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Zusammenfassung:

Weiche Grenzflachen konnen Wechselwirkungen zwischen Teilchen vermitteln, die
an sie gebunden sind. Dies geschieht beispielsweise mit Proteinen in einer Lipid-
membran. Der traditionelle Ansatz zur Bestimmung der auftretenden Kréfte ist
folgender: Die Gesamtenergie des Teilchen-Grenzflache-Systems wird als Funktion
der Teilchenpositionen berechnet. Krafte zwischen den gebundenen Teilchen er-
geben sich dann durch geeignete Ableitungen. Leider zwingt einen die inharente
Nichtlinearitéit dieses Problems fast immer, sich auf lineare Néaherungen der Ener-
getik zu beschranken.

Es ist jedoch stattdessen auch moglich, einen anderen, kovarianten Ansatz zu
wahlen, der Ergebnisse liefert, die auch im nichtlinearen Regime giiltig sind: Die
Krafte zwischen den Teilchen werden durch die Grenzflache vermittelt und sind da-
her in ihrer Geometrie kodiert. In Analogie zur klassischen Elastizitatstheorie lassen
sie sich durch Integrale iiber den Oberflaichenspannungstensor ausdriicken. Dieser
wiederum héangt auf bekannte Weise von der Energiedichte der Grenzflache ab. Fiir
den Fall einer symmetrischen Zweiteilchen-Konfiguration liefert dieser Ansatz exak-
te analytische Formeln fiir die Kraft in Abhangigkeit von der Geometrie an der
Mittelebene. Manchmal ergibt sich daraus bereits das Vorzeichen der Kraft, d.h. ob
Anziehung oder Abstoung auftritt, kann auch fiir starke Oberflichenverformungen
vorausgesagt werden.

Abstract:

Soft interfaces can mediate interactions between particles bound to them. One ex-
ample is the interaction of protein inclusions in a lipid membrane. Traditionally,
this phenomenon is treated by calculating the total energy of the particle-interface
system as a function of particle positions. The forces between the bound particles
can then be obtained via appropriate derivatives. Unfortunately, the intrinsic non-
linearity of the problem generally forces one to restrict to linear approximations of
the energetics.

It is, however, possible to choose a different, covariant approach and gain some
results that are also valid in the nonlinear regime: the forces between the particles
are mediated through the interface and are thus encoded in its geometry. In analogy
to classical elasticity theory one can write them as integrals over the surface stress
tensor, which itself depends in a transparent way on the interfacial energy density.
For standard symmetric two-particle situations this approach yields exact formulas
for the force in terms of the midplane geometry. Sometimes the sign of the force is
evident, 7. e. the occurence of attraction or repulsion can be predicted even for large
interface deformations.
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Introduction

Forces between particles that are bound to an interface can be either of direct or
indirect origin. The former are, for instance, electrostatic or Van der Waals’ inter-
actions; the latter are mediated by the interface and caused by the deformations the
particles induce in its shape.

One example of such an interface mediated interaction can easily be given in a little
experiment: take two sewing needles and a bowl filled with water. Let the needles
slide carefully onto the water surface and you will see that they attract as soon as
the deformations of the surface start to overlap (see Fig. 1).!

Apart from this, interface mediated interactions play an important and more se-
rious role in technological processes such as ore flotation or foam stabilization
[RSS89, NS03]. Other research has been dedicated to the possiblities of such forces to
induce the self-assembly of small-scale structures: one of the hopes at present is, for
instance, to find easy ways of manufacturing components of micro-electromechanical
systems [VMO4].

Interface mediated forces are also relevant for biological systems: cell membranes
carry a large variety of molecular devices such as membrane proteins. It was dis-
covered that these proteins can form domains [SI97]. Equivalent observations have
also been made in studies with artificial fluid membranes [KIHM98]. One possible
explanation for the experimental findings are membrane mediated interactions.
Unfortunately, theoretical considerations of such interactions are mathematically
rather involved due to the fact that the relevant field equations are typically nonlin-
ear differential equations. Present calculations therefore mostly yield approximative
results for the forces.

In this thesis, a new geometrical ansatz is introduced that avoids to solve the field
equations explicitly. It is thus clear that this approach, which does not intend to
determine the exact shape of the interface for a given particle attachment, will also
not provide numerical values for the force without further work. However, exact
anaytical results for the force in terms of the geometric interface properties can be
obtained, which are valid in the nonlinear regime. In some cases they enable one to
predict the sign of the interaction [MDGO04].

1 One of course has to make sure that the needles are neither magnetized nor electrically charged
if one really wants to observe interface mediated interactions.
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Figure 1: Attraction of two sewing needles floating on water as one example of interface
mediated interactions (see also [GS71]). The whole process proceeds on a timescale of
a few seconds, becoming increasingly faster from (a) to (d).

For that final purpose this thesis starts with the introduction of different interface
energetics in the first chapter. We will only discuss interfaces in their ground state.
Thermal fluctuations around that state or dynamical phenomena will not be taken
into account.

The second chapter provides a mathematical approach to stresses in interfaces, show-
ing how forces, that are transmitted through the interface, can be obtained via a
line integral over the surface stress tensor. This fact is the key to the new approach.
Before introducing it, however, we will discuss how one traditionally determines the
shape and the energy of the interface when either one or two particles are bound to
it and how thereby interface mediated forces can be obtained (see Chaps. 3 and 4).
Chapter 5 presents the key results of this thesis where the stress tensor is exploited
in order to find nontrivial exact results for interface mediated interactions. Finally,
it is demonstrated in Chap. 6 that the two approaches are in fact consistent.

With this general outline in mind, let us now start to discuss free interfaces.



1 The energetics of interfaces

Two phases that do not mix with each other are physically separated by an interface
or surface. Such a system can, for example, consist of a liquid and its vapor phase
or a membrane between two domains of water.

In this thesis, the dividing boundary layer will be called an interface if reference is
made to the physical quantity; however, the mathematical concept will be referred
to as a surface.!

An interface is usually not a sharp discontinuity between two phases but a continuous
transition on molecular length scales (see for instance [BM93, p. 2 et seq.]). It is
nevertheless possible to consider it to be two-dimensional as long as one is interested
in a mesoscopic point of view. This is applicable when the lateral extension of the
interface (and the size of all other objects and deformations of interest) is much
larger than its width. The interface can then be treated as a two-dimensional surface
embedded in three-dimensional Euclidean space R? which is described locally by its
position X (¢!, £?) € R3, where the £* are a suitable set of local coordinates. The
surface is not flat in general and therefore requires for its characterization tools
from differential geometry. The underlying basics of that approach are summarized
in App. B.1.

The creation of an interface costs free energy because molecules have to be removed
from their bulk environment and brought to the boundary between the two phases.
This energy (per area) is called surface tension o. In Sec. 1.1 we will focus on
interfaces that can be completely described energetically by a Hamiltonian including
surface tension only.

More general Hamiltonians may also contain terms that penalize other features of
the surface. Section 1.2 will deal with bending as the dominant part in the energetics.
Further possible characteristics of interfaces will be briefly discussed in Sec. 1.3. In
the present work, the focus will generally be on interfaces whose energetics can be
described by a Hamiltonian which is a surface integral over a local Hamiltonian
density H. This density shall depend only on scalars constructed from local sur-

L Other authors do not distinguish between surfaces and interfaces or use different definitions, such
as Ref. [Saf94, p. 2 et seq.]: If the system consists of a “semi-infinite, bulk system or vacuum
(or its own dilute, vapor phase) ... [the separating boundary layer] is generally referred to as a
surface. When this semi-infinite material coexists with another condensed phase, the separating
surface is referred to as an interface. An interface can be composed of a material that is different
from the two bulk phases.”
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face tensors?, such as the metric gq, the extrinsic curvature Ky, or its covariant
derivatives V, Ky, etc.:

HZ[X]:/dA’H(gab,Kab,VaKbc,...) o oabe{L2), (L1
by

where dA is the infinitesimal area element and ¥ the potentially curved surface
domain one is interested in. Note also that Hamiltonian (1.1) shall be invariant
under surface reparametrization. This means that no energy penalty is associated
with shearing deformations of the interface [CGO2b].

This rather general definition will be illustrated in the following by the two cases of
surface tension and bending energy.

1.1 Surface tension

1.1.1 The origin of surface tension

Consider a system consisting of water and its vapor: under zero gravity the water
minimizes its area in equilibrium and thus forms a perfect sphere. An explanation of
this circumstance can be found if one considers the energetics of the system [Isr92]:
molecules at the interface are in a state of higher energy than those in the bulk.
This is due to the fact that the former particles are missing bonds compared to the
latter (see Fig. 1.1). A positive (free) energy per area, o, can therefore be associated
with the interface. It is minimal if the interfacial area is minimized, which leads to
the explained behaviour of the water.?

It is possible to interpret o as a tension: consider a rectangular patch of surface with
length [ and width w at constant temperature (see Fig. 1.2). One may increase its

2 The definition of these tensors can be found in App. B.1.
3 Note that this is a rather phenomenological explanation of the surface energy. A sounder deriva-
tion can be done by considering the statistical mechanics of the system (see for instance [RW02]).

Figure 1.1: Energetics of interfaces: bond number of a molecule in the bulk compared
to one at the interface (schematic)
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t dw

Figure 1.2: Interpretation of the interfacial energy as a surface tension

area by dA by applying a force F' to one side of the patch. The free energy input
into the system is equal to the force times displacement:*

dE = Fdw = 0dA = oldw . (1.2)
The interface is thus under a tension o = ?, which is the so called interfacial or
surface tension. It is tangential to the interface, even for interfaces that are not flat
as we will see in the following chapters. The higher it is, the higher the force that
is acting on a line per unit length. For water its value is about 73 mN m™ at room
temperature (7" = 293 K). The water-vapor system is not the only example where
surface tension plays a dominant role. Other liquid-fluid® interfaces also exhibit a
nonvanishing surface tension (for some values see Table 1.1).°
To obtain the total energy of a liquid-fluid interface in general one has to integrate
o over the whole surface. The resulting Hamiltonian is therefore:

H:/EdAa, (1.3)

where ¥ is the surface domain. If one wants to find out what a stable surface for
given boundary conditions looks like, one has to search for local minima of the
Hamiltonian (1.3) by setting the variation 6 H = 0. This leads to a minimization of
surface area (see above). Interfaces that are dominated by surface tension only and
are not subject to further constraints (see Sec. 1.1.2) are therefore called minimum
area surfaces or simply minimal surfaces.

4 We only will consider interfaces in their ground states, which is why we do not worry about
entropic contributions to the free energy (for a general discussion, see again Ref. [RW02]).

5 A fluid can either be a liquid or a vapor/gas.

6 Note that the symbol ¢ will be used for the surface tension of a liquid-fluid interface in general.
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Table 1.1: Surface tension for selected substances at room temperature (7' = 293 K)
a) against air [BM93, p. 8] b) against water [Isr92, p. 315]

(a)

substance | o /mN m! substance | o/mN m!
heptane 20 cyclohexanol 4
ethanol 22 chloroform 28
formamide 57 benzene 35
water 73 cyclohexan 51
Hg 486 octane o1

1.1.2 Soap and soap-like molecules

Not only interfaces between pure phases (such as water and water vapor) but also
solutions are subject to surface forces and surface tension. Prominent examples,
especially for the demonstration of minimum area surfaces, are soap solutions and
soap films (see Fig. 1.3).

A soap solution can be produced by dissolving a metal salt of a fatty acid with a long
hydrocarbon tail in water [Ise92, p. 21]. In natural soaps the metal is either sodium
or potassium; it is dispersed throughout the water. The fatty acid anion may be
laurate, myristate, oleate, etc. (see upper part of Table 1.2 for more examples and
chemical structures).

Fatty acid anions are amphiphiles. This means that they consist of two different
parts: the negatively charged carboxyl group is hydrophilic, i.e. “water-loving”,
whereas the neutral hydrocarbon chain is hydrophobic, i. e. “water-hating”. The
hydrophobic part of the molecule disturbs the hydrogen bonds that exist between
the water molecules close to it. These can only be maintained if the water sacrifices
a part of its entropy. This phenomenon is called the hydrophobic effect (or Tan-
ford effect) and is the main reason why the hydrocarbon chains try to avoid water
[GKD'04, A3.13]. The hydrophilic carboxyl groups, however, can form hydrogen
bonds with the water and therefore try to stay in it.

This leads to the formation of a monomolecular layer of the anions at the interface:
the hydrocarbon chains are directed out of the interface, whereas the carboxyl groups
are adsorbed into the interface surrounded by water molecules and positive metal
ions. The bulk water also contains some additional amphiphiles depending on the
concentration of the soap solution (see Fig. 1.4(a)).

The surface ions are also called surfactants. It is possible to synthesize artificial
surfactants, which can be classified due to their charge as anionic, cationic, nonionic
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Figure 1.3: The soap film: a minimum area surface (photographed at “Mathematicum
GieBen™)

(@) (b)

Figure 1.4: Structure of a) a soap solution b) a soap film
The black particles are the fatty acid anions and the white particles are the positive
metal counterions.
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substance chemical structure type

laurate CH3—(CHy)10—COO™ fatty acid

myristate CH3—(CH;)12—COO™ anions

palmitate CH3—(CH;)14—COO™ (natural soap

stearate CH3—(CHy)16—COO™ molecules)

oleate CH3—(CHy);—CH=CH—(CH3);—COO~

cetyl (hexadecyl) | CH3—(CHj)15—O—SO3 anionic

sulfate surfactant

cetyl trimethyl (?Hi”

ammonium CH3—(CH2)14—CH2—1|\I+—CH3 cationic
CHj;

pentaoxyethylene | CH3—(CHy)10—CHy;—O—(CHy—CHy—0O)5—H | neutral

dodecyl ether

cetyl dimethyl (?Hi"

glycine CH3—(CH2)14—CH2—1|\I+—CH2—CO()7 zwitterionic
CHj;

Table 1.2: Examples of surfactants ([GKD*04, A3.8]),[Isr92, p. 342 et seq.]). The
fatty acid anions can be further divided into saturated (laurate, etc.) and unsaturated
(oleate) ions.

and zwitterionic. The last category has both positively and negatively charged
groups. Some examples can be found in Table 1.2.

The length of one surfactant molecule is on the order of a few nanometers. It occupies
an area of roughly 0.5 nm? at the interface [Ise92, p. 18]. Increasing the concentration
of surfactant molecules at the interface lowers the resulting surface tension until
saturation is reached (about 25 — 35 mN m™ for a soap solution [GKDT04, A3.13]).
If the concentration of surfactants is further increased, new physical phenomena
occur, that will be discussed in the next section.

Solutions of surfactants may be utilized to form films: a soap film, for example,
consists of a thin layer of water in-between two monolayers composed of soap ions
(see Fig. 1.4(b)). It is 5 nm to 20 um thick [Ise92, p. 7] and has a surface tension
which is twice the value of a soap solution, since it has two sides.
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Figure 1.5: The soap bubble: a constant mean curvature surface

A soap film is stable against rupture because of a stabilizing effect which is also
called Marangoni effect: as soon as one patch of the film stretches, the concen-
tration of soap ions decreases at that part, which leads to an increase in surface
tension. In contrast, an increasing concentration of soap ions leads to a decrease
in surface tension. This negative feedback is the reason why the film is relatively
stable. In addition, the surfacant ions hinder the diffusion of water molecules into
the surroundings, which stabilizes the film further.”

A closed soap film is also called soap bubble (see Fig. 1.5). Its surface is curved,
which causes a pressure difference between the interior and the exterior: evidently
the surface tension tries to decrease the bubble’s size, which leads to a compression of
the inner compartment. A stable soap bubble must therefore have a higher pressure
p; inside compared to the pressure p, outside. This results in a further contribution
to the energy, which can be included into the Hamiltonian (1.3) via the term —PV:

H = dAo — PV | (1.4)
oV
where P = p; — p, is the excess pressure and V' the area of the interface enclosing
the volume V.
For a spherical bubble with radius a and constant surface tension Hamiltonian (1.4)
turns into:
dm

Hphere = 4ma*o — Psphere?a ) (1.5)

A local minimum can be found by setting the derivative of Hyyhere With respect to a

to zero:
stphere

da

7 This dynamical effect will not be studied further here. It is only mentioned in order to explain
why one can deal with stable soap films.

= 8roa — 47TPspherea2 20 , (1.6)
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which yields the well-known expression for the Laplace pressure of a spherical bubble

20
Psphere = 7 . (17)

To find the equilibrium state for all surfaces whose energetics are described by
Hamiltonian (1.4), one has to set the first variation of (1.4) to zero. This leads to
the general formula of Laplace (see App. C, Eqn. (C.23))

P=0oK, (1.8)

where K is the total curvature (see App. B.1). Surfaces that can be defined via
K = const as in Eqn. (1.8) are also called constant mean curvature surfaces. Apart
from the sphere many other examples of such a surface can be found (for instance
the nodoid, see [LFLO1]).

A volume term similar to the one in Eqn. (1.4) may also be used to fix the volume
of a closed surface to a constant value V:

H = dAoc—P(V -V, (1.9)
oV

where P acts as a Lagrange multiplier.
This section gave a short overview of different interfaces that have one thing in
common: their energetics can be described by a Hamiltonian which is a surface
integral over the surface tension o—including or excluding further constraints such
as constant volume. This type of interface will be called “soap film type” in the
following.
In the next two sections other possible contributions to the energy will be discussed.

1.2 Bending

1.2.1 Curvature energy

Other contributions to the total energy of an interface apart from surface tension
are bending deformations in the direction normal to the interface. In a harmonic
expansion the energy due to any deformation of the interface is proportional to the
square of the deformation (cf. Hooke’s law). In the particular case of bending one
has to consider quadratic expressions of the curvature: a surface has two principal
curvatures k; and ky at every point, which are the eigenvalues of the local curva-
ture tensor K . The corresponding eigenvectors define two orthogonal principal
directions (see App. B.1). It is therefore necessary to include two independent terms
in the expression for the energy that depend on a quadratic combination of the
two curvatures and are furthermore invariant scalars: one possible choice is a linear
combination of the squares of the principal curvatures, k? and k2 [Can70]. If we,

10
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however, consider an isotropic interface, the two constants of that linear combination
have to be identical. Thus, the two terms are not independent any more.

A better choice is therefore a combination of I} = (ki + k2)? and I, = (k? + k3)
[LL86]. The first invariant is equal to the square of the total curvature, I; = K?
(see App. B.1). Instead of I, it is, however, technically smarter to choose (I; — I5)
as the second invariant because this combination is equal to the Gaussian curvature
Kg = kyko, for which many mathematical relations are known. Including surface
tension the complete Hamiltonian is then according to Helfrich [Hel73]:

H:/EdA [a+g(K—K0)2+RKG] , (1.10)

where the proportionality coefficients x and K are called the bending rigidity and
the Gaussian bending rigidity or saddle-splay modulus, respectively. The additional
constant K is the spontaneous curvature. If its value is not equal to zero, the surface
prefers to be bent to a certain extent in its minimal energy state. Note that the
Gaussian curvature part is a topological constant due to the Gauss-Bonnet theorem
(see App. B.2) and can therefore be neglected in most variational problems.

One of the most important examples where the Hamiltonian (1.10) becomes relevant
is the case of a lipid bilayer (see Fig. 1.6), which will be introduced in the following.

1.2.2 Self-assembly of amphiphiles

In Sec. 1.1.2 we discussed surfactants in water and noticed that the surface tension at
the interface decreases for an increasing concentration of surfactants until a certain
point is reached. If one exceeds this point, which is also called the critical micelle
concentration (cmc), the surface tension stays constant. Other physical properties,
such as osmotic pressure or electrical conductivity of the solution also exhibit a
discontinuity. What happens? At the cmc it becomes energetically more favorable
for the surfactants to self-assemble within the bulk of the fluid and shield their
hydrophobic parts against the water instead of trying to squeeze themselves into the
already densely packed monolayer at the interface. The cmc depends on properties
of the surfactant (for instance the surface area of the hydrophobic part) and the
conditions the solution is in (e. g. salt concentration).

Typical structures that result from self-assembly are spherical, cylindrical or inverted
micelles®, bilayers and vesicles (see Table 1.3). What kind of aggregate evolves
depends on the geometry of the surfactant: it can be quite well determined by the
value of the packing parameter v/(aol.), where [. and v are the length and the volume
of the hydrophobic part of one surfactant molecule and ay is its effective head group
area [Isr92].

8 Inverted micelles can of course only form if the surfactant is in a hydophobic solvent such as oil.

11
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lipids, poly (cis) unsat-
urated chains, high T
(e. g. unsat. PE)

surfactant packing packing structure
parameter shape
single-chained surfac- %o wf’
tants with large head-
group areas < % v le ':?Jéi?b'
(e.g. sodium dodecyl
sulfate in low salt) cone spherical micelle
single-chained surfac- .ssz .
tants with small head- % w ‘. .
11 ’.0 3
group areas 373 \..
(e. g. sodium dodecyl .):/Jé{?b\.
sulfate in high salt;
nonionic lipids) truncated cone cylindrical micelle
double-chained surfac- %ﬁ&%%%%;?
tants with large head- 19 %
group areas and fluid 2 2&& gigﬁf
chains
(e.g. PC, DGDG) truncated cone | flexible bilayer, vesicle
double-chained surfac-| | | 2000000
tants with small head- = Qg%%&%g%g
group areas, anionic o1 -
lipids in high salt, sat- D %%%g%ﬁgag
urated frozen chains
(e.g. PE) cylinder planar bilayer
double-chained surfac- 2‘3
tants with small head- ﬁ :jﬁ
group areas, nonionic o1

inverted truncated
cone or wedge

i

inverted micelles

Table 1.3: Self-assembly: structures and appropriate packing parameters v/(agl.). The

packing shape sketches the shape of one amphiphilic molecule.

The black circles in

the structures are the hydrophilic, the chains the hydrophobic parts of the surfactants.

[Isr92, p. 381]

12
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Figure 1.6: Computer simulation of a coarse grained lipid bilayer. The blue spheres are
the hydrophilic headgroups of the surfactants, the yellow and orange ones symbolize the
hydrophilic tails.

From Table 1.3 we obtain a typical value of the packing parameter for flexible
bilayer membranes: it lies between % and 1. Surfactants with such a parameter
usually possess two hydrocarbon chains.

It is also possible that two or more different surfactants self-assemble into one struc-
ture as long as they do not phase-separate. For example, micelle-forming lysolecithin
(packing parameter < %; see Table 1.4) and normally not self-assembling cholesterol
(packing parameter > 1) may form bilayer vesicles [Isr92, p. 382]. In nature, a
mixture of surfactants can often be found in biological membranes, which will be
considered a bit closer in the next section.

1.2.3 Membranes in cell biology

Membranes in cell biology mostly consist of double-chained phospho- or glycolipids
(see Table 1.4). The chains contain an even number of carbon atoms (14 — 24
typically) and one of them is often unsaturated (which means there exists a double
bond between two of the carbon atoms) or branched. Such surfactants exhibit the
following properties that are essential for biological function [Isr92, pp. 375/387]:

e The lipids self-assemble into thin bilayer membranes (see Figs. 1.6 and 1.7)
whose function it is to form cell walls and also to separate functional compart-
ments in the cell (organelles).

e The cmc is very low (107¢ — 1071 M for bilayer-forming lipids as opposed to
1072 —107> M for micelle-forming surfactants). The membrane therefore stays
the same even for a very low concentration of lipids in the surroundings.

e The membrane behaves as a two-dimensional fluid at physiological tempera-
tures, which is important for processes such as budding and subsequent vesicle
formation.

13
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substance chemaical structure type
lysophospha- o] lyso-
tidylcholine | mydl ooy phospholipid
(lysolecithin) y o—cI: y 2 o ch
| I I3
H,C—O—P—0—CH,—CH,—N—CH,
o CH,
phosphatidyl- o] glycero-
ethanolamine | g 1J-|—o—c H, phospholipid
(PE) R2 o—c H o}
I
O H C—O—P—O—C H,—CH,—N H
o -
phosphatidyl- o]
choline (PC) | g 1J-|—o—c H
I 2
R2——0—CH o CH,
O H,C——O—P—O—CH,—CH,—N_CH,
o~ CH,
digalactosyl- o glycero-
diglyceride o—cH, glycolipid
(DGDG) RZ—”—O—CH @
H,C—O0
H —O
CH O H
sphingomyelin | R1—CH=C H—CHOH sphingo-
R2—r—N H—C Hoo phospholipid
O H c—o P—O—CH,—CH,—N(CH, 2t
o _

Table 1.4: Examples of membrane lipids. R1 and R2 correspond to hydrocarbon chains
of fatty acids (see for instance Table 1.2). [GKD"04, A3.8f]

14



1.2 Bending

Figure 1.7: The cell membrane consists of a lipid bilayer to which different kinds of
macromolecules (e. g. proteins) are bound. [BGKO03, p. 258]

Other surfactants that are common in biological membranes are the already men-
tioned lysolecithin and cholesterol. These may influence the fluidity of the membrane
according to their geometry (see previous section).

In addition to the basic lipid bilayer, other types of molecules may be present in the
membrane (see Fig. 1.7): proteins perform most of the specific functions of mem-
branes such as enzymatic reactions or ion pumping. One can distinguish between
integral and peripheral membrane proteins. The latter are only connected indirectly
to the membrane via the hydrophilic head groups of the lipids. Integral proteins
have one or more parts embedded in the bilayer. Most of them span the entire
membrane and are therefore called transmembrane proteins.

Interactions between proteins are an important field of study because their aggre-
gation in the membrane is quite often important for biological function. In the
following, forces between membrane inclusions such as proteins will therefore be
considered (see Sec. 6.2.2) as one example of interface mediated interactions.

The thickness of a lipid membrane is of the order of 5 nm whereas its lateral extension
may reach micrometers (size of a cell). This is why a continuum description as
explained in the introductory remarks of this chapter is often applicable. It turns out
that membrane energetics are mainly dominated by bending [Hel73]. Therefore, the
Hamiltonian (1.10) is suitable to describe a fluid membrane. For typical phospholipid
membranes, k is of the order of a few tens of kg7, where kgT' is the thermal energy.
Values for o are found to be in a broad range from 0 up to about 10 mN/m [MHO1].
The Gaussian bending rigidity & is rather difficult to measure because the topology
needs to be changed during the measurement. Its value is usually negative and also
smaller than that of £ in the same system [GKD"04, A3.24].

It should be mentioned that the Hamiltonian (1.10) is also valid for other interfaces
such as those containing block copolymers. Focusing on lipid bilayer membrane
here, however, we will call the type of interface where bending plays the main role
the “fluid membrane type”.
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1 The energetics of interfaces

1.3 Other interfaces

Based on the Hamiltonian (1.1) one can systematically consider possible contribu-
tions to the energy, order by order in the dimension of the integrand which is length
L [CGS03]: the easiest Hamiltonian density one can think of is H = 1, which was
already considered in connection with surface tension.

The next order, 1/L, involves the extrinsic geometry of the interface:

/EdA K . (1.11)

In Hamiltonian (1.10) the spontaneous curvature Ky is included in this linear term
as a constant prefactor.
In second order, 1/(L?), one gets’

/ dA K? and / dA K™K, . (1.12)
% %

A third term in second order stems from the intrinsic scalar curvature R, which is,
however, not independent due to (see App. B.1, Eqns. (B.40) and (B.42))

R =K K"K, =2Kg . (1.13)

In the Hamiltonian (1.10), where all contributions up to this order are included, the
K®K,, term is therefore dropped. In addition to that, the Gauss-Bonnet theorem
(see App. B.2) states that the surface integral over R is just a topological constant
for two-dimensional surfaces without boundaries. In that case only one term in
second order is independent.

In third and fourth order one has according to [CGS03]:

/dA K? and /dARK. (1.14)
% P

and!?
/ dA R? / dA RK? / dA K* and / dA (V,K)(VK) . (1.15)
> ) % %

Even the terms in (1.15) may describe certain properties of an interface such as
in geometric models for “egg-carton” membranes [GH96] and tubular structures
[FGI7].

In the following, however, we will restrict ourselves to terms up to second order,
while only sometimes referring to higher order terms.

9 Note that the sum convention will be used in this work, 4. e. whenever a pair of identical indices
appears with one being superscript and the other subscript, it will be summed over them (see

2
also App. A). For example: KK, = Y. K%Ky, .
a,b=1
10 Note that all following terms are of fourth order in 1/L. The last term, however, contains only
6 derivatives of the embedding function X, whereas the others contain 8.
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2 Stresses in interfaces

2.1 The stress tensor in three-dimensional elasticity
theory and its analog for surfaces

Elasticity theory describes the deformations of solid bodies, regarded as continuous
media (see for instance [LL86, pp. 3-5] for the following).

Let us consider a small cubic part AV of an arbitrarily shaped body in Euclidean
space R3: in thermal equilibrium the sum of all forces exerted on the cube is zero.
However, if the whole body experiences an external deforming mechanical force,
internal forces arise, ultimately caused by molecular interactions. These are called
internal stresses. Due to their molecular origin, they act over a very short range.
Therefore, any forces felt inside the cube are determined by the ones acting on its
surfaces.

To cope with the directionality of these forces it is quite convenient to introduce the
stress tensor o: In the orthonormal basis {x,y, z}, the component o;; is the ith
component of the total internal force on the unit area perpendicular to the 7 axis
(see Fig. 2.1(a)) with 4, j € {z,y, z}. For example, o, is the force in z-direction on
the unit area perpendicular to the x axis, whereas o,, and 0., act on the same area
but in y- and z-direction, respectively.

Then, the total internal force can be written as the integral of the stress tensor over
the surface AV of the cube.! One gets for the components:

(Fhody)i = 7{ dA; o, = /dV@-ai- i €{zr,y,2}), 2.1
bdy) j:ZwaAVj] j:ZxAV J945 ( { } ()

where Stokes’ theorem was used in the second step and 0; is the partial derivative
with respect to j. The symbol dA; denotes the jth component of the vectorial area
element which is perpendicular to JAV.

If one considers two-dimensional flat interfaces instead of three-dimensional bodies,
the same argument as above can be made: the (surface) stress tensor f is now
a force per length acting on a unit line element. Since the force can still act in

! Note that the stress tensor is defined with an additional minus sign here compared to [LL86]:
Eqn. (2.1) yields the internal force that balances the force from the exterior due to Newton’s
third law. In [LL86] the stress tensor is defined in such a way that Eqn. (2.1) yields the total
external force exerted on the body.
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2 Stresses in interfaces

Figure 2.1: Components of the stress tensor a) in 3D b) in 2D

three directions, the tensor has six components. Take, for instance, f;,: it is the x
component of the internal force acting on the unit line element perpendicular to the
y axis (see Fig. 2.1(b)) with respect to the surface basis {x, y}.

The total internal force on a surface patch AA is equal to

(Fsurface)i - ]Zx f;ASljfij - jzx /AAdA ajfij (Z € {ZE‘, Y, Z}) ) (22)

where again Stokes’ theorem is exploited and dl; denotes the jth component of the
line element ds times the unit normal which at every point is perpendicular to the
boundary curve 0AA of AA.

Generally, we do not want to restrict ourselves to flat interfaces. The stress tensor
must thus be generalized in order to calculate forces in curved manifolds. Let us
consider a two-dimensional simply connected surface domain ¥, with local frame
{es,n}, a € {1,2} (see also App. B.1). The stress tensor f can then be written
as a pair of vectors f, € R?, where f, is the force acting on the unit line element
perpendicular to the e, axis in every point of the surface patch.? With this definition
Eqn. (2.2) turns into®

Fs, :j{ ds laf“:/dA Vof® |, (2.3)
o b

>o 0

where the vector I = [“e, is the outward pointing unit normal to the boundary
curve 0%, which by construction is also tangential to X (see Fig. 2.2). The variable
s measures the arc length on 0%j. The symbol V, denotes the metric-compatible
covariant derivative on the surface (see App. B.1).

2 In the case of a flat interface such as in Fig. 2.1(b), e; =  and e; = y. Thus: f; = f, =
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2.2 Derivation of the surface stress tensor

Figure 2.2: Curved surface domain Xg: at the boundary 0%, a local orthonormal frame
{l,t,n} can be introduced with I being the outward pointing unit normal to the boundary
curve and t the unit tangent vector. The unit vector n is normal to the surface and the
boundary curve.

Equation (2.3) will be exploited in Chap. 5 to calculate two-body interactions be-
tween colloids that are bound to an interface. In this chapter we will first begin
with deriving the stress tensor for interfaces in general and for special cases.

2.2 Derivation of the surface stress tensor

2.2.1 Approach 1: Variation in the embedding functions
Implementation of the variation

Let us go back to the general reparametrization invariant surface Hamiltonian (1.1)
as introduced in the last chapter on p. 4:

Hy[X] = / A H(gaps Ko VoK -.) | (2.4)
b

where dA = /g d*¢ with g = |ga| (see App. B.1).

To find the equilibrium shape of the surface, 7. e. the one which minimizes this
Hamiltonian, we need to calculate its response to an infinitesimal deformation of
the embedding functions X — X +0X (see [CGO02b] for the following). In order to
do so, one first has to know how the geometry, i. e. gay, /9, Kap, etc. changes (see
App. C for the necessary expressions).

(facrafymyfzr)T and f2 = .fy = (fzyvfyyafzy)T'

3 Indices may be raised and lowered with help of the metric go; and its inverse g?® (see App. B.1).

19



2 Stresses in interfaces

The deformation may be decomposed into a part tangential and one normal to the
surface:

0X = (e,-0X)e,+(n-0X)n
= d%,+Yn. (2.5)

In the same manner, the first variation of the functional (2.4) can be partitioned
into contributions originating from purely tangential and purely normal variations:

0H = 5HH+5¢H . (2.6)

Note that the Hamiltonian shall be restricted to a simply connected surface domain
Yo for the following. For ease of notations its boundary 0% is chosen to be simply
connected, too [CGO02b].

For an arbitrary deformation one gets for the variation of the Hamiltonian

SHy, — /E @€ [(6\/a)H + ValoH)] (2.7)

The decomposition yields for the tangential deformation

oy, = /EO d*¢ [(5\\\/57)?1 + \/5(5\\71)]

(C9L520) / AA [(Vo®)H + (0T, H)|
Yo

- / dA V,(H &) , (2.8)

where we made use of the fact that the Hamiltonian density H is a surface scalar.
Note therefore that the tangential variation (2.8) is a pure boundary term:

/ dA V,(H ©°) :f ds H 1,8° (2.9)
Yo

(230}

where I = [%e, is the outward pointing unit normal to the boundary curve 9% as
introduced in the previous section (see Fig. 2.2).
The normal variation can be cast as a bulk part plus a pure divergence

5 Hy, — /E ¢ [0, VaH + Va6, 1))
_ / a4 [e)w + v,5°00]] (2.10)

The term E(H) is the bulk Euler-Lagrange derivative of H with respect to surface
deformations. It is purely normal. Note that its vanishing, as usual, determines the
shape of the interface. Hence, £ = 0 is also called the “shape equation”.
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2.2 Derivation of the surface stress tensor

All surface gradients and higher derivatives of W are collected via integration by
parts in the linear differential operator S

SUW] = Sl ¥ + SV + ... (2.11)

One example of how £(H) and S*[¥] can be extracted from the normal varia-
tion (2.10) will be shown at the end of this section.

Combining the two independent variations, (2.8) and (2.10), according to (2.6) we
get as the first variation of the functional (2.4) [CG02b]:*

(2.12)

5H20:/ dAEH)n - 6X +/ dA V,Q°
o

o

where the divergence in (2.12) originates from the tangential variations as well as
the derivatives of normal variations:

Q% = S|+ H D . (2.13)

The stress tensor—a conserved Noether current

Now, suppose 6X = a € R? is simply an arbitrary constant translation, that of
course leaves the Hamiltonian invariant. In this case, the differential operator Q¢ is
simply proportional to a as one can see by inserting ¥ = n - a and ¢ = e” - a into
Eqn. (2.13) and exploiting the linearity of S Eqn. (2.12) then turns into

SHy, — /dAE(’H)n-a—/ dA Vu(f* - a)
3o

Yo

= a-/ dA [E(H)n—vaf“] 0. (2.14)
o
Here, the vector f* is introduced according to

Q"=—f"a. (2.15)

The integral in Eqn. (2.14) must be equal to zero because a can be arbitrarily
chosen. Moreover, the integrand in Eqn. (2.14) vanishes pointwise because ¥, may
be arbitrarily chosen as well. Thus,

Vof*=EMH)n . (2.16)

Examples of f* and £(H) for a few Hamiltonians will be calculated in Sec. 2.3 and
can be found in Table 2.1 on p. 29.

4 Note that ¥ = n - §X according to Eqn. (2.5).
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2 Stresses in interfaces

One may decompose f® into its tangential and normal parts
o= f"e+ f'n, (2.17)
which by exploiting the Weingarten and Gauss equations (B.30) and (B.32) yields
Vaf* = (Vo + K[ ey + (Vaf* = Kanf )0 (2.18)

The projections of Eqn. (2.16) onto the surface and the surface normal, respectively,
can then be written as

Vof® = Ko f® = E(H), (2.19)
VofP+Kbf* = 0. (2.20)

The normal projection (2.19) is equal to the Euler-Lagrange derivative £(H). The
two tangential projections (2.20) are consistency conditions on f¢ and f that reflect
the reparametrization invariance of the Hamiltonian; indeed, they are independent
of the Euler-Lagrange derivative.

If we now focus on true equilibrium surfaces, which are stationary with respect to
arbitrary variations®, the Euler-Lagrange (“shape”) equation £(H) = 0 also holds,
and Eqn. (2.16) becomes

Vof' =0 |. (2.21)

This is a conservation law for the vector f*. Its existence is simply a consequence of
Noether’s theorem: a continuous symmetry implies an associated conserved current
(£ in this case).

It is not by chance that the symbol f“ is chosen for the Noether current: it is exactly
the surface stress tensor as it was discussed in Sec. 2.1. One can see that by having
a closer look at Eqn. (2.14) for £(H) = 0:

SHs, = —a- / dAV,f* (2.22)
Yo

This equation states that an infinitesimal change in energy is equal to the negative
product of an infinitesimal translation times an integral. Thus, this integral must
be a force. If we compare it with Eqn. (2.3), it becomes clear that f¢ must be the
surface stress tensor.

If there are global constraints imposed on the surface geometry, the Hamiltonian
contains further terms that have to be varied as well. Take, for instance, the case

® Such an arbitrary variation could for instance be one, where the boundary is fixed and only the
interior of the surface is changed.
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2.2 Derivation of the surface stress tensor

of a constant volume (see Sec. 1.1.2, p. 10): an additional term —PV enters the
Hamiltonian. Its variation yields

s(—pv) LY _p / dA T | (2.23)
3o

which leaves us with the modified shape equation £(H) = P. Eqn. (2.21) is replaced
by

V.f*=Pn. (2.24)
If one wants to have the stress tensor divergence free as originally, which will become

important later (see Sec. 5.1), one may redefine it by writing the unit normal vector
as a pure divergence [Guv04b]:°

n = %Va [(X -e’)n — (X - n)ea} , (2.25)
S F = e P[(Xen - (X mper] (2.26)

and thus 5
V. =0. (2.27)

Example: The Hamiltonian density K™

In order to bring the abstract notions introduced in this section to life, let us focus
on the Hamiltonian density H = K™. The tangential variation of the corresponding
Hamiltonian is simply:

2.8)

5 Hs, 2 / dA V(K" @) . (2.28)
Yo

For the normal variation we get

(2.10)

it 2 [ [GLvR £ Vi)
(€9) / AA [K™0 K™ (6, K)|
|44

(C.16) / dA [K™ N 4 n K™Y (— AT — KabK“b\I/)}
) -

— / dA | = nAK™ 4 K" Y(K? — nKabK“b)] v
>0 -

—n/ dA V, [K"—l(va\p) - (vaK"—l)\p} , (2.29)

6 This relation can be checked by straightforward calculation.
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2 Stresses in interfaces

where we exploited the product rule of differentiation in the last step. The symbol
A = V,V* denotes the metric-compatible Laplacian.

Following Eqn. (2.10) and (2.12) the Euler-Lagrange derivative £(H) and the differ-
ential operators S*[¥] and Q* are:

EH) = —nAK"' + K" Y K? — nK,K®) (2.30)
SUW] = —n [K”fl(va\p) - (VGK”*)\I:] (2.31)
Q" = —n [K"H VW) — (VK] 4+ K (2.32)
For a translation 6 X = a one therefore gets:
QY = -n [K”_lva(n ca) — (VK" Yn . a] + K" -a
B0 _ [(nK”—lK“b ~ Kmgt)ey, — n(V“K”_l)n} ‘a. (2.33)

Comparing with Eqn. (2.15) yields the following result for the surface stress tensor:
f*= (K" 'K® - K"g")e, — n(V' K" n . (2.34)

If we include the constraint of constant volume, the shape equation reads
n—1 n—1 2 aby (2.24)
—nAK" "+ K" (K* —nK4zK*) "= P. (2.35)
2.2.2 Approach 2: Using auxiliary variables
Implementation of constraints

In the previous section we have seen how the surface stress tensor can be obtained
via a variation X — X + 0X of the embedding functions. This, however, turned
out to be a rather involved calculation as it became apparent in the example worked
out at the end of the previous section. The reason for this difficulty is that the

tensors gup, Kap, - . . indirectly depend on X via the structural relationships”
gy = €, €, and Ky =e, opn , (2.36)
and
€, =0X/06"=0,X, e,-n=0, and n*=1, (2.37)

and therefore have to be varied as well (see App. C).
Here, an alternative way will be presented: the quantities g.,, Ku, €4, and n are
treated as independent auxiliary variables [Guv04a]. Consequently, Eqns. (2.36) and

T Cf. Equs. (B.2), (B.4), (B.5), and (B.20), in App. B.1. A discussion why just these structural
relationships are chosen for the following can be found in [Guv04a].
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2.2 Derivation of the surface stress tensor

(2.37) have to be enforced via Lagrange multiplier functions. The new functional
HC[galn Kaln VaKbC7 ER X7 €y, T, )\ab’ Aab, faa Ai; )\n] is then:

HC - H[galn Kaba vaKbcu e ] + /dA fa ) (ea - aaX)
+ /dA [)\ab(gab — €4 eb) + Aab(Kab — €4 Obn)]

+ /dA M\ (eq n)+ A (n* —1)] . (2.38)

The original Hamiltonian H is now considered to be a function of the independent
variables gup, K, and its covariant derivatives, whereas A%, A% % X4, and )\,
are the Lagrange multipliers fixing the constraints (2.36) and (2.37). This greatly
simplifies the variational problem because now we do not have to determine how the
deformation 0 X propagates through to gap, /9, Ka, etc.

Let us study the Euler-Lagrange equations for X, e,, n, g, and K, respectively,

V.f* = 0, (2.392)
Fe = (A“K°+2)")e, — Nin (2.39b)
0 = (VuA™ +X)eq + (2N, — A Ku)n | (2.39¢)
AP = T2 (2.39d)
A = A (2.39)
In Eqn. (2.39b) the Weingarten equations d,n = Kle;, (B.30) have been used, in
Eqn. (2.39¢) the Gauss equations V,e, = — Ky n (B.32). We also define
OH 1 0(/gH)
= d T%:=-2 ! 2.4
" Ky o) 0ab (2:40)

where we call 7% the intrinsic stress tensor associated with the metric ggp.

It is not by accident that the symbol f* denotes the Lagrange multiplier that anchors
e, to the embedding X . Indeed, it is identical to the surface stress tensor as it has
been introduced in the two previous sections. This can be seen if one considers
a variation of the Hamiltonian Ho: for a constant translation X = a one gets
[Guv04al

SHe = —a- /dA Vof" (2.41)

which is the analog to Eqn. (2.22).

Combining Eqns. (2.39), we find an expression for f where all other Lagrange
multipliers are eliminated. From Eqn. (2.39¢) we get A\? = —V,A% because e, and
n are linearly independent. Inserting this and Eqns. (2.39d,2.39¢) into Eqn. (2.39b)
yields:

Fo= (T —H"“K")e, — (VyH®)n |. (2.42)
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2 Stresses in interfaces

This general expression can be used to calculate the stress tensor once the Hamil-
tonian density is specified, as we show in Sec. 2.3 for a few examples.

The stress tensor including pressure

Eqns. (2.39) and (2.42) change if one imposes further physical constraints. These
can be enforced as usual by further Lagrange multipliers.

If the surface, for instance, encloses a fixed volume, a term — PV has to be included
in the functional (cf. Secs. 1.1.2 and 2.2.1):

. 17) ~ 1
Hey ixea = Ho — PV 27 o — §P/dA n-X. (2.43)
Notice that the original Lagrange multiplier functions f“,... of Hc have to be
replaced by fa, ... in Hg because the additional term in the functional also induces

changes in the other multipliers: Looking at the Euler-Lagrange equations (2.39),
we notice that Eqns. (2.39b) for e, and (2.39¢) for K, are as before; the others
change slightly:

~a 1

Vo = 3Pn, (2.44a)
' = (A*K’+2\e, — \im | (2.44D)
o
0 = (VpA® + X1 — P X e%)e,

+(2X\, — APK,, — %P X -n)n, (2.44c)

. 1 1
)\ab — §Tab + EP(X . n)gab , (244d)
A% = A% = b (2.44¢)

where T% and H® are defined as in Eqn. (2.40). The Lagrange multiplier function
A is the only one that is equal to its counterpart A®. In Eqn. (2.44c) we made
use of completeness X = (X - e%)e, + (X -n)n. To get Eqn. (2.44d) it is necessary
to know that

(v9)

1
S0m 5\/59‘”’ : (2.45)

which can be derived by exploiting Eqn. (C.7).
Combining Eqns. (2.44) in the same way as Eqns. (2.39) above results in the following
expression for the surface stress tensor:

Foo= [ MR S PX g e, [TH 4 SP(X - e)|n (246)
_ oo %P[(X en (X -n)e] (2.47)
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2.3 The surface stress tensor of special interfaces

where f is the original stress tensor (2.42). Applying identity (2.25) for the normal
vector again, allows Eqn. (2.44a) to be rewritten as

Vof*=Pn, (2.48)

which is identical to Eqn. (2.24).

2.3 The surface stress tensor of special interfaces
In Sec. 2.2.2 the general expression
Fo= (T —H"“K")e, — VyHn (2.49)

for the surface stress tensor has been derived. Here, Eqn. (2.49) will be specialized
to a few important standard cases (see Chap. 1). In addition, the Euler-Lagrange
derivative £ will be calculated via Eqn. (2.19).

The simplest Hamiltonian density is H = 1 which is (up to a constant prefactor)
the Hamiltonian density of a soap film (see Sec. 1.1.2). According to Eqn. (2.40) we

get: H® = 0H /6K =0 and T = —2(,/9) " '6(\/9H)/0gab (229 —g%. Thus,
fo 2 gebe, o and (2.50)
2.19 B.26
g P V- Kf® = —Kuy(—g®) "2V K (2.51)

Note that the functional derivatives ¢ in this first case are equal to the partial
derivatives 0 because H does not depend on higher derivatives of gq, or K.

This is also true for the Hamiltonian density H = K" = (¢?°Kq)" (with n € N,
where the case n = 2 is relevant for fluid membranes, see Sec. 1.2). One derives:®
H® = nK"1g® and T% = 2n K" 1 K% — K"g% which gives

f* = (K" 'K® - K"¢"®)e, —n(V'K" ' )n , and (2.52)

&= [R-(1- %)W — Al (2.53)

Note that Eqns. (2.52) and (2.53) are identical to the results obtained earlier via
the variational approach (see Eqns. (2.34) and apply Eqn. (B.40) to (2.30)).
Consider now H = K®K,,: applying Eqn. (2.49) in this case yields for the stress
tensor

F'=(2K“K’ — KK 49")e, — 2(V, K)n . (2.54)

8 One has to be careful, however, when differentiating with respect to gq: the tensor Ky, is the
independent variable—which is why a derivative with respect to gqs yields zero—whereas K
depends on the metric through its inverse and thus yields a nontrivial term when differentiated.
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2 Stresses in interfaces

Before discussing the Euler-Lagrange derivative, let us rewrite this expression with
the help of Eqns. (B.39, B.40) and (B.15,B.35), respectively:

fo = [2(KKab ~ R) — (K? - R)gﬂ er — 2(VoK)n
- [(QKKab — K2™) + (Rg® — 2R“b)] er— 2V,  (2.55)
where R, is the Ricci tensor. In two dimensions (see Eqns. (B.41) and (B.42)):
Rg™ — 2R =0 . (2.56)

Thus, the stress tensor for H = KK, is exactly the same as for H = K? (cf.
Eqn. (2.52) for n = 2). One can therefore also read off the Euler-Lagrange equation
for H = KK, from Eqn. (2.53):

E= R—%KZ—A 2K . (2.57)

Exploiting the linearity of the stress tensor with respect to H and respecting R (20

K? — K®K_,, one immediately gets®
fi=0 = &£=0, (2.58)

for H ="R.
Finally, let us consider # = 1(V.K)(V°K) = $(VK)?. Now one has to keep in
mind that H and T are functional derivatives

OH oH OH
ab
= = —Vel=—=—), 2.59
7 0Ky 0Ky <8V0Kab> ( )
because ‘H depends on derivatives of K,,. We get

H® = —V.(g®V°K) = —g"AK . (2.60)

It is a bit more difficult to determine 7%. To avoid mistakes, let us consider the
variation of the Hamiltonian H = 3 [ dA (VK)? with respect to the metric g, and
identify T at the end of the calculation. The variation yields:

_ [ qpe s VY 2 _ L 2 2
o, = [ e 8, vy = [aa; VAT £ s (YT 26
The first term can be obtained with the help of Eqn. (2.45):

dglv/9] = %@g“bégab : (2.62)

9 The stress tensor for H = R is only equal to zero in two dimensions due to Eqn. (2.56). In
general it is: f® = 2(R® — %Rg“b)eb = 2G%¢,, where G is the Finstein tensor.
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2.3 The surface stress tensor of special interfaces

7‘[ g fa fab
1 K 0 —g“b
K™ [R — (1 — %)Kz — A} nK" ! | —nVeK" ! | (nK® — Kg®)K"!
K®K,, [R — %K2 — APK —2V°K (2K“b — Kg“b)K
R 0 0 0
WVK2=1| (A+K*-— R)AIK — K. vini | (VE)(V'K) - 59
(V) (VOK) | [(VaI)(V) — Lga(VE )] (VK)? = K*AK

Table 2.1: Euler-Lagrange derivative £(7) and the components of the stress tensor
f* = f%e,+ fon for several simple scalar surface Hamiltonian densities . Notice that
K? and K%K, yield identical £ and f* (see text in this section).

For the second we need to calculate!®
5,[(VE)?] = 64[9"1(VuK) (VoK) + 2g™(VaK) 6, [V, K]
= —(V'K)(V’K)dga + 29" (VoK) V(K eadg™)
= —(V*K)(V'K)éga — 29( )V (K“0geq) (2.63)

where 6,9 = —g%¢*6g.q was exploited twice (cf. Eqn. (C.5)).
Inserting Eqns. (2.62) and (2.63) in (2.61) we get

V. K
V. K

a

11
5, = / dA bgab(vm? _ (V“K)(VbK)}égab _ / dA ¢ (VO K V(K5 geq) .

(2.64)
The last term can be rewritten as

/ dA g (VO K)V,(K“%gq) = — / dA KP°AKSqy,

+ / dAV, [gab(vaK)chagcd . (2.65)

where the second term of the right hand side is a total divergence and can be cast
as a boundary term. Therefore, it does not contribute to 7°%:

. 1
d,H (240 ) /dA T3 gq + boundary terms , (2.66)

10 Note that one again has to be careful (cf. footnote 8, p. 27): not only K% but also V¢ now
depends on the metric through its inverse. However, V, is independent of g,; because it acts on
the scalar K and can thus be written as 0/9¢® (see App. B.1).
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2 Stresses in interfaces

with
T = (V°K) (V°K) — %g“b(VK)Q —2K"AK . (2.67)

Thus, we get with the help of Eqns. (2.49) and (2.19)
1
o = [(V“K) (V'K) = 59" (VE)? - KabAK] e+ VIAK n, and (2.68)

£ = (A+K*-R)AK — K [(VGK)(VI,K) — % gab(VK)z] : (2.69)

for H = 3(VK)>.
All results of this section are summarized in Table 2.1. In Chaps. 5 and 6 they will
be exploited to calculate interface mediated forces between colloidal particles.
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3 One colloidal particle at an
interface

In the previous two chapters we have discussed free interfaces and stresses in them.
Let us now consider what happens when a second component comes into play: a
solid particle that is bound to the interface, either because of adhesion or because
it is embedded in it.!

In this thesis, the focus is on interfaces whose energetics can be described by the
Hamiltonian (1.1). In Sec. 3.1.2 we will see that gravity cannot be described with
such a functional. One may neglect gravity, however, if one restricts the size of
the particle to length scales smaller than 1 pum (see Sec. 3.1.2). Furthermore, the
mesoscopic view on the system as introduced in Chap. 1 on p. 3 should still be
appropriate, which is why the particle should also be bigger than 1 nm.

Particles of that size are called colloidal particles [BM93, p. 105]. This name was
coined by the Scottish scientist Thomas Graham when investigating solutions, in
which the dissolved species was not able to diffuse through a semi-permeable mem-
brane (“k6AAa” means “glue” in Greek) [DGRO02, 11.16]. Typical examples of col-
loidal particles are polymers, in particular biopolymers such as proteins, but also
smoke or dust particles.

In this chapter, the focus will be on systems where one colloidal particle is bound
to a liquid-gas interface (Sec. 3.1) and a fluid membrane (Sec. 3.2), respectively.

3.1 The three-phase boundary solid/liquid/gas

3.1.1 The Young-Dupré equation
The standard derivation

First, consider the case of a three-phase boundary solid/liquid/gas: Assume that
a liquid drop adheres to an ideally flat solid substrate surrounded by a gas.? In
equilibrium the drop will have a certain shape which is determined by the interplay

! The latter case is of particular interest in the case of fluid membranes because proteins can be
modeled as solid membrane inclusions (see Secs. 1.2.3 and 3.2.2).

2 Note that all results in this section also hold for solid-liquid-fluid interfaces in general. The gas
as third phase is only chosen for notational simplicity.
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3 One colloidal particle at an interface

AQ
]

Figure 3.1: Balance of forces at the three-phase boundary solid/liquid/gas

of three different components: the surface tension ¢ of the liquid-gas interface, the
surface tension oy, of the solid-gas, and the tension oy of the solid-liquid interface.?
Because of that interplay, the angle between the solid and the liquid surface on the
three-phase contact line will adjust to a special value. This angle « is called the
contact angle and is depicted in Fig. 3.1 together with the three tensions.

In the horizontal direction forces caused by the tensions must balance in equilibrium.
By simple vector addition we obtain the equation (see again Fig. 3.1):

Osg = 0 COSQL+ Ty . (3.1)

The energy per area that is gained by bringing a separate liquid drop and a separate
solid together so that their surfaces are partially in contact with each other is called
the adhesion energy u. It consists of two components: energy is gained because the
two separate surfaces do not exist anymore. However, to form the new contact area
energy must be expended. Thus, we can write:

u = <a + O'Sg> —0g . (3.2)
Combining Eqns. (3.1) and (3.2) we get:
u = 0(1 + cos a) . (3.3)

This equation is the well-known Young-Dupré equation (see for instance [BM93,
p. 55 et seq.]). It is a local condition that holds at every point of the contact line.

Derivation via the stress tensor

In the previous section we have viewed o, 04, and oy as tensions that are tangential
to the surface in agreement with the introductory remarks of Sec. 1.1.1. Why could
we do this? The reason is that we actually balanced the stress tensors, which are

3 Note that the concept of surface tension—until now only applied to liquid-fluid interfaces—may
be generalized to include solid-fluid interfaces.
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3.1 The three-phase boundary solid/liquid/gas

'/_ Z free

Figure 3.2: Geometry of a liquid drop on a flat solid substrate

purely tangential to the surface in the case of a liquid-fluid interface. Its absolute
values are equal to the interfacial energies as we have seen in Chapter 2.

Let us therefore consider how one can formally derive the result (3.3) by using the
surface stress tensors [CG02a]. For that purpose the free part and the bounded part
of the surface of the liquid drop must be considered separately: for the free part of
the surface Y. the stress tensor can be written as (H = o, see Table 2.1):

fo=—0g”e . (3.4)

For the bounded part ¥,unq one has to take into account the adhesion energy. We
get [CGO02a)):

;== (o -u)gre,. (3.5)

In equilibrium the forces must balance at every point of the boundary curve 9%.
Consider the stress due to the free part (direction of I = [,e* see Fig. 3.2):

Lfe Y log%ey = ol . (3.6)

For the bounded part one can do the same. The unit normal I on the boundary
pointing tangentially out of ¥pouna (see Fig. 3.2) can be written as:

1=1le". (3.7)
Thus, we get for the bounded part:
lL.f" @2 —1, (0 - u) g%e, &n _ (0 — u)i i (3.8)
Balancing the forces at the boundary yields:

—al—(a—u)i—l—fC:O, (3.9)
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3 One colloidal particle at an interface

Figure 3.3: Sewing needle floating on water

where f_ is introduced as a force of constraint (per length) that balances the force
component normal to the solid caused by [, f*: f,, = —o l-nn = —f_.. This force
must be provided by the substrate.

The projection horizontal to the solid yields:

_az.z_(a_u)z.z S
—oll—c4+u = 0
a(lj—l—l) = . (3.10)

I and [ are unit vectors, therefore I-1 = cos (Z(1,1)) = cosa . The angle between the
two vectors is equal to the contact angle a. Thus, (3.10) is exactly the Young-Dupré
equation (3.3).

This type of calculation seems to be a very convenient strategy for identifying con-
tact boundary conditions, particularly if one is interested in more general surface
Hamiltonians (such as bending). Unfortunately, contrary to what one might be-
lieve after consulting Ref. [CGO02a], it becomes incorrect in these cases. The correct
generalization is currently under study [Guv04b).

3.1.2 Force balance for a colloidal particle floating on a liquid

For a solid particle adhering to a liquid-gas interface, all forces caused by the tensions
o, 0g and og have to be included into the force balance. Observe that this has
implications beyond the Young-Dupré equation, since as we have just seen this
equation does not bother with forces normal to the solid substrate. In addition to
the tensions, gravity also has to be taken into account—at least for macroscopic
particles like a sewing needle floating on water (see Fig. 3.3).
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3.1 The three-phase boundary solid/liquid/gas

A heavy particle causes deformations of the originally flat interface due to its weight.
For the liquid, surface tension and gravity are the only physical quantities contribut-
ing to the energy. The former is already included in the Hamiltonian (1.3), but for
the latter we have to add a potential energy contribution:

H:/dAa—i—Epot. (3.11)
¥

To get an expression for . it is convenient to change into a surface parametrization
that is called Monge gauge. In this parametrization the surface is described in terms
of its height h(x,y) = h(r) above an underlying reference plane as a function of the
orthogonal coordinates x and y. This is clearly applicable as long as the surface has
no overhangs (see App. B.3).

Imagine now to lift a small cylinder of the liquid with area A to a height h above its
original position. It then gains a potential energy of foh di (AW Ap)g = SApgh?A,
where Ap := p; — p, is the density difference between the density of the liquid p
and the density of the gas pg, and g is the acceleration due to gravity.

This can be generalized to get the potential energy of the free liquid:

1
Eoor = 3 / dx dy Apgh? . (3.12)
2

A characteristic length ¢ of the system can now be obtained by combining the
corresponding quantities Ap, g and o:

(=, /w : (3.13)

The length ¢ is called the capillary length ([¢] = m). For a water-air interface its value
is about 1/0.073/(10 x 1000) m ~ 2.7 mm at room temperature. An interpretation
of ¢ can be found if one considers surfaces that deviate only weakly from a plane (see

App. B.3). The infinitesimal area element dA can then be written approximately as
dA =1+ 3(Vh)? (see Eqn. (B.53)), which yields for the Hamiltonian (3.11):

1
H = —/dx dy [U(Vh)2+Apgh2}
2 Js

(313) 1

5809 / dz dy {(e Vh)? +h2} , (3.14)

neglecting the constant due to the first term in the expansion of dA. The shape
equation for this Hamiltonian can be written as:*

(V2= —)h=0. (3.15)

4 Note that the symbol V? denotes the Laplacian of the (x,y) plane in contrast to the metric-
compatible Laplacian A of the curvilinear surface.
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3 One colloidal particle at an interface

A mode analysis now provides an interpretation for the capillary length. Considering
a surface patch of area A x A one may write®

h(z,y) =h(r) = hgexp(iq-7) (3.16)
a
with )
T ( v, :
q=" ( v ) with v,, v, € Z . (3.17)

Then, the Hamiltonian (3.14) is proportional to
Hoc'S gl [(e Q)+ 1} . (3.18)
q

The inverse of the vector q is a measure for the length on which perturbations
arise. If it is much smaller than the capillary length ¢, the term (¢ q)* becomes the
dominant term in Eqn. (3.18) and gravity can be neglected.

One may therefore neglect deformations due to the weight of the particle and—as
a consequence—the weight of the particle itself, if one considers the interface on
length scales much smaller than the capillary length, which is the case in the colloidal
domain (compare the size of a colloidal particle (< 1 pm) to the capillary length of
a typical liquid-gas interface such as water-air (about 1 mm)).

Consider therefore a weightless colloidal particle floating on the liquid: the area
of the surface is minimized if the surface is flat. At the boundary the tensions o,
Oss, and ogq can balance according to the Young-Dupré equation. Hence, one would
naively expect that in equilibrium the colloid immerses just deep enough into the
liquid such as to match the appropriate contact angle with a flat liquid surface. But
there is a problem: what happens to the normal force at the contact line? For the
naive scenario to hold, it would have to be balanced by another force (which was
called force of constraint in Sec. 3.1.1).

It turns out that such a force exists: it is the force F'y, caused by the Laplace pressure
(see Sec. 1.1.2).% Hence, at least for cylindrical and spherical particles, the objects
we will mainly deal with, the suspicion that the liquid surface remains flat is indeed
confirmed, even though the deeper reason for this is a bit more subtle.

Let us derive that for the case of a sphere” with radius a and fixed angle 6, of
immersion (see Fig. 3.4). We will show that all forces will balance if the interface
is flat. If we require the Young-Dupré equation to hold, the tangential forces at the
contact line already balance, and we will subsequently only have to worry about
the normal ones. Our proposed counter-balance force F'y, consists of two parts:

5 One takes a Fourier sum instead of an integral because the area is not infinite.

6 Equation (1.7) can also be applied to a solid sphere here because both solid-fluid interfaces are
treated as the liquid-gas one by assigning surface tensions to all of them.

7 The calculation can be done in the same manner for a cylinder.
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3.1 The three-phase boundary solid/liquid/gas

/ gas
a
solid )0‘

Figure 3.4: Sphere floating on a liquid

F;, = Fy + Fy. The force F, is caused by the Laplace pressure P, which acts on
the upper part Xy, of the sphere being in contact with the gas. F'g is caused by the
Laplace pressure P, which acts on the lower part ¥ of the sphere being in contact
with the liquid.

The relevant component of the forces is the vertical projection parallel to z. The
horizontal projections in fact cancel out because of the axial symmetry. For the
vertical components we get, using spherical coordinates (r, 0, ¢):3

2 T—6y
Fy -z = —/ dAPSgn-z——PSgaz/ dgb/ dé sinf cos b
Yeg 0 0
- _gcﬁpsgu — cos (260)]
Pyg=2%58
=" —maog[l — cos (20))] , (3.19)
and
21 s
Fy- -z = —/ dAPyn-z=— slaQ/ dqb/ dé sin 6 cos
Esl 0 7T—90

- ga2P51[1 — cos (26)]

=" Tmaog[l — cos (26y)] . (3.20)

Combining the two forces yields

Fy -z = ma[l —cos(260p)](cg — 0sg) (3D

= —27asin®fy ocosa . (3.21)

—ma[l — cos (200)]o cos a

8 Note that # measures from the “north pole”.
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3 One colloidal particle at an interface

The force normal to the solid F,, at the three-phase boundary is equal to (cf.
Sec. 3.1.1 and remember that the surface tension is a force per unit line and therefore
has to be multiplied by the length of the contact line):

F, = (2rasinfy) osina . (3.22)
Therefore, the component parallel to z is:
F, -z = (2masinfy) osinacosw o=@) (2masinfy) o sin (7 — 6y) cos «

= 2masin®fy o cosa . (3.23)

This is indeed exactly canceled by the force due to the Laplace pressure, Eqn. (3.21),
which proves that our assumption was correct and the interface is really flat—at least
in the case of spherical or cylindrical colloids.

3.1.3 Pinning of the contact line

For arbitrarily shaped particles the situation is different: As before, the contact line
at the three-phase boundary tries to adjust to the Young-Dupré equation in every
point. This, however, would be generally impossible if the interface were to remain
flat. In addition to that, pinning of the contact line may occur. This describes the
situation where the contact line is pinned to impurities on the surface such that the
Young-Dupré equation is generally not satisfied. One can observe that, for example,
every morning when eating cornflakes for breakfast (see Fig. 3.5). Even in the case
of spherical or cylindrical particles, pinning may lead to a nontrivial contact line
and thus to interface deformations.

If one wants to know the actual shape of the interface in this case, one has to solve
the shape equation K = 0 (see Table 2.1), which in small gradient expansion (see
Eqn. (B.52)) turns into

V2h(r) =0 |. (3.24)

The boundary conditions fix the height h at the contact line C. This problem
evidently corresponds to the Dirichlet problem for a potential in electrostatics. In
both cases, the solution can be obtained by using the Green function G(r,r’) of the
two-dimensional Laplacian, which is %;M Applying Green’s second identity, one
gets for the height function (or potential in electrostatics) [Jac75]:

h(r) = 7{ ds’ [ah(r/)G(r,r’) _ py2EnT) (3.25)

on’ on’ ’
where s’ is the arc length of the boundary curve C and % the derivative along the

vector normal to the colloid. Solving this integral equation yields the shape of the
surface.
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3.2 Colloidal particle bound to a fluid membrane

Figure 3.5: One cornflake on milk. Some spots where pinning of the contact line occurs
are denoted by the black arrows.

3.2 Colloidal particle bound to a fluid membrane

Apart from liquid-gas interfaces (or more generally “soap film type” interfaces, see
Sec. 1.1) the main focus in this work lies on fluid membranes (see Sec. 1.2). In the
present section we will therefore study the binding of a colloidal particle to a fluid
membrane.

One may distinguish two possible binding mechanisms: the colloid can either adhere
to the membrane due to attractive interactions (see Sec. 3.2.1) or it may be embedded
in it (see Sec. 3.2.2).

3.2.1 Adhesion

In the case of adhesion, boundary conditions analogous to the Young-Dupré equation
can be found. The first one follows from the fact that a membrane cannot have
any kinks, because this would lead to a singularity in the curvature energy (see
Eqn. (1.10)). This implies

a=T, (3.26)

where « is the contact angle at the particle-membrane contact line. But since the
Hamiltonian for a fluid membrane is of higher order in surface derivatives than the
Hamiltonian for a liquid-fluid interface, there will be one more boundary condition
which fixes the next order in surface derivatives, namely the contact curvature.
But what does this boundary condition actually look like? And how can the shape
of the membrane be determined if a colloidal particle adheres to it?
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3 One colloidal particle at an interface

Fluid membrane vesicle on a solid substrate

First, let us consider a fluid membrane vesicle adhering to a solid substrate: this
situation is similar to the case where a liquid drop is bound to a solid substrate
(see Fig. 3.2); in particular its geometry is essentially the same. However, the
Hamiltonian is different [CG02a]:*

H:/dA [mrg(K—Ko)?} —/ dAu— PV, (3.27)

bound

where u is the adhesion energy per area. The topology of the vesicle shall be fixed,
which permits us to neglect the Gaussian curvature term (cf. Hamiltonian (1.10)).
However, an excess pressure P is included (cf. Hamiltonian (1.4)).

At the boundary, the curvature tensors K, and K, of the membrane and the
substrate, respectively, may be written with respect to the local coordinate frame

{l,t} as
o _ [ Ko Ky o _ [ KL Ky
Ko = < Koow ) ad K= (gl R (3.28)

A variation of the Hamiltonian then yields the equilibrium boundary conditions
[CGO02al:
- 2u _ _
KJ_—KJ_: ?, K”:K”, and KJ_H:KJ_”. (329)

These also have to hold when a colloidal particle adheres to a fluid membrane.

Adhesion of a spherical colloid to a fluid membrane

Let us now restrict ourselves to the case of a colloid adhering to an elastic symmetric
(Ko = 0) fluid membrane with fixed topology and no excess pressure. The general
Hamiltonian (1.10) then simplifies to:

H:/EdA (a+gK2)—/E dAu . (3.30)

bound

Note that from the two elastic constants o and s one can define a characteristic
length
K
A=/ —, (3.31)

g

that separates length scales over which bending or tension are the dominant term.

9 Note that instead of the spontaneous curvature K a term linear in the total curvature K is
included in the original Hamiltonian in Ref. [CG02a]. By multiplying out (K — K)? one can
see that these are two equivalent ways of formulating the problem.
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3.2 Colloidal particle bound to a fluid membrane

The shape of the bound membrane is fixed by the shape of the colloid. For the
shape of the free membrane, one has to set the Euler-Lagrange derivative £ of the
free part of the Hamiltonian

Hipeo = / dA (o + gKQ) , (3.32)
b
to zero. From Table 2.1 one derives

—kAK + gK(W K K®) + oK =0 (3.33)
Changing to Monge parametrization again and considering only the small gradi-
ent regime (where higher order terms are neglected and K (552 —V?h), one gets

kV?*(V?h) — cV?h = 0, or with the help of Eqn. (3.31)

22 L

V4(V° — F)h =0 1. (3.34)

This differential equation is solved by eigenfunctions of the Laplacian (correspond-
ing to the eigenvalues 0 and A\~?) while respecting the appropriate boundary condi-
tions (3.26) and (3.29) [DB03].1°

If one considers a spherical colloid adhering to a fluid membrane, the general solution
of Eqn. (3.34) may be obtained by exploiting cylindrical symmetry and introducing
a coordinate system with variables p and ¢ as depicted in Fig. 3.6:

h(p) = h1 + haln (p/A) + hslo(p/A) + haKo(p/A) (3.35)

where Iy and K are the modified Bessel functions of the first and the second kind,
respectively.

The function Io(p/A) diverges for p — oo. Thus, if one wants the profile to be flat
at infinity, h3 = 0. One also has to bear in mind that the energy density should still
be integrable. This is not the case for the In (p/A) term. Therefore, hy also has to
be zero.

The remaining coefficients can be determined by exploiting the continuity of the
profile and the slope at the contact line.!'! One gets [DB03, Des04]

Kolp/\) = Kolka/))
K1<ka/)\) ’

h(p) = —acos By + Atan b, with k :=sinf, . (3.36)

This is the solution in the small gradient regime for the free interface. The higher
the angle 6, the worse this approximation becomes (see Fig. 4 in Ref. [DB03]).

10 Note that the Eqns. (3.29) are still relevant for the whole problem because the terms fg dA K
and —PV, that were dropped out in (3.30), have no further influence on them.
! The conditions K| = —1/a and K|, = 0 are then automatically fulfilled.
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3 One colloidal particle at an interface

h(p)

@
) S

Figure 3.6: Sphere adhering to a fluid membrane

Note that the last remaining boundary condition

12
K, =—=44/22, (3.37)
a K

derived from (3.29), has not been taken into account yet. It is recovered automati-
cally if one searches for true equilibrium shapes of the whole complex by minimizing
the complete Hamiltonian (3.30) via g—g = 0 [DB03, Des04].

If 0 = 0, which means that the membrane is only characterized by bending, one
can find an analytical solution even for the nonlinear Eqn. (3.33): for every possible
angle of detachment 6, the free part of the membrane forms a catenoid, which is an
axially symmetric minimal surface with K = 0 at every point and therefore does not
contribute to the energy [Kre91]. Since adhesion energy as well as bending energy
are now simply proportional to the area of the sphere, the colloid is either completely
wrapped by the membrane or not wrapped at all [Des04].

3.2.2 Membrane inclusions

Apart from adhering to an interface, colloidal particles may also be embedded in it.
One typical example is a protein inclusion in a membrane (see Sec. 1.2.3).

Consider a cone-shaped protein: one may model such an inclusion as a circular disc
with radius a that simply imposes a fixed contact angle « on its circular boundary
(see for instance [GBP93]). At the spot where the inclusion sits the membrane has
a “hole”. Because of that, there is no need to include an adhesion energy into the
relevant Hamiltonian. For the same reason, the region of integration, 3, is no longer
simply connected. The Gaussian curvature term (cf. Hamiltonian (1.10)), however,
can again be neglected due to the Gauss-Bonnet theorem: the geodesic curvature
K, is fixed at the contact line due to the fixed contact angle and the integral over
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3.2 Colloidal particle bound to a fluid membrane

K is thus a topological invariant (see App. B.2). Therefore, Eqn. (3.30) turns into:

H= / dA (o + gKQ) . (3.38)

The shape of such a membrane can be obtained in a similar way as in the previous
section. Now, however, the boundary condition is simpler: the derivative of the
height function h(p) is equal to the fixed contact angle a. One gets in small gradient
expansion

h(p) = —#)\/)\)K})(a/)\) + const . (3.39)
In addition, one may impose more complicated boundary conditions for inclusions
that are anisotropic by locally fixing the extrinsic curvature tensor at the positions
of the inclusions [BF03, MMO02|. Here, we will, however, restrict ourselves to the
case of discoidal inclusions.
Furthermore, a protein may cause a local change in thickness of the membrane bi-
layer if its hydrophobic part is smaller or larger than that of the bilayer (hydrophobic
mismatch) [DPS93]. This effect, however, will also not be studied in this work.

43
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4 Forces between interface-bound
particles

4.1 Interface mediated interactions

In the previous chapter we have examined the manner in which a single particle
deforms an interface to which it is bound. Conversely, a deformation in the interface
can interact with a bound particle. A deformation field created by one particle at
the interface may therefore interact with a second particle which is also bound to
the same interface and spatially separated from the first one. The thereby induced
forces are called interface mediated interactions.

In general, physical interactions between particles are mediated by fields: matter,
for instance, curves spacetime itself; if it is charged, it will additionally interact
through the electromagnetic field. Colloidal particles in suspension can also create
an effective field by distorting the order of an embedding liquid crystal and thereby
inducing an interaction of a more indirect nature [GFS03, PSLW97].

Interface mediated interactions are an important, purely geometrical example of
such interactions. At first glance, it is not obvious whether two particles of a certain
shape and bound to a certain interface will attract or repel each other: consider, for
instance, two identical spherical particles adhering to the same side of an interface.
In the case of a liquid-fluid interface including gravity the spheres attract each other
[KNO94]. If the interface were a tensionless fluid membrane and the particles were to
adhere only partially,! they would feel a repulsion.?

One can find cases where the circumstances get even more confusing: consider two
cylindrical particles adhering to the same side of an interface, such as the two sewing
needles in Fig. 1 of the introduction. Let us neglect end effects and restrict ourselves
to the case where the cylinders are parallel to each other. We then obtain an effec-
tively one-dimensional problem, which exhibits a surprising feature: if one considers
a liquid-fluid interface including gravity on the one hand, and a fluid membrane on
the other, one will see that the shape of the interfaces is exactly the same as long

I Note that we have to arrange things “by hand” such as to avoid getting the equilibrium situation
of complete or zero wrapping (see end of Sec. 3.2.1), which would not lead to interface defor-
mations away from the sphere. This can be done, for instance, by making only one hemisphere
attractive with respect to the membrane.

2 The deformation of the free membrane due to one single sphere costs no energy (see Sec. 3.2.1).
Bringing two spheres together can therefore only raise the energy. This leads to a repulsion.
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4 Forces between interface-bound particles

fluid membrane | flutd membrane
without tension | under tension
(H=o0) (H=45K?) (H=0+45K?)

no gravity -+ gravity | same  opposite | same  opposite

soap film

cylinder @ S5, %, %) S @D
sphere @ D Q (%) ? ?
inclusion — — e S © ®/6

Table 4.1: Sign of the interaction between two identical colloids depending on interface
type and colloidal shape (@ = attraction, © = repulsion, & /6 = attraction or repulsion
depending on the particles’ distance, @ = no interaction, — = not relevant). In the
case of the membrane the particles may either adhere to the same or to opposite sides.
Note that pinning is not included in this table because the sign of the force depends
strongly on the shape and orientation of the pinned contact line (see Secs. 4.3 and 6.1).

as the contact angle is equal to 7 in both cases.®>* But, although the shapes are
identical, the forces are not! Even the sign is different: Two cylinders on a liquid-
fluid interface attract each other (see Fig. 1), whereas two cylinders at the same
membrane side feel a repulsion. This is understandable if one is clear on the fact
that the energetics not only determines the shape of the interface but also the stress
tensor (see Sec. 2), which can be different even though the shapes are the same.
The stress tensor, however, determines the forces, as will be made clear in Chap. 5.
These few introductory remarks serve to motivate our interest in the sign of in-
terface mediated interactions. In Table 4.1 an overview of possible shape-interface
combinations is provided. For inclusions, the interactions are only known in linear
approximation, the question marks denote cases where the sign is not known at all.
Most of the situations depicted in the table will be considered in the following: first
by an energetical approach—which is the one used in the literature—and then by a
stress tensor approach, which is the new idea this thesis is based upon.

3 In the membrane case this is a necessary boundary condition (see Eqn. (3.26)); in the liquid-fluid
case one has to choose the materials to be completely non-wetting.

4 One can see that the shapes are identical for identical characteristic length scales, A = ¢, by
considering the two corresponding linearized shape Eqns. (3.15) and (3.34), which yield the
same height function if one respects the appropriate boundary conditions for the two cylinders.
By changing to an angle-arc length parametrization (see [SBL91] for instance), which is more
convenient than Monge in this case, one can show that the shapes are identical even if one
considers the complete nonlinear problem.
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4.2 Forces via the energy

4.2 Forces via the energy

How can the interface mediated force be calculated for a given situation? To answer
that question let us consider the energetics of a two particle system: ts complete
energy is not equal to twice the energy of the one particle system.’ It rather depends
on the relative positions of the two particles. Thus, a derivative of the energy with
respect to the appropriate coordinates yields the interface mediated force.

In order to get the energy for given particle positions, one has to find the energy
minimizing shape of the two particle-interface system first. There is, however, a
major obstacle: the relevant field equations are nonlinear differential equations.
Even if the Hamiltonian density H only depends on quadratic invariants such as in
the case of the fluid membrane Hamiltonian (1.10), the interface is still curvilinear.
This is the reason why it is usually impossible to obtain exact analytical solutions.
One way to find at least approximate shapes is to restrict oneself to essentially flat
interfaces, which allows one to parameterize the surface in Monge gauge, and expand
the height function and all other surface quantities in a small gradient expansion
(see App. B.3). One then gets linear differential equations which can be solved by
Green functions. The boundary conditions at the contact lines, however, also have
to hold (see Chap. 3). A superposition ansatz in the spirit of Nicolson [Nic49] that
superimposes two single-particle solutions of the field equations normally violates
these boundary conditions. But, even if one finds solutions where they are respected,
it is not clear at all how the result can be generalized to the full nonlinear situation.
Thus, the energy cannot be calculated in general. Consequently, there is also no
chance to differentiate it to get the force. It is possible, however, to gain new insights
by considering stresses: even if the exact shape is not known, certain symmetries may
be exploited to obtain exact formulas for the force, the sign of which is sometimes
evident.

Before demonstrating that, let us discuss the energetic approach a bit closer for
the following situation, which we will restrict ourselves to in the rest of this work:
Consider a system of two identical colloidal particles bound to an asymptotically
flat interface, as is schematically sketched in Fig. 4.1. The surface is embedded in
R3. We call the basis vectors of this three-dimensional Euclidian space {x,y, z}.
For the following we choose the surface to be parallel to the (z,y) plane far away
from the colloids and align their centers along the z-direction such that the origin
of the coordinate system is exactly in the middle between the two particles.

Here, and also in all other examples in the following chapters, the focus will be on
interfaces whose free parts can be described by the Hamiltonian density.®

H:o+gK2. (4.1)

5 This is due to the fact that the energy is in general not a linear function of the profile.
6 Note in particular that gravity will be neglected by restricting the analysis to colloidal particles.
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4 Forces between interface-bound particles

Figure 4.1: Two identical particles bound to an interface. Note that each particle
deforms the interface; in-between the particles these deformations overlap.

For k # 0 and o # 0, H describes an elastic symmetric fluid membrane under
tension. However, Hamiltonian (4.1) is also applicable for soap films (setting x = 0)
and tensionless membranes (setting ¢ = 0). Remember that the characteristic
length, marking the crossover between tension and bending dominance, was defined

as A = \/k/o (see Sec. 3.2.1).

Considering essentially flat interfaces, the Hamiltonian (4.1) can be rewritten in
small gradient expansion (see App. B.3, Eqns. (B.52) and (B.53)) as:

H= / d dy [%(VW + g(v2h)2] . (4.2)

Applying the general approach as described above one starts an analysis of this
Hamiltonian by determining the energy minimizing shape of the surface for a given
attachment of two particles, that is h(z,y). This can be done by solving the shape
equation with the appropriate boundary conditions. After reinserting the resulting
height function back into Eqn. (4.2), the energy can be calculated, which will then
parametrically depend on the distance d between the bound particles. A derivative
of the energy with respect to d yields the forces between them. This program has
been followed very frequently in the literature (see for instance [SDJ00, FG02, Wei03,
WKH98]), which is why we will limit ourselves to a brief discussion of one example
below. Explicit results for specific situations can be found in Chap. 6 where the
quantitative comparison to the stress tensor approach (see Chap. 5) will be drawn.
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4.3 Example: Two quadrupoles on a soap film

(d)
Figure 4.2: Interaction of two quadrupoles on water. The two polyamide rings are
kinked in such a way that their contact line forms a quadrupole.

4.3 Example: Two quadrupoles on a soap film

Let us now consider one brief example here: a soap film where
g 2
H = 3 dz dy (Vh)~. (4.3)

The interface has to fulfill the shape equation, which in small gradient expansion
becomes (see Eqn. (3.24))
V2h(z,y) =0 . (4.4)

In Sec. 3.1.2 we noticed that a spherical or cylindrical colloidal particle does not
deform the interface. Therefore, no deformation field exists and the force between
two particles adhering to the interface must be equal to zero for all separating
distances d (see Table 4.1).

This changes if one allows for pinning (see Sec. 3.1.3). The height function can then
be calculated in a similar way to Eqn. (3.25): however, one now has to integrate
over both contact lines. The force is then obtained as described above.

Consider two spherical particles with a contact line that departs only weakly from
a circle and let us expand its shape in a multipole series. The lowest multipole
order that causes a nontrivial term in lowest order of the energy is the quadrupole
[FG02, SDJO0] (see Fig. 4.1 where the particles’ contact lines are quadrupoles).
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4 Forces between interface-bound particles

Fig. 4.2 gives an illustration of such a situation: two polyamide rings are carefully put
on a water-air interface. They are deformed in such a way that their circumference
is a quadrupole in the above-mentioned sense: the red marking denotes the axis
at which the ring is bent down, the black at which it is bent up. Both particles
deform the interface. As soon as their deformations overlap they start to interact.
One observes that identical colors “attract” (as can be seen for the red markers in
Fig. 4.2).

One might suspect that the weight of the particles is the driving force, just as in
the case of the two floating sewing needles (see Fig. 1 of the introduction). This is,
however, not true: by carefully pushing one of the markers of one quadrupole to a
same-color marker of the other quadrupole, one can easily check that red and black
markings actually repel each other. This shows that gravity is not the dominant
effect because it should result in an attraction irrespective of the quadrupole orien-
tation. Although macroscopic, the model system in Fig. 4.2 is therefore appropriate
to demonstrate forces between colloidal particles. Note also that electrostatic or
magnetic interactions can be excluded due to the material of the rings.

In Sec. 6.1 the interface mediated forces for that particular case will be calculated
explicitly in order to understand the experimental observations mentioned here. In
the same chapter, calculations for other examples will also be presented.
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5 Forces via the stress tensor

5.1 General approach

Apart from differentiating energies, interface mediated forces can also be expressed
via integrals over the surface stress tensor. Before discussing that approach, however,
let us shortly summarize what has been achieved so far: in the first chapter, we have
learned how free interfaces can be described and sorted according to their energetics.
In Chap. 2, we have considered stresses in interfaces and have found an expression
for the total internal force on a strained surface patch ¥, in terms of the surface
stress tensor f%:

Fs, :/dA V. f :74 ds If* | (5.1)
o %0
where I = [%e, is the outward pointing unit normal to the boundary curve (see
Eqn. (2.3)). We then have derived expressions for the surface stress tensor of most
of the interfaces discussed in Chap. 1.
In Chap. 3, it has been explained how the shape of the interface can be determined
if one colloid is bound to it. This gave us the tools for studying the energetics of
interface mediated interactions in Chap. 4.
With all of this being done, it is now quite easy to formulate the problem in terms
of the stress tensor. Consider Eqn. (5.1) again: it is by definition clear that the
total force must be zero in equilibrium if there are no external stresses acting on
Y. The situation changes as soon as external stresses act: a source of stress, e. g.
a colloidal particle adhering to a part of ¥y, can cause a non-zero total force on
the patch. Note that this force can be calculated as the line integral of the surface
stress tensor along any curve including the source as long as it is closed and encircles
only this particular source, because the stress tensor is divergence free (see Chap. 2,
Eqn. (2.21)).1
These general considerations can be applied to special situations of interface me-
diated interactions between colloidal particles: let us look again at two identical

I Contrary to colloids, which act locally, a pressure difference P across the interface constitutes a
continuous source of stress. However, we have seen that in this case it is possible to define a new
stress tensor }'a which is again divergence free (see Eqn. (2.27)). This should allow a treatment
of the interaction problem similar to the cases without excess pressure but in the present work
we will not follow up on this program.
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5 Forces via the stress tensor

XEO

Figure 5.1: lllustration of how the force on one of a pair of particles bound to an
interface is given as a closed line integral of the surface stress tensor. The contour can
subsequently be deformed to exploit the symmetry of the situation.

colloidal particles bound to an asymptotically flat surface as in Chap. 4. The co-
ordinate system is the same as before with the centers of the colloids being aligned
along the z-direction such that the origin is exactly in the middle between the two
particles (see Sec. 4.2 and Fig. 5.1).

A situation like that can only be stationary if external constraining forces fix the
particles’ positions (see Sec. 4.2). These forces are the sources of stress one actually
picks up while integrating. However, we want to know the force acting on one of the
particles if there were no constraining forces. An additional minus sign stems from
this.

Note also that only the separation of the particles shall be fixed. Their height and
orientation are free to change and therefore equilibrate. The same holds for the
contact lines between surface and colloid.

The calculation of the forces between the two colloids can be simplified if the situa-
tion displays one of the two following symmetries: either a symmetry plane, which
is equal to the (y, z) plane (symmetric situation) or a twofold symmetry axis, which
coincides with the y axis (antisymmetric situation), exist. The symmetric case is,
for example, present if the two particles adhere at the same side of the surface, the
antisymmetric one if they are at opposite sides (see Fig. 5.2).

If we restrict ourselves to such configurations, we can exploit the fact that the
contour of the line integral (5.1) can be deformed: as it is sketched in Fig. 5.1,
the contour can be pulled open wide enough such that the surface is finally flat at
branches 2, 3, and 4 and the stress tensor thus very simple. The contributions from
branches 2 and 4 will in fact cancel each other; the only mathematically involved
term stems from branch 1. An integration as in Eqn. (5.1) yields the force on the
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5.2 Explicit force formulas

Figure 5.2: lllustration of the geometry of a symmetric (solid line) and an antisymmetric
(dotted line) two-particle attachment. The symbol ¢ denotes the angle between the
surface normal n and the z axis.

colloid. In all of the following it will be the force on the left particle which is actually
calculated, but due to Newton’s third law this force is of course equal and opposite
to the force on the right particle.

With this in mind, the general approach can now be turned into exact analytical
expressions.

5.2 Explicit force formulas

Let us focus again on the case of an elastic symmetric fluid membrane, described by
the Hamiltonian density

H:a+gK? (5.2)

From Table 2.1, one reads off the associated surface stress tensor:
1
fo = [,{(Kab — 5Kg") K - agab] er — (VK . (5.3)

The force on the left particle will be calculated in a coordinate system with the
(orthonormal) tangent vectors {t,l} as basis vectors on the contour, where t = t%,
points along the integration line and I = (e, points normally outward (see Fig. 5.1).
This simplifies the relevant quantities: the extrinsic curvature tensor is diagonal
along branch 1 because this branch is a line of curvature now due to the symmetry.
Thus, the principal curvatures are equal to K| = [*I’K,, and K | = 1P K.

For the force on the left particle stemming from branch 1 (see Fig. 5.1) one gets
according to Eqns. (5.1) and (5.3):

F, = —/dszafa
1

= - /1 ds {[m(zaKab — %Kl")K - azb} ey — K(l.VK) n} . (54)
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5 Forces via the stress tensor

Recall that the minus sign out front comes from the fact that the interface mediated
force on the particle is opposite to the external force necessary to counterbalance
it (cf. discussion in Sec. 5.1). The first term of the integrand can be rewritten by
exploiting completeness, g; = [l + ¢t

LK%, = 1,KP1,° + tt%)e.
= LKl + 1,t, Kt
= K, (5.5)

where l,t, K% = 0 because the integration runs along a line of curvature. Further-
more, one defines V| :=1[,V* = 0/0l. With this, Eqn. (5.4) turns into

Fy = —/1ds {[/{(KL = %K)K —o|1- /{(VLK)n} . (5.6)

Since the trace K of the extrinsic curvature tensor can be written as K = K| + K|,
this simplifies the force further to

Fy=— /lds { [%K(Kﬁ - Kp) — ot~ K(VLK)n} . (5.7)

This equation is one of the central results of this work. In order to understand its im-
plications better, let us now look separately at the two different possible symmetries:
either a symmetry plane (symmetric situation) or a symmetry axis (antisymmetric
situation) exist (see Fig. 5.2 and discussion in Sec. 5.1).

The symmetric case

Let us first consider the symmetric case: tangent and normal vector on branch 1 lie
in the (y, z) plane, hence I = x (where x is the unit vector pointing in the horizontal
x-direction). The derivative of K in the direction of I along branch 1, V| K, is zero
due to mirror symmetry. On branch 3 the surface is flat and thus the stress tensor
is equal to f,3 = —oe,. With this information the total force F'y + F'3 = Fyyn@ on
the left particle can be written as:

1
Fym = oAL— éli/ds (KT - K}) |, (5.8)
1

where AL > 0 is the excess length of branch 1 compared to branch 3.

The contribution due to tension is attractive: it is positive, points therefore into
the positive z-direction and thus towards the other particle. Unfortunately, the
curvature contribution has no evident sign in general. However, for two parallel
cylinders adhering to the same side of the interface the overall sign becomes obvious,
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5.2 Explicit force formulas

Figure 5.3: Two cylinders at opposite interface sides. The vector f, is the surface
stress tensor at the midline, e the outward pointing unit normal to the midline, which
is also tangential to the surface, and f., is the projection of f  onto e, .

as long as the particles are long enough such that end effects can be neglected: the
contribution K ﬁ then vanishes because the mid-curve becomes a line. For the same
reason AL = (. This leads to the formula

1
Fsym,cyl/L = —§/€KJ2_ y (59)
where L is the length of one cylinder. Thus, the two cylinders repel each other.

The antisymmetric case

In the antisymmetric case branch 1 is a twofold symmetry axis and therefore a line;
hence K| = K| = 0. While the sign of V| K| is not obvious, the derivative V K| is
smaller than zero because K| changes sign from positive to negative. The profile on
the midline is always tilted by the angle ¢(s) in the direction indicated in Fig. 5.2,
because situations with more than one nodal point in the height function between
the particles are expected to have higher energies. The horizontal separation of the
particles is fixed; other degrees of freedom, such as the height or the tilt, are allowed
to equilibrate (see Sec. 5.1). The force on the left particle is therefore again parallel
to @, Fantisym = Fantisym®, and given by

Fantisym = /1ds [a(cos ¢(s) — 1) — ksinp(s) Vi (KL + K”)] , (5.10)

where it was exploited that -l = cos¢ and « - n = —sin ¢ at the midpoint. Note
that the tension contribution is repulsive this time but the sign of the curvature
term is again not obvious.

If we restrict ourselves to the case of two parallel cylinders at opposite sides of the
interface, however, then VK| is equal to zero. Furthermore, |f,| is constant on
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5 Forces via the stress tensor

each of the three membrane segments. The stress tensor at branch 1, f* = Jats
must be horizontal to the x axis because vertical components equilibrate to zero as
mentioned above (see Fig. 5.3). Defining e, :=1 at branch 1, one can write:

fo, =f" el=(f"x)(x-e)). (5.11)
From this it follows that f* - a = sign(fe, /x - e.)|f*|. We know that = - e, =
cosp > 0 and fo, = —0 < 0. Therefore, we find f= = —|f*|x at the midpoint.

This reduces Eqn. (5.10) to

Fantisym,cyl/L = ‘fl‘ — 0 = \/02 + (/ﬁ?VJ_KJ_)Q —0>0 , (512)

which now implies particle attraction. The length L is again the length of one
cylinder.

Eqns. (5.8)—(5.10) and (5.12) are the promised analytical force formulas which link
the force of interaction between two attached particles to the geometry of the surface
at the midplane between them. It is worth to reemphasize that they are ezact, even
in the nonlinear regime. To check their validity in full generality is thus difficult,
because basically no analytical results are known in the nonlinear case. In the next
chapter, in which such a check shall be performed, we will therefore content ourselves
to a comparison with analytically known results in the linear small gradient regime.
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6 Comparison between the
approaches

The idea of this chapter is to illustrate the validity of the general stress tensor
approach by focusing on a few important examples of two particles being attached
to either a soap film (see Sec. 6.1) or a membrane (see Sec. 6.2).

The following problems have already been considered in Refs. [SDJ00, FG02, Wei03,
WIEKH98] where their energetics have been studied. Note, however, that this was only
done in the small gradient regime, using the Hamiltonian

H= / dz dy [g(wl)? + g(v%)ﬂ , (6.1)

and appropriate values for o and k (see Eqn. (4.2)).

To draw a quantitative comparison between the results of the literature and the
ones of the stress tensor approach, the force can be calculated in two ways: first,
by differentiating the energy found in the literature with respect to the particle
separation following the energy approach as it is explained in Sec. 4.2. Second,
by inserting the given height profile h(z,y) into the force formulas derived in the
previous chapter. In all cases the outcome turns out to give coinciding results, which
validates our new formulas, at least in the linear regime.

6.1 Soap film type

For soap films, x = 0 and we have
g 2
H= B) dz dy (Vh)~ . (6.2)

In Sec. 4.3 we found out that two spherical or cylindrical particles on a soap film do
not interact with each other if their attachment to the film is governed by a simple
stress-adhesion balance (Young-Dupré equation). For symmetric and antisymmetric
configurations this can be confirmed via the stress tensor approach: consider two
parallel cylindrical colloids adhering to the same side of the soap film (symmetric
situation). Equation (5.8) states that the force is then proportional to the excess
length if one neglects end effects. The excess length, however, is equal to zero as
long as the contact lines are straight. Therefore, the force is also zero. Likewise, in

o7



6 Comparison between the approaches

Figure 6.1: Coordinates chosen for one quadrupole (seen from above)

the antisymmetric situation the soap film between both cylinders is flat as long as
the verticle particle positions can equilibrate. Therefore, p(s) = 0 (see Fig. 5.2) and
Eqn. (5.10) yields zero for the force, just as in the symmetric case. In an analogous
way one obtains the same result for the case of spheres.

Let us now consider pinning again and restrict ourselves to two spherical particles
with radius a and a contact line that only weakly departs from a circle (cf. Sec. 4.3).
Stamou et al. [SDJ00] have studied this case by using a superposition ansatz in
the spirit of Nicolson [Nic49]: first, the height function of one isolated particle is
calculated with the correct boundary conditions. Then, the complete height function
is assumed to be the sum of the two single-particle fields of each of the two colloids.
Strictly speaking, this approach destroys the boundary conditions at the particles’
contact lines but it gives the correct result in leading order in the limit of large
separation.! Using polar coordinates p and ¢, the solution of the shape Eqn. (4.4)
for a single sphere can be written as [SDJ00]

hephere(p, &) = A log (%) + i Anp 08 [m(d — dmo)] (%)m , (6.3)

with multipole coefficients A,, and phase angles ¢, o. The former can be determined
as follows: The monopole A, vanishes because there is no external force such as
gravity dragging on the particle. The dipole coefficient A; parameterizes the tilt
of the contact line relative to the z axis; it also vanishes if there is no external
torque acting on the sphere. All higher multipole coefficients can be read off from
the Fourier expansion of the contact line at p = a, in particular the quadrupole
coefficient ) := A,. It is intuitively obvious and indeed confirmed by a more careful
calculation [FG02, SDJ00] that the quadrupole is the lowest multipole order that
causes a nontrivial term in lowest order of the energy.

! Note that it is also possible to solve the shape equation exactly in small gradient expansion
[FGO02]. However, both calculations yield the same energy in lowest order. Therefore, the easier
approach is presented here.
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6.1 Soap film type

Figure 6.2: Two quadrupoles on a soap film (seen from above)

One can therefore restrict the calculation to the single-particle height function

[SDJO0]
hpnere(6) = Qeosf2(6 = o)} ()" (6.4)

where ¢¢ := ¢ is the angle that represents the rotation of the particle about z
(see Fig. 6.1).

If the complete height function is then just a superposition as mentioned above, the
force on the left particle in lowest order is given by [FG02, SDJO00]

4

a
Fsym,soap = _Fantisym,soap = 4877—0-@2%33 (65)

for a symmetric (¢oa = —¢op) and an antisymmetric (¢ = 0, o = 7/2) situa-
tion, respectively (see Fig. 6.2). Note that this outcome coincides with the experi-
mental findings in Sec. 4.3.

We now want to derive this result using the alternative stress tensor approach.

Symmetric situation

Let us consider the symmetric case first. According to Eqn. (5.8) the excess length
of branch 1 compared to branch 3 must be determined. This can be written as

AL = 1im{/_L/2dy[ 1+h5(o,y)—1]}

— lim (/_m dy {%hf,(o,y)JrO[(Vh)ﬂ}) , (6.6)
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6 Comparison between the approaches

In Cartesian coordinates one gets for the height function at the symmetry line
between both particles:

a2

2
h(0,y) = 2Q cos[2(arctan A bon))——s - (6.7)
d ’ y2 + 4
1
By differentiating with respect to y and inserting the result into the small gradient
term of Eqn. (6.6) one obtains

AL = i [96@214 tan 2 + O(LY)
— Lgrolo 7 arctan P + (
_ 20"

which yields the same attractive force as Eqn. (6.5) once Eqn. (5.8) is applied.

Antisymmetric situation

In the antisymmetric case the force can be calculated according to Eqn. (5.10):

L/2
Fan isym,soap — li [ ( cZ— 1>i|
tisymsoap = O 1 /L/zdy n-z

' L/2 1
= o fim [/L/Zdy(m -1)]
=0 Jim [/_LL/; dy( - %hi(o,y) + owm)] . (6.9)

For the part of the height function between both particles one gets:

(€08 [2(arctan QLH)] cos [2(arctan 7]
h(%y):Qa { y2+(g+x)2 - y2+(§—x)2 } ) (6.10)

which implies for the derivative with respect to z at z = 0:
32Qa*d(d? — 12y?)
(d2 + 4y2)3 ’
Inserting this into the small gradient expansion of Eqn. (6.9) yields a repulsive force
which again is the same as in Eqn. (6.5).

ha(0,y) = (6.11)

6.2 Fluid Membrane type

For a fluid membrane the complete Hamiltonian (6.1) is relevant. Let us study two
different situations, previously looked at in the literature [Wei03, WKH98]: two
parallel adhering cylinders and two discoidal inclusions.
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h(x)

-

Figure 6.3: Two cylindrical colloids adhering to a membrane

6.2.1 Adhering cylinders

Two parallel cylinders may adhere to a membrane either in a symmetric situation
(cylinders at the same membrane side) or an antisymmetric situation (cylinders at
opposite membrane sides).

If they are long enough such as to neglect end effects, the height function of the
surface only depends on one variable, x. The shape Eqn. (3.34) then turns into

0* 1 02 1
a2\a2 " 12 = 12
0z? (03:2 )\2>h(:c) 0, (6.12)
for which a general solution is
h(z) :B1+ng+Bgexp(—§)+B4eXp(§). (6.13)

Respecting the boundary condition of continuous slope (contact angle equal to 7, cf.
Eqn. (3.26)) yields a height function for the inner region between the two colloids
and the outer regions right and left of the two colloids, respectively. The total
energy can then be obtained by adding the energies due to the different regions and
additionally including the adhesion energy [Wei03].

Same membrane side

In the symmetric case, the author of Ref. [Wei03] shows that (again in small gradient
expansion)

d
(k + 2R*u)*(1 + tanh 5%)

4./ ok R?

Egymen(d) = — : (6.14)
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as the result for the energy per unit length of the cylinder. In this expression R
is the radius of one cylinder, u is the adhesion energy per area, A = \/k/o the
characteristical length first introduced in Eqn. (3.31), and d the distance between
the two centers of the cylinders (see Fig. 6.3). To get the force per length L of the
left cylinder, Eqn. (6.14) must be differentiated with respect to d:?

(k + 2R?u)?

Foymep/L = ————5—7 .
ymen/ 8k R? cosh? %

(6.15)

We can now turn our focus once more to Chap. 5 in order to calculate the force
via the stress tensor approach. Rewriting the relevant Eqn. (5.9) in small gradient
expansion yields (see Eqn. (B.54a)):

1
Foymen/L = —émhim(()). (6.16)

We need to determine the height function in order to calculate the force. From
Ref. [Wei03] one derives

(k4 2R?u) cosh £
20 R cosh %

h(z) =

+ const . (6.17)

According to Eqn. (6.16), the second derivative with respect to z at x = 0 must be
determined, which is
2R?
o (0) = (k 4+ 2R%u)

= 6.18
2k R cosh % ( )

Inserting this into Eqn. (6.16) immediately yields the same force as the one that has
been calculated in Eqn. (6.15).

Opposite membrane sides

For two cylinders at opposite sides of the membrane, the energy is given by [Wei03]

(K + 2R*u)*(1 + coth &)

Ean isym,c d) = — y 1
tisy ,yl() 4\/&}32 (6 9)
which leads to the force?
K+ 2R%u)?
Fantisym,cyl/L = ( ) (620)

8k R?sinh® &

2 The direction of the force is always opposite for the two particles. Hence, if one wants to encode
this information in the sign, an additional minus sign is needed for the left particle, since it moves
to the negative x-direction upon repulsion and to the positive upon attraction, respectively.
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6.2 Fluid Membrane type

Figure 6.4: Contact angles aa and agp

The small gradient expansion of Eqn. (5.12) is

5 (B.54a) 1

1
Fantisym,cyl/L = 5"{ ()‘VLKL) 2’£ [)‘hxwx(o)]Q : (621)

Taking again the height function from Ref. [Wei03| one arrives at

2R?u) sinh £
h(z) = 5+ .u) il oy (6.22)
20 Rsinh
which yields
2 2
Pog(0) = (/ﬁ—i-—]'i’U)d . (6.23)
20 A3 Rsinh 5%

Inserting this result into Eqn. (6.21) reproduces result (6.20).

6.2.2 Discoidal inclusions

The last situation we want to consider is that of two discoidal inclusions in a mem-
brane, which can be understood as a simple model for protein transmembrane inclu-
sions. This problem has been studied extensively in the literature, with and without
tension (see e. g. [GBP93, WKH98]), because of its relevance for the aggregrational
behaviour of proteins (see Sec. 1.2.3).

The discs are assumed to have radius a and are connected to the membrane along
a horizontal circle with fixed contact angles s and ap (see Fig. 6.4). The distance
d will measure the separation of the centers of these circles.

Without tension

The Hamiltonian in this case is again a special case of Eqn. (6.1). Now, o = 0:
H= g/dx dy (V2h)? . (6.24)

The case of two discs in a membrane at vanishing tension was first investigated in
Ref. [GBP93]. We will use the results of Refs. [WKH98]|, where the height functions
are stated explicitly.
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6 Comparison between the approaches

)
P, Py
\ : 2%
A : B
________________ .
d

Figure 6.5: Two discoidal inclusions separated by a distance d (seen from above).
Note that particle A is on the left and particle B is on the right hand side whereas in
Ref. [WKH98] particle 1 is on the right. Note also that the angles ¢ and ¢g are chosen
in accordance to ¢ and ¢; of Ref. [WKH98].

Let us focus again on a symmetric (a«y = ap = «) and an antisymmetric situa-
tion (va = —ap = «). In both cases the interaction energy is given by [WKH9S,
Eqn. (16)] (in lowest order a/d):

a4

Eno ten,inc(d) == SWHOéQﬁ s (625)
which leads to the horizontal force (see footnote 2, p. 62)
ol
Fno ten,inc — _327“{0425 . (626)

The height function in Cartesian coordinates can be deduced from [WKH98] to be

ho(z,y) = C’l(ln pa £ 1n pB> + CQ( =+ cos 2¢p + cos 2¢B>

2 2
+ C’3< + & 2¢A e 2¢B) + const , (6.27)
PA PB
where the coefficients are (omitting third and higher orders in a/d): C; = aa,

Cy = (aa®)/d* and C3 = —(aa®)/2d*. The symmetric solution is denoted by h,
the antisymmetric by h_.

The polar coordinates related to the center of projection of the respective inclusion
on the (x,y) plane can be expressed in terms of the Cartesian coordinates x and y

(see Fig. 6.5):
pA = \/y2+<g+x)2, pB:\/yQJr(g—x)g (6.28)

i , ¢p = m — arctan - y_ (6.29)

¢n = arctan
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6.2 Fluid Membrane type

For the symmetric situation Eqn. (5.8) must be applied. In small gradient expansion
one gets (see Eqns. (B.54a) and (B.54b)):

1 [r
Fno ten,inc,+ — _éﬁ/ dy [hix(07 y) - h?;y(o7 y)]

4

a
= —327m042$ . (6.30)

In the antisymmetric case the force must be the same as we can prove by rewriting
Eqn. (5.10) in small gradient expansion (see Eqns. (B.54a) and (B.54b)):

+oo
Fno ten,inc,— T ’f/ dy hx(ov y) [hxxm(oa y) + hyyw(oa y)

o)
4

= —32rka % . (6.31)

These results again show the equality of the two different methods.
Including tension

We now consider the complete Hamiltonian (6.1). The energy for small a/d and
a/A < 1is given by [WKH9S]

d . d
Eten,inc,:l:(d) - 277—/{@ ﬁ [ + KO()\) + )\QK ()\)] (632)
which corresponds to the force (see footnote 2, p. 62)
N d d d d
Fansnes = 2t L () - C a9

where 4 stands for the symmetric and the antisymmetric situation, respectively.?
The functions K,, are the modified Bessel functions of the second kind. It can be
readily checked that Eqns. (6.32) and (6.33) turn into Eqns. (6.25) and (6.26) in the
limit of zero tension, as they should.

The height function for this last case is according to [WKH9S]

P PB
ha(ey) = Di|Ko(5) = Ko(5))

+ Dsy| F Kl(’OTA) CoS Pp + Kl(pTB) coS gbB]

[ coS cos
+ D T A 4 ¢B]
L PA PB

h\ ) cos 20 + (22

A
r 2 2
LDy [ 4 s Pa +cos2¢B] 4 const | (6.34)

Pi PB

3 Note that the force in the symmetric case is repulsive at all distances whereas inclusions in the
antisymmetric case repel each other at small separations, but attract each other at larger ones.

R ) cos 20
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6 Comparison between the approaches

with the coefficients: Dy = —aa, Dy = —ta% K (), Dy = —1D, S Ky(2), Dy =
—ai—ilﬁ(%) and D5 = —iD4§K3(§) in lowest order a/d and for a/\ < 1. The polar
coordinates pa, pp, ¢a and ¢p are defined as in Eqns. (6.28,6.29) (see Fig. 6.5).
We finally apply our ansatz to this last situation. In the symmetric case (ap =
ap = «) the force in small gradient expansion is:

oo o K
Ften,inC,Jr = / dy {ghi(oay) - 5 hix(ovy) - hzy(ovy)]} : (635)

o0

The calculation to obtain this force is unfortunately rather involved. We can, how-
ever, get a result for small a/d and big d/\ by performing a Taylor expansion of the
Bessel functions: we thereby obtain the first term of Eqn. (6.33). Regrettably, the
second term is then overshadowed by the next orders neglected in our expansion.
In the antisymmetric case (ay = —ap = «) the force is given by

o0 o
Ften,inc,— = / dy { - _h2 (07 y) + K‘hx(ov y) hmzx(ov y) + hyyz(ov y)] } . (636)

5 2"

If we go ahead and perform the same Taylor expansion as in the symmetric situation,
we again arrive at the first term of Eqn. (6.33) but not at the second one, for the
same reason as above.
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7 Conclusions

The principal aim of this thesis has been the introduction of a new approach for
obtaining exact results for interface mediated interactions. The key ideas and ex-
pressions of this approach can be found in Chap. 5. Although it is specialized to
fluid membranes in this context, it is actually far more versatile: one can apply the
central strategy to any interface whose energetics is determined by a Hamiltonian
such as the one in Eqn. (1.1). Furthermore, it is fully covariant and therefore not re-
stricted to a particular surface parametrization like Monge. Its results are also valid
for large deformations as they are indeed found in experiments [KRS99], whereas the
approach via the energetics (see Chap. 4) has only produced linear approximations
for the forces in almost all calculations found in the literature. Within this linear
regime both programs are consistent.

It should be stressed again that the new method is not a substitute for solving the
nonlinear field equations. Instead, it shows that it is possible to gain information
without the need to solve the shape equations explicitly by linking the geometry of
the interface to the forces mediated by it. This can be an advantage because it is
sometimes easy to guess certain properties of the overall geometry, while correspond-
ing guesses about the surface energy may not be equally straightforward to make.
In some cases this approach even yields the sign of the interactions, for instance,
if two parallel cylinders adhere to a fluid membrane. At the very least, it provides
non-trivial consistency conditions for analytical calculations.

One can now proceed and combine the stress tensor approach with any other analyt-
ical or numerical method which determines the surface shape. This is, for instance,
possible with the program “Surface Evolver” [Bra04], which can find surfaces that
minimize a prescribed surface energy functional. The surface shapes of Fig. 4.1, 5.1,
and 7.1 were actually calculated with this program.

This thesis has just considered pair forces. If one wants to calculate interactions
between more than two particles, it is important to remember that these are not
simply expressible as a sum of the pair interactions. The superposition principle
does not hold due to the nonlinearity of the theory.

This, however, poses no difficulty for the stress tensor approach because the un-
derlying relation between surface geometry and force does not depend on whether
or not a pair-decomposition is possible (see Fig. 7.1). For certain symmetric situa-
tions a clever choice of the contour of integration may again yield force expressions
analogous to those obtained in Sec. 5.2.

Multi-body effects become particularly important, if one considers 2D bulk phases
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7 Conclusions

Figure 7.1: Three-body interactions. The force on one particle can be obtained as usual
by integrating the surface stress tensor along the line of integration (cf. Eqn. (2.3)).

like a system consisting of many particles that adhere to the same side of an inter-
face and repel each other. To determine state variables like the lateral pressure one
may think about using a cell model like it is used, for instance, in nonlinear Poisson-
Boltzmann theory [DHO1]. The reason for that is that the situations are quite sim-
ilar: Consider an overall neutral 3D system of likely charged colloids together with
the appropriate number of oppositely charged counterions. In Poisson-Boltzmann
theory these counterions are replaced by a charge density, which is treated in a mean
field way. The colloids will typically organize such as to keep themselves mutually
apart. One can then partition the volume into cells, each containing one colloid.
Every cell has essentially the same volume and is neutral by construction, which
means that different cells do not significantly interact with each other. The cell
model then considers just one cell and calculates its free energy in dependence of
the cell volume by solving the Poisson-Boltzmann equation. If one wants to know
the pressure in this system, one has to differentiate this free energy with respect to
the cell’s volume. Remarkably, this turns out to lead to the simple “recipe” that
the pressure is just given by the ion density at the cell boundary times the thermal
energy kgT'.

In analogy to that, one might also partition the interface of the 2D bulk system into
two-dimensional cells. Instead of solving the Poisson-Boltzmann equation, one now
has to find a solution for the appropriate shape equation. Due to the nonlinearity,
one cannot get analytical results in general as we have seen in this work. It should
be possible, however, to consider the stress tensor at the cell boundary and relate
geometrical properties at the boundary to the lateral pressure of the system.
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A Conventions and used symbols

Conventions

The indices {a,b,c,d, e} run from 1 to 2, whereas {i,j} € {z,y,z}. Note that the
sum convention is used in this thesis: if an index occurs twice in a product, once as a
superscript and once as a subscript, one has to sum over that index from 1 to 2 even
though no explicit summation sign is present. The equation K = Zz,b=1 g K, for

instance, turns into K = g** K.

Used symbols

The symbols in the following list are ordered alphabetically with roman letters first,
followed by miscellaneous symbols and Greek letters. Reference is made to their
first appearance in the text and, in some cases, to further information.

In Chap. 3 the bar (7) denotes substrate properties. The symbol K, for instance,
is the curvature tensor of the substrate.

Note also that a few symbols are not listed due to the fact that they can be derived
from the symbol that one gets when leaving out the sub- or superscript. The symbol
Fp, for instance, is a force because F' is a force (see list).

a radius of a spherical particle/bubble (Sec. 1.1.2, p. 9) or
discoidal inclusion (Sec. 3.2.2; p. 42) or circle (App. B.2, p. 83)

ag effective head group area of an amphiphile (Sec. 1.2.2, p. 11)

a spatial translation vector (Sec. 2.2.1, p. 21)

A'B particle identifiers (Fig. 6.2, p. 59)

Ao, ... A coefficients in the height function in the case of two particles
on a soap film with a pinned contact line (Sec. 6.1, p. 58)

dA area element (Sec. 1, p. 4; see also App. B.1, p. 77)

dA; jth component of the vectorial area element (Sec. 2.1, p. 17)

AA 0AA small surface patch and boundary of this patch, respectively
(Sec. 2.1, p. 18)

b unit binormal vector of a curve (App. B.1, p. 79)

By,...,By coefficients in the height function in the case of two cylinders

adhering to a membrane under tension (Sec. 6.2.1, p. 61)
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€q

€

Epot
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boundary curve (Sec. 3.1.3, p. 38)

coefficients in the height function in the case of two discoidal
inclusions in a membrane without tension (Sec. 6.2.2, p. 64)
distance between the centers of two colloids (Sec. 4.2, p. 48)
coefficients in the height function in the case of two discoidal
inclusions in a membrane under tension (Sec. 6.2.2, p. 66)

set of tangent vectors on the surface (Sec. 2.1, p. 18; see also
App. B.1, p. 75)

outward pointing vector tangential to the surface and normal
to the midline between the two colloids (Sec. 5.2, p. 56)
potential energy (see Sec. 3.1.2 p. 35)

infinitesimal energy (Sec. 1.1.1, p. 5)

Euler-Lagrange derivative (Sec. 2.2.1, p. 20)

projection of £+ onto e, (Sec. 5.2, p. 56)

components of f* in the local frame {e,,n} (Sec. 2.2.1, p. 22)
surface stress tensor (Sec. 2.1, p. 17)

force of constraint (per length) (Sec. 3.1.1, p. 33)

normal force (per length) (Sec. 3.1.1, p. 34)

surface stress tensor at the midplane between the two colloids
(Sec. 5.2, p. 56)

surface stress tensor written as a pair of vectors (Sec. 2.1, p. 18)
redefined surface stress tensor (Sec. 2.2.1, p. 23 and

Sec. 2.2.2, p. 26, respectively)

absolute value of a force (Sec. 1.1.1, p. 5)

force (Sec. 2.1, p. 17)

scalar function defined on the surface (App. C, p. 89)

metric determinant (Sec. 2.2.1, p. 19; see also App. B.1, p. 77)
or acceleration due to gravity (Sec. 3.1.2, p. 35)

metric tensor (Sec. 1, p. 4 ; see also App. B.1, p. 77)

matrix consisting of the components of g,, (App. B.1, p. 77)
Green function (Sec. 3.1.3, p. 38)

Einstein tensor (Sec. 2.3, p. 28)

coefficients in the height function in the case of one sphere
adhering to a membrane under tension (Sec. 3.2.1, p. 41)

height function in Monge parametrization (Sec. 3.1.2, p. 35; see
also App. B.3, p. 84)



Ny, by,

h’mr7 hyya h’IE’yJ hym

hq
H
He, He

H

ab _ _0H
H o 5I<ab

11712

la
l =%,

first derivatives of the height function in Monge parametriza-
tion with respect to « and y, respectively (Sec. 6.1, p. 59)
second derivatives of the height function in Monge parametri-
zation with respect to x and z, y and y, etc. (Sec. 6.2.1, p. 62)
Fourier coefficient of the height function h (Sec. 3.1.2, p. 36)
Hamiltonian (Sec. 1, p. 4)

original and redefined Hamiltonian of the auxiliary variables
approach (Sec. 2.2.2, p. 25 and Sec. 2.2.2, p. 26, respectively)
Hamiltonian density (Sec. 1, p. 3)

functional derivative of the Hamiltonian density with respect
to Kgu (Sec. 2.2.2, p. 25)

invariant scalars (Sec. 1.2.1, p. 11)

geometrical factor (Sec. 3.2.1, p. 41) or

curvature of a curve (App. B.1, p. 78)

principal curvatures of a two-dimensional surface

(Sec. 1.2.1, p. 10; see also App. B.1, p. 80)

Boltzmann constant (Sec. 1.2.3, p. 15)

extrinsic curvature tensor (Sec. 1, p. 4; see also App. B.1, p. 79)
trace of the extrinsic curvature tensor (Sec. 1.1.2, p. 10; see
also App. B.1, p. 81)

spontaneous curvature (Sec. 1.2.1, p. 11)

geodesic curvature (Sec. 3.2.2, p. 42; see also App. B.1, p. 79)
Gaussian curvature (Sec. 1.2.1, p. 11; see also App. B.1, p. 81)
normal curvature (App. B.1, p. 79)

normal curvatures perpendicular and parallel to a curve,
respectively (Sec. 3.2.1, p. 40; see also App. B.1, p. 80)
off-diagonal element of K? (Sec. 3.2.1, p. 40)

capillary length (Sec. 3.1.2, p. 35)

length of a surface (Sec. 1.1.1, p. 4)

length of the hydrophobic part of an amphiphile

(Sec. 1.2.2, p. 11)

jth component of the line element ds times the unit vector
which is perpendicular to the boundary curve (Sec. 2.1, p. 17)
components of I in the local coordinate frame (Sec. 2.1, p. 18)
unit normal pointing outward of a surface patch along a

boundary curve (tangential to the surface) (Sec. 2.1, p. 18)
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L length (Sec. 1.3, p. 16), especially
length of a cylindrical colloid (Sec. 5.2, p. 55)
AL excess length (Sec. 5.2, p. 54)
m,n natural numbers (Sec. 6.1, p. 58 and
Sec. 2.3, p. 27, respectively)
My, ..., M, eigenvalues of M (App. C, p. 88)
M, Mp symmetric matrix and corresponding diagonal matrix,
respectively (App. C, p. 88)
n unit vector normal to the surface (Sec. 2.1, p. 18)
P genus of a closed surface (App. B.2, p. 83)
Des Di exterior and interior pressure, respectively (Sec. 1.1.2, p. 9)
P pressure (Sec. 1.1.2, p. 9)
P unit principal vector of a curve (App. B.1, p. 79)

q wave vector (Sec. 3.1.2, p. 36)

Q quadrupolar coefficient (Sec. 6.1, p. 58)

Q" linear differential operator (Sec. 2.2.1, p. 21)

r class of a function (App. B.1, p. 75)

r position vector (Sec. 3.1.2, p. 35)

R radius of a cylindrical colloid (Sec. 6.2.1, p. 62)

Rap Ricci tensor (Sec. 2.3, p. 28; see also App. B.1, p. 82)
R u Riemann tensor (App. B.1, p. 82)

R Ricci scalar (Sec. 1.3, p. 16; see also App. B.1, p. 82)
s arc length (Sec. 2.1, p. 18)

ds line element (Sec. 2.1, p. 18)

S point on a surface (App. B.1, p. 78)

S linear differential operator (Sec. 2.2.1, p. 21)

t parameter of a curve (App. B.1, p. 80)

¢ components of ¢ in the local coordinate frame (Sec. 5.2, p. 53)
N arbitrary tensors (see App. B.1, p. 77 et seq.)
t=1%, tangent vector of a curve (Fig. 2.2, p. 19)

T temperature (Sec. 1.1.1, p. 5)

Tab intrinsic surface stress tensor (Sec. 2.2.2, p. 25)

T transformation matrix (App. C, p. 88)

u adhesion energy per area (Sec. 3.1.1, p. 32)

U surface patch (App. B.1, p. 75)

v volume of the hydrophobic part of an amphiphile
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(Sec. 1.2.2, p. 11)

volume (Sec. 1.1.2, p. 9)

constant enclosed volume (Sec. 1.1.2; p. 10)

surface enclosing a volume V' (Sec. 1.1.2, p. 9)

volume element (Sec. 2.1, p. 17 and App. C, p. 89, respectively)
small cubic volume and surface of this volume, respectively
(Sec. 2.1, p. 17)

width of a surface (Sec. 1.1.1, p. 4)

length element (Sec. 1.1.1, p. 5)

Cartesian coordinates of the reference plane (Sec. 3.1.2, p. 35)
infinitesimal change in x and y, respectively (Sec. 3.1.2, p. 35)
Cartesian coordinates in R? (Sec. 2.1, p. 17)

set of orthonormal basis vectors in R? (Sec. 2.1, p. 17)
embedding functions of the surface (Sec. 1, p. 3)

component functions of X in R® (App. B.1, p. 75)

partial derivative on the surface (Sec. 2.2.2, p. 24)

partial derivative with respect to i € {z,y, z} (Sec. 2.1, p. 17)
partial derivative along the normal vector of a boundary curve
(Sec. 3.1.3, p. 38)

Jacobian matrix (App. B.1, p. 75)

nabla operator of the reference plane (Sec. 3.1.2, p. 35; see
also App. B.3, p. 84)

Laplacian on the reference plane (Sec. 3.1.2, p. 35; see also
App. B.3, p. 85)

covariant derivative on the surface (Sec. 1, p. 4; see also

App. B.1, p. 78)

derivative along I (Sec. 5.2, p. 54)

contact angle (Sec. 3.1.1, p. 32)

angle between e; and ey (App. B.1, p. 77)

Christoffel symbol (App. B.1, p. 78)

variation with respect to the embedding functions X

(Sec. 2.2.1, p. 20; see also App. C, p. 87)

functional derivative (in this case with respect to K)

(Sec. 2.2.2, p. 25)

variation with respect to the metric g4, (Sec. 2.3, p. 28)
Kronecker symbol (App. B.1, p. 77)
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Laplacian on the surface (Sec. 2.2.1, p. 24; see also

App. B.1, p. 78)

angle between n and p (App. B.1, p. 79)

angle of immersion/detachment (Sec. 3.1.2, p. 36)
bending rigidity (Sec. 1.2.1, p. 11)

Gaussian bending rigidity, also saddle-splay modulus

(Sec. 1.2.1, p. 11)

characteristic length (Sec. 3.2.1, p. 40)

Lagrange multiplier functions (Sec. 2.2.2; p. 25)

redefined Lagrange multiplier functions (Sec. 2.2.2, p. 26)
width of a surface patch (Sec. 3.1.2, p. 36)

integers (Sec. 3.1.2, p. 36)

set of local coordinates on the surface (Sec. 1, p. 3)
product of infinitesimal changes in ¢! and &2, respectively
(Sec. 2.2.1, p. 19)

subset of R? (App. B.1, p. 75)

density of a liquid and a gas, respectively (Sec. 3.1.2, p. 35)
density difference between a liquid and a gas (Sec. 3.1.2, p. 35)
surface tension (Sec. 1, p. 3)

components of the stress tensor in 3D (Sec. 2.1, p. 17)
stress tensor in 3D (Sec. 2.1, p. 17)

surface domain (Sec. 1, p. 4)

simply connected surface domain (Sec. 2.1, p. 18)
boundary curve of the surface domain ¥ (Sec. 3.1.1, p. 33)
and Yy (Sec. 2.1, p. 18), respectively

tilt angle between n and z at the midplane between the
two colloids (Sec. 5.2, p. 53)

polar coordinates of the reference plane (Sec. 3.2.1, p. 41)
spherical coordinates in R? (Sec. 3.1.2, p. 37)

angle elements (Sec. 3.1.2, p. 37)

phase angles in the height function in the case of two particles
on a soap film with a pinned contact line (Sec. 6.1, p. 58)
angle at which one quadrupole is rotated around z

(Sec. 6.1, p. 59)

local tangential variation of X (Sec. 2.2.1, p. 20)

local normal variation of X (Sec. 2.2.1, p. 20)



B Classical differential geometry of
two-dimensional surfaces

B.1 Basic definitions

This section gives an overview of the basic notions of differential geometry for two-
dimensional surfaces. It follows mainly Kreyszig [Kre91] in its discussion.

Definition of a surface

Let us consider the vector function X (¢!, £%) € R? with
X :R*DE> (1) = X(¢,) eUCR?, (B.1)

where = is an open subset of R%. Let X (£!,£2) be of class » > 1 in =, which means
that one of its component functions X; (i € {x,y,z}) is of class r and the other
ones are at least of this class.! Let furthermore the Jacobian matrix % be

of rank 2 in = which implies that the vectors
0X
= 9%
are linearly independent. The mapping (B.1) then defines a smooth two-dimensional
surface patch U embedded in three-dimensional Euclidean space R? with coordi-
nates £! and ¢? (see Fig. B.1). A union X of surface patches is called a surface
if two arbitrary patches U and U’ of ¥ can be joined by finitely many patches
U=U,Us,,...,U,_1,U, =U"in such a way that the intersection of two subsequent
patches is again a surface patch [Kre91, p. 76]. To simplify the following let us
restrict ourselves to a surface that can be covered by one patch U only.
The vectors e,, defined in Eqn. (B.2), are the tangent vectors of the surface. They
are not normalized in general. Together with the unit normal

e, =0,X, ae{l,2}, (B.2)

e X €y

= fxe B.3
’61 X €2| ( )

they form a local basis (local frame) in R3 (see Fig. B.2):
e, n=0, and n-n=1 (B.4)

L A function of one or several variables is called a function of class r if it possesses continous
partial derivatives up to order r.
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T g

Figure B.1: Parametrization of a surface

Figure B.2: Local frame on the surface
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B.1 Basic definitions

The metric tensor (first fundamental form)

With the tangent vectors e,, one can define the metric tensor (also called the first
fundamental form)

Jab = €4 - € . (B.5)
This covariant second rank tensor is symmetric (gu = ¢pe) and positive definite

[Kre91, p. 86]. It helps to determine the infinitesimal Euclidean distance in terms
of the coordinate differentials [Kre91, p. 82

ds? = [X(€'+d¢', & +de?) — X(¢,8) = (e1 dE' + ey dE?)?
= (ea déa)Q = (ea : eb) dga dfb
Gap AE*AEY (B.6)

where the sum convention is used in the last two lines (see App. A). The contravari-
ant dual tensor of the metric may be defined via

1, ifa=0b

: ) (B.7)
0, ifa#bd

Yac ng = 52 = {

where 6% is the Kronecker symbol. The metric and its inverse can be used to raise
and lower indices in tensor equations. Consider for instance the second rank tensor

tabi
Raising: tae g0 =11, and lowering;: to 9o = tap - (B.8)
The determinant of the metric?

g :=detg = |ga| = g11922 — 912921 (B.9)

can be exploited to calculate the infinitesimal area element dA: let v be the angle
between e; and ey (see Fig. B.2). Then

ler X es]? = |ei|?|ea|’sin® v = g11g22(1 — cos®v) = gr1g2e — (€1 - €3)?
= 01192 — 912012 =G , (B.10)
and thus
dA = |e; x eq| A€M d€? = (/g d*¢ . (B.11)

2 Note that g is the matrix consisting of the metric tensor components gqs.
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The covariant derivative

The partial derivative 9, is itself not a tensor. One therefore defines the covariant

derivative V, on a tensor ¢, "
@ b1ba...bm

ajaz...an  __ ajaz...an
Vctblbg...bm - actblbz...bm
das...an ay aid...an as aijaz...d an
+ tblbz...bmrdc + tb1b2...bmrdc + tee + tblbz...bmrdc
alag...anr d a1a2...anF d . talag...

an d
- tdebm blc - tbld...bm bQC - b1b2...d Fbmc ? (B12)

where the I' ¢ are the Christoffel symbols of the second kind with
L= (Ouep) - €°, (B.13)

and V, is now a tensor. For the covariant differentiation of sums and products of
tensors the usual rules of differential calculus hold. The metric-compatible Laplacian

A can be defined as A :=V,V°.
Note in particular that

Vaeb = 8aeb — Fabcec , and <B14)
Vagoe = Vagbc =V.w=0. (B.15)

Equation (B.15) is also called the Lemma of Ricci. It implies that raising and
lowering of indices commutes with the process of covariant differentiation.

Orientable surfaces

The orientation of the normal vector n in one point S of the surface depends on
the choice of the coordinate system [Kre91, p. 108]: exchanging, for instance, £!
and €2 also flips m by 180 degrees. A surface is called orientable if no closed curve
C through any point S of the surface exists which causes the sense of n to change
when displacing n continuously from S along C back to S. An example of a surface
that is not orientable is the Mobius strip.

The extrinsic curvature tensor (second fundamental form)

Two surfaces may have the same metric tensor g,;, but different curvature properties
in R3. In order to describe such properties let us consider a surface 3 of class® r > 2
and a curve C of the same class on ¥ with the parametrization X (¢'(s),&%(s)) on
Y, where s is the arc length of the curve (see Fig. B.3).

At every point of the curve where its curvature k£ > 0, one may define a moving
trihedron {t,p,b} where t = X is the unit tangent vector, p = t/|t| = t/k is the

3 This means that its parametrization X (¢!, £2) is of class r > 2.
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Figure B.3: Curve on a surface

unit principal normal vector, and b = ¢ x p is the unit binormal vector of the curve.*

Furthermore, let 7 be the angle between the unit normal vector n of the surface and
the unit principal normal vector p of the curve with cosn = p-n (see again Fig. B.3).
The curvature k of the curve can then be decomposed into a part which is due to
the fact that the surface is curved in R? and a part due to the fact that the curve
itself is curved. The former will be called the normal curvature K, the latter the
geodesic curvature K,. One defines:

K, = —t-n=—-k(p-n)=—kcosn, and (B.16)
K, == t-(txmn)=kt (pxmn)=ksiny sign(n-b) . (B.17)
Here, we are interested in the curvature properties of the surface. Therefore, the

normal curvature K, is the relevant quantity that has to be studied a bit further.’
The vector t may be written as

t=X = E(eaga) = (Ope,) £°6° + e & . (B.18)
Thus, Eqn. (B.16) turns into
K, = —kcosn = (—n - d,e;) £2€° (B.19)

where it has been exploited that d,e;, = Jdye,. The expression in brackets is the
extrinsic curvature tensor or second fundamental form

Kgp:=-—n-0,e,=e, - Opn . (B.20)

4 The dot denotes the derivative with respect to the arc length s.

® The minus sign in the definition of K, Eqn. (B.16), is unfortunately a matter of convention and
is here chosen in accordance to the literature where the surface stress tensor for fluid membranes
has been introduced [CG02b, Guv04a]. A sphere with outward pointing unit normal has a
positive normal curvature then. Note that this differs from Ref. [Kre91].
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It is a symmetric covariant second rank tensor such as the metric. The second
relation in Eqn. (B.20) follows if one differentiates the first equation of (B.4) with
respect to £%.

The extrinsic curvature can be written covariantly:

Ky :=-n-V,ep . (B.21)

This is possible because 0,e;, differs from V,e, only by terms proportional to the
tangent vectors e., which vanish when multiplied by n (see Eqn. (B.14)).

One can easily see from Eqn. (B.20) that K, has got something to do with curvature:
at every point of the surface it measures the change of the normal vector in R? for
an infinitesimal displacement in the direction of a coordinate curve.

To learn more about the normal curvature let us consider a reparametrization of the
curve C with the new parameter ¢t. One gets

o dedt e
o dt ds ¢

(B.22)

where ’ denotes the derivative with respect to t. Equation (B.19) thus takes the
form

. K, al ¢b’ 6 K, al ¢b! Kadadb
Ky = Kg §28 = bfcf (2 bg,g, _ Kw &t i : (B.23)

(s') Gab EE" gap dE7dE
For a fixed point S, K, and g, are fixed as well. The value of K, then only depends
on the direction of the tangent vector ¢ of the curve. One may search for extremal

values of K, at S by rewriting Eqn. (B.23):

(Kab - Kngab) éaéb =0. (B24)

A differentiation with respect to éc yields the result

(Kae — KunGac) £ =10, (B.25)

because dK,, = 0 is necessary for K, to be extremal. Through the raising of one
index, Eqn. (B.25) becomes an eigenvalue problem for K?. Its eigenvectors are the
tangent directions along which the normal curvature is extremal. They are called
principal directions and are orthogonal to each other [Kre91, p. 129]. The eigenvalues
will be called the principal curvatures ki and ko of the surface in point S. All other
values of K, in S in any direction can be calculated via Euler’s theorem [Kre9l,
p. 132]. If the curve follows a principal direction at every point, it is also called a
line of curvature.

For an arbitrary curve on the surface the symbol K| denotes the normal curvature
belonging to the direction the curve is following, whereas K| denotes the normal
curvature belonging to the direction perpendicular to the curve in every point.
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It is useful to define the following two notions: the total curvature
K:i=g"Ky=K"=k +ky, (B.26)
and the Gaussian curvature
Kg = |K?| = kiksy . (B.27)

The quantities |K| and K are invariant under surface reparametrizations because
they only involve the eigenvalues of the extrinsic curvature tensor. They occur, for
instance, in the surface Hamiltonian of a fluid membrane (see Eqn. (1.10)). Note
that one can rewrite Kq

K11K22 - K12K21

Kg = |K2| = ’Kacgd)| = |Kac, |ng| = g

(B.28)

The equations of Gauss and Weingarten

With the help of the extrinsic curvature it is also possible to find relations for the
partial derivatives of the local frame vectors: the normal vector m is a unit vector
(see Eqn. (B.4)) and therefore

n-0,n=0. (B.29)

Thus, d,n is a linear combination of the tangent vectors e,. We know that d,n-e, =
K (see Eqn. (B.20)), which yields the Weingarten equations

o,n=V,n= ngb . (B.30)

For the tangent vector e, a decomposition yields

aaeb = (n ’ 8aeb)fn’ + (ec ’ 8aeb)ec (B.QOEB'KS) —HKgpm + Fabcec : (BB]‘)

These are the Gauss equations, which can be rewritten covariantly:
B.14
Vaeb ( = ) — N gpM . (B32)

Intrinsic curvature and integrability conditions

Do the partial differential Eqns. (B.30) and (B.32) have solutions for any chosen gg,
and K7 The answer is no; certain integrability conditions have to be satisfied. We
require the embedding functions X to be of class r > 3 and

&@,ec = &ﬁaec . (B33)

From this follows [Kre91, p. 142 et seq.]
Rabcd = Kbng - KbCK; y and (B34)
ViKpe = ViKge, (B.35)
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where
R%q =0y — 0aly " + Ty T — T Togt (B.36)

is called the mized Riemann curvature tensor. It is intrinsic because it does not
depend on the normal vector n. Expression (B.35) is also referred to as the equation
of Mainardi-Codazzi.
The Ricci tensor is defined as the contraction of the Riemann tensor with respect
to its first and third index:

Rap == R°,, - (B.37)

A further contraction of the Ricci tensor yields the intrinsic scalar curvature of the
surface (Ricci scalar)
R :=g"Ry . (B.38)

From Eqn. (B.34) one then obtains

Ry = KKu— K.K{, and (B.39)
R = K>— K"K, . (B.40)

Combining Eqn. (B.28) with the completely covariant form of Eqn. (B.34), one gets
after a few calculations:

Rab = KGgab, and (B41)
R = 2Kg. (B.42)

These equations confirm Gauss’ Theorema Egregium, which states that the Gaussian
curvature, even though originally defined in an extrinsic way, in fact only depends on
the first fundamental form [Kre91, p. 145] and is thus an intrinsic surface property.

B.2 Gauss-Bonnet theorem

The Gauss-Bonnet theorem for simply connected surfaces

The Gauss-Bonnet theorem states the following [Kre91, p. 169]: Let Xy be a simply
connected surface patch of class ry, > 3 with simple closed boundary 9% of class
ros, > 3. Furthermore, let X (£(s), £2(s)) be the parametrization of the boundary
curve, where s is the arc length. Then

/ ds K, +/ dA Kg = 2 | (B.43)
320 20

where dA is the infinitesimal area element, K, is the geodesic curvature of 9%, and
K¢ is the Gaussian curvature of ¥j. Note that the integration along the boundary
curve has to be carried out in such a sense that the right-hand rule is satisfied: take
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Cy
Z
> < C2
f z A
Cs
Z Y

Figure B.4: Integration contour for multiply connected surface patches

your right thumb and point it in the direction of the normal vector n. If you then
curl your fingers, the tips indicate the direction of integration.

One can check the consistency of Eqn. (B.43) easily by considering a flat circle
with radius a: Its Gaussian curvature is zero and therefore also the integral over
it. The geodesic curvature, however, is equal to 1/a in every point of the boundary.
Thus, the integral over K, yields 2ma x 1/a, which is equal to the right-hand side
of Eqn. (B.43).

Generalization to multiply connected surfaces

A generalization of this theorem to multiply connected surfaces is also possible
[Kre91, p. 172]: One can cut multiply connected surfaces into simply connected
ones. Take, for instance, a surface as in Fig. B.4. The path of integration along the
boundary may be chosen as depicted by the arrows. The sections are passed twice in
opposite directions; their contributions therefore cancel each other. The end points
of every section, however, add a term of 7 each to the integral [ ds K,. This is due
to the rotation the tangent makes at each of these points. Every section therefore

contributes 27 to the integral. For the case of Fig. B.4 we thus have an extra term
of 4.

Application to closed surfaces

It is also possible to apply the Gauss-Bonnet theorem to closed surfaces [Kre9l,
p. 172]. Topologically, any closed orientable surface is homeomorphic® to a sphere
with p attached “handles”. This number p is also called genus of the surface.
Consequently, a sphere has genus 0, a torus genus 1, etc. One then obtains for

6 This means that the mapping and its inverse are continuous and bijective.
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hxy) [/ 77

Figure B.5: Monge parametrization

any closed orientable surface ¥ of genus p [Kre91, p. 172]:

/ dA K¢ = 4n(1 — p) . (B.44)

This implies that the integral over the Gaussian curvature is a topological invariant
for any closed surface with fixed genus p.

B.3 Monge parametrization

For surfaces with no “overhangs”, it is sufficient to describe their position in terms of
a height h(x,y) above the underlying reference plane as a function of the orthonormal
coordinates x and y. The direction of the basis vectors {x, ¥y, 2} € R? is chosen as
depicted in Fig. B.5.

The tangent vectors on the surface can then be expressed as e, = (1,0, h,)T and
e, = (0,1,h,)*, where h; = 9;h (i,j € {x,y}). The metric is equal to

9ij = 0ij + hihy (B.45)

where §;; is the Kronecker symbol. We also define V = (9,,0,)". The metric
determinant and the infinitesimal surface element can then be written as

dA = Jgdxrdy. B.47)

The inverse metric is given by

~—~

hih;
.

g7 =6 — (B.48)
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Note that Eqns. (B.45) and (B.48) are not tensor equations. The right-hand side
gives merely numerical values for the components of the covariant tensors g;; and
¢"“. The unit normal vector is equal to

n= % ( _1Vh ) : (B.49)

With the help of Eqn. (B.20) the extrinsic curvature tensor can be calculated:
\/g ’

where h;; = 0,0;h. Note that Eqn. (B.50) again is not a tensor equation and gives
only numerical values for the components of Kj;.
Finally, it is also possible to write the total curvature K in Monge parametrization:

K=-V. (%) . (B.51)

In Chaps. 3, 4, and 6 we are interested in surfaces that deviate only weakly from a
flat plane. In this situation the gradients h; are small. Therefore, it is enough to
consider only the lowest nontrivial order of a small gradient expansion. K and dA
can then be written as

K =— (B.50)

K = —V*h+0[(Vh)Y, (B.52)
1
dA = {1 +5(Vh) + owmﬂ} da dy . (B.53)
In Chap. 6 we also need K, and K and, in addition, the derivatives VK| and

VK| at x =0 (see Fig. 5.1) in Monge parametrization. Due to the chosen orien-
tation, the result in small gradient expansion is simply

KJ_ = _hxm<07 3/) ) <B54a)
Ky = —hy(0,y) (B.54b)
as well as
VJ_KJ_ _hxxx(oyy) ) (B55a)
VLK” == —hny;(O, y) . (B55b)
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C Surface variations

This appendix provides the first order changes of the geometry, i. e. 9., Kaup, etc.,
under a variation of the embedding functions

X - X +0X, (C.1)

where 0 X may be decomposed into a part tangential and a part normal to the
surface:

§X = e, + Un. . (C.2)

The following equations and parts of the calculations can be found in [CG02b] and
[CGS03].
Let us first consider the tangent vectors e,:

be ) 6(0.X) = 0,6X) = V,(6X) ‘2 V, (8%, + ¥n)

= (V.®"e, — Ku®'n + (V,¥)n + UK ley (C.3)
where the Weingarten and Gauss equations (B.30) and (B.32) were used in the last
step. Note also that § and 9, commute due to their linearity.

Eqn. (C.3) may be decomposed into its tangential and normal parts just by collecting
all terms in @, and W, respectively. This is also possible with the following variations.

Variation of the first fundamental form

For the variation of the metric we find

@
ot

e, oe,+ e, - e

Vo®y + Vid, + 2K U . (C.4)

59 ab

Q
w

(C.3)

Varying Eqn. (B.7) yields gue 6¢°°+6gs. g° = 0. From this follows that the variation
of the inverse metric is given by

5gab — —gacgbddgcd (0:4) _vaq)b — Vbq)a — 2Kab\If . (05)

To proceed, one needs to calculate the derivative of the metric determinant with
respect to g,. For that purpose, consider first quite generally a symmetric n x n
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matrix M. It can be diagonalized with its eigenvalues My, ..., M,, being the diagonal
elements: M = TMpT ! where Mp is the diagonal matrix. From this follows:

log (det M) = log[det (TMpT )] =log (M, - My ... M,)

= Zlog M; = Tr (log Mp) = Tr [log (T"'MT)]

i=1

= Tr[T 'log (M)T] = Tr (logM) .
Thus,
dg Odetg 0 c6) O
- = 1 = Tr (1
S = g = gy P losterg)]} < o {1 (losg)]
0 d
= {eXp [Tr (log g)]} 9 [Tr (log g)} =g Tr [8g b(log g)}

Gg]: cd% ab

=99
8gab

= Tr [ -1 =
g g agab

The determinant of the metric then changes as follows

0
5g = %égab = 99™6gay = 29(V 0 + KT) |
ab

which yields for /g

1
5/q = ﬁ(Sg = /9(V,®" + KU |

and finally for the infinitesimal area element:

5(dA) = dA(V, 0% + KT) .

Variation of the second fundamental form

The variation of the normal vector n may be obtained from Eqns. (B.4):

€,-om = —n-de,,
and n-im = 0.
It follows: .
on €3 K99 e, — (V,¥)g%e; ,
and
0K 4 (B.21) —(0n)-V,ep, —n-V,oe,
VL (V0%)e, — Kp®n + (Vol)n + UK e,]
(B.35)
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(C.6)

(C.14)



The first term in the first line is equal to zero: —(dn)-V ey B2 aw(0n)n (2.

Note also that the Weingarten and Gauss equations (B.30) and (B.32) were applied
in the last step.
For the total curvature this gives:

5K (BiQG) 6gab Kab + gab éKab

(C.5)éC.14) (_vaéb . Vbq)a . ZKab\If)Kab

+ PV Koy + Koo V@ + Ky Vo @ — V, VU + K, KSU)
PVEK — AV — Ky K . (C.15)

Note in particular that for the normal variation this reduces to

LK = (A4 Ky KW . (C.16)

Further variations

The volume of an object (e.g. a soap bubble, see Sec. 1.1.2) may be written as a
surface integral with help of Gauss’” Theorem

X 1
V:/dV’:/dV’v—:_/ dAn X . (C.17)
|4 \4 3 3 oV

To first order, tangential variations only correspond to a reparametrization and
therefore cancel (as one can easily check). The variation of the volume yields (see

Eqns. (C.2), (C.9) and (C.13))

oV = (SLV:%/ dQS[(5l\/§)nX+\/§(5L'I’L)X+\/§’I’L(5LX)]
oV
= 1/ dA[(K¥)n- X — (V,¥)g"%;, - X +n-(In)] . (C.18)
3 Jov

An integration by parts of the second term and use of the Gauss equations (B.32)
simplifies Eqn. (C.18):

1
Vo= = dA{KW)n- X +[—(K¥)n-X + U g%, -V, X|+ U
5 AN e X (EY) e X 4 gt VX4 )
=g gy, =2
= / dA T . (C.19)
ov

Generally, any scalar function F defined on the surface varies under a tangential
deformation like [CGO2D]

5| F = B9, F = OV, F . (C.20)
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Application: The formula of Laplace
We want to perform a normal variation of Hamiltonian (1.9) in Sec. 1.1.2:
H = dAo—P(V —-1,) . (C.21)
oV
Exploiting the results of this appendix, one gets in equilibrium (6, H = 0)
5 H= [ (6,dA4) o — ps v C1OUY / dA (oK — P) =0 (C.22)
oV oV

which yields the formula of Laplace

P=0K . (C.23)
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