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ZUSAMMENFASSUNG

Das Wechselspiel zwischen elektrostatischen und hydrodynamischen Kräften
spielt eine wichtige Rolle beim Verständnis kolloidaler Systeme. Im Mit-
telpunkt einer theoretischen Betrachtung findet sich häufig das Standard elek-
trokinetische Modell. Dieser Mean-Field-Ansatz setzt sich aus der Stokes-
Gleichung für die Hydrodynamik, der Poisson Gleichung für die Elektrostatik
und einer Kontinuitätsgleichung zur Beschreibung der Ionenkonzentrationen
zusammen. Ein neuer Gitteralgorithmus zur effizienten Lösung dieses nicht-
linearen Gleichungssytems im Falle einer ladungsstabilisierten Kolloiddisper-
sion unter Einfluss eines elektrischen Feldes wird im ersten Teil dieser Arbeit
präsentiert. Die Untersuchung konzentriert sich hierbei hauptsächlich auf die
Berechnung der elektrophoretischen Mobilität. Da dieser Transportkoeffizient
nur für schwache Felder von diesen unabhängig ist, basiert der Algorithmus
auf einer Linearisierung der Gleichungen. Die nullte Ordnung besteht dabei
aus der wohlbekannten Poisson-Boltzmann-Theorie, während die erste Ord-
nung aus einem linearen Gleichungssystem besteht. Dieses Gesamtsystem wird
dann in einzelne Teilprobleme gegliedert. Nacheinander werden spezialisierte
Lösungen für jedes Teilproblem entwickelt und verschiedene Tests sowie An-
wendungsmöglichkeiten für die einzelnen Methoden diskutiert. Letztendlich
werden die Teilprogramme in einer iterativen Prozedur verknüpft. Diese wird
angewendet, um einigen interessanten Fragestellungen nachzugehen, wie der
Effekt unterschiedlicher Abschirmungsmechanismen auf die elektrophoretische
Mobilität oder die Ladungsabhängigkeit der induzierten Dipolmomente und
Ionenwolken um ein schwach geladenes Kolloid.
Im zweiten Teil dieser Dissertation wird eine Methode zur quantitativen Daten-
analyse einer neuen experimentellen Methode entwickelt, die unter dem Namen
“Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy” (TIR-
FCCS) bekannt ist. TIR-FCCS beschreibt eine optische Messmethode, in der
fluoreszierende Kolloide verwendet werden um das Strömungsfeld nahe einer
fest-flüssig-Grenzfläche zu verfolgen. Die Interpretation der experimentellen
Ergebnisse bedarf dabei eines theoretischen Modells, das i.A. durch die Lö-
sung einer Konvektions-Diffusions-Gleichung gegeben ist. Da aufgrund des
Geschwindigkeitsfeldes und der Randbedingungen eine analytische Lösung un-
zugänglich ist, wird alternativ ein Lösungsweg auf der Basis von “Brownian
Dynamics” und Monte-Carlo-Methoden entwickelt. Schlussendlich werden ex-
perimentelle Daten zu Messungen mit hydrophiler Oberfläche mithilfe dieser
numerischen Methode analysiert.





ABSTRACT

The interplay of hydrodynamic and electrostatic forces is of great importance
for the understanding of colloidal dispersions. Theoretical descriptions are
often based on the so called standard electrokinetic model. This Mean Field
approach combines the Stokes equation for the hydrodynamic flow field, the
Poisson equation for electrostatics and a continuity equation describing the
evolution of the ion concentration fields.
In the first part of this thesis a new lattice method is presented in order to
efficiently solve the set of non-linear equations for a charge-stabilized colloidal
dispersion in the presence of an external electric field. Within this framework,
the research is mainly focused on the calculation of the electrophoretic mo-
bility. Since this transport coefficient is independent of the electric field only
for small driving, the algorithm is based upon a linearization of the governing
equations. The zeroth order is the well known Poisson-Boltzmann theory and
the first order is a coupled set of linear equations. Furthermore, this set of
equations is divided into several subproblems. A specialized solver for each
subproblem is developed, and various tests and applications are discussed
for every particular method. Finally, all solvers are combined in an iterative
procedure and applied to several interesting questions, for example, the effect
of the screening mechanism on the electrophoretic mobility or the charge
dependence of the field-induced dipole moment and ion clouds surrounding a
weakly charged sphere.

In the second part a quantitative data analysis method is developed for a
new experimental approach, known as Total Internal Reflection Fluorescence
Cross-Correlation Spectroscopy (TIR-FCCS). The TIR-FCCS setup is an opti-
cal method using fluorescent colloidal particles to analyze the flow field close to
a solid-fluid interface. The interpretation of the experimental results requires a
theoretical model, which is usually the solution of a convection-diffusion equa-
tion. Since an analytic solution is not available due to the form of the flow field
and the boundary conditions, an alternative numerical approach is presented.
It is based on stochastic methods, i. e. a combination of a Brownian Dynamics
algorithm and Monte Carlo techniques. Finally, experimental measurements
for a hydrophilic surface are analyzed using this new numerical approach.
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INTRODUCTION

The understanding of colloidal systems is one of the most important topics in
the field of soft matter research. However, the first question we have to clarify
is, how to define colloidal system. In the Britannica Online Encyclopedia [1]
we find:

“colloid, any substance consisting of particles substantially
larger than atoms or ordinary molecules but too small to
be visible to the unaided eye; more broadly, any substance,
including thin films and fibres, having at least one dimension
in this general size range, which encompasses about 10−7 to
10−3 cm. Colloidal systems may exist as dispersions of one
substance in another–for example, smoke particles in air–or
as single materials, such as rubber or the membrane of a
biological cell.”

Colloidal dispersions can be found everywhere in everyday life and are of
high importance for biological, chemical and physical systems. Therefore it is
not surprising that the field of colloid science has a long tradition. Although
an article of Thomas Graham in 1861 [2] is viewed as the official “hour of
birth” of this scientific field, colloids have already been observed and studied
since the seventeenth century [3]. Nevertheless, up to date we are far away
from a full understanding of colloidal phenomena. The interplay between
a wide range of chemical and physical mechanisms, e. g. electrostatics and
thermodynamics, hydrodynamics and rheological effects, and moreover, the
separation of length and time scales, on which the dynamics of colloidal
particles and the surrounding medium takes place, induce a high degree of
complexity. A closed analytical theory is certainly not feasible and also the
theoretical predictions available make use of rather crude approximations.
Fortunately, a third pillar in scientific research besides experiment and theory
has grown in the last decades, namely the use of computers for simulations
and expensive calculations. The benefit of computer calculations in science
starts with the treatment of a huge amount of experimental data and their
analysis. Simulations offer the opportunity of studying physical systems under
well defined conditions and testing theoretical predictions by comparison
with the experiments. Furthermore, very complex systems can be solved by
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means of numerical calculations, where analytical solutions are not available
or only using rough approximations. Thus computational methods became
an important and helpful tool in science, moreover, are often cheaper than
designing experiments, and thus, are of high interest for industry and life
science. However, the physical resources are limited, either by computational
power or memory. Therefore special care has to be taken on the actual
problems and specialized computational methods must be developed for those
problems. For example, trying to solve the flow field in a micro channel on a
quantum mechanical or even on an atomistic level of the fluid particles would
be senseless. In other words, real physical systems contain a huge number of
degrees of freedom. In practice, a lot of them are of minor interest, and thus,
their explicit treatment would be wasted computer time. One approach for
this problem is the well known Mean–Field ansatz. The physical system is
treated on a rather coarse level, where cross correlations are neglected.

This thesis is located in the field of method development.
In the first and major part, a colloidal system is studied on such a Mean–Field
level. A charged colloidal sphere is dissolved in an ambient fluid, containing
counterions and additional ionic species, and a constant external electric field
is applied. This results in an electro–hydrodynamic phenomenon, known as
electrophoresis. In the Mean–Field approximation, the ionic species and the
fluid are not treated explicitly, rather by means of concentration and velocity
fields. The governing equations consist in the Navier–Stokes equation for the
treatment of hydrodynamics, a convection–diffusion equation coupling the
ionic concentrations to the ambient fluid and the Poisson equation accounting
for electrostatics. A detailed description of the Mean–Field approach and
the underlying ideas for a computational treatment of these equations is
presented in chapter 1. The strategy lies in dividing the complex system into
smaller sub–problems, which could be handled much easier. In chapter 2 to
4 specialized solvers for those sub–problems are developed and tested. The
combined algorithm is a rather efficient tool for studying electrophoresis of
colloidal particles. The advantage is that the method offers the opportunity of
varying several parameters independently, for example the charge of the macro
particles, the fraction of the amount of counterions to all ions in the system
and the diffusion constant of micro ions. In chapter 5 numerical results for
the combined method are presented. In addition to some “classical” questions,
e. g. the dependency of the electrophoretic mobility on κR or the ζ-potential
(these concepts will be discussed later in detail), we focus on the dependency
of the mobility on the screening mechanism. And indeed we could observe a
difference in the mobility of salt screened and counterion dominated systems.
Furthermore, a very interesting phenomenon in weakly charged colloidal
systems is studied. If an external field is applied to a system of an uncharged
colloidal sphere in a solution of negative and positive ions, electro–osmotic
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flow occurs and since the ions cannot penetrate the solid sphere, the ion fluxes
are reflected. This results in an accumulation of negative charges at one side
of the particle, and positive ions on the other side, as recently shown by K.
Kang and J.K.G. Dhont [4]. Using our numerical approach we could indeed
observe this effect. Furthermore, upon increasing the charge of the colloidal
sphere, we find a reversal of the ion clouds and the pertaining dipole moment.

In chapter 6 we leave the field of electrokinetics and study a rather different
topic. From a collaboration with S. Yordanov and K. Koynov (AK Butt, MPIP
Mainz) aroused the question if it is possible to find a theoretical prediction
for their experimental results in order to develop a method for a quantita-
tive analysis. In their new experimental approach, known as Total Internal
Reflection Fluorescence Cross–Correlation Spectroscopy (TIR–FCCS), fluores-
cent colloidal particles are used for tracking a flow field close to an solid–fluid
interface [5]. The dynamics of the tracer particles can be theoretically de-
scribed via a convection–diffusion equation. However, the flow field and the
boundary conditions at the channel wall complicate the search for an ana-
lytical solution of the problem. Therefore a new computational approach is
presented in chapter 6, based on stochastic methods, i. e. Brownian Dynam-
ics combined with Monte Carlo techniques, and some experimental results are
analyzed using this new approach.





1. THEORETICAL BACKGROUND

In almost all situations where two phases are brought in contact, a difference
in the electric potential is produced. For example, if a solid is brought in
contact with a liquid, charges are dissociated or associated at the surface; or
if the liquid is polar, its molecules will tend to orient at the interface and
hence a difference in the potential is caused [6]. Furthermore, if we think
about water as a solvent, its self–dissociation always produces a small amount
of negative and positive ions. Thus the interplay between electrostatics and
hydrodynamics is of high importance for the understanding of a wide range of
biological, chemical and physical systems. Moreover, electro–hydrodynamic
phenomena also offer a great opportunity for the development of new ap-
plications in science and industry, e. g. electro–hydrodynamic pumps offer
the advantage that electric forces act on a fluid over the whole pumping
volume and do not require any moving parts as in the case of mechanical
pumps [7, 8]; or pressure–driven flows through microchannels can be used to
develop electrokinetic batteries [9]. One of the most important applications of
electro–hydrodynamic effects in science are in separation techniques based on
electrophoresis, used e. g. for the analysis of DNA [10].

Charged solid colloidal spheres in suspension in an aqueous solution containing
counterions and salt ions will be surrounded by a cloud of oppositely charged
ions. This cloud, typically called the electric double layer, is responsible for
screening the electrostatic potential. If an external electric field is acting on the
system, the charged spheres start to migrate in the direction of the oppositely
charged electrode and the surrounding cloud will be deformed and becomes
anisotropic due to the electric field and also to the friction between the ions
and the fluid. This effect is called electrophoresis and the characterizing trans-
port coefficient is the electrophoretic mobility, determined by the balance of
electric driving and hydrodynamic frictional force acting on the sphere. The
electrophoretic mobility µ is defined as the proportionality constant between
the constant velocity u of the particle and the external driving field Eext in
the linear regime, i. e. for small driving fields,

u = µEext . (1.1)

Efforts have been made to study the phenomena of electrophoresis by experi-
mental methods [11–15] as well as by analytical and numerical calculations over
the decades [16–33]. Due to the complexity of the field and the complicated
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many–body nature of the problem, a quantitative theoretical understanding
of the electrophoresis is still incomplete today. Only limiting cases are well
understood.
One of the first and simplest analytical models for the electrophoretic mobility
was introduced by Hückel in 1924 [17]. In the salt-free case and vanishing
colloidal volume fraction, the mobility of a single sphere of charge Ze with
radius R, in the presence of a constant electric field is given by the well known
Stokes formula

6πηRu = ZeE (1.2)

and hence
µH =

Ze

6πηR
. (1.3)

Here, η is the viscosity of the ambient fluid.
Conversely, some years earlier, Smoluchowski developed an analytic solution
in the case of very high salt concentration [16], essentially given by

µS =
3

2
µH , (1.4)

if the ζ potential, i. e. the electrostatic potential at the surface of the particle,
remains the same. In both cases, rough simplifications have been applied for
the form of the electric field close to the particle. While Smulochowski assumed
the field to be constant and at every point parallel to the object surface, Hückel
disregarded the deformation of the electric field completely [6]. Both cases are,
however, well-defined and rigorous limits for the extreme cases of infinitely
thick (κR → 0) or thin (κR → ∞) diffusive layers. In 1931, Henry published
an approximate method which takes the field deformation into account [18].
He found that the mobility could be written as

µ = µH f(κR) . (1.5)

Here, κ is the Debye screening parameter, which will be discussed later on
in detail. f is a function with limiting values f → 1 for κR ≪ 1 (Hückel
limit) and f → 3/2 if κR ≫ 1 (Smulochowski limit). In the following decades
alternative solutions have been investigated, which differ from the function f
given by Henry (see for example [19–22]). However, all of them interpolate
from the Hückel to the Smoluchowski limit.
In recent years, various sophisticated numerical and simulation methods for
the treatment of hydrodynamics in colloidal systems have been developed, e. g.
multiparticle–collision dynamics[34–36] or lattice Boltzmann simulations [37–
40]. Former studies done in our group are based on the so called “raspberry
model”, which is a hybrid simulation method. In this model the ions and
the colloidal particle, which is represented by a two dimensional bead–spring
network, wrapped around a solid sphere, are treated by explicit molecular



1.1 The Mean-Field Approach – The Electrokinetic Equations 7

dynamics simulations and coupled to a lattice Boltzmann background for the
treatment of fluid dynamics [41]. This kind of simulation is computationally
expensive, and furthermore, can cause some undesired effects, since the explicit
ionic particles are unrealistically large and hence packing effects could occur.
Later studies, based on a Mean–Field approach and the use of a commercial
finite elements package (COMSOL), were limited due to an enormous demand
of memory. This thesis resumes the former Mean–Field approach, such that
its main focus is the development of an efficient computational method for
solving the Mean–Field equations numerically.
In the current chapter the basic equations and underlying ideas will be pre-
sented. In the subsequent chapters the development of the computational
method will be investigated successively. Throughout, we assume a finite sys-
tem with periodic boundary conditions.

1.1. THE MEAN-FIELD APPROACH – THE
ELECTROKINETIC EQUATIONS

The effect of electrophoresis is balanced by electrostatic and hydrodynamic
effects. In the case of a Mean–Field picture the system is described in terms of
ion concentration fields ci, electrostatic potential ψ and the flow velocity field v.
Cross–correlations between salt ions and thermal fluctuations are neglected. In
this regime, the system is described by the Poisson equation, mass conservation
equations and the Navier–Stokes equation. First of all, the Poisson equation
couples the concentration fields to the electrostatic potential ψ

−∇2ψ =
1

ε
e
∑
i

zici . (1.6)

Here, ε is the dielectric constant, e denotes the elementary charge and zi is the
valence of the ionic species, where the subscript i indicates the different ionic
species in the system. Counterions, which assure the charge neutrality of the
system, are denoted by the index i = 0. The charged colloids are taken into
account via boundary conditions.
The mass conservation condition for all ion concentration fields is described
by a continuity equation,

∂tci + ∇ · ji = 0 . (1.7)
The current density consists of three different parts. Firstly, a diffusive current

j
(diff)
i = −Di∇ci , (1.8)

where Di is the diffusion constant of species i. Furthermore, the external
driving field acts on the ions, and thus this electric force gives rise to a second
current density

j
(el)
i = −ezi(∇ψ)µici . (1.9)
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The mobility µi of species i is related to the diffusion constant via Einstein’s
relation,

µi =
Di

kBT
, (1.10)

with T the temperature and kB is the the Boltzmann constant, and hence, one
may write

j
(el)
i = −ezi

Di

kBT
(∇ψ)ci . (1.11)

Furthermore, the ions will move with the ambient fluid, such that the fluid
velocity field v causes a convective current,

j
(con)
i = vci . (1.12)

Summing up all contributions and including them in the continuity equation
results in a convection–diffusion equation, known as Nernst–Planck equation,

0 = ∂tci + ∇ · (j(el)
i + j

(diff)
i + j

(con)
i ) (1.13)

= ∂tci + ∇ ·
(
−Di∇ci −

Di

kBT
ezi(∇ψ)ci + vci

)
.

Electric forces and hydrodynamic viscous forces are balanced in the Navier–
Stokes equation

ρ∂tv = −∇p+ η∇2v − e(∇ψ)
∑
i

zici , (1.14)

where ρ is the mass density of the fluid. In this formulation, known as Stokes
equation, the Reynolds number is set to zero. As we will see later, the pres-
sure p has the function of a Lagrange multiplier, enforcing the constraint of
incompressibility

∇ · v = 0 . (1.15)

At a certain velocity of the sphere the friction forces balance the driving electric
force. Then, these equations will reach a stationary limit, and the whole system
of equations we will study is given by [3]

0 = ∇2ψ +
1

ε
e
∑
i

zici , (1.16a)

0 = ∇ ·
(
Di∇ci +

Di

kBT
ezi(∇ψ)ci − vci

)
, (1.16b)

0 = −∇p+ η∇2v − e(∇ψ)
∑
i

zici , (1.16c)

0 = ∇ · v . (1.16d)
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Notice that the stationary formulation is not manifestly Galilean invariant,
but rather selects one particular frame of reference, in which it is valid. If a
colloidal sphere would move relative to the chosen inertial frame, the local ionic
concentration would change with time, and hence, a stationary solution cannot
exist. The only exception is the frame in which all colloids are at rest. This
means that the requirement of vanishing time derivatives fixes the system to
the rest frame of the colloidal spheres. The particle velocity, which determines
the mobility, is the relative velocity of the particles to the center of mass of
the system. Another important observation is therefore that the requirement
of a stationary solution either confines the theory to single-colloid studies, or
imposes an unphysical “rigid-body” constraint between the colloidal spheres.

1.2. DIMENSIONLESS FORMULATION

The electrokinetic equations may be reformulated in terms of dimensionless
quantities. This means that we introduce reduced units, consistent with the
intrinsic scales of the system.
First of all, we define a very natural unit for the electrophoretic mobility via
the combination of the “Hückel” mobility, Eq. (1.3), with an intrinsic length
scale of the system. Such a length could be defined by the balance between
electrostatic and thermal energy

lB =
e2

4πεkBT
, (1.17)

which is called Bjerrum length. Inserting this into Eq. (1.3), the natural unit
of the mobility reads

µ0 :=
e

6πηlB
, (1.18)

and a dimensionless reduced electrophoretic mobility is defined as

µred :=
µ

µ0

. (1.19)

The most natural energy scale is the thermal energy kBT . In combination with
the elementary charge e, we define the dimensionless potential as

ψ̃ = ψ
e

kBT
, (1.20)

i. e. the reduced potential is the electrostatic energy of an elementary charge
in units of thermal energy. Inserting this into the Poisson equation leads to

∇2ψ̃ + 4πlB
∑
i

zici = 0 . (1.21)
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parameter physical units dimensionless formulation

Bjerrum length lB = e2

4πεkBT

screening parameter κ2 = 4πlB
∑

i z
2
i
Ni

V

electrophoretic mobility µ µred = 6πηlB
e
µ

spatial position r r̃ = κr

spatial derivative ∇ ∇̃ = 1
κ
∇

electrostatic potential ψ ψ̃ = e
kBT

ψ

electric field E Ẽ = e
κkBT

E

ion concentration ci c̃i = 4πlB
κ2 ci

colloid charge Ze Z̃ = 4πlBκZ

number of ions Ni Ñi = 4πlBκNi

flow velocity v ṽ = 6πlBη
κkBT

v

pressure p p̃ = 4πlB
κ2kBT

p

diffusion constant Di D̃i = 6πlBη
kBT

Di

Table 1.1.: Summary of all parameters in physical units and their reduced coun-
terparts.
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Introducing an arbitrary parameter κ−1 as a characteristic length scale, the
gradient is rescaled via

∇̃ =
1

κ
∇ . (1.22)

This allows us to write Eq. (1.21) in a dimensionless form,

∇̃2ψ̃ +
∑
i

zic̃i = 0 , (1.23)

where
c̃i :=

4πlB
κ2

ci (1.24)

is the concentration field in reduced units. The mass normalization condition
for the counterions then reads ∫

d3r̃c̃0 =
Z̃

z0

. (1.25)

where
Z̃ = 4πlBκZ . (1.26)

Consequently, this yields also a reformulation of the number of ions in the
system

Ñi = 4πlBκNi . (1.27)

The reduced electric field is simply defined by its connection to the electrostatic
potential

Ẽ = −∇̃ψ̃ =
e

κ kBT
E . (1.28)

Combining this with the definition of the reduced electrophoretic mobility, Eq.
(1.1) and Eq. (1.18), gives rise to a natural formulation of a reduced velocity

ṽ = µredẼ

=
6πηlB
e

e

κkBT
µE

=
6πlBη

κkBT
v . (1.29)

This allows us to write the Stokes equation in its dimensionless form

0 = ∇̃ · ṽ , (1.30)

0 = −∇̃p̃+
2

3
∇̃2ṽ − (∇̃ψ̃)

∑
i

zic̃i , (1.31)

with the reduced pressure

p̃ :=
4πlB
κ2kBT

p . (1.32)
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Finally, reformulation of the diffusion constants via

D̃i :=
6πlBη

kBT
Di (1.33)

and replacing all other quantities by their rescaled counterpart, results in a
dimensionless formulation of the Nernst-Planck equation,

∇̃ ·
{
D̃i∇̃c̃i + D̃izi(∇̃ψ̃)c̃i − ṽc̃i

}
= 0 . (1.34)

The choice of the scaling parameter κ is completely immaterial for the mathe-
matical formulation of the problem. It is only important to map the numerical
results back onto a physical system, and it is therefore a matter of conven-
tion. A choice for this length scale, convenient for many applications, can be
motivated by the linearized Debye-Hückel theory. For vanishing driving field
Eext = 0 the last term of Eq. (1.34) disappears, and in this equilibrium formu-
lation, i. e. ji = 0, the electrokinetic theory reduces to the Poisson-Boltzmann
equation

−∇̃2ψ̃ =
∑
i

zic̃i , (1.35a)

∇̃ ln c̃i + zi(∇̃ψ̃) = 0 . (1.35b)

It is useful to reformulate these equations in terms of an electric field Ẽ =
−∇̃ψ̃, such that

∇̃ · Ẽ −
∑
i

zic̃i = 0 , (1.36)

∇̃ ln c̃i − ziẼ = 0 , (1.37)
∇̃ × Ẽ = 0 . (1.38)

For the linearized formulation of this equations, one may assume that the
concentration profiles can be written as the constant equilibrium value plus
some small perturbation

c̃i ≡
Ñi

Ṽ
(1 + φi) (1.39)

with φi ≪ 1. Thus, we get

∇̃ · Ẽ −
∑
i

zi
Ñi

Ṽ
(1 + φi) = 0 , (1.40)

∇̃ ln(1 + φi) − ziẼ = 0 . (1.41)
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Expansion of the logarithm up to linear order in φi leads to

∇̃φi = ziẼ . (1.42)

Inserting this into Eq. (1.40) and taking the gradient of this equation results
in

∇̃
(
∇̃ · Ẽ

)
=

∑
i

zi
Ñi

Ṽ
(∇̃φi)

=
∑
i

z2
i

Ñi

Ṽ
Ẽ , (1.43)

and applying the identity

0 = ∇̃ × (∇̃ × Ẽ) = ∇̃(∇̃ · Ẽ) − ∇̃2Ẽ (1.44)

results in (
∇̃2 −

∑
i

z2
i

Ñi

Ṽ

)
Ẽ = 0 . (1.45)

The freedom to choose κ arbitrarily allows us to write Eq. (1.45) in the simple
form (

∇̃2 − 1
)

Ẽ = 0 , (1.46)

with

1 =
∑
i

z2
i

Ñi

Ṽ
=
∑
i

z2
i

4πlB
κ2

Ni

V
, (1.47)

and hence
κ2 = 4πlB

∑
i

z2
i

Ni

V
. (1.48)

This is the natural Debye screening parameter in the finite–volume version of
the linearized Poisson–Boltzmann theory.

All together, the dimensionless formulation of the electrokinetic equations, Eq.
(1.16), reads

0 = ∇̃2ψ̃ +
∑
i

zic̃i , (1.49a)

0 = ∇̃ ·
(
D̃i∇̃c̃i + D̃izi(∇̃ψ̃)c̃i − ṽc̃i

)
, (1.49b)

0 = −∇̃p̃+
2

3
∇̃2ṽ − (∇̃ψ̃)

∑
i

zic̃i , (1.49c)

0 = ∇̃ · ṽ . (1.49d)

In the following, for practical reasons the tildes are omitted, with the under-
standing that all parameters, including Ni and Z, are given in reduced units.
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1.3. LINEARIZATION OF THE ELECTROKINETIC
EQUATIONS

The high non-linearity of the Mean–Field equations causes two problems. First
of all, it is very difficult, and at least computational expensive, to solve a
coupled system of nonlinear differential equations. Furthermore, the quantity
we are mainly interested in, namely the electrophoretic mobility, is well defined
(i. e. independent of the driving field) only in the linear regime. Consequently,
if a fully nonlinear solution of the equations is obtained, an extrapolation to
zero driving field is required. The second problem can be avoided completely,
and the first one at least reduced, by a linearization of the equations in terms
of the driving field [3]. This can be done by a formal expansion with respect
to a small parameter ϵ, corresponding to the external field. We assume that
all fields in the system have a regular expansion in ϵ, and hence we write

ci ≡ c
(0)
i + ϵc

(1)
i + O(ϵ2) , (1.50a)

ψ ≡ ψ(0) + ϵψ(1) + O(ϵ2) , (1.50b)
v ≡ ϵv(1) + O(ϵ2) , (1.50c)
p ≡ p(0) + ϵp(1) + O(ϵ2) . (1.50d)

The reduced electrophoretic mobility is then given by

µred =
u(1)

Eext

, (1.51)

where u(1) is the constant velocity of the colloid in the system’s center-of-mass
reference frame, i. e. the value of the flow velocity field at the surface of the
colloidal sphere

u(1) := v(1)(R) , (1.52)

with R the radius of the particle. This mobility is strictly independent of the
strength of the external driving force.

By applying the expansion, Eq. (1.50), to the electrokinetic equations and
making use of the requirement that each order must be satisfied independently,
we get:

• Zeroth Order

0 = ∇
(
ziψ

(0) + ln c
(0)
i

)
, (1.53a)

0 = ∇2ψ(0) +
∑
i

zic
(0)
i , (1.53b)

0 = −∇p(0) − (∇ψ(0))
∑
i

zic
(0)
i . (1.53c)
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• First Order

0 = ∇ ·
{
Di∇c(1)i +Dizi(∇ψ(1))c

(0)
i

+Dizi(∇ψ(0))c
(1)
i − v(1)c

(0)
i

}
, (1.54a)

0 = −∇p(1) +
2

3
∇2v(1)

−(∇ψ(1))
∑
i

zic
(0)
i − (∇ψ(0))

∑
i

zic
(1)
i , (1.54b)

0 = ∇ · v(1) , (1.54c)

0 = ∇2ψ(1) +
∑
i

zic
(1)
i . (1.54d)

The first order consists of a coupled set of linear equations. The zeroth order
equations are still nonlinear, but of much simpler structure than the full set of
equations, Eq. (1.49). Note that the last equation of zeroth order, Eq. (1.53c),
containing the pressure field is irrelevant for the future development. However,
the remaining two equations are the standard electrokinetic equations in the
equilibrium system without any external driving force, known as Poisson–
Boltzmann theory.
Integrating Eq. (1.53a), one obtains

c
(0)
i = Ai exp

(
−ziψ(0)

)
, (1.55)

where the integration constant Ai must have, for normalization reasons, the
value

Ai =
Ni∫

V
exp (−ziψ(0)) dV

. (1.56)

Inserting this result into Eq. (1.53b), one can write the zeroth order as the
more compact Poisson–Boltzmann equation

∇2ψ(0) +
∑
i

ziAi exp
(
−ziψ(0)

)
= 0 . (1.57)

In the first order equations, the external field is taken into account by decom-
posing the potential ψ(1) into a periodic part and one part corresponding to
the constant electric field

ψ(1) ≡ ψ′(1) + ψ′′(1) , (1.58)
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such that

∇2ψ′(1) = −
∑
i

zic
(1)
i , (1.59)

∇2ψ′′(1) = 0 , (1.60)
∇ψ′′(1) = −Eext . (1.61)

Thus, we write the first order equations in the form

0 = ∇ ·
{
Di∇c(1)i +Dizi(∇ψ′(1))c

(0)
i −DiziEextc

(0)
i

+Dizi(∇ψ(0))c
(1)
i − v(1)c

(0)
i

}
, (1.62a)

0 = −∇p(1) +
2

3
∇2v(1) − (∇ψ′(1))

∑
i

zic
(0)
i

+Eext

∑
i

zic
(0)
i − (∇ψ(0))

∑
i

zic
(1)
i , (1.62b)

0 = ∇ · v(1) , (1.62c)

0 = ∇2ψ′(1) +
∑
i

zic
(1)
i . (1.62d)

1.4. ITERATIVE PROCEDURE

The linearization of the problem divides the challenge of solving the electroki-
netic equations into two different subproblems. For the zeroth order, a solution
of the fully non-linear Poisson–Boltzmann equation must be found. The first
order consists in a set of linear equations, while the fields of zeroth order only
occur as prefactors. A logical way for solving these first order equations con-
sists on using finite–difference or finite–element methods. However, this can
get very challenging, due to the high complexity of the problem, i. e. handling
the conservation laws in this kind of methods is not easy. We decided to use
a different strategy for solving the first order equations. Since the set of equa-
tions is constructed by three different kinds of equations, we divide the first or-
der into three different subproblems, the Poisson equation, the Nernst–Planck
equation and the incompressible Stokes equation. Each particular problem is
solved by a specialized numerical method. Using this ansatz offers the op-
portunity to choose methods, which will intrinsically satisfy all conservation
laws up to inevitable round–off errors. All methods are then connected via an
iterative method as sketched by Fig. 1.1
It should be noted that the Stokes equation is solved in the center-of-mass
reference frame, while the Nernst–Planck equation is solved in the colloid’s
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YES

NO

YES

NO

Input 1:

Equilibrium
parameters

Input 2:

driving field

Poisson–Boltzmann

⇒ c
(0)
i
, ψ(0) Start:

c
(1)
i

= 0

ψ(1) = −Eextx

Stokes

⇒ new v
(1)

v
(1)

converged?
STOP

evaluate µred

Nernst-Planck

(one time step)

⇒ new c
(1)
i

Poisson

⇒ new ψ(1)

c
(1)
i
, ψ(1)

converged?

Figure 1.1.: Schematic description of the algorithm for solving the electrokinetic
equations

rest frame. Therefore, the velocity flow field must first be subjected to a
Galilei transform before feeding the data into the Nernst–Planck equation.

Every solver is a kind of finite–difference algorithm, discretized on a regular
lattice with periodic boundary conditions.

In contrast to the other equations, which will be discussed in detail in the
following chapters, the Poisson equation for a given charge density can be
solved efficiently by a simple standard method. The evaluation of differential
operators becomes very easy in Fourier space, and thus the potential and the
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charge density are expanded in terms of Fourier series via

ψ(r) =
∑

k

ψ̂(k) exp[−ikr] , (1.63)

ρ(r) =
∑

k

ρ̂(k) exp[−ikr] , (1.64)

with

k = 2π

 k/Lx
l/Ly
m/Lz

 , k, l,m ∈ Z . (1.65)

Here, Lx × Ly × Lz is the dimension of the computational domain.
The solution of the Poisson equation in Fourier space is then given by

ψ̂ =
1

k2 ρ̂. (1.66)

Hence, this equation can be solved by only three steps:

1. Fast Fourier transformation (FFT) of the discretized charge density,

2. Solving the Poisson equation in Fourier space via Eq. (1.66),

3. Backtransformation (IFFT) of the electrostatic potential.

Note that for consistency reasons, a discretized version, i. e. a lattice Green’s
function, is used instead of the continuum Green’s function.
A derivation for a finite–difference version of this Green’s function can for
example be found in Ref. [42].
Consider a one-dimensional periodic function g with periodicity Lx, i. e.

g(x) = g(x+ Lx) . (1.67)

The function is discretized on a cubic lattice with lattice spacing a and Nx

lattice sites, such that
Lx = Nxa , (1.68)

and hence the periodicity is given by

g(nxa) = g((nx +Nx)a) , (1.69)

where nx ∈ Z adresses the discrete grid point. Writing g(x) as Fourier trans-
formed function of ĝ(k), one obtains

g(nxa) =
Nx−1∑
k=0

ĝ(k) e−2πi knx
Nx . (1.70)



1.4 Iterative Procedure 19

and

ĝ(k) =
1

Nx

Nx−1∑
nx=0

g(nxa) e
2πi knx

Nx . (1.71)

In one dimension the midstep finite–difference version of the second derivative
of g is given by

d2

dx2
g(x) ≃ 1

a2
{g((nx + 1)a) + g((nx − 1)a) − 2g(nxa)} . (1.72)

Making use of Eq. (1.70), this finite–difference scheme can also be re–
formulated in terms of a Fourier series,

d2

dx2
g(x) ≃

Nx−1∑
k=0

ĝ(k)

a2

{
e−2πi

k(nx+1)
Nx + e−2πi

k(nx−1)
Nx − 2e−2πi knx

Nx

}
=

Nx−1∑
k=0

ĝ(k)

a2

{
e−2πi k

Nx + e2πi
k

Nx − 2
}
e−2πi knx

Nx

=
Nx−1∑
k=0

ĝ(k)

a2
2

{
cos

(
2π

k

Nx

)
− 1

}
e−2πi knx

Nx . (1.73)

If we now substitute this expression to the three dimensional version of the
Poisson equation in a periodic box with Nx ×Ny ×Nz lattice sites, we get

Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

2

a2
ψ̂(k, l,m)e

−2πi
“

knx
Nx

+
lny
Ny

+mnz
Nz

”

·
{

cos

(
2π

k

Nx

)
+ cos

(
2π

l

Ny

)
+ cos

(
2π

m

Nz

)
− 3

}
=

Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

ρ̂(k, l,m)e
−2πi

“

knx
Nx

+
lny
Ny

+mnz
Nz

”

. (1.74)

Thus, the discretized counterpart to Eq. (1.66) reads

ψ̂(k, l,m) =
a2

2

ρ̂(k, l,m)

cos
(
2π k

Nx

)
+ cos

(
2π l

Ny

)
+ cos

(
2π m

Nz

)
− 3

. (1.75)

Backtransformation finally yields the desired electrostatic potential in real
space.



1.5. THE WORK OF O’BRIEN AND WHITE

The idea of linearizing the electrokinetic equations and of solving these lin-
earized equations using a numerical method is not new. In 1978 Richard W.
O’Brien and Lee R. White developed this method in their famous and fre-
quently cited publication, Ref. [23]. The aim of their work was to calculate
the electrophoretic mobility of a colloidal particle as function of the ζ-potential
under the influence of a constant external electric field. The difference to our
method is that they assume only a single sphere dissolved in an electrolyte so-
lution and set into an infinite domain, which consequently omits the influence
of counterions. However, our method can be understood as a generalization
of the method of O’Brien and White for a finite-sized system. In the limit of
zero volume fraction the screening of the colloidal sphere is mainly dominated
by the salt ions and the results of our method should recover the results of
O’Brien and White. This is indeed the case, as we will see in Chap. 5. The
numerical results of O’Brien and White are shown in Fig. 1.2.

Figure 1.2.: Reduced mobility E = 6πηeµ/εkBT as function of the reduced zeta
potential y = eζ/kBT . These images are taken from Ref. [23] (Fig. 3
and 4).



2. SOLVING THE
POISSON-BOLTZMANN EQUATION

The zeroth order of the electrokinetic equations consists of the well known
Poisson-Boltzmann equation, Eq. (1.57), which is a highly non-linear partial
differential equation. Analytical work in this field is often restricted to a lin-
earized version of this equation, known as Debye-Hückel theory. However, this
linearization is only valid for weakly charged colloidal spheres, and therefore
insufficient for our purposes. In recent years, new numerical methods have
been developed for solving the fully non-linear Poisson-Boltzmann equation
[43, 44].
In the current chapter, a fairly new numerical approach is presented in or-
der to construct an unconditionally stable lattice algorithm for solving the
Poisson-Boltzmann equation. This approach is based on ideas of A. C. Maggs
and coworkers [27, 45–49] who investigated a completely new approach for the
treatment of electrostatics in soft–matter systems. The advantage of Maggs’
ideas is the completely local character of his lattice algorithm. Maggs formu-
lates the electrostatic equations in terms of a variational problem where the
functional depends on the electric field E1 and charge density ρ. Gauss’ law
∇ · E = ρ is viewed as a constraint. While a field which initially satisfies the
Gauss’ law can be easily constructed on a lattice, the transversal degree of
freedom must be removed, ∇ × E = 0. This can be either integrated out by
Monte Carlo [45–47] or Molecular Dynamics [27, 48, 49] techniques, or, as it
is presented in the current chapter, by performing local relaxation moves.
These ideas can be applied to the Mean-Field equations. The Poisson-
Boltzmann equation can be formulated in terms of a constrained variational
problem, where Gauss’ law and the mass normalization condition span a con-
straint surface. In a first step ionic concentrations and the electric field are
initialized within this constraint surface and then local updates of both den-
sity and electric field are performed simultaneously such that the constraint
surface is never left.
The basic idea and the method itself was mainly developed by M. Baptista
and B. Dünweg, and is already published in Ref. [50]. Recently, this method
was extended for non-uniform size effects of ionic concentrations by B. Li et
al. [51]. The contribution of this thesis mainly consists of practical aspects
(implementation, computational speedups, parallelization . . . ) and the appli-

1not on the electrostatic potential



22 Solving the Poisson-Boltzmann Equation

cations. The present chapter outlines these developments in a self-contained
way, and adds further results that have not yet been published.

2.1. VARIATIONAL APPROACH

One way for solving the Poisson–Boltzmann equation (1.57) is to re-formulate
it as a constrained variational problem. In this formulation a free energy
functional is minimized, which is constructed such that its Euler–Lagrange
equations reproduce Eq. (1.53). In the early 1970’s Brenner and McQuar-
rie [52] constructed such a functional in the Debye–Hückel approximation for
polyions of cylindrical shape and Brenner and Roberts [53] studied a simi-
lar variational principle to determine the electrostatic potential surrounding
a spherical colloid. Since the 1990’s several publications dealing with a free
energy formulation and variational techniques for the fully non-linear Poisson–
Boltzmann equation can be found (see e.g. [54–58]).
The functional is typically of the form

F =

∫
V

f dV, (2.1)

with
f = −1

2
(∇ψ)2 +

∑
i

ci ln ci + ψ
∑
i

zici −
∑
i

µi(ci −
Ni

V
). (2.2)

Here, the first term corresponds to the electrostatic energy and the second
term to the entropy. The µi are the chemical potentials of the species i, and
furthermore Lagrange multipliers accounting for the mass normalization con-
dition such that variation with respect to µi results in the constraint equation∫

V

ci dV = Ni . (2.3)

The Euler–Lagrange equation with respect to the electrostatic potential ψ
recovers the Poisson equation (1.53b), and by extremizing the functional with
respect to ci, one obtains

ln ci + 1 + ziψ − µi = 0. (2.4)

Taking the gradient of this equation recovers Eq. (1.53a). Note that the equi-
librium concentrations and potential do not minimize the functional but rather
form a saddle point. This can be observed by decomposing the electrostatic
potential and the concentrations into the solution plus a small deviation,

ψ = ψ(0) + δψ, (2.5a)

ci = c
(0)
i + δci, (2.5b)
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where δci must satisfy the mass normalization∫
V

δci dV = 0. (2.6)

From this, one obtains

F =

∫
V

(f0 + f2)dV + O(δc3), (2.7)

with

f0 = −1

2
(∇ψ(0))2 +

∑
i

c
(0)
i ln c

(0)
i

+ψ(0)
∑
i

zic
(0)
i , (2.8)

f2 = −1

2
(∇δψ(0))2 +

1

2

∑
i

δc2i

c
(0)
i

+δψ
∑
i

ziδci. (2.9)

Thus, the quadratic form of the deviations is not positive–definite and this
lack of positive–definiteness can cause various numerical difficulties in terms
of stability.

Following the ideas of Maggs and Rosetto [45] and re–formulating the equations
in terms of the electric field instead of the electrostatic potential, a variational
formulation is constructed where this built-in lack of stability is intrinsically
absent. In terms of the electric field E = −∇ψ, Eq. (1.53) reads

∇ ln ci = ziE, (2.10a)

∇ · E =
∑
i

zici, (2.10b)

∇× E = 0. (2.10c)

These equations are recovered as the Euler–Lagrange equations of a con-
strained free energy functional of the form

F =

∫
V

f dV, (2.11)

f =
1

2
E2 +

∑
i

ci ln ci − ψ(∇ · E −
∑
i

zici)

−
∑
i

µi(ci −
Ni

V
). (2.12)
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In this formulation, ψ is not a degree of freedom but rather a Langrange
multiplier, accounting for Gauss’ law which is considered as a constraint. The
variation with respect to µi and ψ recovers the constraint conditions (2.3) and
(2.10b). Minimization with respect to ci again results in

ln ci + 1 + ziψ − µi = 0, (2.13)

while variation with respect to E yields

E = −∇ψ. (2.14)

Taking the gradient of Eq. (2.13), one obtains

∇ ln ci + zi∇ψ = 0, (2.15)

and inserting Eq. (2.14) leads to

∇ ln ci = ziE. (2.16)

The curl of Eq. (2.14) finally recovers Eq. (2.10c).
To show that the solution of the variational problem is indeed a local mini-
mum, one may rewrite again the concentration and the electric field as a small
perturbation around the solution

ci = c
(0)
i + δci, (2.17a)

E = E(0) + δE. (2.17b)

The deviations must satisfy Gauss’ law and the mass normalization condition

∇ · δE =
∑
i

ziδci, (2.18)∫
V

δci dV = 0. (2.19)

Inserting Eq. (2.17) into the functional, we get

F =

∫
V

{
1

2
E(0)2 +

∑
i

c
(0)
i ln c

(0)
i

}
dV (2.20)

+

∫
V

{
1

2
δE2 +

1

2

∑
i

δc2i

c
(0)
i

}
dV + O(δc3),

i. e. small deviations from the solution will always increase the functional.
Furthermore it has been proven that the Poisson–Boltzmann equation has one
unique solution [59–61]. This guarantees that the functional has one and only
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one minimum, which corresponds to the solution of the Poisson–Boltzmann
equation.
To find this minimum we follow again the ideas of Maggs [46], who investigated
a local algorithm for determining Coulombic interactions. The idea is to use an
iterative procedure that relaxes all degrees of freedom of the functional such
that it is systematically decreased, while staying strictly on the constraint
surface. Such a procedure will ultimately run into the one and only minimum
of the free energy landscape.
The system is initialized such that all constraints are satisfied, and the proce-
dure treats them such that the system always stays on the constraint surface.
Therefore, the Lagrange multiplier terms in the functional can be omitted, and
hence it simplifies to

F =

∫
V

{
1

2
E2 +

∑
i

ci ln ci

}
dV . (2.21)

2.2. DISCRETIZATION

Before investigating the iterative procedure, we define a discretization scheme
as follows. The computational domain is a rectangular box of size l1 × l2 × l3
with periodic boundary conditions and is discretized by a regular orthorhombic
lattice with lattice spacings ∆xα, α = 1, 2, 3. Thus the volume of a unit cell is
∆V =

∏3
α=1 ∆xα. The lattice sites are denoted by r0.

Following the ideas of Yee [62], scalar fields are set as variables on the nodes,
while vector fields should be associated with the links and pseudo-vector fields
are located at the centers of the plaquettes, i. e. the faces of the rectangular
unit cells. Hence, the positions of the concentration fields are the vectors

r0(n) = (∆x1n1,∆x2n2,∆x3n3), (2.22)

where nα are integers. The x1 component of the electric field E1 is located at

r1(n) = (∆x1(n1 + 1/2),∆x2n2,∆x3n3), (2.23)

and respectively the positions for the other two components E2 and E3 are
given by

r2(n) = (∆x1n1,∆x2(n2 + 1/2),∆x3n3), (2.24)
r3(n) = (∆x1n1,∆x2n2,∆x3(n3 + 1/2)). (2.25)

Furthermore, it is useful to define

r′1(n) = (∆x1(n1 − 1/2),∆x2n2,∆x3n3), (2.26)
r′2(n) = (∆x1n1,∆x2(n2 − 1/2),∆x3n3), (2.27)
r′3(n) = (∆x1n1,∆x2n2,∆x3(n3 − 1/2)), (2.28)
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to keep the notations as simple as possible.
Replacing the integral over space by a sum with respect to all lattice nodes
and using the definitions above, a discretized approximation of the functional
is formulated as

F
∆V

=
1

2

∑
n

3∑
α=1

E2
α(rα(n)) +

∑
i

∑
n

ci(r0(n)) ln ci(r0(n)). (2.29)

Discretizing the divergence operator by a midstep finite–difference scheme

(∇ · E)(r0(n)) =
3∑

α=1

1

∆xα

(
Eα(rα(n)) − Eα(r

′
α(n))

)
, (2.30)

Gauss’ law is written as

3∑
α=1

1

∆xα

(
Eα(rα(n) − Eα(r

′
α(n)

)
=
∑
i

zici(r0(n)) . (2.31)

Similarly the normalization condition for the amount of ionic species i is dis-
cretized as ∑

n

ci(r0(n)) =
Ni

∆V
. (2.32)

Since the orthorhombic lattice is not necessarily cubic, i. e. ∆x1 ̸= ∆x2 ̸= ∆x3

is possible, it is useful to re–formulate Gauss’ law in terms of fluxes,

ϕ1 = E1∆x2∆x3, (2.33)
ϕ2 = E2∆x3∆x1, (2.34)
ϕ3 = E3∆x1∆x2, (2.35)

and
3∑

α=1

(
ϕα(rα(n) − ϕα(r

′
α(n)

)
= ∆V

∑
i

zici(rα(n)) . (2.36)

The advantage of this formulation is the simplification in the relaxation steps
of the electric field, discussed in Sec. 2.3.2.
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2.3. ALGORITHM

As mentioned previously, the numerical minimization procedure consists of
the iterative relaxation of the degrees of freedom of the free energy functional,
namely the concentration fields and the electric fields. The procedure starts
from an arbitrary initial configuration of the discretized fields, only restricted
by the requirement that this configuration satisfies the constraints. The itera-
tive procedure then performs successive local changes in the electric fields and
the concentrations such that the constraints are rigorously conserved. These
moves can be performed in such a way that the functional decreases in every
time step, and does that in an optimal fashion. As already shown in Sec.
2.1, the free energy landscape has a simple structure, and hence this proce-
dure will run always into the global minimum. The algorithm is schematically
illustrated by Fig. 2.1 and discussed in detail in the following sections.

YES

NO

Initialization:

Distribute the fixed charges.

Classify the grid points.

Distribute the ionic concen-

trations uniformely over all

moveable nodes.

Initialize the electric field.

Plaquette moves:
Perform the closed field moves over all

plaquettes of the grid.

Link moves:
Perform the concentration link moves for

all pairs of adjacent moveable nodes.

F converged?

|Fnew −Fold| < ε

STOP

Figure 2.1.: Illustration of the iterative Poisson–Boltzmann equation solver.
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2.3.1. INITIALIZATION

In the beginning, ionic species and fixed charges have to be distributed over
the grid. Usually fixed charges are associated with surfaces (here this is the
surface charge density of a colloidal sphere), and hence elements of the surface
charge density have to be mapped to volume elements and can therefore be
associated with some nodes. One way for distributing these charges to the
nodes is to divide the surface charge density into small “partial charges”,
located at nodes near the surface.

In a second step, the grid points should be classified in “movable” and “fixed”
nodes, i. e. those grid points associated with fixed charges or embedded
in a compact region of a closed surface are marked as “fixed”, all other grid
points representing the volume where ions can move are classified as “movable”.

Initially, each ionic species is uniformly distributed over those “movable”
nodes. The amount of counterions is determined by the amount of fixed
charges and the charge neutrality condition.

When all charges are distributed and the charge neutrality condition is sat-
isfied, the electric field must be initialized. It is important that this is done
such that Gauss’ law will be fulfilled. In one dimension this can be easily
done by summation of the charge density of all preceding grid nodes. Consider
a charge density satisfying the charge neutrality condition, discretized on a
one-dimensional chain of grid nodes located at n∆x, and closed via periodic
boundary conditions. Consistent with the Yee discretization the electric fields
should be located at (n+1/2)∆x. Now, starting with E(−0.5∆x) and setting

E(−0.5∆x) = 0 , (2.37)

and summing subsequently

E((n+ 0.5)∆x) = E((n− 0.5)∆x) + ∆x ρ(n∆x) , (2.38)

results in a one dimensional solution of Gauss’ law. The combination of charge
neutrality and periodic boundary conditions ensures a consistent closure of the
loop. This method can be generalized to three spatial dimensions by means of
a recursion over all dimensions [27].
First the lattice is decomposed into a set of planes perpendicular to the x1–
axis and it is required that E1 takes the same identical value for all links
with identical x1–coordinate. Replacing the charge density by a plane average
charge density ⟨ρ⟩(n1∆x1) the iterative method above can be performed. Then
each plane is decomposed into a sequence of lines, perpendicular to the x1–
and the x2–axis, and the same procedure is again applied to obtain the field
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in x2–direction. The charges which occur here are the line averages, where
the plane averages have been subtracted (the latter have already been taken
into account via E1). Finally, the lines are decomposed into sites, and E3 is
determined from the remaining charges where both line and plane averages
have been subtracted.
Although Gauss’ law is satisfied, this configuration violates Eq. (2.10c). How-
ever, since the iterative procedure runs into the one and only minimum this
curl is removed by the relaxation method. Alternatively the Poisson equation
can be solved once numerically for initialization.

2.3.2. PLAQUETTE MOVES

For the changes of the transversal component of the electric field, closed loops
on the faces of the unit cells are considered. For a rectangular lattice, these
plaquettes are spanned by four lattice sites and their associated links. The
loops are designed such that the flux on each of the corresponding links is
changed by the same amount. Since the net flux entering and leaving each
node remains unchanged, Gauss’ law is still satisfied.

φ1 + δφ

φ2 + δφ

φ′

1
− δφ

φ′

2
− δφ

Figure 2.2.: Rotational moves for field updates on all plaquettes.

Such a rotational move is sketched by Fig. 2.2. Consider for example a loop
with a sequence of fields E1, E2, E ′

1, E ′
2 and corresponding fluxes ϕ1, ϕ2, ϕ′

1,
ϕ′

2 perpendicular to the 3-axis. The fields are positive when aligned with the
corresponding link direction. The field updates are given by

E1 → E1 + δE1, (2.39)
E2 → E2 + δE2, (2.40)
E ′

1 → E ′
1 + δE ′

1, (2.41)
E ′

2 → E ′
2 + δE ′

2. (2.42)
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Since the flux changes entering a node also have to leave it, these field changes
have to satisfy the condition

δϕ1 = ∆x2∆x3δE1 = δϕ, (2.43)
δϕ2 = ∆x1∆x3δE2 = δϕ, (2.44)
δϕ′

1 = ∆x2∆x3δE
′
1 = −δϕ, (2.45)

δϕ′
2 = ∆x1∆x3δE

′
2 = −δϕ. (2.46)

Apart from that, δϕ can be chosen arbitrarily without violating the Gauss’
law. The rotational move results in a change of the functional by

δF ∆V =
1

2
∆x2

1

[
(ϕ1 + δϕ)2 − ϕ2

1 + (ϕ′
1 − δϕ)2 − ϕ′2

1

]
(2.47)

+
1

2
∆x2

2

[
(ϕ2 + δϕ)2 − ϕ2

2 + (ϕ′
2 − δϕ)2 − ϕ′2

2

]
= (∆x2

1 + ∆x2
2)δϕ

2 +
[
∆x2

1(ϕ1 − ϕ′
1) + ∆x2

2(ϕ2 − ϕ′
2)
]
δϕ

= (∆x2
1 + ∆x2

2)δϕ
2 + ∆V [∆x1(E1 − E ′

1) + ∆x2(E2 − E ′
2)] δϕ .

Minimizing this functional change, one obtains an optimal value for the change
in the fluxes2

δϕ =
1

2

∆V

∆x2
1 + ∆x2

2

[∆x1(E
′
1 − E1) + ∆x2(E

′
2 − E2)] . (2.48)

2.3.3. LINK MOVES

Local concentration moves are performed between two nodes connected by a
single link, as sketched in Fig. 2.3.

c
(A)

− δc c(B) + δc

E + δE

Figure 2.3.: Concentration moves for all adjacent movable nodes.

A certain amount of the concentration of an ionic species with valence z is
moved from one lattice site r

(A)
0 to its neighbor r

(B)
0 ,

c(A) → c(A) − δc, (2.49)
c(B) → c(B) + δc. (2.50)

2Note that in our paper [50] a small error occurred at this point, i. e. the sign within the
bracket must be a ’+’.
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This update conserves the charge neutrality and the mass conservation condi-
tion, and since the amount of concentration on a node must have a positive
value, δc must satisfy the condition

−c(B) ≤ δc ≤ c(A). (2.51)

By updating the electric flux accordingly, Gauss’ law is kept conserved. Sup-
pose E is the electric field located on the link connecting r

(A)
0 with r

(B)
0 and

∆l is the length of this link. The electric flux ϕ according to E is given by

ϕ =
∆V

∆l
E. (2.52)

From Gauss’ law one obtains

δϕ = −∆V z δc , (2.53)

or
δE = −∆l z δc . (2.54)

This results in a change of the functional value of

δF
∆V

=
1

2

{
(E + δE)2 − E2

}
(2.55)

+
(
c(A) − δc

)
ln
(
c(A) − δc

)
− c(A) ln c(A)

+
(
c(B) + δc

)
ln
(
c(B) + δc

)
− c(B) ln c(B)

=

(
E +

1

2
δE

)
δE − δc ln

(
c(A) − δc

c(B) + δc

)
+ c(A) ln

(
1 − δc

c(A)

)
+ c(B) ln

(
1 +

δc

c(B)

)
.

An optimal value for the change in the concentrations is obtained again from
the minimization of the functional change. This extremization results in a
nonlinear equation,

δc =
c(A) − c(B) exp[−z∆l (E − z∆l δc)]

1 − exp[−z∆l (E − z∆l δc)]
, (2.56)

which must be solved numerically. This can be either done by a simple bisection
or secant method, or computationally more efficient, by a Newton method.
Therefore one may introduce

c+ =
1

2

(
c(A) + c(B)

)
, (2.57)

c− =
1

2

(
c(A) − c(B)

)
, (2.58)

ξ =
1

2
z∆l (z∆l δc− E). (2.59)
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Figure 2.4.: Graphical illustration of the Newton method.

Using these variables, Eq. (2.56) is transformed to

g(ξ) = 0, (2.60)

with
g(ξ) = tanh ξ +

2ξ

(z∆l)2 c+
+

E

z∆l c+
− c−
c+

. (2.61)

The derivative of g(ξ) is given by

g′(ξ) ≡ ∂g(ξ)

∂ξ
=

1

cosh2(ξ)
+

2

(z∆l)2 c+
, (2.62)

which shows that g(ξ) is a monotonous function, and hence Eq. (2.60) has
exactly one unique solution. Since −1 < tanh ξ < 1, the solution will satisfy
the condition

−1 < − 2

(z∆l)2 c+
ξ − E

z∆l c+
+
c−
c+

< 1, (2.63)

which is equivalent to the condition (2.51). The Newton method

ξ(n+1) = ξ(n) − g(ξ(n))

g′(ξ(n))
, (2.64)

starting at
ξ(0) = 0 , (2.65)

will always converge due to the shape of g(ξ), as sketched in Fig. 2.4.
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2.4. NUMERICAL RESULTS

In this section, the method is demonstrated and tested for two numerical ex-
amples. In a first test system the fixed charges are distributed in two infinite
parallel plates. If only one ionic species occur, an analytical solution for this
problem can be calculated. We compare the numerical results with this ana-
lytical expression. The second system is a single charged colloidal sphere in
the center of a cubic box. The choice of parameters is inspired by previous
studies on electrokinetics done in our group [30–32] and are therefore quoted
here in unscaled “physical” units, where λ0 denotes the elementary length scale
(this length scale coincides the Lennard–Jones diameter in the simulations).
All numerical runs below are done with a Bjerrum length of lB = 1.3λ0. The
fixed charge distribution consists in positive charges only, and only one ionic
species, the monovalent counterions with valence z = −1, is distributed in the
system. The numerical results are also given in “physical units”.
Furthermore, possible speedups of the code, based on the full solution of the
Poisson equation and on preconditioning of the concentration fields are dis-
cussed.
In a last subsection, we discuss briefly the possibility of calculating the radial
distribution function of multi–colloidal systems, with fully non-linear Poisson–
Boltzmann interaction.

2.4.1. DOUBLE PLANE

Consider the fixed charges to be distributed in two infinite parallel plates,
perpendicular to the x1-axis, located at x1 = −d and x1 = +d. The surface
charge density in each plate is given by σ and only one ionic species with
concentration c(r) and valence z = −1 is distributed in the spatial region
between the two plates. Charge neutrality is given by∫

S

dΩσ + z

∫
V

dV c(r) = 0 . (2.66)

This problem is effectively one–dimensional and its analytic solution is well–
known [63]. In reduced units, the one–dimensional Poisson–Boltzmann equa-
tion is

d2ψ

dx2
1

= −Az exp(−zψ)

= − d

dψ

(
− A exp(−zψ)

)
, (2.67)

which is isomorphic to Newton’s equation of motion of a particle with unit
mass, spatial coordinate ψ and where x1 corresponds to the time. Hence, the
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Figure 2.5.: Counterion concentration profiles for the charged double plane for var-
ious grid resolutions and the analytic expression, Eq. (2.73).

corresponding energy conservation is given by

1

2

(
dψ

dx1

)2

− A exp(−zψ) = K , (2.68)

with integration constant K. Symmetry dictates dψ/dx1|x1=0 = 0 and, com-
bining this with the energy conservation plus the normalization ψ(0) = 0,
results in K = −A. Thus one obtains

dψ

dx1

= ±
√

2A
(
exp(−zψ) − 1

)
. (2.69)

Focusing on the branch where dψ/dx1 > 0, this equation is integrated by
separation of variables,

x1 =
1√
2A

∫ ψ(x1)

0

dψ√
exp(−zψ) − 1

= −
√

2

Az2
arctan

√
exp(−zψ) − 1 , (2.70)

ψ =
2

z
ln cos

(
z

√
A

2
x1

)
. (2.71)
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Figure 2.6.: Relative errors of the counterion concentration profiles for different
grid resolutions as indicated by the legend.

Replacing A by a more suitable parameter s :=
√
A/2 zd, Eq. (2.71) is written

as
ψ =

2

z
ln cos

(
s
x1

d

)
, (2.72)

and the counterion concentration is obtained by differentiating twice,

c(x) =
2

z2

s2

d2
cos−2

(
s
x1

d

)
. (2.73)

Finally, an expression for the parameter s is obtained from the electrostatic
boundary condition

σ =
dψ

dx1

∣∣∣∣
x1=d

= −2

z

s

d
tan s . (2.74)

This, however, must be solved numerically.
For the numerical solution the amount of fixed charges, Ze, is distributed
homogeneously in two planes, located in a periodic box of size l1 × l2 × l3, at
x1 = ±d. The surface charge density is then given by σ = Ze/(2l2l3). Note that
the dimension of the box in x1 direction must be somewhat larger than 2d, in
order to be able to apply the periodic boundary conditions. The corresponding
amount of counterions is initially distributed homogeneously between the two
plates. Since periodic boundary conditions are applied in x2 and x3 direction,
the system is translationally invariant, and hence the solution is effectively
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Figure 2.7.: Averaged error of the counterion concentration as function of the lat-
tice spacing in x1–direction ∆x1 (left) and in x2,3–direction (right).

one–dimensional. The calculations were performed for l1 = l2 = l3 = 32λ0,
2d = 30λ0, Z = 60 and different lattice spacings. A quite good agreement
between the numerical and the analytic solution can be observed, as shown in
Fig. 2.5. This agreement increases with the grid resolution in x1–direction,
which is observed from the relative error,

relative error =

∣∣∣∣cana(x1) − cnum(x1)

cana(x1)

∣∣∣∣ . (2.75)

Here, cana denotes the analytic expression for the counterion concentration and
cnum the numerical results. Fig. 2.6 shows the relative error for three different
grid resolutions, namely 256× 8× 8, 512× 8× 8 and 1024× 8× 8 lattice sites.
More systematically, the first image of Fig. 2.7 shows the averaged error as
function of the lattice spacing in x1–direction, showing linear behavior, i. e.
first order accuracy. Increasing the resolution in the orthogonal directions has
no effect, as expected (see Fig. 2.7, right image).

2.4.2. COLLOIDAL SPHERE IN A BOX

The second numerical example, and for our purposes the more important one,
is the case of a single colloidal charged sphere of radius R, located in the
center of a periodic box of size l1× l2× l3. The sphere has a total charge of Ze,
uniformly distributed over its surface. In the computational model, the fixed
charge has to be interpolated onto the nodes of the grid. The simplest way
is to generate M ≫ 1 random points distributed uniformly over the surface
of the particle, and a volume charge density Ze/(M∆V ) is added for each
point to its closest grid node. These nodes as well as all nodes embedded in
the particle region are marked as fixed. The calculations were performed for a
cubic box of size l1 = l2 = l3 = 30λ0. A colloidal sphere with radius R = 3λ0
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Figure 2.8.: Counterion concentration for a charged colloidal sphere for grid reso-
lutions 323, 643 and 1283 lattice sites.

and valence Z = 60 was placed at the center of the box, and the counterions
were initially distributed uniformly over the outer space. Tab. 2.1 summarizes
performance results for an implementation of the present algorithm in its basic
formulation, written in C, compared to an implementation in C++, written by
M. Baptista[64]. In both cases the exit condition for the iterative procedure
was given by a change in the functional of less than 10−8. The runs were
performed on an Intel Core 2 Duo E6600 FSB 1022 2x2.4 Ghz with 4GB
RAM.
Fig. 2.8 shows two–dimensional cuts of the counterion concentration profile
in a plane perpendicular to the x3–axis for different grid resolutions. In Fig.
2.9 one–dimensional cuts along the x1–direction of the computational box are
presented. We see that close to the surface of the sphere discretization effects
due to the cubic box are quite large; nevertheless the data for 2563 grid points
seem reasonable well converged to the continuum limit. The concentration
profiles in (100)–direction and along the (111)–diagonal are very close (see Fig.
2.10). Hence, one should expect that the solution is essentially identical to one
obtained with strict spherical symmetry. This is indeed the case, as comparison
with the solution of the isotropic Poisson–Boltzmann cell model shows (see Fig.
2.9). In the latter, the cubic simulation cell is replaced by a spherical cell of
the same volume, and the Poisson–Boltzmann equation is solved for the radial
coordinate. The numerical method we used was implemented by B. Dünweg
and is described in detail in the appendix.
The profile determined by the cell model agrees quite well with the one ob-
tained from the present algorithm for the finest resolution.
Nevertheless, the solution for the cubic geometry does exhibit some anisotropy
that, by construction, is absent in the cell model. This is essentially not visible
in the concentration profile, but clearly observable in the profile of the electric
field, as shown in Fig. 2.11, where the decays in (100) and (111)–direction are
compared.
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Figure 2.9.: Counterion concentration profile of a colloidal sphere along the x1–
axis for various grid resolutions. The solid line is the solution of the
one–dimensional isotropic cell model. The dash–dotted line shows the
counterion concentration for a two–dimensional charged plate with the
same surface charge density as the colloidal sphere.

C++ - Version C - Version
Grid Resolution Time (s) Memory (%) Time (s) Memory (%)

32 × 32 × 32 30 0.2 30 0.1
64 × 64 × 64 836 0.5 844 0.5

128 × 128 × 128 20701 2.9 20574 3.6
256 × 256 × 256 381371 22.5 389030 24.4

Iterations Functional Iterations Functional
32 × 32 × 32 642 1114.83 634 1113.88
64 × 64 × 64 2265 1024.14 2226 1024.19

128 × 128 × 128 7206 957.63 7038 957.63
256 × 256 × 256 20323 923.85 19711 924.70

Table 2.1.: Performance data for the basic C implementation compared to the C++
code of M. Baptista[64].
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Figure 2.10.: Counterion concentration profile of a colloidal sphere along the x1–
axis and along the (111)–diagonal for a grid resolution of 2563.

If the curvature of the sphere is not too strong, one may view the geometry
as effectively planar in the immediate vicinity of the colloidal surface. For the
planar surface, the solution is characterized by the so–called Gouy–Chapman
length λGC [65]. The planar solution is also shown in Fig. 2.9 (dash–dotted
line) and it also agrees reasonably well with the profiles from our algorithm.
In our reduced units, the planar solution is given by

c(x) =
2

z2

1

(x+ λGC)2 , (2.76)

where

λGC = − 2

σz
(2.77)

is the Gouy–Chapman length (see Appendix A.2).
In the example above, this length has the value λGC = 0.044. This should
be compared to the colloid radius (∼ 0.5728 in reduced units) and the lattice
spacing (∼ 0.022 for the 2563 grid). Altogether, the data indicate that a
lattice spacing of roughly half a Gouy–Chapman length is small enough to
yield a reasonably well converged solution.
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Figure 2.11.: Electric field E along x1–axis and along the (111)–diagonal for a grid
resolution of 2563 lattice sites.

2.4.3. SPEEDUPS

Before describing modifications of the procedure to gain a speedup, one
observation should be noticed for practical reasons, which we have made
during testing and comparing the two implementations (C and C++). While
implementing the code, one should take care of the order of operations, namely
the order of computing the concentration moves in connection with the way of
walking over the lattice. It is important to perform the link move first in that
direction of the link which will be updated next; otherwise one would “shovel”
concentration out of the way of the walker. The data presented in Tab. 2.1
gained by implementations, which follow this principle, i. e. the moves are
first performed in x1–direction, then in x2 and finally in x3–direction, while
the order of updating the single links is given in the same way. For example,
a change in the order of the directions from (x1, x2, x3) to (x3, x2, x1) but still
keeping the way of walking through the grid, results in increasing the numbers
of iterations to 1416 instead of 634 for the 323 grid.

Apart from that, one sees from Tab. 2.1 that the number of necessary iterations
and the amount of CPU time is quite large. In the following some strategies to
speed up the procedure without sacrificing the basic formulation that provides
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Pure FFT
Grid Resolution Time (s) Number of iterations

32 × 32 × 32 14 297
64 × 64 × 64 409 1150

128 × 128 × 128 12180 4427
256 × 256 × 256 354783 16766

FFT + pre–conditioner
Grid Resolution Time (s) Number of iterations

32 × 32 × 32 11 242
64 × 64 × 64 331 888

128 × 128 × 128 9744 3421
256 × 256 × 256 273538 12430

Table 2.2.: Performance data for our two speeded–up implementations. Note that
the data for the runs with pre–conditioner mean (i) CPU time for the
overall procedure, and (ii) number of iterations in the final run with
the finest resolution.

intrinsic stability will be discussed.
One possibility is to remove the rotational component of the electric field not by
means of plaquette moves but rather by solving the Poisson equation. This can
be efficiently done by the FFT–based method (see Sec. 1.4). The advantage is
that, in contrast to the plaquette moves, a single lattice sweep does not only
reduce the rotational component of the electric field, but rather eliminates it
completely. Therefore the FFT promises to increase the convergence speed.
It should be noted that the link moves, which update concentrations and the
fields simultaneously, remain unchanged, such that the procedure still stays
strictly on the constraint surface.
In a first implementation, we eliminated all plaquette moves and replaced them
with FFT sweeps done during initialization and subsequently after every 25th
link sweep. As seen from Tab. 2.2, this improves the efficiency roughly by a
factor of 1.1 . . . 2. These results were obtained on the same computer as those
of Tab. 2.1.
Furthermore, we can tackle the slowdown that comes from the fact that the ions
have to be moved by site–by–site hops throughout the system (“hydrodynamic
slowing down”). To this end, we first run the calculation on a rather coarse
grid (in practice, we started with 8 × 8 × 8), such that most of the necessary
“mass transport” is already done in that preliminary run. Starting from there,
we go to a finer grid (in practice, we reduced the lattice spacing in all three
directions by a factor of two) and linearly interpolate the output of the previous
run onto that grid. Then the free energy is relaxed again; the output of that
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run is interpolated onto a yet finer grid, and so on. Obviously, this can be done
rather easily by a straightforward recursion, until the desired grid resolution
is reached. The runs before the finest resolution may then be viewed as a
“pre–conditioner”. This optimization yields another speedup by roughly 25%,
as seen from Tab. 2.2.
These two rather simple optimizations do not interfere with the basic data
structure of the simple Cartesian grid. We expect that further optimiza-
tions which are however much more complicated such as more sophisticated
multi-grid methods, adaptive mesh refinement or the discretization in terms of
finite-element-type unstructured grids will yield further substantial speedups.
However, this was not attempted here, and is rather mentioned as a suggestion
for future projects.

Figure 2.12.: Illustration of the decomposition and the updates for the parallel
version of the PB solver.

Furthermore, the simple structure of the orthorhombic lattice in combination
with the highly local structure of the algorithm, enables the opportunity of
a simple parallelization of the code. In practice, the computational domain
is decomposed in equal slices in direction of the slowly varying index (in our
case the x3–direction). Each slice is taken care of by an individual processor.
Since the updates are done along links, an artificial halo layer is added at the
bottom of every slice. Every halo layer is a copy of the top layer of the next
slice. For one update of the whole grid, two inter-processor communication
steps have do be done. One iteration then consists in a first update of the
inner links of each slice. Subsequently the concentrations of the top boundary
nodes are copied to their equivalent counterpart in the halo regions. After the
link updates between the bottom boundary nodes and the connected halo, the
concentrations located in the halo are copied to the equivalent nodes at the
top boundary of each slice. Thus, the total number of link updates remains the
same as in the single–processor implementation, the communication between
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the several processes is quite small and the total amount of memory increases
moderate.

2.4.4. A MONTE CARLO ALGORITHM FOR COMPUTING
RADIAL DISTRIBUTION FUNCTIONS

In the following a possible application of this method is sketched, namely the
possibility to simulate radial distribution functions (rdf) of charge stabilized
colloidal suspensions with fully non-linear Poisson–Boltzmann interaction.
The current implementation of this part is not parallelized yet, and since
the algorithm is still computationally expensive when running on a single
processor, the few examples shown in the end of this subsection were only
computed with low accuracy and at low volume fraction to gain reasonable
statistics.

For the purpose of simulations, the interaction between macro-ions in an ambi-
ent fluid containing micro-ions is usually replaced by an effective pair potential
V eff of the Yukawa form, i. e. a screened Coulombic interaction. One of the
simplest and most used potential is the DLVO (Derjaguin–Landau–Verwey–
Overbeek) potential [66, 67],

V eff (r) =

{
∞ r < 2R

1
(4π)2lBκ

Z2

(1+R)2
e−(r−2R)

r
r ≥ 2R

. (2.78)

This expression has been determined by using the Debye–Hückel approxima-
tion.
Conversely, our method offers the possibility to take the fully non-linear
Poisson–Boltzmann equation into account, and to do that not only for pairs
of two macro-ions, but rather to account for the full interaction arising from
the Mean–Field theory. The idea is to use the free energy functional (2.11) for
an importance sampling Monte Carlo algorithm [68]. First a certain number
of colloidal spheres N with charge Ze and radius R is distributed randomly
in a box of size l1 × l2 × l3. The centers of the spheres are located at r(i),
i = 1, . . . , N . The box is discretized by a regular grid with lattice spacings
∆x1, ∆x2, ∆x3 and the gridpoints are classified as described in Sec. 2.2. The
counterion concentration is initially distributed uniformly over the outer space,
and the Poisson–Boltzmann equation is solved initially by the iterative method
and the value of the functional F is stored in memory.
After that we pick randomly a colloid k and move it by a small step ∆r in
a random direction. This one sphere is then again discretized on the lattice.
Since now some lattice sites are marked as “fixed” which have been classified
as “movable” before, and vice versa, the ion concentration around the moved
sphere has also to be re-distributed, such that no concentration is left on
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a “fixed” node. Then the Poisson–Boltzmann equation is solved again and a
Metropolis step is applied [68], where F is viewed as Hamiltonian of the system
of colloids. Note also that in our reduced units kBT = 1.
An advantage of our formulation of the Poisson–Boltzmann solution is that
we already know the local electric field, and thus we are able to calculate the
total force F acting on the surface of the sphere, which should be moved.
This allows us to do the Monte–Carlo moves using a standard force-biasing
scheme. Instead of choosing a random direction and a random step size for
the displacement of the colloid, we apply a Langevin step via

r′(i̸=k) = r(i ̸=k) , (2.79a)
r′(k) = r(k) + τF (r(k)) +

√
2τξ . (2.79b)

Here, τ is a small step size and ξ is a random variable with mean ⟨ξi⟩ = 0
and variance ⟨ξiξj⟩ = δij. Thus, the sphere will move most probably to the
“right” direction. But if this force bias is applied, one also has to take care
of the Metropolis criterion, such that the condition of detailed balance is still
satisfied.
The transition probability distribution T (r′|r), of making a move from position
r to r′, is a combination of the probability A(r′|r) that the move is accepted
and a conditional probability distribution function Π(r′|r) for choosing a new
position r′, given an old position r,

T (r′|r) = Π(r′|r)A(r′|r) . (2.80)

The condition of detailed balance then dictates

a(r′|r) :=
A(r′|r)

A(r|r′)
=

Π(r|r′)P (r′)

Π(r′|r)P (r)
, (2.81)

where P (r) is the Boltzmann distribution. In the Metropolis step a uniform
random number in the range of ρ ∈ [0, 1) is generated and the new position
of the particle is accepted if ρ < min(1, a(r′|r)). Since no point is preferred
within a given range, the a priori probability Π is constant in the case of an
unbiased MC update. However, this changes in the case of force bias. Solving
Eq. (2.79b) for ξ, one obtains

ξ =
1√
2τ

(r′(k) − r(k) − τF (r(k))) . (2.82)

Knowing that ξi are independent Gaussian random numbers with mean 0 and
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variance 1, the conditional probability distribution is written as

Π(r′(k)|r(k)) (2.83)

= N exp
[
− 1

4τ
(r′(k) − r(k) − τF (r(k)))2

]
,

Π(r(k), r′(k)) (2.84)

= N exp
[
− 1

4τ
(r(k) − r′(k) − τF (r′(k)))2

]
.

Calculating the ratio of the probability functions, the acceptance rate for the
force bias MC is given by

a(r′(k)|r(k)) = exp

[
−
{
F({r′}) −F({r})

}
(2.85)

− τ

4

{
F 2(r′(k)) − F 2(r(k))

}
− 1

2

{
F (r′(k)) + F (r(k))

}
·
{
r(k) − r′(k)}] .
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0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

g
(r

)

r/R

PB/MC
DLVO
inflection point

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

g
(r

)

r/R

PB/MC
DLVO
inflection point

Figure 2.13.: Radial distribution functions for dispersions of colloidal spheres with
charge Z = 20 (left) and Z = 30 (right). The blue circles are results
from the MC method described here. The solid lines are results
from molecular dynamic simulations based on effective pair potentials
(DLVO (red), inflection point criterion (turquoise)).

are presented in Fig. 2.13. We simulated a system of 40 spheres in a cubic
box of size l1 = l2 = l3 = 60λ0 with periodic boundary conditions. The
radius of the spheres were set to R = 3λ0 and the Bjerrum length was chosen
as lB = 1λ0. The box was discretized by 1283 lattice sites. The charge of
the colloidal spheres was Z = 20 for the first image and Z = 30 for the
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second one. These distribution functions are compared to molecular dynamics
results3 of two systems with different effective pair potentials. The red line was
computed for a DLVO interaction (see Eq. (2.78)). These DLVO simulations
overestimate the structure of the system. This is not surprising, since the
charge in the DLVO potential does not account for ion condensation at the
surface of the colloidal sphere, and thus is only valid for extremely low charges
[69]. Furthermore we calculated the rdf for a screened potential of the Yukawa
form. Here the charge is replaced by an effective charge, determined by the
so called inflection point criterion, based on the spherical cell model [69, 70].
In this simple charge renormalization model the nonlinear Poisson-Boltzmann
equation is solved in a spherical cell and the accumulated charge curves are
analyzed as function of the radial distance. These curves typically show an
inflection point and the effective charge is determined by means of this point.
This procedure is supposed to mimic the effect of charge condensation at the
colloid surface. The radial distribution function obtained by this potential
agrees reasonably well with the results of our method. Although the examples
shown here are taken only for low accuracy and small systems with low volume
fraction, we assume that an optimized version of the method would lead to a
rather helpful tool for the quantitative understanding of structural effects in
charge stabilized colloidal dispersions (as far as they can be described within
Mean–Field theory).

2.5. ELECTRO-OSMOTIC FLOW IN A SLIT CHANNEL

Most materials associate or dissociate ions, when brought in contact with a liq-
uid, and consequently get charged. Hence, the walls of microchannels typically
attract a layer of counterions, compensating this effect. In the following, the
simple model of fluid flow in a slit channel, i. e. two infinite plates with distance
2d in x1-direction and homogeneous surface charge density σ, is considered.
Additional ions with charge zione are dissolved in the fluid. Charge neutrality
is satisfied by the presence of counterions with charge zcie. Furthermore, also
salt ions can be taken into account.
A constant external electric field, acting parallel to the walls in x2-direction,
causes a net fluid flow, due to the movement of the ions, corresponding to
their charges, and friction forces, coupling the ions to the fluid. This net flow
is called electro–osmotic flow.
The aim of this section is the application of our Poisson–Boltzmann solver to
the calculation of the electro–osmotic flow field for unsymmetric4 ionic solu-
tions.

3Thanks to Victor Rühle.
4The valence of every ionic species is independent of each other. Charge neutrality of the

system is the only restriction on the charges and the concentrations.
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The development of this application was originally motivated by the experi-
ments of Jinyu Zhao (AK Butt, MPIP Mainz), who observed electro-osmotic
flow of a colloidal suspension in confined geometries when an electric field
is acting along the channel direction [71]. Unfortunately, the conditions in
the experiments are not ideal. For example, the colloids in the suspension
are sedimenting to the bottom of the channel. Friction with the channel wall
then results in a rather slow motion of the colloids, and hence to very low
electro-osmotic mobilities. Furthermore the parameters of the system are not
known precisely, e. g. the ζ-potentials of the channel walls and the colloidal
particles. Thus, we were not able to compare the experimental results of J.
Zhao with our numerical predictions.

The system is again described in terms of electrostatic potential ψ, ion con-
centrations ci, pressure p and flow velocity v and the analysis starts with the
electrokinetic equations in the stationary regime and thermal equilibrium as
given by Eq. (1.16):

0 =
∑
i

zici + ∇2ψ, (2.86a)

0 = ∇ · {−Di∇ci −Dizi(∇ψ)ci + vci} , (2.86b)
0 = ∇ · v, (2.86c)

0 = −∇p+
2

3
∇2v − (∇ψ)

∑
i

zici. (2.86d)

Symmetry dictates

v1 = 0, (2.87)
∂

∂x2

ci = 0, (2.88)

∂2

∂x2
2

ψ = 0, (2.89)

such that the Poisson equation and the Nernst-Planck equation simplify to

0 =
∑
i

zici +
∂2

∂x2
1

ψ, (2.90)

0 =
∂

∂x1

{
−Di

∂

∂x1

ci −Dizi(
∂

∂x1

ψ)ci

}
. (2.91)

This implies a one dimensional Poisson-Boltzmann equation perpendicular to
the channel walls

∂2

∂x2
1

ψ +
∑
i

ziAiexp (−ziψ) = 0. (2.92)



48 Solving the Poisson-Boltzmann Equation

The Stokes equation then yields the velocity profile. Due to symmetry, we can
write

∂

∂x2

v2 = 0 (2.93)

and
2

3

∂2

∂x2
1

v2 = −E2

∑
i

zici. (2.94)

It should be noted that we assume that no external pressure is applied (∇p =
0). Inserting the Poisson equation results in

∂2

∂x2
1

v2 =
3

2
E2

∂2

∂x2
1

ψ. (2.95)

Integrating this equation twice and applying the symmetry ∂
∂x1
v2

∣∣∣∣
x1=0

= 0 and

no–slip boundary conditions

v2

∣∣∣∣
x1=±d

= 0, (2.96)

one finally obtains

v2(x1) =
3

2
E2(ψ(x1) − ψ(±d)). (2.97)

Consequently, one can obtain the ion concentrations and the electro–osmotic
flow velocity profile for this simple geometry from the solution of a one dimen-
sional Poisson–Boltzmann equation. In the special case that only one ionic
species occurs, this problem can be solved analytically (see J. Smiatek et al.
[72, 73]). Furthermore, this case is identical to the problem of Sec. 2.4.1.
However, the restriction to one ionic species is not required, rather any set
of asymmetric ion concentrations can be solved easily and, since only a one
dimensional Poisson–Boltzmann equation has to be solved, computationally
very efficiently.
The implementation is simplified substantially, since only concentration up-
dates occur. The plaquette moves for the electric field updates or a FFT-
based solution of the Poisson equation are obviously not necessary in the one
dimensional case. For the initialization the electric field can be calculated
by a simple integration in one direction. Furthermore, the solution must be
invariant under inversion at x1 = 0,

ci(−x1) = ci(x1) , (2.98a)
v2(−x1) = v2(x1) , (2.98b)

thus, the computational efficiency can be increased by a factor of 2. Therefore
the computational domain does not include the full width of the channel,
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rather the problem is solved at one half of the channel. However, this requires
a slight modification of the periodic boundary conditions. Therefore we adjust
the lattice spacing such that 2d = (2N − 1)∆x1. Thus each of the walls is
located at a lattice site, and the center of the channel is located on a link.
The positions of the grid nodes are then given by r = (n + 1/2)∆x1, n =
−N−1, . . . , N . Note that we added one further site beyond each plate in order
to apply periodic boundary conditions. The channel walls are then located at
r− = (−N + 1/2)∆x1 and r+ = (N − 1/2)∆x1. Application of the invariance
condition and modifying the boundary conditions as

ci

(
−1

2
∆x1

)
= ci

(
1

2
∆x1

)
, (2.99a)

ci

(
(N +

1

2
+ 1)∆x1

)
= ci

(
(N +

1

2
)∆x1

)
, (2.99b)

we may replace the computational domain of 2N + 2 lattice sites by one with
only N + 1 grid nodes. This modification is illustrated in Fig. 2.14.

r
− 0 r+

x1

Figure 2.14.: Illustration of the computational domain.

This method was tested for the salt-free case without any additional ions. In
accordance with Sec. 2.4, we quote the results here also in unscaled “physical”
units, with λ0 as elementary length scale. All numerical results are given for
a slit channel of width 2d = 30λ0 with surface charge density σ = −0.03eλ−2

0 .
The Bjerrum length is again set to lB = 1.3λ0. The counterion valence is
zci = 1. Fig. 2.15 shows the averaged deviation of the counterion concentra-
tion gained by our numerical method to the analytic solution, Eq. (2.73), as
function of the lattice spacing ∆x1. As expected this is in accordance with
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Figure 2.15.: Averaged error in the counterion concentration as function of the
lattice spacing ∆x1 for a slit channel without additional ions or salt.
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Figure 2.16.: Electro–osmotic mobility for a slit channel without additional ions or
salt.
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the results of Sec. 2.4.1. Additionally, Fig. 2.16 shows the electro–osmotic
mobility profile, according to

µ(x1) =
v2(x1)

E2

=
3

2
(ψ(x1) − ψ(±d)) . (2.100)
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Figure 2.17.: Counterion and salt ion concentration profiles for a system with
10−3λ−3

0 (left) and 5 · 10−3λ−3
0 (right) monovalent salt ions added.

-20 -10 0 10 20
0

0.5

1

1.5

2

2.5

3

x1

µ
[e

/
6
π

η
l B

]

1 · 10−3 λ−3
0

5 · 10−3 λ−3
0

Figure 2.18.: Electro–osmotic mobility for a
slit channel with additional
monovalent salt ions (10−3λ−3
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and 5 · 10−3λ−3
0 ).

-20 -10 0 10 20
0

0.0005

0.001

0.0015

x1

io
n

c
o
n
c
e
n
t
r
a
t
io

n

z = −1

z = −2

z = −5

z = −10

Figure 2.19.: Concentration profile of systems
with additional ionic species
of various valences (10−3λ−3

0

added).

In Fig. 2.17 the counterion and salt ion concentrations for systems with added
salt are shown, while Fig. 2.18 shows the corresponding mobility profiles. In
Fig. 2.19 and 2.20 the effect of adding an ionic species with valence zion is
presented and Fig. 2.21 shows the ion concentration if a certain amount of
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Figure 2.20.: Mobility profile of slit channels
with additional ionic species
of various valences (10−3λ−3
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Figure 2.21.: Concentration profiles for ionic
species of valence zion = −10

(⟨cion⟩ = 10−3λ−3
0 ) for a sys-

tem with and without addi-
tional monovalent salt ions.

salt is added. Note that in all systems the amount of counterions is calculated
by charge neutrality conditions, which means that it also compensates the
effect of an additional ionic species, and hence can vary. Furthermore, adding
a certain concentration of additional ions of valence zion = −1 does not differ
from adding the same amount of monovalent salt. However, it seems that
screening has a similar effect in all systems. The mobility profiles flatten and
decrease for increasing screening, i. e. decreasing screening length κ−1. Thus,
one may ask if the mobility is just an effect of screening length, regardless of the
exact screening mechanism. We performed computational runs for a counterion
screened system, salt screened system and systems without monovalent salt,
but with an additional species of ions with valence zion = −5 and zion = −10.
We varied the initial concentration of added ions and calculated the screening
parameter. The averaged mobility as function of κ−1 is presented in Fig. 2.22.
From this, we find that the mobility does not only depend on the screening
length, but also on the valence of the additional ions.

According to Ref. [32], one may introduce a dimensionless scaling variable f0,
accounting for the fraction of counterions relative to the amount of all ions in
the system,

f0 :=
N0∑
i z

2
iNi

, (2.101)

where Ni is the total number of ions of species i. Note that in this formulation
N0 denotes only the number of counterions, compensating the surface charge
of the channel walls N0 = −V σ/z0d, while additional ionic species are treated
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Figure 2.22.: Averaged mobility as function of the screening length κ−1 for different
mechanisms of screening.
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Figure 2.23.: Averaged mobility as function of the counterion fraction f0 for dif-
ferent mechanisms of screening.
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as unsymmetric salt (−5 : 1, −10 : 1). The results are presented in Fig. 2.23.
The electro–osmotic mobility depends strongly on the fraction of counterions
and differs for different valences of the additional ionic species.



3. SOLVING THE
CONVECTION-DIFFUSION
EQUATION ON A LATTICE

The Nernst–Planck equation, Eq. (1.13), is the equation of motion of the
ion concentration fields. On the one hand, the motion of ions is subject to
a deterministic driving field, i. e. electric forces and the convective velocity
field. Furthermore, they undergo a diffusive process. Hence, the Nernst–Planck
equation is a convection–diffusion equation (CDE). In its linear formulation,
Eq. (1.62a)1, some terms are independent of the first order concentration field,
but rather depend on the zeroth order. Those terms represent a source or sink
term of the CDE. The goal of this chapter is the investigation of a lattice
algorithm for convection–diffusion equations of the general form(

∂

∂t
+ ∇ · v(r, t)

)
P (r, t) = D∇2P (r, t) + S(r, t) , (3.1)

where D is the diffusion constant and v is the convective current. P denotes
a density, e.g. the concentration of a chemical species or a probability density,
and S is a source term. In the absence of a source term Eq. (3.1) describes a
conservation law for the density P ,∫

drP (r, t) = const. , (3.2)

and we demand that the inclusion of sinks and sources should keep this con-
servation law valid. For concentration fields, this means that the total particle
production must be zero, ∫

drS(r, t) = 0 . (3.3)

The convective current is given by an external velocity field v, which depends
on the spatial position r and on the time t, and must not necessarily satisfy
the incompressibility condition. Note that here v is not the convective velocity
field from electrokinetics v(1), rather v is the zeroth order electric driving field
−Dizi∇ψ(0). In the linearized electrokinetic equations the flow velocity field
v(1) is part of the source term since it couples only with the zeroth order
concentration fields.

1In the non–stationary formulation the left hand side is replaced by the time derivative of
the first order concentration field.
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3.1. THE SOURCE–FREE CASE

First, the source–free case of Eq. (3.1) is discussed and later source terms are
added.

3.1.1. DISCRETIZATION AND SCALING PRINCIPLES

Our first aim is to investigate a lattice algorithm to solve Eq. (3.1). The com-
putational domain is a cubic parallelepiped with periodic boundary conditions.
We spatially discretize it by a regular lattice with lattice spacing a and a finite
time step h for the time domain.
Transport must always occur such that density is moved from one lattice
site to another one. Hence, we introduce grid velocities ci, defined by the
condition that r + hci is a lattice site, if r is a lattice site. The smallest set
of grid velocities depends on the dynamics and the desired accuracy of the
algorithm. We will show that a second–order algorithm can be achieved, using
a set of velocities only corresponding to the nearest neighbors. To obtain
a fourth–order algorithm, the next nearest neighbor shell must be included.
This is consistent with the observations of Chubynsky and Slater [74], who
recently developed a new highly accurate Lattice Monte Carlo method for
diffusion processes. Furthermore, we avoid assumptions about the set of grid
velocities at an early stage, and keep the analysis rather general as long as
possible.

For dimensional reasons we expect that the diffusion constant will behave like

D ∝ a2

h
. (3.4)

The most natural choice for a velocity on a regular lattice is

cs ∝
a

h
, (3.5)

since the grid–velocity vectors connect two lattice sites. We will call it “speed
of sound” cs , similar to the lattice Boltzmann nomenclature2. From this we
find

h ∝ D

c2s
, (3.6a)

a ∝ D

cs
, (3.6b)

2We will see later that our analysis is very similar to the Chapman–Enskog expansion for
the lattice Boltzmann method, and hence it is very helpful to use LB nomenclature and
concepts.
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Thus, one has to make the parameter cs large in order to reach the continuum
limit a→ 0, h→ 0. Hence, we define a small scaling parameter

ϵ ∝ 1

cs
, (3.7)

and write

a = ϵa0 , (3.8a)
h = ϵ2h0 , (3.8b)

ci =
a

h
ĉi = ϵ−1 a0

h0

ĉi = ϵ−1ci0 , (3.8c)

cih = ϵ−1ci0ϵ
2h0 = ϵh0ci0 . (3.8d)

This means that we impose diffusive scaling from the outset.

3.1.2. THE CORRESPONDING MASTER EQUATION

In principle, standard methods for solving linear partial differential equations
using finite–difference or finite–element schemes can be used to solve Eq. (3.1).
On the other hand, special care must be taken not to violate conservation laws.
Hence, it is desirable to design the algorithm such that the discrete analogue
of the conservation law (3.2) is intrinsically satisfied.
It is well known that a symmetric random walk describes the behavior of
a simple diffusion equation. Since a particle is moved from one lattice site
to another, mass conservation is intrinsically satisfied. The idea is now to
construct an algorithm in form of an asymmetric random walk procedure in
order to take convective contributions into account. However, we are only
interested in the density, and hence we can get rid of the stochastic character
of a random walk and go towards a deterministic algorithm working directly
on the level of densities.
We start with the Master equation

P (r, t) =
∑
i

Ti(r − cih, t− h)P (r − cih, t− h) . (3.9)

The rationale behind this ansatz is a splitting–up of the density P (r−cih, t−h)
into sub–densities Ti(r− cih, t− h)P (r− cih, t− h), which are transported to
the neighbor shells along the corresponding velocities ci. The parameters Ti
are called transfer coefficients and must satisfy the normalization condition∑

i

Ti(r, t) = 1 (3.10)

at each site r and every time t, in order to fulfill the discretized conservation
law for the density P ∑

r

P (r, t) = const . (3.11)
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We now derive transfer coefficients Ti such that the continuum limit of Eq.
(3.9) is the desired convection-diffusion equation (3.1).
A brief description of this kind of equation and its connection to the convection-
diffusion equation can be found in Refs. [75, 76]. The analysis presented there
is a Taylor expansion of the Master equation with respect to lattice spacing
and time step. However, it is not obvious how to extend the solution to
higher accuracy. Furthermore, time dependency of the convective current or
the inclusion of sources is not discussed.
In the following, an alternative way of expanding the Master equation is pre-
sented. Time dependency of the convection velocity is taken into account and
the extension to higher orders in lattice spacing and time step and therefore
to higher accuracy is presented.

3.1.3. LEADING ORDER EXPANSION

From Eq. (3.8) the Master equation becomes

P (r, t) =
∑
i

Ti(r − ϵh0ci0, t− ϵ2h0)P (r − ϵh0ci0, t− ϵ2h0) , (3.12)

which can be written in the more compact form

P (r, t) =
∑
i

exp(−Di)Ti(r, t)P (r, t) , (3.13)

with the differential operator

Di = ϵh0ci0 · ∇ + ϵ2h0
∂

∂t
= ϵh0

(
∂αci0α + ϵ

∂

∂t

)
, (3.14)

where α and β are Cartesian indices for which the Einstein summation con-
vention is applied and ∂α ≡ ∂/∂rα. Since the transfer coefficients satisfy Eq.
(3.10), we can rewrite Eq. (3.13),∑

i

(1 − exp(−Di))Ti(r, t)P (r, t) = 0. (3.15)

For the leading-order behavior up to order ϵ2, we make use of the operator
expansion

1 − exp(−Di) (3.16)

= Di −
1

2
D2
i +O(ϵ3)

= ϵh0

(
∂αci0α + ϵ

∂

∂t

)
− 1

2
ϵ2h2

0∂α∂βci0αci0β + O(ϵ3) .
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By inserting of this expansion and summation, different moments of transfer
coefficients occur which we abbreviate by∑

i

Tici0α = uα, (3.17a)∑
i

Tici0αci0β = qαβ. (3.17b)

The zeroth moment is given by the normalization condition, Eq. (3.10), and
thus one obtains (

∂

∂t
+ ϵ−1∂αuα

)
P =

h0

2
∂α∂βqαβP + O(ϵ) . (3.18)

The transfer coefficients Ti depend on the input velocity v, or, for dimensional
reasons, on the ratio v/cs. Since c−1

s ∝ ϵ, they should have a regular expansion

Ti = T
(0)
i + ϵT

(1)
i + O(ϵ2) , (3.19)

resulting in related expansions

uα = u(0)
α + ϵu(1)

α + O(ϵ2) , (3.20a)

qαβ = q
(0)
αβ + ϵq

(1)
αβ + O(ϵ2) . (3.20b)

Furthermore the solution P has an expansion

P = P (0) + ϵP (1) +O(ϵ2) . (3.21)

Inserting these expansions and collecting terms according to their powers of ϵ,
we find at order ϵ−1

∂αu
(0)
α P (0) = 0 (3.22)

and at order ϵ0(
∂

∂t
+ ∂αu

(1)
α

)
P (0) + ∂αu

(0)
α P (1) =

h0

2
∂α∂βq

(0)
αβP

(0). (3.23)

In order to recover the convection–diffusion equation, we finally have to adjust
Ti such that

u(0) = 0 , (3.24a)
u(1) = v , (3.24b)

h0

2
q
(0)
αβ = Dδαβ . (3.24c)

Furthermore, cubic symmetry contributes to the concrete form of the transfer
coefficients. Hence, in analogy to lattice Boltzmann algorithms, we choose a
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set of neighbor shells on the lattice and their corresponding velocities. Each
velocity is assigned a weight wi to account for the different lengths of velocities
corresponding to different shells. From normalization and cubic symmetry, a
general relation for the lattice sums is given by∑

i

wi = 1, (3.25a)∑
i

wiciα = 0, (3.25b)∑
i

wiciαciβ = σ2δαβ = ϵ−2σ20δαβ, (3.25c)∑
i

wiciαciβciγ = 0, (3.25d)∑
i

wiciαciβciγciδ = κ4δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) (3.25e)

= ϵ−4κ40δαβγδ + ϵ−4σ40 (δαβδγδ + δαγδβδ + δαδδβγ) .

Here δαβγδ is 1 if α = β = γ = δ and vanishes elsewise. We choose the ansatz

Ti = wi

(
1 +

1

σ2

v · ci
)

(3.26)

= wi

(
1 +

ϵ

σ20

v · ci0
)
,

that results in the moments ∑
i

Ti = 1 , (3.27)

u =
∑
i

Tici0 = ϵv , (3.28)

qαβ =
∑
i

Tici0αci0β = σ20δαβ . (3.29)

Conditions (3.24a) and (3.24b) are thus satisfied, while condition (3.24c) yields
the value for the diffusion constant

D =
h0

2
σ20 =

ϵ−2h

2
ϵ2σ2 =

h

2
σ2 , (3.30)

and the transfer coefficients are

Ti = wi

(
1 +

ϵh0

2D
v · ci0

)
= wi

(
1 +

h

2D
v · ci

)
. (3.31)
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For a d-dimensional cubic lattice, one may choose the set of 2d velocities that
connect to the nearest neighbors. Thus the weights are given by wi = 1/(2d)
and by applying the lattice sums one obtains σ20 = (1/d)(a2

0/h
2
0), or

D =
1

2d

a2
0

h0

=
1

2d

ϵ−2a2

ϵ−2h
=

1

2d

a2

h
. (3.32)

3.1.4. BEYOND THE LEADING ORDER

In this section, a conceptually simple and technically straightforward way to
extend the expansion to higher accuracy is presented. It should be noted that,
in contrast to Ref. [74], the usage of LB nomenclature allows us to make this
expansion in a very clear and easily understandable fashion.
We start again with Eq. (3.15) and abbreviate the moments by∑

i

Tici0α = uα, (3.33a)∑
i

Tici0αci0β = qαβ, (3.33b)∑
i

Tici0αci0βci0γ = pαβγ , (3.33c)∑
i

Tici0αci0βci0γci0δ = sαβγδ. (3.33d)

From this, we get the following operator identities

1 − exp(−Di) = Di −
1

2
D2
i +

1

6
D3
i −

1

24
D4
i +O(ϵ5), (3.34a)

1

ϵ2h0

∑
i

DiTi = ϵ−1∂αuα +
∂

∂t
, (3.34b)

−1

2

1

ϵ2h0

∑
i

D2
i Ti = −h0

2

(
∂α∂βqαβ + 2ϵ

∂

∂t
∂αuα + ϵ2

∂2

∂t2

)
, (3.34c)

1

6

1

ϵ2h0

∑
i

D3
i Ti =

1

6
ϵh2

0∂α∂β∂γpαβγ

+
1

2
ϵ2h2

0

∂

∂t
∂α∂βqαβ +O(ϵ3), (3.34d)

− 1

24

1

ϵ2h0

∑
i

D4
i Ti = − 1

24
ϵ2h3

0∂α∂β∂γ∂δsαβγδ +O(ϵ3). (3.34e)

As mentioned previously, the first moment expansion starts at order O(ϵ1),
while the zeroth and second moments start at order O(ϵ0). Thus all odd
moments are assumed to have an odd expansion in ϵ, and the even moments
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an even expansion

uα = ϵu(1)
α + ϵ3u(3)

α +O(ϵ5), (3.35a)

qαβ = q
(0)
αβ + ϵ2q

(2)
αβ +O(ϵ4), (3.35b)

pαβγ = ϵp
(1)
αβγ +O(ϵ3), (3.35c)

sαβγδ = s
(0)
αβγδ +O(ϵ2). (3.35d)

Applying Eq. (3.34) and Eq. (3.35) leads to the operator identity

1

ϵ2h0

∑
i

(1 − exp(−Di))Ti = L(0) + ϵ2L(2) +O(ϵ3) , (3.36)

with

L(0) =
∂

∂t
+ ∂αu

(1)
α − h0

2
∂α∂βq

(0)
αβ , (3.37a)

L(2) = ∂αu
(3)
α − h0

2
∂α∂βq

(2)
αβ +

h2
0

6
∂α∂β∂γp

(1)
αβγ −

h3
0

24
∂α∂β∂γ∂δs

(0)
αβγδ

− h0
∂

∂t
∂αu

(1)
α − h0

2

∂2

∂t2
+
h2

0

2

∂

∂t
∂α∂βq

(0)
αβ . (3.37b)

Therefore P must have an expansion

P = P (0) + ϵ2P (2) +O(ϵ3) , (3.38)

and the error of the algorithm is actually not first order in ϵ, rather second
order, i. e. linear with respect to the time step and quadratic with respect to
the lattice spacing. This is precisely what is observed numerically (see Fig.
3.2). In literature we find that this is called second–order accuracy (see for
example [77]).

Moreover, if we succeed in adjusting the transfer coefficients in such a way that
the next order, i. e. L(2)P (0), is identically zero, P (2) = 0 is the solution of the
problem at order ϵ2. This means that the error is indeed of higher order.
Therefore we first make use of the established asymptotic behavior at the
leading order to simplify

L(0) =
∂

∂t
+ ∇ · v −D∇2, (3.39)

L(2) = ∂αu
(3)
α − h0

2
∂α∂βq

(2)
αβ +

h2
0

6
∂α∂β∂γp

(1)
αβγ −

h3
0

24
∂α∂β∂γ∂δs

(0)
αβγδ

− h0
∂

∂t
∇ · v − h0

2

∂2

∂t2
+ h0

∂

∂t
D∇2. (3.40)
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We insert Eq. (3.39) in the form

∂

∂t
= L(0) −∇ · v +D∇2 (3.41)

into Eq. (3.40) and apply the commutation rules of operator algebra to system-
atically pull the spatial derivatives to the very left, and L(0) to the very right.
Furthermore, we systematically symmetrize tensors wherever this is possible.
This involves some lengthy but fairly straightforward calculations that finally
result in

L(2) = ∂α

{
u(3)
α − Dh0

2

(
∂2
βvα
)
− h0

2
vβ (∂βvα) −

h0

2

(
∂vα
∂t

)}
(3.42)

+ ∂α∂β

{
−h0

2
q
(2)
αβ +

Dh0

2
[(∂αvβ) + (∂βvα)] +

h0

2
vαvβ

}
+ ∂α∂β∂γ

{
h2

0

6
p

(1)
αβγ −

Dh0

3
[δβγvα + δαγvβ + δαβvγ]

}
+ ∂α∂β∂γ∂δ

{
−h

3
0

24
s
(0)
αβγδ +

D2h0

6
[δαβδγδ + δαγδβδ + δαδδβγ ]

}
− h0

2
L(0)2,

where the braces (. . .) indicate that the derivative acts only on the term within.
A detailed calculation can be found in the appendix. The last term, including
L(0)2, does not contribute to the action of L(2) on P (0). The remaining parts
of L(2) should vanish identically. We therefore require the moment relations

s
(0)
αβγδ =

(
2D

h0

)2

[δαβδγδ + δαγδβδ + δαδδβγ ] , (3.43)

p
(1)
αβγ =

2D

h0

[δβγvα + δαγvβ + δαβvγ] , (3.44)

q
(2)
αβ = D [∂αvβ + ∂βvα] + vαvβ, (3.45)

u(3)
α =

Dh0

2
∂2
βvα +

h0

2
vβ∂βvα +

h0

2

∂vα
∂t

. (3.46)

Consistency with the leading order requires

T
(0)
i = wi, (3.47)

T
(1)
i =

wi
σ20

v · ci0, (3.48)

where σ20 = 2D/h0. The higher-order coefficients T (2)
i and T

(3)
i do not con-

tribute to the leading order and shall be adjusted such that L(2)P (0) is exactly
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zero. Inserting Eq. (3.47) into Eq. (3.33d) and applying Eq. (3.25e), we first
find

s
(0)
αβγδ = κ40δαβγδ + σ40 (δαβδγδ + δαγδβδ + δαδδβγ) . (3.49)

Comparison with Eq. (3.43) shows that the wi have to be adjusted such
that κ40 = 0, and σ40 = (2D/h0)

2 = σ2
20. This problem is mathematically

identical to finding the weights for a standard lattice Boltzmann model. One
can therefore use, in three dimensions, the weights known for the D3Q19 model
[78], i.e. w0 = 1/3, w1−6 = 1/18 and w7−18 = 1/36 for the set of velocities
with |c0| = 0, |c1−6| = a/h and |c7−18| =

√
2 a/h. This makes sure that

Eq. (3.43) is indeed satisfied. In this case, we have σ20 = (1/3)(a0/h0)
2, or

σ2 = (1/3)(a/h)2. Using these weights, we calculate from Eq. (3.48)

p
(1)
αβγ = σ20 [δβγvα + δαγvβ + δαβvγ] =

2D

h0

[δβγvα + δαγvβ + δαβvγ] , (3.50)

showing that Eq. (3.44) is indeed also satisfied. We now choose for the higher–
order transfer coefficients

T
(2)
i =

wi
2σ2

20

(ci0αci0β − σ20δαβ) q
(2)
αβ , (3.51)

T
(3)
i =

wi
σ20

u(3) · ci0, (3.52)

which give rise to the given desired moments q(2)
αβ and u(3), respectively. Choos-

ing these latter moments according to Eqs. (3.45) and (3.46) makes sure that
these remaining moment conditions are also satisfied. Collecting the various
contributions to the transfer coefficients, and transforming back to “unscaled”
units (without occurrence of ϵ) finally yields

Ti
wi

= 1 +
v · ci
σ2

+
1

2σ2
2

(ciαciβ − σ2δαβ) [vαvβ +D (∂αvβ + ∂βvα)]

+
h

2σ2

ciα

[
vβ∂βvα +D∂2

βvα +
∂vα
∂t

]
. (3.53)

3.2. INCLUSION OF SOURCE TERM

In the previous section, we studied the CDE in the absence of sources. How-
ever, one may ask if it is possible to extend the Master equation, Eq. (3.9),
such that the full CDE (3.1) including a time dependent source term is repro-
duced. Indeed, we find that only a slight change is sufficient to account for the
desired source. First we assume that the transfer coefficients account only for
the transport of density, but should not depend on production or annihilation
of particles. Hence, we add an additional term to the Master equation

P (r⃗, t) =
∑
i

Ti(r⃗ − c⃗ih)P (r⃗ − c⃗ih, t− h) +B(r⃗, t− h). (3.54)
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where B(r⃗, t) corresponds to the source term. Repeating the arguments from
the previous section and expanding B(r⃗, t) with respect to ϵ

B ≡ B(0) + ϵ2B(2) + ϵ4B(4) + O(ϵ5), (3.55)

we find

0 = B(0), (3.56)

L(0)P (0) =
1

h0

B(2), (3.57)

L(2)P (0) =
1

h0

B(4) +
∂

∂t
B(2). (3.58)

By the choice B(2) = h0S Eq. (3.57) reproduces the desired CDE in the
leading order. In order to go one order of accuracy further, we have to make
sure that the next order is again exactly zero. According to the choice of
transfer coefficients, Eq. (3.53), all terms of L(2)P (0) vanish except the term
including L(0), which now has an action on the density P (0). Inserting the
second order operator, Eq. (3.42), into Eq. (3.58), one obtains

1

h0

B(4) +
∂

∂t
B(2) = L(2)P (0)

= −h0

2
L(0)2P (0)

= −h0

2
L(0)S, (3.59)

and therefore
B(4) = −h

2
0

2
L(0)S − h2

0

∂

∂t
S. (3.60)

Collecting all contributions to the source term finally results in

B(r⃗, t) = hS(r⃗, t) − h2

2
L(0)S(r⃗, t) − h2 ∂

∂t
S(r⃗, t). (3.61)
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3.3. NUMERICAL RESULTS

3.3.1. SMOLUCHOWSKI EQUATION WITH PERIODIC
POTENTIAL

A simple example for a convection–diffusion equation is the Fokker–Planck
equation with periodic, but not time dependent potential in the absence of a
source term (

∂

∂t
+

∂

∂x
cos(x)

)
P (x, t) = D

∂2

∂x2
P (x, t). (3.62)

The well known stationary solution of this equation is given by

P (x) =

[∫ π

−π
dx exp

(
sin(x)

D

)]−1

exp

(
sin(x)

D

)
. (3.63)
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Figure 3.1.: Numerical results and analytical solution for the stationary case of the
Fokker–Planck equation (3.62). The lattice constant is a = 2π/200

and diffusion constant D = 1 (left), D = 0.2 (right).

This distribution function is shown in Fig. 3.1. The numerical datapoints in
this plot were computed with a one dimensional implementation of the 4th
order algorithm and a three velocity model. The lattice spacing was set to
a = 2π/200.

Fig. 3.2 shows the averaged error

error =

∑
i |Panalytic(xi) − Pnumeric(xi)|

number of datapoints
, (3.64)

as function of the lattice spacing a for a one dimensional, two velocity imple-
mentation of the second order algorithm and an implementation with fourth
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Figure 3.2.: Average error as function of the lattice spacing a for the simple one
dimensional, two velocity model and the three grid–velocity model
with correction terms. The diffusion constant is set to D = 1.

order correction terms and three grid velocities.

A lattice algorithm for the convection–diffusion equation is always limited by
the dimensionless grid–Peclet number, defined as

Pe =
va

D
. (3.65)

A kind of singular behavior is observed in the algorithm, in the sense that
beyond a critical Peclet number the algorithm does not converge to a stationary
limit. This transition from stable to unstable behavior is found to be very sharp
and more or less independent of the grid resolution. We found that in terms
of the grid–Peclet number the fourth order implementation (Pecrit ≃ 5.7) is
roughly twice as stable as the second order version (Pecrit ≃ 2.86). One may
counter that the set of grid velocities is not the same in both simulations, and
that the higher stability is only an effect of the additional shells. Indeed, the
stability is increased, if we impose an additional velocity shell to the second
order algorithm, i. e. we apply an D1Q3 model on the second order transfer
coefficients, Eq. (3.31). The value we observe for this case is Pecrit ≃ 4.97,
which is still less stable than the algorithm including the correction terms.
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Figure 3.3.: Numerical results and analytical solution for the long time limit of
equation (3.66). The resolution is set to 200 datapoints and the pa-
rameters are α = 1, β = 3, k = 2π

L and L = 20.

3.3.2. TEST SYTEM WITH SOURCE TERM

The second test system is a partial differential equation of the form(
∂

∂t
+

∂

∂x
α sin(kx)

)
P (x, t) =

∂2

∂x2
P (x, t) + β cos(kx). (3.66)

The difference to Eq. (3.62) is essentially given by the time independent source
term, which satisfies the condition (3.3), if and only if k = nπ

L
, where the

simulation box covers the interval (−L,L) and n ∈ N\{0}. The solution for
the stationary limit of Eq. (3.66) is given by

P (x) =
β

αk
+ γ exp

(
−α
k

cos(kx)
)
, (3.67)

with

γ = −2
βL

αk

[∫ L

−L
dx′ exp

(
−α
k

cos(kx′)
)]−1

. (3.68)

Fig. 3.3 illustrates numerical data and the analytic solution for this problem
with α = 1, β = 3, L = 20 and k = 2π

20
. The averaged error as a function of the

lattice spacing, for the same set of parameters, is presented in Fig. 3.4. We
also found that the critical grid–Peclet numbers have roughly the same values
as in the source–free case.
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Figure 3.4.: Averaged error as function of the lattice spacing a for the 1d simple
two velocity model and the three velocity model with correction terms.
The coefficients and parameters are the same as in Fig. 3.3

3.4. DIFFUSIVE SCALING VS. MULTIPLE TIME
SCALES

In the analysis of the continuum limit of the Master equation in the previous
sections, we have seen that this algorithm has a lot in common with lattice
Boltzmann algorithms; not least the way of expanding the equations, known as
Chapman–Enskog analysis. The difference to the standard lattice Boltzmann
analysis is that we impose diffusive scaling from the outset. Conversely, one
may ask what happens if we introduce a convective and a diffusive time scale
separately. In this section we consider the continuum limit h → 0, a → 0,
where the ratio a/h is kept constant such that grid velocities ci remain constant
as well. We therefore introduce a small dimensionless parameter ϵ such that
h = ϵh0, and h0 keeps constant, and we distinguish between two different time
scales t0 ≡ t and t1 ≡ ϵt. This is essentially the Chapman–Enskog expansion
as known from kinetic theory. Now we may write the density and the transfer
coefficients as function of three arguments. The Master equation then becomes

P (r, t0, t1) =
∑
i

Ti(r − ϵcih0, t0 − ϵh0, t1 − ϵ2h0)

·P (r − ϵcih0, t0 − ϵh0, t1 − ϵ2h0). (3.69)
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We again introduce a differential operator with a slightly different form as in
the diffusive–scaling analysis

Di = ϵh0

(
∂

∂t0
+ ci · ∇

)
+ ϵ2h0

∂

∂t1
, (3.70)

and repeat the calculations from section 3.1 with the new operator. This
means, we again have to expand the equation∑

i

(1 − exp(−Di))Ti(r, t0, t1)P (r, t0, t1) = 0 . (3.71)

We get

1 − exp(−Di) = Di −
1

2
D2
i +O(ϵ3) (3.72)

= ϵh0

(
∂

∂t0
+ ci · ∇

)
+ ϵ2h0

∂

∂t1
− 1

2
ϵ2h2

0

(
∂

∂t0
+ ci · ∇

)2

+O(ϵ3)

for the leading–order behavior. Expanding the density P and the transfer
coefficients Ti up to linear order and collecting terms according to their powers
of ϵ, one obtains in order ϵ∑

i

(
∂

∂t0
+ ci · ∇

)
T

(0)
i P (0) = 0, (3.73)

and at order ϵ2 ∑
i

[
∂

∂t1
− h0

2

(
∂

∂t0
+ ci · ∇

)2
]
T

(0)
i P (0)

+
∑
i

(
∂

∂t0
+ ci · ∇

)(
T

(0)
i P (1) + T

(1)
i P (0)

)
= 0 . (3.74)

We abbreviate the moments as before (see Eq. (3.17)) and thus we find at
order ϵ (

∂

∂t0
+ ∇ · u(0)

)
P (0) = 0 , (3.75)

and at order ϵ2 [
∂

∂t1
− h0

2

∂2

∂t20
− h0

∂

∂t0
∇ · u(0) − h0

2
∂α∂βq

(0)
αβ

]
P (0)

+

(
∂

∂t0
+ ∇ · u(0)

)
P (1) + ∇ · u(1)P (0) = 0 . (3.76)
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Making use of(
∂

∂t0
+ ∇ · u(0)

)2

=
∂2

∂t20
+2

∂

∂t0
∇·u(0)+∂αu

(0)
α ∂βu

(0)
β −∇·

(
∂

∂t0
u(0)

)
, (3.77)

this is rewritten as(
∂

∂t1
+ ∇ · u(1)

)
P (0) − h0

2

(
∂

∂t0
+ ∇ · u(0)

)2

P (0) (3.78)

+

(
h0

2
∂αu

(0)
α ∂βu

(0)
β − h0

2
∂α∂βq

(0)
αβ − h0

2
∇ ·
(
∂

∂t0
u(0)

))
P (0)

+

(
∂

∂t0
+ ∇ · u(0)

)
P (1) = 0.

Applying Eq. (3.75) and the operator identity

∂αu
(0)
α ∂βu

(0)
β = ∂α∂βu

(0)
α u

(0)
β − ∂αu

(0)
β (∂βu

(0)
α ), (3.79)

we further simplify(
∂

∂t1
+ ∇ · u(1)

)
P (0) +

(
∂

∂t0
+ ∇ · u(0)

)
P (1) (3.80)

=
h0

2
∂α∂β

(
q
(0)
αβ − u(0)

α u
(0)
β

)
P (0) +

h0

2
∂α

(
u

(0)
β (∂βu

(0)
α ) +

(
∂

∂t0
u(0)
α

))
P (0).

Now, imposing the condition that the equations should be conservation laws
at each order, we see that the terms involving P (0) would act as source term
for P (1), and vice versa, unless they vanish separately. Therefore Eq. (3.80) is
splitted up into two equations at order ϵ2,(

∂

∂t0
+ ∇ · u(0)

)
P (1) = 0, (3.81a)(

∂

∂t1
+ ∇ · u(1)

)
P (0) =

h0

2
∂α∂β

(
q
(0)
αβ − u(0)

α u
(0)
β

)
P (0) (3.81b)

+
h0

2
∂α

(
u

(0)
β (∂βu

(0)
α ) +

(
∂

∂t0
u(0)
α

))
P (0).

Multiplying the latter equation with ϵ and adding to Eq. (3.75), we find[
∂

∂t0
+ ϵ

∂

∂t1
+ ∇ ·

(
u(0) + ϵu(1)

)]
P (0) (3.82)

=
h

2
∂α∂β

(
q
(0)
αβ − u(0)

α u
(0)
β

)
P (0)

+
h

2
∂α

(
u

(0)
β (∂βu

(0)
α ) +

(
∂

∂t0
u(0)
α

))
P (0).
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The full time dependence is given by

∂

∂t
=
∂t0
∂t

∂

∂t0
+
∂t1
∂t

∂

∂t1
=

∂

∂t0
+ ϵ

∂

∂t1
, (3.83)

hence we write[
∂

∂t
+ ∇ ·

(
u(0) + ϵu(1)

)]
P (0) =

h

2
∂α∂β

(
q
(0)
αβ − u(0)

α u
(0)
β

)
P (0) (3.84)

+
h

2
∂α

(
u

(0)
β (∂βu

(0)
α ) +

(
∂

∂t0
u(0)
α

))
P (0).

At this point, there are at least two possibilities to make sure that the asymp-
totic equation for P (0) is indeed the convection–diffusion equation. For the
first possibility we set

u(0) = 0, (3.85)
ϵu(1) = v, (3.86)

q
(0)
αβ =

2D

h
δαβ, (3.87)

and make sure that these moment conditions are satisfied by the choice of suit-
able coefficients. Comparison with Eq. (3.24) shows that this is exactly what
was achieved for the leading–order in the diffusive-scaling analysis. Therefore
we can just copy the transfer coefficients and write

Ti = wi

(
1 +

h

2D
v · ci

)
. (3.88)

We now go back to Eq. (3.84) and discuss the other possibility to obtain the
correct asymptotic behavior. This is obtained by requiring

u(0) = v , (3.89)

q
(0)
αβ =

2D

h
δαβ + vαvβ , (3.90)

ϵu(1)
α =

h

2
vβ∂βvα +

h

2

∂

∂t0
vα . (3.91)

Choosing the velocity weights wi in such a way that κ4 = 0 and σ4 = σ2
2,

which means that they have to be chosen like the weights in a standard lattice
Boltzmann model, resulting in σ2 = (1/3)(a/h)2, the above conditions can be
satisfied by picking

Ti
wi

= 1 +
v · ci
σ2

+
1

2σ2
2

(ciαciβ − σ2δαβ) vαvβ

+
h

2σ2

ciαvβ∂βvα +
h

2σ2

ciα
∂

∂t
vα , (3.92)
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again with

D =
h

2
σ2. (3.93)

It is extremely interesting that this form is very similar but not identical to
Eq. (3.53). We see that here the terms proportional to the diffusion constant
do not appear.
Numerical analysis of the two algorithms outlined here shows that the error in
both cases is O(a2) = O(h). This is, for both cases, well understood in terms of
the diffusive–scaling analysis. Interestingly enough, however, one finds that the
more sophisticated algorithm is also more stable: The critical Peclet number
Pe = (va/D) at which the results become obviously wrong is, for the second
algorithm, again roughly twice as large as for the simple implementation.
Fig. 3.5 presents the averaged error as function of the lattice spacing of the
numerical results of three dimensional implementations of the fourth order
algorithm as discussed in Sec. 3.1.4 and of the algorithm developed by the
multi–scale expansion above. Both implementations use the D3Q19 model and
are applied to the one dimensional test problem with source (see Sec. 3.3.2).
We compare the accuracy to an implementation of a D3Q6 lattice Boltzmann
model which was first analyzed by Guo et al. [79, 80] and extended by some
correction term in the PhD thesis of J. Lätt [81]. The Chapman–Enskog
expansion of this LB model has been performed by the same multi–time scale
scheme and up to the same order in ϵ as the analysis above. Indeed we find
that in both methods the same expansion yields the same accuracy.

3.5. BOUNDARY CONDITIONS

Defining and analyzing boundary conditions can be one of the most challenging
and also one of the most tedious exercises in the method development of lattice
algorithms. The goal of this section is to give a conceptually straightforward
approximation for no–flux boundary conditions in the second order algorithm.
In general the CDE is a continuity equation

∂tP + ∇ · j = 0 , (3.94)

where the flux density j consists of a diffusive and a convective current

j = −D∇P + vP . (3.95)

If the spatial domain is confined by solid walls or if a solid object is present, we
have to define how the density and the fluxes will interact with a solid interface.
At a boundary, we expect that density can only flow parallel to the wall, but
never crosses the interface, and thus, the current density perpendicular to the
interface must vanish. This can be written in the no–flux boundary conditions

j · n = 0 , (3.96)
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Figure 3.5.: Averaged error as function of the lattice spacing a for 3–dimensional
implementations of the fourth order algorithm as discussed in the dif-
fusive scaling section and the algorithm developed by the multi–scale
expansion above. This is compared to a (LBGK) lattice Boltzmann
implementation, based on the method discussed in [81]. The LBGK
parameter was set to λ = 1.2. The coefficients and parameters are the
same as in Fig. 3.3. For comparison the data from the D1Q2 model
of Fig. 3.4 is also plotted.

where n is the normal at the interface, pointing into the fluid.
Since the algorithm is very similar to the lattice Boltzmann method, it turns
out that also the boundary conditions can be treated in a very analogous way
[82, 83].
We start by decomposing the current density into a part parallel to the surface
and one part perpendicular to it,

j = (
↔
I −n ⊗ n)j + (n ⊗ n)j (3.97)

≡ j∥ + j⊥ .

In order to satisfy the no–flux boundary conditions, the perpendicular term
must vanish at the surface. This is the case if we succeed in modifying our
algorithm such that

j(r) = j∥(r) , (3.98)
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where r is a grid node in the boundary. Defining the projection operator

δ
∥
αβ = δαβ − nαnβ , (3.99)

one may write the current density

j∥α = δ
∥
αβjβ (3.100)

= δ
∥
αβ(−D∂βP + vβP )

= −Dδ∥αβ∂βP + v∥αP ,

where we abbreviate

v∥α = δ
∥
αβvβ . (3.101)

For reasons of simplicity and also of relevance in view of the electrokinetic
problem, we restrict ourselves to the case of the leading order algorithm, i. e.
the D3Q6 model, and furthermore, to the case of a convex surface. The
goal of this section is to modify the transfer coefficients in such a way that
the continuum limit will satisfy the boundary conditions. We start from the
ansatz

T
∥
i = w

∥
i

(
1 +

1

σ2

v · c∥
i

)
. (3.102)

Here, c
∥
i is a projected set of grid velocities

c
∥
i,α := δ

∥
αβci,α . (3.103)

If we choose n to point in a high-symmetry direction of the lattice, then the
moments of the weights will satisfy relations analogous to those in the bulk:

∑
i

w
∥
i = 1 , (3.104)∑

i

w
∥
i c

∥
i,α = 0 , (3.105)∑

i

w
∥
i c

∥
i,αc

∥
i,β = σ2δ

∥
αβ , (3.106)∑

i

w
∥
i c

∥
i,αc

∥
i,βc

∥
i,γ = 0 , (3.107)
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resulting in moments of the modified transfer coefficients:∑
i

T
∥
i = 1 , (3.108)∑

i

T
∥
i c

∥
i,α = δ

∥
αβvβ

= v
∥
β , (3.109)∑

i

T
∥
i c

∥
i,αc

∥
i,β = σ2δ

∥
αβ

≡ 2

h
Dδ

∥
αβ . (3.110)

Hence, the same expansion as done for the bulk case recovers the desired
equation in the continuum limit. For consistency reasons we further require

σ2 =
1

d

a2

h2
. (3.111)

If this would not be the case, either the timestep or the diffusion constant
would differ from the bulk part.
In the three dimensional case with six grid velocities, i. e. the D3Q6 model,
and in the case of a convex interface, we have to distinguish between 3 different
classes of next–to–surface nodes, concerning to the number of neighboring
boundary nodes. The surface normal of the discretized surface is a unit vector,
pointing in the direction of the “center of mass” of the remaining links.

Case 1: 1 neighboring boundary node
In the case that moving density is prohibited for only one link, one may classify
the weights into three different classes. Obviously, the weight concerning to
the forbidden move must be zero,

w
∥
0 = 0 . (3.112)

The other two weights pertain to the link aligned with n and pointing into
the fluid w

∥
I , and to those four velocities parallel to the surface w

∥
II . The

projection of the grid velocity perpendicular to the surface vanishes, while
the other velocities do not change. Thus we get from the mass conservation
condition and from the second moments the conditions

w
∥
I + 4w

∥
II = 1 , (3.113)

2w
∥
II

a2

h2
= σ2 . (3.114)
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Hence, the weights are given by

w
∥
0 = 0 , (3.115)

w
∥
I =

1

3
, (3.116)

w
∥
II =

1

6
. (3.117)

Case 2: 2 neighboring boundary nodes
In the second case, density could be moved along four remaining links. One
can classify the links, and thus the weights, into three different classes. For
the “forbidden” links, the weights must again vanish. Two links have some
portion aligned parallel to the surface and some perpendicular to it. Their
weights must be equal for symmetry reasons and we denote this weight by w∥

I .
The remaining two links are strictly aligned tangential to the surface, and are
weighted by w∥

II . From the mass conservation condition one obtains

2w
∥
I + 2w

∥
II = 1 . (3.118)

The second moment yields

1

2
w

∥
I

a2

h2
=

1

2
σ2 , (3.119)

2w
∥
II

a2

h2
= σ2 . (3.120)

This results in

w
∥
0 = 0 , (3.121)

w
∥
I =

1

3
, (3.122)

w
∥
II =

1

6
. (3.123)

Case 3: 3 neighboring boundary nodes
The last case consists in a grid node, surrounded by three “forbidden” and three
“movable” links. In this case, no link is strictly aligned parallel or perpendicular
to the solid interface, and we get only two classes of connectors. Setting again
w

∥
0 = 0, we obtain from normalization

w
∥
I =

1

3
. (3.124)

This is perfectly consistent with the second moment condition, resulting in

w
∥
I

a2

h2
= σ2 . (3.125)
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All together this results in a boundary condition where the weights of the
bulk method corresponding to “forbidden” links are added to the weight of the
corresponding mirror-image.



4. SOLVING THE STOKES EQUATION
VIA SURFACE INTEGRALS

In the previous chapters, numerical methods have been presented for solving
the Poisson equation, the Poisson-Boltzmann equation and the convection-
diffusion equation. Last but not least, a numerical method to solve the sta-
tionary incompressible Stokes equation (1.54b) and (1.54c) is needed. More
general, this equation is of the form

∇ · v(r) = 0 , (4.1a)
−∇p(r) + η∇2v(r) = −f(r) . (4.1b)

Here, f is an external force density and η denotes the viscosity of the fluid. As
mentioned before, the computational domain is a rectangular parallelepiped
with periodic boundary conditions and the colloids are massive objects located
within this spatial domain.
Since we are only interested in the stationary case and vanishing Reynolds
number, Eq. (4.1) is of a rather simple form. In this chapter a fast method
will be presented, making use of these simplifications.
After the calculation of the corresponding Green’s function, a “reaction force
density” is defined, accounting for the boundary conditions at the surface of
a solid object. This reaction force density can be determined by integrating
over the surface of the obstacles.
The idea of using surface integrals for solving the Stokes equation in the pres-
ence of solid objects is not new. In 1972, Youngren and Acrivos [84] were
the first to publish a numerical method employing surface integrals to solve
the Stokes flow past particles of arbitrary shape in unbounded flows. Later,
Zick and Homsy [85] also replaced the Stokes problem by equivalent integral
equations for systems of periodic arrays of spheres.

4.1. THE STATIONARY STOKES EQUATION AND ITS
SOLUTION IN BULK

If, in a first step, the boundary conditions are neglected, the Green’s function of
Eq. (4.1) can be calculated analytically. This Green’s function is called Oseen
tensor and its calculation belongs to the standard methods in hydrodynamics
(see for example [86]).
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Since in Fourier space the evaluation of differential operators is rather simple,
an expansion by Fourier series is applied to p, v and f ,

p(r) =
∑

k

p̂(k) exp[−ik · r] , (4.2)

v(r) =
∑

k

û(k) exp[−ik · r] , (4.3)

f(r) =
∑

k

f̂(k) exp[−ik · r] . (4.4)

In Fourier space, the Stokes equation then has the form

0 = −ik · v̂(k) , (4.5a)
0 = ik p̂(k) − ηk2 v̂(k) + f̂(k) . (4.5b)

Multiplying by ik and making use of the incompressibility condition, one ob-
tains

0 = −k2 p̂(k) + ik · f̂(k) . (4.6)

Solving this for p̂ results in

p̂(k) =
i

k2k · f̂(k) , (4.7)

and hence

ik p̂(k) = − 1

k2k
(
k · f̂(k)

)
= −k ⊗ k

k2 f̂(k) . (4.8)

This means that we adjust the pressure such that the incompressibility is
enforced, i. e. the pressure has the function of a Lagrange multiplier related
to the constraint of incompressibility. Now, inserting Eq. (4.8) into Eq. (4.5)
and solving for v̂ finally yields the velocity field in Fourier space

v̂(k) =
1

ηk2

(
↔
I −k ⊗ k

k2

)
f̂(k)

≡
↔̂
T (k)f̂(k) . (4.9)

For the back transformation, we first require that the externally given force
field does not accelerate the finite system, i. e. the flow is observed in the
center-of-mass reference frame. Hence, f has to satisfy the condition∫

V

d3r f(r) = 0 . (4.10)
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Making use of this requirement, the force density can also be expressed as

f(r) =

∫
V

d3r′
(

f(r′)δ(r − r′) − 1

V
f(r′)

)
, (4.11)

where the latter term describes a constant compensating field. Multiplying
f(r) with exp[iq · r] and integrating over the finite volume results in∫

V

d3r f(r) exp[iq · r] =
∑

k

f̂(k)

∫
V

d3r exp[−i(k − q) · r]

=
∑

k

f̂(k)V δkq

= V f̂(q) (4.12)

or

f̂(k) =
1

V

∫
V

d3r f(r) exp[ik · r] . (4.13)

Application of Eq. (4.11) yields

f̂(k) =
1

V

∫
V

d3r

∫
V

d3r′ f(r′)δ(r − r′) exp[ik · r]

− 1

V 2

∫
V

d3r

∫
V

d3r′ f(r′) exp[ik · r]

=
1

V

∫
V

d3r′ f(r′) exp[ik · r′] − 1

V

∫
V

d3r′ f(r′)δk0

=
1

V

∫
V

d3r′ f(r′) exp[ik · r′] (1 − δk0) . (4.14)

Inserting this into Eq. (4.9) and applying Eq. (4.3), finally results in the
desired solution for the Stokes equation

v(r) =

∫
V

d3r′
1

V η

∑
k ̸=0

exp[−ik · (r − r′)]

k2

(
↔
I −k ⊗ k

k2

)
f(r′)

=

∫
d3r′

↔
T (r − r′)f(r′) . (4.15)

The tensor
↔
T (r) =

1

V η

∑
k ̸=0

exp[−ik · r]

k2

(
↔
I −k ⊗ k

k2

)
(4.16)

is the famous Oseen tensor in a finite size corrected formulation.
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4.2. BOUNDARY CONDITIONS AND INDUCED
FORCE DENSITY

Eq. (4.16) is the bulk solution of the Stokes equation, i. e. only periodic
boundary conditions occur. Now consider a solid object with surface Ω dis-
solved in an ambient fluid with an externally applied force field f ext(r) with∫
V
d3rf ext(r) = 0. This object will move with a constant velocity through the

fluid, which implies a boundary condition of v(rΩ) = const. on the surface of
the solid obstacle.
This problem is strongly related to solving the Poisson equation when a con-
stant field is acting on a metallic sphere. In both cases, the Green’s function
is known and similarly to the problem above, the boundary condition for the
metallic sphere is given by a constant potential ψ(r) = const. on the surface.
In the electrostatic case, it is well known that a charge density is induced on
the surface to compensate the effect of an external field and thus it satisfies
the boundary condition.
In the hydrodynamic case, this picture is very helpful for finding a solution for
the Stokes equation. We introduce, in analogy to the induced charge density, a
reaction force density f reac, which accounts for the boundary conditions. This
reaction force is only acting on the surface of the particle

f reac(r) = 0, if r /∈ Ω . (4.17)

The solution of the Stokes equation then reads as

v(r) =

∫
V

d3r′
↔
T (r − r′)

{
f ext(r

′) + f reac(r
′)
}

≡
∫
V

d3r′
↔
T (r − r′) f tot(r

′) . (4.18)

Thus, one may decompose the velocity field into a bulk part plus some reaction
part v ≡ v(1) + v(2), with

v(1)(r) =

∫
V

d3r′
↔
T (r − r′) f ext(r

′) , (4.19)

v(2)(r) =

∫
V

d3r′
↔
T (r − r′) f reac(r

′) . (4.20)

The reaction force has to be adjusted such that the boundary conditions are
satisfied. Although the constant value of the Dirichlet boundary condition is a
priori not known, it can be replaced by a “difference” condition in the discrete
case

v(rref ) − v(rΩ) = 0 . (4.21)
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Here, rref ∈ Ω is an arbitrary but fixed reference point on the surface of the
solid object. Making use of Eq. (4.18), this condition can equivalently be
written as∫

V

d3r′
↔
T (rref − r′)f tot(r

′) −
∫
V

d3r′
↔
T (rΩ − r′)f tot(r

′) = 0 , (4.22)

and since reaction forces only occur on the surface of the object, the volume
integral can be replaced by surface integrals∫

dΩ′
↔
T (rref − r′)f reac(r

′) −
∫
dΩ′

↔
T (rΩ − r′)f reac(r

′)

= v(1)(rΩ) − v(1)(rref ) . (4.23)

Since the system is studied in the center-of-mass reference frame, it is required
that the total reaction force must vanish∫

dΩ′ freac(r
′) = 0. (4.24)

On a regular cubic lattice, these conditions are replaced by a linear set of
equations∑

Ω′

(↔
T (rref − rΩ′)−

↔
T (rΩ − rΩ′)

)
f reac(rΩ′) = v(1)(rΩ) − v(1)(rref ) ,

(4.25)
and ∑

Ω′

f reac(rΩ′) = 0 . (4.26)

For consistency reasons we use a discrete formulation of the Oseen tensor,
analogous to the lattice–Green’s function of the Poisson equation (see Eq.
(1.75)). The derivation of the discretized Oseen tensor is presented in appendix
A.4. Eq. (4.25) is trivially satisfied if rΩ = rref . Hence, Eq. (4.25) results in
M − 1 independent equations for M surface nodes. Together with Eq. (4.26),
we have a linear set of M linearly independent equations for M unknown
reaction forces.
It should be noted that this formulation of the Stokes solver neglects possible
rotations of the obstacles. However, since we are only interested in highly
symmetric objects, i. e. spheres, rotations should not occur. Due to the
requirement that we are searching for a stationary solution, a further limitation
of this method consists in the fact that, if more than one particle should be
observed, these objects will move collectively, i. e. no relative velocities occur.
In the case of colloidal crystals this means that all colloids are connected via
rigid bonds.
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4.3. ALGORITHM

Combining the way of solving the Stokes equation in the bulk with the
method of calculating reaction forces in order to satisfy the Dirichlet bound-
ary conditions results in a computational algorithm consisting of only a few
steps. These steps follow the principle that a Fourier transformation can be
computed much more efficiently than a convolution, since highly optimized
libraries like the FFTW3 project are readily available [87].

Initialization:

Set up the object and classify grid points
as bulk or surface nodes.

Oseen Tensor:

Calculate the Oseen tensor
↔̂

T in Fourier
space.

Inverse FFT:
↔̂

T →

↔

T

Boundary conditions:

Solve the linear set of equations for the boundary conditions

∑

Ω′

{

↔

T (rref − rΩ′)−
↔

T (rΩ − rΩ′)

}

freac(rΩ′) = v(1)(rΩ) − v(1)(rref )

∑

Ω′ freac(rΩ′) = 0

FFT: f tot → f̂ tot

Velocity in Fourier space:

v̂ =
↔̂

T f̂ tot

Inverse FFT: v̂ → v

Figure 4.1.: Illustration of the Stokes equation solver.

In a first step, the system has to be initialized. This means that each lattice
site has to be marked as a ’bulk’ or ’surface’ node to define the boundary of the
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obstacles. Then, the Oseen tensor in Fourier space can be easily calculated and
transformed back to real space. At this point, everything for the calculation of
the total force density is known, including the external and the reaction forces.
A linear set of equations of the following form has to be solved

↔
A f tot = b , (4.27)

where
↔
A includes Eq. (4.25) and Eq. (4.26). After calculating the total force

in real space, we again apply a fast Fourier transformation f tot → f̂ tot to
calculate the flow velocity field in Fourier space

v̂ =
↔̂
T f̂ tot . (4.28)

A backtransformation v̂ → v then results in the desired solution of Stokes
equation. The algorithm is briefly illustrated in Fig. 4.1.

The computationally most expensive part is to solve Eq. (4.27). The matrix
↔
A has M2 values and is dense. Eq. (4.27) thus can either be solved by direct
methods or by an iterative method. Although M is in general small compared
to the number of all lattice sites, it can easily be of the order of 103 grid points.
Since direct methods have usually a runtime complexity of order O(M3), an
iterative method should be the method of choice. From computational com-
parison, a variant of the conjugate gradient algorithm, namely the BiCGStab
algorithm[88, 89], turns out to be much faster than a direct routine for a matrix
of this size. Table 4.1 shows performance results for the Stokes solver using
the BiCGStab method compared to an implementation where the linear set of
equations is solved via a LU-decomposition routine from the gsl library [90].
The runs were performed on an Intel Core 2 Duo E6600 FSB 1066 2x2.4 GHz
with 4GB RAM. The systems used for the performance tests are discussed in
the next section ( Sec. 4.4).
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lattice grid # surface nodes BiCGStab gsl
structure spacing 6πηµ time [s] 6πηµ time[s]

sc 0.5 674 0.2206 3 0.2207 13
sc 0.4 1034 0.2063 7 0.2064 46
bcc 0.5 1348 0.1968 14 0.1970 101
bcc 0.4 2068 0.1773 32 0.1775 361
fcc 0.5 2696 0.1699 51 0.1703 797
fcc 0.45 3368 0.1586 74 0.1589 1542
fcc 0.4 4136 0.1453 133 0.1456 2853

Table 4.1.: Comparison of the computational time needed to solve the Stokes equa-
tion via the BiCGStab method compared to a gsl routine. The radius
of spheres is set to R = 3 and every data point is taken for 643 lattice
sites.

4.4. NUMERICAL RESULTS

The test system we study is the flow around three types of cubic arrays of
spheres with radius R, dragged by a constant external force Fext. The constant
force is acting in the x-direction and the different kinds of lattices are given
by simple cubic (sc), body–centered cubic (bcc) and face-centered cubic (fcc)
crystal structures. The Stokes equation is only solved for one primitive unit
cell of the crystal, while the structure is given by the periodic images. Thus
the lattice constant d coincides with the linear box size L of the computational
domain. This means that the sc structure consists of one single sphere in the
center of a cubic box with periodic boundary conditions. The bcc lattice has
two spheres per unit cell. The basis is usually described by

e
(1)
bcc =

d

2
(1, 1,−1), (4.29)

e
(2)
bcc =

d

2
(−1, 1, 1), (4.30)

e
(3)
bcc =

d

2
(1,−1, 1). (4.31)

The first sphere is set up at sbcc,1 = L
4
(1, 1, 1) and the second at

sbcc,2 = sbcc,2 + e
(1)
bcc + e

(2)
bcc + e

(3)
bcc = 3

4
L(1, 1, 1).

In the case of the fcc lattice structure, one finds four spheres per unit cell. The
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Figure 4.2.: Crystal structures of the observed arrays of spheres. The red spheres
are set into one unit cell.

basis is given by

e
(1)
fcc =

d

2
(1, 1, 0), (4.32)

e
(2)
fcc =

d

2
(0, 1, 1), (4.33)

e
(3)
fcc =

d

2
(1, 0, 1). (4.34)

In the computational domain, we choose the location for the first sphere again
as sfcc,1 = L

4
(1, 1, 1). The other three particles are then located at sfcc,2 =

sfcc,1 + e
(1)
fcc, sfcc,3 = sfcc,1 + e

(2)
fcc and sfcc,4 = sfcc,1 + e

(3)
fcc.

Fig. 4.6 and 4.7 show two dimensional cuts in the x-y-plane of the calculated
flow profile in the center-of-mass frame (com frame) and, by subtraction of
the particle velocity, also in the rest frame of the spheres.

The quanitity we measure is the mobility µ = vx(rΩ)/Fext. In the case of an
isolated single sphere in an infinite large domain, the analytic expression for
this mobility is well known and is given by the Stokes formula

µ =
1

6πηR
. (4.35)

If periodic arrays of spheres are studied, packing effects will occur. Eq. (4.35)
then is modified to

µ =
1

6πη

(
1

R
− α

L
+ O(L−3)

)
. (4.36)

The constant α depends on the given lattice structure. For the sc, bcc and fcc
structure, these constants have first been calculated by Hasimoto [91] and are
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found to be

αsc = 2.837, (4.37)
αbcc = 3.639, (4.38)
αfcc = 4.584. (4.39)

In Fig. 4.3 the mobility 6πηµ is plotted as function of the lattice spacing a of

0.2 0.4 0.6 0.8 1

0.15

0.2

a

6
π

η
µ

sc

bcc

fcc

Figure 4.3.: Mobility 6πηµ as function of lattice spacing a for sc, bcc and fcc lattice
structure. The solid lines are linear fits.

the computational grid. The box size was fixed as L = 30λ0 and the radius of
the spheres was set to R = 3λ0. The solid lines are linear fits

f(x) = c1 + c2a. (4.40)

Using Eq. (4.36) and extrapolating the fit to the continuum limit a → 0, we
should be able to reproduce the sphere radius

Rfit =
1

c1 + αL−1
. (4.41)

Indeed, we find that this agrees reasonably well,

Rsc
fit = 3.005λ0, (4.42)

Rsc
fit = 2.985λ0, (4.43)
Rsc
fit = 2.953λ0. (4.44)
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In this plot, one could also observe that for a finite lattice spacing, a > 0. the
“effective” radius of the sphere is systematically increased. This is an effect of
the discretization scheme, which marks all points as surface nodes which are
closest to any point on the particle surface.
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Figure 4.4.: Mobility 6πηµ as function of inverse box size L−1.

The data in Fig. 4.4 were taken for a fixed lattice spacing a = 0.5λ0 and again
a sphere radius of R = 3λ0. We varied the box size L and plotted 6πηµ as
function of the inverse box size L−1. The solid lines are fits as

g(x) =
1

Reff

− α

L
+

β

L3
. (4.45)

The resulting fit parameters are reported in Tab. 4.2. We see that the linear
prefactors α agree quite well with the values given by Hasimoto and it is not
surprising that the effective radii are about half a lattice spacing larger than
the input parameter. In the paper of Hasimoto, one further finds a figure with
the so–called drag coefficient (6πηRµ)−1 plotted as function of the cubic root
of the volume fraction Φ

1
3 . Since Hasimoto’s formulations are only valid for

low volume fractions, we compared the results of our program with the values
given in the paper of Zick and Homsy [85] (see Fig. 4.5). The simulation curves
are re-parametrized using the effective radii from Tab. 4.2. It is surprising that
in the observed range of volume fractions the drag coefficients of the bcc and
fcc crystals are nearly identical while the curve for the sc structure deviates
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Reff α β

sc 3.249 2.830 42.6
bcc 3.227 3.637 84.7
fcc 3.230 4.567 162.3

Table 4.2.: Fit parameters pertaining to Fig. 4.4.
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Figure 4.5.: Drag coefficient (6πηRµ)−1 as function of the cubic root of the volume
fraction for sc, bcc and fcc lattice structure. The lines are results from
Ref. [85].

by some percentage.
Since the packing effect of the Stokes flow is related to the determination of
the Madelung constant as mentioned by Hasimoto [91], one would expect to
find this effect also in the values of the Madelung constant, which indeed is
the case. In a metal with a simple crystal structure, the electrostatic energy
per ion is written in the form V = −Z2e2αM/2r0. Here, r0 is the atomic
Wigner-Seitz radius and αM is the dimensionless constant characteristic of the
lattice structure [92, 93], namely the equivalent of the Madelung constant of
ionic crystals. Moreover, the first order packing effect in hydrodynamics α is
directly proportional to this Madelung constant,

αM = α

(
3

4π

1

n

) 1
3

, (4.46)

where n is the number of spheres in a unit cell (see Ref. [91]1).
1The first column of Table 1 in the paper of Hasimoto presents values of α and the quantity

presented in the second column is identical to the Madelung constant αM . From here,
some basic algebra results in Eq. (4.46)
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Tab. 4.3 presents the values of the Madelung constant for three different lattice
structures. Indeed we see that αM is nearly identical for the bcc and fcc crystal,

sc bcc fcc

αM 1.760 1.79186 1.79172

Table 4.3.: Madelung constants as reported in Ref.[94].

and differs slightly for the sc structure.
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Figure 4.6.: 2 dimensional cuts of the flow profile for cubic arrays of spheres,
dragged by a constant force in the x-direction. For the sc lattice,
the cut was taken at z = 0.5Lz and for the bcc and fcc structure at
z = 0.25Lz.
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Figure 4.7.: Same as Fig. 4.6 with periodic images.





5. NUMERICAL SOLUTIONS OF THE
ELECTROKINETIC EQUATIONS

The aim of this chapter is the presentation of numerical results for the elec-
trokinetic problem, using the computational method described in the previous
chapters.
Since the electrophoretic mobility µred is a dimensionless quantity, it can only
depend on dimensionless parameters as well. B. Dünweg et al. [32] printed out
that, in a finite system with added salt ions and where all ion types have the
same properties, i. e. all ions are monovalent and have all the same friction
coefficient, these parameters are given by the reduced charge Ẑ = Z lB/R,
the rescaled colloid radius R̃ = κR, the diffusion constant of the ions D̃ or
lB/a, with a an effective radius of the ions, and a dimensionless quantity f0

which specifies the fraction of counterions relative to the salt ions. Note that
the reduced charge is not identical to Z̃ = 4πlBκZ, occurring in our original
rescaling scheme of the electrokinetic equations of Sec. 1.1 (see Tab. 1.1).
In general fi is the fraction of the ionic species i relative to all ions in the
system

fi =
Ni∑
j z

2
jNj

. (5.1)

In former studies the meaning of volume V in the definition of ionic concentra-
tions is not clear, in the sense that it is not specified if V denotes the full volume
of the system or only the free volume with the regions occupied by colloidal
spheres excluded. Here, we adopt the convention that we always use the free
volume as basis, i. e. V = L3 − 4πNR3/3, which is the correct way to define
κ, as one sees from the finite-volume version of linearized Poisson-Boltzmann
theory. Note that N is the number of colloids and Z is their charge, while N0

and z0 are the number and valence of counterions, respectively. Therefore the
relation between volume fraction Φ and f0 differs from the expression in Ref.
[32] by a small correction factor. The volume fraction is given by

Φ =
4N
3
πR3

V + 4N
3
πR3

. (5.2)
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Hence, one may write

Φ−1 = 1 +
3

4Nπ

V

R3
(5.3)

⇒ 3

4Nπ

V

R3
=

1 − Φ

Φ
(5.4)

⇒ V =
4Nπ

3
R3 1 − Φ

Φ
. (5.5)

Applying this to the definition of κ2, Eq. (1.48), we obtain a relation between
f0 and the volume fraction

R̃2 = κ2R2 (5.6)

= 4πlB
∑
i

z2
i

Ni

V
R2

= 4π
3

4Nπ

lB
R

Φ

1 − Φ

∑
i

z2
iNi

= −3
Z

z0N0

lB
R

Φ

1 − Φ

∑
i

z2
iNi

= −3
Ẑ

z0

Φ

1 − Φ

∑
i z

2
iNi

N0

= −3
Ẑ

z0f0

Φ

1 − Φ

or
Φ

1 − Φ
= −z0f0

3Ẑ
R̃2 . (5.7)

Within this chapter we use these dimensionless quantities for the character-
ization of a system. However, Z̃ and the initial salt concentrations are well
defined by these parameters. One verifies easily that

Z̃ = 4πR̃Ẑ . (5.8)

If the initial salt concentration in physical units is denoted by ci,0 = Ni/V ,
one obtains in reduced units

c̃i,0 =
4πlB
κ2

ci,0 (5.9)

=
4πlB

4πlB
∑

j z
2
jNj/V

ci,0

=
Ni∑
j z

2
jNj

= fi .
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Making use of Eq. (5.1), we can write∑
i

z2
i fi = 1 , (5.10)

and if only monovalent ions and only one salt species are assumed, this results
in

c̃i,0 =
1

2
(1 − f0) , i = 1, 2 . (5.11)

Furthermore, a dimensionless resolution d is defined such that for given d a
sphere is always discretized by the same number of lattice sites. Thus, the
resolution is expressed by

d :=
∆̃x

R̃
, (5.12)

where ∆̃x denotes the lattice spacing and R̃ is the radius of the particle.

We implemented the iterative method as described by Fig. 1.1. The code is
split into two independent programs, written in C. The first one is the “Maggs–
type” Poisson–Boltzmann solver as discussed in Chap. 2. The second program
reads the output files of the PB solver and computes the solution of the first
order equations iteratively, using the FFT-based Poisson solver, the surface
integration method of Chap. 4 for the solution of the Stokes equation and the
second order D3Q6 method of Chap. 3 for the relaxation of the concentration
fields. The program was run until the relative residual,

ε :=

∣∣∣∣∣µ(i)
red − µ

(i−1)
red

µ
(i)
red

∣∣∣∣∣ , (5.13)

with i the iteration step, reached the limit of ε ≤ 10−5. Indeed we found that
the iterative method converges nicely (see Fig. 5.1). Note that the convergence
of the method can be improved using not the full new velocity field for the next
iteration of calculating the concentration fields, but rather a linear combination
of the previous iteration and the result of the Stokes solver ṽ∗:

ṽ
(1)
i = ωṽ∗ + (1 − ω)ṽ

(1)
i−1 , 0 < ω ≤ 1 . (5.14)

In practice we used ω = 1/2.

Nevertheless, there are some limitations to the possible parameters due to
the discrete character of the algorithm. For example, we often find plots in
the literature showing some theoretical functions for the dependence of µred
on R̃ and interpolating from the Hückel (R̃ → 0) to the Smulochowski limit
(R̃ → ∞) (see e. g. Fig. 3.16 in Ref. [6]). The discretized formulation is only
valid in an intermediate range of R̃. d is always finite and decreasing its value
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Ẑ = 5
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Figure 5.1.: Convergence of the iterative procedure for three systems with f0 ≃ 0.3,
R̃ = 1, Ẽ = 10−2, d = 0.07 and reduced charges as indicated by the
legend.

increases the amount of memory and the computational time needed. Thus,
keeping d fixed and increasing the value of R̃, also the lattice spacing ∆̃x is
increased. Obviously, large values of ∆̃x result in inaccurate calculations or
in numerical instabilities. Since ∆̃x ≪ 1 is required, reliable results will only
be obtained for resolutions d which are small compared to R̃−1. Therefore we
are far away from getting close to the Smulochowski limit. On the other hand,
the numerical calculations take always place in a finite sized box with a finite
volume fraction and with a finite amount of salt ions and counterions, while
the earlier studies usually used one single charged sphere in infinite space, and
therefore counterions do not occur. Keeping the resolution fixed, the volume
fraction is independent of the radius of the macro–ions, rather depends only
on the number of lattice sites M3. Furthermore, the salt concentration must
be positive and due to Eq. (5.11), this restricts f0 < 1. For a given volume
fraction and colloid charge, this ends up in a lower bound for R̃,

R̃2 > −3Ẑ

z0

Φ

1 − Φ
. (5.15)

Thus, underlying practical limitations to the value of the volume fraction re-
strain the calculations of reaching the Hückel limit. Fig. 5.2 shows the reduced
mobility as function of R̃ for d = 0.07 and Φ ≃ 7.07 · 10−3 (M = 120) for four
different colloid charges as indicated by the legend. For this value of the vol-
ume fraction we get from Eq. (5.15) that the minimum sphere radius is of
the order R̃ > 0.21 for Ẑ = 2 and R̃ > 0.46 for Ẑ = 10. In the given range
we could observe a reduction of the mobility with increasing R̃. Note that
the present representation is given for constant Ẑ, which differs from the clas-
sical calculations [19–23] keeping the ζ-potential fixed, i. e. the electrostatic
potential at the colloidal surface.
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Figure 5.2.: Reduced mobility as function of R̃. The open symbols are experimen-
tal results from Ref. [14] and from Ref. [31].

The numerical results are compared to results from Lobaskin et al. [31] (see
open symbols in Fig. 5.2). The circles and squares are simulation results using
the MD/LB raspberry model [41]. In the simulations a single colloid of charge
Z = 20 (Z = 30) and radius RC = 3 (RC = 5) is surrounded by counterions.
Both systems were calculated with a Bjerrum length of lB = 1.3, resulting
in a reduced charge of Ẑ = 8.5. The triangles are experimental results for
latex crystals in bcc structure with a particle size of R = 34nm in a deionized
aqueous suspension. The effective charge is quoted as Z∗

σ ≃ 450 determined
from conductivity measurements [95] and resulting in a reduced charge of
the order Ẑ∗ ≃ 10. In all cases of the reference the colloidal charge and the
particle size were fixed and salt ions were absent (up to the self-dissociation
of water). The screening length was varied via changing the volume fraction.
This is qualitatively different from our numerical calculations, where the
volume fraction is kept fixed and the screening length is varied via adding salt
to the system. Nevertheless, the numerical results seem to agree reasonably
well with the results from the literature. The small discrepancies are not
surprising since the MD/LB simulations use a different charge and also the
diffusion constant of the counterions differs from the numerical parameter.
While our calculations are performed using a diffusion constant of D̃ = 1.5,
we find for the simulation D̃ ≃ lB/a = 1.3/0.5 = 2.6, with a the radius of the
microions. Even worse in the case of experiments. Here, the effective charge
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is not a well defined quantity and it is not clear how to map an effective
charge from a real physical system to the bare charge in the Mean-Field
calculations. Furthermore the diffusion constant of the ions in the experiment
is even larger. If we consider for example sodium ions of radius a ≃ 0.1nm in
aqueous solution with lB ≃ 0.7nm, this results in diffusion constants of the
order D̃ ≃ 7. We will see later that the resulting mobility is increased by
increasing the diffusion constant.

1 1.5 2 2.5 3

0

1

2

3

4

x̃1

ψ̃

f0 ≃ 0.119

f0 ≃ 0.820

Figure 5.3.: Electrostatic potential in x̃1–direction for a salt dominated system
with Ẑ = 10, R̃ = 1 and f0 ≃ 0.119 and for a counterion dominated
system with f0 ≃ 0.820. The symbols are numerical data from the
iterative Poisson–Boltzmann solver with a lattice resolution of d =

0.06. The lines are fits via an exponential decay function.

A second limitation occurs for highly charged spheres. For a salt-free system
we mentioned in Chap. 2 that the lattice spacing should be at most of the
order of the Gouy–Chapman length. In reduced units, the Gouy–Chapman
length is given by Eq. (2.77). Using Eq. (5.8), the reduced surface charge
density can be written as

σ̃ =
Ẑ

R̃
, (5.16)

and hence

λ̃GC = − 2R̃

z0Ẑ
. (5.17)
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For monovalent ions, the restriction of the lattice spacing then yields

∆̃x

λ̃GC
=

d

2
|Ẑ| . 1 , (5.18)

or
|Ẑ| . 2

d
. (5.19)

Since adding some amount of salt to the system, the shape of the ion con-
centrations is less sharp compared to the salt-free system, we suppose that
this limit is only a rough approximation for a reliable range of possible colloid
charges. The claim that this limit is less strict in the high salt regime can
also be confirmed by the observation that the decay of the electrostatic po-
tential is faster in counterion screened systems than in salt-screened systems,
even though the screening parameter κ is identical. For example, the electro-
static potential along the x1–axis for a colloidal sphere in the high salt regime
(f0 ≃ 0.119) and in counterion dominated screening (f0 ≃ 0.820) is shown in
Fig. 5.3. The symbols are numerical data from the iterative PB solver and the
dash–dotted lines are fits via a screened potential of the form

ψ̃(x̃1) :=
A

x̃1

exp

(
− x̃1

λ

)
− ψ∞ . (5.20)

The decay length in the counterion screened system λ = 0.69± 0.01 is smaller
than in the salt dominated system λ = 0.80± 0.02 1, which indicates that the
numerical restrictions are less strict when the amount of salt in the system is
increased.
In Fig. 5.4 three different curves are presented showing results for the reduced
mobility as function of the reduced charge. The three curves are computed for
systems with R̃ = 1, R̃ = 3, both with f0 ≃ 0.3 and the last curve corresponds
to R̃ = 8 with f0 ≃ 0.01. Each data point was generated for a resolution
of d = 0.07, and hence data points with Ẑ & 28.6 should be regarded with
suspicion. In the famous publication of O’Brien and White [23], the data
curves start with a linear behavior in the Hückel limit R̃ = 0 and then bend
over to smaller slopes until R̃ ≃ 3, and then increase again (see Sec. 1.5).
This effect can also be achieved here. For the data of Fig. 5.4 we calculated
the ζ-potential from the solution of the Poisson–Boltzmann equation. The
result of this rescaling is presented in Fig. 5.5. It should be noticed that the
data of Fig. 5.5 was calculated for a diffusion constant of D̃ = 1.5. Although
O’Brien and White do not quote a value for the drag coefficient, D̃ = 1 seems
to be more reasonable. In Fig. 5.6 numerical data generated with our iterative
lattice method for a system with d = 0.07, R̃ = 8, f0 ≃ 0.01 (strongly salt
dominated) and various ζ–potentials and with diffusion constants D̃ = 1.5
and D̃ = 1 are compared to the results of O’Brien and White. While the data

1For comparison, the Gouy–Chapman length for this system is λ̃GC = 0.2.



102 Numerical Solutions of the Electrokinetic Equations

0 20 40 60 80
0

1

2

3

4

5

Ẑ
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Figure 5.4.: Reduced mobility as function of Ẑ for R̃ = 1, R̃ = 3 and R̃ = 8.
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Figure 5.5.: Reduced mobility as function of the dimensionless ζ-potential for R̃ =

1, R̃ = 3 and R̃ = 8.
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Figure 5.6.: Reduced mobility as function of the dimensionless ζ-potential for R̃ =

8, d = 0.07 and D̃ = 1.5 and D̃ = 1. The red line are results from Ref.
[23].

for D̃ = 1.5 are significantly too high, the data with D̃ = 1 agrees quite well
with the curve digitized from Ref. [23]. We also attempted an extrapolation
of this data curve to the continuum limit, d→ 0. Unfortunately the feasibility
of running the calculations for much higher resolutions is strongly restricted
for the current single processor code due to computer time requirements
and demand on memory. On the other hand, the resolution should be not
too low to get reliable results. Furthermore, both, the data on the x–axis
(ζ–potential) and on the y–axis (µred), are functions of the colloidal charge,
and hence the extrapolation must be applied to both dimensions. It turned
out that by use of the current implementation the attempted extrapolation
is subject to substantial numerical errors, such that no improvement of the
quality of the data is obtained. Nevertheless, the good agreement in Fig. 5.6
is an impressive indication for the reliability of our numerical method.

Regardless of the limitations of the numerical method, the lattice algorithm
offers the opportunity of systematic studies for the electrophoretic problem in
finite geometries in an adequate computational time, and this was not possible
with direct simulation methods or commercial finite-element packages before.
Moreover, the present computational method offers the possibility of control-
ling the parameters of a system independently. Within the following subsec-
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tions we present some applications, which, for the best of our knowledge, have
not been studied before.

5.1. SALT SCREENING VS. COUNTERION
SCREENING

As mentioned previously, the scaling parameter f0 distinguishes between
counterion dominated systems and salt screened systems. The common view
within the community is that the exact mechanism of ion screening is not
important for the value of the reduced electrophoretic mobility. Although
previous studies showed that within the given accuracy the effect of f0 on the
mobility is at least weak [31], there is no stringent reason, why the mobility
must be independent of f0. With the current implementation of the iterative
solver a system can be chosen such that R̃, Ẑ and D̃ are remaining constant,
while changing the box size affects the screening mechanism. Low volume
fractions correspond to low values of f0 and high salt concentration; higher
values of Φ cause high values of f0, and hence lead to counterion screened
systems. Fig. 5.7 shows 2-dimensional cuts in the x−y–plane of the first-order
concentration profiles and charge distribution for a single sphere of charge
Ẑ = 10 in an external field of Ẽ = 10−2. The value of f0 in the system is
intermediate (f0 ≃ 0.469). The concentration profiles show that ions, both
negative and positive, accumulate behind the colloid which is moving in
positive x-direction. This is consistent with results which can be found in the
literature [29, 30].

We study three different lattice structures, as already described in Chap. 4,
and vary the scaling parameter f0. The computational resolution is fixed
as constant. Thus, the systematic discretization effect should be the same
for each data point and leads to a smooth behavior of the measured data
curves. The results of this analysis are presented in Fig. 5.8. Here, we
calculated the reduced mobility for three different lattice structures with
the same parameters chosen as R̃ = 1, Ẑ = 10, D̃ = 1.5 and d = 0.08.
The plot nicely shows a nontrivial dependency of the reduced mobility
on the screening effect for all three types of lattice structures. However, the
effect is only of the order of 5 to 10%, and hence was not observable previously.

A second interesting observation is that the data curves in the counterion
screened domain differ from bcc and fcc structures to the sc lattice by roughly
3%, while the bcc and fcc curve are almost identical. This effect could also
be observed in the case of the simple Stokes problem of Chap. 4 and the
Madelung constant (see Fig. 4.5 and Tab. 4.3).
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Figure 5.7.: 2 dimensional cuts of the first order concentration fields at z = 0 for a
system of one single charged sphere in a periodic box with parameters
R̃ = 1, Ẑ = 10, f0 ≃ 0.469, d = 0.06, D̃ = 3/2 and Ẽ = 10−2. The
four plots present the first order concentrations of (a) the negative salt
ions, (b) the positive salt ions, (c) the counterions and (d) the first
order charge density.

For the sc lattice several data points were generated for the same set of
parameters. The resolution was varied between d = 0.06 to d = 0.09 and the
values of f0 were varied from the salt dominated regime to counterion screened
systems. The data were interpolated via cubic spline functions. Using linear
regression, the continuum limit d → 0 was calculated (see e. g. Fig. 5.9).
The result of this extrapolation, namely the reduced mobility as function of
the scaling parameter f0 in the limit d → 0, is presented in Fig. 5.10. Note
that the extrapolated data should be regarded with some suspicion due to
the small range of resolutions used for the extrapolation. Nevertheless, we see
that the dependency of µred on f0 seems not to be an effect of the discretization.
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Figure 5.8.: Mobility as function of f0 for constant R̃ = 1 and three types of lattice
structure as indicated by the legend. Every sphere carries a reduced
charge of Ẑ = 10 and the computational resolution is d = 0.08.
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Figure 5.9.: Reduced electrophoretic mobility as function of the sphere resolution
d for a constant value of f0 = 0.5. The red line shows a linear fit to
the numerical data.
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Figure 5.10.: Reduced electrophoretic mobility as function of f0 in the continuum
limit d → 0.
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Figure 5.11.: Reduced electrophoretic mobility as function of the diffusion con-
stant. Both curves are generated for a system with R̃ = 1, Ẑ = 10,
d = 0.07 and various values of f0 as indicated by the legend.



108 Numerical Solutions of the Electrokinetic Equations

5.2. INFLUENCE OF THE DIFFUSION CONSTANT

All data within the previous section were calculated for a diffusion constant of
D̃ = 1.5. However, the electrophoretic mobility should be affected by changes
in the diffusion constant of the microions, as already observed from Fig. 5.6.
While the Poisson–Boltzmann equation does not depend on the diffusion con-
stant, the first order equations, Eq. (1.62a), do. In the limit of D̃ → 0, all
terms of the Nernst–Planck equation vanish, except the term containing the
convective flow velocity. This leads to

ṽ(1) · ∇̃c̃(0)
i = 0 , (5.21)

and since the zeroth order concentration fields have a nonzero gradient, ṽ(1)

and therefore µred must vanish. On the other hand, if D̃ ≫ 1, one could
neglect the convective term in the Nernst–Planck equation since ṽ(1) · ∇̃c̃(0)i /D̃
is small. Hence, the equations get independent of the diffusion constant and the
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Figure 5.12.: Mobility as function of f0 for one single sphere in a periodic box (sc
lattice) and the same parameters as in Fig. 5.8 for different diffusion
constants as indicated by the legend. This plot shows extrapolated
values to d → 0.

electrophoretic mobility is expected to reach a finite plateau value. Indeed this
is the case as one can see in Fig. 5.11. The data shown there were calculated
for R̃ = 1, Ẑ = 10 and d = 0.07, but for different screening mechanisms. The
blue circles were produced for a data set of a counterion dominated system
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with f0 ≃ 0.733 and the red squares represent data for the salt screening case
with f0 ≃ 0.093. From this plot, we assume that the effect of f0 on µred could
change for different values of the diffusion constant. This is indeed the case as
observed from Fig. 5.12. Finally, one may conclude that indeed the mechanism
of screening has an effect on the electrophoretic mobility, and moreover, this
effect depends on the diffusion coefficient of the surrounding ion species.

5.3. REVERSAL OF THE CONCENTRATION PROFILE
IN WEAKLY CHARGED SYSTEMS

Consider an uncharged spherical obstacle in a solution of negatively and posi-
tively charged ions. Applying a constant external electric field, electro–osmotic
flow is generated by electric forces acting on the salt ions; positive charges move
with the field direction, negative charged ions against it. Since the ions can
not penetrate the solid sphere, the ion fluxes will be deflected by the particle.
Thus, negative salt ions accumulate at one side of the sphere, while positive
ions are depleted in that region. Since no electric forces act on the uncharged
particle, the accumulation of positive ions at one side and negative ions at
the opposite side must be symmetric. This accumulation effect leads to a po-
larization of the system. Note that the induced dipole moment points in the
“wrong” direction, i. e. anti–parallel to the driving field.

Figure 5.13.: Illustration of the charge accumulation for a neutral sphere in an
external field.

This is interesting, because it is in contrast to the usual observation that if the



110 Numerical Solutions of the Electrokinetic Equations

sphere carries charges itself, both, positive and negative ions accumulate be-
hind the sphere, resulting in dipole moment that points in the “right” direction,
parallel to the external field.
Recently, K. Kang and J. K. G. Dhont presented an analytic calculation for
the anomalous dipole moment in the case of a single uncharged colloidal sphere
in a salt solution in the presence of a slowly varying external electric field [4].
This calculation can be easily repeated, and simplified, for the case that only
a constant electric field is acting on the monovalent salt ions.
In the dimensionless formulation (see Tab. 1.1), where we omit all tildes or
hats with the understanding that all quantities are given in reduced units2, and
in the case of an uncharged colloidal sphere, i. e. in the absence of counterions,
the Nernst–Planck equation has the form

∂c±
∂t

= D∇ · (∇c± ± c±∇ψ) + ∇ · (vc±) , (5.22)

where the electrostatic potential ψ can be decomposed such that

∇ψ = ∇ψ′ − E . (5.23)

Here, E is the external electric field, and ψ′ is the solution of the Poisson
equation

∇2ψ′ = −ρ , (5.24)

with the charge density
ρ = c+ − c− . (5.25)

The subscript ± denotes the charge of the ionic species.
Linearization with respect to the external field, results in the non–stationary
version of Eq. (1.54a),

∂c
(1)
±

∂t
= D∇ ·

(
∇c(1)

± ± c
(0)
± ∇ψ(1)

)
+ ∇ ·

(
v(1)c

(0)
(±)

)
. (5.26)

Since the colloid is uncharged, the zeroth order equations are simply solved by

ψ(0) = const. , (5.27)

c
(0)
± = const. . (5.28)

The latter constant in reduced units is easily verified to be

c
(0)
± =

1

2
. (5.29)

Applying this and the incompressibility condition

∇ · v = 0 , (5.30)

2Note that this means that later the charge Z has to be understood as Ẑ, and not as Z̃.
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the convective term of first order vanishes. Hence, the Nernst–Planck equation
reduces to

1

D

∂

∂t
(ϵc

(1)
+ − ϵc

(1)
− ) = ∇ ·

(
∇(ϵc

(1)
+ − ϵc

(1)
− )

+ (c
(0)
+ + c

(0)
− )∇ϵψ(1)

)
+ O(ϵ2) , (5.31)

and together with the Poisson equation, Eq. (5.31) can be written as

1

D

∂ρ

∂t
≃ (∇2 − 1)ρ . (5.32)

The electrostatic potential must be continuous and differentiable at the sur-
face of the colloidal sphere. This results in two boundary conditions for the
potential

ψ′(in)
∣∣
r=R

= ψ′(out)∣∣
r=R

, (5.33)
∂

∂r
ψ′(in)

∣∣
r=R

=
∂

∂r
ψ′(out)∣∣

r=R
. (5.34)

Here, R is the radius of the particle and the superscripts distinguish between
the solution inside the sphere ψ′(in) or in the ambient fluid ψ′(out). A third
boundary condition results from the requirement that no ionic concentration
is allowed to flow inside the particle. This yields a no–flux boundary condition
of the form

n · j±
∣∣
r=R

= n ·
(
−D∇c(1)± ∓D(∇ψ′(1) − E(1))c

(0)
±
)∣∣∣∣
r=R

= 0 , (5.35)

where n is a unit vector perpendicular to the surface and pointing into the
fluid, and j±

∣∣
r=R

denotes the current density of the corresponding ionic con-
centration at the particle–fluid interface. Taking the difference of the no–flux
boundary conditions for the two ionic species and making use of Eq. (5.29),
one obtains

n ·
(
∇ρ(1) + ∇ψ′(1) − E(1)

)∣∣∣∣
r=R

= 0 . (5.36)

In spherical coordinates, the normal vector always points in direction of the
radial vector, and hence one may write(

∂

∂r
ρ(1) +

∂

∂r
ψ′(1) − E(1)

r

) ∣∣∣∣
r=R

= 0 , (5.37)



112 Numerical Solutions of the Electrokinetic Equations

where E(1)
r is the radial component E(1)

r = êr · E(1).
We make the following ansatz for the charge distribution and for the electro-
static potential: A charge distribution of the form

ρ(r) = ρ0E
(1) · ∇e−r

r
, (5.38)

satisfies the stationary version of Eq. (5.32). The potential in the region of
the fluid is assumed to have a screened part and a long–range term

ψ′(out)(r) = ρ0E
(1) · ∇

(
−e

−r

r
+ V0

1

r

)
, (5.39)

and in the region occupied by the particle the potential is assumed to be

ψ′(in)(r) = −W0E
(1) · r . (5.40)

The constants ρ0, V0 and W0 can be calculated from the boundary conditions.
Inserting Eq. (5.39) and Eq. (5.40) into the boundary conditions Eq. (5.33)
and Eq. (5.34), one obtains(

e−r

r
+
e−r

r2
− V0

1

r2

) ∣∣∣∣
r=R

= −W0

ρ0

R , (5.41)(
−e

−r

r
− 2

e−r

r2
− 2

e−r

r3
+ V0

1

r3

) ∣∣∣∣
r=R

= −W0

ρ0

. (5.42)

Thus we get

V0 =

(
1 +R +

1

3
R2

)
e−R , (5.43)

W0 =
ρ0

3R
e−R . (5.44)

Inserting the ansatz Eq. (5.38) into the no–flux boundary condition, Eq.
(5.37), one obtains

ρ0

(
∂2

∂r2

e−r

r
− ∂2

∂r2

e−r

r
+ V0

∂2

∂r2

1

r

) ∣∣∣∣
r=R

= 1 , (5.45)

and applying the expression for V0 results in

ρ0 =
R3

2

1

V0

=
R3eR

2
(
1 +R + 1

3
R2
) . (5.46)

Knowing the prefactor ρ0, the dipole moment can be calculated via

p =

∫
r>R

d3r rρ(1)(r) . (5.47)
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Making use of spherical coordinates, this becomes

p = ρ0

∫ ∞

R

∫ π

0

∫ π

−π
drdϑdφ r3 sinϑ êr(E

(1) · êr)
∂

∂r

e−r

r

= ρ0

∫ ∞

R

dr r3 ∂

∂r

e−r

r
·
∫ π

0

∫ π

−π
dϑdφ sinϑ (êr ⊗ êr) E(1)

= −ρ0 3

(
1 +R +

1

3
R2

)
e−R

4π

3

↔
I E(1)

= −2πR3E(1) . (5.48)

This is exactly what is obtained from the result in Ref. [4] in the limit of
vanishing frequency of the external field.
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Figure 5.14.: Dipole moment as function of the inverse box size for three different
resolutions.

First, we applied our numerical method to the problem of an uncharged sphere.
The radius of the sphere was R = 1 and the electric field was set to E = 1.
For these parameters we expect from Eq. (5.48) a dipole moment of p = −2π.
Since the numerical method operates on a system of one sphere in the center of
a periodic box, finite size effects are expected to be strong, due to dipole–dipole
interactions of the periodic images. To compare the numerical results with the
analytic expression, we first have to extrapolate our computational data to
the limit of an infinitely extended box. Furthermore, Eq. (5.48) shows that
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Figure 5.15.: Dipole moment as function of the lattice spacing d ≡ ∆x/R. The
blue data points are extrapolated to the limit of infinite box size.
The red line is a linear fit to obtain the continuum limit d → 0.
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Figure 5.16.: The data of Fig. 5.15 have been rescaled to an effective radius Reff =

(−p/2πE)1/3. The red line is a linear fit. We expect R = 1 in the
continuum limit.
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the dipole moment is proportional to the cube of the particle radius. Thus,
the numerical results depend strongly on discretization effects and we should
extrapolate our numerical data to the continuum limit.
The results of this analysis are presented in Fig. 5.14, 5.15 and 5.16. In Fig.
5.14 the computed dipole moment is plotted as function of the inverse box
size L−3 for three different grid resolutions d ≡ ∆x/R. Indeed, the anomalous
dipole moment can be observed, and furthermore the results are subject to
rather strong finite size effects. Several of such curves with different grid
resolutions have been extrapolated to the limit L−3 → 0. In Fig. 5.15 the
results of the extrapolation are presented. We obtain the continuum limit of
the dipole moment by a linear fit (red line), resulting in

p(d→ 0) ≃ −6.23 , (5.49)

which deviates less than 1% from the expected value of −2π.
Since the particle is assumed to be systematically too large (due to the dis-
cretization), we rescaled the extrapolated values of the dipole moment such
that we obtain effective radii for the discretized spheres,

Reff =
(
− p

2πE

)1/3

. (5.50)

The effective particle radius is presented in Fig. 5.16 as function of the
resolution. A linear fit recovers the expected value of R = 1 quite well in the
continuum limit, Reff (d→ 0) ≃ 1.0014.

Starting from there, the reduced charge of the colloidal sphere was increased
by small steps and the hydrodynamic equations and the convective velocity
field were taken into account. Three different curves for the dipole moment as
function of the particle charge are presented in Fig. 5.17. The reduced colloid
radius was set to R = 1 and the electric field was set to E = 1 acting in x
direction. The curves presented were computed for a resolution of d = 0.07
and a volume fraction of Φ ≃ 12.21 · 10−3 (blue circles) and Φ ≃ 8.24 · 10−3

(red squares) and for a resolution of d = 0.08 with Φ ≃ 8.18 · 10−3 (turquoise
diamonds). Indeed the dipole moment increases with increasing charge. For
a reduced charge of about Z = 2, depending on the volume fraction, the sign
of the dipole moment changes. In Fig. 5.18, 5.19 and 5.20 two dimensional
cuts in the x-y–plane are presented for the first order concentration of the
negative salt ions (Fig. 5.18), the positive salt ions (Fig. 5.19) and the first
order charge density (Fig. 5.20). All images were produced for systems char-
acterized by d = 0.08, Φ ≃ 8.18 · 10−3, R = 1 and E = 1. The corresponding
charges and measured dipole moments are Z = 0 with p ≃ −6.44, Z = 1.8
with p ≃ 0.087 and Z = 3 with p ≃ 11.16. Fig. 5.20 (b), showing the first
order charge distribution for the system with d = 0.08, R = 1, E = 1 and
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Figure 5.17.: Dipole moment as function of the reduced particle charge, for R = 1,
d = 0.07 with Φ ≃ 12.21 · 10−3 (blue), Φ ≃ 8.24 · 10−3 (red) and
d = 0.08 with Φ ≃ 8.18 · 10−3 (turquoise). The solid lines are just
guides to the eye.

Φ ≃ 8.18 · 10−3, seems to have still an anomalous dipole moment p < 0.
However, the measured dipole moment is p ≃ 0.0873. In Fig. 5.21 the same
data are presented, but with a rescaled colormap. In this representation, we
see that far from the colloid surface the ion cloud begins to reverse. The
corresponding velocity field of this system is shown in Fig. 5.22.

Furthermore, several runs were performed for d = 0.07, R = 1, E = 1 and
some different volume fractions and colloid charges in the vicinity of the critical
value, i. e. the charge of the colloidal sphere, at which the dipole moment
switches its sign. The value of the critical charge was obtained from splines.
The results of these runs are shown in Fig. 5.23. We plotted the roots of the
splines versus the inverse box size L−1 and observed a linear dependency. A
linear regression and extrapolation to zero volume fraction results in a critical
charge of

Zcrit(Φ → 0) = 1.11 ± 0.02 . (5.51)

We also reproduced the curves of Fig. 5.17 for different field strengths in the
range of E = 0.01 . . . 10, and compared the values of p/E, and indeed, they
match perfectly, as expected from the linearization of the underlying equations.
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Figure 5.18.: 2–dimensional cuts of the first order concentration profile of the nega-
tive salt ions c

(1)
− , for the parameters d = 0.08, R = 1, Φ ≃ 8.18 ·10−3

and an electric field of E = 1 acting in the x direction. The reduced
charges of the sphere and the dipole moments of the system are (a)
Z = 0.0, p = −6.44, (b) Z = 1.8, p = 0.087 and (c) Z = 3.0,
p = 11.16.
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Figure 5.19.: 2–dimensional cuts of the positively charged salt concentration c
(1)
+ ,

for the same sets of parameters as in Fig. 5.18.
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Figure 5.20.: 2–dimensional cuts of the first order charge density ρ(1). The param-
eters are the same as in the previous images (see Fig. 5.18).
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Figure 5.21.: 2–dimensional cut of ρ(1) for d = 0.08, Φ ≃ 8.18 · 10−3, R = 1.0.,
E = 1, Z = 1.8 and p = 0.087. Same data as in Fig. 5.20(b) but
with rescaled colormap.

Common electrokinetic studies usually treat the problem of highly charged
colloidal particles, thus, Kang and Dhont are the first addressing the problem
of uncharged colloids. They emphasize that structural changes may be induced
by an external field not only in charged systems where the salt ions interact
with the electric field generated by the surface charges of the macroions, but
even for uncharged systems where ion fluxes are deflected at the cores of
the colloids. Our method offers the opportunity to study both cases, i. e.
uncharged and charged colloids, and increase the particle charge slowly and
systematically.

Finally, we investigate the speculation that the difference in the dipole moment
between both cases could be an effect of convection. The convective term only
occurs in the linearized electrokinetic equations for the charged spheres, but is
absent in the neutral case. Since we study the problem in the rest frame of the
macro–particles the convective flow could carry ions and therefore charges of
both polarities around the sphere. An advantage of the Mean-Field equations
is that we can test this hypothesis by just omitting the velocity field in the
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Figure 5.22.: Illustration of the convective velocity field. The parameters are the
same as in Fig. 5.21.

convection-diffusion equation and run the program again for a charged sphere.3
We applied this “experiment” to some data for colloidal systems with R = 1,
E = 1, d = 0.08 and Φ ≃ 8.18 · 10−3 and for several charges. We find that
the convective velocity field is not the only effect responsible for the reversal
of the dipole moment. Nevertheless, it intensifies the effect strongly as shown
in Fig. 5.24.

3Note that this is equivalent with the limit of an infinite diffusion constant of the surround-
ing ions.
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Figure 5.24.: Dipole moment as function of the reduced charge for the same param-
eters as in Fig. 5.17. Here, we choose d = 0.08 and Φ ≃ 8.18 · 10−3.
The blue circles are the same data as before. For the red squares the
convection velocity was set to v(1) ≡ 0. The dash–dotted lines are
cubic splines.



6. HYDRODYNAMICS NEAR SURFACES

In chapter 3 a lattice method for the solution of the convection–diffusion equa-
tion was introduced. The lattice version of the algorithm operates directly on
the desired density/concentration and thus does not require concrete simula-
tion of a certain number of particles. On the other hand, in continuous space
a particle-based stochastic algorithm can also be used for solving the CDE
numerically [96, 97].
In this chapter a new application for such a particle based stochastic CDE
solver is presented, namely the quantitative analysis of experimental data from
a new surface sensitive method for the study of hydrodynamic effects close to
solid–fluid interfaces, known as Fluorescence Cross–Correlation Spectroscopy
in Total Internal Reflection (TIR-FCCS).
This project was done in collaboration with Stoyan Yordanov and Kaloian
Koynov (AK Butt, MPIP Mainz), who designed and performed the experi-
ments.

The assumption of stick boundary conditions, i. e. zero flow velocity at
the solid–fluid interface, is very convenient, when fluid flow is studied in
macrochannels. Nevertheless, on small length scales a liquid possibly slips
over the solid surface of the channel. Thus the assumption of stick bound-
ary conditions is not always sufficient when channels of micrometer or even
nanometer size are considered [98]. The effect of fluid slippage is usually
described by slip boundary conditions, which are typically characterized by
the ratio of the dynamic viscosity and the finite friction coefficient per unit
area of the fluid at the solid surface. Since the ratio has the dimension of a
length, it is known as slip length ls. Measuring the slip length by experiments
is very challenging, since high resolution techniques are necessary to gain
information close to interfaces. Therefore the existence and the extent of a
slip length in real physical systems and its dependence on surface properties
is a highly debated topic in the community.

In order to address this problem, S. Yordanov et al. recently introduced a
new optical experimental method, called TIR-FCCS [5], which is based on
a method known as two-beam FCCS [99]. Here, fluorescent tracer particles
in the fluid are used to analyze the flow. They are excited by laser light
focused to two observation volumes, and the signal of the emitted light of
the tracer particles in the two observation volumes is convoluted to a time
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cross–correlation function. For a quantitative data analysis an analytical
model for the form of the correlation functions is needed. In some special
cases, such analytical functions can be calculated. For example, in the case of
single focus TIR-FCS and if only free diffusion is assumed, an expression for
the auto–correlation function is known [100, 101], or in the bulk case, i. e. far
away from interfaces, analytical solutions can also be derived if diffusion plus
a constant or linear flow profile is assumed [99, 102–104]. However, in the
present case, i. e. diffusion and a non–trivial fluid flow close to an interface, it
is difficult, or even impossible, to derive an analytic expression for the auto–
and cross–correlation functions.

In the following we introduce a new numerical method for the problem and
apply it to experimental results in the case of fluid flow through a microchannel
with hydrophilic walls.

6.1. EXPERIMENTAL SETUP

Since the aim of this chapter is the development of the computational method
for the generation of correlation curves and the discussion of a statistical
method for the comparison of experimental and numerical data, this section
is devoted to a brief introduction into the experimental method and the basic
ideas and quantities. Further explanations on the experimental setup can be
found in the publication of S. Yordanov et al. [5].
The experimental setup is based on a commercial confocal FCS device (Carl
Zeiss, Jena, Germany). A parallel laser beam enters a rectangular flow channel
through its bottom wall. By increasing the angle of incidence over a critical
value total internal reflection occurs producing an evanescent wave. The in-
tensity distribution I(r) of this wave has approximately a Gaussian shape in
the x-y-plane, i. e. parallel to the interface, and decays exponentially in the
z-direction with a decay length dp. This decay length is called penetration
depth and depends on the laser wavelength and the indexes of refraction of
both media. It can be varied by changing the incident angle. Tracer molecules
are dissolved in the fluid and emit fluorescence light when excited by the laser
beam. This fluorescence light is then collected by an objective and is equally
split up by passing through a neutral 50:50 beam splitter to enter two indepen-
dent detection channels. In each channel the fluorescent light passes through
an emission filter and a confocal pinhole to finally reach the detector. Each
of the two confocal pinholes defines its own observation volume. The space
dependent molecular detection efficiencies (MDE) of the two volume elements
depend on the excitation intensity profile I(r), on the quantum efficiency of
the fluorescent tracer molecules and the detector and on the space–dependent
collection efficiency of the setup. The lateral shape of the MDEs is generally
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Figure 6.1.: Illustration of the experimental TIR-FCCS setup. BFP - back fo-
cal plane of the objective; DM - dichroic mirror; M50/50 - neutral
50% beam splitter; EF1, EF2 - emission filters; PH1, PH2 - pinholes;
APD1, APD2 - avalanche photodiodes; L1 - tube lens; L2 - collimator
lens; M - collimator’s prism based mirror. Note that the two spatially
separated observation volumes are created by shifting the pinholes
PH1/PH2 in x-y-plane. The cyan color indicates the excitation wave-
length and the yellow-green color the fluorescence light, respectively.
(This image was created by S. Yordanov and is presented here with
his kind permission.)

given by the point-spread function (PSF) of the objective, convoluted with
the image of the pinhole (see for example Ref. [105]). Furthermore the MDEs
decay exponentially along the optical axis due to the evanescent wave. Thus,
we can define the MDEs of the two pinholes as

W1(r) ∝
∫
|r0,xy|<R

d2r0,xy

(
2J1(kNA|rxy − r0,xy|)
kNA|rxy − r0,xy|

)2

exp

[
− z

dp

]
, (6.1a)
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Figure 6.2.: The coordinate system and the linear flow field employed in the TIR-
FCCS experiment. W1 and W2 denote the shape and location of the
observation volumes as seen by pinhole PH1 and pinhole PH2, respec-
tively; dp is the penetration depth, which define the axial extend of
the observation volume; w0 is the 1/e2 radius in x-y-plane of the ob-
servation volumes; sx indicates the observation volumes separation,
center to center distance; vx is the velocity field in positive x direc-
tion, which depends linearly on z and with other velocity components
equal vy,z = 0, respectively. (This image was created by S. Yordanov
and is presented here with his kind permission.)

W2(r) ∝
∫
|r0,xy |<R

d2r0,xy

(
2J1(kNA|rxy − sxêx − r0,xy|)
kNA|rxy − sxêx − r0,xy|

)2

(6.1b)

× exp

[
− z

dp

]
.

Here, J1 is the first Bessel function, k is the wave number of the fluores-
cent light, NA denotes the numerical aparture of the objective, rxy is a two-
dimensional vector in the x-y-plane and R denotes the radius of the pinhole
in the image plane. sx is the separation of the centers of the two detection
volumes along the flow axis. The factor kNA has the dimension of an inverse
length and defines the “width” of the pinhole convoluted point-spread function
(PCPSF). Later we will introduce this factor as fitting parameter in the form
λ := (kNA)−1. In accordance with the existing literature and the common
approximations, we first approximate the MDEs by Gaussian functions, such
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that the observation volumes can be written as

W1(r) ∝ exp

[
−2

x2 + y2

w2
0

]
exp

[
− z

dp

]
, (6.2a)

W2(r) ∝ exp

[
−2

(x− sx)
2 + y2

w2
0

]
exp

[
− z

dp

]
. (6.2b)

The lateral size of the focus is given by w0. The experimental setup is sketched
in Figs. 6.1 and 6.2.

6.2. CORRELATION FUNCTIONS

The tracer particles move due to diffusion and the flow field and pass consecu-
tively through the two observation volumes. This results in two time–resolved
fluorescence intensities I1(t) and I2(t). From the fluctuations of this quantity
the time dependent auto– and cross–correlation functions can be calculated as

Gij(t) =
⟨δIi(0)δIj(t)⟩

⟨Ii⟩⟨Ij⟩
, (i, j = 1, 2) , (6.3)

where ⟨·⟩ denotes the time average or, when ergodicity is assumed, an ensemble
average. As described in Refs. [99, 102, 106], a theoretical expression for this
correlation function can be obtained from

Gij(t) ∝
∫ ∫

d3rd3r′Wi(r)Wj(r
′)Φ(r, r′, t), (6.4)

where r, r′ are spatial positions, and Φ(r, r′, τ) is called concentration fluctu-
ation function. It contains the dynamics of the system and is given by

Φ(r, r′, t) = ⟨δC(r, t)δC(r′, 0)⟩ , (6.5)

where δC(r, t) = C(r, t) − ⟨C⟩ is the fluctuation in the concentration C(r, τ)
of the fluorescent tracers. The tracer particles undergo a diffusion process and
move in an externally driven flow field v. Hence, the concentration–fluctuation
function is described by a convection–diffusion equation (CDE) of the form

∂τΦ(r, r′, t) = D∇2
rΦ(r, r′, t) − v(r) · ∇rΦ(r, r′, t), (6.6)

with the initial condition Φ(r, r′, 0) = ⟨C⟩δ(r−r′), and the no–flux boundary
condition jz|z=0 = 0, where jz is the particle current density perpendicular to
the channel wall, and hence the desired solution of the CDE is only defined in
the positive half space, z > 0. Note that the initial condition states that the
equilibrium concentration fluctuations are spatially uncorrelated.
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For simplicity reasons, the hydrodynamic interactions with the surface are
neglected, and hence the diffusive term is described by an isotropic diffusion
constant D.
Since in the experiment the exponential decay length of the spatial detection
volume normal to the surface is in the range of 100nm, while the channel size
is a few orders of magnitude larger, it is justified to assume the flow field to
be approximately linear in the vicinity of the interface. Although it is possible
to obtain an analytic solution for the CDE with a linear flow profile in bulk
[103, 104], it is difficult, or even impossible, to find such a solution if a wall
breaks spatial symmetry.

Note that Eq. (6.4) is only rigorously true, if and only if W1 and W2 are the
true observation volumes detected in each detector. In the standard two beam
FCCS case, it is known that this is not the case, but both detectors would de-
tect a small amount of particles illuminated by the second laser spot. This phe-
nomenon is called cross-talk [99] and causes an additional auto-correlation like
behavior of the cross-correlation function, known as pseudo-cross-correlation
function. In the FCS community it is commonly accepted that the subtraction
of this pseudo-cross correlation curve, basically measured by the backward-
cross correlation G21, leads to the pure cross-correlation curve as expected
from the two MDEs. However, the error done by this procedure is indeed
small, if both the overlap of W1 and W2 and the cross-talk are small. If this is
the case, one may introduce two extended MDEs as

M1 := W1 + κW2 , (6.7a)
M2 := W2 + κW1 , (6.7b)

where the fraction κ is known as overlapping factor. Using these observation
volumes and defining the asymmetric bilinear form

⟨A|B⟩ :=

∫ ∫
d3rd3r′B(r)A(r′)Φ(r, r′, t) , (6.8)

Eq. (6.4) is replaced by
Gij(t) ∝ ⟨Mi|Mj⟩ . (6.9)

For the forward-cross correlation this results in

G12(t) ∝ ⟨M1|M2⟩ (6.10)
= ⟨W1 + κW2|W2 + κW1⟩
= ⟨W1|W2⟩ + κ(⟨W1|W1⟩ + ⟨W2|W2⟩) + κ2⟨W2|W1⟩ ,

and analogously for G21. Subtraction of the backward-cross correlation then
yields

G12(t) −G21(t) ∝ (1 − κ2)(⟨W1|W2⟩ − ⟨W2|W1⟩) . (6.11)
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Now, assuming κ is small (usually of the order of 1%), one may set the prefactor
as unity. Note that for similar reasons we have also ignored the κ-dependence
of the proportionality factor between the double integral and Gij.
However, in the present experimental setup there are not two independent illu-
mination spots, rather the two observation volumes are defined by the pinholes,
and thus this kind of cross-talk is experimentally not expected. Nevertheless,
the cross-correlation data also show an auto-correlation like behavior (see Fig.
6.5), which cannot be explained by the pure overlap of W1 and W2. This is
perhaps an effect of reflections in the optical setup (e.g. reflections within
the dichroic 50% beam splitter), interference effects, non-perfect angles in the
optical setup, resulting in distortions of the observation volumes, or other non-
idealities of the optical setup. Since the source of this effect is at present not
known and is also not easy to track in experiment, we assume in a first step
that the same corrections which are usually done for the standard two beam
FCCS measurements provide a reasonable cross-correlation curve plus some
small corrections

G12 −G21 ≃ cc(⟨W1|W2⟩ − ⟨W2|W1⟩) , (6.12)

where cc is a scaling constant, which can be treated as a fitting parameter (see
Sec. 6.6). If a flow field is applied in the direction from W1 towards W2, the
last term in this equation is generally given by the overlap of the observation
volumes at time t = 0. If Gaussian shaped MDEs are assumed, this term
can be neglected for the parameters in the given experiments. The numerical
method itself, which is presented in the following, does, in its applicability, not
depend on the shape of the observation volumes at all. Results for fitting the
difference curve are discussed in Sec. 6.7. In this section results for Gaussian
observation volumes are presented first. In the end, some results are shown for
simulations where the Gaussian shaped MDEs are replaced by PCPSFs.

6.3. SAMPLING ALGORITHM

As already discussed in Chap. 3, the convection-diffusion equation for con-
centration fields has the same form as a Fokker-Planck equation for Brownian
particles. This equivalence allows us to use a stochastic method, i. e. a Brow-
nian Dynamics (BD) algorithm, to solve the CDE [96, 97, 107]. The idea is
to simulate a random walk and to follow the trajectory of a single Brownian
particle taking into account the velocity field, then repeat the procedure until
we acquire enough statistics, which samples the solution of Eq. (6.6) by means
of a large number of such trajectories. In the first step we re–interpret some
parameters in terms of stochastic variables. The concentration fluctuation
function can be interpreted as a propagator and hence Φ(r, r′, t) is replaced
by P (r′, t′|r, t), which is the propagator of a Brownian particle from the spatial
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position r at time t to position r′ at time t′. Furthermore, W1 can be consid-
ered as a kind of detection probability, which acts as a production probability
density for a Brownian particle and W2 is just an observable at time t > 0. In
other words, we generate particles according the probability distribution W1

and observe them in the intensity field described by W2. This ansatz has all
advantages of an importance sampling algorithm [68] and reduces the noise in
the final results.
The isomorphism between the Fokker–Planck picture and the Langevin pic-
ture [108–110] allows to describe the convection–diffusion process in terms of
an overdamped Langevin equation. Thus an equivalent stochastic differential
equation for the spatial position of the particle r(t) reads

ṙ(t) = v(r(t)) + η(t). (6.13)

Here ṙ(t) is the tracer velocity, v is the deterministic (external) velocity and
η is a stochastic noise term (due to the diffusion) with mean 0 and its second
moment is defined by the fluctuation–dissipation theorem,

⟨ηα(t)⟩ = 0, (6.14a)
⟨ηα(t′)ηβ(t)⟩ = 2Dδαβδ(t

′ − t), (6.14b)

where α, β = x, y, z are Cartesian indices and δαβ is the Kronecker delta. In the
case of constant shear flow in the x-z-plane with slip length ls, the deterministic
part has the form

v(r(t)) = γ̇
↔
ε (r(t) + lsêz), (6.15)

where γ̇ = ∂vx/∂z is the constant shear rate, êz denotes the unit vector in
z-direction and

↔
ε is the dimensionless rate-of-strain tensor,

↔
ε =

 0 0 1
0 0 0
0 0 0

 . (6.16)

The propagation by a small time step is performed by a formal integration of
Eq. (6.13),

r(t+ ∆t) = r(t) +

∫ t+∆t

t

dt′v +

∫ t+∆t

t

dt′η

≃ r(t) + ∆tγ̇
↔
ε (r(t) + lsêz) + ∆rsto . (6.17)

According to Eq. (6.14), the stochastic displacements ∆rsto have to satisfy the
moment conditions

⟨∆rstoα ⟩ = 0 (6.18a)

⟨∆rstoα ∆rstoβ ⟩ =

∫ t+∆t

t

dt′
∫ t+∆t

t

dt′′⟨ηα(t′)ηβ(t′′)⟩

= 2D∆t δαβ . (6.18b)
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Thus, we write

r(t+ ∆t) = r(t) + ∆tγ̇
↔
ε (r(t) + lsêz) +

√
2D∆tχ, (6.19)

where χ is a vector of Gaussian random numbers with mean 0 and variance 1.
Eq. (6.19) is the well known first order Euler update and the simplest Brownian
Dynamics (BD) algorithm. Thus the algorithm consists of the production of
a particle with initial position r′ at time t1 = 0 with probability W1(r

′) and
the propagation for n time steps via P (r, t|r′, 0), t = n∆t. The probability
density to find a particle at position r after a time t is

Q(r, t) =

∫
d3r′P (r, t|r′, 0)W1(r

′). (6.20)

Then, for each point r(t), the particle is observed in the intensity field W2(r),
for the cross–correlation, and W1(r), for the auto–correlation, respectively.
This allows the correlation function to be expressed as the mean value of the
functions W1, W2 at a certain time t = n∆t over different and statistical
independent trajectories. Averaging an arbitrary observable A, one obtains

⟨A⟩(n∆t) =

∫
d3rA(r)Q(r, n∆t) (6.21)

=

∫
d3r′

∫
d3rA(r)P (r, n∆t|r′, 0)W1(r

′) .

Thus the desired cross-correlation function is computed by the substitution
A(r) = W2(r), which up to a constant prefactor yields

G
(s)
12 (t) ∝ ⟨W2⟩(t) (6.22)

=

∫
d3r′

∫
d3rW2(r)P (r, t|r′, 0)W1(r

′).

G(s) denotes the simulated correlation curve. Analogously the auto-correlation
function is produced by setting A(r) = W1(r).
The boundary condition at the wall is taken into account via reflection of
the particles at position z = 0, i. e. the z component in the random walk is
replaced by its absolute value z(t) ≡ |z(t)| to assure that the solution is only
sampled in the positive half space, z > 0.
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6.4. PARAMETER SPACE AND DIMENSIONLESS
UNITS

For the purpose of numerical calculations, one may rewrite the problem in
dimensionless units. Therefore we should first identify the whole parameter
space.
The observation volume of the system is defined by Gaussians or PCPSFs
in the x-y-plane with width w0/2 (or λ) and a penetration depth dp for the
exponential decay perpendicular to the surface. Furthermore, the centers of
observation volumes are separated by a length sx along the x-axis, i. e. in
flow direction. For the flow and the dynamics of the particles three additional
intrinsic parameters occur, namely the diffusion constant D, the shear rate γ̇
and the slip length ls. For the discretization in the time domain, we further
have to choose a time step ∆t.
The height of auto- and cross-correlation functions also depends on the av-
eraged concentration of tracer particles. Since the simulation method carries
no information about this concentration, three additional unknowns have to
be taken into account, which are the prefactors of the double integral of Eq.
(6.22), c1, c2 accounting for the auto–correlation functions, and cc adjusting
the height of the cross–correlation function.
To re-formulate the problem in terms of dimensionless units, one should iden-
tify some intrinsic time and length scale. The most natural time scale of a
diffusive system, independent of any flow velocity, is the diffusion constant di-
vided by the square of a typical length scale. Choosing the penetration depth
as intrinsic length scale, all time and space parameters are transformed via

r̃ =
r

dp
, (6.23a)

t̃ = t
D

d2
p

. (6.23b)

Hence, we have to replace w0 = w̃0 dp (λ = λ̃ dp), γ̇ = ˜̇γ D/d2
p, ls = l̃s dp,

sx = s̃x dp and ∆t = ∆̃t d2
p/D. Introducing this dimensionless formulation, one

may write the Euler update, Eq. (6.19), in the form

r̃(t̃+ ∆̃t) = r̃(t̃) + ∆̃t˜̇γ
↔
ε (r̃(t̃) + l̃sêz) +

√
2∆̃tχ , (6.24)

and the MDEs can be written as

W1 ∝ exp

(
−2

x̃2 + ỹ2

w̃2
0

)
exp(−z̃), (6.25a)

W2 ∝ exp

(
−2

(x̃− s̃x)
2 + ỹ2

w̃2
0

)
exp(−z̃), (6.25b)
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or, if the observation volumes are modeled as diffraction patterns, as

W1(r̃) ∝
∫
|r̃0,xy |<R̃

d2r̃0,xy

(
2J1(λ̃

−1|r̃xy − r̃0,xy|)
λ̃−1|r̃xy − r̃0,xy|

)2

exp (−z̃) ,(6.26a)

W2(r̃) ∝
∫
|r̃0,xy |<R̃

d2r̃0,xy

(
2J1(λ̃

−1|r̃xy − s̃xêx − r̃0,xy|)
λ̃−1|r̃xy − s̃xêx − r̃0,xy|

)2

(6.26b)

× exp (−z̃) .

Thus the simulation is completely defined by the parameters w̃0 (λ̃), ˜̇γ, l̃s,
s̃x and ∆̃t. The prefactors ci can be seen as scaling parameters and have no
direct influence on the results of the simulation. Similarly dp and D define the
spatial and time units, but do not occur in the equations for the computational
method.

6.5. NUMERICAL TEST

As a simple test case, we used our algorithm to calculate the auto-correlation
function for vanishing flow and a Gaussian MDE, where an analytical solution
of the CDE and the double integral over observation volumes of the form Eq.
(6.25) is known [100, 101]. In our dimensionless units, it is, up to constant
prefactors, given by

G(a)(t̃) =
1

1 + 4t̃
w̃2

0

{(
1 − 2t̃

)
exp

[
t̃
]
erfc

[√
t̃
]

+

√
4

π
t̃

}
. (6.27)

The superscript (a) denotes for the analytic solution. Since the Langevin and
the Fokker–Planck picture are rigorously equivalent, the simulated curve must
coincide exactly with this analytic expression. Indeed we find that this is the
case. Fig. 6.3 shows the analytic auto-correlation function with w̃0 = 2 and
its simulated counterpart, averaged over 103 independent trajectories, where a
small time step of ∆̃t = 10−3 was used. In Fig. 6.4 the deviation of simulated
data (G(s)) from the analytic expression is shown,

error(t̃) = G(s)(t̃) −G(a)(t̃). (6.28)

Clearly, the numerical solution converges to the analytical result when the
number of trajectories is increased, as it should be.

6.6. STATISTICAL DATA ANALYSIS

Fitting experimental results via an analytic function for determining parame-
ters and their error bars is a well known standard tool in science, and a huge
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Figure 6.3.: Analytical solution and simulated data for the average over 103 tra-
jectories.
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Figure 6.4.: Deviation from the analytic curve for 103,104 and 105 trajectories.

number of programs for this purpose is available. However, we do not have
an analytic expression, but rather a second set of data points generated by
a “computer experiment”. These data points are means of random variables,
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and hence tainted with statistical errors. In the following, a way of compar-
ing these simulated results with experimental data points is presented. In a
second step, we introduce a Monte Carlo (MC) method to determine the most
probable values of the parameters and their statistical errors.

6.6.1. COMPARING EXPERIMENTAL DATA WITH
SIMULATION RESULTS

Here, each simulated data point is a mean valueXi, averaged overmx ≃ 2.5·105

independent trajectories and each experimental data point Yi is the mean of
my = 40 independent measurements. The index i = 1, . . . ,M counts the
number of data points, according to the time scale and to the three different
curves (two auto– and one cross–correlation curve). From the statistical point
of view, both, mx as well as my, can be viewed as a large number such that Xi

and Yi are assumed to be Gaussian distributed around ⟨Xi⟩, ⟨Yi⟩ with variance
(σx,yi )2 = (sx,yi )2/mx,y. Here, (sx,yi )2 is the spread of the independent data

(sxi )
2 :=

1

mx − 1

mx∑
j=1

(Xj
i −Xi)

2, (6.29)

(syi )
2 :=

1

my − 1

my∑
j=1

(Y j
i − Yi)

2. (6.30)

To measure the “goodness” of simulation, we define the weighted deviation
between the experimental and the simulated data points

αi :=
Xi − Yi√

(σxi )
2 + (σyi )

2
. (6.31)

Due to the statistical independence of experiment and simulation and the
Gaussian distribution of the data points, αi is also distributed normally;

P (α) =

∫ ∞

−∞
dX

∫ ∞

−∞
dY P (X)P (Y ) (6.32)

·δ

(
α− X − Y√

(σx)2 + (σy)2

)

=

∫ ∞

−∞
dX

∫ ∞

−∞
dY P (X)P (Y )

· 1

2π

∫ ∞

−∞
dk exp

[
−ik

(
α− X − Y√

(σx)2 + (σy)2

)]
,
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and with

P (X) =
1√

2π(σx)2
exp

[
−(X − ⟨X⟩)2

2(σx)2

]
, (6.33)

P (Y ) =
1√

2π(σy)2
exp

[
−(Y − ⟨Y ⟩)2

2(σy)2

]
, (6.34)

integration yields

P (α) =
1√
2π

exp

−1

2

(
α− ⟨X⟩ − ⟨Y ⟩√

(σx)2 + (σy)2

)2
 . (6.35)

Since the simulation should match the experimental results, we aim for

⟨X⟩ − ⟨Y ⟩ = 0 , (6.36)

and hence
P (α) =

1√
2π

exp

[
−1

2
α2

]
. (6.37)

Furthermore, we define the goodness of simulation as the mean square weighted
distance of simulation to the experimental data curves

ξ :=
1

M

M∑
i=1

α2
i . (6.38)

Making use of Eq. (6.37), one obtains for a perfect match of both data curves

⟨ξ⟩ =
1

M

M∑
i=1

⟨α2
i ⟩

= ⟨α2⟩

=
1√
2π

∫ ∞

−∞
dαα2 exp

[
−α

2

2

]
= 1 . (6.39)

It should be noted that if my is small, (Y −⟨Y ⟩)/σy is not distributed normally
any more, but rather follows a χ2 distribution [111]. Even worse, if also mx is
not large, one has to think about the (yet unsolved) problem of comparing two
random variables with different variances. However, the latter problem can be
approximately treated by a variant of Student’s t test, published by Welch in
1938 [112], who pointed out that αi is approximately distributed via Student’s
t distribution with an estimated number of degrees of freedom

fi =
(σxi + σyi )

2

(σx
i )2

mx
+

(σy
i )2

my

. (6.40)
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The distribution of αi then reads

T (α, f) =
Γ
(
f+1

2

)
√
fπ Γ

(
f
2

) (1 +
α2

f

)− f+1
2

. (6.41)

Assuming this distribution, we also can calculate the expectation value of the
goodness of simulation

⟨ξ⟩ =

∫ ∞

−∞
dαα2 T (α, f)

=
f

f − 2
. (6.42)

As mentioned previously, mx ≃ 2.5 · 105 is much larger than the number of
experiments my = 40, and hence we assume that the error of the simulated
data is negligible compared to the experimental error and f becomes of the
order of my. In this limit, we get ⟨ξ⟩ ≃ 1.05, which agrees very well with the
idealized case of normal distributed values. Moreover, in the limit f → ∞, the
Student’s function indeed converges to the Gaussian distribution,

lim
f→∞

T (α, f) =
1√
2π
e−

α2

2 . (6.43)

In the present case, i. e. f ≃ 40, an integrated deviation between T (α, f) and
the Gaussian distribution, achieved via

error(f) :=

∫ ∞

−∞
dα|P (α) − T (α, f)| , (6.44)

is evaluated as error(40) ≃ 0.016. This, however, is quite accurate. (For
comparison, the expected goodness for a small set of experimental data with
f ≃ 4 would be ⟨ξ⟩ ≃ 2 and the integrated deviation to a normal distribution
is error(4) ≃ 0.151.) Thus we conclude that the treatment via Gaussians is
indeed a reliable method for the purpose of a quantitative data analysis via
stochastic methods.

6.6.2. GOOD PARAMETERS AND THEIR STATISTICAL
ERRORS

A very elegant method for determining the input parameters, resulting in the
best possible agreement between simulation and experiment, and in addition,
for the calculation of their statistical errors, is the use of the distribution of α
to construct a Monte Carlo (MC) importance sampling algorithm.
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We define a vector in the input–parameter space1

Π = (c1, c2, cc, dp, w0, sx, D, γ̇, ls) (6.45)

and restrict the MC sampling to a rectangular box in this 9–dimensional space
ΩΠ. The algorithm starts from a random point Π(0) in ΩΠ and generates
subsequently new configurations from the previous points via

Π(n+1)
α = Π(n)

α + ∆Παrα , (6.46)

where the index α pertains to the parameters and the superscript n counts the
MC step. ∆Πα is the MC step width and rα a uniform random number in the
range [−1, 1]. Note that summation convention is not applied. If Π(n+1) ∈ ΩΠ,
α

(n+1)
i is calculated for every data point. Conversely, if Π(n+1) /∈ ΩΠ, this

configuration is rejected and a new point is generated. The αi are assumed to
be statistically independent, and hence one can calculate

P (
∑
i

α
(n+1)
i ) =

∏
i

P (α
(n+1)
i ). (6.47)

Then a standard Metropolis step is applied [68], such that Π(n+1) is accepted
if a random number ρ ∈ [0, 1) satisfies the condition

ρ <

∏
i P (α

(n+1)
i )∏

j P (α
(n)
j )

. (6.48)

In the nomenclature of statistical mechanics, Π is a point in the phase space
and H

kBT
:= 1

2

∑
i α

2
i is a Hamiltonian giving rise to a Boltzmann distribution.

For practical reasons, one should notice that α must be a function of the input
parameters Π, but not of the random numbers used for the BD algorithm,

αi ≡ αi(Π) . (6.49)

Thus, one should use the same sequence of random numbers for every MC step.
Although we perform the BD simulation using several hundred thousands of
trajectories, the results still depend somewhat on the set of random numbers
which have been used in the BD. Therefore in order to allow a smooth MC
sampling of parameters (analogously finding a smooth free energy minimum
in parameter space) we kept the sequence of random numbers strictly fixed
when performing an MC move from one set of parameters to another one. This

1Note that here Π is a point in the parameter space, if Gaussian observation volumes are
used. However, the method is rather general, and therefore it is also valid in the case of
PCPSF.
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however implies that the final results will depend somewhat on the sequence of
random numbers that have been used (“sample-to-sample fluctuations”). The
effect of these fluctuations on our statistical error bars will be investigated
though not systematically in Sec. 6.7.2.
Finally, averaging over all MC sweeps should end up in proper values for the
desired parameters and the second moments yield estimators for the statistical
errors of these quantities.

6.6.3. SCALE INVARIANCE AND AVERAGING

From the convection-diffusion equation one can observe that the parameters are
subject to a scale invariance in space. Starting with the convection-diffusion
equation

∂

∂t
P (r, t|r′, 0) = D∇2

rP (r, t|r′, 0) −∇r · vP (r, t|r′, 0) , (6.50)

with
v(r) = γ̇

↔
ε ·(r + lsêz) , (6.51)

one may rescale the spatial coordinates such that we get

r ≡ as , (6.52)

and
∂

∂r
=

∂

∂(as)
=

1

a

∂

∂s
. (6.53)

The propagator can then be modified such that

P (r, t|r′, 0)d3r = Ψ(s, t|s′, 0)d3s , (6.54)

and thus we get
Ψ = a3P . (6.55)

Inserting this into the convection-diffusion equation, one obtains

∂

∂t
Ψ =

D

a2
∇2
sΨ −∇s · γ̇

↔
ε ·(s +

ls
a

êz)Ψ . (6.56)

Furthermore the observation volumes also depend on spatial parameters

Wi ≡ Wi(r, {σi}) , (6.57)

with {σi} the lengths characterizing the geometry. Note that we may interprete
Wi as production or detection probability density, and thus we can define a
rescaled MDE

Ωi = a3Wi , (6.58)
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such that
Wid

3r = Ωid
3s . (6.59)

The correlation functions can then be rewritten as

Gij(t) =
1

⟨C⟩

∫
d3r

∫
d3r′Wj(r)P (r, t|r′, 0)Wi(r

′) (6.60)

=
1

a3

1

⟨C⟩

∫
d3s

∫
d3s′Ωj(s)Ψ(s, t|s′, 0)Ωi(s

′) ,

where we took into account that the normalization constant is the effective
averaged concentration ⟨C⟩ of the tracer molecules and that the MDEs are
normalized to 1. This leads to

Gij(t, ⟨C⟩, D, γ̇, ls, {σi}) = Gij

(
t, a3⟨C⟩, D

a2
, γ̇,

ls
a
,
{σi
a

})
. (6.61)

Now it should be noted that there is no spatial parameter with vanishing or
very small experimental error bar. Thus the results of our data analysis can
never be more accurate than the most accurate of our input lengths. The MC
runs in the following section seem to be not long enough to observe this scale
invariance explicitly in the data. However, to take the effect into account we
do not only average over the single MC steps, but rather over all “iso-lines”
pertaining to every data point. Assuming that the most accurate parameters
are the penetration depth dp = 100 ± 10nm, the diffusion constant D = 36 ±
5µm2/s and the separation distance sx = 800 ± 80nm, we calculate for every
data point a minimum and a maximum scaling factor a, such that we get
d

(min)
p < a−1dp < d

(max)
p , s(min)

x < a−1sx < s
(max)
x and D(min) < a−2D < D(max),

∀a ∈ (amin, amax). Then we generate an iso-line for every data point of the
MC simulation and average over all these iso-lines, excluding the data of the
first 5 × 104 MC sweeps.

6.7. RESULTS AND DISCUSSION

6.7.1. RESULTS FOR GAUSSIAN SHAPED OBSERVATION
VOLUMES

In this section we discuss results from an implementation of the BD algo-
rithm and the MC based data analysis. We first use the common model in
the FCS community, where the lateral extension of the observation volumes
is described by a Gaussian shape, i. e. we use observation volumes of the
form Eq. (6.25). For the experiments, carboxylate-modified quantum dots
(Qdot585 ITK Carboxyl, Molecular Probes, Inc.) with a hydrodynamic radius
RH ≃ 7nm were used as tracer particles, suspended in aqueous solution of
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potassium phosphate (K2HPO4) buffer (pH ≃ 8). The experiments have been
performed in a rectangular microchannel of Ly ≃ 4mm width, Lz ≃ 100µm
height and Lx ≃ 50mm length, where the solution of Qdot585 flows and
induces Poiseuille flow. The penetration depth of the evanescent wave was
fixed to dp ≃ 100nm. The lateral size of the observation volumes was about
w0 ≃ 260nm and their center-to-center separation was set to sx ≃ 800nm.
From dynamic light scattering experiments the diffusion constant of the tracer
particles is known to be roughly D ≃ 36µm2/s. Correlation curves were
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Figure 6.5.: Experimental auto- and cross-correlation functions measured for a hy-
drophilic surface.

measured for a hydrophilic wall surface. Fig. 6.5 shows experimentally mea-
sured auto- and cross-correlation data. For the cross-correlation we plotted the
forward- (G12), the backward- (G21), and the difference-cross-correlation func-
tion (G12−G21). Indeed, the cross-correlation curve has some auto-correlation
like fraction, which we could not explain by the small overlap of W1 and W2

as mentioned previously.
Within this section every simulated data point is an average over 123 × 211

independent trajectories2. Figs. 6.6 and 6.7 present the experimental TIR-
FCCS data compared to simulated auto- and cross-correlation curves, and in
Fig. 6.8 the distribution of α2

i is shown. This distribution is compared with
the distribution functions for α2 according to Student’s t function

T ′(α2, f) =
Γ
(
f+1

2

)
√
fπ Γ

(
f
2

) 1√
α2

[
1 +

α2

f

]− f+1
2

, (6.62)

and the normal distribution

P ′(α2) =
1√

2πα2
e−

α2

2 . (6.63)

2We used 2048 parallel processes, each computing 123 BD trajectories, for the MC analysis.
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Figure 6.6.: Auto-correlation functions for c′1 = 0.619, c′2 = 0.616, c′c = 0.0554,
w0 = 245.71nm, dp = 98.05nm, D = 36.38µm2/s, sx = 753.34nm,
γ̇ = 3800 s−1 and ls = 6.26nm. The goodness of simulation was
calculated to be ξ ≃ 2.5.

In a first run, all input parameters were kept fixed, except the shear rate and
the slip length, and the landscape of ξ was computed (see Fig. 6.9). We see
that varying the slip length and the shear rate is not independent in terms
of auto– and cross–correlation curves. Increasing ls has the same effect on
the shape of these curves as decreasing γ̇, and one would never get results
for these two parameters independently by TIR–FCCS measurements within
the given model. However, using double-focus FCCS or single-focus FCS
measurements in bulk, one can obtain an independent value for the shear
rate [102, 113] measuring the flow profile throughout the microchannel and
afterwards deriving it via Poiseuille fit. Here, single focus confocal FCS was
used. Fig. 6.10 presents such a flow velocity profile, measured under the
same conditions as the TIR–FCCS measurements. Since the ratio between
width and height of the channel is large and the slip length is supposed to
be small compared to the channel dimensions, it is valid to use a simple one
dimensional Poiseuille profile to fit the experimental data. More details on
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Figure 6.7.: Difference-Cross-correlation function for the same set of parameters
as in Fig. 6.6.

0 1 2 3 4 5
0

0.5

1

P

α2

Histogram

T ′(α2, 40)

P ′(α2)
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Figure 6.9.: ξ as function of slip length and shear rate. The other parameters are
the same as in Fig. 6.6.

this issue and some theoretical background are presented in appendix B.1.
From the Poiseuille fit, one can obtain the shear rate at the hydrophilic wall,
which is determined to be γ̇ = 3854 ± 32 s−1. Note that the quoted error is
obtained from the fitting routine (gnuplot), but is not the real physical error
from the experimental inaccuracy.

Several Monte Carlo runs have been performed for various, but fixed, values
of the shear rate in the range of 3500s−1 to 4000s−1. The MC runs were
computed on 512 nodes (2048 processes) on the IBM Blue Gene–P in the
Rechenzentrum Garching. We adjusted ∆Π in order to obtain a reasonable
acceptance rate of roughly 77%. Each sampling has been run for more than
5 · 105 MC sweeps. The mean values of the parameters and their standard
deviations were calculated, excluding the first 5 · 104 configurations, and
averaging over iso-lines as described previously. The results are presented in
Tab. 6.13.

The convergence behavior of the method is shown in Fig. 6.12, where we plot
ξ as function of the number of Monte Carlo iterations. Fig. 6.11 presents data

3Note that here the simulation results have been rescaled such that the maximum values
of the correlation curves are set to 1. The parameters c′i then are adjusted to match the
heights of the experimental data curves.
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Figure 6.10.: Flow profile and Poiseuille fit along z-direction (surface of measure-
ment is located at z ≃ 50µm).
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Figure 6.11.: Slip length as function of the number of MC steps for γ̇ = 3800 s−1.
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on the evolution of ls during the Monte Carlo process for γ̇ = 3800s−1.
Calculating the means and the statistical errors, we are able to obtain a re-
lation between the shear rate and the slip length (see Fig. 6.13). From the
independent measurement of the experimental shear rate, we can conclude
within the given model that the slip length at the hydrophilic surface should
not exceed the value of ls . 10nm. It is interesting that the given model, i. e.
the linear profile and the exponential decay along the optical axis, allows us
to map the measured slip length of the point particle to a slip length where
steric interactions with the wall are taken into account. The reflection at the
wall at z = 0 must be replaced by a reflection at z = R, with R the radius of
the tracer particles. This implies a coordinate transformation

z′ = z −R , (6.64)

or
z = z′ +R , (6.65)

where z denotes the real distance from the wall, while z′ is the coordinate used
in the algorithm. For the exponential decay of the MDEs we therefore get

exp

(
− z

dp

)
= exp

(
−R

dp

)
exp

(
− z′

dp

)
, (6.66)

in other words, the MDEs have the same form except for an unimportant
prefactor. Furthermore, one has to transform the flow velocity as

vx(z) = γ̇(z + ls) (6.67)
= γ̇(z′ + (ls +R))

≡ γ̇(z′ + l′s) .

From this we see that exactly the same method can be used for tracer particles
with finite size, only the interpretations of the spatial position and of the
slip length change. Since l′s is the number produced by the algorithm, the
real slip length is ls = l′s − R, where steric interactions have been taken into
account. Note that the figures in the text always show data for l′s, i. e. where
steric interactions have not been taken into account. Assuming that the
particle radius is R ≃ 7nm, this observation allows us to conclude that the
real slip length at a hydrophilic surface is indeed very close or identical to zero.
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γ̇[s−1] 3500 3600 3700
av σ av σ av σ

c′1 0.6187 0.0005 0.6188 0.0005 0.6188 0.0005
c′2 0.6160 0.0006 0.6161 0.0006 0.6161 0.0006
c′c 0.0554 0.0002 0.0554 0.0002 0.0554 0.0002
dp[nm] 100.78 2.96 100.11 3.08 99.72 3.16
w0[nm] 247.57 6.74 247.67 7.06 247.49 7.33
sx[nm] 754.64 20.25 756.37 21.23 757.93 22.15
D[µm2/s] 37.47 2.01 37.32 2.09 37.18 2.17
l′s[nm] 14.33 0.72 11.50 0.71 8.71 0.66
ξ 2.637 0.012 2.677 0.012 2.717 0.011
acceptance rate 77.2% 77.4% 77.6%
# data points 491000 490500 910100

γ̇[s−1] 3800 3900 4000
av σ av σ av σ

c′1 0.6189 0.0006 0.6189 0.0006 0.6190 0.0007
c′2 0.6162 0.0006 0.6163 0.0006 0.6163 0.0007
c′c 0.0554 0.0002 0.0554 0.0002 0.0554 0.0002
dp[nm] 98.89 3.31 98.87 3.51 98.05 3.69
w0[nm] 247.77 7.69 247.56 8.02 247.60 8.38
sx[nm] 759.74 23.19 761.42 24.16 763.35 25.14
D[µm2/s] 37.03 2.26 36.88 2.34 36.74 2.42
l′s[nm] 6.31 0.66 3.84 0.77 1.64 0.79
ξ 2.757 0.011 2.797 0.011 2.837 0.012
acceptance rate 77.9% 78.0% 78.1%
# data points 487900 494400 495000

Table 6.1.: Averaged values (av) and standard deviations (σ) calculated from the
MC simulations for Gaussian shaped observation volumes.
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Figure 6.12.: Goodness of simulation ξ as function of the number of MC steps for
γ̇ = 3800 s−1.

6.7.2. THE INFLUENCE OF DIFFRACTION PATTERNS

Although the ξ landscape is rather sharp, resulting in small fluctuations in ξ
during the MC procedure, the best fits only reached values beyond ξ & 2.5,
i. e. larger than the expected value for a perfect matching of experiment and
simulation. This indicates that some systematic errors occur. Indeed we find
that although the auto–correlation curves match very well (see Fig. 6.6), and
the cross–correlation curves matches over a wide range, there is still a small
gap between experimentally measured and simulated cross–correlation curves
(see the left shoulder in Fig. 6.7).

Since the overlap of the observation volumes is very small for a reasonable
width and separation distance, this is not an effect of neglecting the backward-
cross correlation in the simulation results, ⟨W2|W1⟩. However, in the limit
of strongly overlapping observation volumes the corrected experimental curve
differs significantly from the simulation: While the simulated data runs into
the limit of auto–correlation, the experimental curve disappears. For testing,
we included this effect in the numerical method by subtraction of the average
over W2((−x, y, |z|)). We observed that in the relevant range of parameters
the effect of this correction is negligible. Furthermore, one could expect that
a possible lateral shift of the observation volumes, i. e. orthogonal to the
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Figure 6.13.: Averaged slip length as function of the shear rate, calculated from
the MC results.

flow direction, could affect the shape of the cross–correlation curve. The
experimentalists estimated this error to be smaller than sy . 20nm. In a
simple numerical test we fixed all parameters except sy and calculated the
cross–correlation curve. It turned out that sy must be about one order of mag-
nitude larger than the estimated error range to observe significant changes in
the cross–correlation curve, and hence this effect indeed seems to be negligible.

In our physical model we used the common approximations of the general FCS
community, i. e. the lateral shape of observation volumes is approximated
by Gaussians. However, we know that the Gaussian shape is only a rough
approximation for the true intensity profile. For this subsection we replaced
the Gaussian shaped MDEs, Eqs. (6.2), by PCPSFs as given by Eqs. (6.1).

Finding an analytical solution for the convolution of the point-spread function
with the image of the pinhole is complicated, and hence we decided to solve
this integral numerically. We first rewrite the integral as

Wxy(rxy) ∝
∫
|r0,xy |<R

d2r0,xy

[
2J1(kNA|rxy − r0,xy|)
kNA|rxy − r0,xy|

]2

(6.68)

∝
∫
|ρ0|<R′

d2ρ0

[
2J1(|ρ − ρ0|)

|ρ − ρ0|

]2

≡ Wxy(ρ) ,
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Figure 6.14.: Correlation functions Gij as defined in the text, and linear combi-
nations thereof, comparing the experimental data (with error bars)
with the numerical fit functions (without) for an optimized param-
eter set. The statistical error of the numerical data is smaller than
the line width. The images have been obtained by modeling the ob-
servation volumes by Eq. 6.1. The goodness of simulation was found
to be ξ = 1.36.
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with

ρ := kNA rxy , (6.69a)
ρ0 := kNA r0,xy , (6.69b)
R′ := kNAR , (6.69c)

and
W (r) ≡ Wxy(rxy)Wz(z) ∝ Wxy(rxy) exp

(
− z

dp

)
. (6.70)

ρ and ρ0 are two-dimensional vectors. Since the function W (ρ) depends only
on the absolute value |ρ|, one may restrict the calculation to one specific
direction, i. e. the integration is only performed along the x-axis,

ρ = (x, 0)T , (6.71a)
ρ0 = (x0, y0)

T . (6.71b)

For every point x ∈ (−R′, R′) we then perform a Monte-Carlo integration
as follows: To get a vector with |ρ0| < R′ we generate a pair of uniformly
distributed random numbers in the range u, v ∈ (−1/2, 1/2). All pairs for
which u2 + v2 > 1/4 are discarded and the remaining ones are transformed via

x0 = 2R′ u , (6.72a)
y0 = 2R′ v . (6.72b)

Finally, averaging the function

A(ρ,ρ0) =

[
2J1(|ρ − ρ0|)

|ρ − ρ0|

]2

(6.73)

using a large number of ρ0 results in the desired PCPSF. In contrast to the
convolution Eq. (6.68), the normalization constant can be calculated analyti-
cally, since the order of integration over ρ0 and ρ can be exchanged. Using a
table of integrals [114] the normalization constant is calculated to be (4π)−1.
Initial positions of Brownian particles (in the x-y-plane) are chosen by uni-
formly distributed angles ϑ and by generating uniformly distributed random
numbers ζ ∈ (0, 1) and comparison with the integral

ζ = 2π

∫ ρ

0

dρ′ρ′Wxy(ρ
′) , (6.74)

such that ρ ≡ ρ(sin(ϑ), cos(ϑ))T is distributed via PCPSF. It should be noted,
that the convolution solely depends on kNA in combination with the radius
of the pinhole R′ = kNAR. We use the “width” of the PCPSF as fitting
parameter λ := (kNA)−1 such that we can write

rxy = λρ , (6.75)
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and thus we should calculate the convolution in every MC step. However,
since the numerical evaluation is computationally expensive, we only vary the
parameter λ, while keeping R′ constant. This assumption has the advantage
that we only have to calculate the integral once. In practice, this has been
done using a self-contained program written by B. Dünweg. The resulting
tabulated observation volume was written to the hard disk and read in when
starting the BD/MC simulation.

Indeed, using the PCPSF a substantial improvement of the match of simu-
lation with the experimental data is observable. Above, we have seen that
the experimental auto-correlation curves are nearly identical. Thus we replace
the two auto-correlation curves by their average Gauto := 1

2
(G11 + G22) and

calculate the goodness of simulation in the following with respect to Gauto and
the difference-cross-correlation curve G12 − G21. We again performed several
Monte Carlo runs in the space of (⟨C⟩a, ⟨C⟩c, dp, λ, sx, D, ls). ⟨C⟩a and ⟨C⟩c
denote the effective averaged concentrations of the tracer particles for the av-
eraged auto- and the difference-cross-correlation curves. The width of the
Gaussian observation volumes w0 is replaced by the parameter λ, accounting
for the extension of the PCPSFs. The shear rate γ̇ was fixed again and we
performed MC runs for γ̇ = 3500s−1, . . . , 4000s−1. The Monte Carlo algorithm
was run for more than 6.5 · 105 steps, and again the first 5 · 104 configurations
were discarded for the calculation of average values and standard deviations
via “iso-line averaging”. The acceptance rate in each run was roughly 82%.
Figs. 6.14 show correlation functions Gij, comparing experimental data with
the simulation results for an optimized parameter set, i. e. a snapshot of an
MC run. The goodness of simulation is ξ = 1.36, and thus we observe a much
better match of simulation and experiment as in the case of Gaussian obser-
vation volumes. The non-vanishing back-correlation in Fig. 6.14d indicates
now a substantial overlap of the two observation volumes. Although the un-
corrected curves still do not match the experiment, the difference-curve fits
almost perfectly. From comparison of Fig. 6.7 with Fig. 6.14f we see that
the gap between experimental and numerical data decreases substantially. As
mentioned before, we performed a few MC runs for the same shear rate, but
different sequences of random numbers for the BD. The results quoted in Tab.
6.2 show that some “sample-to-sample fluctuations” occur, and thus the real
statistical errors of the slip lengths are indeed somewhat larger than calculated
from the single MC run. In Tab. 6.3 the results of the Monte Carlo runs are
quoted, and Fig. 6.15 illustrates the averaged slip length as function of the
shear rate. We see that the values of the slip length slightly increase compared
to the results for the Gaussian shaped observation volumes. Nevertheless, tak-
ing steric interactions into account the results show that the slip length at the
hydrophilic surface should not exceed a few nanometers.
The results demonstrate impressively that the method of TIR–FCCS in com-
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seed 42 4711 2409
av σ av σ av σ

⟨C⟩A[µm−3] 17.83 1.92 17.81 1.96 17.94 1.94
⟨C⟩C [µm−3] 16.53 1.80 16.45 1.82 16.83 1.83
dp[nm] 95.81 3.50 96.02 3.58 95.78 3.52
λ[nm] 68.70 2.60 68.58 2.61 69.81 2.69
sx[nm] 781.94 27.70 779.54 28.28 793.22 28.24
D[µm2/s] 36.59 2.56 36.47 2.62 36.63 2.57
l′s[nm] 12.80 1.10 11.62 0.90 15.14 1.21
ξ 1.441 0.018 1.277 0.016 1.718 0.017
acceptance rate 82.0% 82.0% 82.2%
# data points 609410 609590 610510

Table 6.2.: Averaged values (av) and standard deviations (σ) calculated from MC
simulations with fixed γ̇ = 3800s−1, but different seeds for the random
number generator.
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Figure 6.15.: Averaged slip length as function of the shear rate as observed from
MC simulations. Here the lateral shape of the observation volumes
was set as PCPSFs.
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γ̇[s−1] 3500 3600 3700
av σ av σ av σ

⟨C⟩A[µm−3] 17.82 1.90 17.91 1.88 17.93 1.89
⟨C⟩C [µm−3] 19.94 1.82 17.00 1.80 16.82 1.78
dp[nm] 95.83 3.46 95.66 3.42 95.64 3.44
λ[nm] 68.84 2.53 69.10 2.55 69.01 2.56
sx[nm] 774.39 26.59 777.98 26.63 780.53 26.97
D[µm2/s] 36.71 2.49 36.76 2.48 36.72 2.51
l′s[nm] 21.92 1.31 19.16 1.24 15.98 1.12
ξ 1.377 0.016 1.40 0.016 1.420 0.017
acceptance rate 82.1% 82.1% 82.1%
# data points 608090 611290 610160

γ̇[s−1] 3800 3900 4000
av σ av σ av σ

⟨C⟩A[µm−3] 17.83 1.92 17.67 2.00 17.96 1.89
⟨C⟩C [µm−3] 16.53 1.80 16.21 1.86 16.41 1.74
dp[nm] 95.81 3.50 96.14 3.70 95.58 3.41
λ[nm] 68.70 2.60 68.42 2.71 69.01 2.56
sx[nm] 781.94 27.70 783.75 28.76 789.77 27.35
D[µm2/s] 36.59 2.56 36.46 2.64 36.71 2.51
l′s[nm] 12.80 1.10 9.92 1.12 7.88 0.99
ξ 1.441 0.018 1.464 0.019 1.477 0.016
acceptance rate 82.0% 81.9% 82.0%
# data points 609410 610330 610440

Table 6.3.: Averaged values (av) and standard deviations (σ) calculated from MC
simulations with seed = 42, and various shear rates.
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bination with the presented BD and MC based data analysis is a powerful tool
for the prediction of hydrodynamic effects near solid–liquid interfaces. Already
within the presented model, we can conclude an upper bound for the slip length
at a hydrophilic surface of ls . 10nm. Even if one would succeed in finding
an analytic solution of the CDE, Eq. (6.6), in the case of shear flow close a
solid wall, the computational method has the advantage to be easily extensible
to include more complex effects. For example, the hydrodynamic interactions
of the particles with the wall would cause an anisotropy and a z dependence
in the diffusion tensor [115], electrostatic interactions would give rise for an
additional force term in the Fokker-Planck equation, and furthermore, poly-
dispersity could be investigated by randomizing the diffusion constant and the
particle size with a given distribution [116]. While these contributions are
expected to yield a further substantial improvement of the method, this was
not attempted here, and is rather mentioned as a suggestion for a following
research project. However, a big bottleneck seems to be the poor physical
understanding of the existing “cross-talk” or overlap effects at short times.
We believe that, in the future, the new combination of surface sensitive experi-
mental methods and stochastic simulations provides a new powerful technique
for quantitative data analysis and could contribute to the discussion about
possible differences in the effect of slippage over hydrophilic and hydrophobic
surfaces.





CONCLUDING REMARKS

The topic of this thesis has been method development for the purpose of
the computational treatment of colloidal systems. We investigated two new
numerical approaches for rather different problems.

In the major part containing chapter 1 to 5, we focused on the theoretical
treatment of a charge–stabilized colloidal dispersion in an external electric
field. Charged colloidal spheres in a solution of negatively and positively
charged ions are surrounded by a cloud of ions of opposite polarity, while the
ions of the same polarity are depleted in the direct vicinity of the colloidal
sphere. In a finite geometry counterions assure the charge neutrality condition.
If a constant external electric field is applied, the ion clouds are distorted
and the macro-ions move with constant velocity due to the balance of electric
forces and friction. This effect is known as electrophoresis and the pertaining
transport coefficient in the linear response regime, i. e. for weak fields, is
the famous electrophoretic mobility. On a Mean–Field level, the system is
described in terms of concentrations, electrostatic potential, velocity and
pressure fields, and the equations of motion are given by the Stokes equation,
the Poisson equation and the Nernst–Planck equation, resulting in a set of
non-linear coupled partial differential equations. The aim of this work was
the development of a lattice algorithm in order to solve these Mean–Field
equations in a rectangular domain in the stationary limit. The colloidal
sphere is treated as fixed boundary condition. Linearizing the equations with
respect to the external field, the nonlinearity is shifted to the zeroth order,
i. e. the equilibrium equations where the electric driving field is absent, while
the first order equations are linear. In chapter 1 an overview of the system
of equations, its structure and linearization is given and its dimensionless
formulation is discussed. Furthermore, the main strategy for an iterative and
modular solver is investigated. The idea is to divide the equations into a set of
subproblems and solve them via specialized algorithms. Finally, those solvers
are connected in a global loop to an iterative procedure. In the subsequent
chapters 2 to 4, specialized algorithms are presented for the treatment of the
independent subproblems.

The zeroth order is given by the fully non-linear Poisson–Boltzmann equation.
A new iterative approach is presented in chapter 2, based on a constrained
variational formulation of the Poisson–Boltzmann equation. The distinction
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to earlier functional methods is the formulation in terms of the electric field
instead of the electrostatic potential. This results in a free energy landscape,
where the solution of the Poisson–Boltzmann equation is a true minimum,
while in the potential formulation the solution is a saddle point. Starting
with an initial setup, which satisfies all constraints of the system, optimal
local updates in the ion concentrations and the electric fields decrease the
functional value in every iterative step and the algorithm runs ultimately into
the one and only minimum. As a consequence, one may conclude that this
procedure ends up with an unconditionally stable algorithm. In addition to
the solution of the Poisson–Boltzmann equation for a single charged colloidal
sphere in a cubic box two possible applications of this methods have been
discussed, namely the numerical treatment of electro–osmotic flow through a
slit channel and the opportunity of calculating radial distribution functions
of colloidal systems with fully non-linear Poisson–Boltzmann interaction. For
the first application we studied the effect of different screening effects on the
electro–osmotic flow profile, which, for the best of our knowledge, was not
addressed before. The latter application was only tested fairly inaccurately
for a rather small system. However, the results seemed to match reasonably
well some results from Molecular–Dynamic simulations for screened poten-
tials using effective charges gained from the isotropic Poisson–Boltzmann cell
model. These results are very interesting, since they confirm the concept of
effective charges, and further research in this direction seems to be worthwhile.

The Nernst–Planck equation is a convection–diffusion equation. In chapter
3, a solver for a rather general form of the convection–diffusion equation,
including a space and time dependent convective term and an additional
source term, is presented. The lattice method is based on the observation
that a convection–diffusion equation describing the evolution of a concentra-
tion field is equivalent to the Fokker–Planck equation for the propagator of
a Brownian particle. It is known that the Fokker–Planck equation can be
transformed to a Master equation on a regular lattice by means of a Taylor
expansion. However, we imposed a carefully performed analysis in terms of
an asymptotic expansion with respect to a small scaling parameter, analogous
to the Chapman–Enskog expansion known from kinetic theory. While earlier
studies on this topic focused mainly on the leading order expansions and a
rather limited formulation of the equation, we presented a straightforward
way of expanding the equations to fourth order accuracy and beyond, and do
this for a rather broad class of convection–diffusion equations. Furthermore,
we developed a simple way for the treatment of no–flux boundary conditions
in the case of the leading order algorithm.

The incompressible and stationary Stokes equation can be easily formulated
and solved in Fourier space by means of the Oseen tensor. The pressure is
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seen as Lagrange multiplier accounting for the constraint of incompressibility
and is easily eliminated in Fourier space. In chapter 4 a numerical solver for
the Stokes equation around a solid particle in a finite geometry is presented,
which is based on the finite-size corrected Oseen tensor. Dirichlet boundary
conditions are imposed at the surface of the solid particle. The velocity of
the colloidal sphere must be constant everywhere on its surface. However, the
value of this constant is a priori not known. Thus, the Dirichlet boundary
conditions are replaced by a set of difference conditions plus one condition
for the conservation of the center of mass motion. Analogous to an induced
charge density accounting for the constant-potential condition on the surface
of a conducting sphere in an external electric field, we introduced an induced
reaction force density. This reaction force density can be calculated by means
of surface integrals over the surface of the colloidal particle. The efficiency of
the resulting algorithm depends almost only on the efficiency of the method
used for solving a linear set of equations in order to calculate the reaction
force.
We tested the algorithm exhaustively for the well-known problem of cubic
arrays of spheres dragged by a constant external force. The method was
applied to three different lattice structures, namely sc, bcc and fcc lattices,
and the results were compared successfully to results known from the literature.

The combination of all these methods in an iterative algorithm was imple-
mented and numerical results were presented in chapter 5. In the beginning
of the chapter some practical limitations due to the discrete character of the
method are discussed, e. g. the choice of the volume fraction or the colloid
charge are limited due to the finite lattice spacing. While the demand on
memory for the bulk method increases linearly with the number of grid nodes,
the surface integral solver for the Stokes equation requires a dense matrix
connecting all surface nodes of the colloidal particles. Thus, the amount
of memory needed for the storage of this matrix increases rapidly with the
resolution of the sphere. Therefore this method is very efficient up to a
certain value of the resolution; beyond alternative solutions must be devel-
oped. However, the iterative method has the advantage that it is designed
as a modular solver and every module can be replaced via an alternative
algorithm. One possible approach for going to higher resolutions is to replace
the Stokes solver by a bulk method. For example, the time step of a lattice
Boltzmann method can be adjusted such that it is the same as the time
step of the convection–diffusion solver. Thus, the iterative method could be
modified in a way that the Nernst–Planck and the Stokes equation are solved
simultaneously. Furthermore, the lattice Boltzmann method would have the
same degree of locality as the convection–diffusion equation solver, and hence
parallelization using a domain decomposition would be easily implemented.
However, this was not attempted here and is mentioned as a suggestion for a
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prospective project.
Nevertheless, the current single processor implementation is quite efficient and
reliable for a rather satisfactory range of parameters. The numerical results
agree reasonably well with some experimental results from the literature and
comparing the numerical data with the famous results of O’Brien and White
shows a quite good agreement. Furthermore, all parameters in the method
are controlled independently, which offers e. g. the opportunity of studying
the dependency of the electrophoretic mobility on the diffusion coefficient of
the surrounding ions. One of the most interesting results of this thesis is
the conclusion that the screening mechanism has got an effect on the elec-
trophoretic mobility, i. e. the mobility varies by some per cent if the amount
of salt is increased in the solution, while the screening length is kept constant.
Up to date, the common opinion was that the mobility is only affected by
the screening length, but not by the exact mechanism. This perception is
applicable up to a certain accuracy, however, we showed that if the accuracy
reaches a limit of about 5%, special care must be taken for the exact screening
mechanism. Moreover, we showed that this dependency is affected by the
diffusion coefficient.
Another very interesting application is the examination of weakly charged
colloidal systems. If an electric field is acting on a system of an uncharged
colloidal sphere in salt solution, ions move and are reflected at the surface of
the solid particle, resulting in an anomalous dipole moment anti–parallel to
the driving field. This anomalous dipole moment was recently addressed by K.
Kang and J.K.G. Dhont via analytic calculations. We were able to reproduce
the analytical value using our numerical method up to 1% difference. Fur-
thermore, the numerical method is certainly less restricted than the analytic
predictions. We recognized that the dipole moment for systems of charged
spheres is oriented parallel to the external field. Increasing the colloid charge,
we observed a critical value at which the direction of the dipole moment
changes and also the ion cloud surrounding the colloidal sphere reverses.

In chapter 6 we returned to the mathematical problem of solving a convection–
diffusion equation. However, we left the field of electrokinetics and developed
a new method for the quantitative data analysis of a new surface sensitive
experimental method, known as Fluorescence Cross–Correlation Spectroscopy
in Total Internal Reflection (TIR–FCCS). In this experimental approach flu-
orescent colloidal particles are used to trace the flow profile through a micro
channel. A laser beam is focused to one channel wall in total internal reflection
such that only tracer particles in the proximity of the wall, i. e. in the region
of the evanescent wave, are illuminated. The fluorescent light of two spatially
shifted observation volumes is collected and auto– and cross–correlation func-
tions are generated by a convolution of the detector signals.
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The concentration fluctuations of the tracer particles are described by a
convection–diffusion equation and the correlation function is a double integral
over the solution of this equation and the two observation volumes. Since an
analytical solution for this problem is certainly out of reach for most problems,
we developed a computational approach for the treatment of the correlation
functions in the case that the velocity profile is linearly approximated near
the solid–fluid interface and the presence of a solid wall. The combination
of Brownian Dynamics methods accounting for the convection–diffusion equa-
tion and an importance sampling approach for the evaluation of the double
integral over the two observation volumes ends up in a rather simple, efficient
and reliable algorithm. A single particle is generated in compliance with a
probability function equivalent to the first observation volume and propagated
via Brownian Dynamics simulations. Evaluating the position of the particle
for every time step with the second observation volume and averaging over a
large number of such particles, finally yields the desired correlation functions.
This method is easy to implement and highly parallelizable, since every tra-
jectory is independent. The comparison with the experiments shows a quite
good agreement, both qualitatively and also quantitatively.
In order to evaluate the experimental results by means of simulations, we
combined the Brownian Dynamics simulation with a Monte–Carlo technique,
sampling the space of input parameters for the simulations. The first and
second moments of the parameters then allows us to quote the most probable
values of the parameters and their statistical errors. This data analysis was
applied to experimental results measured for a hydrophilic glass–water inter-
face. The question we addressed was, if it is possible to measure the effect of
slippage of the fluid over the surface in the form of a slip length. Indeed we
found that the slip length for that system is less than 10nm, taking steric inter-
actions into account. Although we made use of rather crude approximations,
our results seem to be much more accurate than all previous experimental re-
sults measured with optical methods. Furthermore the computational method
is easily extensible to more complex systems, for example polydispersity, hy-
drodynamic and electrostatic interaction with the wall. Some discrepancies
between experiment and simulation were shortly adressed and could be traced
back to an imperfectness in the form of the observation volumes. The nature
of this imperfectness is not known yet and efforts to deal with this problem
must be done in the future.
All together, we developed a powerful tool for the quantitative data analysis
of TIR–FCCS measurements and hope that we could contribute to future re-
search in the question of the difference of the slippage over hydrophilic and
hydrophobic surfaces.





A. APPENDIX: ELECTROKINETICS

A.1. THE PB CELL MODEL

In Fig. 2.9 of Sec. 2.4.2 we compared the results of our iterative Poisson–
Boltzmann solver for a single sphere in a periodic box with the solution, gen-
erated by the isotropic cell model. In this appendix, a detailed presentation of
the routine used to calculate the isotropic solution is given.
In reduced units (see Tab. 1.1) the Poisson–Boltzmann equation is given by

∇2ψ +
∑
i

ziAi exp(−ziψ) = 0 , (A.1)

with
Ni = Ai

∫
V

dV exp(−ziψ) . (A.2)

In the isotropic case we have ψ ≡ ψ(r), and the second derivative yields
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The Poisson–Boltzmann equation therefore reads
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i

ziAi exp(−ziψ) . (A.4)

Introducing the electric field, this becomes

∂ψ

∂r
= −E , (A.5)

∂E

∂r
= −2E

r
+
∑
i

ziAi exp(−ziψ) , (A.6)

or, for only one ionic species (counterions with z = −1), one may write

∂ψ

∂r
= −E , (A.7)

∂E

∂r
= −2E

r
− A exp(ψ) . (A.8)



162 Appendix: Electrokinetics

This is somewhat reminiscent of Hamilton’s equations of motion, however with
a force which depends on “velocity” and also explicitly on “time”. Nevertheless,
we employ the same strategy for its numerical solution, i. e. the velocity Verlet
algorithm known from Molecular Dynamics [117]. The idea is to view the
integration constant A as input parameter, which is finally adjusted such that
integration results in the correct value of N . The equations are integrated
from the inner r(i) to the outer radius r(o) of the spherical cell.
At the inner radius, we choose ψ(r(i)) = 0 and the value of the field is a direct
consequence from Gauss’ law at the colloid surface,

E(r(i)) =
N

4π(r(i))2
. (A.9)

For the correct solution the electric field must vanish at the outer radius,
E(r(o)) = 0. Thus, E is positive everywhere, and hence we see from Eq.
(A.7) that the potential must be negative, ψ(r) < 0. Therefore the estimate
A = N/V is a lower bound to the correct value of A. Using the definition of
κ2, Eq. (1.48), one can easily show that in our reduced units that value is
simply unity. We hence start with A = 1 and search from there by doubling
combined with bisection. The algorithm is sketched by Fig. A.1.



A.1 The PB Cell Model 163

YES

NO

YES

NO

YES NO

YES

NO

Initialization:

N , r(i), r(o), ∆r, ε
A = 1, Amin = 1, Amax = −1

ψ = 0

r = r(i)

Verlet Step:

ψ = ψ −
∆r

2
E

E = E − ∆r

(

2E

r + ∆r/2
+Aeψ

)

ψ = ψ −
∆r

2
E

r = r + ∆r

E < 0

r > r(o)

Amin = A

Amax ≤ Amin

A = 2A

Amax = A
A = 1

2 (A+Amax)

Amax = A

A =
1

2
(A+Amin)

A converged?
Amax −Amin < ε

STOP

Figure A.1.: Illustration of the numerical solver for the isotropic Poisson–
Boltzmann cell model.
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A.2. THE GOUY–CHAPMAN SOLUTION

In section 2.4.2 we quoted the solution for the counterion-concentration field of
a single infinite charged plane, Eq. (2.76), with surface charge density σ. Here,
we show that Eq. (2.76) indeed solves the Poisson-Boltzmann equation within
this simple geometry. We start from the one-dimensional Poisson-Boltzmann
equation in reduced units for only one ionic species, given by

∂2

∂x2
ψ + zA exp(−zψ) = 0 . (A.10)

The counterion concentration is related to the electrostatic potential via

c = A exp(−zψ) , (A.11)

or equivalently

ψ = −1

z
(ln c− lnA) . (A.12)

Making the ansatz

c(x) =
B

(x+ λGC)2
, (A.13)

where B is a constant factor and λGC is the so called Gouy-Chapman length.
Derivating the potential twice and making use of Eq. (A.12), one obtains

∂2

∂x2
ψ = −1

z

∂2

∂x2
ln c (A.14)

=
2

z

∂2

∂x2
ln(x+ λGC)

= −2

z

1

(x+ λGC)2

= −2

z

1

B
c

= −2

z

A

B
exp(−zψ) .

Comparing with Eq. (A.10) yields the prefactor

B =
2

z2
, (A.15)

and one may write the concentration field as

c(x) =
2

z2(x+ λGC)2
. (A.16)

The Gouy-Chapman length can then be calculated from the boundary condi-
tion

−∂ψ
∂x

∣∣∣∣
x=0

= σ . (A.17)
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Making use of Eq. (A.12) and Eq. (A.16), one obtains

∂ψ

∂x

∣∣∣∣
x=0

= −1

z

∂

∂x
ln c

∣∣∣∣
x=0

(A.18)

=
2

z

∂

∂x
ln(x+ λGC)

∣∣∣∣
x=0

=
2

z

1

x+ λGC

∣∣∣∣
x=0

=
2

zλGC
.

Hence, the Gouy-Chapman length in our reduced units is given by

λGC = − 2

σz
. (A.19)

A.3. DERIVATION OF EQ. (3.42)

In Sec. 3.1.4 we omitted the exact derivation of the second order operator, Eq.
(3.42). This calculation is shown in detail in the following.
We start with Eq. (3.40) and abbreviate

Q ≡ ∂αu
(3)
α − h0

2
∂α∂βq

(2)
αβ +

h2
0

6
∂α∂β∂γp

(1)
αβγ −

h3
0

24
∂α∂β∂γ∂δs

(0)
αβγδ . (A.20)

Insertion of Eq. (3.41) results in

L(2) = Q− h0

2

∂

∂t
[L(0) − ∂αvα +D∂α∂α] (A.21)

− h0
∂

∂t
∂αvα + h0

∂

∂t
D∂α∂α

= Q− h0

2

∂

∂t
L(0) − h0

2

∂

∂t
[∂αvα −D∂α∂α]

= Q− h0

2

∂

∂t
L(0) − h0

2
[∂αvα −D∂α∂α]

∂

∂t
− h0

2
∂α

(
∂

∂t
vα

)
= Q− h0

2
[L(0) − ∂αvα +D∂α∂α]L(0)

− h0

2
[∂αvα −D∂α∂α][L(0) − ∂αvα +D∂α∂α] −

h0

2
∂α

(
∂

∂t
vα

)
= Q− h0

2
L(0)2 +

h0

2
[∂αvα −D∂α∂α]

2 − h0

2
∂α

(
∂

∂t
vα

)
.

Making use of the operator identities

∂αvα∂βvβ = ∂α∂βvαvβ − ∂αvβ(∂βvα) , (A.22)
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∂α∂α∂βvβ =
1

3
∂α∂β∂γ[δβγvα + δαγvβ + δαβvγ ] , (A.23)

∂αvα∂β∂β =
1

3
∂α∂β∂γ[δβγvα + δαγvβ + δαβvγ] (A.24)

− ∂α∂β[(∂αvβ) + (∂βvα)] + ∂α(∂
2
βvα) ,

and
∂α∂α∂β∂β =

1

3
∂α∂β∂γ∂δ[δαβδγδ + δαγδβδ + δαδδβγ] , (A.25)

and sorting with respect to the derivatives finally results in Eq. (3.42),

L(2) = ∂α

{
u(3)
α − Dh0

2

(
∂2
βvα
)
− h0

2
vβ (∂βvα) −

h0

2

(
∂vα
∂t

)}
(A.26)

+ ∂α∂β

{
−h0

2
q
(2)
αβ +

Dh0

2
[(∂αvβ) + (∂βvα)] +

h0

2
vαvβ

}
+ ∂α∂β∂γ

{
h2

0

6
p

(1)
αβγ −

Dh0

3
[δβγvα + δαγvβ + δαβvγ]

}
+ ∂α∂β∂γ∂δ

{
−h

3
0

24
s
(0)
αβγδ +

D2h0

6
[δαβδγδ + δαγδβδ + δαδδβγ]

}
− h0

2
L(0)2.

A.4. DISCRETE FORMULATION OF THE OSEEN
TENSOR IN FOURIER SPACE

In chapter 1.4 the discretized Green’s function of the Poisson equation in
Fourier space was presented (see Eq. (1.75)). The idea was to use a 6-point
stencil finite–difference scheme on a regular lattice and transform this stencil
to a Fourier series. Within this appendix, we show an analogous way for
deriving a lattice-Green’s function for the Stokes equation. In other words,
we present the discretized version of the Oseen tensor we used in the reaction
force algorithm of chapter 4.3.

From Eq. (1.74) we already know the discretized version of the Fourier trans-
formed Laplacian. Analogous to the factor −k2 of the continuous version, we
abbreviate for convenience

−ξ2
k,l,m :=

2

a2

{
cos

(
2π

k

Nx

)
+ cos

(
2π

l

Ny

)
+ cos

(
2π

m

Nz

)
− 3

}
, (A.27)

where a is again the lattice spacing, Nx is the number of lattice sites in x-
direction and Ny , Nz are the numbers of grid points in the other directions,
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respectively. Thus, one may write the second derivative of a periodic function
g(nx, ny, nz) in the form

∇2g ≃ −
Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

ξ2
k,l,mĝ(k, l,m)e

−2πi
“

knx
Nx

+
lny
Ny

+mnz
Nz

”

. (A.28)

Here, nα addresses the lattice site in the corresponding direction.

Conversely, on the discrete lattice the Laplacian is not necessarily the diver-
gence of a gradient. Thus we also have to apply the discrete 6-point stencil to
the gradient of a scalar field and the divergence of a vector field.

The gradient is approximated via

∇g(nx, ny, nz) ≃ 1

2a

{
(g(nx + 1, ny, nz) − g(nx − 1, ny, nz))êx (A.29)

+ (g(nx, ny + 1, nz) − g(nx, ny − 1, nz))êy

+ (g(nx, ny, nz + 1) − g(nx, ny, nz − 1))êz
}

and hence the Fourier transformation results in

∇g(nx, ny, nz) ≃
Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

1

2a
ĝ(k, l,m) (A.30)

·
{

(e−2πi k
Nx − e+2πi k

Nx )êx + (e
−2πi l

Ny − e
+2πi l

Ny )êy

+(e−2πi m
Nz − e+2πi m

Nz )êz

}
e
−2πi

“

knx
Nx

+
lny
Ny

+mnz
Nz

”

= −i
Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

1

a
ĝ(k, l,m)

·
{

sin

(
2π

k

Nx

)
êx + sin

(
2π

l

Ny

)
êy

+ sin

(
2π

m

Nz

)
êz

}
e
−2πi

“

knx
Nx

+
lny
Ny

+ mnz
Nz

”

,

where êα are the Cartesian basis vectors. Analogously, one may write the
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divergence of a discretized vector field h(nx, ny, nz)
1 as

∇ · h ≃ −i
Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

1

a
ĥ(k, l,m) (A.31)

·
{

sin

(
2π

k

Nx

)
êx + sin

(
2π

l

Ny

)
êy

+ sin

(
2π

m

Nz

)
êz

}
e
−2πi

“

knx
Nx

+
lny
Ny

+mnz
Nz

”

.

Defining

qk,l,m :=
1

a
sin

(
2π

k

Nx

)
êx (A.32)

+
1

a
sin

(
2π

l

Ny

)
êy

+
1

a
sin

(
2π

m

Nz

)
êz ,

the Stokes equation becomes in the discretized Fourier space

0 = −iqk,l,m · v̂(k, l,m) , (A.33a)

0 = iqk,l,mp̂(k, l,m) − ηξ2
k,l,mv̂(k, l,m) + f̂(k, l,m) . (A.33b)

From here, the calculation is analogous to the calculation of the Oseen tensor
in the continuous Fourier space (see chapter 4.1). Multiplication with iq and
using the incompressibility results in

0 = −q2p̂+ iqf̂ , (A.34)

and hence
p̂ =

i

q2
q · f̂ . (A.35)

Inserting this into the Stokes equation, one obtains

0 = − 1

q2
q(q · f̂) − ηξ2v̂ + f̂ (A.36)

=

(
↔
I −q ⊗ q

q2

)
f̂ − ηξ2v̂ .

Solving this for the velocity field, we get

v̂ =
1

ηξ2

(
↔
I −q ⊗ q

q2

)
f̂ . (A.37)

1Note that we do not impose the Yee discretization scheme [62]. For simplicity reasons all
fields are located on the lattice sites.
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Thus, the desired discretized version of the Oseen tensor in Fourier space, is
expressed as

↔̂
T (k, l,m) =

1

ηξ2
k,l,m

(
↔
I −

qk,l,m ⊗ qk,l,m
q2
k,l,m

)
. (A.38)

The discretized Tensor in real space is then obtained from a fast Fourier trans-
formation.

A.5. CONSTRAINED VARIATIONAL FORMULATION
OF THE STOKES EQUATION

After the great success of the variational approach for the Poisson–Boltzmann
equation, our first suggestion was to treat the Stokes equation in a similar way.
So we asked, if it is possible to formulate the stationary Stokes equation

η∇2v −∇p+ f = 0 , (A.39)
∇ · v = 0 , (A.40)

in a constrained variational formulation. And indeed it is.
The Euler–Lagrange equations of a functional of the form

Φ :=

∫
d3rL (A.41)

≡
∫
d3r
[
A(∇× v)2 +Bf · v + Cp(∇ · v)

]
recover the incompressible Stokes equation in the center of mass frame of the
system for an appropriate choice of the prefactors A, B and C. Defining

L0 := A(∇× v)2 , (A.42)
L1 := Cp(∇ · v) , (A.43)

and making use of the identity

(∇× v)2 = εαβγ(∂βvγ)εαµν(∂µvν)

= (δβµδγν − δβνδγµ)(∂βvγ)(∂µvν)

= (∂βvγ)(∂βvγ) − (∂βvγ)(∂γvβ) , (A.44)

where the greek subscripts are Cartesian indices, εαβγ is the asymmetric Levi–
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Civita tensor and we abbreviate ∂α = ∂/∂xα, we get

∂β
∂L0

∂(∂βvγ)
= 2A [∂β∂βvγ − ∂γ∂βvβ] , (A.45)

∂L
∂vγ

= Bfγ , (A.46)

∂L
∂p

= C∇ · v , (A.47)

∂β
∂L1

∂(∂βvγ)
= C∂γp . (A.48)

Taking all together, the Euler–Lagrange equations result in

2A
[
∇2v −∇(∇ · v)

]
+ C∇p = Bf , (A.49)
∇ · v = 0 . (A.50)

Choosing 2A = η, C = −1 and B = −1, this recovers the incompressible
Stokes equation, Eq. (A.39) and Eq. (A.40), and the functional becomes

Φ =

∫
d3r
[η
2
(∇× v)2 − f · v − p(∇ · v)

]
. (A.51)

In this formulation, the role of the pressure as Lagrange multiplier for the
incompressibility condition is nicely obvious.

v1 + δv

v2 + δv

v
′

1
− δv

v′

2
− δv

Figure A.2.: Rotational move for the velocity field on a plaquette.

As in the original Maggs algorithm, the system is initially set up at an arbitrary
point of the constraint surface, i. e. the initial configuration should be located
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in the center of mass frame and satisfy the incompressibility condition∫
d3rv = 0 , (A.52)

∇ · v = 0 . (A.53)

Minimizing the functional via rotational moves, analogous to the Maggs ap-
proach for the electric field, conserves the constraints, and since we stay strictly
on the constraint surface, we may neglect the Lagrange–multiplier term. Fur-
thermore, such an algorithm would run ultimately in a true minimum (not
into a saddle point). This can be observed by decomposing the velocity field
into the solution v0 plus some small perturbation

v = v0 + v′ . (A.54)

The square of the curl then results in

(∇× v)2 = (∇× v0)
2 + (∇× v′)2 + 2(∇× v0) · (∇× v′) . (A.55)

Thus, also Φ can be written as the solution plus a small deviation

Φ ≡ Φ[v0] + Φ′ . (A.56)

Since the functional derivative is zero for v0 by construction, δΦ/δv
∣∣
v0

= 0, all
terms linear in v′ do not contribute to Φ′, and hence the deviation is essentially
given by

Φ′ =
η

2

∫
d3r (∇× v′)2 , (A.57)

which is positive definite, and thus, the solution Φ[v0] is a true minimum of
the landscape.

The rotational moves in v are performed similar to the rotational moves of E
in the Poisson–Boltzmann solver. Consider for example a loop with a sequence
of velocities v1, v2, v′1 and v′2 as sketched by Fig. A.2. The updates then are
given by

v1 → v1 + δv , (A.58)
v2 → v2 + δv , (A.59)
v′1 → v′1 − δv , (A.60)
v′2 → v′2 − δv . (A.61)

Since the functional Φ depends explicitly on the curl of the velocity field,
the calculation of the change in the functional value becomes less local as
it is the case in the Poisson–Boltzmann formalism. Rather all plaquettes in
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the vicinity of the updated links must be taken into account, and thus the
change in the functional depends on 13 plaquettes. Therefore the calculation
of this change is somewhat lengthy and tedious. Nevertheless, it is possible.
The result is a quadratic function in δv, which can be easily minimized to
determine the optimal value. A first implementation of this method showed
that the algorithm indeed works and converges, but unfortunately only very
slowly. This was the reason for replacing the variational approach by the
surface integral method of Chap. 4.



B. APPENDIX: TIR–FCCS

B.1. THE STOKES EQUATION IN A RECTANGULAR
CHANNEL

Experiments have been performed to measure the flow profile perpendicular to
the surface over the whole channel diameter to get an independent estimator
for the shear rate. From experimental studies it is known that the influence of
a non vanishing slip length on the flow profile is only weak, and therefore hard
to obtain by direct measurements [113, 118]. However, from the theoretical
point of view, it is yet unclear how a possible slip length influences the flow
profile in a microchannel, and furthermore, the shear rate at the surface. In the
following we will show that a one dimensional Poiseuille flow with neglecting
any possible slip length, is sufficient for a proper estimation of the shear rate.
The problem we solve in this section is the solution of the Stokes equation(

∂2

∂y2
+

∂2

∂z2

)
vx(y, z) = −f

η
, (B.1)

in a rectangular channel with the dimensions [−Ly

2
, Ly

2
]× [−Lz

2
, Lz

2
] in the y−z-

plane, as it is given in the experimental setup. Here, η is the viscosity of the
fluid and f is the driving force density or pressure gradient acting on the fluid
in x-direction.
The solution for this problem, which can be found in the textbook of Spurk and
Aksel [119], has the disadvantage that it shows no invariance under exchanging
the y and z coordinate, and more important, this solution is only valid in the
case of no slip boundary conditions and it is not clear how to modify the
formula given there, if slip boundary conditions are applied.
In the following we will show an alternative solution for Eq. (B.1), first with
stick boundary conditions and then discussing the influence of applying slip
boundary conditions. From this solution the effect of non zero-slip length on
the overall flow profile and the shear rate close to a boundary is studied.
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B.1.1. NO-SLIP BOUNDARY CONDITIONS

In a first step one may write Eq. (B.1) in Dirac’s BraKet notation

H|v⟩ = −|q⟩ , (B.2)

with q = f/η and H = ∂2

∂y2
+ ∂2

∂z2
. For solving this problem a standard method

can be used, well known from quantum mechanical calculations, namely ex-
panding the function |v⟩ in terms of eigenfunctions of H,

H|ψmn⟩ = λmn|ψmn⟩. (B.3)

Suppose |ψmn⟩ is an orthonormal basis of Hilbert space, such that∑
mn

|ψmn⟩⟨ψmn| = 1, (B.4a)

⟨ψmn|ψmn⟩ = 1. (B.4b)

Solving this problem is a standard calculation in quantum mechanical text-
books, since the operator H = ∂2

∂y2
+ ∂2

∂z2
is the Hamilton operator for a free

particle in two dimensions, and hence the problem reduces to the solution of
the Schrödinger equation of a free quantum mechanical particle in a two di-
mensional box (see e. g. Ref. [120]). Knowing that |ψmn⟩ is an eigenfunction
of the Hamiltonian, its spectral form is given by

H =
∑
mn

λmn|ψmn⟩⟨ψmn|, (B.5)

and hence also its inverse is known. Together with Eq. (B.2), one obtains

⟨ψmn|v⟩ = − 1

λmn
⟨ψmn|q⟩, (B.6)

and expanding |v⟩ with respect to the eigenfunctions, yields

|v⟩ = −
∑
mn

1

λmn
⟨ψmn|q⟩|ψmn⟩. (B.7)

At this point, we reduced the problem to the calculation of eigenvalues and
eigenfunctions of H.
Making the product ansatz

ψ(y, z) ≡ A(y)B(z) , (B.8)

and inserting this into Eq. (B.2), one can write down two independent equa-
tions for A and B

∂2

∂y2
A(y) = −λ2

yA(y), (B.9a)

∂2

∂z2
B(z) = −λ2

zB(z), (B.9b)
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and
λ ≡ −(λ2

y + λ2
z). (B.10)

This is a well known wave equation and can be solved making the ansatz

A(y) = a1e
iλyy + a2e

−iλyy. (B.11)

Symmetry A(y) = A(−y) dictates that only the even parts survive, while the
odd contributions vanish, and therefore

a ≡ a1 = a2, (B.12)

and
A(y) = 2a cos(λyy). (B.13)

The λ’s are defined by the boundary conditions. As mentioned before and
since the effect of the slip length is supposed to be small, we first introduce
stick boundary conditions, i. e. the flow velocity should be zero at the walls
and hence

A(
Ly
2

) = 2a cos(
λy
2
Ly) = 0. (B.14)

From this we find
λy,n =

2n+ 1

Ly
π, (B.15)

with n = 0, 1, 2, . . . . The prefactor a can be determined from the normalization
condition

1 =

∫ Ly
2

−Ly
2

A2(y)dy (B.16)

= 2Ly a
2,

and therefore
a =

1√
2Ly

. (B.17)

Obviously, B(z) can be calculated in the same way.

Taking all together results in

⟨ψmn| = |ψmn⟩ (B.18)

=
2√
LyLz

cos

(
2n+ 1

Ly
πy

)
cos

(
2m+ 1

Lz
πz

)
,

λmn = −(λ2
y,n + λ2

z,m)

= −π2

(
(2n+ 1)2

L2
y

+
(2m+ 1)2

L2
z

)
. (B.19)
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The scalar product of ψ with q is then given by

⟨ψmn|q⟩

=
f

η

2√
LyLz

∫ Ly
2

−Ly
2

dy cos

(
2n+ 1

Ly
πy

)
·
∫ Lz

2

−Lz
2

dz cos

(
2m+ 1

Lz
πz

)
=

f

η
(−1)m+n 8

(2n+ 1)(2m+ 1)

√
LyLz

π2
. (B.20)

Inserting Eq. (B.18), (B.19) and Eq. (B.20) into Eq. (B.7), one finally obtains

vx(y, z) =
f

η

∑
mn

Λmn cos

(
2n+ 1

Ly
πy

)
cos

(
2m+ 1

Lz
πz

)
, (B.21)

with

Λmn =
16

π4
(−1)m+n · 1

(2n+1)2

L2
y

+ (2m+1)2

L2
z

· 1

(2n+ 1)(2m+ 1)
. (B.22)

This solution has the advantage that it has the correct spatial invariance in y
and z-direction and slip boundary conditions can easily be applied by replacing
Eq. (B.14). In order to obtain the famous one dimensional Poiseuille profile
from Eq. (B.21) by taking the limit Ly → ∞, one first cuts the channel at
y = 0, resulting in

lim
Ly→∞

vx(0, z) =
16

π4

f

η
L2
z

(∑
n

(−1)n

2n+ 1

)
(B.23)

·

(∑
m

(−1)m

(2m+ 1)3
cos

(
2m+ 1

Lz
πz

))
.

The sum over n is known as Leibniz series and has the limit value (see Ref.
[114])

∞∑
n=0

(−1)n

2n+ 1
=
π

4
. (B.24)

Evaluation of the sum over m by expansion of the cosine up to quadratic order
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results in ∑
m
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∑
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Inserting this into Eq. (B.23) reproduces the Poiseuille solution plus some
correction terms,

lim
Ly→∞

vx(0, z) =
1

2

f

η
L2
z

(
1

4
− z2

L2
z

)
+ R′ . (B.26)

from the known solution of the Poiseuille problem in a one-dimensional chan-
nel, we know that R′ must vanish identically, but we have not been able to
show this directly from the series representation. Numerically, however, R′ = 0
can be shown without any doubt. As shown in Fig. B.1, the flow profile in
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Figure B.1.: 1–dimensional cut of the flow profile at y = 0 for no slip boundary
conditions and several values of Ly.
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Figure B.2.: Averaged deviation of a one dimensional cut at y = 0 of Eq. (B.21)
and the Poiseuille solution as function of the width-height ratio of the
channel.

z-direction converges to the ideal Poiseuille solution for increasing width-to-
height ratios Ly/Lz of the channel, as it should be. The averaged deviation
from the Poiseuille profile

relative error =
1

N

N∑
i=1

∣∣∣∣vx(0, zi) − vP(zi)

vP(zi)

∣∣∣∣ , (B.27)

is presented as function of Ly/Lz. Here, N is the number of calculated data-
points.

B.1.2. SLIP BOUNDARY CONDITIONS

If the friction ζ of the fluid at the surface has got a finite value, slip boundary
conditions occur and have the form

∓ls
∂vx
∂z

(0,±Lz
2

) = vx(0,±
Lz
2

) , (B.28)

and analogous in y-direction. Here, ls = η/ζ is the so called slip length. Since
Eq. (B.13) is independent of the concrete form of the eigenvalues, one may
write

lsλz sin

(
λz
Lz
2

)
= cos

(
λz
Lz
2

)
. (B.29)
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Introducing dimensionless parameters,

λ̃z := lsλz, (B.30a)

L̃z :=
Lz
ls
, (B.30b)

Eq. (B.29) can be written as

λ̃z = cot

(
λ̃z
L̃z
2

)
. (B.31)

This has one unique solutions per interval

λ̃z,n ∈
(
n

2π

L̃z
, (n+ 1)

2π
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)
, n = 0, 1, 2, . . . , (B.32)

which must be evaluated numerically. The normalization condition again yields
the constant a,

a =
1

2
√
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· 1√
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2
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. (B.33)

From this we get
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λmn = − 1
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and furthermore
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Finally the velocity profile for non zero slip is found to be
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The dimensions of the channel in the experiment are about Ly ≃ 4mm width
and Lz ≃ 100µm height, so that we get a ratio of about Ly/Lz ≃ 40. Using
this ratio numerical tests show that the slip length has no influence on the
shear rate. Only if the ratio of channel dimensions is of the order of Ly/Lz ≃ 1
a dependency on the slip length is observable. From Fig. B.2 we know that a
ratio of 40 is large enough to assume ideal Poiseuille flow behavior. The one
dimensional Poiseuille profile with slip boundary conditions reads

v(p)(z) =
1

2

f

η
L2
z

(
ls
Lz

+
1

4
− z2

L2
z

)
. (B.38)

Thus it is not surprising that the shear rate does not depend on the slip length,
since the one dimensional solution is only shifted by a non vanishing slip length,
but the shape of the flow profile remains the same (see Ref. [102]).

B.1.3. ESTIMATION OF THE SHEAR RATE VIA
THROUGHPUT RATE

We have already seen that with the dimensions of the channel given in the
experiment, a one dimensional Poiseuille profile fits the flow field almost per-
fectly. Neglecting a possible slip length, the shear rate is the slope of the flow
profile at the channel wall, and therefore given by

γ̇ =
f

η

Lz
2
. (B.39)

Knowing the height of the channel Lz, one may ask, if the parameter f/η can
be observed easily in the experiment. In principle, this is indeed possible.
Integration of the flow profile over the cross section area of the channel would
deliver the amount of liquid flowing through the cross section per time unit,
known as throughput rate Q. Since f/η is the only unknown for the entire
velocity profile, the integration results in a linear relation between throughput
rate and f/η. Starting with Eq. (B.21) and integrating over y and z, one
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obtains
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Applying the assumption Ly ≫ Lz, the first term in the denominator is negli-
gible, and hence an asymptotic solution for the throughput rate is given by

Q(Ly ≫ Lz) ≃ f
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Solving this for f/η and inserting into Eq. (B.39), one finally obtains

γ̇ =
6

LyL2
z

·Q . (B.42)

If the shear rate is measured in this way, a small error occurs since the profile
is slightly shifted due to the effect of slippage. However, if the slip length is
small compared to the channel dimensions, this effect should be negligible.
Fig. B.3 shows numerical results for the dependency of the throughput rate
on the slip length. As mentioned in the previous section, the slip length is
assumed not to exceed ls/Lz . 10−3, and thus the numerical results indeed
indicate that the error is less than 1%. Therefore one may conclude that the
throughput rate is certainly well described by the approximation, Eq. (B.41).

The advantage of this consideration is quite obvious: If it is possible to measure
the throughput rate at the same time as the experiment is performed, the
shear rate can be measured simultaneously, and thus, the measurement of
the flow profile gets unnecessary. Unfortunately, this was not the case in the
current experimental setup. However, this is mentioned as a suggestion for
experimentalists and manufacturers of FCS devices.
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Figure B.3.: Relative deviation of the throughput rate from the idealized value,
Eq. (B.41), as function of the slip length (Ly/Lz = 100).



C. ATTACHMENT: CD WITH SOURCE
CODES

A compact disc with the source codes we implemented is attached to the
printed version of this thesis. The codes are all written in C and should
be compiled on a Linux system. The CD contains the following folders and
routines:

Electrokinetics

• Poisson_Boltzmann

– Cell_Model
This folder contains only one source file named one_dim_pb.c. This
is the routine written by B. Dünweg using the Verlet algorithm to
solve the isotropic PB cell model (see App. A.1). The output is
given in reduced units.

– Double_Plane
Here the source code for the effectively one dimensional test problem
discussed in Sec. 2.4.1 can be found. The main program is the
file pb_dp.c. The code is parallelized using MPI, and therefore
requires the library mpi.h. Furthermore the Poisson equation is
solved using the Fourier transformation, and thus the fftw3 library
must be installed. The makefile uses the mpicc compiler. Note that
the number of lattice sites in the x3-direction must be a multiple of
the number of parallel processes.

– PBp_Ion
This program is almost identical with the code for the “double
plane” problem and requires the same libraries. The main program
is the file PBp_ion.c and computes the solution of the PB equation
around a solid charged sphere in a rectangular box. The parameters
in the input file (Input.dat) are given in reduced units. The output
of this program is required to run the first order solver.

– Electro_Osmosis
In this folder two programs can be found, which are nearly identi-
cal. The only differences are the units of the output. One program
computes the solution of the electro-osmotic flow problem in a slit
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channel (see Sec. 2.5) in LJ units, while the results of the sec-
ond version are transformed to SI units (temperature: T = 300K,
aqueous solution εr = 80.1).

– statMC
Here, the test code for the combination of the iterative PB solver
with a force biased MC algorithm is given. The code should only
be seen as a first attempt; it is not parallelized yet and further
optimization is required. The fftw3 library must be installed in
order to solve the Poisson equation.

• Convection_Diffusion
This folder contains the test sources for the convection-diffusion equa-
tion solver developed in Chap. 3. Here, test versions in one and three
dimensions are given.

– 1d_cde
Source codes for the two test problems of Sec. 3.3.1 (test_1 ) and
3.3.2 (test_2 ) can be found in this subfolder. As default the 4th
order algorithm is applied in both cases. The 2nd order versions
of both diffusive- and multiple time scale analysis are implemented,
but commented out.

– 3d_cde
A three dimensional code for the test problem including a source
term (Sec. 3.3.2) is implemented, containing a D3Q19 version of
the fourth order algorithm, a D3Q6 implementation of the second
order algorithm from the diffusive scaling analysis, a D3Q19 model
for the multi-time scale version and a D3Q6 LBGK model.

• Stokes_ReactionForce
The routine srf.c computes the Stokes flow field for a cubic array of
spheres as discussed in Chap. 4. With this code sc, bcc and fcc lattice
structures can be studied. The fftw3 library must be installed.

• First_Order_Equations
Within this folder the source code for the iterative solver for the first
order electrokinetic equations can be found. The main procedure is in
the file cds_sc.c. Here, only the version for the sc lattice structure,
i. e. one sphere in the center of the box, is implemented, but the
source can easily be modified by changing the expression for f0 (see
comments in the source code). Further changes are not necessary in
order to run the code in the case of bcc or fcc structures, since the
classification of the grid nodes is adopted from the PB solution. Thus,
the input file only specifies the diffusion constant and the strength of the
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external field, which are not necessary for the zeroth order, and in addi-
tion the location of the PB results, which should be used as input fields
and the desired location of the output data. The fftw3 library is required.

TIRFCCS

• Code_BDMC_Gauss
This folder contains the program for the data analysis of TIR–FCCS
measurements as discussed in Chap. 6. The implementation is the code
we used on the Blue Gene P (Rechenzentrum Garching (RZG)). Here,
not only the auto- and cross-correlation curves are computed, but also
the MC based data analysis is set on top. The lateral shape of the
observation volumes is approximated by a Gaussian. The experimental
data we analyzed can be found in the folder Input/hphil.
Since the code is parallelized using MPI, this library is required. The
folder contains three different makefiles: Makefile compiles the program
via mpicc on a simple Linux machine, while Makefile_pwr6 uses mpcc_r
for compilation on the Power6 machine at the RZG and Makefile_bgp
is written for compilation of the source on the Blue Gene P using the
mpixlc_r compiler.

• Code_BDMC_PCPSF
The files within this folder are essentialy equivalent to those in
Code_BDMC_Gauss.
However, the program FCSBDMC_rzg_PCPSF.c computes the BD/MC
algorithm for the data analysis of the TIR-FCCS experiments. The ob-
servation volumes are extended to PCPSFs and the program requires
the tabulated observation volumes as input file. The goodness of fit is
calculated with respect to the averaged auto-correlation curve and the
difference-cross-correlation data.

• Create_PCPSF
This folder only contains only the small program pcpsf.c, written by B.
Dünweg and performing the Monte-Carlo integration discussed in Chap.
6.7.2.

• Rectangular_Stokes
The file RecStokes.c is a C–written code for the numerical tests used in
appendix B.1. The Stokes equation is solved in a rectangular channel.
The double sum is performed up to nmax terms in each direction and the
eigenvalues in the slip boundary case are numerically calculated using
a combination of bisection and Newton method in order to solve Eq.
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(B.32). The program offers the opportunity to generate flow profiles
in one and two dimensions, and compares the solutions with slip and
stick boundary condition and the one dimensional Poiseuille profile, to
calculate the shear rate or the throughput rate as function of the slip
length, and tests the value of the crest vx(0, 0) as function of nmax.
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