) on either
side of the pure-fluid reference threshold Ral. The dashed line in Figs.2.3 denotes pure-fluid
reference case ¢ = 0. In all of our runs the convective motion was found to settle in a state
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Figure 2.4: The saturation amplitude Ay = A(t — oo0) as a function e = Ra/Ral — 1
(parameters as in Fig. 2.3). The dashed gray line corresponds to a single-component fluid
(¢ = 0). Dotted lines show the result of a 7-mode Galerkin approximation as given by Eq.(4.1b)
in Ref. [72]

of stationary convection. A relaxation oscillation behavior as predicted in Ref. [11] could not
be observed. The times necessary to reach the saturation values are several thermal diffusion
times and increase with decreasing €. However, they are still much shorter than the evolution
time of the creeping concentration profile, thus corroborating our assumption V.cy = 0 in the
preceding section. The overshoot in Fig. 2.3 before the plateau values are reached is not a
numerical artifact, but it may be related to the small number of lateral modes we have taken
into account. This can be expected, since additional modes with negative growth rate, smooth
out the relaxation into the saturated state.

Fig. 2.4 shows the corresponding bifurcation diagram with the dependence of the saturation
amplitude on the reduced Rayleigh number. At ¢ > 0 the amplitude saturates at a value,
which does not significantly deviate from the single-component case. On the other hand, the
influence of the concentration field is most pronounced for Ra < Ral. This is a consequence
of the competitive interaction between the small Lewis number and the large separation ratio.
Decreasing L makes the curve in Fig. 2.4 approach to the dashed reference line, whereas rising
1 has the opposite effect as it amplifies the solutal buoyancy forces. For the sake of compar-
ison the dotted lines in Fig. 2.4 show an analytical approximation for the saturated velocity
amplitude based on a seven mode Galerkin approximation recently introduced by Hollinger et
al. (Eq. (4.1b) in Ref. [72]).

Unlike a single-component system, where convective perturbations decay for negative ¢, the
ferrofluid exhibits a pronounced positive linear growth rate (cf. Fig. 2.2). When measuring
a bifurcation diagram such as Fig. 2.4, one might conclude that the bifurcation is imperfect.
Indeed, a slight imperfect behavior was observed in the experiments of Bigazzi et al. [66] and of
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Figure 2.5: (a) The effective concentration profile ¢o(z) = ¢o(z,t — 00) in the fully developed
saturated state for ¢ = —0.058 (parameters Pr =7, L =7 x 107°, and ¢ = 10). (b) same as
a) for the amplitude of the convective concentration field ¢;(z) = ¢;(z,t — o0).

Schwab et al. [8], who recorded the convective heat transport as a function of Ra. But we learn
here that this phenomenon is to be attributed to the concentration dynamics: As outlined in
Sec. 2.3, the very onset for convection is located at a much smaller Rayleigh number, Ra., but
at Rayleigh numbers slightly larger the linear growth rate of disturbances remains extremely
small. Thus, trying to detect Ra. in such an experiment would be hopeless as it requires
extremely long observation times. Experiments on ferrofluids have been reported recently [77]
that corroborate the behavior shown in Fig. 2.4.

In contrast, at ¢ around £10-20% the time necessary to wait for the equilibration of the
nonlinear convective state amounts to only a few thermal diffusion times (cf. Fig. 2.3). This
statement, which holds in particular also for the concentration field, demonstrates that the
growth of convective perturbations is a fast process on the (creeping) time scale 1/L of solutal
diffusion. On the first view this might appear counterintuitive, but it can be seen from Fig. 2.5
that the final concentration distribution differs from the initial homogeneous profile only in thin
boundary layers. Consequently, time consuming redistribution processes of the concentration
field are not necessary for building up the solutal saturation profiles. This keeps the equilibra-
tion time small and no further evolution on the slow diffusion timescale occurs after the system
reaches the state given on the Fig. 2.5.

2.5 Conclusions (Chap. 2)

Thermo-convection of binary mixtures with a weak concentration diffusivity and a large separa-
tion number has been investigated theoretically. By considering the classical Rayleigh Bénard
setup it is shown that both the linear as well as the nonlinear convective behavior is significantly
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altered by the concentration field as compared to single-component systems. Starting from an
initial motionless configuration with a uniform concentration distribution, convective pertur-
bations are found to grow even at Rayleigh numbers well below the threshold Ra? of pure-fluid
convection. It turned out that the actual critical Rayleigh number Ra, is drastically smaller,
but experimentally inaccessible due to the extremely slow growth of convection patterns for
Ra 2 Ra., requiring extremely large observation times. On the other hand, operating the
ferrofluid convection experiment at Rayleigh numbers Ra. < Ra N Ra?, reveals considerable
positive growth rates, which lead to a saturated nonlinear state almost as fast as pure-fluid
convection does at Ra > Ra®. This result is corroborated by earlier convection experiments.
It does not comply with a recent prediction of convective self-oscillations conjectured from the
interplay between short thermal and slow solutal diffusion time scales.

2.6 Appendix (Chap. 2)

2.6.1 A method to solve linear stability problems in a fluid layer

In this appendix we describe the method suggested in [75]. The notation in this appendix is
mainly independent of the rest of the thesis and corresponds to that used in [75].

Let us consider the following 2n x 2n linear differential system on the z interval (0,1) with
mixed boundary value conditions:

d

d—f — A(o)z (2.60)
z;(0) = 0 for i=1,..,n (2.61)
zi(l) = 0 for 1=1,...,n (2.62)

where = [21, %9, ..., 29,] and A(o) = A(0y,...,0%) is a given 2n x 2n matrix depending
on k parameters o;. The problem is to determine the values those parameters that the above
system is solvable. Assume the problem has a nontrivial solution x(z) for a given o with

:B<O) =Ty = [07 "'7O7u17 "'7un]7 (263)

then we have

x(z) = exp(A(o))xg (2.64)

Let us write exp(A(o)) in the form of a block matrix

et = | T F) ] (2.65)

with four n x n matrixes, F(o)and three others denoted by stars, which we do not need. Then
from (2.62)

E(o)u = E(o)[u1,...,u,] = 0. (2.66)
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In order to have a nontrivial solution of the boundary value problem (2.60-2.62) we need to
have a nontrivial solution of Eq. (2.66), consequently

det(E(c)) = 0. (2.67)

Thus we can conclude, the necessary and sufficient condition for the existence of nontrivial
solutions of (2.60-2.62) is det(E(o)) = 0. Furthermore, the number of linearly independent
solutions equals the dimension of the null space of E(o).

The next step is to get the critical characteristic values. The above analysis shows that the
characteristic values are simply the solutions of the algebraic equation (2.67), easily obtainable
using some standard numerical method such as the Newton-Raphson method. In thermal
convection problems, however we are interested in finding the critical or minimal ones among
these values, e.g. the critical Rayleigh number. Generally, if we want to find the minimum
characteristic value for the first parameter o1, our problem can be formulated as a constrained
optimisation problem:

Minimize o1, subject todet(FE (o)) = 0.

Many subroutines are available for solving this constrained nonlinear programing problem. One
may first convert this constrained problem to an unconstrained one by introducing a penalty
term in the objective function, then apply unconstrained optimization subroutines.
In [75] it is argued that the following approach is robust for thermal convection problems.
The equation
flo) =det(E(o)) =0 (2.68)

generally defines a function oy = 0y(09, ..., 0x). At the critical value o} we have

80'1
=0 =2, ..., k. 2.69
aUZ Y 1 Y ) ( )
and implicit differentiation gives
of
=0 =2, k. 2.70
ao_z ) Z ) Y ( )

Thus, the critical value of o can be found by solving the system of k equations (2.68,2.70).

2.6.2 The piecewise approximation of the non-uniform concentra-
tion profile

We cannot straightforwardly apply the method described in the previous section to investigate
the stability of binary mixtures at small times, when the concentration profile is not linear. This
is because the method described can only be applied to a homogeneous system of differential
equations. In order to apply this method we make a piecewise representation of the non-uniform
concentration profile:

1 if —1/2 <z < —1/246(¢)
V.eo(z,t) =< 0 if =1/240(t) < 2 <1/2—06(t) (2.71)
1 if1/2—6(t) <z <1/2
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where §(t) = 24/Lt/m is the effective boundary layer depth chosen in such a way that the
integral of the model function (2.71) is equal to the one taken with function (2.14). The time
dependence in (2.71) is considered to be quasi-stationary.

If we now use the concentration profile (2.71) we get a piecewise homogeneous system of
differential equations and the final exponent of the matrix (2.64) will be a product of three
exponents corresponding to the three intervals of (2.71).

Such an analysis has shown that we can simply put 0 = 0 without significant losse of any
reasonable accuracy. The error introduced by puting § = 0 is less then 10%, when the boundary
layer is 6 = 0.1, that corresponds to a time interval ¢ ~ 100.



Chapter 3

The influence of a magnetic field on
the Soret-dominated thermal
convection in ferrofluids

3.1 Introduction

In this chapter we extend the investigation done in previous one to consider the influence of
an external magnetic field on this convection scenario for positive separation ratio ¢ [10]. We
first (Sec. 3.2) review the hydrodynamic equations for binary mixtures in the presence of an
external magnetic field. We assume the magnetization to be already relaxed to its equilibrium
value on the time scales under consideration. The magnetic field effects then come basically in
two different varieties. First, the Maxwell stress that can be written as a Kelvin force in the
momentum conservation law (the Navier-Stokes equation), and second the temperature and
concentration dependence of the magnetic susceptibility in the statics that gives rise to a field
dependence of heat and concentration currents (magnetophoresis). If a temperature gradient is
applied across the ferrofluid layer, as in the case without field [9], the experimentally relevant
convection free ground state is not the true stationary state with a linear concentration profile,
but the purely conducting state with a constant concentration (apart from a very thin boundary
region) in addition a linear magnetic field profile is present in the convection free state (Sec. 3.3).
The stability of this ground state is investigated by solving approximately the nonlinear dynamic
equations for deviations from it. Within the usual Boussinesq approximation five magnetic field
effects, characterized by dimensionless numbers proportional to the field strength squared, show
up in the equations and boundary conditions (Sec. 3.4). Among them, M; the strength of the
magnetic relative to buoyancy force, and M,, the magnetophoretic number seem to be the most
important.

To solve the system of equations we first set up a multi-mode Galerkin description (Sec. 3.5),
where in particular for the concentration and the magnetic potential the inclusion of many
modes turn out to be essential. An approximate ansatz is solved analytically (Sec. 3.6). Here
the necessity of dealing carefully with the boundary layer profiles of concentration and magnetic
potential (Apps. 3.9.1 and 3.9.2) becomes obvious. This approximate analytical solution is
compared with the numerical Galerkin results, in particular with respect to the influence of the
Kelvin force (M;) in Sec. 3.7. The role of magnetophoresis (M) on the instability behavior is
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discussed in Sec. 77.

3.2 Basic equations

Ferrofluids can be treated as super-paramagnetic continuum [1] that consists of two different
non-reacting material (binary mixture). An external magnetic field induces easily a considerable
magnetization in the fluid. This magnetization is in principle a dynamic degree of freedom.
However, it relaxes rather quickly to its equilibrium value and orientation given by the Maxwell
field H. Thus, for the time scales of interest for the convection problem we can always assume
M = M(H). Here we review the hydrodynamic equations for a binary mixture subject to
an external static magnetic field and bring it into a form suitable for the convection problem.
Hydrodynamics is most easily set up by using those quantities as dynamic variables that are
related to local conservation laws [78]. In our case that are density p, momentum density pv,
entropy density o and concentration C' (of magnetic particles), while the chemical potential p,
the velocity v, the temperature 7', and the relative chemical potential u. are taken as their
thermodynamic conjugate quantities, respectively. The dynamic equations read [78§]

Op+div(pv) = 0 (3.1)

o +v-Vo = V-&VT+V-DTV(%)+§ (3.2)

p(0,C +v-VC) = V.DV(%HV-DTVT (3.3)
p(Ow; +v;V0) +Vip = VipvijuNVi, + M;V,H; + pg; (3.4)

while the magnetic field H and induction B are determined by Maxwell’s equations, which
read in the static and non-conducting case

V-B = 0 (3.5)
VxH = 0 3.6)

Generally, due to the presence of an external field, the transport coefficients %, Drp, and D
should be written as tensors of the form D;; = Dd;; + DReiij r with Hall- or Righi-Leduc type
contributions [57]. However, those terms are inoperative for the geometry considered below.
The same is true for similar linear field contributions to the viscosity tensor [57], which can
change qualitatively the patterns in the Benard instability in ferronematics [79], but do not
contribute here.

As usual for convection problems we apply the Boussinesq approximation implying incom-
pressibility dive = 0, neglection of the dissipation function R in (3.2), and taking all material
parameters as constants except for the density in the gravity force pg;. The Navier-Stokes
equation (3.4) has been written in the form that the Kelvin force, with M = B — H [80],
shows up on the right hand side. Due to the incompressibility approximation the pressure p is
no longer a thermodynamic variable and its dependence on the magnetic field is irrelevant. It
is only an auxillary quantity that ensures the incompressibility condition for all times, but it
is not needed in the following. As discussed above, the magnetization is no dynamic degree of
freedom.
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To close the system of equations we need the static relations between the conjugate quan-
tities and the variables. Standard procedure gives [78]

57 = Lsotp.6C (3.7)
Cv

Ste = 36C + B, 00 (3.8)

SB = (1+4y)0H (3.9)

derived from an energy density

€e=¢€p+ 21((50)2 + 6.(60)(0C) +
Cy

DO |-

(6C)? + %(1 +X)(6H)? (3.10)

In this form the static equations generally are not suitable for ferrofluids, since the magnetic
susceptibility y depends considerably on the concentration (of the magnetic particles), the
temperature and the external field. Switching to the temperature as variable by a Legendre
transformation, ¢ = € — (60)(0T'), and taking y = x(T, C, H?) we get

So = CTHH— BHTCV50+XTHO-5H (3.11)
Ope = g o6C + ﬁl;fV5T+ XeHo - 0H (3.12)
0B = (14 x0)0H + H (x7 0T + x.6C + xzgH, - 6H) (3.13)

where Y is the (constant) magnetic susceptibility taken at the equilibrium field H, equilibrium
temperature Ty, and equilibrium concentration cg. It is assumed to be a known function of HZ.
Up to second order derivatives of x we have

o = v mg X (314
B = 50*2%}[02% (3:15)
B o1
T 48(9;;2+2H§<aa;—§)2 (3.19)

implying a HZ dependence of the usual static susceptibilities. In principle, the static suscep-
tibilities can be arbitrary functions of HZ. Thermodynamic stability (positivity of the energy
functional) requires the following positivity conditions

cy >0, v > 0, 1+ x0>0, €> 0,

ﬁHCV)27

T CHE > X%Hg7 YHE > Xzng (320)

cave > (
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with € = 1+ xo + xg H{ [81].
In order to retain the buoyancy force, the temperature and concentration dependence of the
density has to be kept in the gravity force, which can be written as

pg; = —gpo(l + Qp 0T — Qe 0C — OéHHo : 5H> 512 (321)

taking the z direction as the vertical one. The magnetic field contribution to the buoyancy
force due to deviations of the magnetic field from its constant and homogeneous equilibrium
value has been introduced for completeness.

Combining the static and dynamic part the basic equations are

dive = 0 (3.22)
CH R = YH = Xc
0 0 0
(0, +v-V)C = DZ)—HAC+DTAT+D§HO AH (3.24)
0 0
(O +v-V)(cwrlv); = €r.9(aeViT + a.ViC+ayHy- Vi H) (3.25)

1
+ p—Eikz(Ho -V H) (xr VT + x.ViC) + vA(curlv);
0

with A = V2 and

_ ~ ~ ﬁHCV Brcy 2
kK = k+2D +D 3.26
g poTo ( poTo ) (3.26)
Dy — Dyp+ DY (3.27)
poTo

The temperature conduction coefficient is k = KTy /cg, the diffusion coeffient D. = Dvygy/p2,
the Soret coefficient is Dy = Dr/py, the Dufour coefficient is Dy = DryuTy/(pocw), while v is
the dynamic shear viscosity.

The boundaries are assumed to be ideal thermal conductors, thus the temperature of the
fluid at the boundaries is identical to the applied temperature. Note that in real experimental
situations the finite heat conductivity of the boundaries could lead to some noticeable effects
[65], but we are not going to discuss these effects in what follows. For the velocity field we
assume ’rigid’ boundary conditions, while for the magnetic field and magnetic induction the
usual continuity conditions apply

fl . (Bint - Bext) — O (328)
n x (Hint — Hel‘t) (329)

I
o

with 72 the normal of the boundaries. For the concentration of the ferroparticles we have the
impermeability condition, i.e. no flux on the boundaries is allowed

Dyy#-VC + pgDr - VT + Dy Hy- (A - V)H =0 (3.30)
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3.3 Heat conducting state

For a layer of thickness d with prescribed temperatures T, and 77 at the boundaries z =
—d/2, d/2, respectively, and with infinite lateral dimensions the pure conductive state is easily
found. The concentration and the magnetic field show linear z—deviations from the equilibrium
values, given by the boundary conditions (3.28,3.30)

v = 0 (3.31)
D

C = C+ 2z (3.33)
Dy

Dyuxr — poXeDr
€D,

H, = Hy(l+ Boz) (3.34)

where By = (To—1T1)/d, Hy is related to the strength of the magnetic field outside the layer H ..,
by the expression H .,; = (Ho + M(Hy)) €., and Dy = Dyy(1+ O(H?)). The quantities T' and
C are reference values defined as the mean values for temperature and concentration. However,
as was the case of thermal convection without magnetic field [9], to reach this conductive state
one needs to wait until the very slow process of concentration diffusion has equilibrated. As it
was estimated in [9] this takes as long as a week under usual experimental conditions. For this
reason we consider the stability not of the state given by Eq. (3.33) but of the quasi-stationary
state when the temperature field, Eq. (3.32), is equilibrated, but the concentration field is
still homogeneous except for very thin boundary layers near the boundaries. This situation
is similar to that without magnetic field considered in [9]. With such an approximation the
quasi-stationary state reads

v = 0 (3.35)
T = T Gy (3.36)
cC = C (3.37)
H = H0(1+X?Tﬁoz) (3.38)

This state is not a solution with the boundary condition (2.7), but it gives a good approximation
to the solution for experimentally relevant times.

3.4 Deviations from the conducting state

The next step is to write the equations for the deviations from the heat conducting state (3.35)-
(3.38). To do so in dimensionless form we introduce characteristic scales: d for length, d*/x
for time (with k = &Ty/cy), Bod for temperature, ByDrpod/(Dvyg) for concentration, x/d for
velocity, and Sodx7Hy/€ (with € = 1+ xo + xx HZ) for magnetic field. For the deviations from
the magnetic field (3.38) a scalar potential can be introduced H = H,é, — V¢, while the
magnetic potential outside the layer is defined by H.,; = H™ — V. . The deviation of the
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temperature from Eq. (3.36) is §. Then Egs. (3.5), and (3.22)-(3.26) lead to

Vv =0 (3.39)
[0; + (v V)] (0 — MyV.¢) = w(l— M)+ A0+ FA(C — MyV.¢) (3.40)
0+ (v-V)]C = LA@G+C — MyV.o) (3.41)

% 0+ (v- V)] (curlv); = RaesaVe[(1+M)0 — (0 + M) C + (Ms — My) V.4
—Ra M €;1;(ViV,0)Vi (0 — 0, C) + Alcurlv); (3.42)
(V24 MsAL)p = V(0 —9nC) (3.43)
Ab. = 0 (3.44)

where w is the z component of the velocity. The transverse Laplacean A} = A — V2. The
non-dimensional parameters introduced here are: the Rayleigh number Ra = ayfygd*/(xkv), the
Prandtl number Pr = v/k, the separation ratio v = a.poDr/(cgyu D), the magnetic separation
ratio ¥, = —XcpoDr/(XTYe D), the Lewis number L = yycy D/ (p2kTy) = D, /k, the strength
of magnetic force relative to buoyancy M; = Byx%HZ/(pogage), the magnetophoretic number
My = Dx.xrHZ/(poDr€), the nonlinearity of magnetization Ms = (1+xo)/é =~ 1—xyHZ/(1+
Xo), the relative strength of the temperature dependence of the magnetic susceptibility My =
X5>HZTy/(cy€), the ratio of magnetic to thermal buoyancy Ms = agxrHZ/(xgé), and the
Dufuor number F = D2./(Dk) = D,D;/(kD,). The stability conditions (3.20) require M, < 1
and My, > —1.

According to our choice of 'rigid’ and ideally conducting boundaries, the boundary condi-
tions for the deviations from the conducting state read

Vawl,.pr = 0 (3.47)
V.(0+C—MyV.0)|.os = 1My (3.48)
and the magnetic boundary conditions (3.28), (3.29) are
g(vz¢ + ¢mc) - vnge |z::|:é 0 349)
Vi6-Videlyy = 0 50)

These boundary conditions close the problem to find the fields v, 6, C, ¢ and ¢,.

3.5 Simple Galerkin solution

The set of equations derived in the previous section is still unnecessarily complicated. We
will simplify it first by neglecting the Dufour effect, i.e. putting F' = 0, as is usually done
for any liquid. Second we discard My, which is a common simplification in the description
of instabilities in ferrofluids [7,82]. Since M, is not related to concentration effects, which
we are interested in here, we expect not to loose any reasonable aspect of the problem under
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consideration. The same is true for the coefficient Ms. It may be important in a situation,
where the concentration dynamics is not considered at all, since in that case it is the only non
thermal contribution to buoyancy. Thus, we are left with 3 magnetic field dependent effects
characterized by M 3. The first denotes the influence of the Kelvin force and is expected to
have the dominant influence on the convection behavior. The second effect, which we will treat
in a second step, constitutes magnetophoresis, the dependence of the concentration current on
the magnetic field. The third effect is due to the nonlinearity of the magnetization as a function
of the external field. Generally, Mj is rather close to 1 (the linear case x = const. or M ~ H),
since the dependance on the Mj is rather weak we always take M3 = 1.1. The parameter v
is known to be between 10 and 100 and can have negative or positive sign depending on the
ferrofluid used [23]. Here we consider only the case of the positive value of 1. Making a simple
estimate we find that the value v, has the same sign and is of the same order of magnitude as
Y for typical ferrofluids.

The boundary value problem obtained in this way is still too complicated to allow a simple
analytical (1-mode solution), even if for the velocity field unrealistic 'free’ boundary conditions
are used. This is due to the magnetic boundary condition (3.49) that involves the concentra-
tion. Sacrificing this condition, however, would change the bifurcation scenario qualitatively
rendering such an analytical solution worthless. Instead, any realistic treatment has to take
into account the boundary layer fields of concentration and magnetic field potential. We will
do this analytically later on in a simplified way guided by the numerical results, which we
will derive first using the Galerkin technic. To that end we make the following ansatz of a 2-
dimensional pattern, which is laterally (in x direction) infinite and periodic with wave number
k. These equations describe two-dimensional convection in the form of parallel rolls along the
y axis in an infinite slab of thickness 1. In the lateral direction we will restrict ourselves to the
fundamental mode neglecting higher harmonics, while in the z direction (across the layer) a
multi-mode description will be used where necessary.

( ) = co(z,t) + ci(z,t) cos ke, (3.51)
( ) = 6o(2,t)+ 61 (2,t)coskz, (3.52)
ve(x,2,t) = —(1/k)V,wi(z,t)sinkz, (3.53)
( ) = wi(z,t)coskx, (3.54)
( ) = ¢o(z,t)+ ¢1(2,t)coska. (3.55)

with incompressibility already built in. We can get rid of the external potential ¢. by solv-
ing equation (3.44) explicitly. The solutions that vanish at z = +oo and fulfill the bound-
ary condition (3.50) are ¢, = exp(g)exp($kz)¢1(z:i%,t) cos kz for the range {1/2,00} and
{—1/2, —o0}, respectively. The boundary conditions (3.49) can then be written in final form

€(Vaor + Ymer) £ by |1 = 0 (3.56)
Vigo + Ymeo|.msr = 0 (3.57)

Substituting Eqgs. (3.51)-(3.55) into the nonlinear equations of motion (3.39)-(3.43) and



28 Simple Galerkin solution

sorting for different lateral dependencies yields the following system of equations

}%Mw—ﬁﬂq:—RM““+MM—W%Mﬂ@ﬁﬂ%%@+W&%W%
+Ra MiKk* (01 — Ymer — Vap1) Ve (0o — ¥ co) (3.58)
o+ 2V, (wicr) = LVZ[(1+ Mathn)co + (1 — Ma)by) (3.59)
der +wiViey = L(VZ—EK) (c1+ 61— MV, 1), (3.60)
O+ V. (wi61) = V26, (3.61)
Qb+ u V.0 = —wi+ (V:—k)0o, (3.62)
(V2= Msk?) ¢1 = V. (01— mcr), (3.63)

The field ¢y has already been eliminated with the help of V2¢y = V(6 — ¢,,co). This has also

been used to write the remaining boundary conditions as

V.(c1 + 61 — MV .¢1) ‘z:i1/2 = 0, (3.64)

V(14 Matpy,)co + (1 — My)bo) |s=t1/2 = 1 — Mo, (3.65)
01 |:=s1/2 = Op |:=412 = O, (3.66)

w1 |z:i1/2 = V.w; ‘z:i1/2 = 0, (3-67)

To solve this boundary-value problem we adopt vertical profiles wy, 6y, 61, ¢, ¢; and ¢; in
the form

wy(z,t) = A(t)cos? (rz), (3.68)
01(z,t) = B(t)cosmz, (3.69)
Oo(z,t) = G(t)sin2wz, (3.70)
et = M ST () sin (2 4 1) e (3.71)
0\~ 1+¢mM2 0\#> par n ) .
n=N
ci(z,t) = —=0i(z,t) + by, (t) cos 2nmz, (3.72)
n=0
"X A, (t) sin2nz
P1(z,1) = Ao(zf)ern:0 5 (3.73)

which satisfy the boundary conditions (3.56,3.64-3.67) identically, if Ay(2+k)+ Zﬁgl(—)"An +
U SN (=)D, = 0 is chosen.

We point out that for ¢ = 0, and 1, = 0 the concentration fields decouple from temperature
and velocity. This reduces Eqs. (3.68)-(3.70) in the absence of the magnetic field to the 3-mode
model introduced by Lorenz [76] to mimic the dynamics of convective rolls in single-component
Rayleigh-Bénard convection. In the case of finite magnetic field this is a somewhat modified
Lorenz model for a magnetic fluid [83]. At nonzero ¢ and 1), convection is modified by
the concentration field but we can adopt the above few-mode expansion for temperature and
velocity [9] without modifications, because the diffusivities for heat and momentum are large
enough to prevent the appearance of strong gradients. By way of contrast, owing to the small
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Lewis number, the concentration field does build up steep boundary layers, which we account
for by a N-mode Fourier series as given in (3.71,3.72). The situation with a magnetic field
is somewhat intermediate, since the magnetic potential is coupled dynamically (3.63) and by
the boundary conditions (3.56) to the concentration field with its strong gradients. We use
a multimode expansion for the magnetic field with a number of modes N; which is selected
independently of N. For ¢y the modes are antisymmetric in z, while for ¢; symmetric modes
are appropriate. The numbers N and N; of the contributing modes was taken large enough
to ensure that the results are insensitive against a further increase of these numbers. For the
parameter values considered here, N = 50 and N; = 50 turned out to be sufficient.

3.6 Approximate analytical solution

In this section we derive an approximate analytical stationary solution, which fits the numerical
solution, described above, very well. To get this solution, we make use of the fact that L ~ 1074
is extremely small. Starting with the system of equations (3.58)-(3.63), we use the Lorenz rep-
resentation of the temperature and velocity field (3.68)-(3.70) and derive approximate solutions
for ¢, ¢1 and ¢, avoiding the complicated mode expansion (3.71)-(3.73).

Let us first consider equation (3.59). In the stationary case, we can integrate this equation
once. With the boundary conditions (3.65) and (3.67) we find

2

Far from the boundaries ¢y and ¢; are ~ L . This can easily be seen from the consistency of
Eq. (3.61) with Eq. (3.74) taking into account that far from the boundaries the derivatives of the
functions are small. Thus, in Eq. (3.74) we can neglect ¢, when we are far from the boundaries.
Futhermore, we can neglect V.60, compared to 1, since its influence is very weak [72]. This latter
approximation is good, when the amplitude of the velocity is still small, since 6y is the nonlinear
term in the Lorenz model. Taking this into account we can get the concentration field far from
the boundaries as

To satisfy the boundary conditions for ¢; and to find the profile of the concentration field near
the boundaries one needs to solve the boundary layer problem. The expression (3.75) diverges
close to the boundaries as 1/(z—1/2)? (if the boundary is on z = 1/2). Thus, the solution of the
boundary layer problem has to behave asymptotically like 1/(z — 1/2)? far from the boundary,
in order to match with Eq. (3.75). The boundary layer problem for the concentration field is
considered in App. 3.9.1

Since the boundary-layer depth 4 is proportional L'/3 (cf. App. 3.9.1) the contribution of
the boundary layers gives only small ~ LY? corrections to the amplitude equation and the
expression (3.75) can be used with w; = A cos? (7z).

The next step is to calculate the magnetic field potential ¢; from Eq. (3.63). To do that we
split the magnetic potential into two parts, ¢; = @11 + @12 so that

(V2= Msk*) 11 = V.0, (3.76)

(V2= Msk®) 12 = — V.. (3.77)
(3.78)
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with the boundary conditions
eV.p11 £ kop1q |Z:i% =0 (3.79)
E(V.012 + ¥mer) koo ‘z:i% =0 (3.80)

The solution for ¢q; is straightforward and simple when we take the temperature field in
the form of Eq. (3.69)

7B k sinh(az) > (3.81)

o1 = 72+ a2 <sm(7rz) a kisinh($) + €a cosh(3)

with a = v/ M3k. The solution for ¢5 has the form

613 = Msinh(az) — & (sinh(az) /0 " cosh(ag)c, (€)de — cosh(az) /0 i sinh(ag)c;(g)dg) (3.82)

a

with M a constant of integration. Note that ¢12(z) has to be an antisymmetric function in z.
To find M we consider the boundary condition (3.80). This is done in App. 3.9.2 with the final
result

L2 1/3 kwm
(1+ me2)> ksinh(§) + €a cosh(§)

h12(2) = a1 — My) ( e sinh(az) + O(L), (3.83)
A

where o = — fooo Cf'(€)d¢ ~ 2.791 is a real number of order 1 independent of any parameter of

the problem, and the function f(¢) is defined in Eq. (3.97) in App. 3.9.1.

Having found an approximate expression for the profiles of the concentration and magnetic
potential we substitute them into Eq. (3.59) and then project this equation on the weight
function cos?(mz). Equations (3.62) and (3.63) are to be projected with the weight functions
sin(27z) and cos(mz), respectively. This leads to a system of three algebraic equations for
the amplitudes A, B, G (3.68)-(3.70), from which we get the final (implicit) expression for the
saturation amplitude A as a function of the parameters of the problem

187t 1+ Mi(B —27BG)

Ra 1+ 403;2A2
3272 2Aa "
1— M. L My, 1 —=~yG) My, | ————— .84
H = M) | L+ M) (0 =360 (577 ) | (380
Here
2 371° sinh (&
B=1-—— "+ msinh(g) , (3.85)
2 +a? (7% 4 a?)(47? + a?)(7sinh(§) + €acosh(§))
5 - §(1_ 72 " 2 | a_ 37r3(8ﬂ2—a2)sinh(§)’ (3.86)
5 2 4+a?’ w4 a® (mwsinh(§) + €acosh(§)) a(a* + 20a?7? + 6474)
27%/3 sinh (%
7 = « T <2), : (3.87)
(a? + 47?)(7sinh(§) + €a cosh(§))
3 2
5 o= o2 (3.88)

a? + 1672’
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G, the stationary amplitude of 6y Eq. (3.70), is

o 942
16073 (1 + 25 A2)

4072

(3.89)

while B = (57%2/2A)G. In the Eq. (3.84) we have chosen k = 7 in order to simplify the
formula. This is reasonable, since the wave number of the maximum growth k. is close to
7. The second line of Eq. (3.84) can be seen as an expansion in ,,L%3 and L. Since
the prefactor of the former is pretty small, we have also kept the leading contribution to the
order v,,L. The complete evaluation of the v,,L term is hardly worth doing, since it makes
formula (3.84) unnecessary complicated without significantly changing the quantitative results.
The occurrence of fractional powers of A and L as products with 1, and M; indicates the
importance of the boundary layers in the case of an external field.

3.7 Influence of the Kelvin force

We first investigate the influence of the Kelvin force on the convection and disregard mag-
netophoresis for the moment by putting M, = 0. The equations for the mode amplitudes
A, B,G, ay,,b, have been solved by a Runge-Kutta integration. The wave number k, usually
taken to characterize the mode of maximum linear growth rate A(k, Ra), varies between 3 and
3.5 within the investigated Rayleigh number regime. However, since the final predictions of
our model turn out not to depend sensitively on the k-value chosen, we adopt in all of our
simulations & = 3.1. All runs are started form the initial configuration of an undisturbed linear
temperature and magnetic field profile and a constant concentration as given in Eqs. (3.36) -
(3.38), and small random velocity fluctuations to start the convection process.

In all of our runs the convective motion was found to settle in a stationary convection the
same way as it is in the absence of magnetic field [9]. There are roughly three different regimes of
the time evolution: linear growth, nonlinear transition to a saturation state, and the saturation
state itself. When we fix the temperature gradient (i.e. take the Rayleigh number constant) and
change the magnetic field strength, we have the bifurcation picture as a function of M;. This is
the most convenient bifurcation curve to compare with experiment, since during experiments
it is much easier to change M; (i.e. the magnetic field) than the Rayleigh number (i.e. the
temperature difference). This bifurcation diagram is shown in Fig. 4.1 for different values of the
separation ratios ¢ and ,,. These two parameters are related to the two different mechanisms
of how the concentration inhomogeneity changes the bifurcation picture. The separation ratio
1 is independent of the magnetic nature of the grains and describes the concentration buoyancy
force due to the density difference of the solvent liquid and the magnetic grains. The second
mechanism is due to the Kelvin force that arise from the concentration variations of the magnetic
particles and the resulting strong variations of the magnetic susceptibility. This effect relies on
the magnetic nature of the ferrofluid particles and is characterized by the magnetic separation
ratio .

Without any concentration variations (i, = 0, and ¢ = 0) we have the usual pitchfork
bifurcation with respect to M; (Fig. 3.1). If only the non magnetic mechanism is switched
on (¢p = 10, ¢, = 0), the bifurcation looks like an imperfect one with a non zero satura-
tion amplitude even in the subcritical parameter range. In the supercritical parameter range
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Figure 3.1: The saturation amplitude Az, = A(t — o00) as a function of M; at Ra = 1300 for
different values of ¢ and v, (see text). The dashed lines are the analytical result (3.84).

the amplitude approaches that of the homogenous ferrofluid. If we switch on additionally the
magnetic buoyancy effect (1, = 10), the bifurcation deviates strongly from the previous cases
and, in particular, has a different saturation behavior for strong magnetic fields. We should
point out that in order to get this numerical result at least 50 modes, each for the concentra-
tion and magnetic field, have to be taken into account. Comparing this to the case without a
magnetic field [9], when 20 modes were more than enough, we can see the importance of the
boundary layers when the magnetic field is on. In Fig. 3.1 the analytical results, Eq. (3.84), are
shown as dashed lines. The agreement between the numerical and analytical result is very good.

Influence of magnetophoresis

In this section we discuss the influence of magnetophoresis (My # 0). In the implicit
equation for the amplitude, Eq. (3.84), the magnetophoretic effect is manifest in two different
ways. First, there is the global pre-factor (1 — Ms) in the second line and, second, there is
the denominator (1 + Mat,,)!/? in the term proportional to L?/3. Since M, is negative (but
M), > —1, cf. the discussion after Eq. (3.44)), both effects grow with the external field.

The second effect gets very pronounced, when the product Msi),, approaches its stability
limit —1. This happens for a magnetic field Hy — H,. with H?> = yg€ .2, where, however, the
susceptibilities may themselves be (weak) functions of HZ for strong fields. In that limit the
boundary layer becomes singular, which is indicated in the numerical approach by the necessity
to take into account more and more spatial modes. The analytical treatment also breaks down
and Eq. (3.84) is no longer a good description. The breakdown of thermodynamic stability also
shows up in the diffusion equation for the concentration

Orc(z,t) = L(1 + 1, My)V3c(z,t) (3.90)

that follows from Egs. (3.41) and (3.43) under the assumption that the temperature equilibrates
much faster. For Hy — H, the diffusional time scale diverges and, therefore, the boundary layer
profile gets sharper. This can also be inferred from the Eq. (3.98), which shows the boundary
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layer depth to scale with (L(1 4 t,,M5))'/3. For the amplitude the effect of M, is very weak
and hardly visible in a plot like Fig. 4.1, except for the immediate vicinity of the stability limit
(14 Myyp,) = 0.

The breakdown of thermodynamic stability may be related to particle agglomeration and
internal structure formation. The magnetophoretic effect is due to the force, which drives
magnetic particles to areas of larger magnetic field strength. This leads to agglomerations,
where the magnetic field is larger and consequently attracts further particles. This mechanism
is compensated by the (magnetic-field independent) diffusive motion or the particles. When the
strength of the magnetic field exceeds a certain value, the diffusion fails to prevent agglomeration
of the particles and structures are built. In that case the description in terms of an ordinary
binary mixture is no longer possible.

3.8 Conclusion (Chap. 3)

We have derived the complete set of equations to describe ferrofluids in an external magnetic
field in terms of a binary mixture. Magnetophoretic effects as well as magnetic stresses have
been taken into account in the static and dynamic part of the equations. They were used to in-
vestigate the thermal convection instability of ferrofluids in the presence of an external magnetic
field. As in the case without a magnetic field, the effect of the concentration field is manifest
in an apparent imperfection of the bifurcation. A magnetic field makes this imperfection more
pronounced. More important however, an external magnetic field not only leads to pronounced
boundary layer profiles (with respect to concentration and magnetic potential), this boundary
layer also couples effectively to the bulk behavior due to the magnetic boundary condition.
This makes the numerical solution of the bifurcation problem considerably more complicated
than without a magnetic field. Nevertheless, we were able to present an approximative an-
alytical solution by taking into account part of the boundary layer behavior, explicitly. The
agreement between the analytical and the numerical solution was very good. We also discuss
the limitations of the binary mixture model. In a strong external field diffusion fails to pre-
vent agglomeration of the particles due to magnetophoresis. In that case the breakdown of the
binary mixture model shows up by the occurrence of a negative effective diffusion constant.

3.9 Appendix (Chap. 3)

3.9.1 The boundary layer problem

We consider Egs. (3.60), (3.74), and (3.80) in the vicinity of the boundary z = 1/2. Near the
boundary the derivatives with respect to z of the functions ¢y, ¢; and ¢ are large and we use
this fact to simplify these three equations as

. (wier) = L1+ Maty)cy — L(1 — My), (3.91)

2
wicg = L(cf —Magly), (3.92)
e = —Und, (3.93)
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under the assumptions
"< @ and V2> K2 (3.94)
Combining these three equations into one we get an equation for ¢;

1 L2(1 4 Myihy,)?
Loy = M) 0 py gy, (3.95)

2 W

Near the boundary z = —1/2 we have ¢ = z — 1/2 < 1. Expanding cos?(7z) in powers of ¢ the
velocity w; = Am?e? and Eq. (3.95) takes the form

A 4 L(l + M2¢m)2 " 2

mg C1 = 71'2A(1 — M2) Cp — €. (396)

We rescale the concentration field and z coordinate in such a way that the final equation
becomes independent of any parameters and appears to be a universal equation defining the
boundary layer profile

1
=1 (3.97)
with

= (i) e e =0 () FO 69

Thus, the layer depth ¢ scales with L'/3. We assume that the boundary condition (3.64) for the
concentration field ¢; can be replaced by a homogeneous one ¢} (£+1/2) = 0 leading to f'(0) = 0.
In this case the boundary layer profile becomes self-similar. As a second boundary condition we
require that the function f(¢) has the asymptotic form f(¢) — —2/¢? when ¢ — oo, in order to
be compatible with the bulk solution (3.75). In Fig. 3.2 we compare the boundary layer profiles
that follow from the analytical solution (3.97)-(3.98) with those obtained numerically. The
approximation f’(0) = 0 is good, when M; is not too large, e.g. for M; = 0.1 the agreement
between numerics and analytics is better than for M; = 1.0. The important quantity we extract
from the boundary layer considerations and that enters Eq. (3.84) is o = [[7&f/(€)d€. The
error made by calculating this number using the condition f’(0) = 0 is of the order of 30%
when compared with the numerical result for M; = 1.0, where f'(0) ~ —0.5 (Fig. 3.2). This
correction would change the analytically determined amplitudes, Eq. (3.84), shown in Fig. 3.1
as dashed lines only by about 1%.

3.9.2 Calculation of the magnetic field ¢2

To fulfill the boundary conditions for the magnetic potential we need to plug the expression
(3.82) into Eq. (3.80). Doing so we get the integrals of the type

1/2 1/2
/0 cosh(a€)c! (€)de, /0 sinh(ag)d, (€)de (3.99)

which would diverge, if we would simply use expression (3.75) for the concentration field. To
resolve these singularities we have solved the boundary layer problem for the concentration
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Figure 3.2: The boundary layer profiles obtained from a) the analytical solution f(¢), Eq. (3.97),
b) the multi-mode numerical solution scaled with (3.98) for M; = 0.1, and ¢) for M; = 1.0
(My = 0, % = 10 and 1, = 10).

field in the preceding section. Let us consider the first integral, the second one is treated in the
same way. We can divide this integral into two parts

1/2 1/2-A 1/2
/ cosh(a&)cy (€)dE :/ cosh(af)c’l(f)df—l—/ cosh(a&)c(€)d¢. (3.100)
0 0 1/2-A
Here A is a small, but fixed value, chosen in such a way that for z > A the bulk profile (3.75)
and and for z < A the boundary layer profile (3.98) are valid. In the second integral we can
expand cosh(a) in the vicinity of £ = 1/2. Then we can write

/: cosh(a&)c)(§)d¢ = cosh(g) /: ¢ (&)dE + asinh(g) /z (€ —1/2)c(&)dE + ...

/2-A /2-A 1/2-A
a .. a’ a
= cosh(g)fo(z) + asmh(§)ll(z) + 5 Cosh(g)lz(z) +... (3.101)
for z — 1/2. Since ¢, is regular at the boundary and the boundary layer depth § ~ L'/3 the
expansion (3.101) is actually an expansion in powers of L!/3.
If we substitute the expression (3.101) [and the appropriate one for the second integral in
Eq. (3.99)] into the potential ¢12 (3.82), the boundary condition (3.80) for z = 1/2 takes the
form

M (k sinh(g) +éa cosh(g)) k(2 — 1/2) + e[~ Io(z — 1/2) + ¢(1/2)] +... =0 (3.102)

where the dots indicate terms of O(L), e.g., Io(z — 1/2). From the definition of Iy(z) we can
see that the leading contributions in the brackets cancel and only terms ~ L?/3 are left. Thus,
the main contribution to M is proportional to the integral I(z — 1/2)

_ Ktbm
M= ~ ksinh(2) +éa cosh(%)h(Z —1/2) (3.103)
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With the expression (3.98) we can calculate the integral [;(z — 1/2)

1/2
ne=12) = [ ey
2 1/3  froo
= -0 (sprian) [, Q@O (310

where we have replaced A as the upper limit of the integral by co. The error introduced is
canceled by the first integral of Eq. (3.100), (which we have not considered so far) if the bulk
and boundary-layer concentration fields ¢; are matched at z = A. Since in the bulk ¢; ~ L, the
remaining contribution of the first integral in Eq. (3.100) is of O(L), which we neglect. Finally,
the magnetic field ¢5 in the bulk of the layer takes the form

12 1/3 Kb
1+ meg)) ksinh(§) + €a cosh(§)

P12(2) = a(l — M) (W4A2( sinh(az) + O(L), (3.105)

where a = fooo Cf'(¢)d¢ =~ 2.791 is a real number independent of any parameter of the problem.



Chapter 4

Hydrodynamic instabilities in
ferronematics

4.1 Introduction

In the last 20 years the study of nonlinear nonequilibrium phenomena in spatially extended
systems, with particular emphasis on pattern-forming phenomena, has been one of the very
active areas in physics, exhibiting interesting ramifications into other sciences. During this
time the study of the "classic” systems, like Rayleigh-Bénard convection and Saffman-Taylor
instability in simple fluids, has also been supplemented by the study of more complex systems.
Here liquid crystals have played and are still playing, a major role. They are full of non-
linearities and give rise to new symmetry classes, which are sometimes actually simpler to deal
with qualitatively, but they still allow a quantitative description of experiments in many cases.
In fact, one of the attractions of the field is the close contact between experiment and theory. A
good introduction to the recent development of the field of instabilities and pattern-formation
in liquid crystals can be found in [84].

When we deal with ferronematic liquid crystals, rather than simple nematics, the theoretical
description becomes more complicated. This is due to the fact that ferronematics are more
sensitive to magnetic fields, and those magnetic field effects, which can be safely neglected in
conventional nematics, may become important in ferronematics [57).

In this chapter we address the question, what are the consequences of the new linear mag-
netic field effects derived in [57] on hydrodynamic instabilities in ferronematics. In particular,
we consider the well-known Rayleigh-Bénard and Saffman-Taylor instabilities and discuss how
the general features of these instabilities are changed qualitatively due to the presence of the
new contributions [79]. The qualitatively new behavior can be used as a tool to measure the
new field-dependent material parameters involved [57].

We disregard the magnetization as an independent dynamic degree of freedom, but assume
that it is relaxed to its equilibrium value and orientation on the time scale under consideration.
This is in the spirit of the "rigid anchoring” approximation [37], implying that the relative
orientation of the director n and the local magnetization M is fixed (being either parallel
or perpendicular). However, with the synthesis of thermotropic ferronematics [85] it became
evident that this approximation might not be generally applicable. The orientations of n
and M were treated as separate degrees of freedom within the framework of a microscopic



38 Governing equations

model [86] and in a hydrodynamic description [59]. We also assume that there is no spontaneous
magnetization (true ferromagnetism), that means there is no remnant magnetization in the
absence of an external field. Although such a ferromagnetic behavior is possible in principle [87],
there is yet no experimental evidence for it.

The chapter is organized as follows. In the next section we recap the governing equations
and simplify them for particular cases of interest. In section 4.3 we address the problem of
the Rayleigh-Bénard convection in ferronematics for two different cases - positive and negative
magnetic susceptibility anisotropy. Section 4.4 presents a linear analysis of viscous fingering in
a radial Hele-Shaw cell for ferronematics.

4.2 Governing equations

As discussed in the preceding section we take the set of hydrodynamic equations given in [57] to
describe ferronematics. Since we will use them to discuss Rayleigh-Bénard and Saffman-Taylor
instabilities, we will apply the well-known Boussinesq approximation [74], i.e. take the flow
as incompressible and all material parameters as well as the density as constant (pg), except
for the buoyancy force. We are then left with dynamic equations for the velocity field v, the
temperature 7T, and the director field n

a’UZ' 1-
P(E +v;Vjv) = =Vip+viyuV;Viv + EAkjivjhk = Vi(®uVin) +pgi  (4.1)
dive = 0 (4.2)
Cy 0T
?(E + 0, ViT) = ki ViV,;T (4.3)
ani 1 _
5 TVt = —5AaVive+ (v ish; (4.4)

where on the r.h.s. of (4.3) dissipative nonlinearities (e.g. ”viscous heating”) have been ne-
glected. CYy is the specific heat at constant density, p is the pressure, g is the constant gravity
force, while h = de/On (with € the energy density) and ®;; = Je/0V,;n; are the thermody-
namic conjugates to homogeneous and inhomogeneous director reorientations [78]. The former
describes the static response to external fields, while the latter contains the Frank rotational
elasticity. The induced magnetization is assumed to be fixed by the external field and is not
a dynamic variable. The concentration of magnetic particles is very low and we neglect the
Kelvin force.

The material tensors, in linear order of the external magnetic field, are the sum of a constant
part and a linear one

Vijkl = Vi?kl + Vi};kz(H) (4.5)
Kij = ki + kL (H) (4.6)
Mok = AR+ A2 (H) (4.7)
Neji = My — Aoy (H) (4.8)
(Y Dy = (75 +(YEH) (4.9)

and describe viscosity [88], heat conduction, flow alignment and director relaxation, respectively.
Their general form is listed in [57, 78] and will be given below, as far as needed. Note that
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the thermodynamic nature of the different contributions changes from dissipative (superscript
D) to reversible (superscript R), or vice versa, since the magnetic field transforms odd under
time reversal. Thus, the field-free contributions to the dynamics always have a different time
reversal behavior compared to those linear in the field, which in turn gives rise to the different
thermodynamic properties. This is reflected also in the different symmetry properties (Onsager
relations), i.e. symmetric in the dissipative parts (], = &%}, vy = vi;, (Y1) = (v7)7) and
antisymmetric in the reversible parts (s/(H) = —#5(H), viy(H) = —vij;(H), (v")i(H) =
—(v")E(H)) and in the difference between A and Aiji in (4.1) and (4.4).

It is the purpose of this work to investigate the influence of the linear field contributions
to the transport tensors (and mainly that of v%,(H)) on various instabilities. We do this in
the approximation of very strong fields, since in that limit there is the best chance that the
proposed new effects are observable. Specifically we assume that the director relaxes to its
equilibrium orientation, defined by the external field, on a time scale much smaller than that
of the other relevant variables. In that case dn;/0t = 0 and the director is clamped. The larger
the field the better is this approximation. For ordinary nematics (5CB) the field necessary to
clamp the director is about 1 kGauss [89] and probably smaller for ferronematics, since their
response to magnetic fields generally is stronger.

This approximation is similar in spirit to the incompressibility assumption, where the density
variations are supposed to live on a much shorter time scale than the other relevant variables
(i.e. the relevant velocities are much smaller than the sound velocity). When density variations
are not a dynamic variable, its conjugate, the chemical potential or the pressure is no longer
determined thermodynamically. The pressure is used to guarantee the incompressibility for all
times, i.e. ddive/0t = 0, which leads to a condition on V?p in Eq. (4.1). Eliminating the
director as a dynamic variable has the consequence that its conjugate, h is not defined, but
rather functions to guarantee n = const. for all times, thus reducing Eq. (4.4) to

1
h; = ”in§)\jklvkvz (4.10)
where Ypm (7 )mg = oy Substituting this in (4.1) we regain for this equation a form familiar

from simple liquids

0 Vi

,O(E + vjVjvi) = —Vip + V;@J;Vjvkvl + P4 (411)
but with an effective viscosity tensor
e L+
Vi]% = Vijkt + ZL)‘m‘WPm)‘mkl (4.12)

Since we are concentrating on linear field effects Eq. (4.12) can be simplified

. 1 1
Vij};cj; = Vilj?kl + ngz(H) + ZkﬁﬂfmAﬁkl + Z’me ()\]?ji)\nlel<H) - )‘zl))ji(H>>‘1]jzkl)

1
+Zl)\fjﬂfm(H))\ikz (4.13)
where the «;; tensors are given by

%= oy (4.14)

2 2
v o

o= —ﬁﬁijk”k"lf[l - 7—113 (€ijp + €ppnrnj — €jprniny) Hy, (4.15)
2

1
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Here the coefficients 7, 4% are those introduced in [57].

The explicit forms of this effective viscosity tensor will be discussed for the two cases n || H
and n L H below.

The heat conduction equation (4.3) also contains a new linear field effect through /f(H)
(4.6). However, in this case the bulk effect vanishes, since both, Vi/ff} = 0, because of n = const
and the Boussinesq approximation, and mf}ViVjT = 0, because of HZ(H ) = —/ﬁﬁ(H ). Thus,
this linear field effect will only appear in boundary conditions, if they are formulated in terms
of the heat flux. We will not consider such boundary conditions in what follows.

In the next section we will investigate how the new terms (4.13) manifest themselves in the
thermo-gravitational instability.

4.3 Rayleigh-Bénard instability

4.3.1 The case when n || H

We consider an infinitely extended layer of ferronematic liquid crystal bounded by two rigid
parallel plates at distance d. The temperature of the plates is kept fixed at T} and Ty > T}
(Fig. 4.1). An external magnetic field is imposed in z-direction (é,) and the gravitational force

—

H,¢

Figure 4.1: Sketch of the setup in the parallel case. For details see text.

works in —z-direction (g = —gé.). In the case of a positive magnetic susceptibility anisotropy
Xa > 0 the director tends to align along the magnetic field. Homeotropic boundary conditions
for the director are helpful. We assume the magnetic field to be strong enough that the director
is clamped

n H] (4.16)
and does not have an independent dynamics. The magnetic field in the sample is always taken
as static and uniform, and equal to the value of external field (eventually corrected by some
demagnetization factor). Thus the system is described by the effective Navier-Stokes equation
(4.11), incompressibility (4.2) and heat conduction (4.3).

The trivial heat conduction state, without any flow and a linear temperature profile is always
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a solution.

v = 0 (4.17)
T(z) = —TO_T12+T0 (4.18)
o) = 1+, ) (119

with o, = —(1/p)(0p/0T), the thermal expansion coefficient.

However, this solution is stable for small temperature differences only and is subject to the
Rayleigh-Bénard instability, when the temperature difference exceeds some threshold value. To
find this threshold value in terms of the material parameters involved, we study the stability

of small perturbations of the ground state (4.17-4.19) by linearizing (4.2,4.3,4.11) around the
conduction state

\%74 eff

&:Ui — —p— -+ Mz’jklvjvkvl —gQy 05272 (420)
0
divve = 0 (4.22)

Here v is the velocity field (w = wv,), 6 is the deviation of the temperature field from the
linear profile (4.18) and p’ the pressure perturbation. The temperature conduction tensor
kij = ki (85 —nyn;) + kynyn; is related to the heat conduction tensor x;; = (Cy/T)k;; and
the effective kinematic viscous tensor uffk’; = (1/ po)ui?% is connected to the effective dynamic
viscosity VZ];J; (4.12).

The complicated tensors (4.5-4.9) that enter uff,j; can be simplified in the special case n || H
considered here with the result

po = va (838 + Sudn)
+2(1y + vp — 2u5 + %’yl)\z) Nin MMy
+(vs — o) (njnidix + njngby + ningdj + ningdy)
—i—%% (()\ — 1)?0nim; + (A + 1)25imjnk)
—l—;ll’yl()\Z — 1)(0jiming + dunjng)
+H(Df5ikpnjnlnp + Dfailpnjnknp + Dfsﬂpnmknp + ﬂfajkpnmmp)
+UH (ei1p00mp + €ip06np + Ejrplirty + €j1p0ik1yp) (4.23)

where for the field-free viscosities (11 23) the Harvard notation [90] is used, A is the flow align-
ment parameter [91], and v; the rotational viscosity [92]. The abbreviations 7 and 7# that
are related to the new field-dependent effects are listed in App. 4.6.1 (4.41).

We non-dimensionalize equations (4.20-4.22) by taking the layer thickness d as length scale,
d?/k, as time scale and the difference Ty — Ty as temperature scale. With the usual procedure
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[74] of taking (curl curl), as well as curl, of the Eq. (4.20) we get for w, £ = (curlv), and 6

%at (A2 +VHw = (aVi+bAV:+cAj)w+ Ralyf
+H; (eAy = V2) V.E — Hy (A2 + V) VoL (4.24)
Piratg = (Ao +ad?)¢—H, (dAy — V) Vow + Hy (Mg +02) Vow  (4.25)
00 —w = V20 +al0 (4.26)

with the 2-dimensional Laplace operator Ay = (V2 + Vz) The material dependent coefficients
are a = (v3+37(1+X)?)/va, b= (201 + 205 — 2u3+ (N2 + 1)) /1o, ¢ = (3 + 37 (1= N)?) /v, d =
vt Jodl, e = 8t Juft, and a = k| /kL, with Ra the Rayleigh number Ra = gd®a,(To—T1)/(v2 k1)
and Pr the Prandtl number Pr = v,/k;. The magnetic field enters in the non-dimensional
form H, = vl'H /vy and Hy = 0% H /1.

One can see that in addition to the degrees of freedom that are necessary to describe
the Rayleigh-Bénard instability in usual nematics, there is also &, the z - component of the
vorticity. This situation is similar to the case of the thermal instability in a rotating layer of
simple liquids [74]. In both cases the time reversal symmetry is broken by the external (flow
or magnetic) field. In our geometry we expect a roll pattern due to the spatial up-down or
mid-plane symmetry that is still present. In such a pattern the z-component of the vorticity is
manifest as a crossflow in the x — y plane as shown in Fig. 4.2. Measuring this component of
the velocity can serve as a direct indication of the presence of the new field-dependent terms in
the viscosity tensor. Although ferrofluids are rather dark and flow is difficult to view directly,
reflecting tracer particles may be used.

ieres

y COC OC O D

Figure 4.2: The effect of the new field-dependent terms in the effective viscosity tensor on the
convection roll pattern. The flow due to the non-zero vorticity component is shown by arrows
on the top; at the bottom the arrows are in opposite direction. The orientation of the rolls is
chosen to be the y-direction, arbitrarily.

We have determined the threshold of the stationary instability taking for example the ma-
terial parameters of MBBA liquid crystals. Assuming non-slip boundary condition we use the
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method suggested in [75] (cf. App. 2.6.1). On Fig. 4.3 one can see the threshold as a function
of the non-dimensional magnetic field H = H, + Hy = H(vl + v + v + 3vF) /v, for the
case vt = vt = plt = U = U7 (this additional assumption is made for representative reasons
only). For low fields the threshold is a quadratic function of the magnetic field, which is to
be expected, since the Rayleigh number is a scalar while the magnetic field is a vector. This
quadratic field dependence is not specific for the new contributions in the viscosity tensor, since
any (trivial) H2-dependence of material parameters would produce such an effect. The H effect
on Ra, is rather small. In order to get a 3% increase, H has to be about 0.5 requiring the field
H and the typical vZ to be so large that Hv% is about one order of magnitude smaller than

the ordinary shear viscosity vs.

Ra
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Figure 4.3: The critical Rayleigh number Ra. as a function of the magnetic field H (parallel
case).

The high value of the threshold without field is due to our assumption of quenched director

orientation, which leads to the presence of the additional terms AT 4D A, in the viscosity

tensor (4.13). For very high fields, which are probably beyond experimental reach, Ra, ~ _4/3,

asymptotically. Comparing with the case of a Rayleigh-Bénard experiment under rotation in
simple fluids [74], where an oscillatory instability is possible for very low Prandtl numbers, we
expect the instability to be always stationary here, since Pr > 1 in nematics. In the rotation
case, the stationary rolls are known to be subject to the Kiippers-Lortz secondary instability
into a non-stationary state at even higher Rayleigh number Ra > Ra. [93], and this behavior
can be expected here in the ferronematic case, too.

4.3.2 The case when n 1 H

When the magnetic susceptibility anisotropy is negative x, < 0, the director field tends to be
perpendicular to the magnetic field. This is the typical case for lyotropic systems. Here, in
principle also concentration and mixture effects have to be taken into account. In the preceding
chapters we have shown their importance for isotropic ferrofluids. Here we concentrate on the
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s,
Figure 4.4: Sketch of the setup in the perpendicular case. For details see text.

qualitatively new linear magnetic field effects that are independent from the binary mixture
behavior and stick to the simplified single-component description.

To consider the influence of the new magnetic field dependent terms we consider the ge-
ometry shown in Fig. 4.4. As in the previous case we have an infinite layer of ferronematics
subject to a temperature gradient across the layer. An external magnetic field is imposed along
the temperature gradient (z-direction,) while the nematic director is oriented perpendicular
(y-direction). We assume that also a strong electric field is applied, in order to clamp the di-
rector in its equilibrium orientation. Thus, like in the preceding section, director reorientations
are neglected. In this case the equations describing linear stability analysis are again given by
Eqgs. (4.20-4.22), where the effective viscosity tensor (4.13) now takes the form (4.42) given in
App. 4.6.2.

We also assume that the magnetic field dependent contributions come only from the viscosity
tensor, i.e. we neglect all A2 in (4.43). Otherwise we need to explore a parameter space of very
high dimension. This is not reasonable at present, since those parameters are unknown and we
are interested in qualitative effects only. In this case the magnetic field enters the equations
through two material dependent dimensionless coefficients

H = (Wf—vil+uvH/ v,
Hy = (WE+vl—2f — 0B —308H/0, (4.27)

which contain combinations of the 2 (o = 1...8) introduced in [57]. If no magnetic field is
present, the behavior of the system is that of a pure simple liquid and the convection sets in
at Ra. = 1708, because the heat focusing effect of nematics [94] is suppressed by clamping
the director. Comparing with the case n || H the clamped nematic degree of freedom now is
inoperative with respect to the onset of the instability, but sets the direction of the rolls.

If we switch on the external magnetic field, the new dynamic field-dependent terms come
into play and the instability picture changes considerably. To study this problem in more detail
we use a three dimensional analysis introduced in [95]. The velocity field is represented by two
scalar potentials f and g

V.V.f+Vyg
v = V,V.f—=V.g (4.28)
V.V, f =V, V,f
Due to the homogeneity in the lateral directions we can take all fields to be of the form
{f,9,0} = {f(2),9(2),0(z2)}exp{ikr + iwt}, where k is a two-dimensional wave vector in the
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Figure 4.5: The wave vector components k, and k, corresponding to the minimum of the
function Ra.(k,, k,) as a function of the magnetic field H.

x — y plane. Substituting (4.28) into the linearized equations (4.20-4.22) and taking curl, as
well as (curl curl), of (4.20) we get the linear system of equations

X f
L(Ra, ky, ky,w, Hi, Ho) | g | =0 (4.29)
6

where L is a linear differential operator of eighth order with respect to z. The explicit form of
Eqgs. (4.29) is presented in (4.44-4.46) in App. 4.6.3. No-slip boundary conditions translate into

f0)=f(1)=f(0)=f(1) = 0
9(0)=g(1) =
9(0)=0(1) = 0 (4.30)

To find the threshold of a stationary instability we take w = 0. At any given values of
ky, ky, Hi,and H, the problem is to find the value Ra such that the boundary value problem
(4.29-4.30) has a nontrivial solution. The function Ra(k,,k,) is then minimized to find the
threshold Ra, for the given values of H; and Ho.

The solution of this problem was accomplished using the shooting method presented in
Ref. [75] (cf. App. 2.6.1). Here the system of linear differential equations is solved using a
matrix representation of the solution. The parameters were taken as those for MBBA liquid
crystals. In order to simplify the presentations of the results we take Hy = 0 (H; = H). This
additional assumption does not change the qualitative picture of the instability, nor does it
affect the limiting cases H = 0 and H — oo. In the case of zero magnetic field the minimum
of the function Ra(k,,k,) is on the line k, = 0, which corresponds to rolls aligned along the
nematic director. The critical Rayleigh number is then Ra, = 1708 as expected [94]. Increasing
slightly the strength of the magnetic field leads to an increase in Ra., but £, is still zero. When
the value of H exceeds some critical value H, the minimum of the function Ra(k,, k,) shifts to
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Figure 4.6: The critical Rayleigh number Ra, as a function of the magnetic field H (perpen-
dicular case).

a finite k, # 0. On Fig. 4.5 the dependence of k, and k, on H is presented. The appearance of
a finite k, above H, is accompanied by a strong drop of k,. The critical H, already corresponds
to a rather large field H, for which the product with a typical v HvE is almost of the order
of the shear viscosity vs.

When the magnetic field is increased further above H;, we get finally k, = 0. The minimum
of Ra(k,,k,) is then along the line k, = 0 and the rolls are aligned perpendicular to the
director. Any further increase of H does not change the position of the rolls, nor the value
of the critical Rayleigh number. The threshold value as a function of the magnetic field is
presented in Fig. 4.6.

Analyzing these results we can predict the corresponding flow patterns. First, when H < H,
the convective rolls are aligned along the electric field. When the magnetic field exceeds this
lower critical value H,, the rolls get oblique with respect to the electric field and the angle
between the rolls and the electric field increases with increasing magnetic field. At the point
when the magnetic field reaches the upper critical value H;, the rolls are perpendicular to
the electric field and stay so for any higher field. Note that the director is always parallel to
the electric field (and perpendicular the external magnetic field). Thus, in the intermediate
magnetic field regime the director is oblique to the roll orientation, while in the high field
regime it is perpendicular. It is possible that this high field regime cannot be reached in actual
experiments.

We have looked numerically for an oscillatory instability, but did not find any. Since this
search could be done for a limited parameter range only, this is no proof for a general absence of
an oscillatory instability. In principle, the set of equations (4.29,4.30) can support non-trivial
solutions at a finite frequency w # 0, since it is not self-adjoint.
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4.4 Saffman-Taylor instability

Another useful tool to study the new linear field dependent contributions in the effective vis-
cosity tensor is flow in a Hele-Shaw cell. When a viscous fluid is displaced by a less viscous one
in the narrow space of a Hele-Shaw cell the Saffman-Taylor instability arises [96]. We consider
a radial Hele-Shaw cell (Fig. 4.7), which consists of two parallel transparent plates at a distance
d. The gap between them is filled with a high viscosity fluid, in our case a ferronematic. The
low viscosity one (usually air) is injected through an inlet at the center of the upper plate.

ferronematic

Figure 4.7: The setup of a radial Hele-Shaw cell. For a ferronematic the external magnetic field
leads to the rotation of the fingers shown by the arrow.

A magnetic field is imposed perpendicular to the plates (in z-direction) strong enough for
the nematic director to be clamped. Here we again assume that the magnetic susceptibility
anisotropy is positive and the director field is aligned parallel to the external field.

The description of the fluid motion far from the interface follows the usual lines [97]. Ne-
glecting the inertia terms in the Navier-Stokes equation (4.11) we have

Vip = po fok]; V;iViu (4.31)

where pouff,fl is given by (4.23) and the pressure gradient is constant along the radial directions.
Since the gap d is small, we can neglect all derivatives of the velocity except those along the
z-direction. Integrating (4.31) twice and taking the mean with respect to z-direction we get a
linear relation between the mean velocity and the pressure gradient

d2
v = — (Acssdij — Bersé€ij=)Vip (4.32)

with Aepr = v+ 37(1 = X)? and Beyp = H(vs" + ™), where 3t and 0 are given in Eq. (4.41).
In cylindrical coordinates (r, 6, z) there is — apart from the usual radial component of the mean
velocity v, parallel to the pressure gradient — now also an azimuthal mean velocity component
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vy perpendicular to the pressure gradient, due to the new linear field terms in the effective
viscosity tensor.

We will now consider how this azimuthal component of the velocity changes the picture of
the Saffman-Taylor instability in the radial Hele-Shaw cell. Without perturbations the interface
between the ferronematic liquid and the air is a circle with radius R(¢) (measured from the point
of injection) that increases in time according to the radial velocity (normal to the interface)
v, = v,.. The tangential velocity, can be related to the normal one

Bess

v = Uy = Uy, (4.33)

Acyy

We investigate the linear stability of this interface with respect to azimuthal shape distor-
tions ("fingers”) by assuming the interface to be located at r(0,t) = R(t) + ((0,t), with small
perturbations ((#,t). The time evolution of these perturbations is related to perturbations,
0v,, in the normal velocity by the linearized kinematic condition

&{ + UTng = 5Un (434)

taken at the undistorted interface R(t). Here the tangential velocity vr enters, since the dis-
torted interface is no longer circular. Since the function (6, t) has to be periodic in 6 in order
to have a well-defined interface, we can decompose it into discrete modes

¢(0,t) = Z Gn(t) cos(mb + ¢y, (1)) (4.35)

and make the linear stability analysis for each Fourier mode separately. We have allowed for
a (still unknown) phase ¢,,(t) for each mode. For the perturbations of the normal velocity we
can write in linear approximation

m=0oQ

v =Y Cu(t)im (0, ) cos(mb + (t)) (4.36)

m=1

where [i,,(0,t) is an operator with respect to 6. The actual form of this operator depends
on the details of the boundary conditions [98]. We will assume for simplicity that [, (6,t) is
independent of vy. This is justified as long as the interface forces are not drasticaly altered by
the magnetic field. Then it has the usual form

32
962
where the explicit expressions for the functions a(m) and b(m) are rather involved and are the
subject of special investigations (see for example [99]) due to the non-trivial physical mechanism
involving the capillary force. However, since we are interested in the qualitatively new effects

due to the finite tangential velocity vy, the special form of a(m) and b(m) is unimportant here.
Substituting (4.35) and (4.36) into (4.34) and taking into account (4.37) we get for (,, and

Pm

i (0,1) = a(R(t), m) + b(R(t), m) (4.37)

() = — (1) (1) (4.38)

bm = —m Ré) (4.39)
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where vy is taken at R(t). Here u,, = —a(R(t),m) + m?b(R(t),m) = 0 defines implicitly the
most unstable mode. This pattern of fingers is rotating with angular velocity muvr/R(t) due
to the time evolution of the phase ¢(t). Within our assumptions the phase evolution (4.39)
is completely decoupled from that of the amplitude and the details of a(m) and b(m) are
unimportant. The amplitude equation (4.38) is independent of the new viscosity contributions
and all previous investigations of the Saffman-Taylor instabilities for simple nematic liquid
crystal (see for example [96]) are valid in this respect also for ferronematics. But in addition to
the amplitude amplification there is the rotation of the growing fingers with angular velocity

o mQ Beff
27TR(t)2d Aeff

O = (4.40)

where we have used Eq. (4.33) to express vy by v,. The flow rate of the injected air, @,
is related to the normal velocity of the interface by @ = 27d R(t)v,. Note that the sense
of rotation reverses, if the magnetic field is inverted. The rotation velocity slows down with
increasing interface radius R(t) and is larger for a narrower gap.

4.5 Conclusions (Chap. 4)

We have discussed typical hydrodynamic instabilities in ferronematics under the aspect of
qualitatively new effects due to the linear magnetic-field contributions to the dynamics of those
materials. In Rayleigh-Bénard instabilities with the temperature gradient adverse to gravity
we find, in addition to convection flow in the form of one-dimensional rolls, a vorticity flow.
As a consequence, in the homeotropic case (the director parallel to the field) the streamlines
are oblique to the roll cross-section, while in the planar case (the director perpendicular to
the magnetic, but parallel to an electric field) the rolls themselves are tilted with respect to
the director depending on the magnetic field strength. In the Saffman-Taylor viscous fingering
instability of a growing interface between fluids of different density, the new linear magnetic-
field contributions lead to a rotation of the finger structure. Since the new effects are linear in
the external field and therefore change sign when the field is inverted, they are clearly distinct
from those effects that are based on the intrinsic field dependence of conventional transport
parameters, which are quadratic in the field. All these effects exist in principle in any nematic
liquid crystal, since they are connected to the nematic degree of freedom, only, and not to the
magnetization as an independent variable. In ordinary nematics, however, the interaction with
magnetic fields is very weak and those effects have never been observed. In ferronematics, where
the static response to magnetic fields is known to be enhanced by several orders of magnitude,
one can expect that the influence of the magnetic field on the dynamics is also increased and
strong enough to make the effects described here measurable.
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4.6 Appendix (Chap. 4)

4.6.1 The form of the coefficients ' and %

Here we express the abbreviations 7% and 7# introduced in (4.23) by the coefficients introduced

in [57):

2

271 1
ol = Vf+uf+2u§—7—1(7—R+—R> (/\2—1)—E(A1D+)\§)+Af)>\
1 2

+
4\t
o= o
271 1
vl = yf+u§+2u§f—74—1(—R+—R>(A—1)2—%(A?+A§+Aﬁ7)@—1)
M Y2
vto= vl

4.6.2 The effective viscosity tensor in the case when n | H

With H = He, and n; = ;, we get

Po ,uzejfka = 1 <5jl5ik + 5il(sjk)
+2(1/1 + vy — 21/3 + %,}/1)\2) n;n;NEny

+(V3 - Vg)(njnl&-k + njnkéil + nmkéﬂ + nml5jk)

<|>%1’71 (()\ — 1)25jknml + ()\ + 1)25imjnk + ()\2 — 1)(5]17117’% + 6iknjnl))

~R ~R ~R ~R
—H (07, 6ixmjniny + Dy 0iamningmny — Dip0kanniny — D7, 01mngn;

~R ~R ~R ~R
—|—V2a(5jxn15ik — uzbélmnjéik + V2b5jmnk(5u — I/Qbékxnjéil
~R ~R ~R ~R
—|—1/2b5iznk5jl — V2a(5]m3ni(5jl + V2a5i$nl(5jk — VQaélzniéjk
~R ~R ~R ~R
+1/3a5kxnl§ij + ngélxnkéij — l/3b5mnj5kl — V3a5jxni5kl)
g
v H (€ig=njny + €N + €511 + €120
R
+v7 H (8312051 + €20k + €j120ik + €jk20i1)
H(vBe... (5. Sins pRe (. St
+H (Dgq€iky (0521 + 01215) + Dgy€iry (9521 + Or2n)

—I—ﬁchsjly((Siznk + 5]%%2) + ﬁgﬁjky(@'znl + 5lzni))

with the abbreviations

(4.41)

(4.42)
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i = (A = M2+ AD)(A+ 1) —200)0)
R = (A7 = AP +A0)(A = 1) —2A0))
Uy, = vf - (A =1
Dy = vy +1)AY
Dy, = vy A—1DAY
7 A+ DAY
Uy = Vg + 207
i = R A+ DAY
g = g
v = — 1N (4.43)

4.6.3 The linear stability problem in the case when n 1 H

In this appendix we present the explicit form of the linear stability problem for the case when
n L H. It can be expressed in the form (4.29):

w (k2 +k)) <k:2 + k- —)

( +V3>k +uk2>f

2wy + 2u3+ 2 (1+ )\2)> KK £

-
—~

W

M4 +y3>k6+y2k:6>f

(14N +1/2+21/3>k:4k2f

(14 X) +21/2+1/3>k2k4f

+
>/
|

—V2+V3>l{ kyg

o
(
(
-
(3
(¢
(¢
(3

(1 =20 = 30%) + 201 + 5 — 3wy ) K2k, o

1= %I‘ﬁ ikt

|
/N
i~

(A — 1) — vy + V3> kmk";’ q
+iky (k2 + k;) ((Hak2 + ﬁlkg) g—Hig")
+ (k2 + k})gay, 0

2v1 + vy — 3V3 - = ()\2 )) k2 4 2V2k’;1> 1

(4.44)
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w (k2 + k;) g = - <% A=1)7 -1y + 1/3) kyky f"
+ %(A—1)2_y2+y3> k2 f
L=+ -1 — w2+ Bug ) Ky '
(% —1)° + u3> k? + Vﬂ%) q"
v

(A
(RO - 1)+ R+ 0)) g
282 (201 + 205) — v (2 — K2)°) 9
+iky (k2 + k) (Hok) + HikZ) f —Hy f") (4.45)

me

(
-
o
-
- (&

; _ 1 T - T
iwd = 5.0" = (wiky+ () + 6L) K) 0+ ——— (K} + ky) f (4.46)
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