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Zusammenfassung 
 
 

Im Rahmen dieser Arbeit wird die neue experimentelle Technik der Totalen Internen 
Reflexions Fluoreszenz-Kreuz-Korrelations-Spektroskopie (TIR-FKKS) vorgestellt. Mit 
dieser Methode können hydrodynamische Strömungen in Längenskalen von bis zu einigen 
10-nm zu Festkörperoberflächen untersucht werden. Fluoreszierende Farbstoffe strömen mit 
der Flüssigkeit und werden mit evaneszentem Licht, welches mit Hilfe eines konfokalen 
Mikroskops und einem Öl-Immersions Objektiv mit einer hohen numerischen Apertur erzeugt 
wird, angeregt. Auf Grund des schnellen Abklingens der evaneszenten Welle tritt Fluoreszenz 
nur in unmittelbarer Nähe von etwa 100 nm zur Oberfläche auf, was eine sehr hohe 
Auflösung zur Folge hat. Die zeitaufgelösten Fluoreszenzsignale von zwei in 
Strömugsrichtung lateral verschobenen Detektionsvolumina, welche durch zwei konfokale 
Lochblenden erzeugt werden, werden unabhängig voneinander gemessen und aufgezeichnet. 
Die Kreuz-Korrelation dieser Signale liefert wichtige Informationen über die Bewegung der 
Farbstoffe und daher ihrer Strömungsgeschwindigkeit. Auf Grund der hohen Sensitivität der 
Methode können fluoreszierende Sorten von Farbstoffen, bis hin zu einzelnen 
Farbstoffmolekülen verwendet werden. Das Ziel dieser Arbeit war es den experimentellen 
Aufbau für TIR-FKKS zu konstruieren und damit die Scher-Rate und das Abgleiten von 
strömendem Wasser an hydrophilen, als auch hydrophoben Oberflächen zu messen. Um diese 
Informationen aus den gemessenen Korrelationskurven zu erhalten ist eine quantitative 
Datenanalyse notwendig. Dies ist nicht unkomliziert, wegen der Komplexität des Problems, 
die dass Ableiten einer analytische Lösung zur Bescheibung der Korrelationsfunktionen 
unmöglich macht. Um die experimentellen Daten zu bearbeiten und zu interpretieren, wird im 
Rahmen dieser Arbeit auch eine neue numerische Methode der Datenanalyse der erhaltenen 
Auto- und Kreuz-Korrelationskurven vorgestellt. Simulation von Brownschen Dynamiken 
werden benutzt um simulierte Auto- und Kreuzkorrelationsfunktionen zu erzeugen und die 
dazugehörigen experimentellen Daten zu beschreiben. Ich zeige wie detailierte und 
realistische theoretische Modelle des Phänomens mit genauen Messungen der 
Korrelationskurven kombiniert  werden müssen um eine vollständig quantitative Methode zu 
entwickeln um die Ströumgeigenschaften aus dem Experiment abzuleiten. Eine Monte Carlo 
Simulation wird angewendet um die Exprimente zu beschreiben. Diese liefert die optimalen 
Parameterwerte und den statistischen Fehler. Diese Anwendung is sowohl geeignet für 
moderne Desktop PC‘s, als auch für parallel geschaltete Supercomputer. Der Letzere 
ermöglicht die Datenanalyse innerhalb kurzer Rechenzeiten. Ich habe diese Methode 
angewendet um die Strömungen von wässirigen Elektrolytlösungen in der Nähe von glatten 
hydrophilen und hydrophoben Oberflächen zu untersuchen. Im Allgemeinen wird an 
hydrophilen Oberflächen kein Abgleiten erwartet, während an hydrophoben Oberflächen 
Abgleiten auftreten kann. Unsere Ergebnisse zeigen, dass die Längen des Abgleitens etwa 10-
15 nm oder geringer sind, sowohl auf hydrophilen als auch auf moderat hydrophoben 
(Kontaktwinkel etwa 85°) Oberflächen und damit im Rahmen der Fehler der Experimente 
nicht unterscheidbar von null.   
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Abstract 
 
 
      I present a new experimental method called Total Internal Reflection Fluorescence Cross-
Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows 
near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with 
the liquid are excited by evanescent light, produced by epi-illumination through the periphery 
of a high NA oil-immersion objective.  Due to the fast decay of the evanescent wave, 
fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in 
very high normal resolution. The time-resolved fluorescence intensity signals from two 
laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are 
independently measured and recorded. The cross-correlation of these signals provides 
important information for the tracers’ motion and thus their flow velocity. Due to the high 
sensitivity of the method, fluorescent species with different size, down to single dye 
molecules can be used as tracers. The aim of my work was to build an experimental setup for 
TIR-FCCS and use it to experimentally measure the shear rate and slip length of water 
flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these 
parameters from the measured correlation curves a quantitative data analysis is needed. This 
is not straightforward task due to the complexity of the problem, which makes the derivation 
of analytical expressions for the correlation functions needed to fit the experimental data, 
impossible. Therefore in order to process and interpret the experimental results I also describe 
a new numerical method of data analysis of the acquired auto- and cross-correlation curves – 
Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation 
functions and to fit the corresponding experimental data. I show how to combine detailed and 
fairly realistic theoretical modelling of the phenomena with accurate measurements of the 
correlation functions, in order to establish a fully quantitative method to retrieve the flow 
properties from the experiments. An importance-sampling Monte Carlo procedure is 
employed in order to fit the experiments. This provides the optimum parameter values 
together with their statistical error bars. The approach is well suited for both modern desktop 
PC machines and massively parallel computers. The latter allows making the data analysis 
within short computing times. I applied this method to study flow of aqueous electrolyte 
solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface 
slip is not expected, while on hydrophobic surface some slippage may exists. Our results 
show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the 
slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, 
indistinguishable from zero. 
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1.   Introduction and Motivation 
 
 
      A good understanding of the liquid flow in confined geometries is not only of 
fundamental interest but is also very important for a number of industrial and technological 
processes, such as flow in porous media, electro-osmotic flow, particle aggregation or 
sedimentation, extrusion and lubrication. It is also essential for the design of micro- and nano-
fluidic devices, e.g. in a lab-on-chip applications. In all these cases, however, an accurate 
quantitative description can be done only if the flow at the interface between the fluid and the 
solid is thoroughly understood[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]. 
      While for many years the so called no-slip boundary condition (velocity equals to zero on 
the interface) was applied to describe macroscopic flows, recently it has been recognized that 
this condition does not always apply when flows through channels with micro- and nano-sizes 
are considered[4],[5]. In such channels the fluid may slip over the solid surface. This effect is 
usually described by the so called slip boundary condition, characterized by a non vanishing 
slip length ls which is defined as the ratio of the dynamic viscosity and the friction coefficient 
of the liquid at the surface, or equivalently as the ratio of the finite flow velocity at the 
surface, so called slip velocity vs, and the shear rate at the surface 
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where z is the spatial direction, perpendicular to the surface. Experimental approaches 
allowing determination of this slip length, however, are very challenging, since very high 
resolution techniques are needed to gain any information close to the interface. Hence, the 
existence and the extent of a slip in real physical systems as well as its possible dependence 
on the surface properties are highly debated in the community and no consensus has been 
reached so far. Clearly, to rationalize this controversy, further refinement of the experimental 
techniques is required. 
      To date, two major types of experimental methods, often called direct and indirect, were 
applied to study boundary slip phenomena. In the indirect approach, an atomic force 
microscope or a surface force apparatus, is used to record the hydrodynamic drainage force 
necessary to push a micron-sized colloidal particle versus a flat surface as a function of their 
separation[11],[12]. The separation can be measured with sub-nanometre resolution, and the 
force with a resolution in the pN range. A higher force is necessary to squeeze the liquid out 
of the gap if the mobility of the liquid is small. Instead, if the liquid close to the surface can 
easily slip on it, then a smaller force is necessary. From this empirical observation a 
quantitative value of the slip length can be deduced using an appropriate theoretical model[2] 

,[6],[13]. While this approach is extremely accurate at the nanoscale, it does not measure directly 
the flow profile and rely on a theoretical modelling.  
      Direct experimental approaches to flow profiling in microchannels, are commonly based 
on various optical methods to monitor fluorescent tracers flowing with the liquid. Basically 
they can be divided in two sub categories. 
      The imaging based methods use high resolution optical microscopes and sensitive 
cameras to track the movement of individual tracer particles on a series of 
images[14],[15],[16],[17],[18],[19],[20]. While providing a real “picture” of the flow, the imaging 
methods have also some disadvantages related mainly to the limited speed and sensitivity of 
the cameras: relatively big tracers are needed, the statistic is rather poor, high tracer velocities 
cannot be easily measured. 
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      In Fluorescence Correlation Spectroscopy (FCS) based methods the fluctuations of the 
fluorescent light emitted by tracers passing through a very small observation volume 
(typically the focus of a confocal microscope) is measured[21]. Using correlation analysis and 
an appropriate mathematical model the tracers’ diffusion coefficient and flow velocity can be 
evaluated[22],[23],[24],[25]. In particular, the so called double-focus fluorescence cross-correlation 
spectroscopy (DF-FCS) that employs two observation volumes (laterally shifted in flow 
direction) is a very powerful tool for flow profiling in microchannels[26],[27],[28],[29]. Due to the 
very high sensitivity and speed of the used photo detectors (typically avalanche photodiodes) 
in FCS based methods even single molecules can be used as tracers. Furthermore, the 
evaluation of the velocity is based on large statistics and high tracer velocities can be 
measured. 
      During the last two decades both the imaging and the FCS methods were well developed 
to the current state that allows fast and accurate measurements of flow velocity profiles in 
microchannels. The situation, however, is different when the issue of boundary slip is 
considered. Due to the limited optical resolution imposed by the diffraction limit, it is 
commonly considered that these methods are less accurate than the force methods discussed 
above and cannot detect a slip length in the tens of nanometres range. On the other hand the 
possibility to directly visualize the flow makes the optical methods still very attractive and 
thus continuous efforts were undertaken to improve their resolution. One of the most 
successful approaches in this endeavour is Total Internal Reflection Microscopy (TIRM)[30]. 
In TIRM the effect of total internal reflection on the interface between two media with 
different refractive indices (e.g. glass and water) is used to create an evanescent wave that 
extends (and therefore can excite the fluorescent tracers) only in a tunable region of less than 
200nm from the interface. During the last few years TIRM was successfully applied for 
improving the normal resolution of the particle imaging velocimetry close to solid 
interfaces[17],[18],[19],[20] and slip lengths in the order of tens of nanometres were evaluated. 
With respect to FCS, however, TIR illumination was limited to diffusion studies only[31],[32] 
and there are no reports for TIR-FCS based velocimetry and slip length measurements.  
      Therefore, the main aim of this thesis is to propose a new experimental setup that 
combines for the first time TIR illumination with double-focus fluorescence cross-correlation 
spectroscopy for monitoring a liquid flow in the very close proximity of a solid surface[33]. 
Such combination offers very high normal resolution, extreme sensitivity (down to single 
molecules), very good statistic obtained for relatively short measurement times and the 
possibility to study very fast flows. Our initial studies have shown, however, that the accurate 
quantitative evaluation of the experimental data obtained with this TIR-FCCS setup is not 
straightforward because the model functions needed to fit the measured auto- and cross-
correlation curves (and extract the flow velocity profile) are not readily available. The 
standard analytical procedure to derive these functions is[26],[27],[28]: 

1. Solve the diffusion-convection equation with respect to the concentration  correlation 
function (see eq. (3-11)) 

2. Insert the derived solution in the corresponding correlation integral (see eq. (3-8)) 
3. Solve it to finally get the explicit form of the correlation functions 

 
This procedure was successfully used by Brinkmeier et al [26] to derive analytical 
expressions for the auto- and cross-correlation functions obtained with double focus confocal 
FCCS (i.e. with focused laser beam illumination as opposed to the evanescent wave 
illumination in my case) assuming that the local flow velocity and tracers concentration do 
not depend on the normal coordinate z, i.e. an average velocity can be used for all tracers 
inside the observation volume. Such an assumption is reasonable only if the observation 
volumes (laser foci) are far away from the channel walls. In the case of TIR-FCCS, however, 
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the situation is different as the experiments are performed in the very proximity of the channel 
wall and the distribution of the flow velocity inside the observation volume has to be 
considered. Furthermore, the concentration of tracers may also depend on z due to the 
electrostatic repulsion or hydrodynamic effects. Finally the presence of a boundary, which 
must be also taken into account in the theoretical treatment, further complicates the problem. 
All this effects would likely render the convection-diffusion equation (CDE) unsolvable in the 
case of TIR-FCCS. But even if an analytical solution of CDE can be found it would be 
complicated and the solution of the correlation integral hardly achieved. Therefore as an 
alternative of the above described analytical approach in this thesis I also describe a novel 
numerical method for quantitative data analysis of TIR-FCCS correlation curves in the 
presence of an external flow. I employ Brownian-Dynamics techniques to simulate the 
tracers’ motion through the observation volumes and generate “numerical” auto- and cross-
correlation curves that are consequently used to fit the corresponding experimental data. 
Moreover, a Monte Carlo method is employed for a systematic data analysis. This numerical 
approach overcomes all the problems posed to the analytical solution by the complicated 
experimental geometry. Furthermore, it has the potential to easily include effects such as 
hydrodynamic slow down of tracers’ diffusion and their electrostatic interaction with the 
channel wall as well as to account for different geometry of the observation volumes. 
      I used, in particular, the newly developed TIR-FCCS experimental setup and the 
numerical data evaluation procedure to study aqueous flow near a smooth hydrophilic surface 
and evaluated the slip length to be between 0 and 10nm. As it is commonly 
accepted[16],[18],[19],[20],[34],[35],[36] that the boundary slip should be zero in the situation of 
hydrophilic surface, my results indicate that the TIR-FCCS offers an unprecedented for an 
optical method accuracy in the nanometre range – down to few nanometres. 
      The structure of the thesis is organized as follows: Chapter 2 is dedicated to the basic 
theory and concept of Fluorescence Correlation Spectroscopy (FCS). It gives a short overview 
of the technique, its applications and experimental realization. Furthermore, the fundamentals 
of so called Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS) are 
described. This technique is the base of the proposed in the thesis TIR-FCCS method. 
Therefore, it is important for the understanding of the remaining of the thesis. Chapter 3 
explains the principles, the concept and the setup of the newly proposed TIR-FCCS 
technique. Likewise, it presents a numerical model that employs Brownian Dynamics in order 
to quantitatively process the experimental data; the limitations and the accuracy of the 
technique are also analyzed. Chapter 4 contains technical information about the materials and 
equipment that were used in the study – equipment description, microchannel fabrication, 
hydrophilic/hydrophobic surface preparation, as well as discussion on the fluorescence 
tracers. Finally Chapter 5 presents the experimental results obtain with TIR-FCCS technique. 
A detail analysis and discussion about the measured slip on hydrophilic and hydrophobic 
surfaces is also presented. The boundary-slip issue and the physical origin of the slip are also 
discussed. 
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2.   Overview of Fluorescence Correlation 
Spectroscopy (FCS) Technique 
 
 

2.1.   Conventional Fluorescence Correlation Spectroscopy 
 
 
      Fluorescence Correlation Spectroscopy (FCS) is a highly spatial and time resolution 
technique which uses the fluctuations in the light intensity signal to analyze the dynamic 
properties and behaviour of fluorescent or fluorescently labelled single molecules, 
macromolecules, nanoparticles etc. in solution. The fluctuations in the light intensity are 
typically due to the statistical nature of the undergoing process such as Brownian motion, 
thermal noise, a chemical reaction and so on. Generally any physical parameter that causes 
intensity fluctuations can be monitored and hence studied by FCS. For example, FCS is 
widely used to study the diffusion of fluorescent species in a system. When an appropriate 
physical model of the fluctuations is known, quantitative information for the following 
physical parameters can be extracted: 

• diffusion coefficient 
• hydrodynamic radius 
• average concentration 

 
      A sensitive detector records the fluctuation in the intensity emitted by fluorescent 
markers. It results in intensity vs. time trace representing random noise. From this data a 
correlation function is generated and the following information extracted - diffusion time, 
respectively the hydrodynamic radius, and the number of molecules, equivalent to the 
concentration in the sample. Besides the Brownian motion, as mentioned above, FCS can 
analyze other sources of fluorescence fluctuations, including electronic properties of dyes 
(e.g. triplet states), hindered diffusion, active transport and changes in FRET signals due to 
conformational changes of molecules. When only one kind of fluorescent marker and one 
detector are used, the method is named auto-correlation. In order to distinguish between two 
different types of molecules or a small molecule bound to a big one a difference of mass of at 
least 1.4 is required. Thus to increase the sensitivity of the method, two markers and detectors 
can be used. This method is called cross-correlation. Other common methods to use 
fluorescence fluctuations to probe molecular interactions include Photon Counting 
Histograms (PCH) and Fluorescence Intensity Distribution Analysis (FIDA). Coincidence 
Analysis is used to probe rare events in the femto-molar range. 
 
 

2.1.1.   History of FCS 
 
 
      FCS was introduced for first time in the early 1970s in a series of publications[37],[38],[39] by 
Madge, Elson and Webb. In these papers they present the basic concept and theory of FCS as 
well as its potential to measure the chemical rate constants and diffusion coefficients of 
fluorescently labelled molecules. For example, they reported data for binding of ethidium 
bromide (a fluorescent tag) to DNA. Later on in 1978 they published a paper[22] that described 
the abilities of FCS to measure uniform translation or laminar flow in a sample cell. However, 
in the early times of FCS era the measurements suffered from low signal-to-noise ratios due 



 

 9 

to the high number of observed molecules, intensity instability in the laser light sources, low 
quantum yield fluorophores and low detector efficiency. Unlike the pure fluorescence 
intensity measurements, where a solution with high fluorophores concentration is needed, 
FCS measurements are best realized when the average number of fluorescent tracers in the 
observation volume does not exceed 5-10. Typical concentrations of fluorophores in the 
nowadays FCS experiments are in the nanomolar range. Since all these requirements and 
drawbacks FCS was not widely used for 20 years. However, in the early 1990s number of 
technical improvements helped to refine the FCS technique. The major improvement was 
achieved by Rigler and his co-workers[40] (in 1993) by introducing of so called confocal 
detection scheme (for details see the next section), which helped to decrease significantly the 
observation volume and increase dramatically the S/N (signal-to-noise ratio). Subsequently 
the improvement of the laser source stability as well as the detection efficiency by using of 
avalanche photodiodes (APD) and high numerical aperture microscope objectives led to even 
single photon sensitivity. This extended the range of application of FCS to conformational 
changes in biomolecules and photo dynamical properties of fluorescent dyes. Other prominent 
applications of FCS are to investigate protein association reactions, DNA hybridization, 
immunoassays, binding to membrane receptors, gene expression, diffusion in hydrogels, 
diffusion in polymer melts, microflows and so on. In all these cases FCS offers extremely 
high selectivity and sensitivity (down to single molecule level) combined with very small 
probing volume of less than 1µm3. 
 
 

2.1.2.   Experimental realization 
 
 
      A scheme of typical FCS setup is shown on figure 2.1. It consists of a light source, usually 
laser which is fibre coupled to a microscope, dichroic mirror, emission filter, adjustable 
pinhole, and detection unit (usually APD or photo multiplayer). The excitation laser beam 
(blue on the figure 2.1) is expanded and collimated in order to fill in the objective aperture, 
then it is reflected by the dichroic mirror and focused by a high numerical aperture (typically 
NA>1) objective to a diffraction limited spot (<0.5µm) in the sample space. The fluorescent 
light (the green on figure 2.1) originating from the focus is collected back by the same 
microscope objective, passes through the dichroic mirror, emission filter and confocal pinhole 
and is finally recorded by a detector, typically an avalanche photodiode (APD). The recorded 
signal is correlated by software or hardware correlator and a correlation curve is produced. In 
most cases the correlation curve is monitored on a computer screen in real time during the 
measurement, which allows better control and adjustment of the system. The data usually can 
be stored in ASCII format for easy processing and analyzing later with the available 
mathematical software.  
      The wavelength of the laser is chosen in such a way that the fluorophores can be excited 
efficiently, respectively, the dichroic mirror, which is kind of wavelength beam splitter must 
be transparent for the fluorescence and to reflect the excitation light. Also the emission filter 
must stop completely the scattered excitation light and to be transparent for the fluorescence 
emission. On the other hand the role of the pinhole is to cut-off the light coming out of the 
focus, which in turn significantly increases both the S/N and the axial as well as lateral 
resolution of the system. Thus the typical confocal observation volume of the FCS system is 
as small as 1µm3 (≤1fL). This allows measurements to be performed with high spatial 
resolution and in small samples, e.g. even in living cells. 
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Figure 2.1 Scheme of a typical FCS setup. The magnified image on the right shows 
zoom in view of the confocal volume (green) and the excitation envelope (cyan) in the 
objective’s focus. 

 
             

2.1.3.   Theory and data analysis 
 
 
      In order to extract quantitative information about a system under investigation we need an 
appropriate model that describes the correlation function observed in an FCS experiment. 
Since there are broad ranges of systems, and the equations that govern the underlying physical 
processes can be quite complex, here I describe only the fundamental cases of translational 
free three-dimensional diffusion and directed flow, which are important for understanding of 
my study. 
      In the most general case the auto-correlation function of the intensity fluctuations (see 
figure 2.2) is given by the mean of the following product[38],[39],[41] 
 

                                          ( ) ( ) ( ) ( ) ( )∫ +=+=
T
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T
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τττ                                       (2-1) 

 
where I(t) is the time dependent fluorescence intensity due to the fluorescent molecules, τ is 
the delay time, and T is the measurement time. In practice the more convenient form of a 
normalized auto-correlation function by the squared intensity is used 
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Here in order to get equation (2-2) one uses the fact that the quantity of interest is the 
fluctuation in the light intensity δI(t) 
 

                                                          ( ) ( ) ( )tItItI −=δ ,                                                      (2-3) 

 
as well for ergodic systems 
 

                                                                   ( ) 0=tIδ ,                                                          (2-4) 

 
and that delay time τ is always relative to an earlier moment, so only the difference τ makes 
sense, hence the substitution t = 0 is justified[41]. 
 

 
 

Figure 2.2 Fluorescence intensity fluctuations due to the particles’ Brownian motion.  
 
 
As one can see from the magnified fluorescence vs. time trace on figure 2.2, the fluctuations 
δI(t) in the fluorescent intensity are due to changes in the local concentration of the 
fluorescent species in the observation volume. Mathematically this is expressed with the 
following equation[41] 
 

                                                  ( ) ( ) ( )( )dVtrBCrWtI
V

,
rr

δδ ∫=                                               (2-5a) 

 
As well as the intensity I(t) is given by 
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                                                    ( ) ( ) ( )( )dVtrBCrWtI
V

,
rr

∫=                                                (2-5b) 

 
where B is a parameter called molecular brightness, and it describes the properties of the 
fluorophores and the FCS system such as the quantum efficiency for detection of the emitted 
photons, quantum yield for emission of photons, and the cross-section for absorption. Usually 
within a FCS experiment this parameter is assumed to be a constant so that equation (2-5) can 
be rewritten as 

                                                    ( ) ( ) ( )dVtrCrWBtI
V

,
rr

δδ ∫=                                                (2-6a) 

 
and 
 

                                                       ( ) ( ) ( )dVtrCrWBtI
V

,
rr

∫=                                                (2-6b) 

 
( )rW
r

 is the so called molecular detection efficiency MDE function and describes the 

excitation intensity distribution in the focal volume V and the collection efficiency of the 
objective plus detector system. In practice for small pinholes, in the order of or smaller than 
the Airy unit (AU) of the objective, this function can be very well approximated with three-
dimensional Gaussian function[41],[21] with characteristic size in x-y plane r0 and axial size 
along z-axis z0 (see figure 2.3) 
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I0 is the intensity amplitude. The last term in (2-6a), ( )τδ ,rC

r
, refers to the local fluctuations in 

the concentration ( )τ,rC
r

 due to the particles’ Brownian motion, i.e. ( ) ( )ττδ ,, rCCrC
rr

−= . 

Substituting (2-6) in (2-2) yields the integral representation of the normalized auto-correlation 
function 
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We can simplify the latter expression by cancelling out the B term 
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and making a substitution according 
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Figure 2.3 Schematic drawing of the FCS observation volume and the excitation beam 
–  r0 and z0 denote the lateral, respectively, axial size of the observation volume. 

 
 

                                                 ( ) ( ) ( )τδδτφ ,0,,, rCrCrr
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The last step towards the integration of (2-9) is to find the explicit form of (2-10) which is 
called concentration correlation function and contains the dynamic behaviour of our system. 
This function represents the correlation between two particle’s positions in space and time, if 
at time t = 0 the particle is at ( )zyxr ′′′=′ ,,

r
 then it shows the probability to find the particle at 

( )zyxr ,,=
r

 at time t = τ. C  is the average concentration of the fluorescent particles. In 

order to find ( )τφ ,, rr ′
rr

 we have to solve the equation that govern the dynamics of the system. 

In the case of free three-dimensional diffusion it is the diffusion equation 
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Multiplying this equation with ( )0,rC ′

r
δ , and taking into account (2-10), gives an equation for 

( )τφ ,, rr ′
rr
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The latter equation can be solved by Fourier Transform and has a closed-form[38],[22],[41] 
solution, namely 
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Figure 2.4 a) Example of an auto-correlation curve and its development; b) Example 
of a fit of an auto-correlation curve – solid red line is the fit with (2-19) and circles are 
the experimental points. Note that the tracers used were Qdots585 and S = 6 (fixed). 
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with initial condition at τ  = 0 
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where D is the diffusion coefficient. Having in hands (2-13) and (2-7), and substituting them 
in (2-9), and doing some exhaustive mathematical calculations we finally get for G(τ) 
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If we rewrite the upper expression in the following form 
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and insert  
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as well 
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we get the widely used in practice, and more convenient in form, auto-correlation function[41] 
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N is the average number of particles in the observation volume and is derived from 

NVCzrC eff ==0
2

0
2

3

π , where 0
2

0
2

3

zrVeff π=  has the dimension of volume and is called 

effective volume; τD is the so called diffusion time – it can be thought as the average time that 
a particle needs to cross the observation volume; S is the so called structure parameter – the 
ratio between axial and lateral extent of the observation volume (see (2-18)). 
      Equation (2-19) is important because it describes the observed experimental auto-
correlation curve and is used in the data fitting analysis in order to extract the diffusion time 
τD and the number of particles N (see figure 2.4). Thus using (2-17) one can derive the 
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diffusion coefficient and through Einstein-Stokes equation, the hydrodynamic radius of the 
particle 
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where Rh – hydrodynamic radius; k – Boltzmann’s constant; η - viscosity of the medium; T – 
temperature. 
      In case when there is a directed flow presented, e.g. along x axis (see figure 2.5), we have 
to modify (2-11), (2-12) in such a way that to account for that. Therefore the concentration 
fluctuations ( )τδ ,rC

r
 and concentration correlation function ( )τφ ,, rr ′

rr
, in case of flow, obey 

to the following differential equations 
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Vx denotes the flow velocity, which in our case of directed uniform flow is a constant. The 
solution of the latter differential equation is known[22],[24] and has the following form 
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Substituting this function in (2-9) and taking into account (2-10) and (2-14) one can derive the 
corresponding auto-correlation function in the flow case. It has similar form like (2-19), but 
additional exponential term appears that accounts for the presence of flow[22],[24] 
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where τf is the flow time, and is defined as follows 
 

                                                                     
x
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i.e. the average time that a particle needs to travel a distance equal to the radius of the 
observation volume. 
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Figure 2.5 Scheme of the FCS observation volume and directed flow along x axis. 
 
 
This closed-form view of the auto-correlation function (2-24) allows straightforward fitting of 
the experimental data and hence easy measurement of a flow profile throughout a micro 
channel, which is important part from the method I have developed. 
      So far we have assumed that the observed intensity fluctuations were caused by the 
random walk of the fluorescent particles throughout the confocal FCS volume. However due 
to the physical nature of the particles they may change their intrinsic fluorescence properties 
during the observation. For instance, many fluorescence molecules such as Alexa488, Rh6G, 
green fluorescent protein etc. can be excited in triplet state (see figure 2.6). 
 
 

 
 

                                    a)                                                 b) 
 

Figure 2.6 Scheme of light absorption that excites a fluorophore to singlet state S1 and 
the relaxation a) from singlet to ground state S1 � S0, and b) relaxation from singlet to 
ground state through triplet state S1 � T1 � S0. 
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Fraction of the excited molecules relaxes to the ground state through the triplet state. This fact 
leads to additional raise in the auto-correlation curve caused by the triplet relaxation process 
which is observed at short times, usually about few microseconds[42] (see figure 2.7). 
In order to account for this process, and when we cannot avoid the triplet in our data analysis, 
the so called triplet correction term is added to the auto-correlation fit function[42],[43] 
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where p is the percentage of molecules that has entered in triplet state, and τtr is the triplet 
decay time. Thus the corresponding auto-correlation reads 
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Figure 2.7 Time scale of different photo-physical processes observed by FCS 
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Note that for processes where the dynamics is not as fast as the triplet decay time, the triplet 
term can be neglected. There are other short time processes that can give raise in the auto-
correlation curve and can be eventually monitored by FCS[21], e.g. rotational diffusion, 
antibunching etc. However in most cases of diffusion measurements these processes occur at 
very short time scales and can be neglected. 
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2.1.4.   Limitation of the confocal FCS 
 
 
      FCS has proved to be a versatile and powerful tool to study great number of phenomena 
ranging from biology and chemistry to physics. For example, due to the small observation 
volume (<1fL) FCS is widely used in biology in order to study intracellular interactions as 
well as transport of biomolecules in living cells. Moreover, this advantage of such a small 
confocal volume and its non-invasive capability allow in situ to probe various kind of 
interactions in living cells so that the mechanism of important biochemical and biophysical 
processes can be revealed. Even though the conventional FCS presented in the latter section 
has certain limitations inherited by the requirement to use optical wavelengths to create and 
record the fluorescence signal. Therefore due to the diffraction of the light with conventional 
means one cannot achieve lateral size of the observation volume smaller than the half of the 
wavelength of the light used[44] 
 

                                                               
objNA

r
2

22.10

λ
=                                                    (2-27) 

 
Furthermore, in axial direction the resolution is even worse[44] 
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where λ – wavelength of the light, NAobj – numerical aperture of the objective, n – refractive 
index of the medium. The latter two expressions are derived taking into account the so called 
diffraction limit of the light and typically in the FCS case the corresponding values are about 
r0 ~250nm in lateral and z0 ~700nm in normal direction, respectively (as λ = 488nm, NAobj = 
1.2, n = 1.33). 
      As a direct consequence of this, number of important phenomena becomes inaccessible by 
the conventional FCS technique. Moreover, when one applies FCS to study surface 
phenomena quantitative results are either difficult to get or impossible. Thus when one 
investigates flow near a solid interface, and essentially so called boundary slip phenomenon, 
better axial resolution is required. In order to achieve it I used another technique called Total 
Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). TIR-FCS is further 
development of FCS technique, based on Total Internal Reflection effect that may be used to 
address the boundary slip issue. In next section I describe the basic concept and idea behind 
TIR-FCS, and why it can be useful to study processes that take place near an interface. As 
well as I present the theory of evanescent wave and data analysis approach in TIR-FCS. This 
is an important step towards the understanding of the next chapters where I describe my 
contribution by proposing Total Internal Reflection Fluorescence Cross-Correlation 
Spectroscopy (TIR-FCCS) in order to study the boundary slip phenomenon. 
So in summary the TIR-FCS aims to overcome the following basic problems that occur in 
conventional FCS technique: 

• FCS observation volume is too big along the normal to the surface 
• FCS observation volumes is not well defined on the surface 
• The S/N is not as good as in TIR-FCS 
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2.2.   Total Internal Reflection FCS (TIR-FCS) 
 
 
          The effect of Total Internal Reflection takes place on the interface between two media 
with different refractive indices and result in the appearance of an evanescent (fast decaying) 
wave in the low refractive index media. The so called Total Internal Reflection Spectroscopy 
for optical absorption studies (called also attenuated total reflection or ATR) a has been 
developed in the early 60s and widely used in surface chemistry studies[45]. A book that 
describes in details this method is “Internal Reflection Spectroscopy” by Harrick[46]. As a 
technique for selective surface illumination in fluorescence studies, Total Internal Reflection 
Fluorescence (TIRF) was first introduced by Hirschfeld[47] for solid-liquid interfaces, Tweet et 
al.[48] for liquid-air interfaces, and Carniglia et al.[49] for high refractive index liquid-solid 
interfaces. TIRF has been combined with variety of other conventional fluorescence 
techniques (polarization, Fröster energy transfer, microscopy, spectral analysis, photo-
bleaching recovery, and correlation spectroscopy) for a variety of reasons (detection of 
molecular adsorption, measurement of adsorption equilibrium constants, kinetic rates, surface 
diffusion etc.). Total Internal Reflection optics have also been combined with Raman 
spectroscopy[50],[51], infrared absorption spectroscopy[52], and light scattering[53],[54]. 
      Total Internal Reflection Fluorescence Microscopy (TIRFM) is other prominent domain 
where TIR effect is applied[55]. Its aim is to visualize objects and events near a surface with 
higher axial resolution and as well as higher contrast. For example, a popular application is 
selectively to image structures in living cells, excite fluorophores close to the cover slip, and 
track surface dynamics of cell’s membrane[56]. For example, TIR generates rapidly decaying 
evanescent field near the surface so that a thin illuminated layer (~100nm) close to the 
interface is visualized, such as basal plasma membrane (~8nm thick) of living cells. 
      The combination of TIRF with correlation spectroscopy led to TIR-FCS. It is an optical 
technique based on FCS, which is intended to study phenomena at solid-liquid interfaces. 
Similar to FCS, it uses the light fluctuations and correlation analysis in order to extract 
information about the dynamic properties of a system under investigation, such as a diffusion 
coefficient, concentration of the fluorescent species etc. It was introduced in the early 1980s 
by Thomson et al.[57],[58] who employed TIR effect to FCS in order to improve the S/N of the 
FCS technique. At that time the confocal principle was still unknown and this was useful 
approach to reduce the background noise in a FCS experiment. Likewise the axial resolution 
of FCS was increased, which allowed selective excitation of fluorescent samples in very 
proximity to the surface (~100nm). Such studies are important to a broad range of scientific 
and industrial processes – specific or non-specific binding to an interface, blood coagulation 
at foreign surfaces, diffusion in cell’s membrane etc. 
      Although the fundamentals of TIR-FCS theory were established in the beginning of 
1980s, the technique did not spread much in the next years. Increased number of publications 
that showed experimentally the application of the method to other fields in life science 
followed exclusively in the late 1990s. For example, Hansen et al.[59] investigated reversible 
adsorption kinetics of the cationic dye Rh6G to modified silica surfaces. TIR-FCS was also 
used to investigate molecular transport in thin sol-gel (porous silicon oxide) films[60]. 
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2.2.1.   Basic principles and concept 
 
       
                               a)                                                                            b) 
 

                
 
 
                               c) 
 

 
 
 
      As mentioned in the latter section TIR-FCS is technique developed to improve the axial 
resolution of the confocal FCS as well as to address the questions related to studies on the 
interface. Employing Total Internal Reflection (TIR) effect to FCS technique leads to higher 
axial resolution of the system. Thus the main difference between confocal-FCS and TIR-FCS 
technique is the way in which the excitation is realized. In TIR-FCS the excitation is done by 
evanescent field when Total Internal Reflection takes place. The phenomenon occurs on the 
border of two media with different refractive indexes when the light beam comes from higher 
refractive index medium to lower refractive index medium at angle of incident exceeding the 
so called critical angle (see figure 2.8). Then the so called evanescent field arises in the 
medium with lower refractive index n2 and excites the fluorophores only in proximity of the 
interface within a layer typically 60nm to 250nm thick. The axial extend of this layer (so 
called penetration depth dp) is governed by laser beam angle of incidence (see figure 2.9b) as 
well as the refractive indexes of the media. 
      When a plain electromagnetic wave propagates and reaches the interface between two 
media it undergoes refraction described by Snell’s law 
 

Figure 2.8 Scheme illustrating Total 
Internal Reflection effect and the excited 
evanescent field – a) α1 < αc – angle of 
incidence α1 bellow the critical angle αc; b) 
α1 = αc – angle of incidence α1 equal to the 
critical angle αc; c) α1 > αc – angle of 
incidence α1 above the critical angle αc - 
Total Internal Reflection occurs as well as 
evanescent wave arises in the medium with 
lower refractive index n2. 
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where α1 – angle of incidence, α2 – angle of refraction, n1 – refractive index of medium 1, n2 – 
refractive index of medium 2. In our case in order to achieve TIR we impose n2 < n1, i.e. the 
first medium is optically denser than the second medium – a requirement for Total Internal 
Reflection to be observed. Thus the critical angle αc, the smallest angle when TIR occurs, is 
defined as the angle of incidence α1 where the angle of refraction α2 becomes 90°, i.e. 
refracted beam propagates parallel to the interface (see also figure 2.8b) 
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For example, on glass-water interface, n1 = 1.52, n2 = 1.33, the respective critical angle equals 
αc = 61.04°. Hence for all incident angles α1 > αc the incoming light will be totally reflected 
back into the denser medium n1. Measurement of the critical angle αc gives a convenient and 
accurate way of determining the index of refraction sin αc = n2/n1. Instruments used for this 
purpose are called refractometers. 
      Complete description of TIR phenomenon is given by the Maxwell’s theory of the 
electromagnetic field. It shows that due to the continuity, even though the light is totally 
reflected, in the second medium there is still present a decaying electromagnetic field called 
evanescent field or evanescent wave[61]. Indeed the existence of evanescent field was proved 
by number of experiments, for example Raman used a sharp metal tip placed near an interface 
(in the medium with lower refractive index) but not in contact with the interface, then a 
scattering from the metal tip was observed regardless of the totally reflected light. The 
existence of the evanescent field can be understood by considering the electric vector of the 
transmitted wave[62] 
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frequency, t – time. Taking into account the chosen coordinate axes (figure 2.8) as well as the 
Snell’s law (eq. (2-29)) one can write 
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In the last step we also take into account that above the critical angle at Total Internal 
Reflection 
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So that the cos α2 in (2-32) is an imaginary value, and we cannot get real value for the angle 
of refraction α2. In the early days of Optics this case was interpreted as being unphysical but 
later it was realized that it could explain the existence of the evanescent field as described 
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Figure 2.9 Evanescent field properties for λ0 = 488nm, n1 = 1.52 (glass), n2 = 1.33 
(water) – a) normalized intensity of the evanescent field as a function of z at fixed 
angle of incidence α1 = 65.71° and corresponding dp = 100nm; b) penetration depth dp 
of the evanescent field as a function of the angle of incidence α1, αc denotes the critical 
angle. 

 
 
here. Inserting (2-32) into (2-31) leads to the following expression for the electric vector of 
the transmitted wave 
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The evanescent wave vector kevan in (2-36) manifests that the evanescent wave (2-34) 
propagates parallel to the boundary (see figure 2.8c) and can be described in terms of surfaces 
of constant phase moving parallel to the interface with speed ω/kevan. It is straightforward to 
show that this is greater by a factor of 1/sin α1 than the phase velocity of ordinary plane waves 
in the optically denser medium. Likewise the equation (2-35) indicates that though this wave 
propagates without attenuation along the boundary surface, its intensity in the medium with 
refractive index n2 decreases exponentially with respect to the distance z from the interface, 
hence[62],[30] 
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where I0 is the intensity at z = 0 and dp is the so called penetration depth, a characteristic 
length at which the initial intensity I0 drops down to 1/e (figure 2.9a). This characteristic 
length dp depends on the refractive indexes of both media (n1 and n2), the angle of incidence 
α1 as well as the wavelength of the incident light λ0, and is given by the following 
relationship[62],[30] 
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Thus dp doesn’t depend on the polarization of the incoming light and decreases with 
increasing the incidence angle α1 (figure 2.9b). Usually dp is smaller than the wavelength of 
the light and only at the limiting case α1 ≈ αc (dp → ∞) the penetration depth is in the order of 
the wavelength or bigger. 
      The fast exponential decay (2-37) and the dependence of dp on the incidence angle α1 (2-
38), describe the most important properties of the evanescent wave which are utilized in TIR-
FCS technique in order to achieve a superior axial resolution compare to conventional FCS. 
For example, the penetration depth dp in a typical TIR-FCS experiment can be set up to 
100nm, which defines a layer with thickness ~ λ0/5 of the wavelength (in case λ0 = 500nm is 
used). 
On figure 2.9 are shown graphs of Intensity vs. z dependence (figure 2.9a), and dp vs. 
incidence angle α1 (figure 2.9b) for certain TIR-FCS experimental conditions. Note that by 
changing the incidence angle α1 the penetration depth can be varied in a certain range 
depending on the experimental conditions. This allows different distances form the surface to 
be probed and the influence closer or farther away from the interface to be investigated. 
      However, we should also point out that the initial intensity I0 at z = 0 depends on the 
polarization of the incoming light as well as the incident angle α1, i.e. it’s not always constant. 
In order to find this dependence we need to explicitly know the components of the 
electromagnetic field on the solid-liquid interface. Let’s consider a plane wave undergoing 
Total Internal Reflection on such an interface, the corresponding amplitudes of the electric as 
well as magnetic field at z = 0 (and α1 > αc) are given by the following relations[61],[30] 
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Respectively the magnetic field amplitude components are 
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Figure 2.10 Intensity as a function of the incident angle α1 for parallel ||
0I  and 

perpendicular ⊥
0I  components of the evanescent wave. Normalization is done with 

respect to the incoming wave intensity a||,⊥. The optical properties of the media are as 
follows – n1 = 1.33 (water) and n2 = 1.52 (glass); the wavelength of the incoming light 
is λ = 488nm, the corresponding critical angle is αc = 61.04°, respectively. 
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A|| is the parallel to the incidence plane electric wave vector (p-polarized), and A⊥ is the 
perpendicular to the incidence plane electric wave vector (s-polarized), respectively; n 
denotes the relative refractive index; δ|| and δ⊥ are the respective phases of the corresponding 
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waves. The angular dependence of the phase factors (2-47) and (2-48) gives rise to a 
measurable longitudinal shift of a finite size incident beam, known as the Goos-Hänchen 
shift[63]. Viewed physically, some of the energy of a finite-width beam crosses the interface 
into the lower refractive index material, skims along the surface for a Goos-Hänchen shift 
distance ranging from a fraction of wavelength (at α1 = 90°) to infinite (at α1 = αc), and then 
re-enters the higher refractive index material. This dependence of the phase on the incident 
angle is used in so called Fresnel’s rhomb, a specially designed piece of glass block, to 
produce circular or elliptically polarized light from linearly polarized light (and vice versa) by 
two successive total internal reflections. 

      The intensity of the evanescent wave is given by[64] 
2

E
r

. It is a superposition of the 

contribution from the parallel ||
0I  and perpendicular ⊥

0I  polarized electromagnetic fields 
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Ix = |Ex|

2 and Iz = |Ez|
2 are the evanescent intensities at z = 0 for the components parallel of the 

incident plane, and Iy = |Ey|
2 is the intensity for the component perpendicular to the incident 

plane, respectively. a||,⊥ = |A||,⊥|2 is the corresponding incoming intensity. On figure 2.10 one 
can see the dependence of I0 as a function of the incident angle for its parallel and 
perpendicular components. From the given figure can be noted that the intensity at certain 
angles, especially at α1 ≈ αc (z = 0), for both components exceed the incident intensity by a 
factor of 4-5. 
      Analyzing the energy flux of an electromagnetic field given by the real part of the 
Poynting vector 
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we can conclude that though there is a field in the second medium, it can be shown that no 
energy flows across the boundary[61]. In fact the component of the Poynting vector normal to 
the boundary is generally finite, but its time average vanishes. On the other hand the time 
average of the other two components Sx and Sy is found to be finite. Hence the energy flux 
doesn’t penetrate into the second medium but flows along the boundary in the plane of 
incidence. The analysis so far is based on the assumption of infinite boundary surface and 
infinite wave fronts as well. It doesn’t explain how the energy initially comes into the second 
medium. In a real experiment, the incident beam will be bounded both in space and time, i.e. 
in the beginning of the process a small amount of energy will penetrate into the second 
medium and will give rise to the field there[61]. 
     In many TIRF experiments, an incident laser beam has a Gaussian intensity profile. The 
nature of the evanescent field produced by such a finite size beam has been investigated in 
general[64]. For typical experimental conditions, the evanescent illumination is of an elliptical 
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Gaussian profile and the polarization and penetration depth are approximately equal to those 
of a plane wave. The angular distribution of the fluorescence excited by the evanescent field 
when viewed through a higher refractive index medium is anisotropic. A detail discussion is 
presented from Lee et al[65].      
 
 

2.2.2.   Experimental realization 
 
 

 
 

Figure 2.11 Schematic drawing of a typical Total Internal Reflection Fluorescence 
Correlation Spectroscopy setup. BFP – back focal plane; DM – dichroic mirror; EF – 
emission filter; PH – pinhole; L1 – lens; L2 – collimator lens; M – collimator mirror; 
APD – avalanche photodiode. 
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      In FCS the excitation is realized by focusing a light beam in a diffraction limited spot. 
Unlike this in TIR-FCS the excitation is done by an evanescent field when TIR occurs on the 
border between two media with different refractive indexes. Therefore according the way TIR 
is achieved one can divide TIR-FCS systems into two major groups[30] – objective type and 
prism type setups. 
      The term objective type denotes that in such setups the illumination and collection of light 
is performed with the help of an objective (see figure 2.11). Whereas in the so called prism 
type TIR-FCS setups the evanescent wave is created with the help of a prism and the 
collection of the fluorescent light can be realized by an objective or other optical system such 
as optical fibre etc. The main advantages of objective type systems, compare to the prism 
ones, are – higher light collection efficiency and easier to handle setup[31]. The main 
disadvantages, respectively, are – not all angles of incidence are accessible due to the finite 
aperture of the microscope objective which limits the angle of incidence up to the value 
indicated from the numerical aperture of the objective NAobj, and in this way the minimum 
possible dp; more expensive high numerical aperture oil immersion objective is needed. Since 
in the present thesis I describe an objective based setup, the prism based setups will not be 
discussed further, for more details on the latter one can refer to [30]. 
     On figure 2.11 one can see a typical realization of an objective type TIR-FCS setup, as it is 
done in practice. An excitation beam (blue on the figure 2.11) from a laser source is coupled 
through a fibre and guided to a collimator. Then the beam passes through the collimator 
which is aligned in such a manner that all the light coming out is focused by the lens L1, 
reflected by the dichroic mirror DM and focused on the back focal plane BFP of a high 
numerical aperture objective (NAobj ≈ 1.45). This results in a parallel beam emerging out of 
the objective and falling under a certain angle on a glass surface of a sample chamber. 
Adjusting the alignment and the magnification of the collimator one is able to vary the angle 
of incidence and the spot size of the beam after the objective. If the angle of incident beam 
exceeds the critical angle TIR effect occurs and an evanescent wave (cyan in the sample 
chamber on figure 2.11) is excited in the sample space. Since the axial extend of this wave is 
usually within the range of 50-250nm away from the interface only fluorophores in proximity 
of the surface are excited. The axial extend of the layer, the penetration depth dp, is controlled 
by laser beam angle of incidence. The fluorophores that pass along the illumination volume 
are excited by the evanescent field (see the yellow particles in the sample on figure 2.11). 
Thus the fluorescent light (the green on figure 2.11) originating from the observation volume 
is collected back by the same microscope objective, passes through the dichroic mirror DM, 
the emission filter EF and the pinhole PH, and is finally recorded by a detector, typically an 
avalanche photodiode (APD). The recorded signal of the time trace of the intensity 
fluctuations is auto-correlated by software or hardware correlator and afterwards fitted with a 
model fit function in order to extract a number of parameters that characterize the properties 
of the fluorescent species inside the observation volume – diffusion coefficient, concentration, 
etc. The data usually can be stored in ASCII format for easy processing and analyzing later 
with the available mathematical software. 
      The wavelength of the laser is chosen in such a way that the fluorophores can be excited 
efficiently. The dichroic mirror DM must be transparent for the fluorescence and to reflect the 
excitation light. Also the emission filter EF must stop completely the scattered excitation light 
and to be transparent for the fluorescence emission. Note that in TIR-FCS the illumination 
region is much bigger than the observation volume (see figure 2.12) defined by the pinhole 
PH placed in the image plane of the microscope objective, so that the usage of a pinhole 
decreases substantially the lateral size of the observation volume. This in turn significantly 
increases both the signal-to-noise ratio and the resolution of the system. For example, the size 
of an illumination beam emerging out of an objective and falling on a surface can be 30µm in 
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diameter while the pinhole PH can confine an observation area within this illumination spot 
about 0.5µm in diameter. Thus the typical observation volume of a TIR-FCS system can be as 
small as 0.05fL, smaller than in FCS (~0.5fL). This allows measurements to be performed 
with high resolution on the surface, so that TIR-FCS technique is capable to monitor 
processes that take place near an interface. 
 
 

2.2.3.   Theory and data analysis 
 
 
     As we have mentioned many times TIR-FCS technique is further extension of the FCS 
technique which aims to address questions related to interface studies and to improve the axial 
resolution of the conventional FCS technique. In such a view the theory behind TIR-FCS is 
closely related to the FCS one. Similar to FCS, one needs to explicitly know the 
corresponding to the experimental situation correlation function, which describes the dynamic 
behaviour of the system under investigation. Hence a number of unknown parameters can be 
understood quantitatively and their values obtained, e.g. the concentration, diffusion etc can 
be extracted from the raw data.  
            Since to obtain the unknown parameters a fit of the experimental correlation curve 
must be performed using a model function, here I present several key cases of such 
correlation fit functions. They cover important cases of free three-dimensional translational 
diffusion near an interface, convection-diffusion in presence of uniform flow as well as the 
very important issue of convection-diffusion in a liner flow velocity field, which will also be 
further considered in details in the next chapter (see Chapter 3). The latter case is essentially 
important since my study is based on this approach to measure and get information about the 
slip length of a flow in a microchannel. Hence the explicit knowledge of the correlation 
functions is from a great interest. 
      Note that in order to treat theoretically the TIR-FCS case one must take into account the 
presence of a solid boundary. In TIR-FCS experiments the measurements always occur on the 
interface, which from theoretical point of view imposes a boundary condition to the diffusion 
or convection-diffusion process. The corresponding differential equation, which describes the 
behaviour of the concentration or concentration correlation function, is employed in the 
calculation of the correlation integrals. 
 
 

      Free three-dimensional translational diffusion 
 
 
      As mentioned above for an evaluation of the experimental data in case of free three-
dimensional translational diffusion an autocorrelation analysis is used. The general form of 
the autocorrelation function of the intensity fluctuations is as follows[41],[21] 
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where I(t) is the time dependent fluorescence intensity due to the fluorescent tracers, τ is the 
delay time, and T is the measurement time. The upper equation is absolutely identical to (2-1), 
the difference comes from the fact that this integral renders more complicated to solve                               
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Figure 2.12 Schematic drawing of the TIR-FCS observation volume and the excitation 
region – W (in green) is the observation volume; Illumination area is in light blue; w0 
and dp denote the lateral, respectively, axial extend of the observation volume. Note 
that the recorded by the detector signal originates only from the observation volume; 
the rest of excitation is cut due to the presence of a pinhole. 

 
 
compare the conventional FCS case due to the solid interface boundary. However, in practice 
mostly the normalized by the squared intensity form of (2-53) is used 
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In the last step we used (2-3) and the fact that system is ergodic, i.e. (2-4) holds. Also the 
delay time τ is always relative to an earlier moment, so only the difference τ makes sense, 
hence the substitution t = 0 is justified[41]. 
      As one can notice we are closely following the derivation presented in section 2.1.3, the 
FCS section. Since the present theory steps on the same approach, some of the details 
mentioned already will be skipped in the subsequent derivation. 
      The quantities of interest, the fluorescent intensity δI(t) and its fluctuations δI(t), can be 
expressed mathematically by the equation (2-5) or (2-6), i.e. 
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,
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∫=                                                 (2-55b) 

 
( )rW
r

 is the molecular detection efficiency MDE function of the system. In case of TIR-FCS 

due to the TIR effect and the presence of a solid boundary, the MDE function has slightly 
different form compare in FCS (see for comparison (2-7)). For small pinholes, in the order of 
or smaller than the AU of the objective, this function can be very well approximated in x-y 
plane with a Gaussian profile with radius w0 (on 1/e2). Whereas along z-axis, due to the 
evanescent wave, MDE function depends exponentially on z with decay length dp

[31]
 (see 

figure 2.12) 
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I0 is the intensity amplitude. The last term in (2-55a), ( )τδ ,rC

r
, refers to the local fluctuations 

in the concentration due to the particles’ Brownian motion, i.e. ( ) ( )ττδ ,, rCCrC
rr

−= . 

      Substituting (2-55) in (2-54) yields the integral representation of the normalized auto-
correlation function 
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In the latter expression we used 
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It must be noted that to account for the boundary the integration over the space (V ,V ′ ) is 
taken in the positive half space, i.e. 0≥z  and 0≥′z . 
      The last step to obtain the explicit form of (2-57) is to find the expression for the 
concentration correlation function (2-58). It contains the dynamic behaviour of our system 
and represents the correlation between two particle’s positions in space and time. In order to 
find ( )τφ ,, rr ′

rr
 we must solve the equation for free three-dimensional diffusion process, 

namely 
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Multiplying this equation with ( )0,rC ′
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      In case the concentration of fluorescent species is low and the system is far from the state 
of phase transition, the equilibrium concentration fluctuations are spatially uncorrelated, so 
the following initial condition (τ  = 0) holds 
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Furthermore, if one assumes that the concentration of diffusing fluorescent species is low 
enough so that they do not affect the motion of each other, then the number of tracers in any 
finite volume is a Poisson variable, and hence 
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      In order to handle the presence of a solid wall we must introduce a boundary condition to 
(2-60). In the case of free three-dimensional diffusion near an interface without absorption, 
the non-flux boundary condition is kept 
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It implies that there is no flux of particles across the interface, so that the diffusion process 
only occurs in the positive half space ( 0≥z , 0≥′z .)  
      Another boundary condition can be derived from the requirement the concentration 
correlation function to have physical sense, i.e. to be zero at infinity 
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We should make few remarks – first the diffusion equation (2-59) is derived at the assumption 
of no dependence of the diffusion coefficient D on the distance z to the surface. Second 
important assumption we do neglect in the theoretical treatment the influence of the particle 
size over the auto-correlation function (2-57). It also means that the hydrodynamic 
interactions between the bottom wall and the diffusing particles are neglected. Thus a constant 
diffusion coefficient is assumed everywhere in V space. Although such assumption cannot be 
valid for finite size particles it is still valid for small molecules and it simplifies the finding of 
a solution of (2-59) as well as (2-60). This in turn allows the auto-correlation integral (2-57) 
to be solved analytically. From this point of view D can be seen as an effective diffusion 
coefficient, which would describe the diffusion process within the evanescent field in such a 
manner that it will produce the same auto-correlation curve as if D was not a constant. 
      Generally if one seeks a more accurate description of the auto-correlation function near an 
interface, the hydrodynamic interactions which alter the diffusion coefficient must be taken 
into account. Hence D is not a constant anymore but rather a tensor quantity[66]. Since there is 
no anisotropy of the diffusion in x-y plane the diffusion tensor can be described with the help 
of a diagonal matrix 
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and due to the symmetry in x-y plane, respectively, the following holds 
 
                                                               yyxx DD =                                                            (2-64b) 

 
Brenner et al[67], Goldman et al[68],[69] and Faxen et al[70] showed that a hard sphere diffusing 
close to a wall has mobility that depends only on z. Therefore the hydrodynamic correction of 
the diffusion coefficients in x-y plane[66],[68],[70]

 and along z[67],[71] read 
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Both equations are approximations of the real infinite series solutions but represent the 
diffusion behaviour very well in all possible particle-wall separation distances z. D0 is the 
diffusion coefficient in bulk, i.e. far away from the interface; rp stands for the particle’s 
radius, and z is the distance from the interface to the centre of the particle. Thus the following 
more complicated form of the diffusion equation must be solved in order to reflect the 
hydrodynamic interactions with the wall 
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Due to the complex dependence of Dxx, Dyy, Dzz on z the upper equation (2-65a) can hardly be 
solved analytically. To date in the literature there is no analytical solution of (2-65a). 
Therefore for the data analysis we will stick to (2-59) and (2-60). This allows straightforward 
way to get the corresponding solution, at the assumption we observe a constant effective 
diffusion coefficient within the evanescent field. Furthermore, in the next chapter (Chapter 3) 
I show that the numerical method which we have developed can be easily extended to account 
for other effects, including hydrodynamic and electrostatic interactions of a spherical particle 
with a wall. 
      The corresponding to the diffusion equation (2-59), equation for the concentration 
correlation function (2-60), can be solved by applying Fourier Transform and Green functions 
method as well as method of images to account for the boundary condition (2-62), so that 
eventually one obtains the following closed-form solution[72]                                      
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Having in hands (2-56) and (2-66), and substituting them in (2-57), and doing some 
exhaustive mathematical calculations we finally get for G(τ)[31],[73] 
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Where N is the average number of particles in the observation volume and equals effVCN = ; 

γ is a correction factor which describes the deviation of the effective volume Veff from Vol1
[31] 
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τxy is the lateral diffusion time and τz is the axial diffusion time, respectively, i.e. 
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Since we neglected the hydrodynamic interactions with the wall, the diffusion D in the above 
two expressions is the same in x-y-z direction. erfc(x) is the complementary error function 
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and erf(x) is the error function, respectively. Defining the ratio between axial and lateral 
extent of the observation volume, so called structure parameter 
 

                                                                       
0w

d
S

p=                                                          (2-74) 

 
and taking into account the relations (2-71) and (2-72) we ca rewrite the expression (2-67) in 
the following more convenient form 
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Note that the triplet term (2-25) that accounts for the triplet dynamics is omitted in the last 
equation. Anyway, it can be added in the same manner as in (2-26). 
      Although the fit function (2-75) is very convenient and widely used it has several 
disadvantages – first the fit error increases as the pinhole size exceeds the AU of the 
objective, and for pinhole sizes much greater than AU the error renders a large value. The 
reason is that MDE function (2-56) in x-y plane cannot be expressed accurately in terms of a 
Gaussian anymore, so that another model function is necessary. Second in order to get a 
reliable value for the fit parameter τz one must do a calibration measurement with a known 
dye prior to the actual measurement, so that the structure parameter S can be precisely 
defined. Even then the calibration procedure may not be simple due to the presence of an 
interface which induces different type of forces, e.g. hydrodynamic and electrostatic 
interactions can alter the diffusive behaviour of the fluorescent species near the surface. 
However, recently a more general form of the auto-correlation fit function has been proposed 
that solves these problems[32]. In principle it relies on the precise knowledge of the parameters 
of the optical system that is employed in TIR-FCS experiment, i.e. the knowledge of 
numerical aperture of the objective NA, pinhole size and the wavelength of the emitted light 
λem. Thus the following auto-correlation fit function is valid for arbitrary pinhole sizes[32] 
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where the following substitution is applied 
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σ  is the width of the point spread function PSF of the objective, well approximated with a 
Gaussian function 
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a is the image of the pinhole in the sample’s space, i.e. the pinhole size divided to the total 
magnification of the optical system 
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Note that the fit function (2-76) is derived at the assumption of rectangular pinhole shape. 
Thus the detection profile can be derived by imaging of the pinhole in the sample space 
through a convolution with the PSF of the objective, which finally yields the lateral shape of 
MDE function[32] 
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Whereas in case circular pinhole is used, Lxy(x, y) is given by[32] 
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where R is the pinhole radius divided by the magnification Mtot of the optical system. The 
latter equation makes the auto-correlation integral (2-57) unsolvable analytically, so that it 
must be numerically computed. Another approach is to approximate the circular profile with 
an effective square profile[32] and fit the curves with (2-76). This works reasonably well if 
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is used. The correction factor fa = f(R/σ) is a function on the ratio between R and σ 
(dependence shown in [32]). The resulting error in the diffusion coefficient is less than 0.2% 
for any pinhole size, the error in the concentration is less than 5%[32]. However, the shapes of 
the correlation functions for square pinhole and a corresponding circular pinhole are not the 
same. This deviation can lead to wrong parameter estimates if additional fit parameters are 
used, e.g. if binding kinetics are considered[32]. Nevertheless, in both cases the observation 
volume, i.e. MDE function reads 
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The advantage of (2-76) model fit function is that it involves a term that accounts explicitly 
for the geometry and the properties of the optical system, which are well-known so that the 
free fitting parameters decrease and more reliable results can be extracted from the 
experimental data. 
 
 

      Free three-dimensional translational diffusion plus directed flow  
      (for detail discussion see Chapter 3) 
 
 
      Free three-dimensional translational diffusion plus directed flow is another important case 
from fundamental interest in TIR-FCS. Since in my particular study this case is the base of 
the new method that I propose, I will consider it in details in the next chapter. Here I will only 
mention the particular problem which I aim to solve in the next chapter. 
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      As we have seen so far the knowledge of the correlation function allows one to reliably fit 
and interpret the experimental data. Unfortunately very often when more complex diffusion 
models are involved, a closed-form solution of the concentration correlation function and 
subsequently the correlation integral (2-57) cannot be found. Thus the processing of data in a 
robust way is hindered. As we will see in the next chapter such a problem occurs when slip 
boundary phenomenon is considered. Since my goal is to experimentally measure the so 
called slip length which characterizes the slip or non-slip boundary condition, this is an issue. 
In a rectangular microchannel the flow velocity obeys Poiseuille profile, but even if the 
Poiseuille flow is approximated by a linear flow in proximity of an interface, an analytical 
solution of the correlation integral can not be found. This simplified treatment of the flow 
profile is relevant due to the small penetration depth used in the experiment. In any case I 
solve this problem by introducing a novel numeric algorithm, which is capable to process the 
raw data in quantitative way. 
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3.   Total Internal Reflection Fluorescence Cross-
Correlation Spectroscopy (TIR-FCCS) – a novel 
approach to study flow near to an interface 
 
 

3.1.   Introduction to TIR-FCCS 
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                                         a)                                                                          b) 
 

Figure 3.1 Example of a flow velocity profile in a microchannel of 100µm height and 
width much greater than the height: a) Poiseuille flow with no-slip boundary condition 
– note that in such a case the flow velocity at the wall is vs = 0; b) Poiseuille flow with 
slip boundary condition – note that in such a case the flow velocity vs at the wall 
differs than zero. 

 
       
      When studying a liquid flow near an interface of a macroscopic channel, the assumption 
of no-slip boundary condition, i.e. vanishing flow velocity at the wall, is very convenient and 
adequate (see figure 3.1a). Nevertheless, such condition is not always sufficient when 
channels of micrometre or even nanometre size are considered[4]. In such channels the 
possible effect of fluid slippage over the surface may not be negligible (see figure 3.1b). This 
effect is usually described by the so called slip boundary condition, characterized by non-zero 
slip length ls which is defined as the ratio of the dynamic viscosity η and the friction 
coefficient ζ of the liquid at the surface, or equivalently as the ratio of the finite flow velocity 
at the surface, so called slip velocity vs, and the shear rate at the wall 
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where z is the spatial direction, perpendicular to the surface. 
      Experimental approaches for measuring the slip length are very challenging, since a very 
high resolution technique is needed to gain any information close to an interface. Due to this, 
the existence and the magnitude of the slip length in real physical systems and its dependence 
on surface properties are highly debated in the community. In order to address these questions  
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Figure 3.2 Scheme of the TIR-FCCS basic concept. The excitation is done by an 
evanescent wave. The time-resolved fluorescence signals I1(t) and I2(t) originating 
from two, laterally shifted in the flow direction, observation volumes W1 and W2 are 
recorded. The cross-correlation of these signals yields G(τ); ∆s is the centre to centre 
separation distance between the two observation volumes W1 and W2; τM is the 
maximum of the cross-correlation curve G(t). The blue stream lines represent the flow 
velocity profile in the microchannel and the dark orange dots represent the fluorescent 
tracers suspended in the liquid flow, respectively. 

 
 
I propose a novel method based on TIR-FCS called TIR-FCCS (Total Internal Reflection 
Fluorescence Cross-Correlation Spectroscopy)[33]. 
      The principle behind TIR-FCCS is schematically shown on figure 3.2. When a liquid flow 
propagates in a rectangular microchannel the velocity field throughout the channel has a 
parabolic distribution described by Poiseuille flow (see the blue stream lines on figure 3.2). In 
order to visualize the flow, fluorescent tracers are suspended (see the orange dots on figure 
3.2) in the flowing liquid. Since we are interested in the flow behaviour close to the interface 
the TIR-FCS technique is relevant. In my case I intend to qualitatively measure the slip length 
related to the surface. The fundamental idea to do this is to excite an evanescent wave by TIR 
and to use two spatially shifted, along the flow direction, observation volumes (W1 and W2 on 
the figure 3.2) so that the evanescent field probes a layer only about 100-200nm thick (see the 
green colour on figure 3.2). Subsequently the fluorescent signals I1(t) and I2(t) originating 
from W1 and W2 are cross-correlated, which renders with the cross-correlation curve 
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(3-2) contains the whole information about the flow behaviour near an interface and if we 
have a suitable fit model we can extract information about the slip length of the surface. 
Without the knowledge of the fit model one can only say the magnitude of the average 
velocity vav on the interface as seen by the evanescent probe field. It is proportional of the 
separation distance ∆s and inversely proportional to the flow time τM (the maximum of G(τ)) 
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The delay time τM can be thought as the average time a fluorescence tracer need to pass from 
observation volume W1 to observation volume W2. 
 
 

3.2.   Setup description 
 
 

 
 

Figure 3.3 Scheme of the experimental TIR-FCCS setup. BFP – back focal plane of 
the objective; DM – dichroic mirror; M50/50 – neutral 50% beam splitter; EF1, EF2 – 
emission filters; PH1, PH2 – pinholes; APD1, APD2 – avalanche photodiodes; L1 – 
tube lens; L2 – collimator lens; M – collimator’s prism based mirror. Note that the two 
spatially separated observation volumes are created by shifting the pinholes PH1/PH2 
in x-y plane. The cyan colour indicates the excitation wavelength and the yellow-green 
colour the fluorescence light, respectively. 
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      The realization in practice of the proposed TIR-FCCS technique in the latter section is 
shown on figure 3.3[33], and the configuration of the observation volumes plus the flow can be 
seen on figure 3.4, respectively. The setup is based on a commercial confocal FCS device 
(Carl Zeiss, Jena, Germany). It consists of the module ConfoCor2 and an inverted microscope 
model Axiovert 200. For the evanescent wave excitation I used the 488nm line of an Argon 
laser, fibre coupled to a collimator. With the help of the collimator the laser beam is focused 
on the back focal plane (BFP) of an oil immersion microscope objective (α Plan-Apochromat 
100x/1.46 Oil, Zeiss). It leads to a parallel beam emerging out of the objective, which enters a 
rectangular flow channel through its bottom wall. By changing the tilt of the reflecting 
element (M), the angle of incidence on the interface can be adjusted in the range from 0 to 
73°. If this angle exceeds the so called critical angle (≈61° for a glass-water interface) Total 
Internal Reflection (TIR) occurs producing an evanescent field in the liquid medium. The 
intensity distribution of this field in the x-y plane (parallel to the interface) is Gaussian. In the 
direction normal to the surface (z direction), along the optical axis, the intensity I(z) decays 
exponentially (2-37) with a characteristic penetration depth dp. By changing the angle of 
incidence α1 the penetration depth can be adjusted according to (2-38). For a given position of 
the reflecting element M the angle of incidence is measured by out-coupling the laser beam 
using a glass prism mounted on the top of the objective (for more details see section 3.4.). 
Then eq. (2-38) is applied to determine the evanescent wave penetration depth. Under the 
experimental conditions dp could be varied between 80nm and 200nm. 
       
 

 
 

Figure 3.4 The coordinate system and the linear flow field employed in the TIR-FCCS 
experiment. W1 and W2 denote the shape and location of the observation volumes as 
seen by pinhole PH1 and PH2, respectively; dp is the penetration depth which define 
the axial extend of the observation volume; w0 is the e-2 radius in x-y plane of the 
observation volumes; sx indicates the observation volumes separation, centre to centre 
distance; vx is the velocity field in positive x direction, which depends linearly on z and 
with other velocity components equal vy,z = 0, respectively. 
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      Tracer particles are suspended in the fluid and emit fluorescence light when excited by the 
laser beam. This fluorescence light is then collected by the same objective. After passing 
through the dichroic mirror (DM) it is equally split to enter two independent detection 
channels using a neutral 50:50 beam splitter (M50/50). In each channel the fluorescent light 
passes through an emission filter and a confocal pinhole to finally reach the detectors, two 
fibre coupled single photon avalanche photodiodes (APD1, APD2). Each of the confocal 
pinholes PH1 and PH2 defines its own observation volume, whose lateral extend and position 
are determined by the size and position of the respective pinhole. By proper adjustment of the 
pinholes, the two observation volumes can be laterally shifted from each other by a distance 
∆s = sx (see figure 3.4). The confocal pinholes are mounted on high precision motorized 
translation stages. After an initial calibration of the separation distance by monitoring the 
reflection profile of a golden stripe with well defined width (2µm) deposited on a glass 
substrate, the distance ∆s can be easily and reliably adjusted. In my case the experimental 
setup allows tuning of ∆s in the range from 0 up to 3µm. 
      As the tracer particles, moving with the flow liquid, pass consecutively through the two 
observation volumes, they will produce the time resolved fluorescence intensities I1(t) and 
I2(t) that are independently recorded (see figure 3.2). Afterwards the signals are correlated to 
finally yield the auto- and cross-correlation curves which contain the entire information about 
the flow properties – slip length and shear rate close to the interface. The spot size of the 
beam is in the order of 30-35µm at e-1 and laser power about 20mW. The spot size and the 
laser power are chosen in such a manner that the respective intensity must be enough to 
effectively excite the fluorescence tracers and detect the fluorescence signal, so that the 
signal-to-noise ratio is sufficient to produce a smooth correlation curve. 
 
 

3.3.   Analysis and simulations  
 
 
      I would like to grant my acknowledgement to Roman Schmitz who is the main contributor 
to current section and in particular for his efforts to develop the numerical algorithm to 
process the experimental TIR-FCCS data. 
      In the previous two sections I described the principle of the novel TIR-FCCS based 
method to study externally driven flows near an interface. It is capable to reconstruct the flow 
profile near a solid surface by measuring the shear rate as well as the slip length of the flow. 
However, the quantitative data analysis in such case is not straightforward due to the 
complexity of the problem, i.e. the flow close to an interface cannot be assumed constant. In a 
rectangular microchannel the flow velocity obeys Poiseuille profile (see figure 3.1a) 
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where fp is the pressure gradient or density acting on the fluid in x direction, and Lz is the 
height of the channel. Note that (3-4) describes the Poiseuille flow with zero slip velocity, and 
it is assumed that the width of the rectangular channel is much greater than its height. The 
other velocity components are vy,z = 0, respectively. Furthermore, the corresponding shear 
rate, which is defined as the derivative of (3-4) with respect to z, reads 
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      It can be shown that Poiseuille flow (3-4) can be very well approximated by a linear 
function with respect to the distance z to the interface (see appendix A.1. for more details). 
This simplified treatment of the flow velocity profile is relevant due to the small penetration 
depth used in the experiments. 
      An important step towards the measurement of the slip length and shear rate is to derive 
the corresponding fit model which explains the experimentally observed auto- and cross-
correlation curves. As shown in Chapter 2 a standard procedure to derive them is to first solve 
the diffusion equation with respect to the concentration correlation function, and second insert 
the derived solution in the corresponding correlation integral and solve it to eventually obtain 
the explicit form of the correlation functions. As shown in the previous Chapter 2 in case of 
TIR-FCS with free three-dimensional diffusion close to the surface analytical solutions 
exist[31],[73],[32] (see eq. (2-75) and (2-76)). Moreover an analytical solution for the FCS case of 
free three-dimensional diffusion in bulk and a linear flow throughout a microchannel can be 
easily derived starting from [28]. However, in the corresponding TIR-FCCS case plus flow 
such approach would likely render the convection diffusion equation (CDE) unsolvable due to 
the presence of a solid boundary, which must be taken into account in the theoretical 
treatment of the problem. Even though if an analytical solution can be found it would be 
complicated and the solution of the correlation integral hardly achieved. Therefore in this 
contribution I describe the first approach to a novel numerical method of quantitative data 
analysis of TIR-FCCS correlation curves in presence of a linear external flow. The algorithm 
has the potential to easily include other effects such as hydrodynamic slow down of the 
diffusion as well as electrostatic interactions with the wall. In fact the algorithm is so flexible 
that it is not only limited to linear flows but with some modifications can include any flow 
velocity profile. Anyway, as mentioned previously the linear flow approximation has the 
advantage to be simple and to save computational time, while representing very well the 
Poiseuille flow in proximity to the surface. 
 
 

3.3.1.   Correlation functions 
 
 
      Due to diffusion motion in the presence of flow the fluorescence particles pass 
consecutively through the two observation volumes W1 and W2 (see figure 3.2 and 3.4). The 
observation volume of each pinhole is defined by the space dependent molecular detection 
efficiency function (MDE). It depends on the excitation intensity profile I(z) (2-37), and the 
collection efficiency of the objective plus detector system. For pinhole sizes around and 
smaller then the Airy Unit of the optical system MDE function can be well approximated with 
a Gaussian shape in x-y plane, which along with the z-dependence of the evanescent intensity 
yields 
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where W1, W2 are the MDEs of pinhole 1 and pinhole 2, respectively. The factor I01,02 is the 
initial intensity at z = 0. In the present treatment of the problem I assume equal pinhole sizes 
and constant intensity amplitudes normalized to unity for simplicity, i.e. I01 = I02 ≡ 1. sx is the 
pinhole separation in the sample space, i.e. centre to centre distance between the two 
observation volumes along the flow axis. The lateral radius of the observation volume is 
given by w0. 
      The motion of the fluorescence tracers results in two time-resolved fluorescence 
intensities I1(t) and I2(t) (see figure 3.2). From the fluctuations of these quantities the time 
dependant auto- and cross-correlation functions can be calculated as 
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where  denotes the time average or, when ergodicity is assumed, an ensemble average. 

Note that in (3-7) the factor of 1 on the right hand side is omitted for convenience (e.g. 
compare with (2-54)). Furthermore, eq. (3-7b) represents eq. (3-7a) in the limit sx → 0 so that 
δI2 → δI1. As described in [21], a theoretical expression for this correlation function can be 
calculated from 
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where rr ′
rr

,  are spatial positions, and C indicates the average concentration in the solution. 

Since the denominator influences only the height of the correlation but not the shape, in the 
further treatment of the problem, for simplicity, it will be skipped. The last term in eq. (3-8) 

( )τφ ,, rr ′
rr

, i.e. the concentration correlation function, contains the dynamics of the system and 

reads 
 

                                                   ( ) ( ) ( )τδδτφ +′=′ trCtrCrr ,,,,
rrrr

                                       (3-9) 

 
Since for ergodic systems the delay time τ is always relative to a data point at an earlier 
moment, only the difference τ is relevant, hence the substitution t = 0 is justified[41] 
 

                                                       ( ) ( ) ( )τδδτφ ,0,,, rCrCrr
rrrr

′=′                                       (3-10) 

 

where ( ) ( )ττδ ,, rCCrC
rr

−=  is the fluctuation in the concentration ( )τ,rC
r

 of the fluorescent 

tracers, respectively. The tracer particles undergo a diffusion process and move in an 
externally driven flow field v

r
. Hence, the concentration correlation function is described by a 

convection diffusion equation (CDE) of the form 
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with initial condition 
 

                                                        ( ) ( )rrCrr ′−=′
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δφ 0,, ,                                             (3-12) 

 
and the no-flux boundary condition  
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      The first condition states that the equilibrium concentration fluctuations are spatially 
uncorrelated, i.e. there is no correlation between the locations of two particles. The second, 
there is no flux of particles across the bottom wall of the channel, no absorption and the 
convection-diffusion process occurs in the positive half space, i.e. z ≥ 0, z’ ≥ 0.  
      For simplicity reasons, the hydrodynamic interactions with the surface are neglected, and 
hence, the diffusive term is described only by an isotropic diffusion constant D. As mentioned 
previously, for some special cases the CDE can be solved analytically, for example in the case 
of uniform flow in bulk, i. e. far away from surfaces[28],[26] (see eq. (2-23)), for pure diffusion 
close to the wall, but without any flow field[72] (see eq. (2-66)). Although it can be shown that 
an analytical solution in terms of uniform flow and diffusion close to the bottom wall exists 
                                                                   

( )

( ) 














 ′+
−+







 ′−
−







 ′−+−′−
−=

=′

τττ
τ

τπ

τφ

D

zz

D

zz

D

yyVxx

D

C

rr

x

4

)(
exp

4

)(
exp

4

)()(
exp

4

,,

2222

2

3

rr

,      (3-14) 

 
it is not very accurate approximation to describe the flow velocity and derive the slip length. 
Since in the experiment the exponential decay length of the spatial detection volume normal 
to the surface is in the range of 100-200nm, while the channel size is few orders of magnitude 
larger, it is justified to assume the flow field to be approximately linear in the proximity to the 
interface (see appendix A.1.). Although it is possible to obtain an analytic solution for the 
CDE with a linear flow profile in bulk[28],[74],[75] 
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where Lγ&  is the shear rate of the linear flow, it is hard or even impossible to find such a 

solution if a wall breaks spatial symmetry. Therefore the aim of the next sections will be to 
solve the latter problem by a novel numerical method which can explain and process TIR-
FCCS data as well as to test this new method with respect to an analytical correlation 
function. 
 



 

 47 

3.3.2.   Algorithm description 
 
 
      The convection-diffusion equation for concentration fields has the same form as a Fokker-
Planck equation for Brownian particles. This equivalence allows us to use a stochastic 
method, i.e. a Brownian Dynamics (BD) algorithm, to solve CDE[76],[77]. The idea is to 
simulate a random walk and to follow the trajectory of a single Brownian particle taking into 
account the velocity field, then repeat the procedure until we acquire enough statistics, which 
samples the solution of eq. (3-11) by means of a high number of such trajectories. In the first 
step we re-interpret some parameters in terms of stochastic variables. The concentration 
correlation function can be interpreted as a probability and hence ( )τφ ,, rr ′

rr
 is replaced by 

( )trtrP ′′,|,
rr

, which is the propagator of a Brownian particle from the spatial position r ′
r

 at 

time t’ to position r
r

 at time t. Thus the propagator ( )trtrP ′′,|,
rr

 is the distribution function 

for the locations of Brownian particle. Furthermore, W1 can be considered as a kind of 
detection probability which acts as a production probability density for a Brownian particle 
and W2 is just an observable at time moment t > 0. Generally it means we generate particles 
according the probability distribution W1 and observe them in the intensity field described by 
W2. This ansatz has all advantages of an importance sampling algorithm[78] and reduces the 
noise in the final results. 
      The isomorphism between the Fokker-Planck picture and the Langevin picture[79],[80],[81] 
allows to describe the convection-diffusion process in terms of Langevin equation. Thus an 
equivalent stochastic differential equation for the spatial position of the particle ( )tr

r
 reads  

 

                                                           ( ) ( )( ) ( )ttrvtr η
rrr&r +=                                                    (3-16) 

 

Here ( )tr&
r

 is the tracer velocity, v
r

 is the deterministic (external) velocity and η
r

 is a 

stochastic noise term (due to the diffusion) with mean zero and second moment defined by the 
fluctuation-dissipation theorem 
 

                                                                   ( ) 0=tαη                                                       (3-17a) 

 

                                                           ( ) ( ) ( )ttDtt −′=′ δδηη αββα 2                                 (3-17b) 

 
Here α, β = x, y, z are Cartesian indices and αβδ  is the Kronecker delta.  In the case of 

constant shear flow in the x-z plane with slip length ls, the deterministic part has the form 
 
                                                        ( )( ) ( )( )zsL eltrtrv ˆ+=

rt
&

rr
εγ                                               (3-18) 

 
where zvxL ∂∂=γ&  is the constant shear rate related to the linear flow, zê  denotes the unit 

vector in z direction and ε
t

 is the dimensionless rate-of-strain tensor, which in terms of linear 
flow close to the wall has the following form 
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This implies that the only non-zero velocity component is vx, which depends linearly on z, i.e. 
 
                                                           ( )( ) ( )( )sLx ltztzv += γ&                                                (3-20) 

 
The propagation by a small time step is performed by a formal integration of eq. (3-16) 
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According to eq. (3-17), the stochastic displacements have to satisfy the moment conditions 
  

                                                                   0=∆ storα                                                       (3-22a) 
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Thus we write 
 

                                       ( ) ( ) ( )( ) χεγ
rrt

&
rr

tDeltrttrttr zsL ∆++∆+=∆+ 2ˆ                             (3-23) 

 
where ( )

zyx χχχχ ,,=
r

 is a vector of mutually independent random numbers with mean 0 and 

variance 1. Eq. (3-23) is the well known first order Euler update and the simplest Brownian 
Dynamic algorithm. 
      In terms of each coordinate eq. (3-23) reads 
 

                                         ( ) ( ) ( )( )
xsL tDltzttxttx χγ ∆++∆+=∆+ 2&                             (3-24a) 

 

                                                     ( ) ( )
ytDtytty χ∆+=∆+ 2                                          (3-24b) 

 

                                                      ( ) ( ) ztDtzttz χ∆+=∆+ 2                                           (3-24c) 

 
Thus the algorithm consists of the production of a particle with initial position 1r

r
 at time t1 = 0 

with probability ( )11 rW
r

 and the propagation for n time steps via ( )0,|, 12 rrP
rr

τ , τ = n∆t. Then in 

each point ( )τ2r
r

 the particle is observed in the intensity field ( )22 rW
r

, for cross-correlation, 

and ( )21 rW
r

, for auto-correlation, respectively. 

      This allows the correlation function to be expressed as the mean value of the functions W1, 
W2 at a certain time τ = n∆t over different and statistical independent trajectories N. Taking 
into account that eq. (3-23) samples the propagator ( )0,|, 12 rtnrP

rr
∆ , averaging an arbitrary 

observable A, one obtains 
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However, in practice, the number of trajectories N, cannot approach infinity, but can be 
chosen to such a value that assures enough statistics and a smooth correlation curve. 
      Thus the desired cross-correlation function is computed by the substitution ( ) ( )rWrA

rr
2= , 

which up to a constant prefactor yields 
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G

(s) denotes the simulated correlation curve and cc is a scaling constant. Analogously the auto-
correlation function is produced by setting ( ) ( )rWrA

rr
1= . 

      The boundary condition at the wall is taken into account by reflection of the particles at 
position z = 0, i.e. the z component in the random walk is replaced by its absolute value z(t) ≡  
| z(t)|, to guarantee that the solution is only sampled in the positive half space, z > 0. 
       
 

3.3.3.   Parameter space and dimensionless units 
 
 
      For the purpose of numerical calculations, one may rewrite the problem in dimensionless 
units. Therefore we should first identify the whole parameter space. 
      The observation volume of the system is defined by Gaussians in the x-y plane with radius 
(on 1/e2) w0 and a penetration depth dp for the exponential decay perpendicular to the surface. 
Furthermore, the centres of the observation volumes are separated by a length sx along the x 
axis, i.e. in flow direction. For the flow and the dynamics of the particles three additional 
intrinsic parameters occur, namely the diffusion constant D, the shear rate Lγ&  and the slip 

length ls. For the discretization in the time domain, we further have to choose a time step ∆t. 
      The height of auto- and cross-correlation functions also depends on the average 
concentration of tracer particles. Since the simulation method carries no information about 
this concentration, three additional unknowns have to be taken into account, which are the 
prefactors of the double integral of eq. (3-26), c1, c2 accounting for the auto-correlation 
functions, respectively, and cc adjusting the height of the cross-correlation function. 
      To re-formulate the problem in terms of dimensionless units, one should identify some 
intrinsic time and length scale. The most natural time scale of a diffusive system, independent 
of any flow velocity, is the diffusion constant divided by the square of a typical length scale. 
Choosing the penetration depth as intrinsic length scale, all time and space parameters are 
transformed via 
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Hence, we have to replace pdww 00
~= , 
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Introducing this dimensionless formulation, one may write the Euler update, eq. (3-23) 
 

                                            ( ) ( ) ( )( ) χεγ
rrt

&
rr

teltrttrttr zsL

~2ˆ
~~~~~~~~~~

∆++∆+=∆+                     (3-28) 

 
and the MDEs can be written as 
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Thus the simulation is completely defined by the parameters 0
~w , Lγ

~
& , sl

~
, xs~  and t

~∆ . The 

prefactors ci can be seen as scaling parameters and have no direct influence on the results of 
the simulation. Similarly dp and D define the spatial and time units, but do not occur in the 
equations for the computational method.  
 
 

3.3.4.   Numerical test – comparison of simulation with analytic 
solution 
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Figure 3.5 a) The analytical solution (3-30) and the simulated curve for the average of 
103 trajectories; b) Deviation from analytic curve for 103, 104 and 105 trajectories. 

 
 
      In order to demonstrate that the described numerical algorithm works I perform a 
numerical fit of a known analytical auto-correlation function. In case of zero shear flow, i.e. 
the tracer particles are only subject to free diffusion, the CDE (3-11), with the constraint that 
the particles must be located in the positive half space (z > 0), can be solved analytically. 
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Furthermore, the correlation integral for the auto-correlation function can be performed[73],[32]. 
Up to some constant prefactors, the dimensionless auto-correlation function (based on eq. (2-
75)) is given by 
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The superscript index (a) denotes the analytical auto-correlation fit function. Since the 
Langevin and Fokker-Planck picture are rigorously equivalent, the simulated curve must 
coincide with this analytic expression (3-30). Indeed I find that this is the case. Figure 3.5a 
shows the analytic auto-correlation function with 5.2~

0 =w  and its simulated counterpart 

averaged over 103 independent trajectories. The time step used in this simulation was set to 
310.4~ −=∆t . In Figure 3.5b is shown the deviation of the simulated curve from the analytic 

expression 
 

                                          ( ) ( ) ( )( ) ( )( )ττττ ~~~~ as GGresidualerror −==                                (3-31) 

 
 

3.3.5.   Statistical data analysis 
 
 

3.3.5.1.   Comparison of experiment and simulation 
 
 
      Within this section I investigate a method for the quantitative comparison of the 
experimentally measured correlation data to the simulation results. 
      A central part of the approach is the fact that both the experimental data and the 
simulation results have been obtained with good statistical accuracy. Each simulated data 
point is a mean value Si, averaged over mS ≈ 2.5⋅105 independent trajectories and each 
experimental data point Ei is the mean of mE = 40 independent measurements. This does not 
only allow us to obtain rather small statistical error bars, but also (even more importantly) to 
rely on the asymptotic of the Central Limit Theorem, i.e. to assume Gaussian statistics 
throughout. The index i = 1,…,M enumerates the data points according to the time scale of 
the three different correlation curves (two auto- and one cross-correlation curve). From the 
statistical point of view, both mS as well as mE can be viewed as a large number, such that Si 

and Ei are assumed to be Gaussian distributed around S , E  with variance SiSiS ms
2

,
2
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In order to measure the “goodness” of simulation we define the weighted deviation between 
the experimental and the simulated data points 
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Due to the statistical independence of experiment and simulation, the Gaussian distribution of 
the data points, αi, is also distributed normally 
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and with 
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integration yields 
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Since the simulation should match the experimental results, we test for 
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and hence 
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Furthermore, we define the goodness of simulation as the mean square weighted distance of 
simulation to the experiment data curves 
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Making use of eq. (3-38), one obtains for a perfect match of both data curves 
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It should be noted that if mE is small, ( ) EEE σ−  is not distributed normally anymore, but 

rather follows a χ2 distribution[82]. Even worse, if also mS is not large, one has to think about 
the (yet unsolved) problem of comparing two random variables with different variances[83]. It 
is at this point where the statistical quality of the data clearly becomes important. 
 
 

3.3.5.2.   Determining good parameters and their statistical errors 
 
       
      For the model that is considered in the present thesis, the parameter space is nine 
dimensional. We have three lengths that define the geometry of the optical setup, dp, w0, and 
sx. Three further parameters define the properties of the flow and the diffusive dynamics of 
the tracers; these are the diffusion constant D, the shear rate Lγ& , and the slip length ls. Finally, 

there are another three normalization constants c1, c2, and cc for the three experimental curves 
that needs to be fitted simultaneously: the auto-correlation function of pinhole 1 and 2, 
respectively, and the cross-correlation function. The strategy that is developed in the present 
section aims at adjusting all parameters simultaneously in order to obtain optimum fits. For 
the further development, it will be useful to combine all the input parameters into one vector 

( )
sLxpc lDswdccc ,,,,,,,, 021 γ&=Π . Furthermore, for each parameter we can, from various 

physical considerations, define an interval within which it is allowed to vary (because values 
outside that interval would be highly unreasonable or outright unphysical). This means that 
we restrict the consideration to a finite nine-dimensional box ΩΠ in parameter space. 
      If M is the total number of data points, then 
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is obviously a quantity that measures rather well the deviation between experiment and 
simulation. In principle, the task is to pick the parameter vector Π in such a way that H is 
minimized. I have deliberately chosen the symbol H in order to point out the analogy to the 
problem of finding the ground state of a statistical mechanical Hamiltonian. In case of a 

perfect fit, we have ii ES =  or 0=iα , implying 2MH = . In the standard 

nomenclature of fitting problems, 2H is called “chi squared”. Thus taking into account (3-39) 
we can write that the goodness of simulation is MH2=ξ , which in the standard 

nomenclature is called “chi squared per degree of freedom”. 
      For optimizing Π, we obviously need to consider H as a function of Π. In this context, it 
turns out that it is important to be able to consider it as a function of only Π, and to make sure 
that this dependence is smooth. For this reason, I use the same number of trajectories when 
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going from one parameter set to another, and use exactly the same set of random numbers to 
generate the trajectories. In other words, the trajectories differ only due to the fact that the 
parameters were changed. Therefore, both Si and sS,i are smooth functions of the parameters, 
and H is as well. 
      In order to find the optimum parameter set, one could, in principle, construct a regular 
grid in ΩΠ and then evaluate H for every point. However, for high dimensional spaces (and 
nine should in this context be viewed as already a fairly large number, in particular when 
taking into account that it is bound to increase further as soon as more refined models are 
studied), it is usually more efficient to scan the space by an importance-sampling Monte Carlo 
procedure based upon a Markov chain[78]. Applying the standard Metropolis scheme[78], we 
thus arrive at the following algorithm: 

1. Chose some start vector Π. This should be a reasonable set of parameters, perhaps pre-
optimized by simple visual fitting or calculation with bigger step in ΩΠ. 

2. From the previous set of parameters, generate a trial set via  
 
                                                          ∆Π+Π=Π′                                                        (3-42) 
 

where ∆Π is a random vector chosen from an uniform distribution from a small sub-
box aligned with ΩΠ. 

3. If the new vector is not within ΩΠ, reject the trial set and go to step 2. 
4. Otherwise, calculate both ( )Π′

eqP  and ( )ΠeqP  as well as the Metropolis function 
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where eqP  is the “equilibrium” probability density of Π, i.e. the desired probability 

density towards which the Markov chain converges (more about this below). 
5. Accept the trial move with probability m (reject it with probability 1 – m ), count 

either the accepted or the old set as a new set in the Markov chain, and go to step 2. 
6. After relaxation into equilibrium, sample desired properties of the distribution of Π, 

like mean values, variances, covariances, etc, by simple arithmetic means over the 
parameter sets that have been generated by the Markov chain. This allows the 
estimation of not only the physical parameters, but at the same time also their 
statistical error bars. 

 
The scheme is defined as soon as eqP  is specified. Now from the considerations above, we 

know that in case of a perfect fit the variables αi are independent Gaussians with zero mean 
and unit variance. This implies (ignoring constant prefactors which anyway cancel out in the 
Metropolis function) 
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which makes the interpretation in terms of statistical mechanics obvious. Clearly, this form 
for eqP  is the only reasonable choice for implementing the Monte Carlo algorithm. After 

relaxation into equilibrium, one should observe a ξ value of roughly unity, while larger 
numbers indicate a non perfect fit (even after exhaustive Monte Carlo search), and thus 
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deficiencies in the theoretical model. One should also be aware that the equilibrium 
fluctuations of ξ are expected to be quite small, since ξ is the arithmetic mean of a fairly large 
number (M, the number of experimental data points) of independent random variables. 
      In practice, I adjusted ∆Π in order to obtain a reasonable acceptance rate of roughly 0.6. It 
should be noted that the equilibrium fluctuations of the parameters tell us the typical range in 
which they can still be viewed as compatible with the experiment. Therefore these 
fluctuations are the appropriate measure to quantify the experimental error bars, while 
calculating a standard error of mean (or a similar quantity) would not be appropriate and 
severely underestimate the errors. Finally, it should be noted that the approach allows in 
principle to analyze the mutual dependence of the parameters as well, by sampling the 
corresponding covariances; this however was not done in the present study. 
                                                          
 

3.4.   Estimation of the slip length accuracy 
 
 
 

    
                   
                                       a)                                                                           b) 
 

Figure 3.6 Comparison of the experiment and simulations for 619.01 =′c , 616.02 =′c , 

0554.0=′
cc , w0 = 245.71nm, dp = 98.05nm, D = 36.38 µm2/s, sx = 753.34nm, 

13800 −= sLγ&  and ls = 6.26nm. The goodness of simulation was calculated to be ξ ≈ 

2.5: a) Auto-correlation functions; b) Cross-correlation function. 
 
 
      The purpose of this section is to estimate the accuracy of the slip length we obtain by the 
proposed TIR-FCCS technique in terms of the capabilities of our state of the art apparatus and 
the numerical analysis of the data. Generally the accuracy of the slip length depends on how 
precisely we can define the input parameters in the simulation ( Lxp Dswd γ&,,,, 0 ), which have 

direct impact at the numerical estimation of the slip length ls. A smaller error in the value of 
each of these parameters results in better accuracy for ls. 
      The following is an estimation of the slip length accuracy at the typical experimental 
conditions at which the experiments have been conducted. Figure 3.6a and 3.6b present 
typical experimental TIR-FCCS data and the corresponding simulated auto- and cross-
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correlation curves. In the experiments, the penetration depth of the evanescent field is fixed to 
dp ≈ 100nm, the lateral size of the observation volume is w0 ≈ 260nm and the separation 
distance sx ≈ 800nm, respectively. These values were used as input parameters for the 
simulated curves. Furthermore, every data point is an average of approximately 2.5⋅105 
trajectories. The simulation results have been rescaled such that the maximum values of the 
correlation curves are set to 1. The parameters ic′  then coincide with the heights of the 

experimental data curves. 
      In a first run, all input parameters kept fixed, except the shear rate and the slip length, and 
the landscape of ξ was computed (see figure 3.7). We see that varying the slip length and the 
shear rate is not independent in terms of auto- and cross-correlation curves. Increasing ls has 
the same effect on the shape of these curves as decreasing Lγ&  and vice versa. Thus the slip 

length and the shear rate cannot be obtained simultaneously through a pure TIR-FCCS 
measurement. 
 

 
 

Figure 3.7 ξ as a function of the slip length and shear rate calculated according the 
parameters given in figure 3.6. 

 
 
      Nevertheless several Monte Carlo runs have been performed for various, but fixed, values 
of shear rate. The MC runs were computed on 512 nodes (2048 processes) on the IBM Blue 

Gene-P in the Rechenzentrum Garching. Each sampling has been run for more than 5⋅105 MC 
sweeps. The mean values of the parameters and their standard deviations were calculated, 
excluding the first 5⋅104 configurations. 
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                                        a)                                                                           b) 
 

Figure 3.8 a) Slip length as a function of the number of MC steps for 13800 −= sLγ& ; 

 b) Goodness of simulation ξ as a function of the number of MC steps for 
13800 −= sLγ& . 

 
 
      Figure 3.8a presents a typical fluctuation of the slip length as function of the MC step and 
Figure 3.8b shows ξ for the first 103 sweeps. For both examples I chose the MC results for 

13800 −= sLγ& . Although the ξ landscape is rather sharp, resulting in small fluctuations of ξ 

during the MC procedure, the best fits only reached values beyond ξ ≥ 2.5, i.e. larger than the 
expected value for a perfect matching of experiment and simulation. This indicates that some 
systematic errors occur. Indeed we find that although the auto-correlation curves match very 
well (see figure 3.6a), and the cross-correlation curve matches over a wide range, there is still 
a small gap between experimentally measured and simulated cross-correlation curves (see the 
left shoulder in figure 3.6b).  
      I assume that this is an artefact, arising from the simplification of the model we used, not 
enough statistics or eventual side effects such as blinking due to the quantum dots etc, and 
that an extension of this procedure would eliminates this small systematic discrepancy. 
      Calculating the means and the statistical errors, we are able to obtain a relation between 
the shear rate and the slip length (see figure 3.9). It shows the magnitude of uncertainty of the 
slip length when the shear rate is not defined precisely. Since on the left hand side of the 
graph, the points can go to infinity it is from a great importance that the shear rate is to be 
measured with relatively good accuracy. As mention above the TIR-FCCS technique cannot 
provide such accuracy. However, one can still use other similar techniques, such as single 
focus FCS[27],[24] or double-focus confocal FCCS[28],[26], in order to measure independently the 
shear rate. Due to the simplicity of the single focus FCS, which can be easily performed along 
with a TIR-FCCS measurement, I chose namely this approach to get an independent value for 
the shear rate by measuring the flow profile across a microchannel. An example of such a 
measurement, done at the same conditions as the TIR-FCCS experiment, is shown on figure 
3.10. Each blue experimental point is obtained by a fit of the resulting auto-correlation 
function of the fluorescence tracers in the presence of flow. The fit with eq. (2-24) gives the 
flow time τf and applying eq. (2-25) one gets the flow velocity at certain elevation from the 
bottom wall. After getting a sufficient number of points one can recover the flow profile in 
the microchannel. As mentioned previously such a flow profile in a rectangular channel obeys 
Poiseuille flow, which allows by using eq. (3-4) and (3-5) the shear rate on the wall to be  
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Figure 3.9 Averaged slip length ls as a function of the shear rate Lγ& , calculated from 

the MC results. 
 
 
deduced. Even though the slip length in this Poiseuille fit is not taken into account the fit can 
be performed since the slip length has negligible influence on the flow profile in the 
microchannel, and in turn, on the shear rate (detailed discussion about this issue is presented 
in appendix A.2.).   
      Now let’s assume that the shear rate obtained at the bottom channel wall was 3800=Lγ& , 

as in figure 3.6. Thus with the help of figure 3.9 one can derive the slip length at the surface 
to be ls ≈ 6.26 ± 1nm. However, due to the uncertainty in the shear rate the experimental slip 
length uncertainty is higher than the statistical one taken from the fit. An estimation of this 
uncertainty can be done by taking into account that the velocity in each blue point (see figure 
3.10) was calculated through (2-25), namely 
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r0 is the lateral size of the FCS observation volume which is measured by a calibration with 
fluorescence tracers with known diffusion in bulk, and in my case, 40x/1.2 water immersion 
objective, has the value of r0 ≈ 205 ± 20nm. On the other hand the flow time τf taken from 
that fit has statistical error about 0.5 ÷ 1%. Hence the absolute error in the flow velocity reads 
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and the relative error is given by 
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Figure 3.10 Flow profile and Poiseuille fit with eq. (3-4) along z-direction (surface of 
measurement is located at z ≈ 0µm). Afterwards the value for the shear rate Lγ&  can be 

obtained by using eq. (3-5), i.e. 
0=

=
zPL γγ && . The best fit is performed only if the points 

close to the respective surface at z ≈ 0µm are taken into account in the fit. The flow 
profile is usually measured prior to the actual TIR-FCCS experiment. 

 
 
Hence the relative error for the flow velocity can be evaluated approximately as ∆vx/vx ≈ 
10.8%. The other important parameter that would define the error in the shear rate is the 
precision with which one can measure the elevation of the objective’s focus, i.e. the precision 
in z position. However, the precise value of this parameter is not straightforward but my 
estimations show the maximum absolute error ∆z should not exceed ∆z ≈ 0.1÷0.25µm. Then 
for the shear rate one can conclude a relative error similar to ∆vx/vx, i.e. %1211−≈∆ LL γγ && . 

Related to the given example, see figure 3.6, it means that the shear rate along with the 

confidence interval is 14003800 −±= sLγ& . This in turn implies that the respective slip length 

confidence interval, according figure 3.9, is ls ≈ 6.26 ± 10nm. Even if we know the shear rate 

extremely precisely, e.g. 103800 −±= sLγ& , wide range of slip length values can render with 

reasonable goodness of simulation ξ, i.e. still good estimation for the slip would be a value of 
ls ≈ 6.26 ± 5nm. Nevertheless, there are a lot of things that can be improved, and the latter 
result for the slip must be considered as a current limit of the presented TIR-FCCS technique. 
For example in our simplified model we neglect the following things which certainly can 
influence the presented in this thesis results: 

• The tracers have finite size, which is neglected in the numerical model 
• The tracers may exhibit blinking, triplet or other short-term effects which influences 

the observed auto-correlation curve and give raise in the goodness of the simulation ξ 
• There is a cross-talk between the channels, which even removed from the experiment 

still exist in the simulations, and depends on separation distance sx 
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• The observation volume in the numerical algorithm is approximated in x-y with 
Gaussian function and exponential function in z, which is not completely true and can 
slightly influence the fit of the experimentally observed correlation curves 

• The observation volumes W1 and W2, defined by pinhole PH1 and PH2, may differ in 
size to each other due to optical distortions caused by slight misalignment or 
introducing of optical elements along the optical axis of the microscope as well as 
different emission filters used in both channels. The latter can be observed in my 
experiments, and it impacts the lateral size of the observation volumes, e.g. the effect 
is such that W1 can be slightly bigger in x-y plane than W2 or vice versa 

• The observation volumes W1 and W2, defined by pinhole PH1 and PH2, may be 
slightly misalignment along y axis, which can influence the observed correlation 
curves. Since this effect is not very pronounced in my experiments I neglect it. 
However, in order to account for this in the numerical model one can introduce sy 
separation distance parameter 

• Distortion of the TIR-FCCS observation volume can occur due to the low frequencies 
vibrations of the interface, e.g. when the glass bottom wall interacts with the 
immersion oil of the objective 

• Surface roughness can also play a role, if the root-mean-square roughness become 
comparable with the slip length value 

• Surface generated fluorescence may be presented depending on the tracers used, 
especially when dyes molecules are used. This effect in turn shortened the effective 
penetration depth of the evanescent field 

• Polydispersity of the tracers can alter the observed correlation curves, which is not 
taken into account in the numerical model 

• Electrostatic and hydrodynamic interaction between the tracers and the wall can also 
change the results from the fit of the data. These effects are not accounted in the 
numerical model 

 
The separation distance sx is also defined with finite precision, which affects the fit, in 
particular the cross-correlation curve. In all cases the estimation of the absolute error for sx is 
about or smaller than 30-40nm, and the typical used in my experiments separation distance is 
sx = 800 ± 30nm. Anyway, the precise knowledge of sx would decrease the number of free 
parameters in the numerical fit, and in turn it would increase the reliability of the numerical 
fit. On the other hand the diffusion coefficient D is always free parameter restricted within a 
certain range (usually ±10-20% from the mean value). Also a free parameter is w0, because its 
uncertainty is about ±10%, i.e. w0 = 260 ± 20nm. Anyway, if one finds a way to measure w0 
precisely, this parameter can be kept fixed during the simulation, which in turn would 
increase the reliability of the numerical fit as well as slip length.  
      However, one way to improve the accuracy is to get better estimation for r0 and in turn for 
the flow velocity vx. It would improve the shear rate accuracy and consequently the slip length 
uncertainty will decrease. Such a better estimation of r0 can be achieved using the following 
method – using single focus FCS one measures the flow time τf in the center of a 
microchannel, where the flow velocity is relatively high (i.e.τf  << τD). Thus we can neglect 
the influence of the diffusion over the auto-correlation curve, and imposing the limit τD → ∞ 
to (2-24) yields 
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Hence τf can be derived straightforward from the fit of the auto-correlation curve with (3-
48a). Taking into account that τf is defined according (2-25), and if we measure Vx precisely, 
e.g. with double-focus FCCS, we can obtain accurate estimation for r0 through 
 
                                                                    xfVr τ=0                                                        (3-48b) 

 
Thus, there will be not need of using a dye with known diffusion in order to define r0, which 
actually avoids the problems with the accuracy when the dye’s diffusion is also not known 
very well. 
      The second way to increase the accuracy affects the numerical model, a step towards the 
improvement of the numerical model, and consequently the accuracy of the fit, is to account 
in the model explicitly for the particles-wall electrostatic interactions and the hydrodynamic 
slow down of the diffusion coefficient of the tracers as well as taking into account the finite 
particle size. Anyway, this is out of the scope of the present thesis and is just suggested as a 
future improvement for the proposed TIR-FCCS technique. 
 
 

3.5.   Penetration depth determination 
 
 
      An important part from each TIR-FCCS measurement is the determination of the 
penetration depth dp. The accurate knowledge of dp allows a reliable fit of the experimental 
data to be performed because the fit function becomes with less free parameters. It also affects 
the simulation – the numerical generation of correlation curves and the comparison with the 
experimental data becomes straightforward and less computationally expensive. 
      Since the direct measurement of penetration depth is too difficult, in my experiments I 
rather use the theoretical expression for dp dependence on the angle of incidence (2-38), or 
with little change (α1 → α) we get 
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Hence the determination of dp can be realized by measuring of this angle α and knowing the 
refractive indexes n1, e.g. glass, and n2, e.g. water. In fact, since the geometry of the 
experiment and the need of immersion oil the incidence angle α is measured not directly but 
by out-coupling the laser beam using a glass prism mounted on the top of the objective (see 
figure 3.11a). 
      Note that for this kind of measurement I have chosen a glass prism whose angle at the top 
is 90° degrees. Thus the determination of α can be done by measuring the distance wall-prism, 
denoted with x, and the vertical displacement of the laser beam spot on the wall, denoted with 
z. Hence applying few simple geometrical rules and the Snell’s law (2-29) one can precisely 
define the angle of incidence α.  
      The derivation of an expression for α can be done in the following manner – from 
geometrical point of view a relation between z and x holds, namely 
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                           a)                                                                              b) 
 

Figure 3.11 Measuring the penetration depth dp by out-coupling the laser beam using 
a glass prism mounted on the top of the objective: a) Scheme of an experimental TIR-
FCS setup; b) Zoomed-in view of the prism mounted on the top of the objective – α  is 
the angle incidence, x is the distance to the prism, and z is the vertical displacement of 
the laser spot; nprism – refractive index of the glass prism, noil – refractive index of the 
immersion oil, nair – refractive index of the air. 
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and thus for β one can write 
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as well as applying the Snell’s law to δ and β we get 
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hence substituting β,  the expression (3-50b),  into (3-50c) and after some mathematical 
simplifications one obtains 
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 The angle of refraction σ  can be expressed through 
 
                                                   δδσ +°=+°−°= 454590 ,                                          (3-50e) 
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hence along with (3-50d) one writes 
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The Snell’s law for the incidence angle α and σ reads 
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hence an expression only for α equals  
 

                                                        







= σα sinarcsin

oil

prism

n

n
                                            (3-50h) 

 
Finally taking into account (3-50f) the latter equation modifies as follows 
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The above equation is most general relation with respect to α, which in practice can be 
simplified. For example, in my experiments the prism and the immersion oil have the same 
refractive indexes, i.e. nprism = noil, and the refractive index of air at room temperature can be 
assumed nair = 1 with high accuracy. Therefore a more convenient expression for the 
incidence angle α can be written, namely 
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Then the calculation of dp consists in measuring x and z, substituting them into (3-52) and 
getting the value of α. Afterwards knowing the refractive index of the glass substrate n1 and 
the solution n2, for example water, one can calculate dp by using (3-49). 
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4.   Methods and Materials 
 
 

4.1.   TIR-FCCS equipment 
 
 
      The proposed TIR-FCCS technique was realized by using the following commercial 
devices: 

• Axiovert 200 Microscope (Carl Zeiss, Jena, Germany) 
• ConfoCor2 FCS Unit (Carl Zeiss, Jena, Germany) 
• LSM510 Laser Scanning Module (Carl Zeiss, Jena, Germany) 
• 200mW tunable 454-514nm Ar-Ion laser (CVI Melles Griot, USA) 
• 60FC-0-M8-33 Collimator (Schäfter + Kirchhoff, Hamburg, Germany) 

 
Axiovert 200, ConfoCor2 FCS Unit and LSM510 are part of the standard FCS Zeiss 
equipment system. In order to build a TIR-FCCS setup I added an additional external laser 
(LAP 431-230, 200mW tunable Ar-Ion laser, λ[nm]/Pmax[mW] = 457/26, 465/18, 472/18, 
476/28, 488/125, 496/24, 502/12, 514/130) and a commercial collimator 60FC-0-M8-33 
(focus 8.1mm/NA 0.17/Clear aperture max. 2.5mm/Spectral range 390-670nm) mounted on a 
home made collimator stage. A scheme of all these modules, as well as the optical beam 
paths, can be seen on figure 4.1. A real picture of the setup is shown on figure 4.2 as well. 
      Axiovert 200 microscope comprises three major modules – an objective stage, dichroic 
beam splitter wheel W2-DBS and a prism P1 (see figure 4.1). The objective stage can hold an 
array of up to six objectives. As in the experiments I used two types of objectives – α Plan-
Apochromat 100x/1.46 Oil and C-Apochromat 40x/1.2 Water (Carl Zeiss, Jena, Germany). 
The former one is intended for TIR-FCS and the latter for standard FCS measurements, 
respectively. The second module, W2-DBS, is used to switch between FCS and TIR-FCS 
mode. When FCS mode is used the wheel W2-DBS is adjusted to an empty position so that 
the light coming from the FCS Unit and the back collected light can pass without losses 
through the microscope. The third module P1 is used whenever a laser scanning must be 
accomplished. LSM510 can run by introducing P1 onto the optical beam path. In all other 
cases P1 goes into empty position. 
      The FCS Unit is attached to the base port of Axiovert 200. There are three different lasers 
available for FCS measurements. They are coupled to the FCS Unit through an optical fibre. 
Note that in my experiments I used only 488nm wavelength of the Ar-Ion laser (see the Laser 
Unit on figure 4.1). The transmission intensity and the wavelength can be tuned through the 
AOTF device. The light guided to the FCS Unit is then collimated by a lens L3, reflected by 
W1-DBS, and then focused by an objective into the Sample. The fluorescence light from the 
Sample is then collected from the objective and guided by the optics to channel 1 (PH1) or 
channel 2 (PH2). If both channels are used, e.g. in cases of cross-correlation measurements, a 
sub beam splitter SBS is placed into the optical beam path. It splits the light in two equal 
fractions, which are then filtered by the emission filters (EF1, EF2). Finally the light which 
passes through the pinhole (PH1, PH2) is collected by a fibre and guided to the respective 
detector (see APD Unit on figure 4.1). Note that it may happen that the emission filters are 
not good quality, which leads to a leakage of a small part of the excitation intensity, especially 
when measuring on the surface. This in turn can affect the recorded signal and make the 
correlation curve too noisy to obtain any meaningful data. The solution is then to use filters 
which are proved to have sharp and good transmission for the given fluorescence spectra. 
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Figure 4.1 Scheme of the experimental setup with the optical beam paths. The 
modules in the system are – Axiovert 200 microscope, LSM510, Laser Unit, FCS 
Unit, APD Unit, TIR-FCS Collimator, 200mW Ar-Ion laser. W1-DBS, W2-DBS2 – 
wheel with dichroic beam splitters; P1 – prism; PH1, PH2 – pinholes; EF1, EF2 – 
emission filters; L1 – tube lens; L2 – lens; L3 – collimator lens; L4 – pinhole optics; 
L5 – tube lens; M1 – TV mirror; SBS – sub beam splitter; BFP – back focal plane; 
APD1, APD2 – avalanche photodiodes; AOTF – acousto-optical tunable filter. 

 
 
In the FCS Unit there is a TV camera mounted. It serves as a good tool to find out the surface 
of the glass coverslip and hence to position the focus of the objective in the sample. It is 
especially helpful when TIR-FCS measurements are conducted – it allows quickly to 
introduce the TV mirror M1 into the beam path and to check, by imaging the reflections, 
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whether the surface is still on focus. When the checking or the readjustment of the focus 
position finishes the mirror M1 is switched off and the actual measurement can continue. 
      The FCS optical beam path is usually used in my measurements when single focus FCS is 
needed, for example when the flow velocity throughout the channel is measured and the flow 
profile in the microchannel mapped. For this type of measurements one usually uses the C-
Apochromat 40x/1.2 Water immersion objective. 
      The TIR-FCS measurements are done with the help of TIR-FCS Collimator. It is coupled 
to the back port of Axiovert 200. The laser beam coming from the Collimator is guided to the 
objective by inserting the W1-DBS2 onto the optical beam path. The Collimator is mounted 
on a home made translational-rotational stage which provides all necessary degrees of 
freedom so that the alignment can be done properly. For the geometry of the TIR-FCS setup I 
found most suitable, in terms of spot size and beam divergence, a collimator that has focal 
length about 8mm. Thus for my purpose the following collimator is used – 60FC-0-M8-33 
(Schäfter + Kirchhoff, Hamburg, Germany). In order to achieve TIR effect and to excite an 
evanescent wave one shifts the collimator along the vertical direction (z-direction on figure 
4.1). If the shift is towards the positive z-direction then the angle of incidence on the Sample’s 
glass coverslip increases and if it exceeds the critical angle for TIR, an evanescent field is 
generated. Hence tuning the vertical position of the Collimator one can change the angle of 
incidence, and thus to control the resulting penetration depth dp of the evanescent wave. 
      The shift of the Collimator’s stage along x-direction (see also figure 4.2) changes the TIR 
spot size on the coverslip and in this manner the light intensity of the excitation. For my 
purposes I found that a spot diameter of ~35µm (on 1/e) was optimum for the fluorescent 
tracers used, as well as to keep the laser power of the 200mW Ar-Ion laser as low as possible 
(in order to maximize its lifetime). Once the appropriate x-position of the Collimator’s stage 
is found, I fix it and do not change it unless another TIR spot size is needed. The spot size is 
important from the intensity prospective. In some cases when more intensity is needed the 
increase in the intensity can be done either by increasing the laser power or decreasing the 
spot size. Since the change in the spot size is accompanied with re-alignment of the TIR-FCS 
Collimator, which may be tedious task, in order to avoid it when I need more intensity, I just 
increase the laser power. The Collimator itself has also an adjustment screw that can control 
its focal length, which in turn facilitates the alignment of the system. The point is that the 
desired TIR spot size is achieved by tuning the divergence of the beam coming out from the 
Collimator, and the adjustment screw can control it by moving the lenses it comprises. 
Afterwards the laser light reaches the tube lens L5 mounted on the back port of Axiovert 200. 
Then it is focused on the BFP of the objective, which results in a parallel beam emerging out 
of the objective and falling on the surface of the glass coverslip under certain angle. 
      The LSM510 module plays major role at the alignment of the TIR-FCS collimator. In fact, 
it facilitates greatly the adjustment of the TIR-FCS setup because it can visualize very well 
the beam spot on the glass-water interface. This in turn also allows the size of the TIRF spot 
to be measured precisely by taking simple laser scanning image. On the other hand the need 
of an external, more powerful, laser is due to the fact that the provided by the manufacture Ar-
Ion laser cannot supply enough intensity in order to excite efficiently small tracers, e.g. such 
as dyes molecules or quantum dots. The latter I used extensively in my flow experiments. 
Moreover, I found that the AOTF in the Laser Unit did not block perfectly the 514nm 
wavelength of the Ar-Ion laser, which embarrasses the usage of several of the available 
emission filters. Since the built in Ar-Ion laser is a multiline laser it has all wavelength 
presented in the beam, as the selection of a single wavelength is done by the AOTF. But due 
to the not perfect blocking a leakage of the 514nm occurs in the detection path. Thus the 
background from 514nm can be so strong that it can completely screen the useful fluorescent 
signal. One solution is to use cleanup optical filter for 488nm wavelength, placed in front the 
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Figure 4.2 Real picture of the 
TIR-FCCS setup 
a) General view of the TIR-
FCCS setup – Axiovert 200 
Microscope, LSM510, FCS 
Unit, and TIR-FCS Collimator; 
b) Beakers and Pump used to 
create and maintain a constant 
flow throughout the 
microchannel; 
c) Objective stage – it holds 
objectives and control their 
position; 
d) TIR-FCS Collimator – side 
view; 
e) TIR-FCS Collimator – back 
view; 
 

a) 

b) c) 

d) e) 
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TIR-FCS Collimator, which blocks all other wavelength but transmits 488nm wavelength. 
The solution I finally chose was to use an external more powerful laser, which allows 
flexibility in terms of the possibility to excite any kind of alike single molecule fluorescence 
species, plus the ability to tune and have as an excitation source only one of the few 
wavelengths provided by the laser, i.e. no need of cleanup filter. 
      Since many steps are needed to conduct TIR-FCCS flow experiment it is worth to 
describe in brief the most important ones. For instance, one typical TIR-FCCS flow 
experiment consists of the following basic steps: 

• Assemble the microchannel 
• Mount the microchannel onto its holder 
• Test the microchannel against leakage by applying flow of pure aqueous solution 
• Prepare ~50-100mL of aqueous solution of quantum dots 
• Add an electrolyte or buffer to the quantum dots solution 
• Place the microchannel in the microscopy stage so that a flow measurement can be 

performed 
• Switch to the 40x/1.2 Water immersion objective in order to acquire the flow velocity 

profile throughout the microchannel and select the desired shear rate 
• Adjust the shear rate value at the wall (within the first 10µm) by changing the 

elevation of the top beaker (see figure 4.2b). For this purpose, repeating measurements 
with the 40x/1.2 Water immersion objective may be necessary 

• If the desired shear rate is obtained then measure the flow velocity profile throughout 
the microchannel 

• Switch to 100x/1.46 Oil immersion objective in order to perform TIR-FCCS flow 
measurements on the interface 

• Calibration of the penetration depth dp of TIR-FCS Collimator by out-coupling of the 
laser light with a prism on the top of the microscope objective (see section 3.5) 

*Note: if the temperature in the room is not stable this can influences dp due to the thermal 
expansion/shrinking of the TIR-FCS Collimator stage. 

• Switch to the FCS beam path 
• Calibration of the pinhole position of Channel 1 and Channel 2 
*Note: this calibration is done in FCS mode (488nm of the Ar-Ion laser from the Laser Unit) and in bulk, so 
that the two observation volumes defined by PH1 and PH2 point to the same spatial location. 

• Locate the focus on the interface by monitoring the image on the TV camera 
• Switch to the TIR-FCS Collimator beam path 
*Note: due to the interaction of the immersion oil with the glass surface the focus of the objective must be 
checked from time to time (usually between each measurement or if significant change in the height of the 
correlation curves is observed). Change in the location of the interface happens always when the flow is 
switched on and off. Thus usually and in order to avoid changes in the flow profile, once the flow is on, it is 
kept on until the end of the entire flow experiment. 

• Fine recalibration of the pinholes location to point to the same observation volume. 
*Note: this sort of calibration is done by monitoring all four correlation curves in TIR-FCS mode. One 
makes sure that we observe in the same spatial spot, and then all correlation curves nearly coincide. This 
calibration is very effective in presence of flow since it makes significant difference between the forward 
and backward cross-correlation curves, and in case the observation volumes do not coincide this can be seen 
easily. 

• Displace one of the pinholes (or both) along the flow direction so that a certain 
separation distance between the pinholes is created 

*Note: the pinhole position scope in xy plane equals 500 units of the scale of its motor (2µm per unit). One 
unit from this scale corresponds to 6nm displacement in the objective’s plane (2µm/Mtot), i.e. the whole 
range within which the pinhole can be moved equals of 3µm. For the Zeiss Axiovert 200 microscope and the 
α Plan-Apochromat 100x/1.46 Oil objective the total magnification is Mtot = 333. 
• Adjust the penetration depth dp to the desired value, usually dp = 100nm 
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• Check by laser scanning if the TIR spot is on the surface and aligned well 
• Setup the laser power to the desired level 
• Start the TIR-FCCS measurement – measure the flow near the interface with the help 

of the evanescent wave generated at TIR 
*Note: in order to get enough data for the statistical analysis later on, it is recommended to acquire at least 
30-40 good cross-correlation as well as auto-correlation curves. The time frame of each measurement is 
usually fixed to 30s; normally one does 5-10 such measurements per run, but due to interaction of the 
immersion oil with the interface the focus of the objective goes away from the surface. Then in order to 
bring the focus back on the surface the current measurement must be stopped and the objective’s position 
corrected. Thus many of the measurements must be repeated, which in turn may extend greatly the time of 
the flow experiment. One solution also is to accomplish an entire run and then select the “good” curves, and 
if the number of “good” curves is equal or bigger than 50% of the total number of measurements we save 
this data file, if not we discard the current run and repeat it again. 

• Perform a TIR-FCS measurement (flow is off) if information about the diffusion 
coefficient near to the interface is needed 

• Prior to the end of the entire experiment check if the penetration depth is still the same 
so that its value is really this we setup 

 
 

4.2.   Microchannel fabrication 
       
 

            
 
                                  a)                                                                                 b) 
 

Figure 4.3 a) Real picture of the microchannel; b) Scheme of the microchannel: 1 – 
aluminium support, 2 – coverslip (170µm thick), 3 – spacer layer (100µm thick), 4 – 
microscope slide (1mm thick), 5 – polycarbonate block. 

 
 
      Important part of the experiment is the microchannel. In my experiments I used the 
microchannel shown on figure 4.3. The microchannel is fabricated using a three-layer 
sandwich construction (see figure 4.3b). The lowest layer is microscope coverslip made of 
borosilicate glass with a thickness of 170µm. Depending on whether a hydrophilic or 
hydrophobic surface is desired one treats the glass surface in different ways (for more details 
see the next section). However, the channel itself is created by cutting out a strip in an 
adhesive polymer film (Tessa, Germany) with a thickness of 100µm. Finally the top layer is a 
microscope slide with a thickness of 1mm. In this way a flow channel with dimensions 50mm 
x 4mm x 100µm is formed. This channel is hold by a chamber made from an aluminum 
support and a polycarbonate block. The flow throughout the channel is induced by a 
hydrostatic pressure gradient created via two beakers of different elevation (see figure 4.2b). 
This allows me to vary the shear rate near the wall in the range 0-6000s-1. 
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4.3.   Glass surface preparation 
 
 

4.3.1.   Hydrophilic surface 
 
 

 
 

Figure 4.4 AFM height and phase pictures of a typical hydrophilic surface used in the 
experiment. The measured root-mean-square roughness equals RMS = 0.397nm. The 
imaged area is 10x10µm and the scale bar of the height/phase is on the right hand side. 

 
 
      As mentioned in the previous section the microscope coverslip is made of borosilicate 
glass with thickness of 170µm. In order to achieve a good enough hydrophilic surface I clean 
the coverslip in the following manner: 

• Rinse out the coverslip with ultrapure deionized water, ultrapure ethanol and again 
ultrapure deionized water in order to remove the big dust particles from its surfaces 

• Immerse the coverslip/coverslips in 2% aqueous solution of Hellmanex and sonicate it 
for 15 minutes 

• Dispose the Hellmanex solution and rinse the coverslips several times with ultrapure 
deionized water 

• Immerse second time the coverslip/coverslips in 2% aqueous solution of Hellmanex 
and sonicate it for another 15 minutes 

• Dispose the Hellmanex solution and rinse the coverslips at least ten times 
• Immerse the coverslip/coverslips in ultrapure deionized water and sonicate it for 15 

minutes 
• Dispose the water solution and rinse the coverslips at least ten times with ultrapure 

deionized water 
• Immerse second time the coverslip/coverslips in ultrapure deionized water and 

sonicate it for another 15 minutes 
• Dispose the water solution and rinse the coverslips at least ten times with ultrapure 

deionized water 
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• Prior to the experiment treat the glass surface with Argon plasma in order to finally 
achieve a highly cleaned and hydrophilic surface. The plasma exposure time vary 
between 5-20minutes. I found that the optimum time for my purposes is about 
15minutes 

 
Note that although the cleaning with Hellmanex is good procedure it may not the best way to 
get hydrophilic surface especially when the measurements take place on the interface, as in 
TIR-FCS spectroscopy. The reason is that the Hellmanex is a surfactant and it goes, and sticks 
on the surface. So in order to get rid of the Hellmanex remains the rinsing with ultrapure 
water must be good enough as well as the treatment with Argon plasma must be for at least 10 
minutes. Another approach is to substitute the Hellmanex step with two steps that include 
ethanol and acetone. Nevertheless, at the end the root-mean-square roughness of the glass 
surface is in the range of 0.4nm and the water advancing contact angle below 5° (see figure 
4.4). This means one obtains suitable for TIR-FCCS flow experiments hydrophilic surface. 

 
 

4.3.2.   Hydrophobic surface 
 
 
      The preparation of the hydrophobic surface follows some of the steps of the hydrophilic 
one. It starts with the same borosilicate glass substrate, which is cleaned in the same way, 
including the plasma treatment process. The difference comes from the fact that in case of a 
hydrophobic surface one makes the so called hydrophobization in order to turn the 
hydrophilic surface into a hydrophobic one. In my experiments I used the following procedure 
to obtain a hydrophobic surface with contact angle about 82-85°: 

• Prepare a hydrophilic surface as described in section 4.3.2 
• Get the chemical HMDS (Hexamethyldisilazane), C6H19NSi2 
• Put the glass slide and 50-100µL from HMDS inside a glass container 
• Close the glass container very well – no vapour from HDMS must be able to come out 

from the container 
• Put the container in an oven and heat it up to 80°C temperature 
• Keep the temperature at 80°C for four hours 
• After this four hours switch off the oven and wait one hour for the temperature to go 

down 
• Open the container in the hood  and wait 30 minutes for the vapour to disappear 
• At this stage the glass substrate is hydrophobized, and further option is to put it in a 

vacuum for two hours for the non-reacted molecules to disappear 
 
After this procedure the hydrophobic surface is stable and can be used even at later times for 
TIR-FCCS flow measurements. The typical root-mean-square roughness of the surface is in 
the range of 0.3nm and the water advancing contact angle ~82° (see figure 4.5). 
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a) 

 

 
 

b) 
 

Figure 4.5 a) AFM height and phase pictures of a typical hydrophobic surface used in 
the TIR-FCCS flow experiments. The measured root-mean-square roughness equals 
RMS = 0.308nm. The imaged area is 10x10µm and the scale bar of the height/phase is 
on the right hand side; b) Contact angle measurement performed on the prepared by 
HMDS hydrophobic surface. The contact angle in this case was measured to by CA = 
81.7°. The size of the droplet is ~2µL, and the fit model used is Laplace-Ying fit. 
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4.4.   Fluorescence tracers 
 
 
      The usage of tracers is an important part from a FCS experiment. Since TIR-FCCS is 
fluorescent based technique the employment of fluorescence labels is mandatory. Moreover, 
in case of TIR-FCCS flow measurements the fluorescence species help to visualize the flow 
velocity field near an interface. Furthermore, in the specific study of the boundary slip 
phenomenon the choice of suitable tracers is crucial. The ideal fluorescence tracer would obey 
the following basic characteristics 

1) High quantum yield and photo stability 
2) Negligible triplet 
3) Negligible hydrodynamic radius 
4) Low polydispersity index 
5) Small diffusion coefficient 
6) Low magnitude of the electrostatic interactions with the interface 

 
The first characteristic is easy to find out in sufficiently high number of fluorescent tracers. 
The second one, the triplet, is almost intrinsic property of every fluorescence tag, especially 
the dye molecules so that it is hard to avoid it, but in most cases it can be neglected. The dyes 
molecules also meet the rest of the requirements except one – 5). Therefore they or not 
suitable at all for TIR-FCCS flow measurements – the change of their location due to the 
diffusion process is much faster than this induced by the flow. Thus the presence of flow does 
not affect in a detectable way the motion of a dye type of molecules. In other words the 
diffusion screens the flow process. Hence in order for a trace to be suitable for flow 
measurements its average diffusion time τD as well as flow time tf must obey the following 
relationship 
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For typical dye molecules, e.g. Alexa488 (D = 4⋅10-10 m2/s), and common experimental 
conditions (w0 = 245nm, vx = 1mm/s, dp = 100nm) one calculates tf/τD  = 38.4. So the diffusion 
time is about 38 times shorter than the average flow time tf. Obviously in this situation one 
will hardly observe any impact of the flow over the diffusion process. The particles are just 
too fast. In order to verify this I conducted several TIR-FCCS flow experiments with 
Alexa514 as a fluorescence tracer (Molecular Probes, Inc.). They showed that it was nearly 
impossible to detect any significant change in the correlation curves due to the flow[33]. 
      So far we concluded dye tracers are not appropriate for TIR-FCCS flow measurements 
because of their big diffusion coefficients. If we look for other tracers we may find huge 
variety each one with different characteristics. Among the tracers I tested whether they are 
good or not for TIR-FCCS flow studies were carboxylate-modified latex nanoparticles with 
hydrodynamic radius of 22nm and 60nm (FluoSpheres 505/515, size 0.02µm and 0.1µm, 
Molecular Probes, Inc.) and carboxylate-modified quantum dots Qdot585 (Molecular Probes, 
Inc.). The former ones are quite bright particles but they have several disadvantages with 
regard to the TIR-FCCS boundary slip studies – the 22nm beads are too polydisperse, and the 
hydrodynamic interactions with the wall are stronger than respective dye molecules; the 60nm 
are too big, which decreases the resolution if the expected slip length is much smaller than 
particle’s radius, as well as they exhibit much stronger hydrodynamic interactions than dye 
molecules, this cannot be neglected in the simulation model, and finally they are also 
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extremely bright when used with the 200mW Ar-Ion laser, this may cause problems with their 
proper detection. Therefore for my purposes I found most suitable the quantum dots Qdot585, 
which have hydrodynamic radius of 6.89nm.  
      The carboxylate-modified quantum dots Qdot585 have the following properties, which 
make them appropriate for TIR-FCCS experiments: 

• No triplet exhibited 
• Small hydrodynamic radius, and in turn still negligible hydrodynamic interactions 

with the wall compare to 22nm and 60nm nanobeads for example 
• Very low polydispersity – the polydispersity cannot be observed within the 

experimental measurements. This decreases the overall error of the measured slip 
length 

• Few times brighter than a dye molecule, e.g. Alexa488 – so that it is easy to detect the 
emitted fluorescence light 

• High photo stability – there is no occurrence of photobleaching within the time frame 
of the measurements 

 
However, the Qdot585 have two drawbacks – they exhibit so called blinking 
phenomenon[84],[85] and they posses a net negative charge. The former one is a phenomenon 
that causes the quantum dots to go into metastable dark state. When this occurs it induces 
additional intensity fluctuations which influence the correlation curves throughout the time 
scale of the measurement. The effect is especially pronounced at short correlation times and 
manifests as a triplet in the auto-correlation curves. Anyway, if the excitation intensity is 
moderate and we are looking at times bigger than few microseconds this effect can be 
neglected. The second drawback causes the equilibrium concentration of quantum dots to 
shifts away from the interface. In other words the negatively charged quantum dots are 
repelled from the negatively charged glass surface. The impact of this phenomenon on the 
correlation curves is dramatic so that without special measures it can make impossible the 
experimental observations. In order to overcome the problem one can add to the solution an 
electrolyte which screens the electrostatic interactions. It is known from the Gouy-Chapman 
model that objects suspended in liquid media become charged. So do the quantum dots, and 
moreover their surface is intentionally functionalized to become negatively charged in 
aqueous solution. Actually this electrostatic effect stabilizes the colloidal quantum dots 
solution and prevents them from aggregation. Hence the effect is not a pure drawback. 
Nevertheless, since we would like our quantum dots to approach the interfaces as close as 
possible one must control the repulsion. In my experiments this is done by adding a small 
amount of dipotassium phosphate salt (K2HPO4). It occurs to do both – screen the 
electrostatic effects and maintain the proper pH of the solution (in case of Qdots585 a pH ≥ 
7.0 is needed). In such case the quantum dots can easily approach the interface and thus probe 
the flow velocity field very near the surface. It also simplifies the simulation model, no need 
to include electrostatics in the model. In fact depending on the salt concentration one can 
control the ionic strength of the solution and thus the Debye length of the surface. The ionic 
strength of the solution is determined by the requirement of the Debye length λD to be 
sufficiently smaller so that the electrostatics interactions do not affect the correlation 
curves[33]. However, it should not exceed certain value otherwise it starts to affect the stability 
of the colloidal tracer’s solution and may cause aggregation as well. With respect to Qdot585 
I usually used electrolyte concentrations, which yield ionic strengths within 1mM up to 
30mM range. The following relationship can be used to calculate the resulting Debye 
length[86] 
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Where ε is the electric constant of the medium, e is the elementary charge, and 0
in the bulk 

concentration of ions type i, and iz  is their valency. The latter equation can be rewritten in 

more convenient form, namely 
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Where Is denotes the ionic strength of the solution in units of mol/L, and NA is the Avogadro’s 
number. For water at T = 25°C the latter equation reduces to 
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Hence if the ionic strength is Is = 10-3mM, then for the Debye length one obtains the value of 
λD = 9.71nm. So that varying the concentration of the electrolyte one can govern the Debye 
length as well as screen the electrostatic repulsion between the particles and the wall. This in 
turn allows the TIR-FCCS flow measurements to be performed with sufficient accuracy, 
down to several nanometres. 
      Two basic reasons enable us to employ quantum dots for studying boundary slip 
phenomenon – their high monodispersity and slower than dyes diffusion coefficient. For 
example, Qdot585 has approximately 10 times smaller diffusion coefficient than Alexa488 at 
room temperature. This leads to a ratio of the flow time over diffusion time equal to tf/τD ≈ 
3.8. In this way the influence of the flow field over the diffusion process is high enough that 
one can observe significant changes in the observed correlation curves with and without flow. 
In next chapter we will see how this is applied with respect to the slip length measurements. 
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5.   Results and Discussion 
 
 

5.1.   Flow close to the interface and the slip problem 
 
 
      For the past two centuries hydrodynamics have assumed that when a liquid flows over a 
solid surface, the flow velocity in proximity to the interface vanishes. This so called no-slip 
boundary condition has been used successfully to explain great number of macroscopic 
experiments, but has no microscopic justification. Recently there has been an increased 
interest in determining the appropriate boundary conditions for the flow of Newtonian liquids 
in confined geometries. It is to some extent due to the progress in the area of microfluidic and 
nanofluidic devices and essentially because novel and more accurate measurement techniques 
have emerged. This attracts numerous research groups to the investigation of flow at solid 
interfaces, which leads to many experimental as well as theoretical studies. 
      The dynamics of flow in confined geometries, such as in microfluidic devices, can be 
accurately described only if the physics of the flow at the interface between the fluid and the 
solid is thoroughly understood.  One of the most important steps towards this understanding 
lies in determining the correct boundary conditions for the system being studied. The choice 
of boundary conditions for a fluid flowing over a solid surface has been heavily debated over 
the past two centuries, but a convincing conclusion is still lacking. Finding the correct 
boundary conditions that apply to flow in confined geometries is not only of great interest to 
the scientific community, but would also improve our understanding of a number of 
technological processes[87],[88],[89],[90],[91],[92]. It would also provide a fundamental advance in 
understanding physics of flow in microfluidic devices and biological processes[93],[94]. 
      A fundamental concept in hydrodynamics is the assumption of the no-slip boundary 
condition. It implies that the last layer of liquid which lies on a solid surface propagates with 
the same velocity as the surface. In principle, the no-slip boundary condition cannot be 
extracted based on hydrodynamic considerations. However, this behaviour has been observed 
in a great number of macroscopic flow experiments. The physical origin of such a boundary 
condition is thought to be mostly due to trapping of liquid molecules in pits located on the 
solid surface and the attractive forces between the liquid molecules and the solid ones. In 
general the no-slip boundary condition is widely accepted and it is a product of the debate 
among the scientists for the last several centuries. Nowadays this assumption lies in the 
fundament of most continuum-based computations. Nevertheless, lately the topic of the flow 
of Newtonian liquids in confined geometries has acquired new attention. For example, many 
researchers disagree on the universal nature of the no-slip boundary condition. They stated 
that under some conditions the fluid indeed slips over the solid wall. Some of the early 
experiments, performed with flow of liquids through thin lyophobic capillaries showed 
slip[2],[95],[96]. A number of new experiments, conducted with more advanced techniques, have 
also indicated evidence of boundary slip[6],[14],[97],[98],[99]. 
      However, there are basically two phenomenological models available that try to explain 
the mechanism of liquid slip and below is presented a short summary of them. In any case one 
should note that none of these models are believed to be universally correct. In principle, the 
models tries to explain the observed slip phenomenon by the decrease of the friction force 
between the liquid on the interface and the solid surface[4]: 

1) True slip at a molecular level – in this model the last layer, of liquid molecules, slides 
effectively over the solid surface. For example, if the viscous friction between liquid 
molecules at the interface is stronger than between molecules of the liquid and 
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molecules of the solid, then the molecules can slide on the surface. This is true for 
lyophobic surfaces[2], but might also hold, under certain circumstances, for lyophilic 
surfaces[100]. Second, if the dimensions of the liquid molecules are of comparable size 
to the rugosity of the solid surface, the molecules are trapped in the pits on the surface. 
If their size is much smaller or much larger, they can slide on the surface. This is true 
for two solids sliding along each other[101], but simulations show that it might also 
hold for liquids on solids[102],[103] 

2) Apparent slip – in this model the slip occurs not exactly at the solid-liquid interface 
but rather at the liquid-liquid interface. For example, if a thin layer of liquid is 
strongly bound to the solid surface, and if the velocity gradient close to the solid is 
very high the molecules beyond this layer may appear to slide over the surface. The 
size of this layer can be a single monolayer or bigger. In the latter case this layer is 
known as a stagnant layer (as originally proposed by Girard). In this picture one can 
also include the situation where slip occurs on top of a static layer of a different phase, 
for example, of gas or a less dense liquid. For example, at room temperature and 
pressure, there is always some residual gas dissolved in a liquid. Critical levels of 
shear might induce cavitations in a liquid and the generated gas bubbles might adhere 
to the solid surface, forming a layer at the interface onto which the liquid can 
slip[98],[104],[105],[106]. Second, at a critical shear rate, a microscopic surface roughness or 
corrugation can favour the generation of a layer of turbulent flow at the interface, and 
thus modify the viscosity of this layer with respect to the bulk, even if the overall flow 
is laminar. An example from nature is the so-called shark-skin effect[107]. Third, 
ordering of liquid molecules at solid surfaces reduces the friction between 
neighbouring layers and therefore facilitates the sliding of one layer of molecules past 
the other.  The ordering is strongest the closer the molecules are to the solid 
surface[8],[108] 

 
      All measurements of slip length so far rely on indirect measurements. There is no single 
technique available, which can measure the velocity, viscosity or the drag coefficient of the 
last layer of liquid molecules lying on the solid surface. Moreover, all models that have been 
introduced to explain slip are phenomenological and none of them can extract the underlying 
molecule dynamics and hence to describe the phenomenon thoroughly on molecular level. 
Nevertheless, macroscopically the no-slip boundary condition will most likely always hold 
unless the liquid flow is examined on a length scale comparable to the slip length, say ls about 
at least 5-10% of the smallest channel dimension. For example, most of liquid flow 
measurements conducted so far shows small magnitude of the slip length – tens of nanometres 
at most for a hydrophilic surface and hundreds of nanometres for a hydrophobic surface, 
respectively. Thus very high accuracy flow measurement techniques are required to detect 
such small slip lengths. From this respect the newly proposed in this thesis TIR-FCCS 
technique appears to be new and promising tool to probe and study the slip behaviour on 
various surfaces. It is an optical technique that has high spatial resolution and is capable to 
detect slips as small as several nanometres. In the present fifth chapter I show new 
experimental findings acquired with the help of TIR-FCCS technique, which aim to clarify 
the existence and the magnitude of the boundary slip. The investigation was carried out for 
aqueous flow on both hydrophilic and moderately hydrophobic glass surfaces. 
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5.2.   Flow on hydrophilic surface 
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Figure 5.1 Flow profile in the microchannel (blue colour) and its fit with Poiseuille 
flow (red colour). The surface of measurement is located at z ≈ 102µm. The shear rate 
is obtained by fitting only the points close to the respective surface, i.e. 

1253944 −±= sLγ& . The flow profile is measured prior to the actual TIR-FCCS 

experiment. 
 
 
      In this section results for aqueous flow on hydrophilic surface are presented. In order to 
prepare highly hydrophilic glass substrate the procedure in section 4.3.1 was followed. Thus 
the root-mean-square roughness of the surface was approximately 0.4nm and the water 
advancing contact angle was below 5°, respectively. The measurements were conducted at 
temperature of 27.5 ± 1°C. The fluorescence tracers were Qdots585 (described in section 4.4). 
They were suspended in aqueous solution of 6mM K2HPO4 (pH ≈ 8.0). The hydrodynamic 
radius of the Qdots585, measured by dynamic light scattering, equals 6.89nm.  
      As pointed out previously the raw data from a TIR-FCCS experiment must be analyzed 
numerically by means of the algorithm described in Chapter 3. This plus the fact that not all 
experimental parameters from which the slip length depends are known precisely enough, 
makes the analysis rather tedious. 
      The TIR-FCCS data set was acquired at the following experimental conditions – the 
penetration depth of the evanescent field was dp = 100 ± 5nm, the lateral size of the 
observation volume w0 = 260 ± 20nm, the diffusion constant of the Qdots585 tracers D = 
3.80⋅10-11 ± 0.4⋅10-11m2/s (measured by dynamic light scattering), the separation distance sx = 

800 ± 30nm. The shear rate 1253944 −±= sLγ&  was determined independently by measuring 

the flow profile in the microchannel with the help of single focus FCS and then fitting the 
resulting flow profile with Poiseuille flow, see figure 5.1 (for more detail discussion on 
Poiseuille flow see also section 3.4 and Appendix A.1). 
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Figure 5.2 Experimental and simulated (a) auto-correlation and (b) cross-correlation 
curves for the following parameters dp = 100nm, w0 = 263nm, D = 4.141⋅10-11m2/s, sx 

= 800nm, 13944 −= sLγ& , ls = 2.09nm. The calculated goodness of simulation equals ξ 

≈ 6.000. Note that the parameters that were not fixed during the Monte Carlo were 
derived from the mean value of their equilibrium fluctuations. 

       
 
      Since the Monte Carlo procedure, as described in section 3.3.5, finds only the local 
minimum of ξ it is a good approach to first evaluate all ξ that correspond to the parameter 
space defined by the vector  of the input parameters ( sLxp lDswd ,,,,, 0 γ& ). For each point in 

this space we can attribute a goodness of simulation ξ. If we partition the space with certain 
step size and give reasonable limits for the minimum and maximum value of each parameter, 
we can thus calculate ξ for all points of the defined grid. Thus by selecting the vector 

b) 

a)  
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( sLxp lDswd ,,,,, 0 γ& ) which gives the smallest ξ we can define good initial values for the 

Monte Carlo procedure. The important thing to note here is that in my case from this kind of 
calculation I only redefine two parameters – w0 and D. The rest of the parameters, except ls 
which is a subject of calculation via the Monte Carlo procedure, I assume I know precisely 
enough. Therefore one performs the following analysis described bellow in order to obtain 
more accurate values for the input parameters vector from the experimental data set and use 
them afterwards as initial values for the Monte Carlo procedure. 
      First, all input parameters ( sLx lDsw ,,,,0 γ& ), except dp, are allowed to vary with a given 

step and within certain range which has a reasonable physical constrains. Hence for each grid 
point in the parameter space we simulate the corresponding correlation curves and by 
comparing with the experimental curves we calculate the goodness of simulation ξ. From this 
set of generated ξ values one picks up such a vector ( sLxp lDswd ,,,,0 γ& ) for which the pair of 

values w0 and D minimizes the goodness. In the current case w0 = 260nm and D = 4.1⋅10-

11m2/s. The other parameters are kept fixed to their known and measured values, i.e. dp = 

100nm, sx = 800nm, 13944 −= sLγ& . Note that here the value of ls is not taken into account 

since it will be determined precisely later from the Monte Carlo analysis. Furthermore, the 
generated in this way set of ξ will be used to determine the slip length if one considers more 
conservative approach and assumes that sx and Lγ& also vary within certain range (see figure 

5.6). Second step in the data processing is the employment of Monte Carlo analysis – the 
given parameters from the first step allow starting the Monte Carlo procedure with good 
initial values. In the present case of flow on hydrophilic surface we assign the following 
initial parameters for the Monte Carlo procedure: 

• dp = 100nm (fixed) 
• w0 = 260nm (the range of w0 = 240 ÷ 280nm, the maximum step value is ∆w0 = 1nm) 
• D = 4.1⋅10-11m2/s (the range of D = 3.8⋅10-11 ÷ 4.4⋅10-11m2/s , the maximum step is  

∆D = 0.01⋅10-11m2/s) 
• sx = 800nm  (fixed) 

• 
13944 −= sLγ& (fixed) 

• ls = 30nm (the range of ls = 0 ÷ 50nm, the maximum step value of ∆ls = 0.5nm) 
 
In general these parameters that are precisely known are kept fixed and the rest, including the 
slip length, are kept free and extracted from the Monte Carlo analysis. Other specific 
algorithm settings, which concern the numerical simulations, are 

• time step ∆t = 2⋅10-6s 
• number of time steps nt = 3000, thus the overall simulation time equals ∆t ⋅ nt = 6ms 
• number of iterations niter = 3.2⋅105, so that each iteration generates an independent 

trajectory 
 
Figure 5.2 present the experimental TIR-FCCS data and the corresponding simulated auto- 
and cross-correlation curves. As mentioned above every data point from these curves is an 
average of 3.2⋅105 independently generated trajectories. The simulation results have been 
rescaled in order to match the experimental data points. The simulated correlation curves were 
built upon the resulting mean values of the parameters from the Monte Carlo analysis.    
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Figure 5.3 Goodness of simulation ξ as a function of the number of Monte Carlo 
steps. 

 
 

 
 

Figure 5.4 Slip length ls as a function of the number of Monte Carlo steps. The 
equilibrium fluctuations of the slip length allows us to calculate its mean and error, i.e. 
ls = 2.09 ± 2.35nm. It should be noted that the starting value for the slip length ls = 
30nm was chosen in such a manner that the goodness of simulation is away from its 
minimum so that one can clearly see how the slip length converges to its equilibrium 
value of ls = 2.09nm. 
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Figure 5.5 ξ as a function of the slip length and shear rate. The other input parameters 
are fixed and the same as on figure 5.2. Note that here ξ is represented by a colour 
map which shows changes of ξ  between 5 and 20. All values of ξ  above 20 are 
shown in gray colour and indicate input parameters vectors which lead to bad fits. 

 
 

The overall number of Monte Carlo steps was set to 105 sweeps. Figure 5.3 shows how the 
goodness of the simulation ξ evolved along the Monte Carlo sweeps for the given above input 
parameters limits. One can notice that approximately after the first 104 sweeps the goodness 
reached its equilibrium value about which it fluctuates. Furthermore, on figure 5.4 is shown 
the evolution of the slip length versus the Monte Carlo sweeps. For each free parameter such 
a curve can be presented. After the end of the run, the mean value of the parameters of interest 
w0, D and ls can be calculated, excluding the first 104 sweeps. The corresponding errors were 
then calculated from the maximum and minimum of the equilibrium fluctuations. It should be 
noted that the equilibrium fluctuations of the parameters tell us the typical range in which 
they can still be viewed as compatible with the experiment. Therefore these fluctuations are 
the appropriate measure to quantify the experimental error bars, while calculating the standard 
error of mean would not be appropriate and severely underestimate the errors. Thus from the 
Monte Carlo analysis we derive the following values and their corresponding errors for the 
free parameters 

• w0 = 263.00 ± 5.45nm 
• D = 4.141⋅10-11 ± 0.116⋅10-11m2/s 
• ls = 2.09 ± 2.35nm 

 
The other input parameters values that were kept fixed during the Monte Carlo run are given 
in the beginning of the current section. They were determined from other independent type of 
measurements. For example, the penetration depth dp = 100 ± 5nm was measured as explained 

in section 3.5, the shear rate 1253944 −±= sLγ&  was derived from the flow profile in the 

microchannel, and the separation distance sx = 800 ± 30nm was determined from the pinhole 
motors scale as described in section 4.1. This allows increasing the reliability of the fit in the 
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Monte Carlo procedure since too many free parameters could lead to unreliable fit and thus 
the error of the slip length would increase substantially. In the ideal case if one can determine 
very accurately all parameters, except ls, it would enable for the slip length to be extracted 
from the fit extremely precisely and straightforward. 
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Figure 5.6 Number of occurrences in percentage for each discrete ls = 0, 2.5, 5, 7.5, 
10, 12.5, 15, 17.5, 20, 30, 40, 50nm and for ξ ≤ 10. The other parameters, except dp, 
vary in the given range. Note that this histogram can be interpreted as a probability to 
observe given discrete ls. 

 
 
Nevertheless, as stated in section 3.4 the shear rate and slip length are mutually dependent. 
Thus if we take more conservative approach and allow also both of them to vary within some 
constrains one can estimate and predict the magnitude of the slip length and its error even 
when the shear rate is not known accurately. On figure 5.5 is shown the behaviour of the 
goodness of the simulation ξ as a function of the slip length and shear rate. It can be seen that 
the minimum values of ξ (best fits) form a dark violet strip. That says that all pairs of shear 
rates and slip lengths that lie in this zone produce reasonable and good fits. This means that 
without precise knowledge of the shear rate we have a problem to assign certain value for the 
slip length. However, from the figure one can define an upper bound for the slip length in the 
given quite broad interval, i.e. ls = 15 ± 2nm. Thus we can conclude that even if we do not 
know very well the shear rate we still can extract reasonable information for the slip length. 
Moreover, having this colour map one can determine accurately the slip length and its 
confidence interval if the shear rate is measured with high precision as well. 
      We can go even further in the analysis and to allow more input parameters to vary. For 
example, in the worst case scenario if we fix the penetration depth dp and vary the other 
parameters within a given range we can build a histogram as shown on figure 5.6. It shows for 
each slip length value ls = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 30, 40, 50nm how many times 
in percentage it occurred for goodness ξ ≤ 10. In other words, for each combination of the 
input vector ( sLxp lDswd ,,,,0 γ& ) the goodness ξ was calculated. From this set of ξ the 
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requirement ξ ≤ 10 was imposed so that we assumed everything below this border produced 
an input parameter vector ( sLxp lDswd ,,,,0 γ& ) which rendered as a good fit. Hence if we count 

the number of times a given ls occurred we can produce the histogram shown on figure 5.6. It 
can be also interpreted as a probability to observe given slip length ls. Furthermore, we can 
say that even if nearly all parameters are kept free or not known precisely one can still derive 
a conclusion about the slip length. In this case it can be seen that the majority of the hits are in 
the range of ls = 0 ÷ 20nm, as around 70% of the hits occur for ls ≤ 10nm. Therefore one can 
derive an estimate for the slip length ls = 7.5 ± 7.5nm, i.e. with probability about 90% ls is 
found in this range. 
      In this section I showed results for Newtonian liquid flowing on hydrophilic surface. The 
magnitude of the respective slip length was obtained by Monte Carlo procedure described in 
section 3. The processing of the data can be done in various ways so that one can also 
evaluate the influence of the uncertainty of the input parameters over the slip length. The data 
analysis showed that the slip length of a hydrophilic surface if exists is very small, in the 
range of few nanometres. If we would like to be even on the safe side we can give an upper 
bound for the slip length ls = 10 ± 5nm. As the comprehensive analysis above showed, in the 
worst case scenario it is very unlikely for the slip length to exceed the latter limit. Thus the 
main conclusion of this section is that for the given experimental conditions and within the 
experimental error slip on hydrophilic surface cannot be detected, i.e. the no-slip boundary 
condition still holds. This is also in consistence with theoretical predictions that slip on 
hydrophilic surface should not be expected. Other similar experimental studies[19] also showed 
that slip on hydrophilic surface is either as small as few nanometres or it is not detectable at 
all. 
 
 

5.3.   Flow on hydrophobic surface 
 
 
      While the slip phenomenon related to a hydrophilic surface is more trivial case, the flow 
on hydrophobic surface is far more interesting and controversial. There are many experiments 
described in literature for flow on hydrophobic surface but a rigorous conclusion for the slip 
length is still lacking. Some of the studies report huge slip, in the order of few micrometers, 
other studies showed that it should be smaller than 100nm[19],[29]. Further treatment of the 
problem with the means of the proposed TIR-FCCS technique can help to clarify this 
controversy. As previously pointed out TIR-FCCS technique has high spatial and temporal 
resolution. In the current stage of the technique it is about few nanometres, and the temporal 
resolution is about 50ns (limited by the APD photo detector speed). So that it is a suitable tool 
to probe hydrodynamics on nanometre scale, namely the slip boundary phenomenon on a 
hydrophobic surface. 
      In the case of flow on hydrophobic surface I conducted two measurements, for two 
different shear rates. All experimental conditions and data analysis, as well as comments and 
results are presented below. 
      In this section results for aqueous flow on hydrophobic surface are presented. In order to 
prepare the hydrophobic glass substrate the procedure in section 4.3.2 was followed. Thus the 
root-mean-square roughness of the surface was below 1nm and the water advancing contact 
angle was about 85 ± 5°, respectively. The measurements were conducted at temperature of 
27.5 ± 1°C. The fluorescence tracers were Qdots585 (described in section 4.4). They were 
suspended in aqueous solution of 6mM K2HPO4 (pH ≈ 8.0). The hydrodynamic radius of the 
Qdots585, measured by dynamic light scattering, equals 6.89nm. 
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                                         a)                                                                          b) 
 

Figure 5.7 Flow profile in the microchannel (blue colour) and its fit with Poiseuille 

flow (red colour): a) shear rate 1273822 −±= sLγ& , the surface of measurement is 

located at z ≈ 99.69µm; b) shear rate 1365830 −±= sLγ& , the surface of measurement is 

located at z ≈ 0.0µm. The shear rate is obtained by fitting only the points close to the 
respective surface. The flow profile is measured prior to the actual TIR-FCCS 
experiment. 

 
       
      As pointed out previously the raw data from a TIR-FCCS experiment must be analyzed 
numerically by means of the algorithm described in Chapter 3. This plus the fact that not all 
experimental parameters from which the slip length depends are known precisely enough, 
makes the analysis much more tedious.  
      The TIR-FCCS data set was acquired at the following experimental conditions – the 
penetration depth of the evanescent field was dp = 100 ± 5nm, the lateral size of the 
observation volume w0 = 260 ± 20nm, the diffusion constant of the Qdots585 tracers D = 
3.80⋅10-11 ± 0.4⋅10-11m2/s (measured by dynamic light scattering), the separation distance sx = 

800 ± 30nm. The shear rates 13822 −= sLγ&  and 15830 −= sLγ&  were determined independently 

by measuring the flow profile in the microchannel with the help of single focus FCS and then 
fitting the resulting flow profile with Poiseuille flow, see figure 5.7 (for more detail 
discussion on Poiseuille flow see also section 3.4 and Appendix A.1). 
      The Monte Carlo procedure is described exhaustively in section 3.3.5. I also explained in 
details in the previous section how one applied it for the TIR-FCCS data analysis. Therefore 
in the following paragraphs I will only recall most important points. The strategy is to 
evaluate all ξ that correspond to the parameter space defined by the vector of the input 
parameters ( sLxp lDswd ,,,,, 0 γ& ). This is done by creating a grid in that space with certain step 

size and constrains for each parameter. Then one calculates ξ for all points of the defined grid. 
By selecting the vector ( sLxp lDswd ,,,,, 0 γ& ) which gives the smallest ξ we can assign good 

initial values for the Monte Carlo procedure. Keep in mind that in my case from this kind of 
computation I only recalculate two parameters – w0 and D. The remaining ones are kept fixed, 
and I assume I know them precisely enough. The slip length, ls, is a subject of calculation via 
the Monte Carlo procedure so that it is kept free. Therefore we perform the following analysis 
described bellow in order to obtain more accurate values for the input parameters vector from 
the experimental data set and use them afterwards as initial values for the Monte Carlo 
procedure. 
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Figure 5.8 Experimental and simulated auto- and cross-correlation curves for two 

different shear rates: a) 13822 −= sLγ& , the other parameters are dp = 100nm, w0 = 

267nm, D = 4.191⋅10-11m2/s, sx = 800nm, ls = 10.62nm, the calculated goodness of 

simulation equals ξ ≈ 6.170; b) 15830 −= sLγ& , the other parameters are dp = 100nm, w0 

= 272nm, D = 4.159⋅10-11m2/s, sx = 800nm, ls = 0.3nm, the calculated goodness of 
simulation equals ξ ≈ 8.541. Note that the parameters that were not fixed during the 
Monte Carlo procedure were derived from the mean value of their equilibrium 
fluctuations. The cross-correlation curves were multiplied by factor of ten each so that 
it can scale and be clearly seen when plotted along with the auto-correlation curves. 

 
 
           

b) 

a)  
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Parameter Fixed Initial  
value 

Max. 
step 

Minimum 
value 

Maximum 
value 

Mean 
value 

Error of 
mean value  

dp [nm] yes 100 --- --- --- --- --- 
w0 [nm] no 260 1.0 240 280 267 ±4.8 

D [⋅10-11m2/s] no 4.1 0.01 3.8 4.4 4.191 ±0.1 
sx [nm] yes 800 --- --- --- --- --- 

Lγ& [s-1] yes 3822 --- --- --- --- --- 

ls [nm] no 30 0.5 0.0 50 10.62 ±2.5 
 

Table 5.1: Shear rate 13822 −= sLγ& , other specific algorithm settings are: ∆t = 1.0⋅10-

6s, nt = 6000, niter = 2.0⋅105. The overall simulation time equals ∆t ⋅ nt = 6ms. Note that 
the last two columns represent the values of the free parameters (Fixed = no) derived 
from the Monte Carlo analysis. 

 
 

Parameter Fixed Initial  
value 

Max. 
step 

Minimum 
value 

Maximum 
value 

Mean 
value 

Error of 
mean value  

dp [nm] yes 100 --- --- --- --- --- 
w0 [nm] no 270 1.0 250 290 272 ±4.7 

D [⋅10-11m2/s] no 4.1 0.01 3.8 4.4 4.159 ±0.1 
sx [nm] yes 800 --- --- --- --- --- 

Lγ& [s-1] yes 5830 --- --- --- --- --- 

ls [nm] no 30 0.5 0.0 50 0.3 ±1.3 
 

Table 5.2: Shear rate 15830 −= sLγ& , other specific algorithm settings are: ∆t = 1.0⋅10-

6s, nt = 6000, niter = 3.2⋅105. The overall simulation time equals ∆t ⋅ nt = 6ms. Note that 
the last two columns represent the values of the free parameters (Fixed = no) derived 
from the Monte Carlo analysis. 

 
 
      First, all input parameters ( sLx lDsw ,,,,0 γ& ), except dp, are allowed to vary with a given 

step and within certain range which has a reasonable physical constrains. Hence for each grid 
point in the parameter space we simulate the corresponding correlations and by comparing 
with the experimental curves we calculate the goodness ξ. From this set of generated ξ values 
one picks up such a vector ( sLxp lDswd ,,,,0 γ& ) for which the pair of values w0 and D 

minimizes the goodness. Table 5.1 and Table 5.2 summarize the values obtained for w0 and 
D, as well as the other parameters that were kept fixed to their known and measured values 
(see the column “Initial value” in Table 5.1 and Table 5.2). Note that the value of ls must not 
be considered since it will be determined precisely later via the Monte Carlo procedure. 
Remember that the generated in this way set of ξ will be used to roughly estimate the slip 
length if one considers more conservative approach and assumes that sx and Lγ& also may vary 

within certain range (see figure 5.12). 
      Second step in the data processing is to run the Monte Carlo analysis – the given 
parameters from the first step allow starting the Monte Carlo procedure with good initial 
values (see Table 5.1 and Table 5.2). In general these parameters that are precisely known are 
kept fixed and the rest, including the slip length, are kept free and extracted from the Monte 
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Carlo analysis. Figure 5.8 present the experimental TIR-FCCS data and the corresponding 
simulated auto- and cross-correlation curves. Every data point from these curves is an average 
of 3.2⋅105 independently generated trajectories. The simulation results have been rescaled in 
order to match the experimental data points. The simulated correlation curves were built upon 
the resulting mean values of the parameters from the Monte Carlo analysis. 
 
 

   
 

                                       a)                                                                         b) 
 

Figure 5.9 Goodness of simulation ξ as a function of the number of Monte Carlo steps 

for (a) shear rate 13822 −= sLγ&  and (b) shear rate 15830 −= sLγ& . 

      
       

  
 
                                        a)                                                                         b) 

 
Figure 5.10 Slip length ls as a function of the number of Monte Carlo steps: a) shear 

rate 13822 −= sLγ& , the equilibrium fluctuations of the slip length allows us to calculate 

its mean and error, i.e. ls = 10.62 ± 2.5nm; b) shear rate 15830 −= sLγ& , the calculated 

mean and error of ls = 0.3 ± 1.0nm. It should be noted that the starting value for the 
slip length ls = 30nm was chosen in such a manner that the goodness of simulation is 
away from its minimum so that one can clearly see how the slip length converges to its 
equilibrium state. 
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      The overall number of Monte Carlo steps was set to 105 sweeps. Figure 5.9 shows how the 
goodness of the simulation ξ evolved along the Monte Carlo sweeps for the given input 
parameters. One can notice that approximately after the first 104 sweeps the goodness reached 
its equilibrium state about which it fluctuates. Furthermore, on figure 5.10 is shown the 
evolution of the slip length versus the Monte Carlo sweeps. Note that for each free parameter 
such a curve can be plotted. After the end of the run, the mean value of the parameters of 
interest w0, D and ls can be calculated, excluding the first 104 sweeps. The corresponding 
errors were then calculated from the magnitude of the equilibrium fluctuations. It should be 
noted that the equilibrium fluctuations of the parameters tell us the typical range in which 
they can still be viewed as compatible with the experiment. The last two columns of Table 5.1 
and Table 5.2 summarize the mean values of the free parameters and their errors as derived 
from the Monte Carlo analysis. The other input parameters values that were kept fixed during 
the Monte Carlo run are given in the beginning of the current section (see also Table 5.1 and 
Table 5.2). They were determined from other independent type of measurements. For 
example, the penetration depth dp = 100 ± 5nm was measured as explained in section 3.5, the 

shear rate 13822 −= sLγ& and 15830 −= sLγ&  were derived from the flow profile in the 

microchannel, and the separation distance sx = 800 ± 30nm was determined from the pinhole 
motors scale as described in section 4.1. This allows increasing the reliability of the fit in the 
Monte Carlo procedure since too many free parameters could lead to unreliable fit and thus 
the error of the slip length would increase. In the ideal case if one can determine very 
accurately all parameters, except ls, it would enable for the slip length to be extracted from the 
fit extremely precisely and straightforward. Nevertheless, as stated in section 3.4 the shear 
rate and slip length are mutually dependent. Thus if we take more conservative approach and 
allow also both of them to vary within some constrains one can estimate and predict the 
magnitude of the slip length and its error even when the shear rate is not known accurately. 
On figure 5.11 is shown the behaviour of the goodness of the simulation ξ as a function of the 
slip length and shear rate. It can be seen that the minimum values of ξ (best fits) form a dark 
violet strip. That says that all pairs of shear rates and slip lengths that lie in this zone produce 
reasonable and good fits. This means that without precise knowledge of the shear rate we 
have a problem to assign certain value for the slip. However, one can define an upper bound 
for the slip length in the given interval, i.e. ls = 20 ± 5nm (figure 5.11a) and ls = 5 ± 3nm 
(figure 5.11b). This kind of mapping allows us to extract reasonable information about the 
slip length even if we do not know very well the shear rate. Moreover, having this colour map 
one can determine accurately the slip length and its confidence interval if the shear rate is 
measured with high precision. 
      We can go even further in the analysis and to allow more input parameters to vary. For 
example, in the worst case scenario if we fix the penetration depth dp and vary the other 
parameters within a given range we can build a histogram as shown on figure 5.12. It shows 
for each slip length value ls = 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 30, 40, 50nm how many 
times in percentage it occurred for goodness ξ ≤ 10 (figure 5.12a) or ξ ≤ 15 (figure 5.12b), 
respectively. In other words, for each combination of the input vector ( sLxp lDswd ,,,,0 γ& ) the 

goodness ξ was calculated. From this set of ξ the requirement ξ ≤ x was imposed so that we 
assumed everything below this border produced an input parameter vector ( sLxp lDswd ,,,,0 γ& ) 

which rendered as a good fit. Hence if we count the number of times a given ls occurred we 
can produce the histogram shown on figure 5.12. It can be also interpreted as a probability to 
observe given discrete slip ls. 
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                                    a)                                                                        b) 
 

Figure 5.11 ξ as a function of the slip length and shear rate for flow of shear (a) 
13822 −= sLγ&  and (b) 15830 −= sLγ& . The other input parameters are fixed and the same 

as on figure 5.8. Note that here ξ is represented by a colour map which shows changes 
of ξ  between 5-8 and 20, respectively. All values of ξ  above 20 are shown in gray 
colour and indicate input parameters vectors which lead to bad fits. 

 
 
Furthermore, we can say that even if nearly all parameters are kept free or not known 
precisely one can still derive a conclusion about the slip length. In this case it can be seen that 
the majority of the hits are in the range of ls = 0 ÷ 20nm (figure 5.12a) or ls = 0 ÷ 10nm (figure 
5.12b). Around 70% of the hits occur for ls ≤ 12.5nm (figure 5.12a) or ls ≤ 5nm (figure 5.12b). 
Therefore one can derive an estimate for the slip length ls = 10 ± 10nm (figure 5.12a) or ls = 5 
± 5nm (figure 5.12b), i.e. with probability about 90% ls is found in this range. 
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                                       a)                                                                         b) 
 

Figure 5.12 Number of occurrences in percentage for each discrete ls = 0, 2.5, 5, 7.5, 

10, 12.5, 15, 17.5, 20, 30, 40, 50nm: a) flow of shear 13822 −= sLγ& and ξ ≤ 10; b) flow 

of shear 15830 −= sLγ&  and ξ ≤ 15. The other parameters, except dp, vary in the given 

range (see Table 5.1 and Table 5.2). Note that this histogram can be interpreted as a 
probability to observe given discrete ls. 
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      In this section I showed results for Newtonian liquid flowing on hydrophobic surface. The 
magnitude of the respective slip length was obtained by Monte Carlo procedure described in 
section 3. The processing of the data can be done in various ways so that one can also 
evaluate the influence of the uncertainty of the input parameters over the slip length. The data 
analysis showed that the slip length of a hydrophobic surface if exists is small, in the range of 
few up to ten nanometres. If we would like to be even on the safe side we can give an upper 
bound for the slip length ls = 10 ± 10nm. As the comprehensive analysis above showed, in the 
worst case scenario it is very unlikely for the slip length to exceed the limit of ls = 20 ± 5nm. 
Thus the main conclusion of this section is that for the given experimental conditions and 
within the experimental error significant slip on moderately hydrophobic surface (contact 
angle ~85°) cannot be detected, i.e. the no-slip boundary condition still holds. This finding is 
not in consistence with some theoretical predictions that slip on hydrophobic surface should 
be expected[2],[109]. On other hand a number of recent experimental studies have also reported 
either very small or no slip[19],[20],[29] on hydrophobic surfaces. 
 
 

5.4.   Discussion 
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Figure 5.13 An example of experimental 
TIR-FCCS correlation curves: 
a) All original correlation curves without 
any modification; 
b) Forward and backward cross-correlation 
curves before subtraction; 
c) Corrected via subtraction forward cross-
correlation curve; 
Note that the subtraction removes the 
cross-talk effect from the forward cross-
correlation. 
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      TIR-FCCS technique opens the door for examining the boundary slip phenomenon on 
various surfaces with nanometre resolution. This in particular allowed me in the present thesis 
to address and clarify the question about the existence and magnitude of the slip length with 
respect to two basic types of surfaces – hydrophilic and hydrophobic. Other effects that 
possibly may influence the slip length were not considered, for example, surface roughness, 
nanobubbles, viscosity and polarity of the solvent etc. 
      The cost that must be paid in order to benefit from TIR-FCCS technique is the higher 
complication of the setup than in FCS technique as well as the exhaustive data analysis. 
However, the fundaments and the principals are established in this thesis and the technique 
can further develop and improve. Although the technique is not as mature as FCS, reliable 
enough results are also reported. One also must keep in mind that several problems left to be 
solved. The most important one is the shape of the lateral observation volume. Although not 
mentioned in the thesis explicitly it seems that the two detection volumes W1 and W2 cannot 
be described well by a Gaussian function (see eq. (3.6)). The full description of these volumes 
must take into account that the point spread function of the objective is not a Gaussian but 
rather represented by the so called Airy disk (or a Bessel function). Anyway, this problem is 
beyond the scope of the current thesis and is referred to a future work. One effect due to the 
Airy type of objective’s point spread function is the increase of the overlap of both 
observation volumes W1 and W2. That in fact was observed and appeared as a rise in the initial 
amplitude of both forward and backward cross-correlation curves (see figure 5.13). Since in 
the outlined data analysis this effect was not taken into account, one way to get rid of it, at 
least to some extent, is the subtraction of the backward from forward cross-correlation curve 
as implicitly applied in the last two sections. It means that the presented in this thesis 
experimental TIR-FCCS correlation curves are corrected in this fashion (see figure 5.13b and 
5.13c). There is another important point concerning the processing of the data as well. In 
principles in the experiment there are two observation volumes which generate eventually two 
auto-correlation curves. Ideally if we use the same pinholes and emission filters the two 
curves must be exactly the same. In practice a little difference in the alignment of both 
channels can introduce slight changes. On the other hand in the simulations both auto-
correlation curves are by definition indistinguishable from each other. Hence in general there 
should be no significant difference between both experimental auto-correlation curves (e.g. 
see the auto-correlation curves on figure 5.13a). Therefore prior to the data analysis I took the 
average of the two experimental auto-correlation curves and produced a single one which was 
used further in the analysis. 
      Furthermore, there is still little discrepancy even when the correction is applied due to the 
simplified numerical model, which approximates the observation volumes of the objective 
with Gaussian rather than taking the real detection profile – the convolution of the pinhole’s 
image with the PSF of the objective. This leads to an increase in value of the goodness of 
simulation ξ. For example, the gap between the left shoulder of the simulated and 
experimental cross-correlation curves (figure 5.2b or 5.8) can be explained with this effect. 
Another effect that certainly influences the goodness ξ, and obviously increases it, is the noise 
in the short times of a correlation curve (see figure 5.2b or 5.8). Generally one can avoid the 
contribution of this noise by taking into account only the points after certain initial time, e.g. τ 

≥ 1-10µs, but in the present study it was not done. The reason is that this only makes constant 
shift for each ξ and hence it would not alter at all the derived slip length value. However, the 
reduction of the noise in short times is mentioned as a suggestion to be implemented in the 
future version of the software used to analyze the data. Thus the smallest calculated value of 
the goodness was found to be ξ ≥ 5 (see figure 5.5 and 5.11), which ideally must be ξ = 1 but 
due to all mentioned already reasons is higher (see sections 3.3.5 and 3.4 for more details). 
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      Other important issue is the steric effect, i.e. particle size effect. As already mentioned, in 
my study I used Qdots585 as fluorescent probes. Their typical hydrodynamic radius is ~7nm. 
Due to this, one can fairly consider these tracers as point diffusers and get reliable value for 
the slip length. As shown so far this approach was followed in the thesis. Nevertheless, it 
would be from great importance if one can quantify the influence of the tracer’s size over the 
derived slip length. Thus let’s imagine that the diffusing particle approaches the interface. 
Then we could notice that because it is not a point like particle it will basically never 
experience a velocity field which is zero, even if ls = 0nm. This is due to the linear 
dependence of the velocity in proximity of the interface (see appendix A.1), i.e. the velocity 
can be zero only at the surface level. Thus everything above this level is a subject to the 
velocity field gradient. Since the particle is with finite size it will obviously experience a non-
zero velocity field. In the measurements it would appear as an apparent slip. Hence if the 
tracer size is not smaller than the expected slip length one can definitely say that the 
fluorescent species plays a substantial role in determining ls. The good news is that even if we 
have finite size tracer we can account for this effect. At the closest distance to the interface 
the particle touches the surface. Then one can prove that by simply shifting the coordinate 
system of a distance equal to the radius of the tracer, we create a new frame that mimics the 
same situation as assuming a point particle. If we then go back to the old coordinate system 
we see that the apparent slip equals the real slip length plus the particle’s radius. Thus the 
only thing that we do to account for the particle size effect is to subtract from the apparent slip 
the hydrodynamic radius of the particle. This is indeed very elegant way to incorporate the 
steric effect in the numerical model present in Chapter 3. One consequence of this is that one 
can improve the sensitivity of the method through using bigger fluorescent particles as tracers. 
The bigger fluorescent species have the advantage of slower diffusion compare the smaller 
ones. Thus little changes in the behaviour of the flow, and hence the slip, are more 
pronounced in the correlation curves. The only rule here is that after the data analysis a 
subtraction of the hydrodynamic radius from the derived apparent slip length must be 
performed. 
      As seen in the previous section the shear rate plays significant role in the precise 
determination of the slip length (see figure 5.5 and 5.11). If Lγ& is defined precisely an increase 

in the slip length accuracy can be achieved. In the current implementation of the technique the 
shear rate is obtained through measuring the flow velocity profile across the microchannel by 
means of single focus FCS (see figure 5.1 and 5.7). For a rectangular microchannel, as used in 
my experiments, one gets Lγ&  by fitting the velocity profile with Poiseuille flow (see appendix 

A.2 for more details). The important thing to note is that the fit is preferably taken by only 
fitting the measured data points close to the respective interface. According to my experience 
this approach seems to give better estimation of the shear than fitting through all data points 
of the entire velocity profile. The justification is simple – the shear on the interface is defined 
mostly by those data points next to the interface, and the other far away from the interface 
must not have impact on the fit result. In fact, in the ideal case it holds but in practice 
unavoidable noise and errors are presented in the measurements. For example, different points 
can be measured with different accuracy; the other surface of the channel can introduce some 
disturbance in the flow profile etc. Hence if we make a fit through the entire flow profile the 
error in the shear rate increases because the fit procedure will try to fit equally well all points. 
It results in worse approximation for Lγ&  than if we only take into account the very first points 

next to the examined surface. Thus for increasing the reliability of the shear rate value it is 
recommended to use the data points acquired at distances z ≤ 10-20µm away from the 
considered interface. 
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      When talking about the Monte Carlo data analysis it is important to clarify why we keep 
fixed some of the input fit parameters. Usually we can let free all parameters but then there is 
no guarantee that the algorithm will not end up in a local minimum which is far from being 
the best fit. Therefore we need certain constrains which decrease the degree of freedom – less 
free parameters, less possibility for the fit to go in different directions. This obviously should 
improve the reliability of the fit and make it converge faster. Usually if we exclude the slip 
length all other parameters are more or less known or can be determined somehow 
independently. In my case the decision to keep fixed all parameters but not w0 and D is 
dictated from the fact that these are the only parameters which are really difficult to obtain 
with enough precision. For example, w0 can slightly vary depending how the objective focus 
and its respective observation volume are positioned on the interface. The diffusion 
coefficient D slows down close to the interface due to hydrodynamic effects. Electrostatic 
effects due to the presence of the interface can also affect the tracers’ motion. On the other 
hand the slip length is always free parameter since it is meant to be determined by the 
numerical data analysis. Thus the Monte Carlo simulations I have done showed that fixing dp, 
sx, and Lγ&  is really helpful and justified. In fact, it decreases the degree of freedom such that 

the algorithm can find the right direction easy and to converge relatively quickly. 
      Another important observation, found through the numerical simulations, is with respect 
to the impact of the shear rate value over the correlation curves at two different slip lengths. It 
can be proved by the numerical simulations that for two different slip lengths if higher shear 
rate value is used in an experiment it would make the correlation curves to shift more than if 
lower value is used. Thus, say, small changes in the slip length are more visible at higher 
shear rates than at lower ones. This opens a door for further improvement of the accuracy of 
the derived through the TIR-FCCS technique slip lengths. For example, if experimentally one 
can apply higher shear rates this would improve the reliability and the accuracy of the derived 
slip length value. In turn this also means that very small slip lengths can be detect easier at 
higher shear rates. 
      The choice of the input parameters’ values is crucial for the successful accomplishment of 
the presented study. Each input parameter can be adjusted in certain range, which depends on 
the experimental and equipment limitations. Thus the penetration depth dp is limited mainly 
by the excitation wave length, the refractive indexes of the media and the numerical aperture 
of the objective, see eq. (2-38). This makes the useful range in the current implementation of 
the technique to be between dp = 80÷200nm.  As one can notice all measurements were done 
for dp = 100nm. From my experience this seems to be the optimum value for dp because, for 
example, higher value would increase the error in determination of dp and lower value would 
go too close to edge of the objectives capabilities, which also shifts the illumination TIRF 
spot from it original position. The lateral size of the observation volume w0 depends mainly 
on the size of the pinhole and the optical properties of the objective (e.g. NA). Since the 
maximum pinhole size is limited by the fibre core diameter (~100µm), which is used to guide 
the collected light to the detector, the value of w0 equals about 240-250nm. In fact, it seems 
that this value is also influenced by the position of the objective’s foci on the interface. 
Therefore if it is not in the optimum position it leads to slightly bigger w0. Hence the lateral 
size of the observation volume usually occurs between w0 = 240÷300nm and this is the main 
reason why it is not fixed in the Monte Carlo procedure. The diffusion constant D is defined 
by the fluorescent tracers used. In my experiments these were Qdots585 tracers with bulk 
diffusion about ~3.8⋅10-11m2/s (T = 28°C). Next to the interface the diffusing particle is 
subject to hydrodynamic forces and electrostatic effects, which makes difficult to predict 
precisely the diffusion coefficient D. Thus in the Monte Carlo analysis this parameter is not 
kept fixed and the initial value is assigned to be about the bulk diffusion, respectively. The 
separation distance sx is a parameter which can be tuned in a broad range, from 0 up to 3µm. 
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It should be noted that it affects the cross-correlation curve but not the auto-correlation one. 
The value of sx = 800 ± 30nm (used in the experiments) is a compromise between the 
achieved smoothness of the cross-correlation and the relative error of sx. In general any 
separation distance is a valid value. Only one should keep in mind the following – if the 
separation distance is too small the overlapping and in turn the channel’s cross-talk increases, 
so do the relative error of sx. On the other hand if sx is larger, the relative error of sx decreases 
but the cross-correlation is noisier and thus longer acquisition time is needed in order to get a 
smooth curve. The role of the shear rate is exhaustively discussed already. Nevertheless, it is 
worth to mention few more details. For example, the maximum shear achieved so far at this 
setup is ~6000s-1. It really seems that higher shear rate values lead to more accurate 
determination of the slip (see the more narrow range of figure 5.11b compare the 5.11a). 
However, it is easy to explain why such higher shear is more favourable compare smaller one 
– in proximity to the interface the flow competes with the diffusion process, thus smaller 
shear rates mean more pronounced diffusion, as at too low shear the diffusion can even screen 
completely the presence of flow. Whereas higher shear rates would effectively increase the 
role of the flow, so that ideally at extremely high shear rates the flow must be the very 
dominant process in the particles motion within the observation volume. Of course this also 
has noticeable effect on the observed correlation curves, i.e. the higher shear rate causes 
bigger change than smaller one. This is the reason to fix the shear rate about 4000-6000s-1, i.e. 
the maximum realized at the described setup. 
      For the numerical algorithm, described in Chapter 3, to work properly, few things must be 
clarified. First, regarding the time step – smaller time step assure lower error from 
discretization but if it is too small then the overall simulation time increases. Also take into 
account that the time step must be much greater than the so called Brownian relaxation time, 
otherwise we run the stochastic simulation within the time scale of the non Brownian regime, 
which is not correct. In my case I chose a time step of ~1-2µs, it is small enough so that the 
particle diffuses sufficient time within the observation volume and in the same time it is much 
bigger than the non Brownian regime for this particle. Unfortunately if we directly implement 
the numerical algorithm as described in the third chapter we will obtain long computation 
time. So two basic tricks are used in the simulation program in order to speed up the 
calculations – the first one is to use adaptive time step, which means we do a random walk 
between the experimental points and compute the correlation curves only for simulation 
points matching the experimental ones; second trick is the usage of fast random number 
generator as described in [110]. Depending on the overall time that we would like the 
simulation to cover we adjust accordingly the number of time steps. In my case more than 
6ms simulation time for the random walk was not needed since afterwards the correlation 
curves converged to the minimum values (see figure 5.2 and 5.8). The other important 
numerical parameter is the number of the Monte Carlo steps – the rule of thumb is that it must 
be such that one obtains long series of equilibrium fluctuations so that the mean value of each 
input parameter and its error can be easily and reliably determined. The test simulations 
showed that the optimum number of Monte Carlo steps was in the scope of 105÷5⋅105, and it 
should be sufficient to fulfil the requirement for long trace of fluctuations. A nice feature of 
the numerical algorithm is that it can be easily parallelized, which means it is suitable not 
only for a single PC but also for the massively parallel systems, such as supercomputers. 
      Another important thing concerning the numerical algorithm is the rescaling of the 
simulation curves to match the experimental ones (see figure 5.2 and 5.8). The reason for the 
rescaling is that due to the character of the algorithm the number of particles in the 
observation volume is always one. On the other hand in the experiment the number of 
particles can be smaller or bigger. This makes both experimental and simulation curves 
almost impossible to coincide. Hence it must also be taken into account in the numerical 
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algorithm when calculating the goodness of the simulation. Thus before the actual comparison 
and calculation of ξ either the simulated or the experimental curves must be rescaled such that 
both to coincide as good as possible. From the point of view of the algorithm and the 
presented experimental curves the rescaling is done in two steps. First, in order to minimize 
the variance, internally in the algorithm, the experimental curves are rescaled to match the 
simulated ones. After comparison of both and calculation of ξ, the simulated curves are 
rescaled to match the original experimental ones. The reason for this approach is that in all 
cases we would like to have the original data intact, thus every final output is scaled 
according the experimental data not the simulated one. 
      The results in section 5.2 and 5.3 clearly showed similar magnitude of the slip length for 
both hydrophilic and hydrophobic surfaces. While the result for hydrophilic surface is 
expected, the one for hydrophobic is somewhat surprising. Indeed, most theoretical treatments 
of hydrophilic surface so far assume zero boundary slip, which within the experimental error 
can be proved true in the current study (see section 5.2 for more details). On the other hand 
the hydrophobic surface is expected to generate noticeable slip, which at least must be easy to 
distinguish from the hydrophilic one. However, for the studied here HMDS treated glass 
surfaces (contact angle ~85°) it seems that either there is no slip or it is as small as the 
hydrophilic one. Moreover, for the hydrophobic surface even the two measurements for the 
two different shear rates did not show noticeable difference. Although one of the 

measurements, 13822 −= sLγ& , showed a slip length bigger than zero, namely ls ~10nm, it is 

still within the experimental error and apparently cannot be quantified as huge. Thus within 
the limitations of the current setup and theoretical model we can conclude that indeed the no-
slip boundary conditions is still valid for hydrophilic as well as for moderately hydrophobic 
surfaces. Clearly, further refinement of the method as well as further studies of hydrophobic 
surfaces, especially with contact angles above 90° are required in order to get even better 
inside on the boundary slip phenomenon. 
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Summary and Conclusion 
 
 
      The phenomenon of hydrodynamic boundary slip of Newtonian liquid on a solid surface 
has been investigated with the help of the proposed in this thesis TIR-FCCS technique. The 
technique is based on the measurement of the minute intensity fluctuations caused by 
fluorescence tracers flowing with the liquid as they pass through two small observation 
volumes that are laterally shifted in flow direction. A cross-correlation analysis of these 
fluctuations yields the tracers and therefore the flow velocity. In contrast to existing FCS 
based techniques for flow studies, the two observation volumes are defined by pair of 
pinholes and the axial extend of the evanescent field. Thus only tracers flowing within the 
~100-200 nm proximity of the solid surface are monitored. These arrangements combined 
with the high sensitivity of the method makes the TIR-FCCS are powerful and promising tool 
to probe the slip length in quantitative and robust way with nanometre resolution. 
Furthermore, to the best of my knowledge, the thesis demonstrated for first time the 
possibility to combine an evanescent wave excitation with FCS for systematic, quantitative 
studies of liquid flows. 
      Along with the development of TIR-FCCS technique I developed a new numerical 
algorithm aimed to process the experimental data and extract the parameters of interest, for 
example the slip length. It should be pointed out that this algorithm, described in details in 
Chapter 3, generates correlation curves in fundamentally new way. Therefore it has the 
feature to speed up the analysis orders of magnitude comparing with eventual direct 
numerical computation of convection-diffusion equation and the correlation integral. The 
results from the previous Chapter 5 has shown impressively, that the method of TIR-FCCS in 
combination with Brownian Dynamics and Monte Carlo based data analysis is a powerful tool 
for prediction of hydrodynamic effects near solid-fluid interfaces. Already within the 
presented model one can conclude an upper bound for the slip length at a 
hydrophilic/hydrophobic surface of ls ≤ 10-20 nm. It should be noted that for both type of 
surfaces the slip length was either the same or slightly different, and within the current 
accuracy, say, indistinguishable.  
      The computational method is highly flexible and has the advantage to be easily extensible 
to include more complex effects. For example, the finite particle size could be taken into 
account by a modification of the boundary condition at the solid surface (see section 5.4), the 
hydrodynamic interactions of the particles with the wall would cause an anisotropy in the 
diffusion tensor and z dependence, electrostatic interactions would give rise to an additional 
force term in the Langevin equation, while polydispersity could be investigated by 
randomizing the diffusion constant with a given distribution. While these contributions are 
expected to yield a further substantial improvement of the method, this was not attempted 
here, and is rather left to a future investigation. In my opinion, the method is a conceptually 
simple, fast, robust and reliable approach to process TIR-FCCS data, and I believe it has the 
potential to become the standard and general tool to process such data. The principle is 
applicable to all kinds of correlation techniques, such as FCS/TIR–FCS etc., and in general 
allows simulating the outcome of such an experiment. I think it is the method of choice 
whenever one investigates a system whose complexity is beyond analytical treatment. 
However, for an extensive data analysis one may need a super computer in order to obtain 
highly accurate results in fairly short time, e.g. 1-2 days. Nevertheless, the method still works 
well even on a single modern desktop machine and quite accurate data analysis can be 
performed, within reasonable time, on any of the powerful newly emerging GPGPU video 
cards or any of the available on the market modern multi-core processors. 
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      In Chapter 1, a basic introduction of the boundary slip problem was given. Likewise, 
analysis of the advantages and disadvantages of the current experimental techniques to 
measure slip length was done. It revealed that although experimental techniques in this area 
existed, there was still no reliable and straightforward conclusion about the magnitude of the 
slip on hydrophilic/hydrophobic surface. The major reason was the insufficient accuracy of 
the techniques, which did not allow probing the slip length with resolution as small as few 
nanometres. Many of these techniques, e.g. surface force apparatus, have the drawback to rely 
on indirect flow observation, where the information about the slip is obtained by sophisticated 
procedure that relies on a certain hydrodynamic model. On the other hand the existing optical 
techniques, such as FCS, can profile a flow in a microchannel but suffer from lower 
resolution when applied to interface measurements such as boundary slip phenomenon. Other 
optical technique such as PIV has the drawback of low sensitivity and slow speed of 
operation. Thus the proposed in the thesis solution called TIR-FCCS, was aimed to overcome 
this experimental limits and further increase the time and space resolution. I hope that the 
results and methods in this thesis will become an integral part of further research in the area 
of hydrodynamics and interfacial science. 
      Chapter 2 was dedicated to the theory background of FCS and TIR-FCS. The principles 
behind both techniques lie in the base of TIR-FCCS so that good understanding of this topic 
was not strictly required but desirable for easy reading of the next chapters. Few historical 
remarks regarding the invention of FCS were mentioned as well. The chapter itself includes 
general introduction to Fluorescence Correlation Spectroscopy theory, derivation of the most 
important and used fit functions, as well as describing of an example of experimental 
realizations of the technique. The main limitation of FCS technique with respect to the 
resolution was also discussed in there. Total Internal Reflection Fluorescence Correlation 
Spectroscopy was introduced with detail derivation of the fundaments of evanescent wave, 
used in the illumination beam path of the technique. It was stressed that, in fact, this wave 
increased the axial resolution of the conventional FCS technique and overcome the resolution 
limit imposed by the diffraction of the light. An example of a common experimental 
realization of the technique was also given, as well as detail derivation of the analytical fit 
functions used in the data analysis. Also there, it was pointed out that an analytical fit function 
for extracting flow data in case of liquid flow in a microchannel was not possible due to the 
presence of a wall. The numerical solution of the latter problem was referred to the third 
chapter. 
      Chapter 3 described in details the concept and principles of the new TIR-FCCS technique. 
The current experimental realization of the technique was also sketched. Unlike TIR-FCS, 
TIR-FCCS uses not one but two spatially separated pinholes that create two shifted to each 
other observation volumes. The fluorescent signals from the excited tracers originating from 
both observation volumes are recorded and auto- as well as cross-correlation curves are 
generated. These curves contain information about the flow velocity field near to the 
interface, which in turn allows the slip length to be reliably extracted by fitting those curves 
with appropriate model function. In this case as stated above the model fit function was 
realized in terms of numerical algorithm based on Brownian Dynamics and Monte Carlo 
simulations. The key concept of the algorithm can be expressed as follows – at the initial time 
moment a particle is generated with the probability distribution of the first observation 
volume, then it is propagated via a random walk using a simple Brownian Dynamics scheme 
(so called first order Euler update), at each point in time the particle’s intensity is also 
observed in the first volume (for the auto-correlation) and the second observation volume (for 
the cross-correlation), respectively. This is indeed simple and fast way to produce the 
theoretical correlation curves. The fitting itself is done by an importance sampling Monte 
Carlo algorithm. Other important points discussed in the chapter were the estimation of the 
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slip length accuracy as well as a reliable procedure to experimentally measure the penetration 
depth. 
      Chapter 4 comprised technical information for the materials, the equipment and the 
fluorescence tracers used in the presented thesis. The microchannel fabrication as well as the 
glass surface preparation was discussed in details. The choice of the fluorescence species was 
also extensively commented and as most suitable, at that moment, were chosen quantum dots 
tags with hydrodynamic radius ~7nm. These quantum dots called Qdots585 were chosen for 
two main reasons – first they were monodispersed and second they were small enough so that 
one could easily neglect the hydrodynamics effects, e.g. the slow down of the diffusion 
coefficient near the interface. Short notes on the measurement protocol with most important 
points were also stated in there. 
      The last Chapter 5 presented the results obtained with the help of the TIR-FCCS 
technique. First it was briefly discussed the slip issue and possible physical models that 
explain the origin of the slip length. Two basic types of slip can be derived – true slip and 
apparent slip. The former one is attributed to real sliding of the liquid over the hard surface, 
while the latter one could be caused by liquid sliding over liquid layers that are strongly 
bound to the surface. As expected from the theory the results for slip on hydrophilic surface 
showed no substantial slip, ls ~ 2-5nm, and within the experimental error indistinguishable 
from zero. On the other hand the results for hydrophobic surface were a little surprising 
because they did not show slip much different than that of hydrophilic surface. For example, 
for one of the measurements the derived slip was ~10nm, and the other even ~0.5nm. So it 
was an indication that in fact within the experimental condition and the used hydrophobic 
surface (prepared with the help of HMDS, contact angle ~85°) one cannot distinguish 
hydrophilic-hydrophobic surface. 
      Nevertheless, the established in the thesis methodology of TIR-FCCS can be further 
refined in two directions. First, from the point of view of the experiment the technique can be 
improved in the following fashion: 

1. Increasing the shear rate measurement accuracy by calibrating the observation volume 
in FCS as indicated in section 3.4 (see eq. (3-48)) – this would allow for 
straightforward fixing of the shear rate during the Monte Carlo fit. That in turn should 
increase substantially the accuracy and the reliability of the derived slip length 

2. Using higher shear rates – as mentioned previously higher shear rate increases the 
sensitivity and in turn the accuracy of the derived slip length. This is because the 
increased value of the shear influences stronger the correlation curves, i.e. higher shear 
rate means higher velocity which obviously would affect the tracer’s motion stronger 

3. Using of bigger fluorescence tracers – big fluorescence tracers as stated in section 5.4 
would allow for substantial increasing of the sensitivity and consequently the accuracy 
in the slip length measurements. The reason is that bigger the tracers are slower the 
diffusion is, and hence the domination of the flow process over the correlation curves 
increases compare using of smaller tracers with higher diffusion coefficient 

4. Other improvements related with the mere using of the equipment such as – improving 
the stability of the positioning of the objective, the stability in the temperature etc 

5. Using hydrophobic surface with contact angle higher than 90° - in order to clarify the 
existence of slip or no-slip, a study of substrates with higher contact angle than the 
presented in the thesis would be desirable 

6. Introducing of multiple observation volumes – it should improve the quality and the 
statistics of the acquired correlation curves, and in turn the accuracy of the slip length 

7. Measure an electro-osmotic flow in the microchannel – this should create artificial 
slip, which can also be used to calibrate and test the setup 
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Second, the numerical algorithm described in section 3 can be improved as follows: 
1. Include the steric effect – actually it is not necessary to do this since it is intrinsically 

presented in the current algorithm, only subtraction of the hydrodynamic radius from 
the derived slip length must be done 

2. Include the observation volume calculated using the convolution with the squared 
Bessel PSF and the pinhole image rather than its Gaussian approximation as in the 
current algorithm – as mentioned in section 5.4 it seems that there is bigger 
overlapping than the one derived through the Gaussian approximation alone 

3. Include effects such as hydrodynamics and electrostatics when necessary 
4. Include polydispersity if necessary 
5. Include if necessary the Poiseuille profile in favour of its linear velocity 

approximation 
 
I believe that the combination of TIR-FCCS technique and stochastic simulations provide a 
new powerful methodology for quantitative data analysis and can contribute to the discussion 
about the differences in the effect of slippage over hydrophilic and hydrophobic surfaces. In 
particular, I presented a complete and powerful tool to experimentally investigate, with good 
precision, the slip boundary phenomenon. 
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A.   Appendix 
 
 

A.1.   Approximation of Poiseuille flow with a linear 
function 
 
 
      This appendix proves the relevance of linear flow approximation with respect to Poiseuille 
flow when we consider the flow close to the bottom wall.  
      Although laminar flow in rectangular channel is described by Poiseuille flow, due to the 
character of the evanescent wave, short penetration depth (in all my experiments dp ~ 100nm), 
the flow close to the interface can be readily approximated with a linear function with respect 
to the distance to the bottom wall z. The description of the flow velocity field vx in a 
rectangular microchannel, given by Poiseuille flow (3-4), yields 
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and the shear rate at the surface (z = 0, see eq. (3-5)) reads 
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where Lγ&  denotes the shear rate of the linear flow, which is equal of Poiseuille shear rate Pγ&  

at the wall, z = 0. Hence we can write down the corresponding linear flow approximation to 
Poiseuille flow (A-1), namely 
 

                                                                    zv L

L

x γ&=                                                            (A-3) 

 

where L

xv  states for linear flow velocity along x axis. Note that for simplicity the other 

velocity components, vy and vz, are considered zero (which actually represents the 
experimental geometry) as well as the slip term is neglected. The latter is justified and 
consider in details in appendix A.2. 
      For typical experiment conditions one can assign the following value for the shear rate 
 

                                                                 13800 −= sLγ& ,                                                      (A-4) 

 
the size of the channel 
 
                                                                 mLz µ100= ,                                                        (A-5) 

 
and therefore the coefficient fp/η can be derived from (A-2), and taking into account the last 
two values we get 
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Thus we have all necessary equations and quantities to compare linear and Poiseuille flows 

near an interface. So that on figure A.1 are shown the flow velocity profiles, vx and L

xv , for 

both flows, on figure A.2 the absolute error and on figure A.3 the relative error respectively. 
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Figure A.1 Poiseuille (blue curve) and linear flow (red curve) close to the interface. 
Note that in the plotted domain, 0÷2µm, both curves match very well. 
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Figure A.2 Absolute error L

xx vv −  of the difference between Poiseuille and linear 

flow. 
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Figure A.3 Relative error x

L

xx vvv −  of the difference between Poiseuille and linear 

flow. Note that the relative error is calculated with respect to the real flow, i.e. 
Poiseuille flow vx. 

 
 
From the figures can be noted that Poiseuille and linear flow matches very well within the 
domain of interest, i.e. z = 0 up to 1µm (see figure A.1). Even when z goes above 1µm the 
relative error is still small, and in the whole range plotted on figure A.1 the relative error 
doesn’t exceed 2% (see figure A.3). This result is very satisfactory and is due to the fact that 
the evanescent field decays very fast with increasing the distance z to the surface. For 
example, in typical experimental conditions dp = 100nm, which means that the intensity of the 
evanescent field at z = dp decreases to 36.7% (or e-1) from the initial intensity at z = 0 (see eq. 
(2-37)), which is more than two times decreasing with respect to the initial intensity. 
Furthermore, at z = 2dp = 200nm the decreasing in the intensity is e-2 or to a level of 13.5% 
from the initial intensity, i.e. the intensity at this distance z is approximately 7 times smaller 
than the initial intensity. If we continue more we notice that at z = 4dp = 400nm the intensity 
decreases ~55 times the initial one (e-4), so that the contribution to the eventual fluorescence 
tracers at distances z > 4dp is so small that TIR-FCCS cannot distinguish whether the flow 
was linear or Poiseuille. This fact allows the simplified treatment of the Poiseuille flow as a 
linear approximation, which in turn allows us to deduce the shear rate of the corresponding 
linear flow through a Poiseuille fit of the profile in the rectangular microchannel. 
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A.2.   Poiseuille flow with slip and non-slip boundary 
condition 
 
 
      It is known, from experimental studies, that the influence of non vanishing slip length on 
the flow profile is only weak, and therefore hard to obtain by direct measurements[16],[29]. 
However, from theoretical point of view it is yet unclear, how the existence of slip length 
influences the flow profile in a microchannel, and further, the shear rate at the surface. 
Lumma et al[28] address the problem very briefly and make a priori the assumption that one 
dimensional flow profile can be applied to fit their experimental data. However, the accuracy 
of this crude approximation was not referred. In the present appendix I show that one 
dimensional Poiseuille flow, with neglecting any possible slip length, is good enough 
approximation to obtain a proper estimation of the shear rate in a microchannel. 
      The problem I solve in this appendix is the solution of the Stokes equation 
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in a rectangular channel with the dimensions 
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 in the yz plane (see 

figure 3.3 and 3.4). In the theoretical treatment below, for simplicity, the beginning of the 
coordinate system coincide the centre of the channel, so that if Poiseuille flow is considered 
the maximum velocity occurs at y = 0 and z = 0. 
      The solution of this problem, which can be found in the textbook of Spurk and Askel[111], 
has the disadvantage that if shows no invariance under exchanging the y and z coordinate, and 
more important, this solution is only valid in the case of no slip boundary conditions and it is 
not clear how to modify the formula given there if slip boundary condition is applied. 
Therefore below I show an alternative solution for (A-7), first with zero slip boundary 
condition and then discussing the influence of applying slip boundary condition. From this 
solution the effect of non-zero slip length on the overall flow profile and the shear rate close 
to the wall are studied. 
 
 

      No slip boundary condition 
 
 
      In the first step one can write (A-7) in Dirac’s bra-ket notation 
 

                                                                    qv −=Η                                                       (A-8) 

 
For solving this problem a standard method can be used, well known from quantum 

mechanical calculations, namely expanding the function v  in terms of eigenfunctions of Η 

 

                                                              mnmnmn ψλψ =Η                                                  (A-9) 

 

Suppose mnψ  is an orthonormal basis of Hilbert space, such that 
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                                                                1=mnmn ψψ                                                    (A-10b) 

 
Solving this problem is a standard calculation in quantum mechanics since the operator 

2
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zy ∂
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+
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=Η  is the Hamilton operator for a free particle in two dimensions, and hence, the 

problem reduces to the solution of Schrödinger equation of a free quantum mechanical 

particle in a two dimensional box. Knowing that mnψ  is an eigenfunction of the 

Hamiltonian, one can write down its spectral form 
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and hence also its inverse is known. Along with (A-8) one obtains 
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and expanding v  with respect to the eigenfunctions, yields 
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At this point, we reduced the problem to a calculation of eigenvalues and eigenfunctions of Η. 
      Making the product substitution 
 
                                                              ( ) ( ) ( )zByAzy ≡,ψ                                                (A-14) 

 
and including this into (A-8) one can write down two independent equations for A and B 
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and 
 

                                                                 ( )22
zy λλλ +−≡                                                    (A-16) 

 
This is a well know wave function and can be solved by substituting 
 

                                                          ( ) yiyi yy eaeayA
λλ −+= 21                                             (A-17) 
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The symmetry of the problem ( ) ( )yAyA −=  dictates that only the even parts survive, while 

the odd contributions vanish, and therefore 
 
                                                                    21 aaa =≡                                                      (A-18) 

 
and 
 
                                                            ( ) ( )yayA yλcos2=                                                  (A-19) 

 
The λy is defined by the boundary conditions. As mentioned before and since the effect of the 
slip length is supposed to be small, we first introduce non-zero slip boundary condition, i.e. 
the flow velocity should be zero at the walls and hence 
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It follows that 
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with n = 0, 1, 2, …. The prefactor a can be extracted from the normalization condition and 
taking into account (A-21) 
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and therefore 
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Obviously, B(z) can be calculated in the same way. Taking all together, one obtains 
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The scalar product of ψ with q is then given by 
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Including (A-24), (A-25) and (A-26) into (A-13), one finally obtains 
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with 
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This solution has the advantage that if has the correct spatial invariance y and z direction and 
it is clear how to apply slip boundary conditions by replacing (A-20). In order to obtain the 
famous one-dimensional Poiseuille profile from (A-27) by ∞→yL , one first cuts the channel 

at y = 0, resulting in 
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The sum over n is known as Leibniz series and has the limit value 
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Evaluation of the sum over m by expansion of the cosine up to quadratic order, results in 
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In the latter the following is taken into account 
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Figure A.4 Cross section of the flow profile at y = 0 for no slip boundary condition 
and several values of the ratio Ly/Lz. 
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Figure A.5 Averaged deviation between one dimensional flow (A-27) and Poiseuille 
solution (A-33) as function of the width-height ratio Ly/Lz of the channel. 
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Substituting (A-31) into (A-29), reproduces the Poiseuille solution plus one correction term 
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As shown on figure A.4, the flow profile in z direction converges to ideal Poiseuille solution 
for increasing width-to-height ratio zy LL  of the channel. The averaged deviation from 

Poiseuille profile  
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is presented as function of zy LL . Here N is the number of calculated data points. On figure 

A.5 can be seen that for width-to-height ratio 4≥zy LL  the error is less than 1%. Therefore 

in my case, where 40≈zy LL , the Poiseuille approximation of the flow in rectangular 

channel is absolutely justified. 
 
 

      Slip boundary condition 
 
 
      If the friction ζ of the fluid at the surface has got a finite value, slip boundary condition 
occurs and have the form 
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The same is valid if y direction obeys non-zero slip. Here, ls = η/ζ is the so called slip length. 
Since eq. (A-19) is independent of the concrete form of the eigenvalues, one can write (A-35) 
with respect to the positive Lz/2 
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If we further simplify (A-36) we get 
 

                                                    






=








2
cos

2
sin z

z
z

zzs

LL
l λλλ                                         (A-37) 

 
this condition can be written as 
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This has one unique solution per interval 
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Figure A.6 Shear rate at the wall as function of the slip length. The shear rate is 
calculated through equation (A-45), and shows the influence of the slip length over the 
shear rate in a rectangular microchannel. Note that the existence of slip does not affect 
the shear rate at the given range of ls/Lz. 
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which must be evaluated numerically, for example using 4th order Householder’s method. 
Applying again the normalization condition (A-22) with respect to z, one obtains the constant 
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From this along with (A-19) and (A-23) we get 
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and further 
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Finally the actual velocity profile in a microchannel for non-zero slip is found to be 
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Hence the shear rate xγ&  at the wall can be calculate numerically through substitution of eq. 

(A-44) into 
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Figure A.6 shows the effect of the slip length on the shear rate xγ&  at the wall. The dimensions 

of the channel in the experiment are about Ly ≈ 4mm width and Lz ≈ 100µm height, so that we 
get a ratio of about Ly/Lz ≈ 40. From figure A.5 we know that this ratio is large enough to 
assume ideal Poiseuille flow behaviour. Furthermore, the slip length is assumed to be 
maximum in the range of 100nm[16],[29], i.e. a ratio of slip length to channel height of about 
ls/Lz ≤ 10-3, and according figure A.6, for values of ls/Lz ≤ 0.1, the effect of the slip length is 
irrelevant for the estimation of the shear rate at the wall from the experimentally measured 
flow profile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 116 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 117 

List of symbols 
 
 
B   molecular brightness 
g(τ)   auto-correlation function 
G(τ)   normalized auto-correlation function 
r0   lateral size of the observation volume 
w0   lateral size of the observation volume 
z0   axial size of the observation volume 
I(t)   fluorescence intensity 
δI(t)   fluctuation in the fluorescence intensity 
W(r)   molecular detection efficiency function 
C(r,t)   concentration distribution function 
δC(r,t)   fluctuations in the concentration distribution function 

C    average concentration 

T   measurement time or temperature 
τ   time delay or lag time 
D   diffusion coefficient 
S   structure parameter 
V   volume 
Veff    effective volume 
φ(r,r´,τ)  concentration correlation function 
N   average number of particles 
τf    flow time 
Vx   flow velocity 
Tr   triplet term 
p   percentage of molecules in triplet state 
τtr   triplet decay time 
η   dynamic viscosity 
NAobj   numerical aperture of the objective 
λ   wavelength of the light 
α1   incident angle 
α2   angle of refraction 
αc   critical angle  
n1   index of refraction of medium 1 
n2   index of refraction of medium 2 
n   refractive index 

trE
r

   electric vector of the transmitted wave 

0E
r

   amplitude of the electric vector of the transmitted wave  

trk
r

   wave vector of the transmitted wave 

ω   angular frequency 
kevan   evanescent wave vector 
I0   intensity at z = 0  
Ix   evanescent intensities at z = 0 for the Ex component 
Iy   evanescent intensities at z = 0 for the Ey component   
Iz   evanescent intensities at z = 0 for the Ez component 
dp   penetration depth 
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λ0   wavelength of the incident light in vacuum 
A||   electric wave vector (p-polarized) 
A⊥   perpendicular to the incidence plane electric wave vector (s-polarized) 
δ||   phase factors of the evanescent wave parallel to the incidence plane 
δ⊥ phase factors of the evanescent wave perpendicular to the incidence 

plane 
a||,⊥   incoming light intensity 
Ex   x component of the evanescent electric vector at z = 0 
Ey   y component of the evanescent electric vector at z = 0 
Ez   z component of the evanescent electric vector at z = 0 
Hx   x component of the evanescent magnetic vector at z = 0 
Hy   y component of the evanescent magnetic vector at z = 0 
Hz   z component of the evanescent magnetic vector at z = 0 

S
r

   Poynting vector 

D
t

   diffusion tensor 
Dxx   diffusion coefficient along x  
Dyy   diffusion coefficient along y 
Dzz   diffusion coefficient along z 
D0   diffusion coefficient in bulk 

rp   radius of the particle 
γ   effective volume correction factor 
Voln   specially defined volume 
τxy   lateral diffusion time and  
τz   axial diffusion time 
erfc(x)   complementary error function 
erf (x)   error function 
λem   emission wavelength 
σ    width of the point spread function of the objective 
a   size of the pinhole in the sample’s space 
Mtot   total magnification of the optical system 
Lxy(x,y)  lateral size of MDE function 
R   radius of the pinhole in the sample’s space 
fa   correction factor related to the pinhole type 
ls   slip length 
ζ    friction coefficient 
vs   flow velocity at the surface or slip velocity 
vav   average flow velocity 
vx   the x component of the flow velocity 
vy   the y component of the flow velocity 
vz   the z component of the flow velocity 
W1, W2   observation volumes 
∆s, sx   separation distance between the two observation volumes W1 and W2 
τM   maximum of the cross-correlation curve 
I1(t), I2(t)  time-resolved fluorescence signals originating from volumes W1 and W2 
fp   pressure gradient or density acting on the fluid in x direction  
Lz   height of the microchannel 

Pγ&    shear rate when the Poiseuille flow is applied 

Lγ&    shear rate of linear flow 

( )trtrP ′′,|,
rr

  propagator of a Brownian particle 
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αβδ    Kronecker delta symbol 

ε
t

   dimensionless rate-of-strain tensor 
( )

zyx χχχχ ,,=
r

 vector of Gaussian random numbers with mean 0 and variance 1 

( )rA
r

, ( )tnA ∆  an arbitrary observable 

G
(s)   simulated correlation curve  

c1, c2   scaling factors adjusting the height of auto-correlation functions 
cc   scaling factor adjusting the height of the cross-correlation function 

0
~w    dimensionless lateral size of the observation volume 

Lγ
~
&    dimensionless shear rate of linear flow 

sl
~

   dimensionless slip length 

xs~    dimensionless separation distance 

Xi   mean value of a simulated data point at certain time delay 
Yi   mean value of an experimental data point at certain time delay  
mx   number of simulated trajectories 
my   number of independent measurements 

2
,, iESσ    variance of the data 

2
,, iESs    spread of the independent data 

αi   weighted deviation between experimental and simulated data points 
ξ   goodness of simulation 
noil   refractive index of the immersion oil 
nprism   refractive index of the glass prism 
nair   refractive index of the air 
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List of abbreviations 
 
 
AFM   Atomic Force Microscope 
APD   Avalanche photodiode 
ATR   Attenuated Total Reflection 
AU   Airy unit 
BD   Brownian Dynamics 
BFP   Back Focal Plane 
CDE   Convection Diffusion Equation 
DNA   Deoxyribonucleic acid 
DM   Dichroic mirror 
EF   Emission filter 
FCS   Fluorescence Correlation Spectroscopy 
FIDA   Fluorescence Intensity Distribution Analysis 
FRET   Förster resonance energy transfer 
HMDS   Hexamethyldisilazane 
NA   Numerical aperture 
PCH   Photon Counting Histograms 
PH   Pinhole 
PIV   Particle Image Velocimetry 
PSF   Point Spread Function 
RMS   Root mean square roughness 
TIRF   Total Internal Reflection Fluorescence 
TIRFM  Total Internal Reflection Fluorescence Microscopy 
TIR-FCS  Total Internal Reflection Fluorescence Correlation Spectroscopy 
TIR-FCCS  Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy 
S/N   Signal-to-noise ratio 
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