
Thermodynami Conepts inAdaptive Resolution Simulations.
Dissertationzur Erlangung des Grades"Doktor der Naturwissenshaften"am Fahbereih Physikder Johannes Gutenberg-Universitätin MainzSimón Pobletegeboren in Santiago (Chile)Mainz, November 2010





Datum der mündlihen Prüfung: 20. Januar 2011





ZusammenfassungDiese Arbeit befasst sih mit den konzeptionellen und tehnishen Entwiklungdes �Adaptive Resolution Sheme� (AdResS) , einer Methode der Molekular-dynamik, welhe die gleihzeitige Simulation eines System in untershiedlihenAu�ösungen, ermögliht. Die Simulationsdomäne teilt sih in einen Bereih mithöherer und einen Bereih mit geringerer Au�ösung. Gekoppelt sind sie durheinen Übergangsbereih, indem die Moleküle frei di�undieren können.Der erste Teil der Dissertation ist auf die thermodynamishe Konsistenz derMethode fokussiert, die an einem �üssigen Modell aus tetraedrishen Molekülengetestet und veri�ziert wurde. Die Ergebnisse erlauben die Einführung desKonzepts der Thermodynamishen Kraft, bei dem ein externes Feld unphysikalis-he Dihte�uktuationen im Übergangsbereih, die in üblihen AdResS Simula-tionen auftreten, korrigiert. AdResS wird auh auf ein System angewandt, beidem sih zwei untershiedlihe Darstellungen mit identishem Au�ösungsniveaugegenüberstehen. Dieser einfahe Test erweitert die Anwendbarkeit der Meth-ode von einem Shema mit adaptiver Au�ösung zu einem Shema mit adaptiverDarstellung, in dem untershiedlihe Kraftfelder, die auf thermodynamishenKonsistenzargumenten basieren, gekoppelt werden können. Die Methode derThermodynamishen Kraft wurde in dem hier dargestellten Beispiel erfolgreihangewandt.Ein alternativer, auf konstantem Druk basierender Ansatz für die Deduk-tion der Thermodynamishen Kraft, ermögliht die Interpretation des AdResSals ersten Shritt hin zu einer molekulardynamishen Simulation im groÿkanon-ishen Ensemble. Ausserdem hilft eine solhe De�nition die ThermodynamishesKraft, die in der bekannten tetraedrishen Flüssigkeit getestet wird, einfaherzu bestimmen. Die E�ekte von AdResS und deren Korrektur im atomistisheBereih der Simulation wurden durh die Untersuhung der lokalen Verteilungder Geshwindigkeiten, Radialverteilungsfunktionen, Druk und Shwankungder Partikelanzahl, analysiert. Deren Vergleih mit analogen Ergebnissen ausrein atomistihen Simulationen zeigt eine gute Übereinstimmung, die unter demEin�uss des externen Feldes noh gesteigert wird.Ein weiterer Shritt in der Entwiklung des AdResS, der für vershiedeneAnwendungen in der Biophysik und Materialkunde nötig ist, setzt seine An-wendung zu Multikomponentensystemen voraus. In dieser Hinsiht wird dieDarstellung in höherer Au�ösung eines binären Mishungsmodells gegen seinevergröberte (oarse-grained) Darstellung systematish parametrisiert. Dabeibringt die Methode der Thermodynamishen Kraft zufriedenstellende Ergeb-nisse, auh wenn ihre Entwiklung eine noh feinere Bearbeitung benötigt.Shlieÿlih wurde das AdResS in Systemen mit zweikörper-gebundenenKräftendurh die Simulation von einemModellpolymer, dem es erlaubt ist, seine Darstel-lung adaptiv zu verändern, getestet. Es wird gezeigt, dass die Verteilung derFunktionen, die die Polymerstruktur harakterisieren, in der Praxis durh eineVeränderung der Au�ösung niht beein�usst wird.Die Erläuterung der tehnishen Details für die Ausführung von AdResS imESPResSo Softwarepaket bildet den letzten Teil dieser Dissertation.





SummaryThis thesis work is devoted to the oneptual and tehnial development ofthe Adaptive Resolution Sheme (AdResS), a moleular dynamis method thatallows the simulation of a system with di�erent levels of resolution simultane-ously. The simulation domain is divided into high and low resolution zones anda transition region that links them, through whih moleules an freely di�use.The �rst issue of this work regards the thermodynami onsisteny of themethod, whih is tested and veri�ed in a model liquid of tetrahedral moleules.The results allow the introdution of the onept of the Thermodynami Fore,an external �eld able to orret spurious density �utuations present in thetransition region in usual AdResS simulations. The AdResS is also applied toa system where two di�erent representations with the same degree of resolu-tion are onfronted. This simple test extends the method from an AdaptiveResolution Sheme to an Adaptive Representation Sheme, providing a way ofoupling di�erent fore �elds based on thermodynami onsisteny arguments.The Thermodynami Fore is suessfully applied to the example desribed inthis work as well.An alternative approah of deduing the Thermodynami Fore from pres-sure onsisteny onsiderations allows the interpretation of AdResS as a �rststep towards a moleular dynamis simulation in the Grand Canonial ensem-ble. Additionally, suh a de�nition leads to a pratial way of determining theThermodynami Fore, tested in the well studied tetrahedral liquid. The e�etsof AdResS and this orretion on the atomisti domain are analyzed by inspet-ing the loal distribution of veloities, radial distribution funtions, pressureand partile number �utuation. Their omparison with analogous results om-ing from purely atomisti simulations shows good agreement, whih is greatlyimproved under the e�et of the external �eld.A further step in the development of AdResS, neessary for several appli-ations in biophysis and material siene, onsists of its appliation to multi-omponent systems. To this aim, the high-resolution representation of a modelbinary mixture is onfronted with its oarse-grained representation systemati-ally parametrized. The Thermodynami Fore, whose development requires amore deliate treatment, also gives satisfatory results.Finally, AdResS is tested in systems inluding two-body bonded fores,through the simulation of a model polymer allowed to adaptively hange itsrepresentation. It is shown that the distribution funtions that haraterize thepolymer struture are in pratie not a�eted by the hange of resolution.The tehnial details of the implementation of AdResS in the ESPResSopakage onlude this thesis work.
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IntrodutionComputer simulations have beome a major topi in physis during the lastdeades and a powerful tool to inquire into the details of omplex systems. Theyan provide detailed information that is not aessible from an experimentalperspetive, or allow the study of a system under onditions that are di�ult orunfeasible to ahieve in real experiments. Additionally, moleular simulationsan be the key to obtaining a more omplete piture of systems where theoretialmodels an only provide qualitative information about their properties.However, the same omplexity that requires this treatment an beome ahallenge to simulate. For example, when the time that a system needs to reahequilibrium demands simulations over times that are far beyond the urrentapabilities, an exhaustive desription is prohibitive. Therefore, the probleman be addressed through a simpler approah by removing the faster degrees offreedom, and e�etively reintroduing them, keeping the relevant physis fromthe original piture. The simpli�ation leads to a oarse-grained representation,where the number of degrees of freedom has been redued, resulting in a modelthat is less omputationally expensive. Furthermore, it also permits the removalof spei� details in order to analyze their importane in the phenomena ofinterest. By this means, it is possible to treat eah sale of a system separately,bridging them in a hierarhial way.Another possible approah is to simulate a system where the detailed de-sription is restrited to a limited region while the rest is treated in a oarsermanner. Several methods have been proposed with the aim of linking di�erentrepresentations desribed by quantum, lassial or ontinuum mehanis. TheAdaptive Resolution Sheme (AdResS), the method of onern in this work, fallsinto this ategory. It allows the performane of moleular dynamis simulationsof di�erent lassial representations of the same system, through whih partilesan freely di�use.The present work ontributes to its development by studying its thermo-dynami onsisteny, and improving its results by means of these priniplesthrough the de�nition of the Thermodynami Fore. It also states the prini-ples that allow AdResS to be interpreted as a �rst step towards the simulationof open systems.The thesis is omposed of eight hapters.
• Chapter 1 introdues basi onepts of statistial mehanis that will be1



useful for the latter hapters. It also provides the basis of moleulardynamis simulations that will orient the reader in the ontext of thefollowing work.
• Chapter 2 is onerned with oarse-graining in simulations of soft mattersystems. The main onepts and the methods employed in this thesis aredesribed here.
• Chapter 3 is dediated to the Adaptive Resolution Sheme. The equa-tions of motion are presented, and the interpretation of thermodynamiquantities in a system with a variable number of degrees of freedom is in-trodued, based on the priniples of frational alulus. The nature of theequations and their onsequenes are also explained. The hapter is on-luded with the analysis of a well studied model system: a medium denseliquid of tetrahedral partiles. It presents the main features of an AdResSsimulation, its advantages and the e�ets of the equations of motion inthe region where the two resolutions are mathed.
• Chapter 4 introdues the onept of the Thermodynami Fore, an exter-nal �eld able to orret the spurious e�ets that AdResS an produe inthe density of the system, whih development is based on thermodynamionsiderations. It is applied to the previously introdued tetrahedral sys-tem, and to a set of two one-site potentials, where the resolution does nothange but the fore �elds do. A pratial implementation is presented,based on an alternative interpretation that leads to the thermodynamionsisteny with the grand anonial ensemble.
• Chapter 5 onsists of the study of a model binary mixture. A oarse-grained set of potentials is developed and onfronted with its atomistirepresentation in AdResS. In addition, the thermodynami fore is alu-lated for this system.
• Chapter 6 ontains the �rst AdResS results of two-body bonded intera-tions from the study of a model polymer.
• Chapter 7 desribes the implementation of AdResS in the ESPResSo sim-ulation pakage, a more tehnial aspet that provides helpful insight intothe equations of motion.
• Finally, the onlusions are presented in Chapter 8.
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Chapter 1Basi oneptsThis hapter is omposed of two setions that provide the main theoretial ele-ments used in this thesis. The �rst part ontains the basi statistial mehanisand distribution funtions and their relation to thermodynamis. The de�ni-tion of the Potential of Mean Fore, a quantity of relevane in this work, is alsointrodued. The seond setion explains some basi onepts of moleular dy-namis simulations and some features of the alulations presented in the laterhapters.1.1 The radial distribution funtionThe state of a lassial system onstituted of a large number of partiles Nis totally de�ned by the positions rN and momenta pN of its omponents ata ertain time t. However, its exhaustive desription is not only unfeasible,but unneessary for the alulation of marosopi properties. Therefore, astatistial treatment results more pratial and meaningful. The average of aquantity A(rN ,pN ) sampled over a trajetory is de�ned as
〈A〉t = lim

τ→∞

1

τ

∫ τ

0

A(rN (t),pN (t))dt (1.1)In addition, if it is assumed that in a trajetory position and momentum spaeis sampled thoroughly [?℄, the ensemble average of A(rN ,pN ) is de�ned by [?,?℄
〈A〉 =

∫ ∫

A(rN ,pN)f(rN ,pN )drNdpN (1.2)where eah point is weighted by the probability distribution f(rN ,pN ) [?,?,?℄.Suh a funtion is determined by the thermodynami quantities that harater-ize the marosopi state of the system, providing a link between the mirosopiand marosopi levels of desription. For the anonial ensemble, where thenumber of partiles, temperature and volume are �xed, f is given in terms of3



the Hamiltonian H of the system, by
fNV T (rN ,pN) =

e−βH(rN ,pN )

QN (V, T )
(1.3)where β = 1/kBT , with kB the Boltzmann's onstant. The normalization fator

QN (V, T ) is the partition funtion [?,?,?,?℄. fNV T is a huge objet that ontainsan enormous amount of information whih is unneessary for pratial purposes.A way of distilling its physial meaning is to deal with redued distributionfuntions.The most simple ase is to alulate the probability of �nding a partileat some position r, independent of the on�guration of the rest of the system,given by [?, ?℄
ρ(r1) = N

∫

r2 . . .

∫

drN

∫

dpNf(rN ,pN ) (1.4)where the prefator N indiates that any partile an be hosen among the Nindistinguishable partiles.In a homogeneous system, ρ(r) is independent of r and beomes simply
N
V . This is enough to desribe the thermodynamis in an ideal gas, that laksof struture. However, if the fores between the partiles are relevant, theorrelations indued by them must be onsidered for a proper desription of thesystem. Further information an be extrated from the probability distributionby de�ning

ρ
(2)
N (r1, r2) = N(N − 1)

∫

dr(N−2)

∫

dpNf(rN ,pN ) (1.5)the pair density funtion [?,?℄. This density gives the probability of �nding twopartiles at r1 and r2, independent of their identity. It is remarkable that in ahomogeneous system of non-interating omponents, ρ
(2)
N (r1, r2) = ρ2

(

1 − 1
N

),that is simply ρ2 for large N. It is thus onvenient to measure the degree oforrelation between two partiles by omparing the pair density funtion withthis referene value as
g
(2)
N (r1, r2) =

ρ
(2)
N (r1, r2)

ρ(r1)ρ(r2)
(1.6)If the system is homogeneous, g

(2)
N (r1, r2) depends only on the distane r =

|r1 − r2| and it is denoted simply by g(r), the radial distribution funtion. Thisfuntion is of vital importane in the theory of liquids. It provides basi infor-mation about the mirosopi struture, but it is also losely linked to the ther-modynamis of the system and determines it ompletely when partiles interatthrough pair potentials. Moreover, g(r) an be measured experimentally [?,?,?℄.In addition, higher order density funtions an be de�ned as
ρ
(n)
N (rN ) = N(N − 1) . . . (N − n + 1)

∫

drn+1 . . . drN

∫

dpNf(rN ,pN ) (1.7)4



and the n-partile distribution funtions are given by
g
(n)
N (rn) = ρ

(n)
N (r1, r2, . . . , rn)/

n
∏

i=1

ρ
(1)
N (ri) (1.8)For the ases onsidered in this thesis work, the analysis will be restrited tothe radial distribution funtion g(r) and pair potentials in liquids, with someexeptions that will be explained in detail when required.1.1.1 Relation to ThermodynamisThe average of a funtion that depends on the position of two partiles an beeasily expressed in terms of integrals of g(r). A typial example is the potentialenergy, that initially is written as a sum of many-body ontributions [?℄

U(rN ) =
∑

i

U (1)(ri) +
∑

i<j

U (2)(ri, rj) +
∑

i<j<k

U (3)(ri, rj , rk) + . . . (1.9)where the two-body ontribution U (2) an be averaged over the positions r1 and
r2 as

〈U (2)〉 =
1

N(N − 1)

∫

ρ
(2)
N

(

1

2
U (2)(r1, r2)

)

dr1dr2 (1.10)resulting, in terms of the pair distribution funtion, in
〈v〉 = 2πρ2V

∫

g(r)v(r)r2dr. (1.11)A more general form for the average potential energy is
〈U〉 =

ρ2V

2

∫

drU (2)(r)g(r) +
ρ3V

6

∫ ∫

drdr′U (3)(r, r′)g(3)(r, r′) + . . . (1.12)The salar pressure has an analogous relation one it has been expressed asthe average of a funtion of pairs of oordinates. Suh relation is desribed interms of the virial [?,?℄, de�ned as
Θ = −1

2

N
∑

i=1

(ri ·Fi) (1.13)The fores used in the sum have two soures: one omes from the intermoleularfores while the other, the external virial Θe, from the pressure exerted by thewalls of the ontainer that on�ne the system to its volume V . Hene, Θ anbe written as
Θ =

1

2

N
∑

i=1

(

ri · ∇iU(rN )
)

− Θe (1.14)5



On average, the walls will exert a total fore of −pndA per unit area, where
ndA is an in�nitesimal unit of area pointing away from the ontainer. Thus,from the external virial it is given

〈Θe〉t =
3

2
pV (1.15)while its total average is

〈Θ〉t = − lim
τ→∞

[

1

τ

∫ τ

0

(

∑

i

d

dt
(miri · ṙi) −

∑

i

miṙ
2
i

)

dr

] (1.16)Assuming that veloities and displaements are bounded [?,?℄, the �rst term inthe right side of 1.16 vanishes in the limit τ → ∞. Consequently, it yields
3

2
pV − 1

2

N
∑

i=1

(

ri · ∇iU(rN )
)

= 〈
∑

i

miṙ
2
i 〉 (1.17)By identifying the average kineti energy per partile as 3NkBT [?℄, with kBthe Boltzmann's onstant and T the temperature, it is possible to onlude that

p = ρkBT − 1

3V
〈∇U · r〉t (1.18)or

p = ρkBT − 2

3
πρ2

∫ ∞

0

dv(r)

dr
g(r)r3dr (1.19)while a more general formula involving many-body terms is given by

p = ρkBT − ρ2

6

∫

dr
dU (2)(r)

dr
g(r) − ρ3

18

∫ ∫

drdr′r
dU (3)(r, r′)

dr
g(3)(r, r′) + . . .(1.20)1.1.2 The Potential of Mean ForeBy �xing the position of two partiles, it is possible to write the average foreon one of them as a funtion of their distane, by integrating over the positionsof the N − 2 remaining partiles. This fore an be derived from a potentialdiretly linked to the pair distribution funtion: the potential of mean fore [?℄.In fat, by labeling the �xed partiles as 1 and 2, the fore on the �rst oneis

〈−∇1U(rN )〉1,2 =

∫

dr3 . . . drN

(

− ∂U
∂r1

)

e−βU

∫

dr1 . . . drNe−βU
(1.21)The previous quotient an be written as

−kBT
∇g(r)

g(r)
(1.22)6



so, aording to the previous de�nition, the potential of mean fore is
UPMF = −kBT log g(r) (1.23)It an also be proven that UPMF(r) approahes the potential v(r) in the lowdensity limit [?℄.1.2 Moleular dynamis simulationsComputer simulations [?, ?℄ are a powerful tool for the study of phenomenadi�ult to haraterize by experiment, and too omplex to be treated in detailby theory. They also provide a good testing �eld for mathing the mirosopilaws of a system with its thermodynami features; a numerial implementationof statistial mehanis.This setion ontains the basi onepts of a simulation, followed by the basirelations to thermodynamis and onludes with a brief desription of stohastithermostats, a subjet of relevane in the following work.1.2.1 Equations of motionA moleular dynamis simulation onsists basially in the numerial solutionof the equations of motion of a set of partiles. In the most general form, theequations are (in terms of the positions ri and momenta pi)

ṙi =
pi

mi
(1.24)

ṗi = fi (1.25)The fores an be written as
fi = − ∂

∂ri
U(rN ) (1.26)for onservative systems, where a potential energy U(rN ) is well de�ned.Equations 1.24 and 1.25 an be numerially solved, in order to obtain theon�gurations of positions and veloities of the system for a disrete set of times

tm. Thus, the time average of a funtion A(rN ,pN ) an be estimated as
lim

τ→∞

1

τ

∫ τ

0

A(t′)dt′ ≈ 1

M

T
∑

m=1

Am (1.27)where the sum is performed over the M on�gurations generated.The equations of motion an be numerially solved by several shemes [?,?, ?, ?℄. Among them, the Verlet algorithm [?℄ is speially remarkable, dueits e�ieny and stability [?℄. It is also time reversible, preserves the areaof the phase spae and displays low energy drifts throughout the simulation.7



Spei�ally, the Veloity Verlet algorithm [?, ?℄ will be used in this work. Itsequations are
ri(t + ∆t) = ri(t) + vi(t)∆t +

1

2mi
fi(t)∆t2 (1.28)

vi(t + ∆t) = vi(t) +
1

2mi
(fi(t + ∆t) + fi(t)) ∆t (1.29)denoting by ∆t the disrete time step. This variant of the original Verlet methodgenerates trajetories with an auray of order ∆t4, as in the original Verletsheme. However, it also allows a more aurate omputation of the veloities,whih requires the alulation of the fores twie per integration step.For numerial reasons, it is usually onvenient to use units suitable for theharateristi sales of the system [?, ?℄. In pratie, it is only neessary tohave a unit of energy ǫ, length σ and mass m. Then, a redued time t∗ anbe de�ned through the relation t∗ = t/

√

(mσ2)/ǫ. The redued energy an bewritten as U∗ = U/ǫ, while redued pressure and temperature are p∗ = pσ3/ǫand T ∗ = kBT/ǫ respetively. The integration time step ∆t is usually writtenin these redued units as a small fration of the smallest time sale present inthe system.1.2.2 Thermodynami quantitiesTemperature and pressure are fundamental thermodynami quantities obtainedas averages in a simulation one the system has reahed equilibrium. Fromits de�nition [?, ?, ?, ?℄, the temperature is alulated as a time average of aninstantaneous temperature Tm at time tm de�ned as
Tm =

N
∑

i=0

miv
2
i (tm)

kBNf
(1.30)where Nf is the number of degrees of freedom.Analogously, the pressure an be obtained from a time average of the in-stantaneous pressure πm given by

πm = ρkBTm +
1

3V

∑

i<j

fij · rij (1.31)where fij and rij are evaluated at time tm.1.2.3 Stohasti thermostatsIn priniple, the integration of Hamilton's equations of motion generates tra-jetories that onserve energy, number of partiles and volume. Nevertheless, itis useful in most ases to perform simulations in the anonial ensemble, wherethe system is in ontat with a heat reservoir. Several algorithms have beenproposed for this [?,?,?,?,?,?,?℄. 8



Stohasti dynamis [?℄ provides a powerful tool to aomplish this task,that will be used here as a thermostat [?,?℄. The idea onsists of the additionof a random noise fS and a frition ff to the fore on eah partile. Under thissheme, the equations of motion adopt the form
ṙi = vi (1.32)
v̇i =

1

mi
fHi − ζi

mi
vi +

σi

mi
fS
i (1.33)where fHi is the fore ating on partile i oming from the onservative potential.The stohasti fore must satisfy

〈fS
i 〉 = 0 (1.34)and

〈fS
i (t)fS

j (t′)〉 = 2δijδ(t − t′) (1.35)for eah of its omponents.It an be proven that the system of Langevin equations of 1.33 generates theanonial distribution funtion in equilibrium [?,?℄ provided that the �utuation-dissipation theorem [?,?℄
σ2

i = kBTζi (1.36)holds.It is also known that, in general, this integration sheme stabilizes the equa-tions of motion, allowing the use of longer time steps for integration [?, ?℄.Equilibrium properties are not a�eted, but shear visosities and di�usion oef-�ients are sensitive to the hoie of the frition oe�ient [?℄.A major drawbak of the equations shown above is that they do not on-serve momentum, whih is a ruial property for the reprodution of ertainhydrodynami phenomena [?℄. This an be solved by applying the noise andfrition fores in a pair-wise fashion, ating along the vetor that joins two atoms.This implementation orresponds to the dissipative partile dynamis thermo-stat (DPD) [?, ?,?,?,?, ?℄, that preserves also the advantages of the stohastidynamis. Thus, the frition an be rewritten as
fD
i = −

∑

j

ζwD(rij) ((vi − vj) · r̂ij) r̂ij (1.37)while the noise is rede�ned through
fS
i =

∑

j

σwR(rij)ηij(t)r̂ij (1.38)where rij = ri − rj = rij r̂ij . The noise ηij must satisfy
〈ηij〉 = 0 (1.39)and

〈ηij(t)ηkl(t
′)〉 = 2(δikδjl + δilδkj)δ(t − t′) (1.40)9



analogous to the Langevin fores. The funtions wD and wR are just weightingfuntions that vanish for r > rc, a prede�ned uto� radius. In order to satisfythe �utuation-dissipation theorem, they must satisfy
[wR(r)]2 = wD(r) (1.41)while the onstants ζ and σ are related through Eq. 1.36.Their form an be given by a smooth funtion of r [?℄

wD(r) = [wR(r)]2 =

{

(1 − r/rc)
2, r ≤ rc

0, r > rc

(1.42)or a simpler expression
wD(r) = [wR(r)]2 =

{

1, r ≤ rc

0, r > rc

(1.43)Additionally, it is required that ηij = ηji.Langevin thermostats an also be used to tune transport properties, likedi�usion oe�ients or visosities, by setting ζ properly, satisfying relation 1.36.For the ase of DPD, suh properties are quite insensitive to these hanges.However, transport oe�ients an be modi�ed by adding noise and fritionfores in a diretion perpendiular to r̂ij , whose ζT and σT oe�ients arenot neessarily the same as those used by the DPD fores. Suh a transverseDPD thermostat has been suessfully used to tune the di�usion and visosityoe�ients [?℄.
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Chapter 2Coarse-graining in soft mattersimulationsAtomisti simulations are an indispensable tool for the haraterization of manyproesses in physis that, due their omplexity, are di�ult to treat by analytior experimental methods. By these means, it is possible to understand moredeeply proesses suh as protein folding [?,?,?,?,?℄, the formation of mielles[?, ?, ?, ?, ?, ?℄, the interation of polymers with surfaes [?, ?, ?, ?, ?℄, or tosimply obtain information about the equation of state [?,?,?,?,?,?,?,?,?,?℄ orto alulate of free energies of ertain systems [?,?,?,?,?,?℄.However, soft matter systems an be espeially hallenging to simulate.Their properties usually involve the interplay of several time and length sales,and their energy densities is in general low, of the order of the elasti onstants.Aordingly, thermal �utuations are a relevant fator in their on�gurationalbehavior, whih demands long simulations in order to thoroughly sample thephase spae.This is usually the ase for many omplex liquids, biomoleular systems andpolymer melts, where the presene of di�erent time and length sales demandslong simulations whih makes the alulation extremely expensive, if not unfea-sible in omputational terms.A more onrete example of this issue is the simulation of polyethylene, anillustrative ase due its simpliity and wide number of industrial appliations.While a single hemial bond between arbon atoms is of the order of 1 Å,the e�etive size of a polymer oil, expressed through its gyration radius, anbe of the order of 100 Å at relevant thermodynami onditions. Therefore,the system size required for a proper simulation must be beyond the longestharateristi length, ontaining millions of atoms. On the other hand, theharateristi vibration time of a bond is of the order of 10−13 seonds, whihon�nes the integration step to around 10−15 seonds. However, the relaxationtime of hains (omposed approximately of 500 monomers) in melts is estimatedto be around 10−5 seonds [?℄, a di�erene of at least ten orders of magnitude.11



Hene, the relevant physis ourring at the mesosopi sales an be di�ultif not impossible to over due to the prohibitive omputational e�orts required.A possible way to avoid these limitations is by employing simpli�ed models ofthe original system, where the details belonging to the fast sales are omitted inthe integration, but properly reintrodued through e�etive interations on theslower variables. The aim of suh a oarse-grained representation is to redue thenumber of degrees of freedom, apturing at the same time the essential physisrequired to desribe the phenomena of interest as aurately as possible. As aonsequene of this redution, the time needed to simulate larger systems andto perform longer runs is redued. In this spirit, the di�erent levels of resolutionan be simulated separately by di�erent methods and onsistently oupled formaking a omplete piture and obtain quantitative preditions.The form of designing a oarse-grained model strongly depends on the phys-ial quantities of relevane for the problem. In some simulations of lipid mem-branes in water, for example, it is useful to remove the solvent from the inte-gration of the equations of motion and inlude it into the e�etive interationsof the solute partiles [?,?,?,?,?,?℄. However, the approah taken in this workonsists of the lustering of a group of atoms onto a mapping point. The posi-tion of this superatom will be a funtion of the positions of its n omponents,written as Ri(r1, r2, . . . , rn), while the mass and veloity are de�ned in a on-sistent manner. Consequently, the number of degrees of freedom is redued.Figure 2.1 illustrates a water moleule mapped onto a strutureless bead en-tered at its enter of mass. One mapping sites have been de�ned as a funtionof the atomisti positions, the e�etive interations that govern them have to bedetermined to suitably resemble the aspets of interest of the original system.
Figure 2.1: Water moleule mapped into its enter of mass.It is also of importane that the oarse-graining methods are not only anattempt to overome the tehnial limitations found in the simulation of omplexsystems, but also, a way to distillate the essential physis that determines theproess under study. In this framework, oarse-graining an also be onsideredto be an analysis tool [?,?,?,?,?℄.Depending of the problem, a oarse-grained system an be designed tomath, the total energy of the atomisti system [?℄, the instantaneous foreat the mapping points [?, ?℄, or thermodynami aspets in order to emulateertain biologial funtions [?℄. In this work, however, the oarse-graining pro-edure will be foused on the mapping of the thermodynamis and some basi12



struture funtions. In the following setions, the reasons for this hoie will beexplained, followed by the desription of the methods employed for this aim, toonlude with the limitations of suh approahes.2.1 Struture-based oarse-grainingThe main feature of a struture-based oarse-graining is the lose link betweenits on�gurations and that of its atomisti model. This allows a diret om-parison with experiments, and makes possible, in some ases, the reinsertion ofatomisti details when needed [?℄.The goal of strutural oarse-graining is to reprodue ertain distributionfuntions, de�ned between the mapping points in the atomisti system. Typi-ally, eah distribution funtion is adjusted by the modi�ation of its assoiatedfore �eld. In a simple liquid, for example, the basi struture is ontained inthe radial distribution funtion that is tuned through a non-bonded pair poten-tial between the orresponding mapping points. In more omplex strutures,like polymers, the monomers an be represented by one or more units whih arebonded by two, three or four-body potentials. Eah of these fore �elds mathesits respetive distribution funtion, although more omplex distributions ouldrequire more spei� and sophistiated treatments [?℄.Several tehniques provide a way of generating these fore �elds. Never-theless, in an ideal situation, the form of an e�etive pair potential should beindependent of how it is obtained, as it has been rigorously proven by Hender-son [?℄. In his theorem it is stated that, in a simple liquid, two pair potentialsthat reprodue the same radial distribution funtion are idential up to a trivialonstant.However, it has been lately shown that signi�antly di�erent fore �elds anprodue distribution funtions that are pratially indisernible [?℄. This issueestablishes a numerial dependene of the potential on the tehnial implemen-tation of the oarse-graining proedure.Iterative methods, like Reverse Monte Carlo (RMC) [?℄ or Iterative Boltz-mann Inversion (IBI) [?℄ are easy to implement and they have been suessfullytested on many systems. Reverse Monte Carlo employs a orretion based onrigorous priniples, and onsequently, it generally onverges faster than the It-erative Boltzmann Inversion, whose formula is inspired on phenomenologialonsiderations. However, the former also requires better statistis on eah step,that demands longer runs [?℄, and exhibits muh more sensitivity to the systemsize. Hene, there is a balane between both methods in terms of omputa-tional time: while the �rst onverges faster, the latter an be iterated withshorter simulations.The Iterative Boltzmann Inversion is of main onern in this work, speif-ially in the ases of simple liquids, binary mixtures and model polymers thatwill appear in the following hapters. Its implementation is explained in thenext setion. 13



2.2 Tehnial implementation: the Iterative Boltz-mann InversionThe Iterative Boltzmann Inversion allows one to obtain a potential that repro-dues its respetive target struture funtion, previously obtained from experi-mental data or high-resolution simulations. For this aim, in a polymer system,the oarse-grained potential is usually deomposed into bonded and non-bondedontributions, whih onstitutes the �rst assumption in this approah. Theirrespetive treatment is explained in the following setions.2.2.1 Bonded interationsThe simplest oarse-grained polymer an be represented by a hain of struture-less monomers. Its onformations are basially determined by the bond length
r, that is the distane between two monomers, and the angles formed by thebonds shown in Fig. 2.2. The angle θ is de�ned as the angle formed by threeonseutive monomers, while a torsion is the angle between the plane de�nedby the partiles p1, p2 and p3 and the plane de�ned by the partiles p2, p3 and
p4. This implies the neessity of introduing three and four body potentials toadjust the distribution funtions.

Figure 2.2: Angles and torsions in a model polymer.14



A basi mapping of the struture expresses the probability distribution interms of these parameters as P (r, θ, φ). In addition, for pratial purposes, awidely used simpli�ation is to fatorize it as P b(r)P a(θ)P t(φ), assuming thateah oordinate is unorrelated with the rest. The proper hoie of the mappingpoints [?℄ an help to deorrelate suh variables. In some ases, however, it isneessary to resort to more omplex distribution funtions [?℄.A �rst guess for an e�etive interation is the Boltzmann Inversion, thatonsists of starting from the mean fore potential, de�ned as
U bPMF(r) = −kBT log

P btarget(r)
r2

+ Cr (2.1)in terms of the target bond length distribution probability P btarget(r) and thetemperature T . Here Cr is an arbitrary onstant that sets the minima of thepotential, while the fator r−2 in the logarithm omes from the radial term of theJaobian r2 sin θ. This guarantees the proper normalization of the distributionfuntions, when they are obtained as simple normalized histograms sampledfrom the original data.For the angular interations, the inverted potential is given in terms of thetarget angle distribution P atarget(θ) by
UaPMF(θ) = −kBT log

P atarget(θ)
sin θ

+ Cθ (2.2)The denominator of the argument of the logarithm ontains a sin θ fator toensure the proper normalization of the probability. Cθ, as before, is an arbitraryonstant.In an analogous way, for the torsion angles the potential is
U tPMF(φ) = −kBT log P ttarget(φ) + Cφ (2.3)where Cφ is an arbitrary shift and P ttarget(φ) is the target distribution.All these potentials an be re�ned iteratively by means of the reursion
Ui+1(r) = Ui(r) + kBT log

Pi(r)

Ptarget(r) (2.4)where Ui+1(r) and Ui(r) are the potentials of steps i+1 and i, respetively, while
Pi(r) is the orresponding distribution funtion obtained from the integrationof the equations of motion using Ui(r) as input. From the equation above, itis lear that the potential beomes more repulsive where there is an exess ofpartiles in omparison with the target distribution, and vie versa.2.2.2 Non-bonded interationsStarting from a target distribution gtarget(r), the pair orrelation funtion be-tween the mapping points in the atomisti system, the potential of mean foreis de�ned as

UPMF(r) = −kBT log gtarget(r) (2.5)15



and orresponds to the Boltzmann Inversion of g(r) [?℄. Suh a potential gen-erates the target radial distribution funtion in the limit of an in�nitely dilutesystem. However, this is usually not the ase for medium and high density sys-tems [?℄, and additional orretions have to be introdued iteratively, followingEq. 2.4.When more speies are present in the system, the proedure to follow isstraightforward. The potential Uij(r) between the omponents i and j is as-soiated with the orresponding radial distribution funtion gij(r). Thus, theiterative re�nement of Eq. 2.4 an be applied to the potential of mean fore ofEq. 2.5 separately for eah pair of speies.2.2.3 Pressure orretionIn addition to the struture adjustment, it ould also be neessary to �t thepressure at the density of the target system through the non-bonded pair po-tentials [?℄. In this ase, a small linear potential an be added, as
∆U(r) = V0

(

1 − r

rc

) (2.6)for r < rc, where rc is the uto� radius of the pair potential and V0 is a smallorretive onstant. The orretion from Eq. 2.6 yields a onstant fore thatmakes the interation more attrative if V0 is negative, and more repulsive inthe opposite ase. Thus, the pressure an be ontrolled by initially hoosinga small value (typially 0.1kBT ) and adding iteratively ∆U(r), onseutivelydereasing V0 for a higher auray.A more preise form of estimating V0 is to use the virial expression of thepressure in terms of the fore �eld F (r) and density ρ

p = ρkBT +
2

3
πρ2

∫ ∞

0

F (r)r3g(r)dr (2.7)from whih the ontribution to the pressure pc introdued by the orretion anbe written as
pc ≈ 2

3
πρ2 V0

rc

∫ rc

0

r3g(r)dr (2.8)where it has been assumed that the g(r) stays the same under the slight modi-�ation of the fore �eld. This yields an estimate of V0 of
V0 ≈ pc

2
3πρ2

∫ rc

0 r3g(r)dr
(2.9)as a funtion of pc, that has to be evaluated as the di�erene of the pressure ofthe urrent oarse-grained system with the target value [?℄.If V0 is not small enough, the struture an be onsiderably modi�ed, andhene, it will have to be readjusted, until a reasonable balane between theauray of the �t of the radial distribution funtion and pressure is reahed after16



a reursive alternation between these methods [?℄. In most ases in the presentwork, however, the orretion will be applied at eah step of the Boltzmanniterations, in order to minimize its e�ets on the struture of the system.It has been observed that the simultaneous adjustment of two or more prop-erties in oarse-grained systems is a di�ult task and is not always possible [?℄.This trend is a well known disadvantage of any oarse-graining proedure, andit is brie�y disussed in the next setion.2.3 Limitations of struture-based oarse-grainingIn general, a oarse-grained model an not be expeted to reprodue the physialproperties of the atomisti model. A ommon on�it lies on the inompatibil-ity between thermodynamis and struture [?℄. The ase of water models, forexample, has been widely studied, displaying this mismath between pair stru-ture and pressure [?℄. In addition, the ompressibility, that in theory should bedetermined by the pair orrelation funtion [?℄, has been shown to be unable toadjust simultaneously to the pressure [?℄ by means of pair potentials. Clearly,the simpli�ation of the oarse-grained system does not onsider multiple-bodypotentials, and therefore, orrelation funtions of order higher than two are notneessarily reprodued. It is expeted then that a redution of the number ofdegrees of freedom and the simpli�ed form of the e�etive potential restrit therange of observables that the oarse-grained system an emulate.Transferability problems are another limitation of oarse-grained approahes.The use of a oarse-grained fore �eld on a di�erent state point from where ithas been onstruted an lead to a mismath of the adjusted properties with re-spet to the referene system. Suh behavior has been observed, for example, insimulations of ortho-terphenyl [?℄ parametrized by means of the Iterative Boltz-mann Inversion above and below the temperature of the glass transition. Bothfore �elds produe qualitatively di�erent behaviors at low temperatures: in the�rst ase the system exhibits a glassy state while in the seond, it rystallizes.Thus, a glass transition temperature in this ase an not be de�ned onsistentlysine the phase spae depends on the state point of the referene system [?℄.The origin of this dependene on the thermodynamis omes from a redu-tion of the faster degrees of freedom as an average e�et on the rest of thesystem. This proedure makes impliit use of the probability distribution thatdepends of the marosopi thermodynami quantities. Consequently, a hangein the state point will imply a new alulation of the e�etive interations. Thistrend is a more general tendeny shown every time that a many-body fore �eldis redued to an e�etive set of fores ating on a lower number of degrees offreedom. Suh simpli�ation is often performed in every �eld of physis whenphenomenologial onstants are introdued. A simple example resides in the def-inition of the e�etive values of ǫ and σ in the usual Lennard-Jones potential fornoble gases, sine they are a simpli�ation from the three-body Axilrod-Tellerpotential [?℄.A �nal remark is the di�erene between the dynamial properties of atomisti17



and oarse-grained simulations. Normally, the oarse-grained systems displayfaster dynamis due to their smoother potential energy landsape. Suh a trendan be used as an advantage, sine longer e�etive integration time steps anbe used, and the e�ieny of the simulation is enhaned. However, transportproperties suh as di�usion oe�ients or visosities must be resaled properlyto have physial meaning [?℄.
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Chapter 3The Adaptive ResolutionShemeMany soft matter systems involve a lose relationship between several length andtime sales whih demands a fully atomisti desription for their proper hara-terization. Suh requirement an usually be addressed by means of a multisaleapproah, where eah sale is studied in detail separately. The onsisteny be-tween them is imposed by using the output of the high resolution simulationsas input for the lower resolution models in a hierarhial fashion [?,?,?,?,?℄.However, if a detailed desription is required in a spei� region of the spae,an approah that is able to deal simultaneously with several levels of resolutionwould be muh more pratial. A typial example of this situation is found inthe study of solvation properties [?℄, where a high resolution model is neessaryonly in the solute and the �rst solvation shells while the bulk of the solvent anbe treated in a less sophistiated way.This is the aim of several methods [?,?℄ that ouple, for example, quantummehanial desriptions with lassial ones, relegating the hemistry to a boundregion while treating the less relevant surrounding partiles in a oarser, lassialmanner. Additionally, several approahes have been designed to link mesosaleand atomisti desriptions [?,?,?,?,?,?,?,?,?℄, ommonly used for the modelingof rak propagation in ertain materials. However, in these ases, the regions ofdi�erent resolution are rigidly de�ned and do not allow the exhange of partilesbetween them, whih, in �utuating soft matter systems, is an important issueto onsider.The Adaptive Resolution Sheme (AdResS) [?,?,?,?℄ is one of the moleulardynamis algorithms designed to ful�ll these requirements [?,?℄. It allows thedesription of a system divided in regions of di�erent resolution aross whihpartiles an freely di�use, hanging smoothly their number of degrees of free-dom. Suh a transition from one level of resolution to another should not a�etthe global physis of the system, sine only the representation of the speieshas hanged but not its nature. Therefore, equilibrium onditions suh as pres-19



sure balane, thermal equilibrium and the absene of moleular �ux [?℄ must beful�lled.Reently, the adaptive simulation of quantum/lassial systems has also beenextended to an adaptive sheme [?, ?℄. However, suh approahes are beyondthe sope of this work.The present hapter begins exposing the equations of motion of AdResS.It follows the de�nition of the thermodynami quantities of interest under thesheme and ontinues with the main features of the non-Hamiltonian natureof the equations, giving the main arguments that support the hoie of theirform. Finally, the method is illustrated through the appliation to a previouslystudied model of tetrahedral partiles [?, ?, ?℄.3.1 Equations of motionIt will be assumed along this work that the oarse-grained model onsists ofan interating site mapped at the enter of mass of the atomisti moleule.The interation between these sites an be obtained by means of the methodsmentioned in Chapter 2. Therefore, having the oarse-grained and atomistifore �elds FCG and FAT , the total fore between two moleules α and β isgiven by
Fαβ = w(Rα)w(Rβ)FAT

αβ + (1 − w(Rα)w(Rβ))FCG
αβ , (3.1)in terms of the weighting funtion w(R). This funtion depends exlusivelyof the position of the mapping point of the moleule, denoted by R, while itsonforming atoms inherit its value. This funtion gives aount of the degree ofresolution of eah partile, ranging from 0 to 1. From Eq. 3.1, it is straightfor-ward that w = 0 yields a purely oarse-grained fore �eld, while w = 1 leavesthe purely atomisti ontribution. The region where w has a non-integer value isalled the hybrid or swithing region. Figure 3.1 illustrates the implementationin a one-dimensional geometry.In the hybrid region, the fore felt by the moleules is a linear ombinationof the two fore �elds that ensures a smooth hange of the representation of themoleules, and onsequently, a gradual removal or inlusion of the degrees offreedom that are absent in the oarse-grained regime.3.2 Consequenes of a non-hamiltonian approahAs the number of degrees of freedom of eah representation is not the same,thermodynami quantities like the hemial potential will not neessarily math.Therefore, the system must be oupled to a loal thermostat that provides (orremoves) the required amount of heat in order to keep the system in equilibrium.Thus, every time that a moleule leaves the oarse-grained regime, its internaldegrees of freedom are set up aording an equilibrium distribution, while thethermostat takes are of keeping suh distribution.20



Figure 3.1: Pitorial representation of an x-dependent setup, w(x) =

sin2
[

πx
2dhy

].In this sense, an adaptive simulation an be seen (with ertain limitations) asa geometrially indued phase transition, where the energy required to ativatethe internal degrees of freedom of a moleule is identi�ed as a latent heat.A seond issue to be mentioned is the impossibility to dedue the fores ofEq. 3.1 from an energy-onserving approah. This an be easily seen by writingequations of motion oming from an interpolation of potentials,
Uαβ = w(Rα)w(Rβ)UAT

αβ + (1 − w(Rα)w(Rβ))UCG
αβ (3.2)that produe the AdResS fores and an additional drift fore Fd proportionalto

Fd ∝ (UCG − UAT )∇w(R) (3.3)From this very initial point it is possible to note that suh approah wouldseriously depend on the shape of the weighting funtion. In addition, Newton'sthird law is violated. An attempt to remove this drift by the addition of anexternal �eld would lead to the set of equations
UCG∇αf(Rα,Rβ) − UAT∇αg(Rα,Rβ) = 0

UCG∇βf(Rα,Rβ) − UAT∇βg(Rα,Rβ) = 0 (3.4)denoting by ∇i the gradient with respet to the position of partile i, andintroduing f(x, y) and g(x, y) as the interpolation fators used Eq. 3.1, writtenin a more general way.The requirements presented in Eq. 3.4 are learly impossible to satisfy ingeneral [?℄, sine they onsist of two boundary onditions for a system of di�er-ential equations of �rst order. Then, a Hamiltonian approah is possible onlyin trivial ases [?℄, although some e�orts have been made in this subjet [?, ?℄.21



3.3 Thermodynami quantitiesSine the number of degrees of freedom of a moleule hanges in time as par-tiles �utuate between atomisti and oarse-grained regions, it is neessary torede�ne temperature and pressure in a onsistent way.The pressure is expressed in terms of moleular interations, sine the num-ber of moleules is onstant throughout the simulation. Thus,
p = ρNkBT +

1

3V

∑

α

∑

β>α

Fαβ ·Rαβ (3.5)where ρN is the density of moleules, T is the temperature and Fαβ and Rαβ,the total fore and radius-vetor between moleules α and β.The temperature, on the other hand, is well de�ned on purely atomisti oroarse-grained representations through the equipartition theorem [?℄
T AT/CG = 2

〈KAT/CG〉
NAT/CG

(3.6)where the average kineti energy per degree of freedom is 〈KAT/CG〉 and theirnumber is denoted by NAT/CG on the respetive representation. It is lear thatertain degrees of freedom, like the oordinates of the enter of mass of themoleules, are present aross the whole system, so Eq. 3.6 an be applied tothem with no modi�ations. However, for a swithable degree of freedom q, it isneessary to take into aount that its ontribution to the statistis varies fromthe oarse-grained representation, where it is zero, to the atomisti one, whereit has to be fully onsidered. Consequently, the number of degrees of freedom,statistially speaking, hanges ontinuously as a funtion of spae aording therepresentation of the partiles is hanged. Moreover, the dimensionality of thephase spae region belonging to q is a frational number between 0 and 1 in thehybrid region.The volume element of a spae of frational dimension w an be obtainedby means of the frational alulus [?℄,
dVw =

Γ
(

w
2

)

2πw/2Γ(w)
dwq =

|q|w−1

Γ(w)
dq =

1

wΓ(w)
dqw (3.7)with Γ(w) the usual Γ funtion [?℄. Hene, the ensemble average of the kinetienergy assoiated is

〈Kq〉w =

∫∞

0
e−βp2

qqw+1dq
∫∞

0 e−βp2
qqw−1dq

(3.8)that is [?℄
〈Kq〉w =

w

2
β−1 (3.9)Suh result is alled the generalized equipartition theorem, that states thatthe average of a quadrati funtion of a frational degree of freedom is propor-tional to its dimensionality. 22



3.4 AdResS simulation of tetrahedral liquidThe AdResS applied to a liquid of tetrahedral moleules has been previouslystudied [?, ?,?℄. Here, the main results are reprodued due to the relevane ofthe model for the later hapters.A tetrahedral moleule is omposed of four atoms of mass m0. All the atomsinterat through a purely repulsive Weeks-Chandler-Andersen (WCA) potentialof the form
UWCA(riαjβ) =

{

4ǫ[(σ/riαjβ)12 − (σ/riαjβ)6] + 1
4 , riαjβ ≤ 21/6σ

0, riαjβ > 21/6σ
(3.10)where riαjβ is the distane between atom i of moleule α and atom j of moleule

β. From now on, ǫ and σ will be the referene units of energy and length used.In a moleule, atoms are bonded via a �nite extensible nonlinear elasti(FENE) potential
UFENE(riαjα) =

{

− 1
2kR2

0ln[1 − (riαjα/R0)
2], riαjα ≤ 21/6σ

∞, riαjα > 21/6σ
(3.11)being R0 = 1.5σ and k = 30ǫ/σ2m the divergene length and the sti�ness respe-tively. By onstrution, the bond length is approximately 1.0σ at temperature

kBT = ǫ.In the oarse-grained representation, the moleule is mapped into a beadloated at its enter of mass [?, ?℄. The e�etive interation was obtained at amoleular density of ρ = 0.175σ−3 using the Iterative Boltzmann Inversion inorder to reprodue the radial distribution funtion. Additionally, the pressurewas adjusted with a simple pressure orretion at eah step [?℄.AdResS simulations were performed in a box of dimensions 36 × 20 × 20σ3with periodi boundary onditions, using a time step of 0.005τ , where τ =
(ǫ/m0σ

2)−1/2 is the redued unit of time. After an equilibration of 2500τ , aprodution run of 7500τ was performed saving the on�guration of the sys-tem every 1000 steps. A Langevin Thermostat, presented in Chapter 1, wasemployed using the value Γ = 0.5τ−1.The weighting funtion is given in terms of the box length Lx along the xdiretion and h, the half of the hybrid zone width a,
w(x) =































0, h < x < Lx/2 − h

1, h + Lx/2 < x ≤ Lx − h

sin2[ π
4h(x − Lx + h)], Lx/2 − h ≤ x ≤ Lx/2 + h

cos2[ π
4h (x − Lx + h)], Lx − h < x ≤ h

cos2[ π
4h (x + h)], 0 ≤ x ≤ h

(3.12)plotted on Fig. 3.2.Figure 3.3 shows the radial distribution funtion between the enters of massof all partiles, regardless their representation, and the density pro�le of an23
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The pressure in redued units, that has a value of 1.98± 0.02 and 1.98± 0.02 inatomisti and oarse-grained simulations respetively, inreases to 2.04 ± 0.03in the AdResS simulation. Suh disagreement beomes more pronouned withthe size of the swithing region, what means that this zone a�ets not only thestruture, but also the thermodynamis of the whole system.Despite these e�ets, partiles an freely di�use aross the simulation box.Figure 3.4 shows the di�usion pro�le for a set of partiles loated initially inthe oarse-grained and atomisti regimes, whih on�rms this statement. How-ever, transport properties must also be analyzed arefully. It is well known thatin general, di�usion oe�ients and visosities do not neessarily math be-tween atomisti and oarse-grained representations, sine the smoother energylandsape in the latter leads usually to a faster dynamis [?℄. In onsequene,partiles an di�use in an inhomogeneous way during the simulation.
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F

CG,corrected
αβ = s (w(Rα)w(Rβ))FCG

αβ + [1 − s (w(Rα)w(Rβ))]FCG,HY
αβ (3.13)25



where F
CG,HY
αβ is a oarse-grained potential able to math the thermodynamisand struture of a system at onstant weighting funtion w0 = 0.5. Ithas been pointed that in this system [?℄, the disagreement with the refereneproperties is maximum around this point. s (w(Rα)w(Rβ)) is, on the otherhand, the orretion funtion. Its hoie requires s(0) = 1 and s(w0) = 0. Atested form is given by [?℄

s(x) = 4(
√

x − 1/2)2 (3.14)The radial distribution funtion and density pro�le are plotted on Fig. 3.5.The improvement is notorious, onsidering that the pressure in redued units isof 1.99 ± 0.02, loser to the referene value.
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Chapter 4The onept ofthermodynami fore: oneomponent systemThe thermodynami fore an be seen as an external �eld applied in the hybridregion that leads to a homogeneous density ρ0 aross the whole system. Itsdetermination is based on thermodynami onsisteny onsiderations.Nevertheless, the introdution of this onept is not only justi�ed by teh-nial reasons or to hek thermodynami onsisteny of AdResS, sine it alsomakes possible the oupling between di�erent representations on whih the num-ber of degrees of freedom is not neessarily di�erent. This issue greatly extendsthe idea behind the method and situates it in a muh more general framework.The hapter begins with the presentation of the approah based on the ad-justment of the hemial potential and the omparison with the previously de-veloped interfae orretion [?℄. The method is also tested on the oupling oftwo one-site pair potential with satisfatory results. Later on, an alternativeapproah based on the onsisteny of the pressure is introdued, together witha pratial way of obtaining the thermodynami fore. It will be numeriallyshown that suh orretions (and AdResS by itself) do not a�et the loal dis-tribution funtions in the atomisti region. Finally, an interpretation of thefore in terms of an analogy with the Grand Canonial Ensemble onludes thishapter.4.1 Chemial potential approahIt was already shown that AdResS simulations display a stationary state wherethe density is inhomogeneous in spae. Suh e�et an be orreted by applyingan external fore that provides the right amount of work to eah moleule.27



In this framework, the thermodynami fore is de�ned as
fth = ∇µe� (4.1)where µe� is the e�etive hemial potential in an AdResS system, alulatedon a on�guration at onstant density ρ0.For its determination, the hemial potential of a moleule is deomposedinto two ontributions, as [?℄

µ = µid + µex (4.2)
µid is the ideal gas ontribution, the hemial potential of a noninteratingpartile. µex, on the other hand, is the exess hemial potential due exlusivelyto the intermoleular interations. Later on, it will be shown that only the latterontribution has to be orreted.4.1.1 Development of the thermodynami foreEquation 4.2 requires the knowledge of the hemial potential pro�le along thehybrid region. A way of estimating it is by dividing suh region into N slabs, asillustrated in Fig. 4.1 for a one dimensional setup. At eah slab i, it is assoiateda weighting funtion wi and an exess hemial potential µex(wi). The latteris obtained from an independent simulation of a bulk system at density ρ0 inthe anonial ensemble. The intermoleular fores used in these system orre-spond to the AdResS interpolation of fores from Eq. 3.1 at onstant weightingfuntion wi. Suh fores ome from the Hamiltonian

Hi = w2
i HAT + (1 − w2

i )HCG (4.3)that is nothing less than a linear interpolation of HAT and HCG. Under thissetup, it is evident that the spurious drift that emerges from the interpolation ofHamiltonians in Eq. 3.3 is now zero. Therefore, the existene of a Hamiltonianallows the alulation of the exess hemial potential by means of onventionalmethods like the test partile insertion [?℄ sine µex is in these ases a wellde�ned quantity. The exess hemial potentials alulations were performed inthe GROMACS simulation pakage [?℄.Having a numerial expression for ∂µex

∂w , it is possible to evaluate ∂µex

∂w ∇wmaking use of the analyti form of the weighting funtion. The result is, ofourse, a �rst approximation, sine it does not onsider the interation betweensubsystems with di�erent weighting funtions.4.1.2 Role of the thermostatA loal thermostat must keep thermalized the atoms and enters of mass inthe whole system. The internal degrees of freedom of a moleule that are addedwhen it passes from oarse-grained to hybrid resolution, must also be introdued28



Figure 4.1: Partition of the simulation domain for the alulation of the ther-modynami fore.properly [?,?℄. Hene, the loal thermostat keeps the moleules thermalized re-gardless their resolution. A pratial interpretation, onsistent with the numer-ial implementation explained in detail in Chapter 7, is to onsider the wholeAdResS simulation as a double-resolution system. Hene, moleules ontain theatoms and enter-of-mass positions and veloities, while the hange of resolutionis exlusively attributed to the interpolation of intermoleular fores of Eq. 3.1.Clearly, the atomisti degrees of freedom do not play any role in the physisof the oarse-grained region, sine they are deoupled from the dynamis andtheir integration an be omitted for pratial purposes. The initialization of theinternal degrees of freedom is disussed with more detail in Chapter 7.From the theoretial point of view, the ideal hemial potential an be writ-ten in terms of the dimensionality of the phase spae at eah point of the spae.The phase spae integral assoiated to the kineti ontribution of a frationaldegree of freedom is proportional to
∫

e−βp2

dwp (4.4)(without onsidering onstants suh as the mass), where dwp = pw−1dp/Γ(w) isthe frational volume element [?℄. Therefore, the hemial potential assoiatedis
−kBT

w

2
log T − kBT log

Γ
(

w
2

)

Γ(w)
(4.5)29



The seond term, onsidering the lassial temperature regime, is negligible.Sine in these approah, the ontribution of a degree of freedom is statistiallyweighted aording to its degree of resolution given by w. Statistially speaking,this means that the amount of free energy has to be properly ounted, so in bothases, the work provided by the thermostat to a partile has to be independentof the resolution.A numerial test of this assertions is depited on Fig. 4.2, alulated in atetrahedral system omposed of 2520 moleules in a box of 36× 20× 20σ3, witha hybrid region of width 12σ. The work done by the thermostat on the atomssubtrating the work done on the enter of mass [?℄ on a moleule is de�ned as
W =

∑

i

fi · ∆ri −
∑

i

fi ·
1

M

∑

j

mj∆rj (4.6)where fj is the fore exerted by the thermostat on atom j and ∆ri, the displae-ment of atom i at the same integration step. This quantity has been alulatedfor simulations of 5000τ , sampled every 100 iterations. The plot shows W asa funtion of the oordinate x, along whih the representation of the moleuleshange. There is no di�erene between purely atomisti and AdResS simula-tions.
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on Fig. 4.3, as a funtion of the weighting funtion. Eah point was obtainedfrom a simulation of 10000τ in a box of dimensions 20 × 20 × 20σ3 with 106insertions. Error bars were obtained using Jakknife analysis [?℄.
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to 2.17 ± 0.04 under the e�et of the fore.32
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the hemial potential an be estimated from a bulk simulation at the orre-sponding weighting funtion. The redution of the hybrid zone an eventuallybreak down this ansatz.The e�ets of the width of the hybrid region on simulations under the e�etof the thermodynami fore are analyzed below. Figures 4.8 show the densitypro�les for a box of size 36 × 20 × 20σ3 and hybrid regions of 4σ and 8σ. The
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Lat p∗6 2.17 ± 0.0413 2.12 ± 0.0218 2.1 ± 0.02Atomisti 1.98 ± 0.02Table 4.1: Pressure at hybrid width = 12σ.
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points. Figure 4.11 shows the equation of state of the tabulated potential ad-justed around ρ = 0.175σ−3 with an analytial Morse potential adjusted at
ρ = 0.1σ−3 [?℄. The potentials are interfaed in an AdResS simulation at an
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Figure 4.13: Density pro�les with and without thermodynami fore.
librium state [?℄. In AdResS, however, the averages of thermodynami quantitiesare taken over stationary states that have been numerially observed [?,?,?,?,?℄.It is well known that a homogeneous pressure on�guration displays a nonhomogeneous density pro�le in the absene of orretions [?, ?℄. This an betested numerially by alulating the pressure pro�le, using the expression pro-37



posed by Todd, Evans and Davis [?℄ for the pressure tensor
p̄βα(α) =

1

2Aα∆α

〈

∑

α−∆α≤αi≤α+∆α

miviβviβ

〉

+
1

2Aα

〈 N
∑

i=1

Fiβsgn(αi − α)

〉(4.7)where Aα is a ross-setional area perpendiular to the diretion α. The �rstterm is the ideal gas ontribution alulated in a slab entered at α of thikness
2∆α, and the seond represents the ontribution of the intermoleular intera-tions.In the ase of two-body fores, the seond sum is redued to the ount of thefores that ross the area Aα. Partiles at distanes bigger than the maximaluto� of the non-bonded interations do no ontribute to the sum. In the samespirit, it is possible to note that this way of ounting the fores per area isnot a�eted by the periodi boundary onditions provided that the sides of thesimulation box are longer than the longest range of the interations.Figure 4.14 shows the omponent pxx of the pressure tensor along the xdiretion, on whih the hange of resolution ours. The pro�le is plotted forthree systems: a purely atomisti liquid and two AdResS simulations with hybridregions of width 4σ and 12σ. In all ases, pxx is pratially onstant, eventhough in the AdResS simulations the density pro�les are not. Its averagevalue, however, is higher in these ases with respet to the atomisti referene,and inreases with the size of the hybrid region. This is not surprising sinehybrid partiles inrease the pressure, as it has been reported in this tetrahedralsystem [?, ?℄.

x∗

p
∗

35302520151050

2.4

2.2

2

1.8

1.6

Atomistic
AdResS (w=4σ)

AdResS (w=12σ)
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In an analogous way, a �at density pro�le will require the appliation of anexternal fore to remain stationary. Knowing the pressure pro�le pf of a �atdensity on�guration, the thermodynami fore an be written as
fth =

1

ρ0
∇pf (4.8)where ρ0 is the value of the homogeneous density. This fore an be estimated bythe same slab proedure used in the hemial potential approah. By dividingthe simulation domain into several subsystems entered at xi, the pressure ateah point is approximated as the value obtained from a hybrid simulationperformed at onstant weighting funtion w(xi).However, this proedure, rather tedious, an be di�ult to ahieve in systemslike water, where aurate estimations of the pressure demand long runs [?℄. Itis reommendable then to devise a simpler and faster way to estimate fth inan aurate and less expensive manner, making use of the density pro�le of anunorreted AdResS simulation.Starting from the stationary density pro�le of an unorreted AdResS simu-lation, the pressure an be written as p(ρ(r)), assuming that it depends loallyon the density. Therefore, expanding to �rst order at eah point

p(r) = pf (r) + (ρ(r) − ρ0)

[

∂p

∂ρ

]

ρ=ρ0

+ O([ρ(r) − ρ0]
2) (4.9)Hene, by taking the gradient at both sides of 4.9, and knowing that ∇p = 0, ityields

∇pf (r) ≈ −∇
[

1

ρ0κT
(ρ(r) − ρ0)

] (4.10)by using the isothermal ompressibility κT , as in
[

∂p

∂ρ

]

ρ=ρ0

=
1

ρ0κT
(4.11)and negleting higher order terms. For simpliity, the ompressibility is takenas a onstant, that an be its atomisti (or oarse-grained) value. Suh hoiewill later be proven to be a good approximation in the tetrahedral liquid. Thus,the �rst guess of the thermodynami fore is

f0
th(r) = − 1

ρ2
0κ

at
T

∇ρ(r) (4.12)The inlusion of higher order derivatives in the equation of state would re-quire the knowledge of the oe�ients of the whole expansion, whih is a nontrivial, if not prohibiting problem. To overome this situation, the fore an beiteratively orreted as
f i+1
th (r) = f i

th(r) − 1

ρ2
0κ

at
T

∇ρi(r) (4.13)39



until a �at density pro�le is reahed.The e�ets of the thermodynami fore alulated from the pressure pro�leon the loal pressures an be seen in Fig. 4.15. In the orreted AdResSsimulation, pxx shows a sizeable bump inrease in the hybrid region, while inthe atomisti and oarse-grained regimes it mathes the referene values. Suhinhomogeneities are ompensated by the thermodynami fore, as it an be seenby monitoring the quantity pxx +ρoφ, where φ is the potential assoiated to theexternal �eld. Its value aross the x axis is pratially onstant, similar to theatomisti pro�le.
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pxx = pyy = pzz (4.14)However, Eq. 4.7 permits the alulation of pyy(y) and pzz(z), but nottheir pro�les aross the x diretion. Therefore, the validity of 4.14 an onlybe assumed and numerially tested by omparing the averages of pyy and pzzalong the diretions y and z respetively. Their pro�les, in Figs. 4.16, are �at,with averages of 〈pL

yy〉y = 2.161±0.003, 〈pL
zz〉z = 2.161±0.002 in redued units.These values math the average 〈pL

xx〉x = 2.2± 0.2, in agreement with Eq. 4.14.40



If suh equation holds, it is possible to onlude that
p

ρ0
+ φ (4.15)is onstant aross the whole spae in an AdResS simulation.
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ρ2

0
κT

is CAT =

236.86ǫσ3 and CCG = 190.62ǫσ3 for eah representation. The fores produedby the �rst iterations using these oe�ients are displayed in Fig. 4.17. Ittakes in both ases two steps to obtain a �at density pro�le, as depited inFig. 4.18. The �nal shape of the fore is ompared with the previous alulatedthermodynami fore, using both the hemial potential and pressure pro�lesin Fig. 4.19, with the respetive density pro�les in Fig. 4.20.Clearly, the density displays a uniform pro�le after a few AdResS simula-tions, without the neessity of simulating several hybrid systems. It is also41
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gion. Figure 4.23 shows the distribution of veloities for partiles with weightingfuntion between 0.4 and 0.6, ompared with the analyti expression. Again, itis observed that both urves math in the numerial preision.
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Chapter 5Thermodynami fore on abinary mixture.The simulation of more realisti situations requires the generalization of AdResSto multiomponent systems. However, the development of a oarse-grainedmodel in this ases represents a hallenge by itself. This hapter addressesboth issues in a binary mixture onsisting of spherial solutes solvated in thealready studied tetrahedral moleules. It begins with the desription of the sys-tem and the proedure followed for the reparametrization of the interationsare presented below. Later on, the �rsts tests on the AdResS simulation ofmultiomponent systems are disussed, to onlude with the appliations of theinterfae orretion and thermodynami fore.5.1 System setupThe binary mixture onsists of a minor omponent (solute) represented by spher-ial partiles and a major omponent represented by the aforementioned tetra-hedral moleules. The solute partiles interat between themselves through arepulsive Weeks-Chandler-Andersen potential
UWCA

s (r) =

{

4ǫs[(σs/r)12 − (σs/r)6 + 1
4 ] , r ≤ 21/6σs

0 , r > 21/6σs

(5.1)where the parameters σs and ǫs an be written in the previously introduedLennard-Jones units as σs = 1.8σ and ǫs = ǫ. Their interation with the solventatoms obeys Lorentz-Berthelot [?℄ rules, that is, a Weeks-Chandler-Andersonpotential with the parameters σts = 1.4σ and ǫts = ǫ.The systemati approah hosen for the parametrization of the interationswill make use of several mixtures at di�erent onentrations, whih are listed onTable 5.1. The ubi box size L has been adjusted to obtain the same pressure47



Table 5.1: Conentration c and pressure of the mixtures.
c L∗ N M p∗0.007 20.05 1400 10 1.99 ± 0.050.034 20.265 1400 50 1.98 ± 0.040.125 21.01 1400 200 1.98 ± 0.04as the pure tetrahedral liquid previously studied, one the number of solute andsolvent partiles have been �xed.The steps followed in the proedure are desribed in detail in the followingsetion.5.2 Development of InterationsThe oarse-graining model of the mixture aims to reprodue of the radial distri-bution funtion of the speies and the total pressure. This is ahieved by meansof the suessive reparametrization of the interations in systems of inreasingonentration. The proedure is shematized in Fig. 5.2.

Figure 5.1: Sheme of reparametrization of the interations.The systemati approah onsists of three steps:
• The re�nement of the interation between solvents in a pure system, start-ing from the potential used in the previous systems. The pressure is si-multaneously adjusted.
• Tune the fore between solvents and solutes in the most diluted system48



with the iterative Boltzmann inversion. In this ase, the fore �eld betweenthe solutes is the same as in the atomisti representation.
• Finally, the potentials for the solvent-solvent, solvent-solute and solute-solute are orreted in the most onentrated mixture. Tehnial detailsare desribed below.For the �rst step, the system onsisted of 1400 moleules on a box of 20 ×

20×20σ3. Between the solvents, the Iterative Boltzmann Inversion was appliedover the existent interation for 8 steps, where eah simulation onsisted of
1000τ and 2500τ of equilibration and prodution respetively. A smoothingproedure over the potential was applied 5 times per eah step. The pressurewas simultaneously orreted using∆V = 0.01ǫ, giving a �nal value of 1.98±0.01redued units, onsistent with the target pressure. The slight di�erene betweenthe radial distribution funtions is plotted in Fig. 5.2, while the potentials aredepited in Fig. 5.3.
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Figure 5.6: Solvent-solvent potentials for the most onentrated mixture.
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Figure 5.8: Solvent-solute potentials for the most onentrated mixture.
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c p0.007 1.99 ± 0.010.034 1.982± 0.0070.125 1.98 ± 0.02Table 5.2: Pressures using �nal oarse-grained potentials.
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c p∗0.007 2.07 ± 0.030.034 2.06 ± 0.030.125 2.05 ± 0.03Table 5.3: Pressures for AdResS systems.
∆Vts = 0.05ǫ and ∆Vss = 0.01ǫ aording to their respetive ontribution tothe virial pressure. The orretion was performed simultaneously on all intera-tions. The initial fore �eld was the purely oarse-grained potential for all ases,with the exeption of the solvent-solvent interation. The iteration for this onehas started from the orreted potential for the pure solvent previously devel-oped [?℄. After three iterations it was possible to observe a reasonable agreementbetween the radial distribution funtions, improving the pressures with a laststep where ∆Vtt = 0.075ǫ, ∆Vts = 0.06ǫ and ∆Vss = 0. The resulting ra-dial distribution funtions and pressures are plotted and listed, respetively, inFig. 5.15 and Table 5.3 for atomisti and purely hybrid simulations using theoarse-grained and orreted oarse-grained potentials.
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For the AdResS simulations, the orretion funtion used was
s[x] =

{

(1 − 2x) x ≤ 0.5

0 x > 0.5
(5.2)that produes a linear interpolation between the normal and orreted oarse-grained potentials for x < 0.5, keeping its orreted shape for higher values.The resultant density pro�les are shown in Fig. 5.16. Radial distributionfuntions show a better agreement with the referene funtions, as illustratedin Fig. 5.17.
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5.4 Thermodynami ForesThe appliation of the thermodynami fore in this system is slightly moreompliated [?℄, sine speial are must be taken for the treatment of the mixingontributions. Consequently, the hemial potentials are expressed as
µmix

solvent = µ0
solvent + kT log[csolvent] + fmix

int (csolvent, csolute) (5.3)
µmix

solute = µ0
solute + kT log[csolute] + gmix

int (csolvent, csolute) (5.4)where µ0 is the hemial potential of the pure omponent at the same density.The logarithmi term is the part oming from the entropy of mixing, that de-pends on the onentration ci. fmix
int (csolvent, csolute) is, on the other hand, theontribution of the moleular interations for the solvent and equivalently g forthe solute. Both f and g funtions are unknown.The proedure followed to determine the full thermodynami fore is basedin two steps:

• The hemial potential pro�le is alulated for eah omponent separately,at the same density of the AdResS simulation. This will give aount of theontribution to the thermodynami fore in the absene of interations,and a �rst approximation for eah speies. The resultant fores are appliedto an AdResS system, to obtain a density pro�le where just µ0 has beenorreted.
• The remaining part of the hemial potential estimated using the resultingdensity (and onentration) pro�les from the previous simulations. Thelogarithmi term an be diretly evaluated from the onentration pro�les,while for the funtions f and g are treated empirially. Using a linearexpansion in the densities of the funtions f and g from Eqs. 5.3 and 5.4,it is possible to write

fmix
int (csolvent, csolute) ≈

[

∂f

∂csolvent

]

c0

solvent
,c0

solute

· ∆csolvent (5.5)
gmix

int (csolvent, csolute) ≈
[

∂f

∂csolute

]

c0

solvent
,c0

solute

· ∆csolute (5.6)that has to be added to the simple thermodynami fore to obtain its fullform. The prefators, denoted by Kt and Ks for the solvent and soluterespetively, are determined empirially.The �rst step was performed in the same way as for the one omponent aseshown in the previous hapter: the disretization of the hybrid region permitsthe alulation of a histogram of hemial potentials, whose values are plotted onFigs. 5.18 and 5.19, aompanied with their respetive thermodynami fores.The thermodynamis of the pure solvent system seems to have a greaterdependene on the moleular representation, as expeted sine its hange of58
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f i
α = −Cα∇ρi

α (5.7)The prefator Cα has been hosen as Kcα
∂p

∂ρα
. K is a value between 0 and1 that will be tuned later in order to keep the stability of the method. Notethat if the omponents are idential, K = 1 restores the one-omponent formula60
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Chapter 6Adaptive resolution sheme ofa model polymer: furtherdevelopmentIn this hapter, further step towards the appliation of the AdResS to the sim-ulation of more omplex systems is developed.A previous work has already studied a model polymer solvated in tetrahedralmoleules able to hange their representation under the AdResS [?℄. The systemwas designed to keep the polymer in the atomisti representation, by de�ningthe atomisti region as a sphere entered at the enter of mass of the hainwith a radius arefully determined. This setup is optimal for the simulationof a maromoleule where the struture of the solvent an be relevant for itsfuntional properties. Additionally, the e�ets of the solute on the solvent anbe ruial for the haraterization of the solvation proess [?℄. Both situationsan be studied desribing with a detailed resolution only the �rst solvation shellsaround the solute.In the present work, however, both solvent and polymer are allowed to hangetheir representations. Suh an appliation requires not only the hange of reso-lution of a multiomponent system, but also the extension of AdResS to bondedinterations. The hange of resolution is now through a �at geometry, moresuitable to problems like the interation of polymers with �at surfaes. Theprevious study of the interation of polyarbonate with a nikel surfae [?℄ is alear example.The hapter begins exposing the system setup hosen for this aim. Later on,the reparametrization of the required interations will be desribed, followed bythe results and their onsequent improvement by the appliation of the interfaeorretion [?℄. Finally, the simulations will be orreted with the appliation ofthe thermodynami fore. 65



6.1 System setupThe model polymer is a bead-spring polymer hain, whose monomers are thesolute partiles desribed in Chapter 5. The bonded interations are FENEbonds (see Eq. 3.11) with parameters ks = 30ǫ/σ2
s and R0s

= 1.5σs, where
σs = 1.8σ.The system setup is illustrated in Fig. 6.1, where the polymer has beenloated at the enter of the hybrid region, keeping its entral monomer �xed.For the moment, this setting is enough for the test of the interations and theanalysis of ertain statistial properties. Later appliations will allow the hainto freely di�use aross the whole simulation box.

Figure 6.1: Polymer system setup. The monomers do not neessarily have thesame exluded volume in both representations.This on�guration demands a omplete reparametrization of the interationsin the oarse-grained region; namely, the non-bonded interations between sol-vents and solutes, and the bonded potentials between the monomers of themodel maromoleule. The former set of potentials has been systematially de-veloped in the previous hapter, while the latter will be treated in the following66



setion.The aim of the bonded oarse-grained interations will be to reprodue thebond, angle and torsion distributions. In addition to this struture funtions andthe density pro�le, some statistial properties of the polymer will be monitored:the end-to-end distane
〈R2

E〉 = 〈(rN − r1)
2〉, (6.1)where ri is the position of the ith monomer and N is the number of monomerunits; the hydrodynami radius RH ,

〈

1

RH

〉

=
1

N2

∑

i6=j

〈

1

rij

〉 (6.2)with rij = |ri − rj |, and the radius of gyration
〈R2

G〉 =
1

N

∑

i

〈(ri − R)2〉 (6.3)where R stands for the position of the enter of mass of the polymer.A deeper haraterization of the hain struture an be done by inspetingthe exponent ν that governs the saling behavior of 〈R2
G〉 and 〈R2

E〉 through therelation
〈R2

E〉 ∝ 〈R2
G〉 ∝ N2ν (6.4)Suh a number an be obtained from the analysis of the stati struture fator

S(q) =
1

N

〈

∑

ij

eiq·(ri−rj)
〉 (6.5)whih an be experimentally measured. In the regime R−1

G ≪ q ≪ b−1, with bthe bond length, S(q) is proportional to q−1/ν .6.2 Two-body bonded interationsThe studied polymer, omposed of 20 monomers, is solvated in 2800 tetrahedralmoleules ontained in a ubi box of side of length 25.261σ. The target bondlength distribution was obtained from an atomisti simulation of 25000τ sampledevery 1000 time steps. The Iterative Boltzmann Inversion was then appliedto the bead-bead bond interation starting from the potential of mean fore,desribed in Chapter 3.The proedure onverged after three iterations. The initial and �nal inter-ations are shown on the left of Fig. 6.2. The agreement between the targetand oarse-grained distributions is shown on the right.The radial distribution funtions, shown in Fig. 6.3 do not require furtherparametrizations. Struture fator and the statistial properties aforementionedare shown in Fig. 6.4 and Table 6.1 respetively, showing good agreement.67
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p∗ 1.98 ± 0.08 1.984± 0.002

〈R2
E〉1/2 10.7 ± 0.5 10.6 ± 0.2

〈R2
G〉1/2 4.2 ± 0.1 4.24 ± 0.06

〈R−1
H 〉−1 4.15 ± 0.05 4.17 ± 0.05
ν 0.56 0.57Table 6.1: Summary of some polymer statistial properties. Pressure is inludedto show agreement. The hain onsists of 20 monomer units.The value of ν, that is 0.5 for a θ solvent and approximately 0.588 for agood solvent [?,?,?℄, is loser to the latter. The disrepany ould ome fromthe �nite size of the hain, as it has been previously observed [?℄, together withthe quality of the solvent. 68
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System Atomisti AdResS AdResS-ip 1.98 ± 0.08 2.05 ± 0.02 2 ± 0.02

〈R2
E〉1/2 10.7 ± 0.5 10.1 ± 0.3 10.1 ± 0.4

〈R2
G〉1/2 4.2 ± 0.1 4.07 ± 0.07 4.07 ± 0.09

〈R−1
H 〉−1 4.15 ± 0.05 4.08 ± 0.04 4.05 ± 0.05
ν 0.56 0.54 0.53Table 6.2: Summary of some statistial properties for AdResS simulation usinginterfae-pressure orretion. The polymer is omposed of 20 monomers.
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40.1× 20.05× 20.05σ3. The weighting funtion is the same used in the previousmixture study, with a hybrid region width of 12σ. The form of the hemialpotentials is given by the Eqs. 5.3 and 5.4 presented in the previous hapter.However, this time, the mixing terms are expressed in terms of the density

fmix
int (ρsolvent, ρsolute) ≈

[

∂f

∂ρsolvent

]

ρ0

solvent
,ρ0

solute

· ∆ρsolvent (6.6)
gmix

int (ρsolvent, ρsolute) ≈
[

∂f

∂ρsolute

]

ρ0

solvent
,ρ0

solute

· ∆ρsolute (6.7)71



whih gives a orretion to the thermodynami fore of the form −Ki∇ρi forthe omponent i. Therefore, inluding the term of the hemial potential of thepure speies, plus the logarithm due to the entropy of mixing and above shownterm proportional to the density of eah omponent, it is possible to obtain thefull thermodynami fores shown in the left of Fig. 6.9. The onstants were of
Kt = 26ǫσ−3 and Ks = 0.3ǫσ−3 for the solvent and solute respetively. Thedensity pro�les of the AdResS simulations is shown in the right of Fig. 6.9.
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ρT

∂p
∂ρα

evaluated in the oarse-grainedrepresentation. In this ase, it was enough to orret the solute density overtwo steps, with a prefator of Csolute = 33.975ǫσ3.For the AdResS systems, six initial onditions were integrated over 2500τ forequilibration and 12500τ for prodution. The density pro�les obtained with thisorreted thermodynami fore are ompared for di�erent systems in Fig. 6.10.Statistial properties are listed in Table 6.3. Bond distributions and struturefator are plotted in Fig. 6.11.The agreement in the density pro�les is almost perfet. It is worthy to note,72
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Ua(θ) =

kθ

2
(θ − θ0)

2 (6.8)where kθ = 3rad−2ǫ and θ0 = 2
3π. The torsion potential is, on the other hand,
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〈R2

E〉1/2 16.8 ± 1 16.4 ± 0.5 18.2 ± 0.6

〈R2
G〉1/2 8.8 ± 0.3 8.9 ± 0.3 9.3 ± 0.2

〈R−1
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Chapter 7Implementation of theAdaptive Resolution Shemein ESPResSoA desription of the numerial implementation of AdResS in the ESPResSopakage [?℄ is presented in this hapter. Tehnial details about the interfaeommands, integrator and parallelization sheme are listed in the Appendix.The hapter begins with a desription of the general overview of the systemand how the equations of motion are integrated. Later on, the parallelizationsheme is desribed, ontinued by the implementation of the thermostat. Af-ter that, the initialization of the internal degrees of freedom when a moleuletransits form oarse-grained to a hybrid domain is brie�y disussed, to onludewith the treatment of bonded fores. Interfae pressure orretion and ther-modynami fores deserve a purely tehnial disussion that is inluded in theorresponding appendix.It is worthy to point that the implementation an greatly help to understandbetter the physis of the AdResS and to have a more omplete piture of it.7.1 General setupThe system is omposed of moleules with only one mapping point, loated atthe enter of mass. The basi idea behind this implementation is the treatmentof eah moleule with a double resolution, i.e., every moleule will be omposedof its atoms and a virtual partile that orresponds to its enter of mass. Thelatter is nothing else than a mapping point needed for the alulation of thefore at this point, whih is properly distributed among the atoms later. Hene,the potential between two partiles i and j belonging to di�erent moleules αand β an be written as
Vij = V ex(ri, rj , ...) + V vs(rvs(ri, rj , . . .)) (7.1)77



where V ex is the atomisti potential between them, and V vs, the potentialbetween the virtual sites, whose position rvs is a funtion of the positions of theatoms of its moleule.Therefore, the fore on atom i is distributed aording to
Fi = −∂(V ex + V vs)

∂ri

= Fex
i + Fvs ∂rvs

∂ri

= Fex
i +

mi
∑

i∈α mi
Fvs (7.2)This hoie avoids the reation and deletion of atoms, whih is a highly expen-sive operation that involves an ative manipulation of the memory. Therefore,the AdResS is redued to the proper alulation and distribution of fores onthe atomisti atoms, aording to equation 1 in Chapter 3. The virtual sites'positions are simply updated from the positions of the atoms. Naturally, theintermoleular atomisti fores will not be alulated in the oarse-grained re-gion, sine they are not involved in the dynamis. The same holds for theoarse-grained fore �elds in the atomisti domain.The intramoleular fores are alulated in the whole simulation box, in-dependently of the representation of the moleule. They are not inluded inthe interpolation sheme ditated by the AdResS equations, and their inlusionhelps to stabilize the system.7.2 ThermostatThe Langevin thermostat [?℄ has been hosen for the AdResS simulations, mainlydue its loal nature. This feature makes sure that the stationary veloity distri-bution of eah partile will be onsistent with the temperature of the thermostat,independent from the rest of the system1. In this ase, the thermostat fores atonly over the atoms aross the whole simulation box. One these degrees of free-dom have the orret veloity distribution, the thermalization of the enters ofmass is straightforward. The same features an be obtained by the appliationof a DPD [?, ?℄ thermostat.Counting with this global setup, there are two tested options for the initial-ization of the atoms' veloities (and positions) when a moleule rosses from theoarse-grained to the hybrid regime2:

• Copy the atom's veloities relative to the enter of mass of a moleule froma random moleule from the atomisti region [?℄. This guarantees thatthe intramoleular degrees of freedom will be sampled from distributionsonsistent with the atomisti regime that is properly thermalized.1Sine the fores are not homogeneous neither onservative, this hoie would prevent anyeventual temperature pro�le that a global thermostat ould generate.2That is, the reintrodution of the integrated degrees of freedom78



• Leave the positions and veloities untouhed, that is a justi�ed hoiesine the thermostat generates the orret veloity distribution regardlessthe representation of a moleule.Both approahes give no di�erene in the veloity distributions in the hybridregion neither the density pro�les, as shown in Fig. 7.1. However, the latterresults onsiderably faster than the former. Another important feature is theparallelization sheme: sine the ESPResSo pakage divides the simulation boxinto several domains that are distributed among the proessors, the preseneof atomisti moleules is guaranteed in all of them. Consequently, the seondhoie is more plausible for parallel simulations.
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Chapter 8ConlusionsThis thesis work was devoted to oneptual and tehnial advanes of the Adap-tive Resolution Sheme.Coneptually, the thermodynami onsisteny of the method was veri�ed inthe tetrahedral system, whih allowed the introdution of the ThermodynamiFore. Suh fore was suessfully applied in this system and in a simpler model,where both representations ontain the same number of degrees of freedom. Theappliation of the fore redues almost ompletely the density artifats produedby the interpolation of fores that haraterize AdResS. Speial are has to betaken when this orretion is applied: the reported �nite size e�ets manifestedthrough the formation of density patterns suggest that the width of the hybridregion must be large enough.The onept of Thermodynami Fore was generalized and expressed interms of pressure onsisteny, whih allowed to establish numerial onsistenybetween AdResS and moleular dynamis simulations of open systems. Addi-tionally, this lead to the development of an iterative proedure for obtainingthe Thermodynami Fore, that has also been applied to more omplex systemslike water [?℄. The loal physis of the atomisti region was ompared with theresults of purely atomisti simulations. Radial distribution funtions and velo-ity distributions show a good agreement, while the partile number �utuationin the subvolume, pressure and density pro�les improve onsiderably under theappliation of the Thermodynami Fore, sine it restores the target density inthe whole simulation domain, and in partiular, in this region.Conerning multiomponent systems, a model mixture of spherial soluteswas the subjet of study. The development of the interations, whih is by itselfa non-trivial issue, was performed systematially through suessive appliationsof the Iterative Boltzmann Inversion orreting the pressure at eah step, givinggood results over a wide range of onentrations. The e�ets of AdResS werealso listed for this set of mixtures, speially in the most onentrated ase.There, the interfae-orretion and the Thermodynami Fore were also appliedsuessfully to the most onentrated mixture, requiring a slightly more deliatetreatment than in the pure omponent systems.81



Finally, it was shown that the sole interpolation of fores of the AdResS anbe applied to two-body bonded interations. The distributions that haraterizethe model polymer treated are not a�eted in the hybrid zone, showing goodagreement with purely atomisti simulations. Further appliation of the Ther-modynami Fore on this system did in pratie not a�et the basi strutureof the polymer.Conerning the tehnial issues, a referene implementation of AdResS wasinorporated to the ESPResSo simulation pakage, allowing its parallelizationand implementation in a more standard way.

82



Appendix: Tehnial Detailsand Interfae of theImplementation of AdResS inESPResSo.A deeper and more tehnial desription of the AdResS implementation in theESPResSo pakage [?,?℄ is presented below. The integrator and parallelizationsheme are desribed with more detail in a systemati way, while the om-mands developed for the TCL [?℄ interfae of ESPResSo are also inluded. Theappendix is strutured in the same way as Chapter 7, where the oneptualaspets were explained.General setupThe AdResS feature is enabled in ESPResSo by adding the line#define ADRESSOto the on�guration �le myonfig.h. Later on, the AdResS has to initialized atthe tl level through the lineadress set topo $kind width $width $hybrid_width \enter x $R_x wf $wfwhere kind de�nes the general setup of the AdResS simulation. They an be0 disabled1 onstant weight funtion2 one dimensional geometry3 spherial geometryand wf the weighting funtion type:0 onventional osine-squared funtion1 de�ned by the userhybrid_width and width, on the other hand, are the widths of the hybridand atomisti region respetively. 83



IntegratorThe integrator used by ESPResSo orresponds to a standard veloity Verletalgorithm [?, ?℄, that an be summarized in four steps as1. v(t + ∆t/2) = v(t) + ∆t/2 · f(t)/m2. p(t + ∆t) = p(t) + ∆t v(t + ∆t/2)3. Calulate f(t + ∆t) from p(t + ∆t), v(t + ∆t/2)4. v(t + ∆t) = v(t + ∆t/2) + ∆t/2 · f(t + ∆t)/mHowever, when the virtual sites are present, this has to be slightly modi�ed to1. v(t + ∆t/2) = v(t) + ∆t/2 f(t)/m2. p(t + ∆t) = p(t) + ∆t v(t + ∆t/2)2b. Realulate and update the positions, veloities and weighting funtions
w(R) of the virtual sites.3. Calulate f(t + ∆t) from p(t + ∆t), v(t + ∆t/2)3b. Distribute the fore of the virtual sites to its orresponding atoms.4. v(t + ∆t) = v(t + ∆t/2) + ∆t/2 f(t + ∆t)Therefore, the integrator works only on the atomisti partiles, while the virtualsites are merely dummy points employed in the fore alulation.Parallelization sheme and ut-o�sAs mentioned in Chapter 7, the parallelization sheme used by ESPResSo on-sists in a partition of the simulation domain into several boxes of �xed volume.Eah of these sub-volumes is surrounded by a ghost layer that ontains a opyof the partiles of the adjaent sub-volumes required for the alulation of thefores. Evidently, the thikness of this layer will depend of the ut-o� range ofthe interations.The parallelization sheme requires two additional features in the presene ofthe virtual sites. The �rst onerns to the ommuniation of the ghost partiles,whih positions must be known by eah proessor for the alulation of thevirtual sites. Therefore, the properties of these partiles must be updated,whih requires a seond ommuniation.The seond issue onsists on the rede�nition of the ghost layer thikness.The implementation has to guarantee that every moleule that ontains at leastone non-ghost atom must be fully inluded in the proessor. This is requiredfor the alulation of the virtual sites and for the distribution of the fores.Consequently, the maximum ut-o� between the non-bonded interations hasto be inreased by approximately the size of a moleule. In pratie, this is84



performed by inreasing the maximal uto� by twie the maximal ut-o� of thebonded interations.The moleular ut-o� between partiles type type1 and type2 an be set tout-off through the senteneinter $type1 $type2 molut 1 $ut-offThis is a versatile implementation that allows the de�nition of an arbitrary ut-o� between moleules. However, a more simple implementation requires onlythe inlusion of the line#define MOL_CUTin the on�guration �le myonfig.h.ThermostatThe thermostat, as explained in Chapter 4, ats only on the atomisti repre-sentation of the moleules. The Langevin thermostat is initialized with thesentenethermostat langevin $temperature $fritionwhile the DPD variant requiresthermostat dpd $temperature $frition $utoffwhere, in both ases, temperature is the temperature and frition is thefrition oe�ient required by the fores [?, ?, ?℄. utoff is the ut-o� of theDPD pair interation.Moleule de�nitionThe moleules an be de�ned in the standard way provided by ESPResSo. Asimple tetrahedral moleule, for example, an be delared withset moleule_topology $moleule_typepart 1 pos $pos1x $pos1y $pos1z virtual 0lappend moleule_topology 1part 2 pos $pos2x $pos2y $pos2z virtual 0lappend moleule_topology 2part 3 pos $pos3x $pos3y $pos3z virtual 0lappend moleule_topology 3part 4 pos $pos4x $pos4y $pos4z virtual 0lappend moleule_topology 4part 5 pos $pos5x $pos5y $pos5z virtual 1lappend moleule_topology 5eval analyze set $moleule_topologyanalyze set topo_part_syn 85



The position of the virtual site an be initialized by allingintegrate 0while the usual ommandintegrate $nstepsintegrates nsteps steps of the equations of motion, properly updating the posi-tions of the enters of mass.Interfae pressure orretionThe interfae pressure orretion supports only tabulated fore �elds. There-fore, oarse-grained and interfae-orreted oarse-grained fore �elds must bede�ned in this way, inluded in the �le filename. The ommandinter $type1 $type2 adress_tab_i $filenameinitializes the oarse-grained fore between the virtual partiles of kind type1and type2. The �le must be written in the same format as the tabulatedinterations of ESPResSo: the �rst four lines are the speial harater #, thenumber of points N and the minimum and maximum separation distanes rminand rmax. Below, the two potentials are introdued in �ve olumns as r, FCG/r,
UCG, FIC , U IC . The number of points and the ut-o� radius are assumed tobe the same for both potentials, while the values of r are equally distributedbetween rmin and rmax with a �xed distane (rmax−rmin)/(N−1). The positionand the potential olumns are ignored in the alulations; their inlusion is onlyfor the sake of readability.Thermodynami forethermodynami_fore $type $filename $prefatorwhere type is the type of the partile on whih the fore spei�ed in filenamewill be exerted. prefator is a oe�ient de�ned by the user that multipliesthe fore. The format is onsistent with the usual tabulated potential formatin ESPResSo: the initial four onsist in the speial harater #, followed bythe minimum and maximum distanes rmin and rmax. Then, three olumnsare entered: s, − dU

ds and U. s orresponds to the dimensionless position in thehybrid region x
dhy

, with dhy its width, ranging from 0 to 1. The derivative ofthe potential has to be expressed in terms of this variable. The third olumnis the potential assoiated with this �eld; it has no e�et on the equations ofmotion and is inluded only for readability.
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