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Abstract
To aid the design of organic semiconductors, we study the charge transport properties of or-
ganic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals,
i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to
find structure-property relationships linking the chemical structure as well as the morphology
with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD)
simulations are performed yielding realistic equilibrated morphologies. Partial charges and
molecular orbitals are calculated based on single molecules in vacuum using quantum chemical
methods. The molecular orbitals are then mapped onto the molecular positions and orientations,
which allows calculation of the transfer integrals between nearest neighbors using the molec-
ular orbital overlap method. Thus we obtain realistic transfer integral distributions and their
autocorrelations.
In case of organic crystals the differences between two descriptions of charge transport, namely
semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based
on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit.
To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped
onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small
polaron limit, where the electronic wave function is spread over a limited number of neighboring
molecules, the Schrödinger equation is solved numerically using a semi-classical approach.
The results are compared for the different compounds and methods and, where available, with
experimental data.
The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side
chains facing inwards, so columns can closely approach each other allowing inter-columnar and
thus three-dimensional transport. When taking only intra-columnar transport into account, the
mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising
material for solution-processed organic field-effect transistors. We are able to show that, on
the time-scales of charge transport, static disorder due to slow side chain motions is the main
factor determining the mobility. The resulting broad transfer integral distributions modify the
connectivity of the system but sufficiently many fast percolation paths remain for the charges.
Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disor-
der. The high mobility of rubrene is explained by two main features: first, the shifted cofacial
alignment of its molecules, and second, the high center of mass vibrational frequency.
In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors
with low coupling and of taking static disorder into account three-dimensionally. Thus it is the
method of choice for crystalline systems dominated by static disorder. However, it is inappro-
priate for the case of strong coupling and underestimates the mobility of well-ordered crystals.
SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little dis-
order. It also allows correct treatment of dynamical effects, such as intermolecular vibrations
of the molecules. Rate equations are incapable of this, because simulations are performed on
static snapshots.
We have thus shown strengths and weaknesses of two state of the art models used to study
charge transport in organic compounds, partially developed a program to compute and visualize
transfer integral distributions and other charge transport properties, and found structure-mobility
relations for several promising organic semiconductors.
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Zusammenfassung
Um die Herstellung organischer Halbleiter zu erleichtern, untersuchen wir den Ladungstransport
in organischen Flüssigkristallen, wie Hexabenzocoronen und Carbazolringen, und Einkristallen,
wie Rubren, Indolocarbazol und Benzothiophenderivaten. Zielsetzung ist es, Zusammenhänge
zwischen der Struktur und der Ladungsträgermobilität zu finden. Zu diesem Zweck werden
Molekulardynamiksimulationen (MD) durchgeführt, welche realistische, equilibrierte Morpholo-
gien liefern. Partialladungen und Elektronenorbitale werden an Einzelmolekülen im Vakuum
mit quantenchemischen Methoden berechnet. Die Orbitale werden dann auf die Positionen und
Orientierungen der Moleküle abgebildet, was die Berechnung von Transferintegralen zwischen
nächsten Nachbarn mit der Molecular-Orbital-Overlap-Methode ermöglicht. Dies ergibt realis-
tische Transferintegralverteilungen und dazugehörige Autokorrelationen.
Für organische Kristalle untersuchen wir zusätzlich den Unterschied zwischen zwei Methoden
zur Simulation von Ladungstransport, nämlich ”Semi-Classical-Dynamics” (SCD) und Kinetic-
Monte-Carlo (KMC) mit Marcusraten. Um den Ladungstransport mit KMC zu simulieren,
werden die Schwerpunkte der Moleküle mit Gitterpunkten identifiziert, während die Trans-
ferintegrale zur Berechnung der Sprungraten dienen. Im Grenzfall kleiner Polaronen (SCD),
indem die Wellenfunktion der Elektronen über mehrere Moleküle ausgedehnt ist, wird die
Schrödingergleichung semi-klassisch gelöst. Die Ergebnisse für die unterschiedlichen Mate-
rialien und Methoden werden verglichen, sofern vorhanden auch mit experimentellen Daten.
Die Carbazolringe bilden hexagonal angeordnete Säulen, deren Seitenketten nach innen gerichtet
sind, was eine dichte Annäherung und somit interkolumnaren Ladungstransport ermöglicht.
Berücksichtigt man nur intrakolumnaren Transport, ist die Mobilität um mehrere Größenordnungen
niedriger als im dreidimensionalen Fall. BTBT ist ein vielversprechendes Material für in Lösung
hergestellte Feldeffekttransistoren. Wir zeigen, dass auf der Zeitskala von Ladungstransport
statische Unordnung aufgrund langsam fluktuierender Seitenketten die Mobilität erheblich bee-
influsst. Die resultierenden Transferintegralverteilungen modifizieren die Konnektivität des
Systems, jedoch verbleiben genug Perkolationswege für schnellen Ladungstransport. Rubren,
Indolocarbazol und BBBT sind Kristalle, in denen statische Unordnung eine untergeordnete
Rolle spielt. Die hohe Mobilität in Rubren wird durch zwei Eigenschaften erklärt: erstens
die planare, verschobene Anordnung der Moleküle, und zweitens deren hohe Schwingungsfre-
quenz.
Im Vergleich zu SCD ist KMC basierend auf Marcusraten in der Lage, Nachbarn mit niedrigen
Transferraten und dreidimensionale statische Unordnung zu beschreiben. Diese Methode ist
daher für Systeme, die von statischer Unordnung bestimmt werden, zu bevorzugen. Allerdings
ist sie ungeeignet für den Fall hoher Transferraten und unterschätzt die Mobilität in gut geord-
neten Kristallen. SCD ist zwar eindimensional, aber dennoch gut geeignet, um stark gekoppelte
Materialien mit wenig Unordnung zu beschreiben. Zusätzlich ermöglicht es die Beschreibung
dynamischer Effekte, wie intermolekularer Schwingungen. Ratenbasierende Methoden sind
dazu nicht in der Lage, da sie auf statischen Momentaufnahmen basieren.
Wir haben damit die Vor- und Nachteile zweier aktueller Modelle zur Untersuchung von Ladungs-
transport in organischen Molekülen gezeigt, an einem Programm zur Berechnung und Visuali-
sierung von Transferintegralen und Transporteigenschaften mitgearbeitet und Zusammenhänge
zwischen Struktur und Eigenschaften vielversprechnder organischer Halbleiter gefunden.
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1 Introduction

In a time where the world’s ever-growing energy consumption faces the reality of limited and quickly diminishing
resources, it is one of the biggest challenges for science to at first reduce the current per head energy consumption
and to ultimately find an alternative inexhaustible method to generate electric power. Reduction of energy con-
sumption should be achieved by maintaining the same living standards at a lower cost, such as by reducing the cost
of heating due to better insulation of buildings or by inventing more energy-efficient devices. The invention of light
emitting diodes (LEDs) stands out as a low energy alternative to traditional incandescent light bulbs for household
lighting. The efficiency already surpasses that of any modern energy-saving halogen light bulb. However, the
reproduction of warm white light creating a comfortable living atmosphere by mixing the light of monochromatic
LED sources is as of now still under development. Unfailing energy sources are plentiful in nature: the tides of
the ocean, the flow of the rivers, the blow of the wind and the light of the sun. Hydropower is already in use very
successfully but has almost reached its peak production without covering a significant amount of any country’s
energy consumption. Windmills not only severely diminish the beauty of any landscape, they are also incapable
of producing a reliable amount of energy since they dependend on the everchanging strength of the wind and are
efficient only in the best geographical locations. The sun, however, shines every day and its light delivers an energy
of 4.3 · 1020 J per hour to earth, which exceeds the total energy consumed by humanity per year, estimated to be
4.1 · 1020 J [1]. At present the most efficient way to generate electrical power from sunlight is to heat a fluid and
use its heat to run a conventional thermal power plant. Use of state-of-the-art inorganic solar cells is limited by
their extremely high production costs mostly due to the requirement of ultra pure silicon layers. Nonetheless, solar
power appears as the most promising technology to meet the challenges of the future.
Solar cells, light-emitting diodes and thin film transistors based on organic molecules show promise in solving the
above difficulties. While the efficiency of organic solar cells will probably never reach that of single-crystalline
silicon, the efficiency of organic devices has increased rapidly over the last years. Most importantly the low cost of
synthesizing organic molecules as well as the availability of solution processing or inkjet printing as an alternative
to high vacuum vapor deposition for device fabrication make organic electronic devices powerful competitors for
their inorganic predecessors. Organic molecules may also be designed to absorb or emit any given wavelength,
showing promise to solve the problem of building a white LED. The main challenge in improving the performance
of organic solar cells to rival their inorganic counterparts is the severe lack of understanding of the underlying
chemical and physical processes. Despite the ability to design countless different molecules, it is unlikely that rapid
advances will be made on a trial-and-error basis. Thus it is important to gain a deeper understanding of relations
between the chemical molecular structure, the corresponding morphology and finally the properties of the resulting
film or device. Areas of interest are the study of self-assembly, morphology and transport properties at interfaces
and in the bulk. In this work we develop structure-property relationships based on the chemical structure of specific
organic molecules and their corresponding bulk morphologies. We then derive the charge transport properties of the
compound without use of fitting parameters. While parameters certainly enter in quantum chemical computations
and molecular dynamics force fields, the resulting transport properties are obtained without fitting any parameters
to experimental data. Only the chemical structure of the molecule and the x-ray structure of the morphology are
taken from experiments. Thus we use a parameter-free description of charge transport.
The starting point for every study conducted in this thesis is the chemical structure of a molecule of interest found
in recent literature on organic electronics or synthesized by our experimental collaborators. The single molecule
in vacuum is used to calculate the equilibrium geometry as well as the molecular orbitals by use of quantum
chemical methods. The force field parameters required for molecular dynamics (MD) simulations are taken from
existing force fields or computed via ab initio and density functional theory in case they are not available there.
To ensure a realistic bulk morphology, x-ray data is used to generate a starting configuration. The system is then
equilibrated at room temperature using molecular dynamics allowing for small volume adjustments. Parameters
required for charge transport simulations such as transfer integrals, their autocorrelation functions, electrostatics
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1. Introduction

etc. are calculated based on multiple snapshots of the equilibrated morphology. Transfer integral calculations
for such a large number of differently aligned neighboring pairs has only recently become a feasible task by
use of the molecular orbital overlap (MOO) method [2]. Most other necessary charge transport parameters are
calculated using the charge transport extension of the VOTCA package (www.votca.org), partially written in the
course of this thesis. Finally two different approaches to simulate charge transport are treated. The first, a three-
dimensional kinetic Monte Carlo method based on Marcus rates, assumes that there is strong disorder in the system
leading to the localization of a charge carrier on a specific molecule so that charge transport proceeds by a hopping
process. The second, diffusion limited by thermal disorder via one-dimensional semiclassical dynamics, computes
the spreading of an electronic wave function, initially localized on a few molecules, over time and is based on
a model Hamiltonian taking into account disorder due to inter and intra molecular vibrations. The studies give
insights not only on structure-property relations but also on shortcomings and advantages of the two different
theoretical approaches.
The thesis is organized as follows. First, we will give an overview over the different organic electronic devices,
which rely good charge carrier mobilities, i.e. organic solar cells, light emitting diodes and field effect transis-
tors. We also introduce three prominent experimental techniques to measure the mobility: time of flight and pulse
radiolysis time resolved microwave conductivity stand in contrast to the device-based field effect transistor mea-
surements and give reasons why obtained mobilities may vary by orders of magnitude between the methods. In
chapter three we give an overview of the theoretical basis for our simulations by giving a brief overview of the most
important quantum chemical concepts. We also cover molecular dynamics simulations with an emphasis on force
field parameterization and conclude the chapter with the concept of kinetic Monte Carlo. Chapter four deals with
the history and recent developments in the area of charge transport theory for organic compounds. It contains the
basic principles underlying band and hopping transport, but also gives specific implementation details on methods
used and partially developed in this work. Chapters five to eight deal with the application of our methods to differ-
ent systems. In case of the π-conjugated carbazole macrocycle we study the effect of conjugation length along the
cycle on the mobility. We do so by looking at the two extreme cases of a fully conjugated cycle and one where the
conjugation is broken after each monomer unit. We chose to study [1]Benzothieno[3,2-b]benzothiophene (BTBT),
a solution-processable compound for organic field effect transistors, to emphasize the importance of static disorder
on organic crystals introduced by slow side chain motions. Disorder and resulting percolation paths are visualized
using a connectivity graph showing transfer integral values present in the system. In the chapter on organic crystals
we compare four different organic crystalline bulk morphologies, neither of which is dominated by static disor-
der. We compare 1D, 2D and 3D transporting systems and also elaborate on the influence of different alignments
between neighboring molecules. In both the chapter on organic crystals and on BTBT we link transfer integral
distributions with the corresponding nearest neighbor pairs in the morphology and are able to differentiate between
static and dynamic disorder. Advantages and drawbacks of semi-classical dynamics and kinetic Monte Carlo via
Marcus rates are compared for all crystalline compounds. For hexabenzocoronene derivatives we continue the
studies of transport in liquid crystalline columns by elaborating on the differences between a hexabenzocoronene
core with four different side chains, which lead to different ordering in the morphology and hence varying transport
properties. Finally, we summarize insights gained on factors influencing charge transport, conclude our comparison
of the two simulation approaches and propose future work in the discussion.
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2 Organic Electronics

2.1 Organic Electronic Devices

In the early 20th century all electronic devices were made of metals and conductivity was believed to exist only in
well-ordered crystalline systems were the electronic wave function was periodically spread over the entire crystal
and charge transport could be understood by band theories. Due to increased interest in organic materials, poly-
mers and plastics during the second world war, electrical conductivity was also discovered in organic molecules.
For polymers it was found in 1976 by oxidizing polyacetylene with bromine or chlorine by Hideki Shirakawa,
Alan Mac Diarmid and Alan Heeger who received the Nobel prize in chemistry for this work in 2000 [3]. Since
then research on organic electronic devices has steadily increased and they have begun to replace their inorganic
counterparts for certain applications today. Inorganic devices require highly-purified silicon and vapor-deposition
techniques in vacuum to be efficient. Organic materials on the other hand do not require rare and expensive ele-
ments, devices may be built by solution-processing or inkjet-printing, possess high flexibility and above all promise
to be cheaper once they are at the mass production stage. However, at present they still fail to reach the perfor-
mance of inorganic devices, but the great amount of research currently invested in the area is likely to change this
in the near future. Even today they are capable of outperforming inorganic devices in areas where high flexibility
or large area processing are required. In the following we will cover the three most important organic electronic
devices: solar cells, light emitting diodes and thin film transistors. Their working principles are explained and
current challenges highlighted.

2.1.1 Organic Solar Cells

Prior to treating the peculiarities of organic solar cells we shall quickly discuss their inorganic counterparts. Con-
ventional inorganic solar cells are p-n-junctions, i.e. diodes. They are designed as depicted on the left of fig. 2.1.
Usually they are made of a thin n-doped layer and a thick p-doped layer. The top layer is thin to allow as much
light as possible to reach the p-n-junction, the bottom layer is thick to absorb all incoming light. At the p-n junction
excess carriers will recombine, i.e. the excess electrons of the p-type material with the excess holes of the n-type
material. This leads to an area of fixed charges near the p-n junction, the so-called ’space charge region’. Since
there will be negative space charges in the p-doped region and positive space charges in the n-doped, this gives rise
to a potential difference or voltage between the p- and n-doped regions and hence an electric field. The working
principle of the solar cell is as follows: Incoming light is absorbed in the space charge region of the solar cell.
The resulting electron-hole pair is immediately separated due to the electric field in the region and the fact that is
weakly bound due to high screening in metals. Consequently, the electrons and holes travel toward the opposing
metal contacts. Note that the electrons travel toward the contact on the n-doped side, which is the opposite direc-
tion of where they would travel, if the device were functioning as a diode with externally applied voltage. The
resulting current-voltage relationship is shown for an organic solar cell in fig. 2.1, but it is almost identical to that
of an inorganic cell. The I-V curve of the illuminated solar cell resembles that of a diode (dark current) shifted
down. Both inorganic and organic solar cells are characterized by the following properties:

• Open circuit voltage Uoc

The voltage measured when the solar cell is not integrated into an electric circuit. In inorganic solar cells this
corresponds to counterbalancing the internal potential of the space charge region, while in organic solar cells
it cooresponds to the potential difference due to different work functions of the electrodes. The intersection
between dark and illuminated curve is higher, because in organic solar cells the potential has to additionally
overcome the polaron binding energy.
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• Short circuit current Isc

The current measured if the solar cell is part of an electric circuit with negligible resistance. For the inorganic
solar cell this is also the maximum current, for the organic solar cell the maximum may be at negative
voltages if polaron pair dissociation is difficult. This may be the case for thick active layers, which reduce
the internal field between the electrodes.

• Maximum power point (MPP)
The point of operation at which the solar cell produces its maximum power output, i.e. where the product of
voltage and current is at its maximum as indicated by the orange square in fig. 2.1.

• Fill factor (FF)
The fill factor is the quotient between the maximum power and the product of open circuit voltage and short
circuit current, i.e. it measures the ’squareness’ of the current-voltage characteristics.

Fig. 2.1: (a) Schematic of an inorganic p-n-junction solar cell and (b) current-voltage characteristics of organic
solar cells, both modified from [4].

Organic solar cells are usually composed of four different materials. A transparent anode at the top to allow
sunlight to reach the layers beneath. Indium tin oxide (ITO) is commonly used for this purpose. The cathode on
the other side of the device is commonly made of aluminum. In between are a donor and an acceptor material.
The donor is specifically designed to absorb sunlight and form tightly bound electron-hole pairs called excitons.
The acceptor material is introduced to ease the separation of the neutral exciton into free charge carriers. The main
difference between organic and inorganic solar cells is that in organic solar cells there is no space charge region
and the separation of generated electron-hole pairs does not come freely. Instead a potential difference arising
from different work functions of the anode and cathode materials is required for successful separation. Combining
this with the fact that organic materials either do not form crystals at all or are less ordered than metals, since
crystallinity is upheld by weak non-bonded interactions instead of strong covalent bonds, sheds a bad light on the
efficiency of organic solar cells at first glance. However, in contrast to metals they may self-assemble and self-heal
and their absorption length, i.e. the thickness of material required to absorb all incoming light, is three orders of
magnitude lower (≈ 100 nm) than that of silicon (300 µm). The steps involved in generating current from light in
organic solar cells are as follows:

i. Light absorption and exciton generation
The incoming light passes through the transparent anode and is absorbed in the donor material, creating
strongly bound electron-hole pairs, the excitons.

ii. Exciton diffusion to the acceptor interface
Due to the low dielectric constant and hence large screening length of organic materials, charges can see
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each other well and excitons are therefore strongly Coulomb bound. The electrically neutral exciton can
only move by diffusion.

iii. Exciton dissociation and polaron pair generation
Excitons dissociate only at energetically favorable acceptor molecules, where the energy gain from the lowest
unoccupied molecular orbital (LUMO) difference of donor and acceptor is larger than the exciton binding
energy. If this is the case the electron transfers to the acceptor, leaving a hole in the donor. The resulting
electron-hole pair is still Coulomb-bound and now called a geminate or polaron pair.

iv. Polaron pair dissociation leading to free electron-hole pairs
To separate the polaron pairs an electric field is required. It usually arises solely from the built-in voltage
due to the work function difference (equalization of the Fermi levels) of anode and cathode material but may
also be aided by an externally applied voltage.

v. Charge transport resulting in photo current
The now free charge carriers travel through the donor and acceptor material at a speed depending on their
hole and electron mobilities toward the electrodes, where they are collected and finally yield the desired
photocurrent.

Fig. 2.2: Schematic of exciton diffusion in a polymer-fullerene blend solar cell (left) and of the corresponding
device structure (right). Taken from [4].

Clearly, there remain many challenges in the design of efficient organic solar cells, some of which shall be high-
lighted below along with possible solutions. While the absorption coefficient is high, the absorption bands, i.e.
the fraction of the spectrum of light that can be absorbed, tend to be narrow. Synthesis of new compounds and
multijunction solar cells address this problem. Also the exciton diffusion length prior to recombination is only a
few nanometers. Bulk heterojunction solar cells, where donor and acceptor material are intermixed significantly
reduce the distance an exciton has to travel to reach the donor-acceptor interface. They also introduce the problem
of finding a percolation path toward the electrodes for the free charges, however. Preventing the recombination of
polaron (geminate) pairs, one of the major loss mechanisms in solar cells, is still an unresolved issue.

2.1.2 Organic Light Emitting Diodes

Organic light-emitting diodes (OLEDs) do exactly the opposite of solar cells: they convert electrical current to
light. The most simple setup for an OLED would be to place an organic light emitting material in between a high
and a low work function metal. Electrons would enter the emission layer (EL) from cathode and holes from the
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anode. Upon recombination in the electroluminescent material they form a neutral exciton, which then decays to
the ground state emitting a part of the liberated energy in the form of light. The color of the emitted light depends
on the energy difference between the lowest unoccupied molecular orbital (LUMO) and the highest occupied
molecular orbital (HOMO), since most decay processes will correspond to an electron from the LUMO filling a
hole in the HOMO. In an oversimplified picture, the efficiency of the OLED should be good if the Fermi level of
the anode were to match the HOMO and the Fermi level of the cathode the LUMO of the emitting layer. One of
the electrodes must be transparent to allow for the transmission of light. The material of choice is usually indium
tin oxide (ITO). With an ITO work function of 4.7 eV this limits the choices for the anode material to low work
function metals such as Mg, Ca, Al or Li. Single layer devices are not exceptionally efficient, since they tend to
inject more electrons than holes and also allow the charge carriers to cross from anode to cathode without forming
excitons at all. To prevent this, multilayer devices are used in practice. There are different concepts containing all
or some of the following additional layers:

• Hole injection layer (HIL)
Hole injection layers may be used to smooth the surface contact with the ITO and increase performance
and color stability of the OLED by providing a uniform conduction path for holes to cross the ITO/HIL
interface [5].

• Hole transmitting (HTL) and electron transmitting layer (ETL)
The transport layers provide intermediate energy states to allow holes (electrons) to cascade through smaller
gaps in case there is a barrier between the metal work functions and the HOMO (LUMO) of the emission
layer. They additionally pervent migration of contaminants from the electrodes to the emission layer (EL).

• Hole blocking (HBL) and electron blocking layer (EBL)
These layers have very deep HOMO or high LUMO levels to prevent holes or electrons from passing through
them and thereby preventing non-radiative decay pathways to the electrodes.

To illustrate the function especially of blocking and transporting layers a diagram displaying the Fermi levels of
the electrodes along with the HOMO and LUMO levels of the organic materials in an OLED is shown in fig. 2.3
along with the complete device structure of a slightly different exemplary OLED. The main improvements that still
have to be made to allow OLEDs to rival their inorganic counterparts are increasing the lifetime of the devices as
well as the charge carrier mobility of the organic layers while a clear advantage is their flexibility.

e−

h+

ITO HTL
EBL

HOMO

LUMO

ETL

HBL

EL Ca/Al

ba

Fig. 2.3: (a) Energy level diagram for a multilayer OLED illustrating the effect of blocking and transmitting layers.
(b) Schematic of a complete OLED device, taken from [6].
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2.1.3 Organic Field Effect Transistors

Organic field effect transistors (OFETs) are the basic building blocks for flexible integrated circuits and displays.
The working principle of organic semi-conductors is identical to that of a metal-oxide-semiconductor field-effect
transistor (MOS-FET), whose concept can be traced back to ideas of Julius Edgar Lilienfeld in 1930 [7]. An OFET
is basicly a resistor that may be adjusted non-mechanically by application of an external voltage. It operates as
a capacitor where one plate (the organic semiconductor) is the conducting channel between two ohmic contacts,
termed source and drain. By applying a voltage to the second plate of the transistor, the gate electrode, which is
separated from the organic semiconductor by an insulating layer (dielectric), the density of charge carriers in the
channel and therefore the resistance between source and drain is modified. In the ideal case there is no conductance
in the ’off’ state. The ’on’ state corresponds to sufficient voltage being applied between gate and source electrode
to allow for charge transport in the channel. The current will initially increase linearly with the source-drain voltage
until it finally saturates. Six components are required to realize such a device: a source, gate and drain electrode,
an organic semiconductor, an isolator (dielectric) and a substrate [8]. The substrate is the basis upon which the rest
of the OFET is built. It needs to meet the mechanical requirements of the desired application, such as flexibility,
transparency and longevity, and provide good adhesion to the other components. Polyvinylchloride (PVC) or
polyethyleneterephthalat (PET) foils are common examples of flexible substrates. If flexibility is not important,
silicon wafers are also used. The most important property of the source, drain and gate electrodes is a high
charge carrier mobility, so polymers such as polyethlenedioxythiophene (PETDOT) or polyalanine are possible
candidates. In case of inorganic electrodes, gold (Ag) is commonly used, because its Fermi level closely matches
the LUMO of many organic semiconductors. Another important aspect is to minimize the distance between source
and drain, i.e. the length of the channel, since shorter channels correspond to higher efficency transistors. The
channel itself forms at the dielectric-semiconductor interface. Hence the charge carrier mobility in the organic
semiconductor is the key property of any OFET. It must be high enough to allow useful quantities of source-drain
current to flow while being modulated by reasonable voltage and power. Also, the material must accept charges
from the source electrode without a substantial barrier. Pentacene, tetracene, poly(3-hexylthiophene) (P3HT) and
polyarylamine (PTAA) are possible materials. The dielectric layer is required to block off the semiconducting
channel from the gate electrode. It must have an extremely high resistance and form close to defect-free layers.
Examples are polymethylmethacrylate (PMMA) and polyvinylphenol (PVP).
The two performance parameters requiring optimization in an or-

source drainorganic
semiconductor

dielectric

gate electrode

Fig. 2.4: Schematic view of an organic field
effect transistor.

ganic FET are the field effect mobility (µFE) and the on/off ra-
tio [9, 10]. The mobility is related to the current in the ’on’ state
of the transistor. There are two different definitions for the cur-
rent depending on whether the transistor is in the linear or in the
saturated regime, since in the latter case it is independent of the
source-drain voltage:

Ion = [WCiµFEVD(VG − V0)]/L

Ion = [WCiµFE(VG − V0)2]/(2L) (2.1)

Here W and L are channel width and length, respectively, Ci is the capacitance per unit area of the gate dielectric,
and VD, VG and V0 are the drain-source, gate-source and threshold voltages, respectively. The on/off ratio is the
quotient of this current with the current that flows in the absence of a gate field due to imperfections.

Ion/Io f f = µFECiVG/(2µrρh) (2.2)

where µr is the mobility and ρ the density of residual charge and h is the height of the semiconducting layer. To
build well-functioning devices the on/off ratio must surpass 106. Both parameters must still be improved in OFETs,
but the mobility is certainly the more challenging to lift OFETs out of the ’low cost - low performance’ regime.
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2. Organic Electronics

2.2 Measurements of Charge Mobility

Experimental measurements of the charge mobility are of great importance to gain an understanding of the influ-
ence of morphology and chemical structure on charge transport properties and to compare with computer simula-
tion results. Below, we describe three different experimental methods to measure the mobility: time of flight, pulse
radiolysis and field effect transistor (FET) measurements. The different techniques rarely yield the same order of
magnitude for the mobility, since pulse radiolysis measures the local mobility and thus focuses on the neighboring
pairs with the best coupling, while time of flight measures the bulk mobility heavily influenced by traps and defects
and lastly FET measurements depend on the device structure and interfaces between different layers.

2.2.1 Time of Flight

Time of flight measurements monitor the time it takes for a packet of charge carries to travel through a µm thick
sample. For this purpose the sample is placed between two non-injecting electrodes, which are used to apply elec-
tric fields to the sample. Both electrodes are semi-transparent to allow photogeneration of charges by absorption
of short pulses of laser light. Upon generation a packet of charge carriers travels through the medium from one
electrode to the other. The monitored current reveals the transit time of the carriers allowing calculation of the
mobility in the sample. Depending on the side chosen for photogeneration hole or electron mobilities may be
measured.
For organic materials the chosen substrate is mostly indium tin

Fig. 2.5: Ideal, non-dispersive time of flight
transient current.

oxide (ITO) with the counter electrode being made of aluminum.
The current monitored shows three distinct features in the ideal,
non-dispersive case (see Fig. 2.5): a strong initial peak, since
charges are generated as electron-hole pairs and one carrier species
immediately recombines at the respective electrode. The other
travels at a constant velocity through the sample. This leads to a
plateau region in the measured transient current. Once the packet
of charge carriers has transversed the sample and reached the elec-
trode on the other side, the current abruptly drops. The transit time
tT is given by the intersection of an extrapolation of the plateau re-
gion and the tangent to the tail of the transient. Once the transit
time is known the mobility may be calculated from

µTOF =
d

tT E
, (2.3)

where d is the distance the charge carriers traveled, i.e. the thickness of the sample or the distance between
electrodes, and E is the applied electric field.
Time of flight is one of the main techniques to measure mobilities in organic compounds [11, 12]. In case of
organic or most real imperfect systems there are some difficulties involved. First, the spatial extension of the
generated charge carrier packet must be significantly smaller than the sample size. This is of course governed by
the penetration depth of the laser depending on the absorption of the sample. This difficulty has been significantly
reduced by the charge-generation layer technique [13], where another thin, but highly absorbing layer is inserted
between electrode and sample to guarantee a localized charge carrier generation. Nonetheless charge transport
through organic materials is usually dispersive, i.e. charges will take different paths and hence different times to
pass through the sample. This leads to a distribution of transit times and often makes it impossible to see a clear
kink on linear scale. Therefore the transit time is determined on double logarithmic scale in case of dispersive
transport, which significantly reduces the accuracy. Finally, the number of generated charges must be small enough
not to distort the external electric field. This restricts the experiments to low excitation intensities and low electric
fields on the order of 107 − 108 V/m. Note that due to the size of the sample and the low charge carrier densities
the time of flight technique measures the bulk mobility of the sample and is sensitive to disorder and defects within
the sample [14, 15].
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2.2.2 Pulse Radiolysis - Time Resolved Microwave Conductivity (PR-TRMC)

In PR-TRMC the mobility of a sample is calculated from the

Fig. 2.6: Experimental setup for a PR-TRMC
measurement.

change in conductivity ∆σ in the sample measured by the cor-
responding change in microwave absorption. For this purpose the
setup depicted in Fig. 2.6 is used. The sample is irradiated with
single pulses of 3 MeV electrons from a Van de Graaff acceler-
ator with a pulse duration between 0.2 and 250 ns. The pene-
tration depth of the electron beam (≈ 15 mm) must significantly
exceed the sample size (≤ 3 mm). The high energy of the incident
electron beam is transferred to the medium by discrete excitation
and ionization along its track. Microwaves in the GHz range are
directed toward the sample by a waveguide. After propagating
through the sample the waves are reflected at the end of the cell
by a metal plate and directed toward the detector by a circulator.
The decrease in power of the microwave allows calculation of the
sum of electron and hole mobilities in the sample. The mathemat-
ical derivation is sketched based on [16, 17] below.
Consider a microwave traveling along the z-axis in a uniform waveguide containing a homogeneous medium. Its
corresponding electric field is: E(x, y, z) = E0(x, y) · e−γz. The propagation constant γ is a complex number with
the real part representing the change in amplitude due to attenuation and the imaginary part the change due to
the wave nature of propagation. For a rectangular waveguide of width a, the propagation constant is given by
γ2 =

(
π
a

)2 − ω2µ0µrϵ0ϵr. Here ω is the radial frequency of the waves, µ0 the permeability of the vacuum, µr the
relative permeability of the medium, ϵ0 the permittivity of vacuum and ϵr the relative dielectric constant of the
medium ϵr = ϵ

′ − iϵ′′, where ϵ′′ takes into account all sources of loss in the medium. Taking the imaginary part
of γ2 to be a lot smaller than the real part we may write Re{γ2} ≈ ω2ϵ′′

2c2β
, where c = (µ0ϵ0)−1/2 is the speed of

light and µr is taken to be one. An increase in the conductivity of the medium ∆σ leads to a change in ϵ′′ given
by ∆ϵ′′ = ∆σ/ωϵ0 and therefore in the real part of the propagation constant. Thus one can measure a difference
between incident power Pi and reflected power Pr depending on the conductivity of the medium:

∆Pr

Pr
=

(Pr/Pi)(∆σ) − (Pr/Pi)(0)

(Pr/Pi)(0) ≈ −A · ∆σ (2.4)

The latter linear approximation holds for small absorptions ∆Pr/Pr and A is called the sensitivity factor. The
change in conductivity of the sample is related to the mobility as follows:

∆σ = eNp

∑
µTRMC (2.5)

Here e is the elementary charge, Np is the concentration of charge carriers, taken to be identical for negative and
positive charges since the incoming electron beam generates electron-hole pairs, and

∑
µTRMC = µ+ + µ− the

mobility of the positive and the negative carriers. The concentration of the charge carriers may be calculated from
the energy dose absorbed from the high-energy electron beam via Np =

WeopD
eEp

. Weop < 1 is the probability that
the generated electron-hole pairs survive until the end of the pulse and hence the measurement, D is the energy
dose deposited in the sample due to the electron pulse and Ep is the energy required to form an electron-hole pair.
Taking these quantities to be known the mobility may be calculated as:

∑
µTRMC =

Ep

WeopD
∆σ (2.6)

PR-TRMC has been applied to measure the mobility in columnar discotics [18, 19, 20, 21, 22] or (molecular)
crystals [23]. In comparison to other measurement techniques, it measures the local mobility of small well-ordered
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domains, i.e. due to the ultrashort nanosecond timescale of the observations there is no time for charge carriers
to diffuse to domain boundaries or impurity trapping sites. Defects and traps in the morphology are hence not
seen by PR-TRMC and it is even attempted to measure single molecule mobilities with this technique. Therefore
PR-TRMC measurements tend to yield higher mobilities than non-local methods.

2.2.3 Field effect transistor and diode measurements

Another approach to measure the mobility of an organic material is to include it as a functional layer in a device
and extract the mobility from the device characteristics [24]. In a field effect transistor (FET) this is accomplished
by measuring the current through the device in the linear or saturated regime and calculating the mobility from
eqn. 2.1. Since the current flows through a very narrow channel at the dielectric to organic semiconductor interface,
it is affected not only by defects within the organic layer, but also the surface topology and polarity of the dielectric,
traps at the interface and the contact resistances at the source and drain metal/organic interfaces. The mobility is
gate-voltage dependent since the first injected charges might have to fill defects. It also strongly dependens on
charge carrier density, which in general is much higher in OFET measurements than in TOF or PR-TRMC. The last
alternative method, which shall be mentioned here, is measurement of mobility in a diode configuration. Diodes
are built simply by sandwiching an organic layer between two electrodes. The electrodes are chosen in such a way,
that only electrons or holes are injected at low voltage. In the absence of traps and at low voltages U, the resulting
current scales quadratically with applied bias voltage, since the current is space-charge limited. This means that
the injected charges reach a maximum because their electrostatic potential prevents additional charges from being
injected. The charge density is hence not uniform across the sample but largest near the injecting electrode. The
current-voltage characteristics, from which the mobility µ may be extracted, may be expressed as:

I =
9
8
ϵ0ϵrµ

U2

L3 (2.7)

where ϵr denotes the dielectric constant of the medium and L is the device thickness. In the presence of traps and
at high fields, additions must be made to the above formula.
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A many particle system, such as water, a membrane, an organic or liquid crystal, is completely described by the
time-dependent many-body Schrödinger equation i~ ∂

∂tΨ = HΨ. Due to the incredibly large number of variables
the solution thereof is impossible for any problem involving more than two simple molecules, even with sophis-
ticated numerical approaches. Computer simulations in general and those of charge transport in particular thus
face multiple time and length scale challenges. First, accurate knowledge of the molecular orbital structure of
molecules is needed. Second, large systems must be treated to get accurate impressions of the morphologies and
disorder therein. Third, a charge traveling over large distances by hopping between molecules, i.e. infrequent
events, must be handled. All this can be done within certain approximations by a hierarchy of different methods:
quantum chemical methods to obtain molecular orbitals, energy levels and transfer integrals, molecular dynamics
to gain realistic morphologies and finally kinetic Monte Carlo to sample infrequent events as described in this
chapter.

3.1 Ab initio quantum chemistry

Quantum Chemistry aims to solve the Schrödinger equation for the equilibrium configuration of a molecule to ob-
tain its electronic structure in the ground and excited states. Therefore the time-independent Schrödinger equation
is solved by numerical methods focusing on the electronic wave functions [25].
Ab initio (lat.: from the beginning) methods are quantum chemical methods solving the Schrödinger equation
using solely physical constants and no experimental knowledge. The term was coined to distinguish them from
semi-empirical methods, requiring constants obtained by fitting to experimental data. In the late 1920s D.R.
Hartree developed a self-consistent field (SCF) procedure to calculate approximate wavefunctions and energies
for atoms and ions to become known as the Hartree method. In 1928 J.C. Slater and J.A. Gaunt showed that the
method could be based on solid mathematical theory applying the variational principle to a trial wavefunction
written as a product of single-particle functions. In 1930 V.A. Fock and J.C. Slater corrected the Hartree method
to respect the antisymmetry of the wave function and the Pauli exclusion principle giving rise to the Hartree-Fock
(HF) method. Due to the computational demands of the HF method it wasn’t until the 1950s and the invention of
electronic computers that it became widely used. In the following years, methods reducing the HF approximations,
especially no longer neglecting the electron correlation, were introduced. They are known as Post-Hartree-Fock
methods and include methods such as perturbation theory of nth order, configuration interaction (CI) and coupled
cluster (CC). The main proofs underlying ab initio theory as well as technical details such as basis sets for the
representation of orbitals and methods to numerically solve the corresponding matrix equations are outlined in
appendix A.1.

3.2 Density Functional Theory (DFT)

Density functional theory (DFT) is an alternative to ab initio methods for solving the non-relativistic, time-
independent Schrödinger equation H |Φ⟩ = E |Φ⟩ [26]. Since the ab initio approach splits the wave function
of the system into single electron wave functions, for a system with N electrons this means there are 3N con-
tinuous variables to be fitted. Assuming that 3 ≤ p ≤ 10 parameters per variable are required to yield a fit of
reasonable accuracy, this means that p3N parameters must be optimized for an N electron system. As was shown
in the ab initio section, it is not quite that bad, but nonetheless the exponential wall exists and limits traditional
wave function methods to molecules with a small number of chemically active electrons: N ≈ O(10) [27]. This
problem is overcome by DFT, which is expressed in terms of the density n(r) in the Hohenberg-Kohn formulation
and in terms of n(r) and the single-particle wave functions ψ j(r) in the Kohn-Sham formulation. The proof of the
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Hohenberg Kohn theorem, details of the Kohn-Sham formulation and different DFT functionals are presented in
appendix A.2.

3.3 Molecular dynamics simulations

Molecular dynamics (MD) simulations focus on the properties of systems containing a large number of molecules.
Therefore it is assumed that the electrons follow the motion of the nuclei instantaneously, since they are much
faster and lighter. As a result, it suffices to describe only the relatively slow motion of the heavy nuclei by means
of classical mechanics, i.e. Newton’s equation of motion F = ma. Quantum mechanical effects are included in the
force field, which describes how atoms interact with each other and defines the potential governing the system.

3.3.1 Force fields

The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the
required forces (by taking the gradient) in MD simulations. The underlying idea is to create a certain number of
atom types based upon which any bonds, angles, dihedrals and long-range interactions may be described. More
atom types than elements are necessary, since the chemical surroundings greatly influence the parameters. For
example the angle between carbons in an alkyl side chain clearly differs from that of carbons in a phenyl ring, so
two different atom types must be used to describe them.
The force field we decided to use throughout our work is OPLS (Optimized Potential for Liquid Simulations),
developed by William L. Jorgensen at Purdue University and later at Yale University [28, 29, 30, 31, 32, 33]. The
functional form of OPLS is based upon AMBER (Assisted Model Building and Energy Refinement), originally
developed by Peter Kollman’s group at the University of California San Francisco [34, 35, 36, 37], and looks as
follows:

V({rN}) =
∑

bonds

1
2

kb(r − r0)2 +
∑

angles

kθ(θ − θ0)2

+
∑

torsions

{V1

2
[1 + cos(ϕ)] +

V2

2
[1 − cos(2ϕ)] +

V3

2
[1 + cos(3ϕ)] +

V4

2
[1 − cos(4ϕ)]

}
+

N−1∑
i=1

N∑
j=i+1

4ϵi j

(σi j

ri j

)12

−
(
σi j

ri j

)6 + qiq j

ri j

 fi j

Bonds and angles are described by harmonic potentials, i.e. springs, since they are very strong and show only
zero point fluctuations at room temperature. The quantum chemical vibrational spectra of the molecules are lost
in such a description, which makes it useful only for large molecules, where only the conformations of the entire
molecule are of interest. The dihedral potential is described by a cosine expansion and may take any value within
360◦ depending on the height of the barrier between the low energy conformations. This makes the precision of
the dihedral potential barrier crucial for many polymer properties. Dihedral potentials always possess a symmetry
around 180◦. The long range interactions are only counted for atoms three or more bonds apart. They consist
of Coulomb and Lennard Jones two-body interaction terms. The Lennard Jones potential is a combination of
attractive van der Waals forces due to induced dipole-dipole interactions, interactions between permanent dipoles
and empirical repulsive forces due to Pauli repulsion. The scaling factor fi j equals 0.5 for 1-4 interactions, i.e.
interactions between a given atom (1) and one connected by three consecutive bonds (4) which are additionally
described by a dihedral potential, and one otherwise. It is important to note that since the bonds never break due
to their functional form, MD simulations based on the OPLS force field are not suitable to describe any kind of
chemical reaction. Also, for OPLS correlations between bonds and angles are neglected. Force fields such as
MM3 [38] and MM4 [39] take such correlations into account.
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3.3 Molecular dynamics simulations

3.3.2 Calculation of force field parameters

Force field parameters are the constants describing the strength of the harmonic potentials of bonds, the barrier
heights defining dihedral rotation angles and the strength of long range interactions. Since they should not be
taken for granted and may not exist in established force fields for certain compounds, the following outlines how
they are derived [36].
In general any force field derivation must start with very small molecules, such as CH3, CH4, or maybe benzene,
to limit the number of variables. Larger molecules can only be considered once the force field parameters for most
constituents are already known. This is the case for all molecules of interest to us and so only a few parameters
had to be calculated while most were chosen in analogy to already parameterized compounds.

Bonds and angles

The equilibrium values for bonds as well as angles are taken from x-ray data. The values for the force constants
are derived by fitting to experimental vibrational frequency data. While one should actually go through a more
complex procedure to ensure that the geometries of simple molecules match experimental data as good as possible
after energy minimization, it is believed that in most cases the difference is negligible.

Dihedrals and impropers

There are two different approaches as to how to calculate dihedral potentials. One is to optimize the dihedral
potential for the simplest possible molecule and then apply it to larger ones containing the same dihedral. The
other is to optimize the dihedral parameters to best describe a large number of different molecules. Note that, while
the latter method might sound more accurate at first, it also leads to a dependence on the set of chosen molecules.
In either case, the dihedral parameters are computed based on ab initio or DFT methods as follows [40]. The
described methodology only works in case of one unknown parameter, otherwise multidimensional fitting becomes
necessary.

i. Ab initio calculations

• Scan dihedral (or improper) of interest
• Optimize geometry at each step
• Calculate change in potential energy

For this purpose, either perturbation (MP2), restricted Hartree-Fock (RHF) or hybrid methods between
Hartree-Fock and density functional theory (B3LYP) are used. The basis set chosen for the geometry opti-
mization is 6-311G(d,p) unless specified otherwise.

Fig. 3.1: Dihedral and improper angle between atoms i, j,k,l. Taken from [41].

ii. Potential energy according to MD

• Set parameters of dihedral in question to zero

13



3. Computer simulations

• Minimize energy of configurations
• Compute potential energy of each configuration

This requires prior knowledge of all other force field parameters for the molecule. The energy of the con-
figurations is minimized using the steepest descent algorithm, which follows the potential energy surface
defined by the MD force field along its steepest gradient and thereby moves the atoms into the closest local
minima.

iii. Fitting of the parameters
• Subtract MD from ab initio results
• Obtain parameters from fitting a dihedral function to the resulting curve

The difference between ab initio and MD energies corresponds exactly to the influence of the dihedral, since
the dihedral parameters were set to zero in the MD calculation and all other interactions are already included
in the force field. The mathematical representations used for dihedrals in this work are:

• Proper dihedrals

V({r}) = Cn · (1 + cos(nϕ))

• Ryckaert-Belleman dihedrals

V({r}) =
5∑

n=0

Cn cosn(ψ)

where ϕ = ψ − 180◦.

iv. Checking the results
• Rerun MD simulations using new parameters
• Compare MD and ab initio energies

Lennard-Jones parameters

Lennard-Jones parameters are the most difficult to derive, since they have to be adjusted in order to match exper-
imentally measured bulk properties. This is also where the advantage of OPLS over other force fields comes into
play when dealing with organic molecules. While most bond, angle and dihedral parameters were taken from the
force field developed by Weiner et al. [34] the Lennard Jones parameters were calculated by taking the solvent
molecules into account explicitely when necessary. This is achieved by carrying out MD or Monte Carlo (MC)
simulations of organic liquids, e.g. CH4 or C2H6, and then empirically adjusting the Lennard Jones (σ and ϵ)
parameters to match the experimental densities and enthalpies of vaporization.
A difficult issue is the factor to scale down the Lennard Jones 1-4 interactions (interactions between molecules only
three bonds apart). It has to be done, since otherwise the r−12 term would lead to unphysically high repulsions. The
value chosen is somewhat arbitrary and force field dependent, however. The same holds true for the combination
rules of Lennard Jones parameters, i.e. the choice of LJ parameters describing the interaction between two different
atom types. There are two main competing methods:

• Lorentz-Berthelot

σi j =
1
2

(σii + σ j j)

ϵi j = (ϵiiϵ j j)1/2

• Geometrical average

σi j = (σiiσ j j)1/2

ϵi j = (ϵiiϵ j j)1/2

Each force field requires a certain combination rule to be used. In case of OPLS this is the geometrical average.
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3.3 Molecular dynamics simulations

Partial Charges

Each atom in a molecule may carry partial charge because of the rearrangement of the outer-shell electrons due
to its surroundings. This quantity is also fixed during simulation time in standard, non-polarizable force fields.
The charge calculations are therefore based on the optimized geometry of a single molecule in vacuum, which we
obtained via B3LYP with 6-311G(d,p) basis set. The charges may then be obtained by fitting to the electrostatic
potential, i.e. adjusting the partial charges at the centers of the nuclei in such a fashion that the electrostatic
potential given by the wave functions is best reproduced. An example of such a method is CHELPG (CHarges
from ELectrostatic Potentials using a Grid based method) [42]. Charge calculations are done using higher-level
methods and basis sets than the geometry optimization, e.g. B3LYP/cc-pVTZ. There are two known problems
with this straight-forward approach however: Firstly, oftentimes considerable variation is seen when charges are
computed for different conformations of a molecule, which is especially problematic for molecules with multiple
low energy conformations such as propylamine [35]. Secondly, standard electrostatic potential (ESP) charges tend
to miscalculate charges of ”buried” atoms, since they are in general far away from the surface points at which
the ESP is evaluated and close to differently charged atoms. This leaves them statistically underdetermined and
they may vary greatly when attempting to improve the quality of the least-square ESP fit. For these reasons, the
restricted ESP charge model was developed [43]. It consist of a least-squares fit of the charges to the electrostatic
potential (as before), but with hyperbolic restraints on heavy atom charges. This is followed by a second fitting
stage, needed to fit methyl groups which require equivalent charges on hydrogen atoms which are not equivalent
by molecular symmetry. Nonetheless, we decided to use CHELPG for our partial charge calculations, confirming
the results by checking convergence of partial charge with increasing size of the basis set. For this purpose we start
with charge calculations using the 3-21G(d) basis set and increase the basis set up to 6-311++G(3df,3pd) with five
or six intermediate steps (see fig. 3.2).
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Fig. 3.2: Comparison of basis set sizes for some of the Pople basis sets used, i.e. numbers one through six refer to
6-311G(d), 6-311G(d,p), 6-311++G(d,p), 6-311++G(2d,2p), 6-311G(2df,2pd) and 6-311++G(3df,3pd)).

Force field validation

There are multiple ways to test the validity of a force field, depending also upon what type of system is simulated.
For proteins and other complex molecules, it is important that the Ramachandran plots, i.e. statistical distribu-
tions of consecutive dihedral angles along the backbone, correspond to those obtained experimentally to ensure
sampling of the correct secondary structures in simulations. For liquids, the radial distribution function and higher
correlations as well as the density should be correctly reproduced. The radius of gyration and the persistence
length are checked for polymer chains. Crystalline compounds must be stable when simulated starting from an
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3. Computer simulations

x-ray crystallography structure and reproduce a similar melting point as experiments.

3.3.3 Integration schemes

MD simulations are based on classical mechanics and therefore aim at solving Hamilton’s equations of motion.

q̇i =
∂H
∂pi

(3.1)

ṗi = −
∂H
∂qi

(3.2)

Here qi and pi are the generalized coordinates and momenta, respectively, and H is the classical Hamiltonian
corresponding to the system. The index i labels the different particles (atoms, molecules,· · · ) in the system. Due
to the Liouville theorem, which states that the phase space volume of a set of systems is invariant under time
evolution, the following must hold for any distribution function f (qi, pi, t) in phase space

d
dt

f ({q}, {p}, t) = 0 =
∂ f
∂t
+

∑
i

∂ f
∂qi

q̇i +
∑

i

∂ f
∂pi

ṗi B
∂ f
∂t
+ { f ,H}

where { f ,H} is the Poisson bracket. One can now continue to define the Liouville operator L via iL f B { f ,H},
i being the imaginary unit. Then the time evolution of any distribution in phase space, which is not explicitely
time-dependent (as is the case for distributions of atoms) is described by the equation d

dt f = iL f , which given an
initial state at t = 0 has the formal solution

f ({q(t)}, {p(t)}) = eiLt f ({q(0)}, {p(0)}) (3.3)

To gain a better understanding of how the Liouville operator acts, it is helpful to define iLq B
∑

i q̇i
∂
∂qi

and
iLp B

∑
i ṗi

∂
∂pi

. This allows us to calculate:

fq(t) = eiLqt f (0) = e
∑

i q̇it ∂
∂qi f (0)

=

N∏
i=1

eq̇it ∂
∂qi f (0) =

N∏
i=1

 ∞∑
n=0

1
n!

(q̇it)n
(
∂

∂qi

)n f (0)

= f (q1(0) + q̇1t, q2(0) + q̇2t, · · · , qN(0) + q̇N t; p1(0), · · · , pN(0)) (3.4)

SoLq is the generator of translations in the coordinates andLp the generator of translations in the momenta. Since
the two generators do not commute one has to apply the Trotter formula to express the full Liouville operator with
them, i.e.

eA+B = lim
n→∞

(
e

A
2n e

B
n e

A
2n

)n
(3.5)

⇒ eiLt ≈
(
ei ∆t

2 Lp ei∆tLq ei ∆t
2 Lp

)n
eO( ∆t

t )2
(3.6)

So after n translations by ∆t the error is of the order of (∆t)2. The coordinates and momenta of a system after a
time step ∆t may be computed using the Verlet integration scheme [44]:

qi(t + ∆t) = qi(t) +
pi(t)
m
∆t +

1
2m

F({q(t)})(∆t)2 (3.7)

pi(t + ∆t) = pt(t) +
1
2

F({q(t)})∆t +
1
2

F({q(t + ∆t))∆t (3.8)
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3.3 Molecular dynamics simulations

These equations approximate the originally continuous dynamics given by eqn. 3.3 within a truncation error of
(∆t)4. For application in MD simulations the algorithm was rewritten in terms of velocity v B p/m. An algorithm
that updates the positions and velocities in the system using forces determined only by the positions at time t (not
requiring calculation of forces at t + ∆t) is the leap-frog algorithm [45], which is the algorithm of choice in the
simulation package Gromacs [46] we use for MD simulations, and consists of the following two equations:

v(t +
∆t
2

) = v(t − ∆t
2

) +
F(t)
m
∆t (3.9)

r(t + ∆t) = r(t) + v(t +
∆t
2

)∆t (3.10)

3.3.4 Thermostats

Molecular dynamics performed using solely the numerical integration schemes explained above corresponds to
running in an NVE or microcanonical ensemble, i.e. keeping the number of particles N, the volume of the system
V and the total energy E constant. There are two main reasons why it is often not desirable to use this ensemble.
First, experiments cannot be carried out under such conditions, since it is impossible to control the total energy of
a system. Second, numerical integration errors may lead to steady drifts in energy or the system may heat up due
to external or frictional forces. To avoid these problems, simulations may be run using thermostats, which ensure
constant temperature within the system [47]. The temperature in MD is given by the particles velocities

kBT
2

(3N − Nc) =
N∑

i=1

1
2

mi |vi|2 (3.11)

where kB is the Boltzmann factor, T the temperature, N the number of particles, mi the mass of a single particle
and vi the corresponding velocity. The term Nd f = (3N −Nc) represents the degrees of freedom. Each particle may
move in the x-, y- and z-direction, which leads to 3N degrees of freedom minus the number of conserved quantities
Nc. In general, momentum p and angular momentum L are conserved. However, for periodic boundary conditions
conservation of angular momentum no longer holds. Since the velocities of each particle are known at every time
step in MD simulations, the obvious way to control the temperature (eqn. 3.11) is by scaling the velocity of each
particle by a factor of λ to give the desired temperature. Let the temperature at time t be T (t), then the change in
temperature due to a multiplication of all velocities by λ is given by:

∆T =
∑
i=1

mi(λvi)2

Nd f kB
−

∑
i=1

miv2
i

Nd f kB
= (λ2 − 1)T (t) (3.12)

Thus a straightforward way to control the temperature is to multiply all velocities by a factor of λ =
√

T0/T (t) at
every step. However, this does not allow for temperature fluctuations and hence does not sample a thermodynamic
ensemble. Also since the algorithm acts solely on the kinetic energy, drifts in the potential energy are still possible
and may lead to large discrepancies between potential and kinetic energy after a while.

Berendsen temperature coupling

A slightly weaker formulation of velocity scaling leads to the Berendsen thermostat [48], where the systems ki-
netics are coupled to an external heat bath with a given temperature T0. Thereby the algorithm slowly corrects
deviations of the system temperature T (t) from the desired temperature T0 by

dT
dt
=

1
τ

(T0 − T (t))⇒ ∆T =
δt
τ

(T0 − T (t)) (3.13)

i.e. the temperature deviation decays exponentially with a time constant τ. The factor to rescale the velocities is
time-dependent and given by:
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λ2 = 1 +
δt
τT

[
T0

T (t − δt/2)
− 1

]
(3.14)

where the δt/2 is due to the leap-frog algorithm (eqn. 3.9). The factor τT is not identical with the time constant τ
of the temperature coupling from eqn. 3.13, because the change in energy due to rescaling the velocities is partly
redistributed between kinetic and potential energy, so that the change in temperature is less than the scaling energy.
The precise relation between τ and τT is

τ = 2CVτT /Nd f kB (3.15)

where CV is the total heat capacity of the system. The ratio τ/τT ranges from 1 (gas) to 2 (harmonic solid) to 3
(water). In MD simulations the ’temperature coupling time constant’ always refers to τT . In practice the scaling
factor may only be chosen in the range 0.8 < λ < 1.2 to avoid scaling by very large numbers, which may crash the
simulations. Since the Berendsen thermostat still suppresses kinetic energy fluctuation, it does not generate a true
canonical ensemble. Therefore, it is favored for equilibration runs due to the exponentially fast coupling, but not
for production runs.

Nosé-Hoover temperature coupling

The Nosé-Hoover coupling was specifically developed to sample the correct canonical ensemble [49, 50]. For this
purpose it treats the heat bath as an integral part of the system by introducing a thermal reservoir and a friction
coefficient in the equations of motion.

d2ri

dt2 =
Fi

mi
− ξdri

dt
(3.16)

The equation of motion for the heat bath parameter ξ is

dξ
dt
=

1
Q

(T (t) − T0) (3.17)

As before T0 is the desired temperature and T (t) the current temperature. The reference temperature and the
constant Q determine the strength of the coupling. The latter is also called the ’mass parameter’ of the reservoir.
This approach does not give an exponential but an oscillatory relaxation. The period τT of the oscillations is given
by

Q =
τ2

T T0

4π2 (3.18)

The actual time the system takes to relax is several times larger than the chosen period of oscillation. Note that
in the analysis of a trajectory with very frequent print-outs, as is required for example to compute the autocorre-
lation of transfer integrals (20 fs between print-outs), the fluctuations are clearly visible in the energy and lead to
unwanted correlations. This lead us to choose either the velocity rescaling thermostat or use the NVE ensemble in
such cases.

Velocity rescaling thermostat

To combine the advantages of the Berendsen, i.e. first order decay of temperature and no oscillations, and the
Nosé-Hoover thermostat, i.e. sampling of a correct canonical ensemble, the velocity rescaling thermostat was
developed [51]. It is identical to the Berendsen thermostat with an additional stochastic term allowing fluctuations
of the kinetic energy K:
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dEkin = (K0 − K)
dt
τT
+ 2

√
KK0

Nd f

dW
√
τT

(3.19)

Here Nd f is the number of degrees of freedom and dW is a Wiener process. Other than a random seed for the
Wiener process, there are no additional parameters. After its implementation in Gromacs 4.0 it became our choice
for production runs.

Stochastic dynamics (SD)

The stochastic dynamics thermostat [52] takes a different approach from all thermostats described above by locally
coupling every single particle to a heat bath such that

dri

dt
=

pi

mi
(3.20)

dpi

dt
= Fi − ζ

pi

mi
+ fi, (3.21)

where ζ is a constant friction parameter and the stochastic forces fi have a mean of zero. The local scale thermostat-
ting prohibits propagation of numerical instabilities arising from inaccurate calculations of collision-like processes,
which allows use of a larger integration time step. However, the damping term violates Galilei invariance and thus
violates momentum conservation visible in a damping of hydrodynamic correlations.

Dissipative particle dynamics (DPD)

The DPD thermostat combines the positive aspects of SD, such as numerical stabilization, with the advantages
of Nosé-Hoover, like strict Galilean invariance and correct hydrodynamics [53]. It achieves this by dampening
the velocity differences of nearby particles instead of the absolute particle velocities as is the case in SD. The
stochastic forces also act on pairs of nearby particles, thus strictly fulfilling Newton’s third law. The disadvantage
is instantaneous heat transfer due to the locality of the thermostat, which may be seen as limit of infinite thermal
conductivity. In the formulation of Español and Warren [54] the DPD equations read:

dpi

dt
= Fi − ζωD(ri j)(r̂i j · vi j)r̂i j + σω

R(ri j)θi jr̂i j (3.22)

Here vi j = vi − v j is the relative velocity between particle i and j, ri j is the connecting vector and r̂i j the unit
vector in the same direction. ζ is the friction constant and σ the noise strength. ωD and ωR are r-dependent weight
functions vanishing beyond a given cut-off. θi j is a Gaussian white noise variable with a first moment of zero.

3.3.5 Barostats

To equilibrate artificial starting configurations, it is important to run in the NPT ensemble and allow fluctuations in
box size to keep the pressure and reach the desired density. The pressure tensor may be computed from quantities
easily accessible in MD simulations by application of the Clausius virial theorem

P =
2
V

(Ekin − Ξ) (3.23)

where V is the volume of the simulation box, Ekin is the kinetic energy and Ξ is the inner virial tensor given by

Ξ = −1
2

∑
i< j

ri jFi j (3.24)
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where ri j is the vector connecting the particles i and j and Fi j is the force acting between them. All pressure
correction algorithms work by changing the inner virial Ξ by scaling the inter particle distances. In case of an
isotropic system the isotropic pressure may be calculated from the trace of the pressure tensor by

P =
1
3

Tr{P} (3.25)

Berendsen pressure coupling

In the Berendsen pressure coupling algorithm [48], similarly to the temperature coupling algorithm (sec. 3.3.4),
the coordinates as well as the box vectors are rescaled at every step with a matrix µ. This leads to a first-order
kinetic relaxation of the pressure towards the reference pressure P0

dP
dt
=

P0 − P
τp

(3.26)

The scaling matrix µ is given by

µi j = δi j −
∆t
3τp

βi j

[
P0i j − Pi j(t)

]
(3.27)

Here β is the isothermal compressibility of the system, usually given by a diagonal matrix with identical elements
on the diagonal, whose value is generally not known. This is not a severe problem, since it only influences the
time-constant of the relaxation and not the average pressure itself. However, it only allows for changes in the length
not the orientation of the box vectors. Same as for the thermostat, the weak-coupling scheme of Berendsen does
not correctly describe a thermodynamical ensemble, but is ideal to equilibrate a system. Since all our production
runs use NVT or NVE ensemble and we have used solely the Berendsen barostat for equilibration, we refrain
from giving details on other methods. We would like to mention, however, the Parinello-Rahman barostat [55],
which explicitely solves a matrix equation of motion for the box vectors to allow changes in the box shape. This
is required for equilibration of crystalline systems in case the unit cell vectors are unknown. It also simulates an
exact ensemble as does the Nosé-Hoover thermostat for temperature coupling.

3.4 Kinetic Monte Carlo (KMC)

For the analysis and simulation of atomic scale systems molecular dynamics is extremely popular, since it gives an
accurate representation of the real physical system unless quantum dynamical effects are important or the Born-
Oppenheimer approximation does not hold. The enormous drawback of MD methods is, however, that an accurate
integration of the system requires timesteps capable of capturing even hydrogen vibrations, i.e. on the order of
10−15 seconds. While united atom and coarse-graining approaches somewhat remedy this issue, the maximum
simulation time is still limited to less than a microsecond for most systems. This is called the time-scale problem.
For systems were only rare events are of interest and transition rates between these events are known, there is an
alternative simulation method which elegantly circumvents this problem: kinetic Monte Carlo (KMC) [56]. Monte
Carlo methods have earned their name since they rely on the generation of random numbers as does the cashflow
in the casinos of Monte Carlo, Monaco. Monte Carlo methods emerged in the late 1940’s as electronic computers
came to be used and were applied to solving integrals numerically by Monte Carlo integration [57] or sampling
different geometries in physical ensembles by the Metropolis algorithm [58]. In the 1960’s such methods were
also developed for evolving systems dynamically from state to state. One of the first applications to atomistic
systems was Beeler’s simulation of radiation damage in 1966 [59]. In the 1990’s the term kinetic Monte Carlo
was coined for such methods. Today they are widely used in numerous different fields such as radiation damage,
surface adsorption, diffusion and growth, statistical physics and last but not least of course charge transport.
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3.4.1 Infrequent-event systems

The underlying premise is that the dynamics of the system of interest are characterized by occasional transitions
from one state to another with long periods of inactivity inbetween. The key property of such systems is that,
because it stays in one state for such a long time, it eventually forgets how it got there. Thus the rate constants
ki j, which characterize the time it takes for the system to escape from state i and move to state j, are independent
of what state proceded i. This independence of transition probabilities from the history of previous transitions
is the defining property of a Markov chain. State-to-state dynamics in such a system are called a Markov walk.
Because the transition rate out of state i is given by the sum of rates to all surrounding states ki j, a simple stochastic
procedure may be designed to propagate the system correctly from state to state. If we possess exact knowledge of
all rate constants governing the system, the state-to-state trajectory of such a simulation will be indistinguishable
from that obtained by an MD simulation, i.e. the probability to observe a certain sequence of transitions will be
identical in both cases, but the KMC result comes at far lower cost.

Rate constants

Because the system has no memory of its past at any given time it has the same probability of escaping from its
current state to another throughout. It is thus governed by a first-order process with exponential decay statistics,
i.e. the probability that the system has not yet left its current state i is given by

psurvival = exp{−ktott} (3.28)

where ktot is the total escape rate for escape from that state. More interesting to us, however, is the probability p(t)
for the time of first escape from the state. Clearly, the integral of p(t) at a given time t′ is equal to 1 − psurvival(t′).
Thus, the negative time derivative of psurvival gives the probability distribution function for the time of first escape

p(t) = ktot exp{−ktott} (3.29)

The average time of escape τ is therefore the first moment of the above distribution, τ =
∫ ∞

0 tp(t)dt = 1
ktot

. Since
escape may occur along any number of different routes and the system has a fixed probability per time of finding
each route, the total escape rate must be the sum of the individual rates

ktot =
∑

j

ki j (3.30)

In other words for each escape way there is again an exponential first-escape time distribution.

pi j(t) = ki j exp{−ki jt} (3.31)

Obviously, only one of them may be the first to occur.

Exponentially distributed random numbers

To deal with the above process in a Monte Carlo fashion, it is important to generate a random number tdraw from an
exponential distribution p(t) = k exp{−kt}. To this end, a random number r is drawn in the (0,1) interval. Multiple
random number generators exist to achieve this. Given r we obtain tdraw by:

tdraw = −(1/k) ln{r} (3.32)

An important thing to note is that it does not matter whether the random number is drawn from the 0 < r < 1 or
the 0 < r ≤ 1 interval, but in case zero is part of the range this might cause an ill-defined ln{0} operation, which
must be avoided.
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3.4.2 The KMC procedure

Let us assume that a system begins in state i and the set of rate constants ki j for all pathways are known. A
random number t j is then drawn from the exponential distribution of first-escape times for each pathway leading
away from i to j. Since the system must decide for one escape route, the pathway jmin with the lowest value of
t j, i.e. tmin, is chosen. The system is then moved to the state jmin, the other drawn times are discarded and the
time of the overall system is advanced by tmin. The same procedure then repeats for the new state. This algorithm
is not efficient, because a random number is drawn for each of the j escape paths, although all except the one
chosen are discarded. A far more efficient way to implement KMC simulations is the rejection-free ’residence-
time’ procedure, also referred to as the BKL or ’n-fold way’ algorithm based on a publication in 1975 by Bortz,
Kalos and Lebowitz [60]. Here, the use of only two random numbers is required independent of the amount of
neighboring molecules. The first is used to determine which pathway is chosen to escape from state i. To this end
all M pathways are identified with their rate constants ki j. These are added up to give the total escape rate ktot. A
path with a low rate thus comprises only a small part of the total rate. This is implemented as an array of partial
sums, where the array elements s( j) represent the sums up to and including the rate ki j, i.e.:

s( j) =
j∑
q

kiq (3.33)

A random number r distributed on (0, 1) is drawn and multiplied by ktot. The array is then searched from the
beginning until s( j) > rktot, which is identical to choosing pathway j for escape from state i. The second random
number is required to advance the system clock and is drawn from the exponential distribution for the rate constant
ktot. Note that the time advance has nothing to do with which event is chosen. The time to escape depends only on
the total escape rate. In the limit of an infinite number of hops both schemes are equivalent.

3.4.3 Determination of the rate constants

In our case the kinetic Monte Carlo simulations are applied to simulate charge transport in the hopping regime. It
is assumed that due to weak correlations and strong disorder in organic systems the charge is always localized on
one molecule and charge transport is governed by hopping rates, which define how likely it is to hop from a given
molecule to a neighboring one. Rare event sampling and hence a KMC treatment is therefore applicable. The
rates used correspond to the Marcus rates, which are explained in detail in sec. 4.4.2. The (hopping) sites represent
centers of mass of different molecules or conjugated segments that a charge can hop to. The total hopping rate away
from molecule (state) i is determined by adding up the Marcus rates for all nearest neighbors thereof. The algorithm
implemented in our simulation code is identical to the one described above, if charge transport is simulated using
a single charge only. In case of multiple charges, states already occupied will not be available to other charges.
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4 Models for charge transport

In the past the study of the influence of chemical structure and morphology on charge transport properties for or-
ganic compounds has been impossible for two main reasons. First, it was unknown how to compute the necessary
simulation parameters such as reorganization energies and transfer integrals for organic molecules. This has been
solved by the advances in quantum chemistry outlined in sec. 3.1 and 3.2. Second, to obtain transfer integrals
between neighboring molecules based on a realistic morphology requires large-scale molecular dynamics simula-
tions and thus also the evaluation of a large number of transfer integrals. To achieve this at an affordable cost has
become possible due to the molecular orbital overlap method.
These recent advances allow us to apply two state of the art charge transport models - kinetic Monte Carlo based
on Marcus rates and diffusion limited by thermal disorder using semi-classical dynamics - to realistic morpholo-
gies sampled by MD. The approaches will be compared for organic crystals while focusing on hopping transport
for liquid crystalline compounds. This enables us to test their abilities and limits and to find structure-property
relationships aiding the understanding of charge transport. In this chapter we first give an overview of the develop-
ment of charge transport descriptions starting from band theory up to the models used in this work. They will be
explained in detail including analysis and implementation, which was partially written in the course of this work.
Finally, we also describe how to compute all required input parameters.

4.1 Band theory

Charge transport is by nature of the electron a quantum mechanical process requiring a description based on the
Schrödinger equation. Hence the computation of charge transport properties is an attempt to describe the motion
of one or multiple electrons in a material by means of solving the Schrödinger equation for electrons in a possibly
time-dependent potential defined by the material of interest. Since a solution of the full equation is not feasible,
approximations have to be made. Most charge transport theories and all treated here ignore interactions between
charge carriers and their influence on an externally applied electric field. The remaining Hamiltonian contains
terms representing electrons, phonons (and thus the potential due to molecular structure and morphology of the
compound) and the coupling between them:

H = H0
el + H0

ph + Vel + V local
el−ph + Vnonlocal

el−ph + Vimpurities (4.1)

Here H0
el and H0

ph are the Hamiltonians for non-interacting electrons and phonons. Each localized state interacts
with its neighbors by an electronic coupling term Vel and phonons are dispersionless, i.e. localized on each site.
Sites may represent either single molecules in case of crystals or conjugated segments in case of polymers. The
local electron-phonon coupling V local

el−ph corresponds to the reduction in energy of a molecule due to the presence of
a charge carrier. This results from a geometric deformation of the molecule as well as a possible rearrangement
of the surrounding (solvent) molecules. The non-local coupling Vnonlocal

el−ph describes the influence of center of mass
vibrations and the orientation of neighboring molecules with respect to each other on the electronic coupling
between them.
Since conductivity was initially studied in inorganic crystalline solids, the potential of the crystal was taken to
be periodic due to strong covalent bonds between atoms ensuring long-range order. In this case the carrier wave
function is described by the Bloch functions

Φn,k(x) = eikxun,k(x) (4.2)
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4. Models for charge transport

where k is the wave vector, n the discrete band index and un,k is a function with the same periodicity as the crystal
lattice. For any given n the corresponding states are called the electronic band and for each band there is a connec-
tion between its wave vector and its energy called band dispersion. Terms referring to electron-phonon coupling
in eqn. 4.1 are ignored, the carriers are completely delocalized and charge transport is treated by an effective mass
approach [61, 62]. In a one-dimensional array of molecules with only a single state, carriers with wave vector k
are scattered to a new state k′ by impurities or phonons. The time between collisions (mean relaxation time of the
band states) J is taken to be constant and the carrier is assigned an effective mass of 1

me f f
= 1
~2

d2ϵ
dk2 . The mobility

under such assumptions is given by

µ = eJ/me f f (4.3)

For more general three-dimensional systems with multiple states per molecule, the mobility tensor is given by
µ = eJM−1

e f f , where the elements of the inverse mass tensor are given by

(M−1
e f f )µν = −

1
~

(
∂2E(k)
∂kµ∂kν

)
k0

(4.4)

Here µ and ν represent one of the Cartesian coordinates x, y, z and k0 is the wave vector at which the lowest
unoccupied (highest occupied) band energy of the electron (hole) is at its minimum (maximum). Despite the fact
that organic crystals are hardly as ordered as their inorganic counterparts, band structure computations have been
applied to organic crystals in an attempt to link the effective mass tensor with experimental mobilities [63, 64, 65]
and give insights at low temperatures, but fail at room temperature. One result of the band transport model that
holds for most organic crystals even at higher temperatures is that the temperature dependence of the mobility
follows a power law:

µ ∝ T−α (4.5)

Nevertheless, electron-phonon interactions cannot be neglected in charge transport calculations for organic mate-
rials and thus two different approaches to treat them were developed: polaron and disorder models. In the former,
disorder is taken to be weak (as in crystals), so the wave function of the electron will still be spread out over a
number of molecules requiring the solution of the underlying Hamiltonian. In the latter case, disorder is assumed
to be strong or the coupling between the molecules weak (as in liquid crystals or polymers), so that the electron is
localized on a single molecule and charge transport is governed by hopping rates between adjacent molecules. The
corresponding rate equation may be solved numerically or using kinetic Monte Carlo simulations (see sec. 3.4).

a b c

Fig. 4.1: Equilibrium electronic wave functions in the band-like, fully delocalized, perfectly ordered case (a), the
weakly disordered, polaronic case (c) and the fully localized, highly disordered case (c) illustrated on a
one-dimensional array of molecules.
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4.2 Polaron models

4.2 Polaron models

When the electron-phonon interaction can no longer be neglected, this means that the charge carrier deforms
the surrounding medium when it travels. The quasi-particle formed by combining the charge carrier and the
deformation it carries with it is termed polaron. An illustration of the different behavior of charge carriers in the
limits of band-like, polaronic and hopping transport is given in figure 4.2.

Fig. 4.2: Illustration of charge carrier propagation in a one-dimensional array of diatomic molecules for different
regimes, where deformations are indicated by modulations of the bond length u j of the molecules. In
pure band transport (a) the crystal lattice is unaffected by the carrier motion. In polaronic transport
(b) the carrier travels along with a lattice deformation and is thus ’heavier’ and slower. In the case of
pure hopping (c) the lattice deformation due to the presence of the charge is so strong that the charge
is completely localized on one molecule and hops between different molecules with a given rate. The
transition between (a) and (b) is studied by large, the one between (b) and (c) by small polaron theories.
Taken from [66].

4.2.1 Holstein models

The first to treat electron transport taking into account the local electron-phonon coupling in eqn. 4.1 was Holstein
in 1959 [67, 68]. Charge transport is described along a one-dimensional array of diatomic molecules in the tight-
binding approximation, i.e. the state of the system may be expressed as a linear superposition

Ψ(r, x1, · · · , xn) =
∑

an(x1, · · · , xn)ϕ(r − na, xn) (4.6)

of molecular electron wave functions, ϕ(r−na, xn), each localized on a particular (nth) molecular site, with a being
the unit lattice vector, and depending on the internuclear coordinate xn of that site. Treating the potential energy
of an individual molecule as parabolic, i.e. assuming harmonic vibrations, the Schrödinger equation of the system
may be written as:
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4. Models for charge transport

i~
∂an(x1, · · · , xn)

∂t
=

N∑
m=1

[
− h2

2M
∂2

∂x2
m
+

1
2

Mω2
0x2

m + Axn

]
an − J[an+1 + an−1] (4.7)

Here the sum over m in the square brackets represents the lattice Hamiltonian, i.e. the vibrational potential and
kinetic energy of a single molecule, where M is the reduced mass and ω0 is the vibrational frequency of the indi-
vidual molecules. −Axn corresponds to the electron-lattice interaction. The deformation of a molecule occupied
by a charge carrier is treated as a linear function of its vibration coordinate. The term proportional to the transfer
integral J links the electronic wave function with molecular motion. Note that J is assumed to be identical between
all sites, i.e. there is no off-diagonal disorder (non-local electron-phonon coupling). An important prediction of
this theory is that the transfer integral is reduced by the electron-phonon interaction, in mathematical terms:

J(T ) = J exp
{
− Λ
~ω0

coth
(
~ω0

2kBT

)}
, (4.8)

where Λ is the reorganization energy (sec. 4.5.2). It predicts a transition from band-like to hopping transport at
higher temperatures. The mobility initially decreases with temperature due to band-width narrowing but increases
again later due to phonon-assisted hopping. Based on this approach using the lowest order approximation for the
relaxation time τ the mobility may be computed as in eqn. (53) of [24]:

µ =
ea2ω0

kBT

Λ csch
(
~ω0

2kBT

)
π~ω0


1/2

exp
{
− 2Λ
~ω0

csch
(
~ω0

2kBT

)}
(4.9)

with the hyperbolic cosecant csch x = 1/(sinh x) = 2/(ex−e−x). Due to the assumption of a narrow electronic band
and a temperature larger than the electronic band width, this expression does not depend on J and is only valid if
J(T ) ≪ kBT .

4.2.2 Holstein-Peierls models

The inclusion of off-diagonal disorder, i.e. the Peierls or nonlocal electron-phonon coupling term from eqn. 4.1,
was first computed without quantum chemical knowledge of the coupling parameters in 1985 by Munn and Sil-
bey [69, 70]. Hannewald and Bobbert were able to give an analytical formula for the mobility in thermal equilib-
rium based on the small polaron picture by evaluating the Kubo formula for electrical conductivity, i.e. evaluating
the current-current correlation function treating the total current as the sum of a purely electronic and a phonon-
assisted current [71]. They then applied the model to naphtalene [72] by evaluating all necessary parameters using
DFT-LDA calculations combined with MD simulations and were able to reproduce the experimental temperature
dependence of the hole mobility µ ∝ T−2.5. Nonetheless, it has been found that thermal fluctuations in transfer
integral values between nearest neighbors in organic crystals are of the same order as their average value [73, 74].
Thus the delocalized nature of the carrier assumed in these approaches is no longer preserved due to localization
produced by these fluctuations.

4.3 Diffusion Limited by Thermal Disorder

To include the strong nonlocal electron-phonon coupling, i.e. the large thermal fluctuations of the transfer integral
J, a model must be used that does not rely on delocalization of the carrier. Due to the strong electronic coupling in
crystals, a treatment by hopping models is also inappropriate. It is thus necessary to numerically evaluate the full
Hamiltonian given in eqn. 4.1. The model Hamiltonian may be expressed as follows [66]:
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4.3 Diffusion Limited by Thermal Disorder

H0
el =

∑
j

ϵ ja∗ja j (4.10)

H0
ph =

∑
kl

~ωkl

(
b∗klbkl +

1
2

)
Vel =

∑
i j

Ji ja∗i a j

V local
el−ph =

∑
kl

∑
j

~ωklg j j,ql

(
b∗kl + b−kl

)
a∗ja j

Vnonlocal
el−ph =

∑
kl

∑
i, j

~ωklgi j,ql

(
b∗kl + b−kl

)
a∗i a j

Here j labels the number of sites (molecules) in the system, a∗j and a j are the creation and annihilation operators
of a charge carrier on site j, b∗kl and bkl are the creation and annihilation operators for a phonon with wave vector
k in mode l with ωkl being the corresponding frequency. Ji j is the transfer integral between neighboring molecules
i and j. In the local electron-phonon coupling term 1

2~ωklg j j,ql represents the energy reduction of a molecule in
the presence of a charge carrier, which is equal to half the reorganization energy. Finally, the energy reduction
in the nonlocal coupling corresponds to the modulation of the transfer integral induced by phonons. The reason
this type of equation could not be tackled at an earlier point, even numerically, was the lack of knowledge of the
parameters required to evaluate the Hamiltonian. The advances in computational chemistry outlined in sections
3.1 and 3.2 coupled with MD simulations (sec. 3.3) now allow the computation of all necessary parameters. The
required computations are presented in detail in section 4.5.

4.3.1 Semi-classical Dynamics (SCD)

In this approach, diffusion limited by thermal disorder transport is treated by evaluating a one-dimensional model
Hamiltonian using semi-classical dynamics identical to the model applied to rubrene by Alessandro Troisi in [75].
The Hamiltonian contains all terms present in eqn. 4.10 under the assumption that only the highest occupied (lowest
unoccupied) molecular orbital | j⟩ on each molecule j is relevant for the description of hole (electron) transport.
The complete Hamiltonian then reads:

H =
∑

j

ϵ +∑
k

λ(k)u(k)
j

 | j⟩ ⟨ j| (4.11)

+
∑

j

−J +
∑

k

α(k)
(
u(k)

j+1 − u(k)
j

) (| j⟩ ⟨ j + 1| + | j + 1⟩ ⟨ j|)

+
∑

k

∑
j

1
2

m(k)
(
u̇(k)

j

)2
+

∑
j

1
2

m(k)
(
ω(k)u(k)

j

)2


Here the index j runs over all molecules in the one-dimensional array, k represents different nuclear vibrational
modes with corresponding displacements u(k)

j , effective mass m(k) and frequency ω(k). Finally J is the transfer

integral between two neighboring molecules when their nuclear modes are in equilibrium (u(k)
j = 0).

The very first term is the sum of the energy ϵ of the electronic state relevant for the charge transport (HOMO
for electron and LUMO for hole transport) and the Holstein electron-phonon coupling. The former may be ob-
tained from quantum chemical calculations on isolated molecules. However, since it is the same for identical
molecules, it is irrelevant for our charge transport simulations. The latter term λ(k)u(k)

j takes into account the diag-
onal electron-phonon coupling, which is associated with the reorganization energy in small polaron theory. The
second term takes into account only nearest-neighbor interactions. The transfer integral between two adjacent,
identical molecules J is modified by the off-diagonal or Peierls electron-phonon coupling, where the displacement
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4. Models for charge transport

of two neighboring molecules with respect to each other
(
u(k)

j+1 − u(k)
j

)
modulates the transfer integral linearly with

the coupling constant α(k). The third term contains the classical kinetic and potential energies of the molecular
vibrations, which are described as harmonic oscillators. In the simulations an initially localized carrier wave func-
tion spreads over the molecule array with time, yielding the mean-square displacement of the carrier and hence its
mobility. The one-dimensional array of molecules along with the probability density at different times are shown
in figure 4.3.
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Fig. 4.3: (a) In semi-classical dynamics the compound in question is modeled by a one-dimensional array of
molecules. The average distance between the molecules di,i−1, the intersite coupling Ji j and the displace-
ments of the molecules from their equilibrium position ui are indicated. (b) Spreading of the initially
localized wave function due to numerical evaluation of the Hamiltonian (eqn. 4.11).

Obtaining the input parameters

In this model only two vibrational modes are taken into account: fast intra-molecular vibrations and slow inter-
molecular vibrations with the corresponding frequencies ω(1) and ω(2). Treating the latter classically is certainly
correct, while it is just as certainly incorrect in the former case, but since the intra-molecular vibrations only shift
the absolute value of the mobility to lower values and not the temperature or field dependence, this is an acceptable
approximation. A quick overview on how the input parameters are derived is given below, details on transfer
integral and reorganization energy calculations are postponed to section 4.5.

• High frequency modes
High frequency vibrations of molecules are obtained from QC frequency calculations. For phenyl rings and
molecules composed thereof, they yield a number of modes with frequencies around 1400 cm−1 and very
low effective masses compared to the entire mass of the molecule. The average frequency ω(1) = 1400 cm−1

along with an effective mass of 6 amu corresponding to C-C bond vibrations in phenyls is chosen for the
high frequency mode in our simulations. While the corresponding energy is high, it is almost independent
from the external electric field or temperature and thus only shifts curves describing mobility dependencies
without influencing their shape.

• Low frequency modes
Low frequency modes correspond to vibrations of the center of mass of the entire molecule. The effective
mass in this case is therefore simply the mass of the entire molecule. The energy fluctuations can be measured
by a combination of MD and QC. MD is performed to sample a reasonable amount of time of the relatively
slow vibrations. QC is then used to compute the transfer integrals between molecules for each snapshot,
taken at very short time intervals (20 fs). The result is used to compute the autocorrelation function <
J(0)J(t) >, the Fourier transform of which gives the vibrational frequency spectrum. The main peak average
thereof corresponds to the low frequency mode used in the simulation.
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4.3 Diffusion Limited by Thermal Disorder

• Average intersite coupling J
This is simply the average of the transfer integrals obtained by the combined MD and QC simulations
mentioned above for equivalent pairs.

• Holstein coupling constants λ(k)

The Holstein coupling constant λ is associated with the reorganization energyΛ and the Huang-Rhys factors,
all of which may be computed as described by Brédas’ group [76, 77]. Neglecting the external reorganization
energy and assuming that all reorganization energy is carried by one effective high frequency mode, as was
initially proposed by Jortner [78], the Holstein coupling constant is given by

λ(1) = ω(1)
√

m(1)Λ (4.12)

Since the slow vibrational frequency is a center of mass motion and does not perturb the structure of the
molecule itself, it does not contribute to the reorganization energy and thus the Holstein coupling constant
for the slow frequency λ(2) is zero.

• Peierls coupling constants α(k)

The off-diagonal or Peierls coupling constant α is zero for high-frequency modes, because small vibrations
of the molecular structure have little influence on the transfer integral between neighboring molecules. For
the average low frequency mode ω(2), the Peierls coupling constant is chosen such that the resulting distri-
bution of transfer integrals at a given temperature T has the same standard deviation στ as the one obtained
from MD and QC calculations. This is ensured by matching the Boltzmann distribution of oscillator devi-
ations e−mω2 x2/2kBT in SCD with the Gaussian distribution of transfer integrals e−α

2 x2/2σ2
τ from MD using the

following expression:

α(2) =
στ√

2kBT/m(2)(ω(2))2
(4.13)

The numerical algorithm

The basic steps to numerically solve eqn. 4.11 are:

i. Compute initial positions, velocities and wavefunction.
u j(t), u̇ j(t), ψ(t)

ii. Compute classical accelerations
mü j(t) = −ku j(t) − ∂

∂u j

⟨
ψ(t)

∣∣∣ Hel|ψ(t)
⟩

iii. Update wavefunction
ψ(t + ∆t) = ψ(t) − iHelψ(t)∆t

iv. Update position via Verlet algorithm
u j(t + ∆t) = 2u j(t) − u j(t − ∆t) + ü j(t)(∆t)2

The positions and velocities of the harmonic oscillators at a given temperature follow a Boltzmann distribution
P

(
u(k)

i

)
∝ exp

{
−k(k)

i u(k)
i /2kBT

}
with the standard deviation σ = kBT/k(k)

i , where ki is the spring constant of the
oscillator, ki = miω

2
i . So both are drawn from a Boltzmann distribution in the initial step. Based on these values

all terms of the Hamiltonian matrix can be calculated. The molecules only interact with their nearest neighbors in
this model, i.e. the i-th molecule feels only the presence of the molecules i− 1 and i+ 1, because the definition and
calculation of transfer integrals is only sensible between nearest neighbor molecules. Thus the resulting matrix
is symmetric, real and almost tridiagonal. Almost, because there are two additional entries at (1,N) and (N,1) to
take care of the periodic boundary conditions. This Hamiltonian satisfies HΨ = EΨ and thus the ground state
energy is given by the lowest eigenvalue of the matrix. The corresponding eigenvectors are the values of the initial
wave function coefficients. A single run is performed using the eigenvector corresponding to the lowest and thus
groundstate eigenvalue E0. For multiple runs, higher eigenvalues are chosen until Ei − E0 significantly exceeds
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4. Models for charge transport

the thermal energy making it a negligibly unlikely starting state, because electron energy is Boltzmann distributed.
In the main simulation loop the classical acceleration according to Newtonian mechanics is calculated first. For
simple harmonic oscillators üi = −k(k)u(k)

i (t)/mi, where the u(k)
i (t) are simply the current positions of the oscillators.

The classical contribution to the potential energy is calculated via Vclass = 0.5 · ku2. Next, the quantum mechanical
contribution to the acceleration is computed and the corresponding energies Vqm = ⟨Ψ |H|Ψ⟩ are added to the
classical potential energy.

aqm =
∂

∂u(k)
j

⟨
Ψ(t)

∣∣∣ Hel|Ψ(t)
⟩
= λ(k)C∗jC j + α

(k)(−C∗jC j+1 −C∗j+1C j +C∗j−1C j +C∗jC j−1)

Thereafter, the time evolution of the coefficients is calculated. This is done using the quantum mechanical time
evolution operator, i.e. Ċ = −iHC and the product rule for the second derivative C̈ = −i(HĊ + ḢC). The new
coefficients are then approximated by their second order Taylor expansion:

C(t + ∆t) = C(t) + Ċdt +
1
2

C̈dt2

Following the coefficients, all the nuclear coordinates are updated. Starting with the positions R(t + dt) = 2R(t) −
R(t − dt) + a(t)dt2 and followed by the velocities V(t + dt) = (R(t) − R(t − dt))/dt + 1

2 A(t)dt, both required for
the final step of calculating the new Hamiltonian and its time derivative. The Hamiltonian is calculated without
explicit use of the wave function coefficients. Its time derivative is given by:

Ḣ =
∑

j

∑
n

λ(k)u̇(k)
n

 | j⟩ ⟨ j| +∑
k

∑
j

α(k)(u̇(k)
j+1 − u̇(k)

j )(| j⟩ ⟨ j + 1| + | j + 1⟩ ⟨ j|)

Note that the wave function coefficients are not explicitely used to calculate the matrix elements, but to clarify
which matrix elements are calculated. The algorithm is extremely efficient, because other than for the very first
initialization of the coefficients no matrix diagonalization routines are needed.

Calculating the mobility

To obtain the mobility of the charge carrier based on the numerical simulations, the diffusion of the carrier is
monitored quantitatively from:

R2
n(t) =

⟨
Ψn(t)|r2|Ψn(t)

⟩
− ⟨Ψn(t) | r|Ψn(t)⟩2 (4.14)

The resulting random mean square displacements for each initial wave function are Boltzmann-averaged and a fit
to the resulting curve is made using the function ax2

x+b + c to incorporate the initial quadratic ballistic regime giving
way to the linear diffusive regime at large times. The diffusion coefficient D is then calculated from D = limt−>∞ <
R2(t) > /2t, i.e. a is twice the diffusion coefficient. The mobility µ may now be calculated using the Einstein
formula:

µ =
eD
kBT

(4.15)

Predictions of the model

SCD qualitatively shows the correct decrease of mobility with temperature µ ∝ T−2.1 for rubrene [75] in accordance
with band-like theories. It also shows a quadratic increase of mobility with average coupling µ ∝ J2 when all
other parameters remain the same, as is the case for hopping models. The main disadvantage of the current one-
dimensional implementation of the model is that an increase in dynamic disorder (α) always leads to a decrease in
mobility. The two latter dependencies are shown in fig. 4.4.
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Fig. 4.4: Dependence of mobility on transfer integral and Peierls coupling constant according to SCD. Scattering
in the data is due to lack of statistics.

4.4 Disorder models

Disorder models assume that the charge carrier and its corresponding wave function are completely localized on
one molecule. These are then treated as hopping site. The charge transport is thus governed by hopping rates
between neighboring molecules.

4.4.1 Miller-Abrahams rates

In 1960 Miller and Abrahams described phonon-induced electron hopping between donor sites in doped semi-
conductors [79]. They computed the transition rate based on electronic wave functions taken from effective mass
theory [61, 62] by using a deformation potential for electron-phonon interactions. In their theory each hop had to
be accompanied by emission or absorption of a phonon to conserve energy. Nonetheless, it came to be used to
describe non-radiative transfer in organic materials later on with an additional Boltzmann factor for jumps upward
in energy. Since we are using Marcus rates to simulate hopping transport in this work, we will simply state
what is referred to as the Miller-Abrahams rate between two adjacent molecules i and j in the context of organic
compounds [80]:

ωi j = ω0 exp
{
−2γa

∆Ri j

a

}{
exp

{
− ϵ j−ϵi

kBT

}
if ϵ j > ϵi

1 if ϵ j < ϵi
(4.16)

Here ω0 is an empirical prefactor, a is the average lattice distance, ∆Ri j is the distance between the two molecules,
S = 2γa the orbital overlap parameter and ϵ j − ϵ j is the difference in orbital energy between molecule i and j.

4.4.2 Marcus rates

For historical reasons, we will discuss the approach initially taken by Marcus. Other possible derivations are
mentioned later. In his original work, which dates back to 1956 [81, 82], Marcus was interested in studying the
electron transfer in isotopic exchange reactions such as Fe2+ + Fe∗3+ → Fe3+ + Fe∗2+ or cross reactions such as
Fe2+ + Ce4+ → Fe3+ + Ce3+. It was a publication by Libby, explaining why isotopic exchange reactions involving
electron transfer between pairs of small cations (like Fe2+ or Ce3+) in aqueous solution were relatively slow while
the same reactions between large ions (such as Fe(Cn)3−

6 or MnO2−
4 ) were quite fast, that caught his attention.

Libby reasoned that when an electron is transferred from one reacting ion to another, the two new ions are formed
in the wrong environment of the solvent molecules, because the nuclei do not have enough time to rearrange during
the rapid electron jump (Frank Condon principle). For example a Fe3+ ion would be formed in the environment

31



4. Models for charge transport

corresponding to an Fe2+ ion. Since for larger reactants the change of the electric field in the vicinity of each ion
upon electron transfer is smaller, the original solvent environment appears less foreign to the newly formed ion and
hence the energetic barrier of the reaction is lower. The mistake in Libby’s treatment was that such a formation
of an ion in the wrong high-energy environment could only happen by a vertical transition, i.e. the absorption of
light. The processes occurred in the dark, however. Marcus showed that by random fluctuations in the nuclear
coordinates of the ions and in the positions of the solvent molecules a configuration could be reached to satisfy
both energy conservation and the Frank-Condon principle. He proposed the following reaction sequence leading
from the reactants A and B to the products:

A + B→ X∗ (4.17)
X∗ → X (4.18)
X → products (4.19)

The reactants will fluctuate away form their equilibrium position (A + B) to form an activated complex X∗, cor-
responding to the atomic configuration which is at a maximum of the free energy with respect to the possible
configurations. From X∗ electron transfer may occur to form X and finally lead to the equilibrium configuration of
the products. The most probable intermediate state may then be found by minimizing the free energy of formation
∆F∗ of X∗ subject to the restriction that X and X∗ must have the same energy to fulfill energy conservation. This
was done assuming spherical ions and a continuous description of the surrounding solvent. The expression for the
rate k1 to form the activated complex from the reactants is then given by:

k1 = Z exp {−∆F∗/kBT } (4.20)

where Z is the collision number in solution. After testing this description on experimental data [83, 84], Marcus
expanded it to allow treatment of arbitrary molecules in the reaction [85] resulting in the expression for a transfer
rate between two molecules i and j:

ωi j = A exp {−∆G∗/kBT } (4.21)

where the Gibbs free energy is given by:

∆G∗ =
Λ

4

[
1 +
∆G0

Λ

]2

(4.22)

The A in eqn. 4.21 depends on the nature of the electron transfer reaction, ∆G0 is the standard free energy of
the reaction and therefore zero for self-exchange reactions and Λ is the reorganization energy (treated in detail in
sec. 4.5) composed of solvational and vibrational components. The theory underlying the Marcus rates is often
visualized by two parabolic curves representing the high-dimensional free energy curves of the reactants and the
products. Note that near and at the point of intersection the individual curves do not actually continue unperturbed
due to electronic interactions. Instead they split leading to a lower energy surface and a higher energy surface
as shown in fig. 4.5. Classical Marcus theory ignores this effect in its derivation and is hence only valid for low
electronic couplings, where the transfer integral J is significantly smaller than the reorganization energy Λ, i.e
J ≪ Λ.
An alternative approach to derive the Marcus rates is by utilizing the fact that the electronic wave function is
localized on a single molecule and computing the rate of hopping between two molecules based on Fermi’s golden
rule [86], i.e. first order perturbation theory (H = H0 + V):

ωi j =
2π
~

⟨
Ψi |V |Ψ f

⟩2
+ ρ(E f ) (4.23)
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Fig. 4.5: Effect of increased electronic coupling J on the free energy curves of two neighboring molecules. The
two parabolas represent the diabatic energy for states where the charges are fully localized as assumed
by Marcus theory. The thick lines are the adiabatic (Born-Oppenheimer) energy curves. Reorganization
energy Λ and transfer integral J are indicated in the central panel. Going from left to right J is 0.03,
0.1 and 0.5 times the reorganization energy. Clearly, Marcus theory may only be applied for small J/Λ.
Taken from [66].

ba

Fig. 4.6: (a) Free energy of the reactants plus environment (R) and free energy of products plus environment (P)
plotted versus a reaction coordinate q. The three vertical lines represent, from left to right, the equilibrium
state of the reactants, the transition state and the equilibrium state of the products. (b) Plot of the free
energy G versus the reaction coordinate q for reactants (R) and products (P) for three different values of
∆G0 illustrating the inverted region effect, i.e. showing an increase in G for low ∆G0 such as ∆G0

III after
an initial decrease of G upon lowering ∆G0. Both figures taken from [82].
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4. Models for charge transport

Here V is the perturbation of the two-molecule Hamiltonian due to electronic interactions, i and j are the initial
and final electronic states and thus

⟨
Ψi |V |Ψ f

⟩2
is the electronic coupling matrix element or transfer integral Ji j

between them (see section sec. 4.5). ρ(E f ) is the continuous distribution of vibronically coupled final states,
which is given by the Franck-Condon-weighted density of states under the assumption that all vibrational states
are classical, i.e. in the high temperature regime where ~ωi ≪ kBT . Plugging this into eqn. 4.23 yields the most
common Marcus rate expression for transport in organic materials used throughout this work:

ωi j =
2π
~

∣∣∣Ji j

∣∣∣2 √
1

4πΛkBT
exp

{
− (∆G0 + Λ)2

4ΛkBT

}
(4.24)

where Ji j is the transfer integral, Λ the reorganization energy, ∆G0 the free energy difference between initial and
final state and kBT the thermal energy. Note that this derivation does not require the assumption of an activated
complex[78]. More sophisticated expressions taking into account the fact that not all vibrational modes are clas-
sical and valid for all temperature regimes were developed by Jortner and co-workers [87, 88]. Note that Marcus
rates predict a decrease in rate and mobility at large ∆G0, for example due to large applied electric fields, known
as the inverted region effect. This effect is not present in the Miller-Abrahams rates, but simple to visualize in the
free-energy curve picture. Successively making ∆G0 more negative by lowering the products’ G curve initially
decreases the free energy barrier ∆G∗ given by the intersection of the free energy curves for reactants and products.
As shown in figure 4.6 the barrier eventually vanishes at a given ∆G0 and is then seen to increase again. This effect
was first seen experimentally in 1984 [89] and is well-known today. We chose to focus on Marcus rates in this
work for several reasons. First, the two molecules in question need not be the same and may also be at different
distances and orientations with respect to each other. Second, electronic devices function at ambient conditions
corresponding to high temperatures. Third, at very low temperatures or very high coupling, polaron models are
certainly more appropriate than hopping models.

4.4.3 Gaussian disorder model (GDM)

The use of kinetic Monte Carlo simulations to study charge transport in disordered organic compounds was first
proposed by Bässler [80]. Based on the experimental knowledge that absorption bands of disordered organic solids
are usually of Gaussian shape [90] molecules or conjugated segments of a polymer chain are treated as hopping
sites and assigned site energies ϵ according to a Gaussian distribution:

ρ(ϵ) =
1

√
2πσ2

exp
{
− ϵ2

2σ2

}
(4.25)

Here σ refers to the standard deviation of the distribution chosen based on experimental data. This introduces diag-
onal disorder in the Hamiltonian, i.e. disorder due to electrostatics, polarization, geometrical shape or surrounding
solvent. To take into account off-diagonal disorder, which may arise due to different distances or orientations of
neighboring molecules, the intersite coupling S was also subjected to a distribution by splitting it into site specific
contributions S i and S j, each taken from a Gaussian probability density. The latter was a somewhat arbitrary
zeroth-order choice and also introduces correlations between jumps away from a given site. Miller Abrahams rates
(eqn. 4.16) were used for the kinetic Monte Carlo simulations. Nonetheless, the model was capable of predicting
a non-Arrhenius-type temperature dependence of the mobility µ:

µ(T ) = µ0 exp

−
(

2σ
3kBT

)2
 (4.26)

Upon taking into account an electric field tilting the density of states by an electrostatic potential, the Gaussian
disorder model also predicts saturation of mobility at low fields along with an increase in a Poole-Frenkel fashion
ln µ ∝

√
E at higher fields. For vanishing disorder σ = 0 mobility was found to decrease with electric field, because

the drift velocity saturates with applied field in a hopping system in which the field does not affect the intersite
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4.4 Disorder models

jump rates. Another prediction of the model was an increase in mobility upon an increase in off-diagonal disorder.
This is explained by an overcompensation of the low rates by creation of high rate pathways and by the fact that a
Gaussian distribution of the coupling has a non-Gaussian effect on the rates. It also showed an increase of mobility
at low fields, again due to opening up of pathways with higher coupling, where some steps go against the field and
are hence blocked at high fields. In the original model, dependence on charge carrier density was not taken into
account. Due to the success of the model in fitting experimental data, improvements have constantly been added.
In [91] six different variations of the Gaussian disorder model are presented, incorporating more sophisticated
treatment of the off-diagonal disorder and taking into account the charge carrier density. Nonetheless, they all
rely on Miller Abrahams rates and a Gaussian distribution of energies, both requiring parameters to be fitted to
experimental values. Thus the models grant a basic understanding of charge transport, but are unable to make
precise predictions on how to improve specific chemical compounds or morphologies.

4.4.4 Kinetic Monte Carlo with Marcus rates

To gain an understanding of the coupling of chemical structure and morphlogy with charge transport properties
it is very important that the parameters required for kinetic Monte Carlo are based solely upon the underlying
physical system. For this purpose extensive MD simulations must be coupled to the quantum chemical evaluations
of the transfer integrals as was first done by Kirkpatrick et al. [92, 93, 94]. The morphology of ordered compounds
must be known from x-ray experiments as starting point for sampling the system using MD. The snapshots of the
equilibrated system are analyzed in the following steps:

i. The molecules from the MD snapshot are mapped to coarse-grained beads consisting of their centers of mass
and three orientation vectors.

ii. Nearest neighbors are found using the simple search algorithm for triclinic boundary conditions [46].

iii. Transfer integrals are calculated for all neighboring pairs using the molecular orbital overlap method [2]
(sec. 4.5.3).

iv. Hopping rates are computed between pairs based on their reorganization energy, free energy difference,
transfer integral and a given temperature using Marcus theory.

v. A KMC graph is built using the centers of mass of the molecules as vertices and the hopping rates as edges.

vi. The mobility is calculated by time-of-flight, velocity averaging or diffusion analysis.

An illustration of the mapping procedure is displayed in figure 4.7. The mapping is done using the program
package VOTCA [95], while the transfer integrals and kinetic Monte Carlo simulations are performed using a yet
unpublished extension of the code written by Victor Rühle, James Kirkpatrick and myself. Below, we present the
three different methods, which were developed to compute the mobility from KMC simulations.

Time of Flight

Time of flight analysis was designed to yield transient currents similar to those obtained from actual time of flight
experiments. To this end a supercell is generated from the initial MD simulation box to increase the transit time
of the charges. An external electric field is applied in a given direction and charges are then generated in the first
and collected in the last part of the supercell with respect to the field. Periodic boundary conditions are removed
in direction of the field. During the kinetic Monte Carlo runs, the current is calculated and at the end plotted
against simulation time. From the resulting curve, the transit time tT may be obtained as the intersection of an
extraplation of the plateau region and the tangent to the tail of the transient in a double-logarithmic plot (see
sec. 2.2.1). Knowing the dimension of the supercell in field direction d and the applied electric field E yields the
mobility:

µTOF =
d

tT E
(4.27)
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wij

Fig. 4.7: The two steps taken in the mapping from an MD snapshot to a KMC graph. First, molecules are mapped
to coarse-grained beads and the hopping rates are computed for nearest neighbors. Second, a KMC graph
is created based upon these rates and the centers of mass of the beads.

Velocity Averaging

Both velocity averaging and diffusion analysis do not make use of the supercell and allow periodic boundary
conditions everywhere. The difference between the approaches is schematically illustrated in fig. 4.8. In velocity
averaging, the charge is allowed to travel for a given time and its velocity v is averaged throughout the simulation.
It is then projected on the applied electric field, which allows calculation of the mobility via

µvel =
v
E
, (4.28)

a

b

Fig. 4.8: Schematic for KMC runs in case of time of flight (a) versus velocity averaging (b) analysis.
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Diffusion

In the case of diffusion the external electric field is set to zero and the charge is allowed to explore the system
for a given time tmax. At certain time intervals ∆t the current position of the charge is recorded. The resulting
random mean square displacement (RMSD) is calculated for each time interval ∆t starting from the time between
print outs dt up to the total length of the diffusion run tmax. Clearly, the statistics are far better for dt than for
tmax, since for the latter only one interval exists, while for the former there are as many intervals as there are time
intervals in the simulation. To improve the averaging for large time intervals, the RMSD analysis is performed for
a hundred different starting positions. The final diffusion coefficient is calculated based on a regression over the
first half of the Boltzmann average of all resulting curves. While an initial ballistic regime is present, it is too small
to influence the validity of the regression. A typical diffusion pathway along with the fit to obtain the diffusion
coefficient is shown in fig. 4.9. The mobility is computed based on the Einstein relation as for semi-classical
dynamics (sec. 4.3.1). In general, the diffusion coefficient is a second rank tensor Di j = limt→0

<∆xi∆x j>

2dt with its
highest eigenvalue and the corresponding eigenvector giving the highest mobility and the main direction for charge
carrier diffusion.

µdi f f =
eD
kBT

, (4.29)
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Fig. 4.9: (a) A representative KMC diffusion pathway along with (b) the fit to the RMSD versus time to obtain
the diffusion coefficient. The inset shows < x2 > /t versus 1/t on double-logarithmic scale. The plateau
represents the diffusive regime, at large times fluctuations occur due to statistical error, at short times the
ballistic regime shows.

Predictions of the model

To ensure the correctness of the code we ran KMC simulations using a simple test system, where all molecules are
equally spaced with every molecule having six neighbors, four in the same plane, one in direction of the field and
one against the field. Transfer integrals between all neighbors are also identical. The temperature dependence of the
mobility is obviously the same as for Marcus theory and electric field dependence shows the inverted field effect.
The mobility saturates at low fields as expected, but simulations must be run significantly longer to remain accurate,
because the difference between forward and backward hopping rates diminishes substantially with decreasing
field. Thus longer runs must be performed to see significantly more forward than backward hops. When transfer
integrals are taken from a Gaussian distribution with a standard deviation of σ to introduce off-diagonal disorder,
the influence is seen to be low and leads to an initial increase in mobility followed by a decrease at higher disorder.
Dependence of the mobility on electric field and off-diagonal disorder are shown in fig. 4.10.
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Fig. 4.10: (a) Dependence of the mobility on electric field and (b) off-diagonal disorder implemented by a standard
deviation σ of the transfer integral. The average transfer integral was taken to be 0.608 eV with a fixed
molecule distance of 0.35 nm. Electrostatic disorder was not taken into account.

4.5 Charge transport parameters

One of the main challenges in describing charge transport for specific molecules in their different morphologies is
to obtain the correct input parameters. MD simulations may be used to give an accurate picture of the morphology
at a certain temperature, while Quantum Chemistry can be used to calculate all other relevant parameters. Since
the importance of the correctness of these parameters cannot be overemphasized, we devote this section to the
description of their computation.

4.5.1 Site energy

The site energy refers to the energy of the HOMO or LUMO level of the molecule, depending on whether one is
interested in hole or electron transport. This is due to the fact that when an electron hops onto a fully occupied
molecule it is most likely to enter the lowest unoccupied molecular orbital. Analogously, an electron is most
likely to leave a molecule from the highest occupied molecular orbital and not from one of the inner shells. As is
explained in sec. A.1.6 on restricted Hartree-Fock the n lowest eigenvalues of the Fock matrix correspond to the
occupied ground-state orbitals of the molecule while higher eigenvalues correspond to excited states. This does not
necessarily mean that the next higher orbital above the HOMO corresponds to the LUMO, since these orbitals are
not truly taken into account in the SCF procedure and should be handled with care. However, more sophisticated
methods yield reliable results and usually experimental data is also available for HOMO and LUMO energies.

4.5.2 Reorganization energy

The reorganization energy Λ consists of two parts: internal and external reorganization energy.

Λ = Λint + Λext (4.30)

The external reorganization energy takes into account rearrangements of the surrounding medium, such as solvent
molecules. Since there is no major rearrangement of molecules in crystals and none of the investigated systems
contains solvent, the external reorganization energy is ignored throughout this work. The internal reorganization
energy measures the energy cost of rearranging the geometries of the two molecules involved in the charge transfer
upon transfer. Assume molecule i is initially charged while j is neutral with the corresponding energies Ecc and
Enn. Here the first index refers to the geometry and the second to the charge of the molecule. Once the charge hops
from i to j, molecule i will be neutral but is still in charged configuration and molecule j will become charged but
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is still in neutral configuration with the respective energies Enc and Ecn. The reorganization energy measures the
cost to correct this, i.e. the energy difference between final and initial state:

Λ = (Enc + Ecn) − (Enn + Ecc) (4.31)

For a more detailed understanding, it is also possible to analyze which vibrational modes contribute to the reor-
ganization [76, 86], but this is not of interest here. To calculate Λ, the charged and neutral geometries of a single
molecule in vacuum are optimized using B3LYP with a 6-31G(d) or higher basis set. The two resulting geometries
are then fixed and their wave functions are optimized in charged and neutral state using B3LYP/6-311G(d,p). This
yields the four energies required above. Note that while the absolute energy values obtained from this calculation
depend significantly on the basis set, the relative differences are hardly influenced by it.

4.5.3 Transfer integrals

The transfer integral is the most difficult to obtain quantity among the input parameters and much effort has been
devoted to its computation [96]. It has been found to vary exponentially with distance for cofacial molecules, but
also varies in a far more complex way with molecular orientation and thus fluctuates significantly with temperature.
It alone can be used to explain the different mobilities found for identical molecules in different crystal phases as
was done for the four different polymorphs of pentacene [97, 66]. The transfer integral may be defined as follows:

Ji j =
⟨
Φi |Hel|Φ j

⟩
(4.32)

where Φ is the multi-electron wave function with the indices indicating whether the charge is located on molecule
i or molecule j and Hel is the electronic Hamiltonian of the system. When the multi-electron wave function
is described by a Slater determinant (sec. A.1.5) and the frozen orbital approximation is invoked, i.e. only the
HOMO (LUMO) level of the molecule influences the coupling for holes (electrons) and orbitals are not deformed
in the presence of charges, we may evaluate the above equation for hole transport as:

Ji j =
⟨
ϕHOMO,i |F| ϕHOMO, j

⟩
(4.33)

where F represents the Fock matrix (eqn. A.20) and ϕHOMO,i and ϕHOMO, j are the HOMOs of molecules i and j,
respectively. When only two molecules are taken into account to represent the Hamiltonian of the system, which
is justified if the molecules in the system are non-polar and long-range electrostatics can be neglected, the Fock
matrix expressed as a linear combination of atomic orbitals (sec. A.1.3) takes the following form:

F =
(
Fii Ji j

J ji F j j

)
(4.34)

where Fii and F j j are localized on molecule i and j and Ji j represents the coupling between them. This is why
differences in transfer integrals in a system are called off-diagonal disorder.

Energy-Splitting-in-Dimer

A straightforward approach to calculate the overlap integral is the energy-splitting-in-dimer (ESD) method [98, 24].
For two identical molecules in cofacial alignment the aforementioned Fock matrix simplifies significantly because
now Fii = F j j = F0 and Ji j = J ji = J. Treating this problem as a two-state model, where the electron is either on
molecule i or molecule j, we may calculate the respective energies by solving the secular equation:

det

∣∣∣∣∣∣ F − E J
J F − E

∣∣∣∣∣∣ = 0 (4.35)
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This leads to E1,2 = F± J and therefore allows computation of the transfer integral from the splitting of the HOMO
(LUMO) energy ∆E = E1 − E2:

J =
∆E
2

(4.36)

There is also an intuitive picture to this formula. The isolated molecules have identical HOMO levels. Upon
approach the Pauli principle requires that two electrons may not exist in an identical state, thus the electronic levels
split upon approach. The closer the molecules approach each other, the larger the energy level splitting and the
transfer integral J become. The substantial drawback of this method is that it is invalid for different molecules or
orientations strongly deviating from the cofacial one. Though techniques exist to correct for this [99], the method
is hardly suitable for our intended computations.

Projective method

Another possible approach is to use the spectral theorem to project the molecular orbitals (MOs) of the pair onto a
basis set defined by the individual molecules [2]. Knowing the eigenvalues of the MOs of the pair, the Fock matrix
may then be reconstructed in the basis set of the individual molecules. J can then be read from the appropriate
position in the new Fock matrix. The basis set of the individual molecules Cloc is written such that the first N/2
atomic orbitals are localized on molecule i and the second N/2 on molecule j. The same holds for the molecular
orbital labels. The transformation matrix to convert from the basis set of the pair to the localized one is given by
Cloc

pair = CT
locCpair, where T stands for the transposed matrix. The Fock matrix in the localized basis set is thus given

by: F loc = Cloc T
pair ϵpairCloc

pair, where the eigenvalues ϵpair have been written in diagonal matrix form. The transfer
integral between the HOMOs of molecules i and j, assuming the HOMO on molecule i is the nth orbital, is given
by the Fock matrix element

J = F loc
i,i+ N

2
(4.37)

Since dimer calculations take a significant amount of time, this method is also unsuitable for computing the transfer
integral between all neighboring pairs of an MD snapshot. It is, however, perfectly valid no matter what the
molecular orientations may be.

Molecular orbital overlap (MOO) method

When examining the result from the projective method (eqn. 4.37), it becomes clear that only a calculation of the
off-diagonal blocks of the Fock matrix is necessary to obtain the transfer integrals. As was shown in [2] all these
off-diagonal elements will be of the form Fµν = S̄ µν

βi+β j

2 , where S̄ represents the overlap matrix of atomic orbital
overlaps with differently weighted σ and π overlap, i and j label the two atomic centers that the µ and ν orbitals are
centered on and βi labels the bonding parameter of atom i. Instead of determining the Fock matrix, it thus suffices
to compute S̄ , the weighted atomic orbital overlap. ZINDO (sec. A.1.7) is used for the overlap calculations and
the necessary weighting. This can be done without requiring an SCF calculation on the pair of molecules and is
therefore very fast, which is also the reason why it is the method of choice for this work. To check the validity of
the method we compared it with ESD for two cofacial carbazole monomers at different distances. The agreement
was found to be excellent and also shows the exponential decay of J with distance (see fig. 4.11).

4.5.4 Change in free energy

The change in free energy ∆G may be composed of the following terms:

• Site energy difference
The difference between the HOMO (LUMO) levels of the two molecules i and j involved in the charge trans-
fer. Taken to be zero for identical molecules in our simulations, while energy levels of identical molecules
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Fig. 4.11: Splitting of the HOMO energy level as a function of separation between two carbazole monomers. The
inset shows a comparison of the transfer integral values with results of the molecular overlap method.
Fitting to a simple exponential decay exp(−αd) yields α ≈ 0.176 nm−1. Taken from [100].

may also be chosen from a Gaussian distribution as in the GDM (sec. 4.4.3). Since the site energies are
eigenvalues of the Fock matrix, differences in site energies are called diagonal disorder.

∆G = ϵi − ϵ j (4.38)

• Electric field
When an external electric field is applied, it will be favorable for the charge to travel in direction of the field.
The further the better so the energetic contribution for a jump from molecule i to molecule j is

∆G = −eEri j (4.39)

• Electrostatic energy
To compute the electrostatic site energy difference due to a pair of neighboring molecules i and j, the total
electrostatic energy of an entire MD simulation box is calculated in case molecule i is neutral and in case it
is charged. The difference in energy Vi between the two calculations is the electrostatic energy of molecule
i. In mathematical terms the electrostatic energy between two molecules i and j can thus be expressed as
V(i(α), j(β)), where i and j are the molecular indices and α and β describe whether the molecule is in charged
(c) or neutral (n) state. This gives:

Vi =
∑
j,i

V(i(c), j(n)) − V(i(n), j(n)) (4.40)

The electrostatic site energy difference contributing to ∆Gi j in the Marcus rate is thus given by V j − Vi. The
partial charges of the atoms required for above calculations are obtained by use of CHELPG (sec. 3.3.2) for
neutral and charged configurations of the molecules optimized in vacuum.

• Polarization
The influence of dipole and quadrupole interactions and the difference in their alignment prior and after the
charge transfer is more tedious to calculate, but expected to have a low contribution unless there are small
and flexible solvent molecules or large dipoles in the system. Since neither is the case for the investigated
compounds, this effect is ignored here. Both electrostatic energy and polarization may also be considered
as part of the external reorganization energy, but recalculating it for each individual pair based on the MD
snapshots is certainly the more accurate treatment.
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5 Carbazole macrocycle

Two main problems in the construction of efficient organic solar cells shall be addressed in the following. Firstly,
the excitons formed by the incident photons must be quickly separated into electrons and holes and secondly, the
two charge carriers must be transported efficiently toward the electrodes (see sec. 2.1.1). In organic compounds, a
light-generated exciton has a short lifetime and hence diffusion length before it recombines and cannot contribute
to the photocurrent. It must therefore be able to quickly reach an energetically favorable acceptor molecule, where
the electron transfers to the acceptor and the hole remains on the donor, forming a Coulomb-bound polaron pair.
The polaron pair is then separated by the electric field arising from the equalization of the Fermi levels of anode
and cathode. However, efficient charge percolation pathways must exist for both holes and electrons to allow them
to reach the contacts. The construction of a π-conjugated macrocycle around a central π-system is able to address
both issues simultaneously. The inner part may act as donor and the cycle as acceptor or vice versa. Hence we
have a donor-acceptor system on the length scale of exciton diffusion, allowing efficient charge separation. If this
ring-core structure additionally assembles into a columnar superstructure, it forms a coaxial cable, which gives
rise to separate charge transport pathways. Thus efficient transport for both holes and electrons is possible due
to the one-dimensional side-by-side percolation pathways along the columns. An alternative to coaxial cables are
donor-bridge-acceptor systems treated in depth in refs. [101, 102].

A system with the potential to serve as a coaxial cable is the shape-persistent, π-conjugated macrocycle synthesized
in Prof. Müllen’s group [103]. It consists of polycarbazole, a material commonly used as a donor in organic
solar cells and chromophores [104, 105], which has been built around a porphyrin template to form a carbazole
macrocycle. In the bulk and after removal of the porphyrin template, the macrocycles form columns arranged on
a hexagonal lattice, which allows for charge carrier transport in the π-stacking direction. It has only recently been
shown that the cavity inside the conjugated carbazole macrocycles may also be filled by insertion of graphene
molecules [106]. Carbazole itself is a cheap raw material, which may be obtained from coal-tar distillation [107].
Oligomers, polymers and small molecules containing carbazole are known to form relatively stable radical cations,
exhibit high charge carrier mobilities and good thermal and photochemical stability [108]. Carbazole derivatives
are widely used in the field of organic electronics as hole-conducting materials with a wide energy gap, e. g.
carbazole-based polymers were employed to build dye solar cells [109] and carbazole-based small molecules were
employed in blue organic light emitting diodes [110].

We have thus decided to study the morphology and charge transport properties of carbazole macrocycle columns
arranged on a hexagonal lattice to reveal the influence of fluctuations in the columnar structures as well as in the
macrocycles on the charge mobility. To this end, we use a combination of molecular dynamics simulations with
kinetic Monte Carlo based on Marcus rates, as it has been shown in the past that this approach describes charge
transport in columnar discotic systems well [92, 93, 94, 22]. Another interesting and theoretically challenging
aspect is the treatment of the charge conjugation length along the macrocycle. In polymeric systems, the charge
delocalizes on conjugated segments. Conjugation in polymers is broken mainly due to the torsional angle between
neighboring monomers [111], hence we define different charge transfer units corresponding to the conjugated
segments and use different rates for intra- and interchain transport. We chose to focus on the two extreme cases:
first, full conjugation of the macrocycle, and second, conjugation broken between consecutive monomer units.

In the following, we will first describe how to compute the necessary force field parameters to describe carbazole
macrocycles, which do not exist in the OPLS force field. We then give details on the molecular dynamics sim-
ulations in sec. 5.2, followed by the quantum chemical calculations to obtain the charge transport parameters in
sec 5.3. Thereafter, we describe the results of the rate-based charge transport simulations and compare the two
different conjugation lengths.
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5. Carbazole macrocycle

5.1 Force field parameters

The atomistic structure of a carbazole macrocycle repeat unit along with the atomic labels used to define the
force field parameters are shown in fig. 5.1a. Despite the attention carbazole receives in the organic electronics
community, the force field parameters to model carbazole are not readily available in the standard as well as the
OPLS force field. In the following, we therefore exemplarily discuss in detail how an appropriate set of force
field parameters can be determined. As a starting point we took the OPLS parameters for indole [112] due to the
structural similarity with carbazole (see fig. 5.1b). The alkyl side chains were modeled using the OPLS united
atom force field [113, 92]. This lead to the definition of the following eight atom types for the description of the
carbazole repeat unit: the nitrogen (NA), the carbons linking to it (CN), the remaining carbons in the central five
ring (CB), the phenyl ring carbons with hydrogens attached (CA), the corresponding hydrogens (HA) and the CH2
and CH3 united atoms of the side chain (see fig. 5.1c). For polycarbazole and thus for the macrocycle the carbons
linking two monomers (C8 & C9 in fig. 5.1a) were also assigned a unique type (CC).
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Fig. 5.1: (a) Atom labels in a carbazole repeat unit (monomer). The bonds to other units in the macrocycle originate
from C8 and C9. In the single unit there are two additional hydrogens (H8 and H9) instead. (b) Indole,
from which most force field parameters were taken. (c) Carbazole single unit with an attached alkyne side
chain and atom types used in the force field. The cores of both (b) and (c) are conjugated. (d) Carbazole
dimer in optimized configuration, i.e. with the central dihedral angle Ψ (CA-CC-CC-CA) at 45◦. Non-
bonded interactions between hydrogens labelled by HA were excluded in the force field computations.

To describe polycarbazole macrocycles five sets of parameters are not available in the OPLS force field: the angle
between core and side chain (CN-NA-CH2), the dihedral potential describing the rotation of the side chain with
respect to the core (CN-NA-CH2-CH2, angle Ψ in fig. 5.1c), the improper dihedral potential ensuring a ninety
degree angle between core and side chain (NA-CH2-CN-CN), the dihedral potential describing the rotation around
the central bond of a dimer, i.e. of two monomers with respect to each other (CA-CC-CC-CA, see Ψ in fig. 5.1d)
and, finally, the improper dihedral potential ensuring planarity (CC-CC-CA-CA). The side chain atoms are labelled
C14, C15, C16 and so forth. In the computation of the dihedral potential parameters between side chain and core,
the side chain was shortened to four molecules, because the length of the side chain does not influence the dihedral
potential parameters. Hence C17 became the last side chain atom of type CH3. For the calculation of the dihedral
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5.1 Force field parameters

potential parameters between two monomers, i.e. when a bond exists between C9 of the left and C8 of the right
monomer, the entire side chain was replaced by a single hydrogen atom H1 linking to N1.
The calculation of the force field parameters was performed in accordance with the methods described in sec. 3.3.1.
All calculations were performed using the Gaussian program [114]. Fitting of the parameters was based on struc-
tures optimized with B3LYP/6-311G(d,p). Self-consistent field energy calculations (see sec. A.1.4) were per-
formed using the aug-cc-pVDZ basis set. The results of these calculations for the change in total potential energy
of the system upon rotation of the side chain and dimer dihedral are shown in fig. 5.2. The potential of a single
carbazole unit with respect to rotation of the side chain has its equilibrium configuration at a 90◦ angle to the core.
Due to the importance of the dimer dihedral for the carbazole macrocycle structure and fluctuations, DFT using
the PBE functional for both correlation and exchange energy and hybrid DFT/HF using B3LYP with two differ-
ent basis sets were compared. They all reproduce the same minima and maxima and thus the same equilibrium
configurations. We focus on results obtained with the B3LYP functional, which is a compromise between compu-
tationally expensive perturbation methods such as MP2 and DFT functionals less suitable for organic compounds
such as PBE. For the potential of the dimer upon rotation of its central dihedral, there is a competition between
electrostatic interactions and improvement of conjugation across the central bond. This leads to two minima at 45◦

and 135◦ of almost the same depth (see fig. 5.2b). When the nitrogens face in different directions, the molecules
align in a linear configuration and repetition of multiple units leads to a polymer chain. When the nitrogens face
in the same direction, however, the dimer makes a slight turn and repetition of twelve monomers forms a complete
circle, i.e. the macrocycle. The height of the maxima in the potential energies due to side chain or dimer dihedral
rotation are eight or four times the thermal energy at room temperature. Neither dihedral is thus expected to flip in
the course of an MD simulation.
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Fig. 5.2: (a) Ab initio calculation results for the change in potential energy of a single carbazole unit upon rotation
of the dihedral between core and side chain. (b) Comparison of potential energies due to the rotation of
the dihedral in the center of a carbazole dimer calculated using PBE and B3LYP with two different basis
sets. Dihedral energy calculations were performed in 10◦ intervals.

Since the QC methods calculate the change in energy of the entire system including contributions due to changes
in bond lengths, angles, impropers, other dihedrals and long-range interactions, all these contributions must be
subtracted from the QC results in order to isolate the potential of the dihedral in question. To achieve this, the
energy of each configuration is calculated using the existing OPLS force field parameters with the parameters for
the dihedral in question set to zero. We compared two different approaches to do this computation. The first uses
the exact QC optimized geometries for each angle to compute the respective force field energies. The second takes
these geometries as starting point for an energy minimization using the steepest descent method but fixing the
dihedral in question. The advantage of the former method is that the geometries are closer to the physical reality.
The disadvantage is that the actual rotation of the dihedral in the MD simulations will never occur along these
geometries, but along those obtained by the latter method. Therefore to reproduce the torsional potential in MD

45



5. Carbazole macrocycle

simulations the steepest decent optimization method is more appropriate. All force-field calculations were done
using the Gromacs program [46]. In accordance with the OPLS all atom force field, Lennard-Jones and electrostatic
1-4 interactions were scaled down by a factor of 0.5. When evaluating the force-field energies, the long range (1-4
and 1-5) interactions between carbons within the same benzene ring were excluded, because they share electrons
and the interaction between them is of purely quantum mechanical nature and cannot be approximated by simple
analytical terms. Additionally, for the single unit interactions between the second side chain atom (C16) and
the two closest core hydrogens (H6, H7) were excluded, because at closest approach the classical description is no
longer valid and yields too high values in energy. This does not mean that their interactions are no longer taken into
account, but that they are included as part of the dihedral potential instead of as part of the long-range interactions.
The resulting potential energies calculated using the force field for the geometries with and without relaxation
using steepest decent are compared in fig. 5.3. The curve based on the exact QC geometries shows an unphysical
kink at the maximum, because the configurations will never be sampled in the force field, hence the curve based
on the relaxed geometries is chosen as a reference as well as for the dimer and all parameter calculations in the
following chapters. For the dimer, the interactions of the four closest hydrogen atoms between the two carbazole
units with each other were excluded, i.e. the interactions: H9 +H8, H9 +H10, H11 +H8 and H11 +H10, where
the plus sign indicates that the second hydrogen of the pair belongs to the next carbazole monomer. The scanned
angle and the excluded hydrogens are shown in fig. 5.1d.

90 120 150 180 210 240 270
Angle [deg]

0

5

10

15

20

25

Po
te

nt
ia

l [
kJ

/m
ol

]

QC geometries
relaxed

Fig. 5.3: Change in potential energy of a single carbazole unit due to rotation of the side chain dihedral CN-NA-
CH2-CH2 calculated based on the original B3LYP/6-311G(d,p) geometries as well as on those relaxed
via steepest decent algorithm using the existing force-field parameters with the CN-NA-CH2-CH2 dihedral
potential parameters set to zero.

The final parameters used in the force field are obtained by fitting to the difference between QC and force-field
based energies. For the calculation of the latter the parameters of the dihedral in question were set to zero. The
Ryckaert-Belleman (RB) function, which is a cosine expansion to fifth order, is used to fit the potential:

VRB (ψ) =
5∑

n=0

Vn cosn ψ (5.1)

Fig. 5.4 shows the resulting potentials for the side chain and dimer dihedral based on B3LYP QC computations
and force field calculations using relaxed geometries. In case of the side chain dihedral, a standard fit does not
represent the low energy regions well. Since they are the most important, because the system spends most of the
time in these regions, fitting with a Boltzmann weighting factor of exp{−E/(kBT )} was used, where T = 300 K
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5.1 Force field parameters

or kBT = 2.4944 kJ/mol, yielding significantly better agreement in the low energy regions. For the central dimer
dihedral a standard fit was sufficient.
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Fig. 5.4: Fitting of Ryckaert-Belleman function to difference between B3LYP/aug-cc-pVDZ and force-field based
energies for (a) the side chain and (b) the central dimer dihedral.

To validate the newly calculated force-field parameters, the force-field based energies are compared to the QC
energies this time including the newly calculated dihedral parameters. The agreement shown in fig. 5.5 is found to
be very satisfactory.
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Fig. 5.5: Comparison between force-field based energies using the new dimer dihedral potential and QC calcula-
tions based B3LYP/aug-cc-pVDZ for (a) the side chain and (b) the central dimer dihedral.

In addition to the dihedral potential parameters, improper and angle potential parameters were also calculated by
a similar procedure. The fitting was performed using a harmonic potential V(ϕ) = 1

2 kϕ · (ϕ − ϕ0)2. In case of the
angular potential, the change in energy of other angles of the same type had to be taken into account. A complex
multi-dimensional fitting procedure could be avoided, because scanning a particular angle only lead to small linear
changes in other angles of the same type. For example to calculate the force-field parameters for the CN-NA-CH2
angle, scanning of C2-N1-C14 lead to a small linear change in C3-N1-C14. Both angles must be described by the
same force constant, thus the fitting function used was V(ϕ) = c+ 0.5 · kϕ · [(ϕ− ϕ0)2 + (3.9076− 0.782 · ϕ− ϕ0)2],
where 3.9076− 0.782 · ϕ describes the linear change in C3-N1-C14 due to rotation of ϕ, i.e. C2-N1-C14. Ignoring
the second angle in the fitting would have lead to a far greater force constant and an unsatisfactory agreement
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5. Carbazole macrocycle

between QC and force-field results, as is seen by comparing the red and the black curve in fig. 5.6.
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Fig. 5.6: Comparison of force-field energies based on new angular potential with initial QC calculations using
B3LYP/6-311G(d,p). Fitting procedures taking into account both angles of the same type and only the
scanned angle are compared.

All fitting procedures required one and only one set of parameters to be set equal to zero, i.e. all other parameters
had to be known. This is another reason why we chose to compute the dimer dihedral potential without a side chain
attached to the monomers. Angular and improper parameters were initially taken from similar compounds present
in the OPLS force field. The dihedral potential was then computed. Thereafter, angle and improper potential were
computed and in a last self-consistent step the dihedral angle was computed again with the new angle and improper
values. Results displayed in table 5.1 refer to the final dihedral computation. All equilibrium positions for bonds
and angles in the force-field were checked against x-ray data and QC calculations. Deviations were found to be
smaller than two percent in most cases, otherwise values were adjusted. It was also ensured that angular sums add
up to the correct values in phenyl and five rings, i.e. to 720◦ or 540◦, respectively. The final force field parameters
are listed in tables 5.1 and 5.2.

dihedral V1 V2 V3 V4 V5

CN − NA − CH2 − CH2 0.0 0.735 0.0 8.120 0.0
CA − CC − CC − CA -0.339 -34.40 -0.732 24.16 0.411
CH2 − CH2 17.45 1.14 -27.20 0.0 0.0

Tab. 5.1: Coefficients of the Ryckaert Belleman function (eqn. 5.1) for the side chain and dimer dihedrals in
kJ/mol. Note that they differ from the values published in [100], since at that point we did not do a
steepest decent optimization prior to fitting. The CH2-CH2 dihedral is taken from previous HBC calcu-
lations [93].

Having computed the bonded, short range interactions missing in the OPLS force field, treatment of the long
range interactions remains. The computation of long range Coulomb interactions in the OPLS force field relies on
the knowledge of the partial charges of each atom in the molecule. As outlined in sec. 3.3.1 convergence of the
partial charges with respect to basis set was checked starting from 3-21G up to 6-311++G(3df,3pd). Charges were
computed for a single molecule in vacuum for the force field computations and also for an entire macrocycle in
vacuum for the final MD simulations, where the highest basis set used was 6-311G(2df,2pd). In the latter case,
only the first united atom of the side chain was assigned charge (C14) while the other were considered neutral.
In the simulated macrocycle, side chains with OH end groups also appear (see fig. 5.7), whose partial charges are
taken into account. The convergence with respect to the basis set size for two chosen atoms for a repeat unit are
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5.2 Molecular dynamics simulations

angle ϕ0 kϕ
CN − NA − CH2 126.4 153.21
CN − NA − CN 111.6 585.76
CA − CB − CB 134.9 711.28
CB − CB − CN 108.8 711.28
CH2 − CH2 − CH2 109.5 502.1

improper ϕ0 kϕ
NA − CH2 − CN − CN 0.0 114.0
CC − CC − CA − CA 0.0 761.7
CA − CA − CA − CA 0.0 167.4
CA − HA − CA − CA 0.0 167.4

Tab. 5.2: Equilibrium angles ϕ0 in degrees and force constants kϕ in kJ/mol for angles and impropers in the car-
bazole force field. Only the first angle and the first two impropers were computed bottom-up using the
above approach. Side chain angles were taken from [93].

given in tab. 5.3. The final choice of parameters corresponds to the value of the highest basis set, modified such
that the symmetry of the partial charges exactly matches that of the molecule.
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Label Charge Label Charge
N1 -0.62 C2 0.30
C3 0.30 C4 0.00
C5 0.00 C6 -0.27
C7 -0.27 C8 0.09
C9 0.09 C10 -0.16
C11 -0.16 C12 -0.15
C13 -0.15 C14 0.40
C15 0.00 H6 0.11
H7 0.11 H10 0.08
H11 0.08 H12 0.11
H13 0.11

Tab. 5.3: Charge convergence with respect to basis set. The numbers one through six refer to 6-311G(d), 6-
311G(d,p), 6-311++G(d,p), 6-311++G(2d,2p), 6-311G(2df,2pd) and 6-311++G(3df,3pd) respectively.
Number seven is the final choice. The table summarizes the final partial charges for the repeat unit of a
carbazole macrocycle in multiples of the elementary charge e. For labeling refer to fig. 5.1a.

5.2 Molecular dynamics simulations

The initial configurations for the MD simulations of the macrocycles are based on x-ray data provided by W.
Pisula [103]. According to this data the macrocycles are spaced 0.4 nm apart and rotated by 30◦ with respect to
each other along the column. Since the four OH side chains divide the macrocycle into four identical units, every
fourth molecule along the column is in the exact same configuration (see fig. 5.7a). The columns are arranged on a
hexagonal lattice with a packing distance of 4.7 nm. To obtain stable MD starting configurations, this distance had
to be reduced to 4.2 nm by moving the columns closer together. The distance of closest approach between columns
is significantly smaller, since the diameter of the rings is approximately 3.8 nm. As a model system, the bulky,
branched alkyl side chains reported in ref. [103] were substituted by linear chains four carbons in length [106].
This reduces the steric hindrance in the initial MD structure and thus simplifies equilibration. It also creates space
in the macrocycle to insert a central π-system, such as a graphene molecule [106], to form a coaxial cable. Finally,
the synthesis of alkyl side chains with modified length or position is straightforward. The OH side chains were left
exactly as they were synthesized. A comparison between the synthesized and the simulated ring structure is shown
in fig. 5.7. The initial configuration of 4 by 4 by 48 carbazole macrocycles, i.e. 16 columns totaling 224, 256
atoms, is shown in fig. 5.8.
All MD simulations were performed using the Gromacs program [46] with the velocity Verlet MD integrator and a
time step of 1 fs. The runs use a smooth particle mesh Ewald (PME) algorithm [115] with explicit treatment up to
rc = 1.2 nm to calculate electrostatics and a cut-off of also 1.2 nm for van der Waals interactions. Initial velocities
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a b

Fig. 5.7: (a) Structure of synthesized ring taken from [103]. (b) United atom structure with truncated alkyl side
chains as used for MD simulations.
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Fig. 5.8: Initial configuration of carbazole macrocycle columns in (a) top and (b) side view. Oxygens at the end of
the side chains are highlighted to illustrate the twisted columnar structure.
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5.3 Charge transport parameters

were generated from a Boltzmann distribution at 300 K. The NPT equilibration run lasted 2.4 ns with Berendsen
pressure coupling and the velocity rescaling including stochastic dynamics [51] thermostat. It is intended to sta-
bilize the system at a given pressure. In the course of the simulation, the columns moved even closer together,
while neighboring molecules within the column moved slightly further apart. The box dimensions thus changed
from initially xi = 15.3, yi = 13.0 and zi = 20.2 nm to the final size of x f = 14.7, y f = 12.6 and z f = 21.6 nm.
The convergence of system volume as well as that of the individual box lengths is checked at the end of the NPT
run. Potential, kinetic and total energy of the system were conserved, pressure fluctuated around one bar and
temperature around 300 K at the end of the run.
Following the NPT simulations, we performed NVT simulations using a box size obtained by averaging over the
last few hundred NPT snapshots. Starting positions and velocities were taken from the last NPT frame. The
NVT run was first equilibrated for 1 ns using the velocity rescaling thermostat. Then the NVT production run was
performed for 20 ps, writing out results every 20 fs. Equilibration was checked by analyzing system temperature,
pressure, potential, kinetic and total energy.
A snapshot of the final run is shown in fig. 5.9. In comparison to the initial configuration (see fig. 5.8) the spiral
ordering of the oxygen atoms at the end of the side chains is lost, indicating side chain motions as well as rotations
of macrocycles with respect to each other. Also, the macrocycle positions deviate from their initially perfect
columnar arrangement by fluctuating in the xy-plane, allowing a closer approach and thus higher electron density
overlap between molecules of neighboring columns.

x
y z

x

a b

Fig. 5.9: Final configuration of carbazole macrocycle columns in (a) top and (b) side view at the end of the NVT
production run. Oxygens at the end of the side chains are highlighted.

5.3 Charge transport parameters

To simulate the charge dynamics in carbazole macrocycle columns, it is important to determine charge transport
units (conjugated segments) in a carbazole macrocycle. Several mechanisms can localize charges: polaron self
trapping [116], chemical defects [117], the torsional angle between neighboring monomers [111] and the dynamic
disorder in transfer integrals due to thermal fluctuations [74]. The latter mechanism is typically responsible for
charge localization in molecular crystals. To treat the conjugation break in a carbazole macrocycle, two limiting
approaches are taken. The first assumes that the entire macrocycle is conjugated and thus the charge carrier is
spread out over the whole macrocycle. The second assumes that there is no conjugation between the twelve
monomer units, i.e. the charge is always localized on one of the monomer segments. In this case, there is also
intra-chain transport within the macrocycle. The former approach requires knowledge of reorganization energy
and orbitals for a macrocycle, while the latter requires the respective input parameters for a monomer only. In
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5. Carbazole macrocycle

both cases the side chains were assumed not to play a role in the charge transport. The reorganization energy
(sec. 4.5.2) was computed based on B3LYP/6-311G(d,p) optimized geometries and wave functions. For the cation
we obtained 0.1 eV for the monomer and 0.06 eV for the macrocycle. The transfer integral calculations employ
ZINDO orbitals computed based on a B3LYP/6-311G(d,p) optimized geometry. The HOMO and LUMO orbitals
of a single carbazole unit as well as the change in transfer integral upon translating two initially cofacial units
in x-direction with respect to each other are shown in fig. 5.10. The change in transfer integral upon translation
is described by an oscillatory exponential decay. Clearly, there is no more electron density overlap once the
molecules have moved completely apart and it decreases from the closest cofacial configuration up to that point.
The oscillation arises from the bonding-antibonding pattern of the orbitals, which depends on the sign of the
wave function. In face-to-face arrangement the transfer integrals favor hole transport (HOMO-HOMO electronic
coupling), but for certain displacements electron transport becomes favorable.
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Fig. 5.10: (a) Shape of HOMO and LUMO for a carbazole monomer. (b) Value of transfer integral for HOMO and
LUMO upon translating two cofacially aligned monomers with respect to each other in direction of the
arrow indicated in (a). The spacing between the molecules is fixed at 0.36 nm. Modified from [100].

The HOMO orbital of the macrocycle along with the change in transfer integral upon rotation of two planar
macrocycles with respect to each other is shown in fig. 5.11. Since the macrocycle consists of twelve monomers,
a rotation by thirty degrees reproduces an identical configuration. In the actual MD simulation the rings are
never planar, neither are they in their optimized vacuum geometry, where the dihedral angle between monomers
is approximately 140◦. Nonetheless the calculation illustrates that the transfer integral between macrocycles also
favors hole transport and that the bonding-antibonding configurations lead to two minima as well as one maximum,
which are as strong as that of the cofacial configuration. There are also positions of zero coupling in between at
rotations of 3.75, 11.25, 18.75 and 26.25◦. This shows the importance of the azimuthal alignment of the molecules
for charge transport.

5.4 Rate-based simulations of charge dynamics

KMC simulations were performed based on the previously determined morphologies using the VOTCA pack-
age [95]. The externally applied electric field was chosen to have a magnitude of E = 107 V/m throughout. It is
always aligned parallel to the direction of transport being studied. The dipole moment was computed for config-
urations optimized in vacuum. It yields approximately 2 Debye parallel to the direction the nitrogen is facing in.
In the macrocycle the dipole moment is reduced to 0.03 Debye, because the monomer dipoles facing toward the
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Fig. 5.11: (a) HOMO of the carbazole macrocycle. (b) Change in transfer integral upon rotating two planar macro-
cycles without side chains with respect to each other [100].

center of the cycle compensate each other. Note that there is a 140◦ angle between consecutive monomers in the
optimized macrocycle. When neglecting electrostatic disorder the site energy difference reads ∆G = eEri j, where
e is the elementary charge, E the electric field and ri j the vector connecting the two sites i and j. Since the rings
deviate strongly from their equilibrium configuration in the MD runs, results with and without electrostatics are
compared. To analyze the effect of different conjugation lengths along the macrocycle the two limiting cases are
treated: that the conjugation is spread over the entire macrocycle and that it is broken after each repeat unit.

5.4.1 Orbital mapping and modeling of intra-chain transport

To treat a fully conjugated macrocycle and a cycle composed of twelve conjugated segments, i.e. carbazole
monomers, two different orbital mappings are required. In the first case (the full ring mapping), the entire car-
bazole macrocycle is treated as one hopping site and its orbitals are calculated for an optimized macrocycle with
a dihedral angle of 140◦ between the monomer segments. In the course of the MD simulations this angle deviates
significantly from its equilibrium value in contrast to bonds and angles within each monomer, which remain ap-
proximately constant. Thus the orbitals of the optimized macrocycle are rotated to match the monomer orientation
of each MD snapshot. This is possible since the ZINDO orbitals (sec. A.1.7) are stored as linear combination of
atomic orbitals (sec. A.1.3), which allows rotation of the macrocycle orbitals independently from each other based
on the orientation of the underlying atoms. In the second case (the monomer mapping), each monomer corresponds
to a hopping site and its orbitals are computed for a single carbazole unit, i.e. a monomer saturated with hydrogens,
optimized in vacuum. To treat intra-chain transport, i.e. transport along the macrocycle in the monomer mapping,
transfer rates ωi j between consecutive monomers i and j along the cycle must be calculated. For this purpose an
expression derived from transition state theory [87, 118] is used:

ωi j = ν exp

− (∆Gi j − Λ)2

4ΛkBT
−

∣∣∣J0 cosΨi j

∣∣∣
kBT


Here ν is a prefactor related to the frequency of the promoting mode and the relevant Franck Condon factor [87]. To
obtain reasonable rates, a value of ν = 1015 sec−1 is used in accordance with ref. [119]. This ensures that intra-chain
rates are fast enough so that charge transport is still limited by inter-chain rates. As in sec. 4.4.2 and eqn. 4.24,
∆Gi j is the free energy difference between the charge being located on molecule i and j, Λ is the reorganization
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5. Carbazole macrocycle

energy and kBT the thermal energy. The intra-molecular transfer integral is approximated by Jintra = J0 cosΨi j,
where Ψi j is the torsional angle between monomers (fig. 5.1d) and J0 is chosen to have a value of 0.1 eV.

5.4.2 Transfer integral distributions & cut-off radius

The KMC simulations require the specification of a cut-off radius rc to define nearest neighbor pairs in a simulation.
All molecules whose center of mass lies within a sphere of radius rc around the center of mass of molecule i are
treated as nearest neighbors of i. Transfer integrals and corresponding rates are calculated between i and its nearest
neighbors ignoring all other molecules in the vicinity. Therefore, if molecules are labelled in order of stacking
along the columns and the cut-off radius is large, the transfer integral between molecules i and i + 2 is calculated
without taking into account the presence of molecule i + 1, which lies in between. However, they have little
influence on the KMC simulations because the corresponding transfer integrals and hence rates are low. This is
shown in fig 5.12a by the distinct maxima for first and second order neighbors in the distribution of the logarithm
of the square of the transfer integrals. A cut-off radius of rc = 0.7 nm includes only nearest neighbors, while
rc = 1.2 nm shows a peak due to second order neighbors (see fig. 5.12b).
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Fig. 5.12: (a) Distribution of the logarithm of the square of the transfer integral for cut-off radii of rc = 0.7 and
1.2 nm. The former is the cut-off radius for the one-dimensional KMC runs. (b) Distribution of distances
between centers of mass for the full ring mapping.

Since the side chains for the carbazole macrocycles face inwards, a close approach between cycles of neighboring
columns becomes possible. This enables charge transport perpendicular to the stacking direction of the columns,
i.e. in the xy plane. To account for transport in this direction, the cut-off has to be increased significantly beyond
the distance between nearest neighbors in a column. Concomitantly, this would mean the inclusion of a large
number of neighbors in the z direction which do not contribute to the charge transfer process. To avoid the unnec-
essary calculation of transfer rates for these higher order neighbors, an additional cut-off rz along the z-direction is
introduced. It is set to rz = 0.6 nm for all simulations and removes neighbor pairs where rz < 0.6 nm despite the
fact that they lie within the cut-off radius rc. Both 1D and 3D transport are studied in the full ring mapping. In case
of 1D transport, rc = 0.7 nm is chosen based on the distribution of center of mass distances shown in fig. 5.12b,
which splits into clearly separable peaks corresponding to first, second, third and higher order neighbors. For 3D
transport rc is set to 3.8 nm. In this case in addition to the two neighbors in the same column, each molecule may
have up to twelve additional neighbors in the xy plane. In hexagonal ordering each column is surrounded by six
neighboring columns in hexagonal packing and if column j is also shifted along the z-axis with respect to column
i, two neighbors become accessible. The resulting percolation networks for one- and three-dimensional transport
are illustrated by connectivity graphs in fig. 5.13. Grey spheres represent the centers of mass of each macrocycle,
bonds are drawn between molecules for which coupling was calculated. The width of the bond is proportional to
the transfer integral, the color represents the sign with blue being positive and red negative.
In case of the monomer mapping there are intrachain neighbors to allow transport within the ring, whose coupling
depends solely on the dihedral angle between consecutive segments and not on their distance or the cut-off radius rc.
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Fig. 5.13: Connectivity graphs showing only nearest neighbor connections for the full ring mapping in case of (a)
rc = 0.7 nm and interconnections between columns for (b) and (c) where rc = 3.8 nm. The distance in
z direction between neighbors never exceeds rz = 0.6 nm. For clarity only the first four columns are
displayed in (a) and (b) and the upper two layers in (c).

In addition, interchain transfer integrals corresponding to hops from a monomer on ring i to the closest monomer
on ring i + 1 are taken into account. As for the full ring mapping rz = 0.6 nm while rc is set to 0.9 nm. The
latter choice is made because, on the one hand, the dependence of mobility on cut-off radius reaches a plateau
at 0.9 nm (see fig. 5.14a). On the other hand, it is not possible to distinguish between intra-columnar and inter-
columnar neighbors based on the center of mass distribution of the monomers, as shown in fig. 5.14b. Thus, only
3D transport is treated for the monomer mapping. A choice of rc = 0.9 nm permits up to eight neighbors per
monomer, i.e. two for each macrocycle above and below along the column and two for each of the two closest
macrocycles in the closest column.

5.4.3 Charge mobility

In all cases the charge mobility was calculated using velocity averaging for 10−7 seconds based on the last 100
frames of the MD production run with 10 different starting positions per frame. To show the influence of static
disorder, additional KMC simulations were performed for an ideal configuration based on x-ray data. To this end,
the rings as optimized in vacuum were stacked into hexagonally ordered columns. Within the columns consecutive
molecules are rotated by 30◦ with respect to each other. In this case KMC runs were averaged for 100 different
starting positions. Finally, we have also calculated the mobility for the equilibrated morphologies taking into
account electrostatic disorder. The resulting hole mobilities for the ideal and the equilibrated system with and
without electrostatic disorder are summarized in tab. 5.4.
In the one-dimensional case using the fully conjugated mapping, the mobility is more than an order of magnitude
lower (1.2 · 10−3 cm2/Vs) than in the equilibrated case (0.05 cm2/Vs). In the ideal system neighboring pairs with
low coupling exist because the quantum chemically equilibrated cycle is not planar. Thus while planar cycles have
their maximum transfer integral at a rotation of 30◦ with respect to each other, in case of the optimized cycles
the transfer integral also depends on the respective orientation of monomers of consecutive cycles and may thus
be quite low even at a 30◦ angle. In the equilibrated morphologies, the monomer orientations of consecutive
cycles align better. However, the mobility varies by two orders of magnitude (between 10−1 and 10−3 cm2/Vs) for
different snapshots. The large variation is expected, because a single low transfer integral along a column reduces
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Fig. 5.14: (a) Dependence of mobility on cut-off radius for the monomer mapping. (b) Distribution of distances
between centers of mass. (c) Connectivity graph for one column in monomer mapping. Bonds are not
displayed if coupling between neighbors is below 10−6 eV.
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Fig. 5.15: Distribution of the logarithm of the square of the transfer integral (a) for the fully conjugated and (b) for
the monomer mapping. The magnitude of intra-columnar transfer integrals (rc = 0.7 nm) is compared to
that of inter-columnar neighbors (additional neighbors for rc = 3.8 nm). In (c) and (d) the alignment of
a neighboring pair with a high coupling of J ≥ 0.01 eV is displayed in top and side view, respectively.
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5.4 Rate-based simulations of charge dynamics

Direction full ring (1D) full ring (3D) monomer
x - 1.195 0.566

equilibrated y - 1.176 0.554
z 0.052 0.465 1.165
x - 0.187 0.573

ideal lattice y - 0.200 0.550
z 1.15 · 10−3 0.366 1.839
x - 0.648 0.074

with electrostatic disorder y - 0.686 0.121
z 0.039 0.261 0.240

Tab. 5.4: Hole mobilities (in cm2V−1s−1) obtained by velocity averaging. Results for the fully conjugated cycle are
compared to a cycle composed of twelve conjugated monomer segments. For the full ring two different
cut-offs are used: rc = 0.7 nm corresponding to coupling only between nearest neighbors along the
column (1D) and rc = 3.8 nm allowing for inter-columnar and thus three-dimensional transport (3D).
The table also compares results for the equilibrated MD configurations with and without taking into
account electrostatic disorder with results for the ideal crystal lattice based on x-ray data.

the mobility in a one-dimensional system significantly, since every charge has to travel across the pair with low
coupling and therefore the mobility depends on the lowest transfer integrals in the system. This was already shown
for hexabenzocoronene in refs. [113, 92, 94].
In case three-dimensional transport is treated with the fully conjugated mapping, charge mobility increases from
0.05 to 0.5 cm2/Vs for the equilibrated system and differences in mobilities between frames become negligible.
Transport along the z-direction, i.e. in stacking direction of the columns, is also of similar magnitude in the
equilibrated and the ideal case. The improvement is due to the fact that in three dimensions any defect in a column
can be circumvented. Thus, the low transfer integrals in a column no longer decrease the mobility. Transport in
the xy plane is weaker in the ideal than in the equilibrated morphology, but in both cases it is of the same order of
magnitude as transport in the z direction. For the monomer mapping, the mobility in the ideal case is higher than in
the fully conjugated mapping in all directions. Upon equilibration, transport along the z-axis slightly decreases, but
remains higher, while mobility in the xy plane remains the same and thus weakens compared to the fully conjugated
mapping.
The difference between inter and intra-columnar coupling is illustrated by the distributions of the logarithm of
the square of the transfer integral shown in fig. 5.15a and 5.15b. The bulk of high transfer integral values is
found along the column, but while inter-columnar couplings form the tail of the distribution, a few of them reach
values comparable to the highest intra-columnar transfer integrals. The latter is more often the case for the fully
conjugated cycles (a) than for the monomers (b). In both cases high inter-columnar transfer integral values are
found when the rotation of the closest monomer units of neighboring macrocycles is such that it leads to almost
cofacial coupling between them. An example of such a neighboring pair with a coupling of J = 0.011 eV is shown
in fig. 5.15 in side (c) and top (d) view.
The different results obtained for monomer and fully conjugated mapping are rationalized as follows. The higher
mobility in the xy-plane for the full ring mapping is due to the fact that when a charge carrier hops in the xy-plane
it travels more than 3.5 nm in the fully conjugated case while it travels less than 0.9 nm in the monomer case. In the
z-direction the monomer mapping yields higher mobilities because the fast intrachain transport allows the charge
carrier to choose the monomer with the highest coupling to hop to the next macrocycle. In contrast, the coupling
between two fully conjugated cycles always takes into account the unfavorably aligned monomers as well. As
shown in fig. 5.15, more high transfer integral values are present in the monomer (b) than in the fully conjugated
mapping (a). Overall, the different mapping schemes do not significantly influence the mobility.

Influence of electrostatic energetic disorder

Energetic disorder is known to decrease the mobility by several orders of magnitude in compounds with a strong
dipole moment. Because of its symmetry the carbazole macrocycle has a low dipole moment of 0.03 Debye.
Its constituent monomers, however, show a dipole moment of 2 Debye. Thus we decided to take into account
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5. Carbazole macrocycle

energetic disorder due to electrostatics. To compute the energetic disorder, we used the partial charges calculated
using CHELPG based on the geometry of a carbazole macrocycle in vacuum optimized by B3LYP/6-311G(d,p) in
both charged and neutral state. For the monomer mapping we took the partial charges of a single unit in vacuum
and included the charge of the two hydrogens added for saturation (H8 and H9) in that of the carbons forming the
bond in the macrocycle (C8 and C9 in fig. 5.1). The electrostatic site energy difference contributing to ∆Gi j in the
Marcus rate was thus computed as described in sec. 4.5.4.
Introduction of electrostatic disorder leads to a reduction of mobility by a factor of two in case of the full ring
mapping (0.5 to 0.25 cm2/Vs in z-direction), while it reduces the mobility by more than a factor of five in case
of the monomer mapping (1.8 to 0.25 cm2/Vs in z-direction). Overall, the mobility along the columns becomes
identical in both mappings, while the mobility in the xy plane is now significantly better for the fully conjugated
(0.6) than for the monomer mapping (0.1 cm2/vs). Due to the higher dipole moment of a single carbazole unit, it
is not surprising that the monomer mapping is more affected by introduction of electrostatic disorder than the full
ring mapping. However, in both cases the reduction in mobility is less than an order of magnitude.

5.4.4 Conclusions

In this chapter we derived all force field parameters necessary to describe carbazole with alkyl side chains attached
as well as polycarbazoles, such as the macrocycle. With the guiding help of x-ray data this allowed us to study the
local ordering of carbazole macrocycles. Charge transport simulations were performed using two different charge
transport units, namely the entire macrocycle and the carbazole monomer. Comparison of the corresponding
transfer integral distributions and mobilities revealed only minor differences indicating that in our model intra-
chain transport is so fast that it is almost equivalent to full conjugation.
When electrostatic disorder is taken into account, the mobility is reduced by a factor of two to five depending on
the model. Due to the strong dipole moment of a single carbazole monomer, a decrease in mobility by orders
of magnitude could have been expected. However, the symmetry of the macrocycle remains throughout the MD
simulations and thus makes the influence of electrostatic disorder almost negligible.
The most interesting property of this columnar system is that it conducts in three-dimensions, achieved by syn-
thesis of macrocycles with side chains facing inwards. The introduction of inter-columnar transport leads to an
increase in mobility by at least an order of magnitude compared to solely intra-columnar transport, because it
provides pathways to circumvent neighbors with low coupling along a column. So far there are no experimental
measurements to support this but, provided the supramolecular arrangement is achieved, local mobilities as mea-
sured by PR-TRMC (see sec. 2.2.2) are expected to be on the order of 0.1 cm2/Vs for such systems. Macrocycles
with side chains on the outside will prevent three-dimensional transport and are thus expected to have mobilities
on the order of 10−3 cm2/Vs.
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6 [1]Benzothieno[3,2-b]benzothiophene (BTBT)

One of the main reasons why organic materials show promise to replace their inorganic counterparts is that devices
can be built using solution processing [120, 121]. The drawback is that solubility requires the addition of flexible
side chains, which are bound to negatively influence the order in the resulting crystal morphology. In this chapter
we intend to study the influence of side chains on a self-assembled crystal morphology created by solution process-
ing. Flexible side chains introduce static - in comparison to the speed of charge carriers - and dynamic disorder,
which requires a sophisticated percolation path analysis to predict charge transport properties.
Presently, multiple methods are available to calculate charge transport in such systems depending on the transport
regime [63, 64, 66, 82, 93, 94]. It has been shown in refs. [73, 74] that for organic crystals the thermal fluctuations
of transfer integrals between neighboring molecules is of the same order of magnitude as their average values.
This allows us to assume that the electronic wave function is not completely delocalized over the entire structure at
ambient conditions, which excludes the notion of band-like transport. If it is still spread out over a small number of
molecules, transport ought to be treated as diffusion limited by thermal disorder. This can be achieved using semi-
classical dynamics based on a model Hamiltonian with interacting electronic and nuclear degrees of freedom [75].
If, however, nuclear dynamics are much slower than the dynamics of the charge carriers and coupling is weak,
transport should be described by a Hamiltonian with static disorder based on the electronic density of states and on
hopping rates between localized states. Charge transport may then be computed using rate equations, for example
by kinetic Monte Carlo based on Marcus rates [93, 94]. Up to now, it is still not clear which method is most suitable
for the study of partially disordered semiconductors, since it is unknown how much disorder is truly present in these
systems. Therefore, a comparison of charge transport characteristics based on semi-classical dynamics as well as
on rate equations for a relevant test case may elucidate which transport regime is more appropriate for crystals with
significant disorder due to side chain motions.
As a test system, we chose [1]Benzothieno[3,2-b]benzothiophene (BTBT, see fig. 6.1), which was initially used as
a high-performance molecular semiconductor for vacuum-processed OFETs, where it showed excellent stability
and lifetime under operation in air [122, 123]. By introduction of alkyl side chains in the long-axis direction
of the core, which ought to facilitate lateral intermolecular interaction, BTBT could be made sufficiently soluble
for solution-processing. A comparative study of OFETs created by spincoating BTBT with alkyl side chains of
different length on an Si/SiO2 substrate showed self-organization into crystalline structures as well as excellent
device mobilities [123]. The highest mobility ranging between 1.20 and 2.75 cm2/Vs was found for C13 side
chains. For the simulations we use C12 side chains, since the corresponding x-ray structure is readily available
in the supporting information of ref. [123] and with values ranging between 0.5 to 1.7 cm2/Vs the mobility is not
significantly below that of the C13 side chains. Thus the crystal structures are likely to be similar as well. The
chemical structure and unit cell of BTBT with C12 side chains are shown in fig. 6.1a and b. The unit cell has P1
symmetry with the main axes a = 5.864 nm, b = 7.740 nm and c = 37.910 nm. The corresponding angles are
α = 90.00◦, β = 90.59◦ and γ = 90.00◦.
We first present the MD simulations performed for BTBT-C12, to be followed by charge transport simulations
using rate equations (sec. 6.2) and semi-classical dynamics (sec. 6.3). The side chain motions are shown to give
rise to static disorder in the transfer integral distributions, which leads to a modification of the percolation pathways
in the system. Finally, a comparison of the two different simulation approaches is given.

6.1 Force field and MD simulations

As before, the first step of an MD based study of charge transport is the determination of suitable force field
parameters for the MD run. Since no complete set of parameters is available for BTBT in the OPLS force field,
we first assign the atom types and force constants by using analogies to thiazole, furan, benzene and indole, which
are present in OPLS. The rest of the parameters are obtained by fitting to quantum chemical potential scans, as
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Fig. 6.1: (a) Chemical structure of [1]Benzothieno[3,2-b]benzothiophene (BTBT) with C12 side chains. (b) Unit
cell of the BTBT-C12 crystal. Taken from [124]. The HOMO and LUMO calculated using ZINDO are
illustrated in (c) and (d).

described in sec. 3.3.2. Detail regarding the BTBT force field are given in the appendix A.3.1). MD simulations
were performed using the Gromacs package [125]. The initial configuration of 12 by 12 by 6 molecules in x-, y-
and z-direction was built based on the above mentioned experimental unit cell. The smaller number of molecules
along the z-direction was chosen since this is the direction of the side chains where no charge transport is assumed
to occur. The system was equilibrated for 250 ps in NPT ensemble, then one ns in NVT ensemble and finally
production runs were performed in NVT ensemble with snapshots taken every 20 fs for a total of 20 ps. The short
production run time is due to the high frequency of the output required to compute the time autocorrelation function
of transfer integrals for semi-classical dynamics, which will be discussed in sec. 6.3. The rate equation approach
requires only a single MD snapshot in principle, although multiple snapshots are useful for statistical reasons. An
additional production run of one ns in NVT was performed to confirm the slow side chain motions. All simulations
were performed at a temperature of 300 K using Particle Mesh Ewald with a grid spacing of 0.12 nm and explicit
treatment up to 1.1 nm for the Coulomb interactions and a cut-off of 1.1 nm for the van der Waals interactions.
Initial pressure equilibration was done with the Berendsen barostat. The Nose-Hoover thermostat was used for
temperature equilibration and velocity rescaling [46] for the production runs.

6.2 Charge transport using Marcus rates

As for carbazole (sec. 5.3) we treat the side chains as insulators and calculate the relevant HOMO and LUMO
orbitals solely for the BTBT core, i.e. with the side chains being replaced by hydrogen atoms. The core geometry
was optimized using B3LYP/6-311G(d,p) and the orbitals were calculated using ZINDO. Both HOMO and LUMO
are non-degenerate and visualized in fig. 6.1c and d. The internal reorganization energy Λ for cations and anions is
0.229 eV and 0.303 eV, respectively. Since all molecules in the system are identical, there is no diagonal disorder
in the HOMO energies. Electrostatic and polarization contributions to the energetic disorder are ignored, due to
the small dipole moment of a single optimized molecule of 0.005 Debye. Thus ∆Gi j = eE · ri j, where E is the
applied electric field, ri j is the vector connecting molecules i and j and e is the elementary charge. Hopping rates
were calculated using Marcus theory as described in sec. 4.4.2.
Charge mobility was calculated using the time of flight, velocity averaging and Einstein relation approaches (see
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6.2 Charge transport using Marcus rates

sec. 4.4.4). Velocity averaging is the most accurate, because it is straightforward to obtain the mobility from the
resulting velocity while the other two approaches require a fitting procedure to extract the mobility. For velocity
averaging and time of flight an electric field with magnitude of E = 107 V/m was applied. The field direction was
always aligned parallel to the transport direction. The results obtained for mobilities in x- and y-direction as well
as diagonally across the xy plane are shown in table 6.1. Agreement between the methods is very good, indicating
that the chosen field strength is in the low field regime. Due to our treatment of the side chains as insulators,
there is no transport along the z-direction, but the x- and y-direction are similarly suited for transport. This is also
supported by the xy projections of two typical diffusion paths lasting 10−2 seconds shown in fig. 6.2a.

Direction TOF ⟨v⟩ Einstein relation crystal
x 0.089 0.0795 0.0826 0.377
y 0.099 0.0813 0.0734 0.224
xy - 0.0884 0.0692 0.302

Tab. 6.1: Hole mobilities (in cm2V−1s−1) obtained by the different methods: time of flight (TOF), velocity averag-
ing, ⟨v⟩, and diffusion (Einstein relation). The last column is the mobility of the perfectly ordered crystal
obtained using velocity averaging.

0 50 100 150 200
x [µm]

0

50

100

150

200

y 
[µ

m
]

x

y

C

BA

9.69 nm

7.15 nm

ba

Fig. 6.2: (a) Diffusion pathways of charges after 10−2 sec for two different MD snapshots. (b) Connectivity graph
in one of the xy-planes. The spheres indicate the centers of mass of the molecules, bonds are displayed
if the connecting transfer integrals exceed 0.005 eV. The thickness of the bonds is proportional to the
magnitude of the transfer integrals, the color represents the sign with blue being positive and red negative.
Note the difference between the size of the slab and the much larger diffusion range of the charge shown
in (a).

Mobilities of crystalline organic semiconductors are often estimated based on a static unit cell [126, 24]. Thus, we
also compare the ensemble-averaged mobility to the one calculated for an ideal, perfectly ordered crystal. In the
ideal case, velocity averaging predicts an about four times higher mobility (∼ 0.3 cm2V−1s−1) with a noticeable
preference for the x- over the y-direction (see again tab. 6.1). To understand the discrepancy between the equi-
librated and the perfectly ordered case we analyzed the transfer integral distributions. The total distribution can
be split into subdistributions corresponding to the three directions responsible for charge transport, A, B and C,
i.e. the three nearest neighbor pairs shown in the inset of Fig. 6.3. For the ideal crystal they are all approximately
equivalent: JA = JB = JC = 0.023 eV. Since a hop in the C direction corresponds to a step of 0.58 nm along the
x-axis and no motion in y-direction, but a hop in A or B direction means only 0.39 nm along the y-axis and still
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6. [1]Benzothieno[3,2-b]benzothiophene (BTBT)

0.29 nm along the x-axis, it is clear that transport along the x-axis is preferred in the ideal crystal. The equilibrated
system (see fig. 6.3b) on the other hand shows a narrow distribution centered around 0.007 eV for the C direction
and two almost identical distributions for directions A and B, which are extremely broad and centered around zero.
At first glance one might expect only weak transport in the C (or x) direction. This perception is misleading,
however. An analysis of the transfer integral variation with time J(t) for multiple different molecule pairs shows
that the distributions are narrow. But depending on the pair under investigation they are centered around values
ranging from −0.06 to 0.06 eV as depicted in fig. 6.4c.
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Fig. 6.3: (a) The neighboring pairs corresponding to the three main transport directions A, B and C with average
connecting vectors of (−0.29, 0.39, 0.0), (0.29, 0.39, 0.0) and (0.58, 0.0, 0.0) in nm. (b) Distribution of
transfer integrals in a single snapshot composed into these directions.
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Fig. 6.4: (a) Ideal crystal alignment. (b) Crystal after equilibration illustrating the displacement in z-direction due
to slow fluctuations of the soft side chains. (c) Distribution of transfer integrals in the A and B direction
with respect to the configuration (Jc) of a single snapshot, i.e. 11378 pairs, as well as time distributions of
the transfer integral for different pairs with different average transfer integrals < J >t, i.e. 1000 time steps
of 20 fs each. The inset shows the dependence of J on the displacement of neighbors along the z-axis.

This indicates that the wide distributions are due to static disorder and occur when we average over an ensemble
of molecules. The static disorder in the system can be explained by the irregular displacement of the molecules
along the z-axis, i.e. in the direction of the side chains as depicted in fig. 6.4b. Indeed, as is shown in the inset of
fig. 6.4c even small displacements in the z-direction can lead to very large changes in the transfer integral. Due
to soft side chains the dynamics of these displacements is very slow (> 100 ps), which leads to practically static
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6.3 Charge transport using semi-classical dynamics

disorder of the transfer integrals and correspondingly the rates in the system. The speed of the side chain dynamics
was confirmed by comparing the J(t) distributions for the 20 ps and the 1 ns run, showing no significant broadening
of the distributions despite the much longer run time.
The importance of static disorder can be visualized with the help of a connectivity graph, which is shown in
fig. 6.2b. Here the spheres indicate the centers of mass of molecules and the thickness of the bonds corresponds to
the magnitude of the transfer integrals between them. No bonds are drawn if |J| < 0.005 eV. The color represents
the sign with blue being positive and red negative. Despite the fact that along all three directions neighbors with a
coupling of less than 0.005 eV exist, percolation pathways may easily be found. Hence, even though the transfer
integral averaged over all pairs is zero for A and B directions, there is always a percolation pathway due to the
broadness of the transfer integral distribution of the system. This is solely due to the two-dimensionality of the
system: in a one-dimensional case, such as columnar discotics (see sec. 5 and 8), transport would not be possible
since it is limited by the tail of small transfer integrals. To further verify the static nature of the disorder, we
generated a movie of connectivity graphs versus time for the 1 ns run. It showed some fluctuations, but in general
the red and blue patches in the connectivity graph (fig. 6.2b) remained stationary throughout.
An alternative way of visualizing the effect of connectivity on charge percolation is an analysis of the cluster size
with respect to transfer integral. Here, a cluster is defined as a set of molecules connected by pathways where all
transfer integrals exceed a given transfer integral threshold. The cluster size is defined as the number of molecules
in the largest cluster in percent of the system size. For BTBT, in case the transfer integral threshold is zero, this
corresponds to 16.67 % or 1/6 of the total system size, since there are six independent planes in the simulation
box. As depicted in fig. 6.5 the cluster size remains stable until it rapidly breaks starting at approximately 0.015 eV.
This value would be an appropriate choice as effective coupling to describe the system’s charge dynamics.
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Fig. 6.5: Dependence of cluster size on transfer integral threshold. The largest clusters within three BTBT planes
are visualized for a threshold of J = 0.015 and 0.025 eV.

6.3 Charge transport using semi-classical dynamics

Semiclassical dynamics can be used to study the effect of the coupling between charge dynamics and nuclear
motion. The basic idea is to build a model Hamiltonian by analyzing the molecular dynamics of the system
performed using force-field simulations (see sec. 4.3.1). The model Hamiltonian contains a one-dimensional array
of molecules, with nearest neighbor coupling modulated by classical nuclear displacements.
There are a few additional input parameters required for the definition of this Hamiltonian (eqn. 4.11). For the
high-frequency mode a single effective mode with ω(1) = 1400 cm−1 and mass m(1) = 6 amu is chosen [75]. The
Holstein coupling parameter λ(1) is linked to the reorganization energy Λ of the molecule via λ(1) = ω(1)

√
m(1)Λ.

Using the reorganization energy for cations from above leads to λ(1) = 37727 cm−1. The average transfer integral
is chosen to be the same as for the ideal x-ray structure (J = 0.023 eV) and the standard deviation (σJ = 0.010 eV)
is taken from the time evolution of the transfer integral for neighboring pairs of type A and B with an average J(t)
comparable to that in the ideal crystalline case. The fluctuation of the transfer integral with time along with its
autocorrelation for pairs of type A is displayed in figure 6.6a. The fluctuations were analyzed for the trajectory
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6. [1]Benzothieno[3,2-b]benzothiophene (BTBT)

with a stepsize of 20 fs and a total of 1000 steps. The typical vibrational frequency of the molecules is found
by calculating the Fourier transform of the autocorrelation of the time-dependent transfer integral < J(0)J(t) >,
which is shown in figure 6.6b for the three directions of interest, averaged over five neighboring pairs each. The
resulting slow vibrational frequency is roughly ω(2) = 25 cm−1. This allows calculation of the Peierls coupling
constant via α(2) = σJmω(2)/

√
2kBT , which gives α(2) = 627.1cm−1/Å. All parameters of the SCD Hamiltonian

are summarized in table 6.2.

0 2 4 6 8 10
Time [ps]

-0.2

0

0.2

0.4

0.6

0.8

A
ut

oc
or

re
la

tio
n

(24, 169)
(222, 367)

0 25 50 75 100 125 150 175 200

Frequency [cm
-1

]

0

0.5

1

1.5

2

In
te

ns
ity

 [
ar

b.
 u

ni
ts

]

A
B
C

0 5 10 15 20
Time [ps]

0

0.01

0.02

0.03

0.04

0.05

T
ra

ns
fe

r 
in

te
gr

al
 [

eV
]

a b

Fig. 6.6: (a) Time autocorrelation function of the transfer integral for two pairs of type A with J(t) displayed in
the inset. (b) Fourier transform of the autocorrelation function for all three directions averaged over five
different pairs.

value description
J 285.0 cm−1 average transfer integral
λ(1) 37727 cm−1/Å Holstein electron-phonon coupling
ω(1) 1400 cm−1 frequency of mode (1)
m(1) 6 amu mass of mode (1)
α(2) 627.1 cm−1/Å Peierls electron-phonon coupling
ω(2) 25 cm−1 frequency of mode (2)
m(2) 576 amu mass of mode (2)

Tab. 6.2: Parameters used in the SCD Hamiltonian for BTBT with C12H25 side chains.

The time evolution of the wave function and the nuclear coordinates is evaluated numerically [127] for 7.5 ps
with a time step of 0.0125 fs for a system of 600 molecules under periodic boundary conditions (sec. 4.3.1). The
initial wave function is taken from the electronic Hamiltonian eigenfunctions at t = 0, and the initial positions and
velocities are taken from a Boltzmann distribution at the simulation temperature of 300 K.
The time evolution of the electronic probability distribution along with the resulting mean square displacement and
the fit to obtain the diffusion coefficient are shown in figure 6.7. The mobility computed from the Einstein relation
µ = eD/kBT is µ = 1.48 cm2V−1s−1. This value is more than five times larger than the mobility of an ideal crystal
with rates given by Marcus’ theory, and is due to charge delocalization.
The clear advantages of a semiclassical dynamics approach are that it is valid for intermediate coupling strengths
(J ∝ Λ) and it includes non-Condon effects (time dependency of the intermolecular coupling). From a practical
point of view, however, it can only be applied for short timescales (< 10 ps). Hence, SCD cannot be used for
the simulation of mesoscopic disordered or partially ordered morphologies, where slow modes with up to 10 ms
relaxation times are easily achievable. In addition, the constructed model Hamiltonian is one-dimensional, i.e.
the connectivity of the lattice is ignored, and all molecules are considered to be equivalent, in other words the
modulation of the intermolecular coupling and the site energy is the same. Unfortunately, a model that combines
the effect of strong coupling [128], time fluctuations [129] and dynamic disorder, that is, a model that strikes
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Fig. 6.7: (a) Spread of the probability distribution. (b) Corresponding Boltzmann-averaged mean squared displace-
ment (MSD) with non-linear fit used to obtain the diffusion coefficient.

a balance between short and long timescale descriptions of the system’s quantum dynamics and additionally is
capable of treating transport in three dimensions, is currently unavailable and is the main challenge in the field.
In spite of the limitations, SCD results can be used to identify the range of validity of a hopping model for charge
transport. Indeed, in the case of BTBT the average intermolecular coupling is rather strong compared to the
reorganization energy and one cannot directly assume complete localization on one site. However, the SCD model
predicts that the initial wavefunction is localized over approximately six sites because of a combination of dynamic
disorder and polaronic self-trapping.
The SCD Hamiltonian, however, neglects static disorder in the system, because its parameters are mapped on a
single pair of molecules. As shown in sec. 6.2 the static positional disorder results in roughly 0.02 eV disorder of
transfer integrals, which further localizes charge carriers and, hence, strengthens the hopping picture for charge
transport in a self-assembled monolayer of BTBT.

6.4 Conclusions

The combination of molecular dynamics simulations, quantum chemical calculations and three different types of
theoretical analysis of charge transport provide several insights on the electric properties of partially disordered
molecular crystals.
First, it is clear that the ideal situation with a fixed X-ray crystal structure, as it is often used in literature [126, 24], is
not adequate for the description of charge transport. Molecular dynamics simulations of self-assembled conjugated
systems furnished with flexible side chains show that structural disorder is an intrinsic part of the self-assembled
morphology. This leads to the distribution of charge hopping rates between molecules. The topology of the charge
percolating network is then defined by this distribution and significantly influences charge dynamics in the system.
The idealized picture based purely on a static unit cell does not take this into account and hence gives a misleading
impression of the charge dynamics, overestimating the mobility by an order of magnitude. A completely different
impression is obtained by considering only effective coupling parameters such as the average transfer integral,
which leads to a significant underestimation of the transport properties of the crystal.
Second, one can see a clear advantage of self-assembled layers conducting in 2D rather than self-assembled discotic
liquid crystals conducting in 1D. In 2D the presence of the disorder does not disable charge transport, it only
modifies the connectivity of the network of molecular sites. In the 1D case off-diagonal disorder introduces low
rates in the distribution of charge hopping rates. Since the tail of slow rates defines the mobility along conductive
wires, disorder always decreases the charge carrier mobility in 1D systems. This is a very strong argument in
preference of 2D conductors (self-assembled monolayers) as compared to discotic liquid crystals.
By comparing two model situations with and without dynamical disorder we also conclude that, for such systems,
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dynamical disorder has a much weaker effect on charge mobility than static disorder.
Finally, the fact that both rate-based and semiclassical simulations tend to overestimate the mobility of compounds,
we are inclined to doubt that the 1.1 cm2/Vs measured by Ebata et al. [123] is an easily reproducible value. This
is also supported by FET mobility measurements of BTBT performed by Yeon Sook Chung and Prof. Do Yeung
Yoon, who obtained 0.22 ± 0.05 cm2V−1s−1 [124].
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7 Organic Crystals

In the field of organic electronics several classes of materials are studied, from π-conjugated polymers with aro-
matic backbones to molecular materials. Both are soluble and can be printed on large scale. Polymers naturally
have the better mechanical properties, but structural defects often result in carrier traps and limit the device per-
formance. Organic molecular crystals are advantageous due to their well-ordered structure and ease of purifica-
tion [130, 131]. Most molecular crystal layers are created by vapor deposition techniques such as molecular beam
epitaxy [132], which allows the creation of almost defect-free layers. The resulting well-ordered structures yield
high mobilities, but processing is too costly for industrial application. However, it has been shown that soluble
derivatives of highly conductive molecular crystals such as pentacene also assemble into well-ordered layers with
mobilities above 1 cm2/Vs [133] and thus on the order of amorphous silicon.
To gain a better understanding of what chemical structures and morphologies lead to high mobilities in molecular
crystals, we compare rubrene, a molecular single crystal with OFET mobilities of up to 15 cm2/Vs [134, 135,
136, 137] one of the highest in the field, to three other recently synthesized compounds. The first is indolo[2,3-
b]carbazole with CH3 side chains [138], the remaining two are benzo[1,2-b:4,5-b’]bis[b]benzothiophene (BBBT)
derivatives, one without and one with C4 side chains [139]. In contrast to highly purified rubrene single crystals,
which are created by vapor deposition, their structures are obtained by self-assembly after spin coating. By this
comparison we intend to understand what makes the structure and morphology of rubrene better suited for charge
transport than that of other compounds. In addition the choice of compounds allows us to study the influence of
the dimensionality of the charge percolation network on the mobility, because indolocarbazole and BBBT without
side chains arrange into 3D transporting morphologies, while rubrene is a 2D and BBBT with C4 side chains a 1D
transporting system.
As in the previous chapter, we also compare charge transport simulations based on the diffusion limited by thermal
disorder model with simulations based on a charge localized description combined with rate equations to find
the appropriate transport regime for well-ordered molecular crystals, where static disorder should be negligible
compared to dynamic disorder. We are particularly interested in how the rate-based approach performs in case of
rubrene, where neither the assumption of charge localization nor Marcus theory itself remain valid.
In the first part of this chapter we focus on rubrene, present its crystal structure, transfer integral distributions and
the corresponding charge transport simulation results. We then study indolocarbazole followed by the two BBBT
derivatives. In each case, differences to rubrene will be highlighted. Thereafter, details on the charge transport
simulations for rate-based and semi-classical dynamics are given and their results are summarized and compared.
Conclusions are drawn with respect to dimensionality and advice is given with regard to the ideal morphology of
molecular crystals.

7.1 Rubrene

With a mobility of up to µ = 15 cm2/Vs in OFETs, rubrene has one of the highest mobilities among organic
semiconductors and is hence one of the experimentally most studied materials [137, 134, 136]. Experimental
efforts in creating nearly defect-free layers accomplished by vapor deposition using molecular beam epitaxy [132]
as well as in purifying the material to prevent deep traps [140] led to substantial improvements of the mobility
in rubrene-based devices over time. However, such improvements are costly and time-intensive. Hence it would
be helpful to theoretically understand which materials are promising for such treatment based on their chemical
structure and morphology alone.
Theoretically, charge transport in single crystals such as rubrene has often been considered band-like, due to their
well-ordered structures and a negative temperature dependence of the mobility [141, 142]. Recently it was shown
that the dynamic disorder in the transfer integrals at ambient conditions is of the same order as the transfer integrals
themselves and therefore the electronic wave function cannot be delocalized over the entire crystal [74]. Rate-based
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simulations are likely to underestimate the mobility, because the average coupling along rubrene’s main transport
direction is of the same order of magnitude as its reorganization energy and thus neither the assumption of charge
localization nor Marcus theory itself are valid. Nonetheless, we are interested in how the rate-based approach
performs in this case. As is shown in a study using semi-classical dynamics, a treatment based on the diffusion
limited by thermal disorder model is the most appropriate [75]. It not only takes into account that the charge carrier
is spread over a limited number of neighboring molecules but also correctly reproduces the experimentally found
negative temperature dependence of the mobility.
In this chapter we aim to understand why the chemical and crystal structure of rubrene, shown in fig. 7.1, render
it such a highly conductive organic compound. To this end, connections between the morphology and the transfer
integral distributions are illustrated and the mobility is calculated by both semi-classical dynamics and a rate-based
approach. Finally, results are compared to two other molecular crystals in sections 7.4 and 7.5.

a b

Fig. 7.1: (a) Chemical structure of rubrene. (b) Unit cell of the corresponding single crystal.

7.1.1 Molecular dynamics simulations and charge transport parameters

MD simulations were performed using Tinker [143] in combination with the MM3 force field, exactly as it was
done in ref. [75]. The system size was increased from 4 by 4 by 4 rubrene molecules to 8 by 8 by 4 to reduce
finite size effects in the xy-plane, where charge transport occurs. The total of 17, 920 atoms in the simulation box
approached the limit of Tinker’s abilities and significantly larger box sizes could not be studied with the MM3
force field. The system was first equilibrated for 100 ps in an NPT ensemble, followed by a production run of 24 ps
in an NVT ensemble, saving snapshots at 20 fs intervals. The short equilibration run was sufficient since the initial
box was a 2 by 2 supercell of a very well equilibrated Rubrene system taken from ref. [75].
The reorganization energy was calculated based on a geometry optimized with B3LYP/6-311G(d,p) for a single
molecule in vacuum. For a rubrene cation we obtained Λ = 0.159 eV. In rubrene the side chain phenyl rings
contribute substantially to the HOMO orbital (see inset of fig. 7.2b) and mapping them in a rigid fashion yields
transfer integral distributions that are in disagreement with those presented by Troisi in ref. [75], where the transfer
integrals are obtained by directly calculating the corresponding Fock matrix elements built from the unperturbed
density matrix [74]. To account for this in our simulations, we split the rubrene molecule into five different mapping
sites, one for the core and one for each of the four phenyl side groups. Hence we used a linear combination of
atomic ZINDO orbitals and rotated the orbitals corresponding to the phenyl groups separately from those of the
core. Construction of a diabatic state then reproduced the transfer integral distribution presented in ref. [75].
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7.1.2 Linking structure and transfer integral distributions

As already illustrated for BTBT (sec. 6.2), in crystals it is possible to relate the extrema in the transfer integral
distributions to the corresponding neighbors on the crystal lattice. In addition, a comparison of the transfer integral
distributions of the entire system for the main charge transport direction at a given time with the transfer integral
distributions over time J(t) for different neighboring pairs along the same direction reveals how strongly static and
dynamic disorder influence the system.
For rubrene charge transport can occur only in the xy-plane, because along the z-direction centers of mass of the
molecules are diagonally displaced very far, by approx. (0.38, 0.03, 1.38) nm, and the distance of closest approach
is between the hydrogens of the side chain phenyls, which leads to negligible electronic coupling. There are
three different major directions of electronic coupling, displayed in fig. 7.2a. A cut-off radius of rc = 1.2 nm was
chosen for the neighbor search to take into account exactly six neighbors per molecule, i.e. two for each transport
direction. Along the A direction the neighbors are cofacially aligned, though shifted by on average 0.714 nm with
respect to each other along the x-axis. This shift is the distance between the centers of mass and thus the distance
a charge hops upon transfer in the KMC simulations, which is a lot further than the distance of closest approach.
The average coupling for direction A (calculated for a single snapshot) shown in fig. 7.2b is very high, but has a
broad distribution JA = 0.078 ± 0.030 eV. In directions B and C neighboring molecules are tilted with respect to
each other, so that there is no cofacial alignment between them as for direction A and, consequently, the electronic
coupling is lower. This is evidenced by the respective transfer integral distributions shown in fig. 7.2b. Both exhibit
a very pronounced, sharp peak at JB = JC = −0.010 ± 0.006. For all directions the case of zero coupling between
neighbors is at the very edge of the distributions and thus charge transport is never truly disrupted in the xy-plane.
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Fig. 7.2: (a) Nearest neighbor pairs of the rubrene crystal in directions A, B and C corresponding to the three main
transport directions in the xy plane. (b) shows the respective transfer integral distributions of the entire
system (black solid line) and those belonging to directions A, B and C.

To show whether the width of the transfer integral distribution in A direction is due to static or dynamic disorder,
we analyzed the J(t) distributions for neighboring pairs of type A based on 1000 snapshots taken every 20 fs. A
comparison of temporal transfer integral distributions for five neighboring pairs with a configurational distribution
based on all neighbors of type A in a single snapshot, rescaled for ease of comparison, is presented in fig. 7.3a. The
width of each of the temporal distributions is similar to that of the configurational distribution. This means that
thermal fluctuations between neighbors lead to variations in transfer integrals which are of the same magnitude
as variations throughout the system. Thus thermal fluctuations and dynamic disorder alone suffice to explain the
disorder in transfer integrals.
A connectivity graph for the xy plane of rubrene is shown in fig. 7.3b. Here grey spheres represent the centers
of mass of the molecules, thickness of the bonds between them corresponds to the magnitude of the connecting
transfer integral and color to the sign, with red being negative and blue positive. No bonds are drawn in case
the transfer integral between neighbors is below 0.005 eV. It is no surprise that the connectivity graph shows no
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defects throughout. Also the sign of the transfer integrals is always identical in a given direction, i.e. molecular
vibrations are not strong enough to lead to a complete loss of coupling between neighboring molecules.
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Fig. 7.3: (a) Distribution of transfer integrals in rubrene with respect to configuration (Jc) compared to that due
to time fluctuations for different neighboring pairs of type A. Thermal fluctuations alone suffice to ex-
plain the large standard deviation of the configuration transfer integral distribution. (b) Corresponding
connectivity graph. Grey spheres represent the centers of mass, thickness of bonds is proportional to the
connecting transfer integral, colors represent the sign, i.e. red is negative and blue positive. No bonds are
drawn if the transfer integral between neighbors is below 0.005 eV.

7.1.3 Charge transport simulations

In the rate-based simulations, rubrene shows a high mobility of 8.14 cm2/Vs in the x direction, i.e. along direction
A. Perpendicular, in y direction, the mobility is 0.45 cm2/Vs while it is only 3 · 10−8 cm2/V s in the z direction.
Rubrene is thus a 2D transporting compound with the highest mobility along the direction of shifted cofacially
aligned molecules. However, the rate-based mobility even along the main axis (x) is below that experimentally
measured in OFETs (15 cm2/Vs [134, 135, 136, 137]), but still of the same order of magnitude. A rate-based treat-
ment is expected to underestimate the experimental values, since hopping transport is slower than small polaron
transport in well-ordered, strongly coupled systems. Also, a rate-based description is not strictly valid in case of
rubrene, because the transfer integrals in A direction (JA = 0.078 eV) are of the same order as the reorganization
energy (Λ = 0.159 eV).
The appropriate way to treat rubrene is in the small polaron regime with the diffusion limited by thermal disorder
model using semi-classical dynamics. Such simulations predict a mobility of 64 cm2/Vs for rubrene, which is
significantly higher than the rate-based value. It also exceeds the experimental OFET mobility, but is of the same
order of magnitude. Since static disorder is not significant in rubrene and there are no low rates in the A direction,
we believe that the one-dimensionality of SCD does not neglect important system properties and thus SCD results
are the upper limit of the mobility, which may be achieved in a perfect crystal.
Details on both rate-based and SCD simulations as well as an in-depth comparison to the other compounds follows
in sections 7.4 and 7.5.

7.2 Indolocarbazole

The first compound we compare to rubrene is indolo[2,3-b]carbazole. The conjugated core of indolocarbazole is
similar to pentacene and the presence of a nitrogen in the core introduces a binding site, which may be used for
the attachment of functional groups. Functional groups can be used to vary the solubility and tune the molecular
arrangement to favor charge transport.
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7.2 Indolocarbazole

A variety of indolocarbazole derivatives were synthesized for application in OLEDs within the international re-
search training group program by Norma Wrobel [138]. We focus here on the most basic indolo[2,3-b]carbazole
compound with simple CH3 side groups. The chemical structure of the single molecule (a) and the corresponding
unit cell of the crystal (b) according to x-ray measurements [138] are shown in fig. 7.4. The single crystal unit cell
has P21/c symmetry with unit cell vectors of length a = 1.1229, b = 0.78561 and c = 0.9668 nm and corresponding
angles α = γ = 90◦ and β = 94.79◦.

a b

Fig. 7.4: (a) Chemical structure of the indolocarbazole compound with CH3 side chains. (b) Unit cell of the
corresponding single crystal.

7.2.1 Molecular dynamics simulations and charge transport parameters

The force field required for MD simulations is based on that created for carbazole (sec. 5.1), but in this case OPLS
all atom parameters were used to describe the CH3 side chains. Details may be found in the appendix A.3.2. All
MD simulations were carried out using a 12 by 12 by 12 unit cell sized box containing a total of 3456 molecules or
158, 976 atoms. At first the system was equilibrated in a 350 ps NPT run using Berendsen thermostat and barostat.
Initial velocities were randomly chosen from a Boltzmann distribution at 300 K. This was followed by a 1 ns NVT
simulation using the Nosé Hoover thermostat. After ensuring that energy, temperature and pressure had converged,
production runs were performed for 20 ps with snapshots taken every 20 fs. Initially, we used the Nosé Hoover
thermostat, but the time constant of the thermostat can be seen in the temperature fluctuations of the system on such
timescales and thus introduces spurious correlations in the transfer integral correlations. This effect is known to
occur in highly harmonic crystals with small unit cells, whose phonon modes are coupled to the thermodynamics
of the system and thus the thermostat. To avoid this effect, the production runs use the NVE ensemble. To prevent
energy loss during the NVE simulation it is important to update the neighbor list at every step and not every five
steps as is usually the case in MD simulations. We confirmed that the NVE runs were sufficiently equilibrated
by analyzing the velocity distribution of the system and confirming that velocities of both carbons and hydrogens
obey a Boltzmann distribution 1.
The reorganization energy was calculated based on a single molecule in vacuum optimized with B3LYP using
the 6-311G(d,p) basis set. We obtained Λ = 0.212 eV, which is about thirty percent higher than that of rubrene.

1We also compared the NVE results with NVT using the velocity rescaling thermostat, which was implemented in Gromacs after the com-
pletion of the indolocarbazole study, and found them to be identical on such short time scales. Thus results obtained here are thus perfectly
comparable with NVT results using velocity averaging for the other crystalline systems in this chapter.

71



7. Organic Crystals

The highest occupied molecular orbitals were computed based on the optimized geometries, i.e. for the entire
indolocarbazole molecule. The shape of the HOMO is illustrated in the inset of fig. 7.5a.

7.2.2 Linking structure and transfer integral distributions

Charge transport in indolocarbazole occurs between three different types of neighboring pairs in the crystal, which
are labeled A, B and C in fig. 7.5b. Neighbors of type A and B lie in the yz-plane with the centers of mass of the
molecules separated by vectors (0.053, 0.423,−0.476) and (0.053,−0.423,−0.476) nm, respectively. The transfer
integral distributions for A and B in a single snapshot are shown by the red and blue curves in fig. 7.5a and are
found to be similar, with J = 0.010 ± 0.003 eV based on averaging over respective pairs in a single snapshot.
Neighbors of type C are connected by the vector (1.111, 0.0, 0.0). However, as can be seen from the bottom of
fig. 7.5b, the minimal distance between them is much smaller and enables transport along the x direction of the
crystal. The corresponding transfer integral distribution is centered at J = −0.006 ± 0.003 eV. To ensure that all
neighbors of type C are taken into account, a cut-off radius of 1.2 nm was chosen for the neighbor search. The
large additional peak at zero in the transfer integral distribution (see fig. 7.5a) is an artifact due to second-order
neighbors, which do not influence the simulation results, because neighbors with low coupling are removed prior
to the KMC runs.
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Fig. 7.5: (a) Transfer integral distribution for a single snapshot of an indolocarbazole crystal subdivided into three
main transport directions. (b) Neighboring pairs corresponding to the transport directions.

To identify the source of the variation of the transfer integrals, in fig. 7.6a we compare the transfer integral distri-
bution of a single snapshot for the A direction with the temporal distribution J(t) of three exemplary neighboring
pairs of type A. The J(t) distributions are based on 1000 frames 20 fs apart. Out of these three pairs the one
indicated by the red line in fig. 7.6a has the lowest average transfer integral amounting to (< J(t) >= 0.0068 eV).
The corresponding J(t) distribution is narrow and located close to the lower tail of the configurational distribution
Jcon f . In contrast, the other two pairs have average transfer integrals of 0.0086 and 0.0126 eV, close to the center
of the full distribution. In addition, their distributions are also very broad with a width similar to that of Jcon f .
This indicates that static disorder in the system is small and transfer integral fluctuations are mainly due to ther-
mal noise. Already, from the three distinct neighbor connections, it can be seen that indolocarbazole features a
percolation network in three dimensions, in contrast to the 2D connectivity of rubrene.
Connectivity graphs of different planes in the system using the same cut-off as for rubrene, i.e. J = 0.005 eV,
are shown on the right of fig. 7.6. Since the transfer integrals for indolocarbazole are are about an order of
magnitude smaller than in rubrene’s main transport direction, the bonds drawn in fig. 7.6b and c are slimmer. This
difference is explained by the CH3 and O-CH3 side chains, which prevent a close approach of the conjugated core
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7.2 Indolocarbazole

of neighboring molecules. However, the resulting absolute values of the transfer integrals are of the same order
as those obtained for the weakly coupling B and C directions in rubrene. The transfer integral distributions alone
do not reveal a preferred transport direction, although electronic coupling in C and thus x-direction is almost a
factor of two lower than in A and B direction. Consequently, the connectivity network in fig. 7.6b shows only very
few defects and hence plenty percolation pathways in the yz-plane. The respective graph for the xz-plane shows
a number of disruptions in connectivity due to the lower coupling in C direction (and the high chosen cut-off of
J = 0.005 eV), but does not render charge transport unlikely. Indolocarbazole is thus an isotropic 3D transporting
compound. Combined with the little static disorder in the system, this results in a well-connected charge carrier
percolation network spanning all three spatial dimensions.
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Fig. 7.6: (a) Transfer integral distribution of indolocarbazole for a single snapshot Jcon f compared to the J(t)
distribution for three neighboring pairs of type A. Most of the disorder may be explained by thermal
fluctuations. Connectivity graphs for the (b) yz and (c) xy-plane of the indolocarbazole crystal. Grey
spheres represent centers of mass, bond width is proportional to magnitude of transfer integral, no bonds
are drawn if J < 0.005 eV.

7.2.3 Charge transport simulations

Rate-based simulations yield mobilities of approximately 0.09 cm2/Vs in both x and y direction and 0.06 cm2/Vs
in z-direction. As one would expect from the similar transfer integral distributions, charge transport is equally good
in all directions. It is almost two orders of magnitude below that of rubrene in its main transport direction, but less
than one order of magnitude below rubrene’s y-direction. This is surprisingly good when taking into account the
far weaker transfer integrals and the higher reorganization energy and can only be explained by the almost defect-
free 3D charge percolation network. SCD simulations predict a mobility of 1.7 cm2/Vs, which is again more than
an order of magnitude below that of rubrene, but still surprisingly high, since the isotropic percolation network
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does not positively influence the one-dimensional SCD simulations. The narrow width of the transfer integral
distributions may be responsible for this.
Comparing the two approaches, since the average coupling J ≈ 0.01 eV for all directions is significantly smaller
than the reorganization energy Λ = 0.212 eV, a rate-based treatment of charge transport is justified despite the low
static disorder. However, for an indolocarbazole compound with side chains allowing a closer approach between
the conjugated cores of the molecules, this is likely to change.

7.3 Benzo[1,2-b:4,5-b’]bis[b]benzothiophene (BBBT)

BBBT is a conjugated molecule with a rigid fused-ring structure similar to pentacene and BTBT. While pentacene
shows one of the highest mobilities among organic π-conjugated materials in OFETs, devices built from it suffer
from low stability and short lifetimes under ambient conditions. Materials based on fused thiophene aromatics
have been shown to have high stability paired with good OFET characteristics. BBBT is an analog of pentacene
with a rigid, linearly conjugated structure but a thiophene-based core. A straight-forward, high-yield synthesis of
BBBT and its alkyl substituted derivatives has recently been developed [139].
In the same study, organic field effect transistors have been made by solution-processing using two different BBBT
derivatives: one without and one with C4H9 side chains. The x-ray structures of the corresponding unit cells are
displayed in fig. 7.7. The unit cell for the compound without side chains, labeled as BBBT(1) in the following,
has P1 symmetry with box lengths a = 0.949, b = 0.590 and c = 1.158 nm and corresponding angles α = 90.0◦,
β = 102.94◦ and γ = 90.0◦. It contains two molecules, which are tilted with respect to each other. The unit cell
for the compound with C4H9 side chains, labeled by BBBT(2) from this point on, also has P1 symmetry with
a = 0.458, b = 9.223 and c = 1.249 nm. The angles are α = 89.85◦, β = 79.59◦ and γ = 79.16◦. In contrast to
BBBT(1) it contains only one molecule and the molecules come very close in almost perfect cofacial alignment in
the crystal.

a b

BBBT(1) BBBT(2)

Fig. 7.7: Unit cells of BBBT (a) without and (b) with C4H9 side chains.

7.3.1 Molecular dynamics simulations and charge transport parameters

The force field parameters used for the study of BBBT are almost identical to those of BTBT with changes to
account for the presence of the central phenyl ring. Details are given in the appendix A.3.3. The MD runs for both
compounds were performed using a box consisting of 12 by 12 by 12 unit cells, i.e. 3456 molecules for BBBT(1)
and 1728 for BBBT(2) corresponding to 103, 680 and 62, 208 atoms. Initial velocities were chosen randomly from
a Boltzmann distribution at 300 K. NPT equilibration runs lasted 2 ns with the velocity rescaling thermostat and
Berendsen pressure coupling. They were followed by 1 ns NVT equilibration runs using the equilibrated box size
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7.3 Benzo[1,2-b:4,5-b’]bis[b]benzothiophene (BBBT)

and the velocity rescaling thermostat. NVT production runs using the velocity rescaling thermostat lasted 22 ps
with snapshots taken every 20 fs.
The molecular orbitals and thus charge transport properties of BBBT are assumed not to be influenced by attach-
ment of alkyl side chains. Thus the reorganization energy for both BBBT compounds is calculated from a single
molecule without side chains in vacuum optimized using B3LYP/6-311G(d,p) and amounts to Λ = 0.120 eV. This
value is even lower than that of rubrene and thus more favorable for charge transport. The HOMO was computed
based on the same optimized geometry. It is illustrated in the inset of fig. 7.9a.

7.3.2 Linking structure and transfer integral distributions

BBBT without side chains (1)

In the crystal structure of BBBT(1) there are four types of neighboring pairs partaking in charge transport, which
are indicated in fig. 7.8. The three types of pairs A, B and C contribute mainly to transport in the yz-plane. In par-
ticular, A has the lowest center of mass distance with a connecting vector of (0.0, 0.587, 0.0) nm. The molecules are
in strongly tilted cofacial alignment leading to an average transfer integral of JA = 0.011± 0.004 eV. Neighbors of
type B and C are at identical distance with characteristic vectors (0.355, 0.275, 0.582) and (0.355,−0.275, 0.582) nm.
Despite the proximity of the neighbors, as shown in fig. 7.8a, the tilt of the molecules in opposite directions with
the cores almost perpendicular to each other allows for little overlap between orbitals, resulting in a weak electronic
coupling of JB = JC = 0.001 ± 0.009 eV. The best electronic coupling is found along the x axis in direction D,
where neighbors are connected by the vector (0.926, 0.0, 0.0), since the molecules are in shifted cofacial alignment
as shown in fig. 7.8b. A cut-off radius of rc = 1.1 nm was chosen to take all neighbors of type D into account. The
corresponding transfer integral distribution is strong but broad with JD = 0.036 ± 0.020. In fig. 7.9a the transfer
integral distribution for the entire system and subdivided into the four aforementioned directions based on a single
snapshot is shown. As for indolocarbazole, the peak at zero in the transfer integral distribution of the entire system
is explained by second-order neighbors.
We also compared the distribution of transfer integrals in the main direction D for a single snapshot with the J(t)
distribution of four exemplary neighboring pairs over 1000 snapshots, taken every 20 fs. As can be seen in fig. 7.9b,
the width of the J(t) distributions is similar to that of the configurational distribution Jcon f . This indicates that, as
for rubrene and indolocarbazole, static disorder is not significant, and the width of the disorder in transfer integrals
can be explained by thermal fluctuations alone. The connectivity graph, shown in fig. 7.12a in comparison to that
of BBBT(2), drawn for neighbors with coupling above J = 0.005 eV gives a clear picture of strong transport along
the x-axis with weak interconnections in the yz-plane. Therefore, as one might expect due to the lack of side chains,
BBBT(1) is a three-dimensional semiconductor. In contrast to the also 3D conducting indolocarbazole, BBBT(1)
possesses a strongly preferred transport direction.

BBBT with C4 side chains (2)

Attachment of alkyl side chains changes the crystal structure of BBBT(1) into one with a significantly different
neighbor order. BBBT(2) aligns in a stacked columnar phase, where each molecule has only two close neighbors.
The molecules have practically perfect cofacial alignment along the column, i.e. in A = (0.47,−0.01, 0.01) nm
direction as illustrated in fig. 7.10a. The interplanar separation of this lamellar structure is only 0.342 nm, which
leads to a strong electronic coupling of JA = −0.130 ± 0.042 eV. Notably, this value exceeds even the one along
rubrene’s main transport direction. However, unlike in the case of rubrene, no transport in other directions can
be expected due to the presence of the side chains and the alignment of the molecules in isolating neighboring
stacks. As shown in fig. 7.10b, neighbors perpendicular to the stacking direction can only interact via the side
hydrogens resulting in low orbital overlap. Since maximum values for such coupling are on the order of 10−3 eV,
these directions cannot be completely neglected and consequently a cut-off radius of 1 nm was chosen to take into
account a few neighbors off of the main transport direction A. The attachment of the side chains thus changes
the crystalline ordering in such a way that BBBT(2) becomes a one-dimensional conductor, with transport only
along the stacking direction A of the columns. This is supported by the transfer integral distribution within the
system, shown in fig. 7.11, which splits into two parts: the distribution due to neighbors along the A direction and
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Fig. 7.8: Nearest neighbor pairs contributing to charge transport in BBBT(1) shown in the (a) yz and (b) xz plane.
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Fig. 7.9: (a) Transfer integral distribution of the entire system for one snapshot subdivided into the four directions
A, B, C and D. Corresponding neighboring pairs are shown in fig. 7.8. The HOMO used in the transfer
integral calculations is depicted in the inset.(b) Comparison of J(t) distributions for four different pairs of
type D with the transfer integral distribution Jcon f for type D neighbors in an entire snapshot.
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a peak at zero, which contains the contributions of all neighbors in directions other than A as well as second order
A neighbors, which are responsible for the two small maxima beside the central zero peak.
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Fig. 7.10: (a) 1D cofacial stacking in the A direction responsible for the strong coupling along the column in
BBBT(2). (b) Shift and separation of stacks are responsible for bad coupling in all other directions.

To study the source of the disorder in the transfer integrals, we restrict our discussion to neighbors along the
columnar stacking direction A. In fig. 7.11b we compare the J(t) distributions of seven exemplary neighbor pairs of
type A with the corresponding configurational distribution Jcon f . In contrast to BBBT(1), the width of no temporal
transfer integral distribution rivals that of the configurational one. This indicates the presence of significant static
disorder along the column, which in analogy to BTBT (sec. 6.2) may be explained by the slow motions of the soft
side chains and resulting displacements of the molecules in direction of their long axis. In contrast to BTBT, static
disorder is not strong enough to deter the electronic coupling between neighboring molecules in the A direction
and prevent charge transport. However, we expect the reduction in mobility due to static disorder to become more
significant in longer MD simulations of larger systems and thus also in OFET measurements, since the lowest
transfer integral value along the column limits the mobility.
Not surprisingly, the connectivity graph shown in fig. 7.12b, which displays bonds only for neighbors with transfer
integrals J > 0.005 eV, shows connectivity only along the x-direction. As indicated by the width of the bonds in the
connectivity graph, the electronic coupling between most neighbors is very strong, but for some it is significantly
weaker. Note that in comparison to BBBT(1) (see fig. 7.12a), electronic coupling in x-direction becomes stronger
on average, but the three-dimensionality and with it the existence of percolation paths to circumvent defects along
the main direction of coupling are lost.

7.3.3 Charge transport simulations

Kinetic Monte Carlo simulations based on Marcus rates predict a mobility of 4.5 cm2/Vs in x−, 0.33 in y− and
0.29 in z-direction for BBBT(1). It is therefore the most similar to rubrene, especially since molecules are also in
shifted cofacial alignment along its main transport direction. While the mobility is predicted to be slightly weaker
in both x and y direction, BBBT(1) possesses mobility in the z direction as well, which is of the same order as its
own and rubrene’s y-direction. It is therefore a truly 3D transporting system. When comparing charge transport
in an ideal crystal to that in the equilibrated system, the charge mobility along the x-axis increases by a factor of
three to 13.2 cm2/Vs, but remains almost the same along y- and z-axes. Thus the main coupling direction is most
sensitive to introduction of disorder.
For BBBT(2), rate-based simulations predict a mobility of 12.5 cm2/Vs along the x-axis, which exceeds even that
of rubrene. This is not surprising, since the mean of the distribution of transfer integrals in that direction is higher
than that of rubrene and the reorganization energy of BBBT is lower. However, transport along all other directions
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Fig. 7.11: (a) Distribution of BBBT(2) transfer integrals in an entire snapshot along with the distribution in A
direction. The peak at zero is cut for clarity. (b) J(t) distributions for seven different type A pairs
compared to the configurational distribution Jc.
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Fig. 7.12: Connectivity graph for BBBT (a) without and (b) with C4H9 side chains. Grey spheres represent centers
of mass, bond width is proportional to coupling between neighbors, no bonds are shown if J < 0.005 eV.
Red indicates negative and blue positive transfer integral values.
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is negligible, i.e. ≈ 10−4 and 10−8 cm2/Vs in y- and z-direction, respectively. BBBT(2) is thus a 1D transporting
compound. Even in the ideal crystal, no transport is seen in y- and z-direction, while transport in x direction triples
to 36.4 cm2/Vs. It is important to keep in mind that for BBBT(2) the mobility will also depend on the tail of
the transfer integral distributions as is emphasized in the chapters on carbazole and hexabenzocoronene. Thus, a
single low transfer integral will reduce charge transport in a column. This means that the mobility in the BBBT(2)
simulation depends on the starting position of the charge carrier since it is confined to the same column for the
remainder of the simulation. Indeed, in small one-dimensional systems the width of the mobility distribution due
to different columns is expected to decrease proportional to 1/

√
N. In our simulations with twelve molecules per

column, we thus observe variations by up to a factor of 3.5 in the mobility depending on the starting postion. In
contrast, the starting position only causes mobility variations of a few percent for the other systems.
When charge transport is treated using semi-classical dynamics, the mobility along the main transport directions
of BBBT(1) and BBBT(2) is predicted to be 9.43 and 8.15 cm2/Vs, respectively. Thus that of BBBT(1) actually
exceeds that of BBBT(2) despite the excellent cofacial coupling. This is explained by the fact that the lower cou-
pling in BBBT(1) is partially compensated by the larger distance of 0.93 nm a charge travels between neighboring
molecules in the shifted cofacial direction of BBBT(1) while it travels only 0.47 nm in BBBT(2). In addition, the
Peierls coupling constant for BBBT(1) is also only a quarter of that of BBBT(2), since the molecules have lower
weight and the transfer integral distributions are more narrow.
For the two BBBT compounds the coupling in the main direction is again of the same order as the reorganization
energy, indicating that semi-classical dynamics simulations are the more realistic description. This is supported
by the fact that static disorder has no major influence in BBBT(1), while BBBT(2) is actually a one-dimensional
conductor.

7.4 Charge transport using rate equations

Kinetic Monte Carlo simulations based on Marcus rates were performed using time of flight, diffusion and velocity
averaging analysis (see sec. 4.4.4), all of which were in agreement with each other. Here only results obtained
with velocity averaging are presented. The dipole moment of each molecule was calculated for the optimized
geometries of a single molecule in vacuum using B3LYP/6-311G(d,p). The low results for all compounds, namely
0.0474 Debye for rubrene, 0.0009 for indolocarbazole and 0.0006 for BBBT, led us to ignore energetic disorder
arising from electrostatic interactions. Thus the free energy difference between molecules was set to ∆G = eEri j,
where e is the elementary charge, ri j is the vector connecting molecules i and j and E is the externally applied
electric field chosen to have a magnitude of 107 V/m throughout. The field vector was always aligned in parallel
to the direction for which transport is calculated. There is also no diagonal disorder, since we assume that all
molecules in the system are identical and thus have the same HOMO energy level. The results in the three main
directions x, y and z are based on velocity averaging runs averaged over multiple snapshots and different starting
positions therein. Different directions are analyzed by rotating the external field along the desired direction. To
emphasize the influence of disorder, the above simulations are compared with those done on the ideal crystal
configuration obtained by multiplication of the x-ray unit cell without further NPT equilibration.
The velocity averaging results for all crystalline compounds are based on 10−8 second long runs for 500 frames
at 10 different starting positions each. Results in the diagonal directions are based on 100 frames with 10 starting
positions each. For an ideal crystal only one frame is used and averaging is done over 10−7 sec runs and 100
different starting positions. The resulting mobilities (cm2/Vs) are listed in tab. 7.1.
Rubrene and the BBBT compounds all show very high mobilities along the directions of their strongest coupling
in the simulations, i.e. along the A direction in case of rubrene and BBBT(2) and along D in BBBT(1), where
neighboring molecules are either in cofacial or shifted cofacial alignment. The mobility in indolocarbazole is
almost two orders of magnitude lower, but with equally good transport in all three dimensions. BBBT(1) is
also 3D transporting. However, the y and z directions are an order of magnitude weaker than the x direction.
Rubrene is a 2D transporting material, also with an order of magnitude stronger transport along the x than along
the y axis. BBBT(2) shows no transport perpendicular to the main direction. In the ideal crystal, the mobility
of indolocarbazole is almost identical to that in the equilibrated system. In case of BBBT the transport in the
main direction triples, while the perpendicular directions remain unchanged. Experimentally, rubrene gives high
mobilities on the same order as in the simulations, while both BBBT compounds show three or four orders of
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Compound x y z FET (exp.)
Indolocarbazole 0.092 0.063 0.090
Rubrene 8.142 0.450 3 · 10−8 15 [134, 135, 136, 137]
BBBT (1) 4.529 0.328 0.294 10−2 [139]
BBBT (2) 12.51 10−4 4 · 10−8 10−3 [139]
Compound x(i) y(i) z(i) xyz(i)
Indolocarbazole 0.099 0.060 0.083 0.076
BBBT (1) 13.195 0.324 0.394 4.801
BBBT (2) 36.39 4 · 10−6 10−5 12.13

Tab. 7.1: Mobilities in cm2/Vs for Indolocarbazole, Rubrene and BBBT without and with C4H9 side chains. Ex-
perimental field-effect transistor data is given for Rubrene and BBBT, no direction of transport was spec-
ified in the corresponding publications. (i) refers to the mobility measured for the ideal crystal created
based on the x-ray unit cell.

magnitude lower transport in OFET measurements. Reasons will be given below.
The preferred transport directions in the crystals can be visualized by diffusion pathways. Without an applied
electric field the charge drifts randomly along the preferred transport directions. The shape of the resulting random
walk therefore corresponds to the mobility tensor in the limit of large times. In case of rubrene the charge is
confined to the crystal plane in which it is generated while for BBBT(1) the charge can diffuse in three-dimensions
with a clear preference on the x-direction. The corresponding diffusion path is shown in fig. 7.13. In case of
BBBT(2) diffusion paths collapse to straight lines, since the charge travels almost solely along the x-direction, i.e.
it travels at least 100 times further in x than in y or z direction in any given time interval.

Fig. 7.13: Three-dimensional diffusion pathway BBBT(1). For clarity the color scale denotes displacement along
the z-axis. Note the different axes scalings.

7.4.1 Cluster analysis

To ease the comparison between the charge transport properties of the four different crystalline structures, it is
helpful to investigate the connectivity of the system depending on the transfer integral between neighbors, i.e. by
performing a cluster analysis which will result in effective transfer integrals for all systems. Here, all molecules
which are connected by pathways in which all transfer integrals J exceed a certain value are considered to belong
to a cluster. The largest cluster size with respect to transfer integral cut-off for all four compounds is shown in
fig. 7.14. The size of the clusters is given in percent of the system size. For the three-dimensional conductors
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the maximum cluster size at a cut-off of 10−4 eV is of course the entire system. Since Rubrene only shows two-
dimensional connectivity and contains four planes in the simulation box, the maximum cluster size is an entire
plane and thus 25% of the system. For BBBT(2) the coupling perpendicular to the main axis is so low that the
cluster size immediately collapses to one-dimensional arrays. Since the box consists of 12 by 12 by 12 unit cells,
this corresponds to 1/(12 · 12) = 0.68% of the system. A closer look at the curve reveals, that the one-dimensional
clusters begin to break down at 0.1 eV. The analysis clearly outlines why BBBT(1) has a higher mobility than
Indolocarbazole, because the effective coupling is a factor of two lower in the latter case. For Rubrene, the cluster
size diminishes stepwise starting at a later point and finally drops to a second plateau corresponding to one-
dimensional clusters (1/(4 · 8) = 3.125%) along the main coupling direction at 0.16 eV.
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Fig. 7.14: Size of largest cluster with respect to transfer integral cut-off. The cluster distributions are shown for
BBBT(1) for cut-offs of J = 0.018 and 0.021 eV. Each cluster is represented by a different random
color.

7.4.2 Comparison of experimental and theoretical results

Simulations predict that rubrene has the highest mobility followed by the two BBBT compounds and finally indolo-
carbazole with the lowest mobility. This relative order is in agreement with the experimental evidence. However,
when comparing the absolute values obtained for the charge mobility by simulations to OFET data the agreement
is good for rubrene (OFET: 15, simulation: 8 cm2/Vs), but the values differ by three to four orders of magnitude
between experimental measurements and simulations for BBBT(1) and (2) (OFET: 10−2, 10−3, simulation: 4.5,
12.5 cm2/Vs) [139, 134, 135, 136, 137]. Of course, we cannot expect to exactly reproduce experimental results
due to various approximations made in the simulations. The small size of the simulated systems and the short
simulation times do not allow grain boundaries or severe defects to arise when running simulations based on an
ideal x-ray structure. Also, traps due to impurities in the materials are neglected, since all simulated molecules
are chemically identical. In the influence of interfaces between different layers in OFETs is not treated, because
we deal with bulk systems only. Energetic disorder due to different HOMO energies which may arise from fluc-
tuations in molecular geometry as well as due to electrostatic interactions is also neglected. All above mentioned
effects would reduce the mobility in simulations. Nonetheless, agreement with OFET measurements for rubrene
is very good and there are some experimental reasons why the measured mobility for rubrene is so much higher
than for BBBT. First, rubrene single crystal layers were built by vapor deposition while BBBT was deposited by
spin coating. Vapor deposition allows controlled growth of crystal layers by adjusting growth parameters such as
deposition temperature, source temperature and growth time [144]. For example molecular beam epitaxy [132],
where atoms in the evaporated beam do not interact with each other until they reach the deposition surface, allows
each molecule to perfectly align within the forming layer. Therefore, disorder in rubrene layers is expected to be
substantially less than in BBBT. Second, synthesis of rubrene has been improved over time and the purity of the
layers is extremely high [140]. BBBT on the other hand has only recently been synthesized, hence layers are less
pure, thereby introducing a number of molecules with different chemical structure. This may lead to significant
diagonal disorder due to different HOMO levels and introduce deep traps in the system. Neither effect is included
in our simulations. Third, BBBT(2) is a one-dimensional conductor with very strong electronic coupling. On the
timescale of our simulations no significant static disorder or defects can be seen, but in a real spin cast system we
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would expect a number of defects, each of which could potentially prevent transport along a column. Hence it is
not surprising, that in experiment the 1D conducting BBBT(2) yields worse mobilities than BBBT(1). In ref. [139]
interface trapping of charge carriers and high contact resistance are also suggested as factors limiting the mobility.
Last but not least, it is worth emphasizing that the experimental publications only rarely state the directions in
which charge transport was measured. In our simulations the mobility easily varies by a few orders of magnitude
with changes in the transport direction. Especially for the two BBBT compounds this is a critical point, which is
only briefly mentioned in the experimental publication [139].

7.4.3 Conclusions

A comparison of the alignment of nearest neighbors along the main transport directions and of the connectivity
graphs for rubrene, indolocarbazole and the two BBBT derivatives is shown in fig. 7.15. One reason rubrene’s
mobility is higher than that of most other molecular crystals is certainly its almost defect-free two-dimensional
percolation network. It not only has a clearly preferred transport direction with an extremely high coupling, but also
a good secondary direction allowing the charge carrier to circumvent possible defects. BBBT(1) is very similar to
rubrene in this respect with slightly worse coupling along its main and secondary directions, but therefore allowing
three-dimensional transport. The fact it yields a lower mobility overall indicates that the additional percolation
paths gained going from 2D to 3D transporting compounds do not influence the mobility strongly, because the
existence of pathways to circumvent neighbors with low transfer integrals is more important than their number.
BBBT(2) in contrast to the other crystals transports only in one direction. The influence of neighbors with low
coupling therefore is substantially higher and is responsible for a factor of three difference in mobility depending
on the starting position of a charge in a snapshot. This is because a charge carrier is confined a single column
throughout and the corresponding mobility is limited by the lowest rate present leading to significant differences
between columns. Indolocarbazole, despite its extremely low transfer integrals between neighbors, gives higher
mobilities than one might expect due to isotropic coupling strengths and very narrow transfer integral distributions.
We would like to stress the fact that especially in the main coupling directions the approximations made in the
hopping approach no longer hold and diffusion limited by thermal disorder should be used. The transfer integral
distributions are independent of the theoretical picture, however, and statements about dimensionality and connec-
tivity are fully valid. The actual KMC simulations are done to reveal the relative effect of disorder on mobility
without the expectation that absolute mobility values will match experimental ones. However, regarding the low
coupling directions hopping transport is the appropriate picture to use. Thus in a treatment combining wave-like
and hopping transport we would expect mobilities along the weak transport directions to remain almost unchanged
but to increase along the strong coupling directions.
In conclusion, the general concept that the best coupling and thus the best transport properties will be found
for closely packed, cofacially aligned molecules should be reconsidered. Certainly, the transfer integral is at its
absolute maximum for two molecules in cofacial alignment only 3.5 nm apart and therefore the mobility along
this direction is also at its maximum. However, the resulting morphology is likely to allow only one-dimensional
transport thereby becomes extremely prone to defects. Such one-dimensional crystal morphologies are unlikely to
be defect-free and yield good mobilities. Instead shifted cofacial alignment, as it is seen for BBBT(1) and rubrene
and is illustrated in fig. 7.16b, is the far better alternative. While the transfer integrals will be lower due to smaller
spatial overlap between molecules, the distance d travelled by a charge upon moving from one molecule to the
other is increased thereby compensating for most of the loss in coupling. Most importantly, the shifted alignment
allows two-dimensional transport. The resulting percolation network significantly reduces the influence of disorder
by enabling charge transport despite a few defects.

7.5 Charge transport via semi-classical dynamics

The high temperature limit of Marcus theory is not applicable for strong couplings and good transport, i.e. in
case of rubrene or for the main transport direction in the BBBT crystals, since the transfer integral J is no longer
significantly smaller than the reorganization energy Λ (see sec. 4.4.2). In this situation an alternative approach is
more appropriate, namely diffusion limited by thermal disorder and thus semi-classical dynamics (see sec. 4.3.1).
The one-dimensional array of molecules is chosen such that it corresponds to the main transport direction within the
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Alignment: shifted cofacial
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Fig. 7.15: Comparison of the nearest neighbor alignment along the main transport direction and the connectivity
in the system for rubrene, indolocarbazole and the two BBBT derivatives. Note that the grey spheres in
the connectivity graphs, representing the centers of mass, are of the same size for all systems while the
size of the bonds between them is proportional to corresponding the transfer integral.
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da

a

db

b

Fig. 7.16: Comparison of (a) cofacial alignment as in BBBT(2) and shifted cofacial alignment as in BBBT(1) and
rubrene. While coupling is better in case (a), the charge travels a larger distance db > da upon hopping
in case (b) compensating for most of the loss in coupling. The main advantage of (b) over (a) is that it
allows 2D and not just 1D transport and is thus less effected by disorder and defects.

crystal, e.g. direction A for rubrene. The separation between the sites d equals the average distance between nearest
neighbors of that type. The average transfer integral between sites is the configurational (ensemble) average along
that direction, the standard deviation is equal to the width of the J(t) distribution for neighboring pairs with a similar
average. This ensures that we take into account only dynamic and not static disorder. The discrete cosine transform
of the autocorrelation of J(t) is averaged over five to seven different pairs to yield the characteristic slow vibrational
frequency ω(2) in the system. The cosine transforms for all transport directions in indolocarbazole as well as for
the main direction of both BBBT compounds are shown in fig. 7.17. For Rubrene refer to [75]. The fast vibrational
frequency ω(1) is chosen to be that of C-C bond fluctuations in phenyl rings and is thus the same for all systems (see
again ref. [75]). The Peierls and Holstein coupling constants were calculated as described in sec. 4.3.1 using the
reorganization energies computed based on single molecules optimized in vacuum using B3LYP/6-311G(d.p). The
resulting input parameters used in the SCD simulations for all systems are summarized in tab. 7.2. All simulations
were run at 300 K, the integration time step was chosen to be 0.0125 fs and each simulation consists of 600, 000
steps. The wave function coefficients are written to file every 1000 steps. The simulations are repeated for 100
starting wave functions and the resulting random mean square displacement is Boltzmann averaged using the
energy eigenvalue of the initial wave function for the weighting. Resulting mobilities are shown in the last row of
tab. 7.2.

As in experiments, rubrene shows the highest mobility followed by BBBT(1) and BBBT(2) with indolocarbazole
having the lowest by far. Other than the high coupling between neighboring sites, rubrene also has the advantage
that the molecules are rather large and due to the shifted cofacial alignment the distance between neighbors along
the main coupling direction is almost twice that of BBBT(2). So despite the fact that average coupling is better in
BBBT(2), rubrene shows the higher mobility, because the charge travels further between molecules. That BBBT(1)
and (2) have roughly the same SCD mobilities may also be explained by this effect. The values of the mobility are
also substantially higher than those predicted by Marcus rates, which is to be expected, since hopping transport
is the slow limit of small polaron transport. The large relative differences between rubrene and BBBT are due to
the different vibrational frequencies, since center of mass distances and reorganization energies are also taken into
account in KMC. In Rubrene, molecular center of mass vibrations, described by the frequency ω(2), are more than
twice as fast as in BBBT, thus the lifetimes of small coupling values are reduced accordingly. Because all systems
show almost no static disorder in the MD simulations, we expect the SCD results to hold more weight here than in
the case of BTBT. Nevertheless, especially in the case of BBBT(2), it is clearly an overestimation of the mobility,
since it is practically impossible to grow defect-free crystalline structures experimentally.
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Fig. 7.17: Discrete cosine transform of the autocorrelation function of J(t) for (a) all directions in Indolocarbazole
averaged over five neighboring pairs each and for (b) the main direction of BBBT(1) and (2) averaged
over seven neighboring pairs.

parameter value
m(1) [amu] 6
ω(1) [cm−1] 1400

Indolocarbazole Rubrene BBBT(1) BBBT(2)
λ(1) [cm−1/Å] 25328 21200 18500 18500
J [cm−1] 113 1090 312 −1126
m(2) [amu] 344 532 290 402
ω(2) [cm−1] 18 50 14 20
α(2) [cm−1/Å] 73 3980 417 2107
d [nm] 0.619 0.714 0.926 0.466
µSCD [cm2/Vs] 1.57 64.3 9.43 8.15
µKMC [cm2/Vs] 0.09 8.14 4.53 12.51
µexp [cm2/Vs] - 15 10−2 10−3

Tab. 7.2: SCD input parameters used for the various crystals along with the resulting mobility µ at 300 K. For com-
parison, the mobilities along the main transport direction obtained by KMC simulations using Marcus
rates as well as the experimental mobilities obtained by OFET measurements are also given.

7.6 Discussion

We have shown that indeed in case of ordered molecular crystals, except for those with very low couplings as
indolocarbazole, the assumptions made in the derivation of the Marcus rates no longer hold, because the couplings
along the main direction are of the same order as the reorganization energy. Low couplings only appear perpendic-
ular to the main transport directions and are thus less influential on the charge transport properties. Nonetheless,
agreement between rate-based description and small polaron transport are surprisingly good and insights could be
gained on the influence of disorder in percolation networks of all dimensions.
Rubrene has been shown to be more favorable for charge transport than the other crystals in every respect: it has a
low reorganization energy, a shifted cofacial alignment along the main direction of transport as well as reasonable
coupling perpendicular to it for 2D transport and last but not least the highest center of mass vibrational frequency,
limiting the lifetime of unfavorable alignments between neighbors.
The comparison of crystals with charge percolation networks of different dimensionality has shown that 1D trans-
port is to be avoided due to a strong dependence on defects while it appears that 3D transport offers no significant
improvement over 2D transport. Thus, since side chains improve the solubility and thereby make molecules more
suitable for solution processing, soluble 2D transporting compounds should be favored over insoluble but 3D
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transporting compounds.
We have also shown that the often desired cofacial alignment between molecules yields the best coupling between
nearest neighbors, but does not necessarily correspond to the highest mobility morphology, because cofacially
aligned molecules tend to permit transport in only one dimension. We believe that shifted cofacial alignment is a
more suitable arrangement to maximize the mobility, because it allows two dimensional transport and the reduction
in coupling is compensated by the large distance a charge travels between molecules.
For molecules with a rigid fused-ring, linearly conjugated structure, shifted cofacial alignment only brings the
benefits highlighted above, when the molecules are shifted along their linear direction. This is not possible, when
the side chains are attached at these ends, since they will enforce a lamellar stacking of the molecules as in BBBT(2)
and BTBT. Instead, attachment of the side chains perpendicular to the linearly conjugated core, as is the case for
rubrene, ought to result in morphologies wit the highest mobilities. This is also supported by the high mobilities
found for polymer field-effect transistors recently synthesized in such manner [145, 146].
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8 Hexabenzocoronene

Among π-conjugated systems thermotropic discotic liquid crystals combine the fluidity of liquids, making them
self-healing and solution-processable, with the orientational order of crystals, giving rise to anisotropic conduc-
tivity. The orientational order arises from the flat aromatic cores with aliphatic side chains, which self-assemble
into columns. By adjusting the size and shape of the core as well as the side chains, compounds with differ-
ent self-organizing and charge transport properties may be obtained. The effect of different alkyl side chains as
well as liquid crystalline phases has already been studied in depth in our group [113, 92, 93, 94] for hexaben-
zocoronene (HBC), a hole-conducting discotic liquid crystal with a very high one-dimensional mobility of up
to 1 cm2/Vs [147]. It is shown that the mobilities of different liquid crystalline phases measured by the pulse-
radiolysis time-resolved microwave conductivity technique (PR-TRMC, see sec. 2.2.2) are well reproduced by
simulations based on Marcus rates, i.e. rate-based simulations correctly describe charge transport on a local
scale [93, 94]. The studies also reveal the dependence of mobility on the tail of the transfer integral distribu-
tion in 1D transporting systems, which is due to the fact that a charge carrier has to travel across every defect with
no possibility to circumvent it.
To achieve high mobilities along columns of polyaromatic hydrocarbons, such as hexabenzocoronene, two distinct
but related problems must be addressed: first, the compounds must self-organize into defect-free mesophases on a
large scale. Second, the alignment of neighboring molecules in a column must be favorable for charge transport.
Thus to allow rational design of such compounds, the best local molecular arrangement of the aromatic cores
has to be found. The attached side chains then have to achieve this arrangement and in addition yield good self-
organizing abilities. As shown in ref. [22] and fig. 8.1, for polyaromatic hydrocarbons the transfer integral between
two neighboring cores has a maximum not only in cofacial configuration but also at a sixty degree twist. Side
chains should hence be chosen in such a way that, besides offering processibility and self-assembling properties,
they favor small intramolecular separations, since the transfer integral depends exponentially on the distance,
and provide either a cofacial or a 60◦ twist molecular arrangement. One option are compounds with a six-fold
symmetry, which will be in face-to-face arrangement both at 0◦ and 60◦. However, steric repulsions between side
chains are likely to increase the intermolecular separations and thereby widen the distribution of transfer integrals.
The alternative are compounds with three-fold symmetry with a helical packing structure and 60◦ twist, which
should allow for small intermolecular separations and thus ideal local arrangement for charge transport. That this
is indeed the case has been shown for polyaromatic hydrocarbons with different symmetry [22] as well as for HBC
derivatives with varying alkyl side chains [93, 94].
In this chapter we extend the studies of HBC derivatives by studying side chains, which are more complex than the
linear or branched alkyl side chains treated previously. They are also chosen to have either six-fold or three-fold
symmetry, such that they favor either cofacial alignment or a sixty degree twist between consecutive molecules
in a column. The aim is to investigate whether modifications of the chemical structure of the side chain, which
influence the orientation of neighboring molecules, the columnar packing and the overall order in the system, can
be utilized to significantly improve the charge transport properties. To this end four different side chains and their
influence on morphology and hence mobility are studied. The predictions resulting from the MD simulations are
intended to be compared with time of flight mobility measurements performed by F. Laquai and his group, however
the latter are still work in progress.

8.1 Compounds and molecular dynamics simulations

The complete structures of the four analyzed compounds are shown in fig. 8.2. All side chains contain a phenyl
ring, which for compounds (a) and (b) branches into three alkyl side chains attached to an oxygen atom or for
compounds (c) and (d) branches into two plain alkyl side chains. In case of (a) and (c) the HBC core has six such
side chains attached, in case of (b) and (d) only three. Due to the three-fold symmetry of the resulting molecules,
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Fig. 8.1: Absolute value of the transfer integral J as a function of the azimuthal rotation angle for several symmetric
polyaromatic hydrocarbon cores. The separation was fixed to 0.36 nm. The insets illustrate face-to-face
and staggered stacking of two typical disc-shaped molecules: triphenylene (staggered twisting angle is
60◦) and HBC (staggered twisting angle is 30◦). Taken from ref. [22].

they are designed to promote either cofacial alignment or a sixty degree twist between neighboring molecules
during self-assembly.
The force field parameterization as well as the MD simulations were performed by Valentina Marcon. Force field
parameters are given in refs. [113, 92, 93, 94]. In the starting configuration, all molecules were cofacially aligned.
For equilibration purposes stochastic dynamic runs were performed for 2 ns with a time step of 2 fs constraining
all bonds. Temperature coupling was done via Nosé Hoover thermostat, pressure coupling via Berendsen barostat.
Production MD runs were performed in NPT ensemble for 10 ns. Bonds were constrained and temperature cou-
pling was done via Nosé Hoover thermostat. The Parinello-Rahman barostat was used for pressure coupling. KMC
simulations were performed based on snapshots taken in the last 0.4 ns of the production run. All simulations were
done at 300 K.

8.2 Charge transport parameters

Since side chains do not contribute to charge transport, only the HBC core is used to compute the charge transport
parameters. We focus solely on hole transport, because HBC is a hole-transporting organic semiconductor. The
HOMO orbital of HBC is doubly degenerate. The two orbitals forming the HOMO are depicted in fig. 8.3a.
They were calculated using the ZINDO method based on B3LYP/6-311G(d,p) optimized geometries. The internal
reorganization energy for the cation was calculated using B3LYP/6-311G(d,p) for geometry optimization of a
cation and a neutral molecule followed by an SCF calculation of the energies for the charged and neutral state. The
result was Λ = 0.099 eV.
The transfer integral is calculated using the molecular orbital overlap (MOO) method based on ZINDO orbitals [2].
The diabatic states are constructed using the frozen orbital approximation, where a cation has a hole occupying
the HOMO orbital of a neutral molecule. Results of the computation for all transfer integral combinations of the
two orbitals A and B forming the degenerate HOMO are shown in fig. 8.3b. For the KMC simulations the transfer
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ba

dc

Fig. 8.2: Structures of the four investigated HBC compounds. Note the three-fold symmetry for (b) and (d) and
the six-fold symmetry for (a) and (c).
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Fig. 8.3: (a) The two orbitals A and B forming the degenerate HOMO of the HBC core. (b) Change in transfer
integral upon rotation of two HBC cores 0.36 nm apart. The transfer integral is shown for all combinations
of the orbitals A and B. Together they form the degenerate HOMO, whose transfer integral was calculated
according to eqn. 8.1. Note that its transfer integral is always greater than zero.

integral Ji j between molecules i and j each with doubly degenerate orbitals A and B was calculated as

J2
i j =

1
4

(
J2

Ai,A j
+ J2

Ai,B j
+ J2

Bi,A j
+ J2

Bi,B j

)
(8.1)

in accordance with [94, 96]. Eqn 8.1 takes into account all four transfer integral combinations between two different
orbitals on two different molecules. The information on the sign of the transfer integral is lost in this procedure,
but that is of no concern since only the square of the transfer integral enters in the calculation of the transfer rates.
Ji j for two HBC cores rotated with respect to each other is also shown in fig. 8.3b. Due to the degeneracy Ji j is
always larger than zero, which is not the case for any of the four constitutive transfer integrals.

8.3 Rate-based simulations of charge dynamics

Kinetic Monte Carlo simulations based on Marcus rates were performed for all compounds applying an external
electric field of 107 V/m, which was aligned with the stacking direction (z) of the columns. As is illustrated in
fig. 8.4a for compound (d), the large displacements of the molecules along the column do not show a clear nearest-
neighbor distance. However, the distribution of transfer rates on logarithmic scale (see fig. 8.4b) reveals distinctive
peaks corresponding to different orders of neighbors. Therefore, choice of a cut-off radius which takes into account
second order neighbors has no effect on the simulation results, because any second-order neighbor transfer rate is
orders of magnitude lower than that between nearest neighbors. In addition the side chains block all transport in
the xy-plane, ensuring that there is only transport along the z-axis. In the end, the cut-off radius was chosen to be
1.2 nm throughout to prevent unphysical breaking of the column by not taking into account all nearest neighbors,
i.e. the neighbors prior and after each molecule along the direction of the column (z).
We performed charge transport simulations for three different cases: (i) calculating the transfer integral via eqn. 8.1
to take into account the degeneracy of the orbitals, (ii) additionally introducing electrostatic disorder and (iii) com-
puting the mobility based on an ideal crystal structure without energetic disorder due to electrostatics. Electrostatic
contributions were calculated by the procedure outlined in sec. 4.5.4. Upon equilibration all molecules remain in
cofacial alignment along the column in case of (a) and (c), while they arrange into structures with a 60◦ twist
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Fig. 8.4: Distribution of (a) center of mass distances and (b) the logarithm of transfer rates used to choose an
appropriate cut-off radius for compound (d). The distribution of transfer rates allows a clear distinction
between first, second and higher order neighbors.

without with
electrostatic electrostatic ideal

µz disorder disorder structure
(a) 0.978 0.770 12.73
(b) 0.966 0.466 12.69
(c) 0.681 0.532 13.41
(d) 0.852 0.633 14.27

Tab. 8.1: Mobilities in cm2/Vs for the four different HBC compounds (a) to (d) with and without taking electro-
static disorder into account and for the ideal crystal. Taking into account electrostatic disorder yields the
most realistic mobility value. The mobility based on the ideal structure shows the great decrease due to
disorder.
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8. Hexabenzocoronene

between consecutive molecules in case of (b) and (d), i.e. every second molecule is identical along the column.
Separation between molecules is ≈ 0.4 nm in all cases. The mobility in the ideal crystal is thus identical for all
compounds and an order of magnitude higher than for the equilibrated systems, which is to be expected when intro-
ducing disorder in a one-dimensional conductor. To understand the difference in mobility for the four compounds,
it is necessary to take a closer look at the corresponding equilibrated morphologies.
An impression of the difference in the equilibrated morphologies due to different side chains is given in fig. 8.5,
where the ordering of the HBC cores in a single representative column is shown for each system. The molecules are
tilted for (a) and the centers of mass deviate strongly from the initially well-aligned columns for (b) and (d). Deeper
insights into the structure may be obtained by the radial distribution functions and nematic order parameters.

a b c d

Fig. 8.5: HBC core alignment in single columns taken from equilibrated MD simulations for systems (a) to (d).

Radial distribution functions

The radial distribution function (RDF) g(r) gives the normalized probability of finding a molecule within a certain
distance from another. In the z-direction it is computed as:

gz(r) =
2

VN

∑
columns

Nc∑
i=0

Nc∑
j>i

f (r, n · rij) (8.2)

Here N is the total number of molecules, Nz the number of molecules per column, rij the distance between centers
of mass of molecules i and j and f is a binning function, i.e. f = 1 if n ·rij ∈ [r ± ∆/2], where ∆ is the bin size (400
in this study), otherwise f = 0, the volume of the bin is given by V = ∆LxLy with Lx and Ly being the simulation
box lengths. Averaging was first performed for every column and then averaged over all columns, since they can
diffuse with respect to each other. The first maximum thus corresponds to nearest neighbors along the column
and the existence and broadness of further maxima indicates the amount of disorder. No disorder corresponds
to equally spaced delta functions placed at multiples of the nearest neighbor distance. In the xy-plane the RDF
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8.3 Rate-based simulations of charge dynamics

monitors the order in the hexagonal alignment of the columns. Both RDFs for all systems are presented in fig. 8.6.
The systems (a) and (c) show a better order in the xy-plane with a pronounced maximum at ≈ 3.8 nm. Because they
have six instead of just three side chains, this leaves little space for motions in direction of the side chains leading
to a better arrangement of the columns with respect to each other. In the z-direction the (b) and (d) systems remain
more closely stacked with a spacing of the maxima of roughly 0.4 nm. The cores with less side chains are able to
approach each other more closely due to the 60◦ twist between consecutive molecules, reducing the interference of
side chains. The long range order is best in (a) with more than ten well distinguishable maxima, while it is worst
in (c), where features diminish significantly after the 2nd maximum.
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Fig. 8.6: Radial distribution functions (a) along the column (z) and (b) perpendicular to it (xy).

Order parameters

To compute the orientational order parameter only the aromatic cores of the molecules are considered. Each core i
is described by its normal vector u(i). The orientational order tensor of the entire system may then be calculated as:

S αβ =

⟨
1
N

N∑
i=1

(
3
2

ui
αui

β −
1
2
δαβ

)⟩
, (8.3)

where N is the number of molecules in the system and < · · · > denotes the time average. Diagonalization of
the tensor yields the order parameter S , which is the largest eigenvalue of S αβ, and the director n, which is the
corresponding eigenvector and thus represents the average orientation of the molecules. S = 1 corresponds to
a perfect molecular alignment, where all normal vectors u(i) are parallel to each other, S = 0 implies isotropic
angular distribution of the normal vectors. The order parameter and director for each system are listed in tab. 8.2.
average distance between the cores along the column is too high to yield good electronic coupling. The
The ordering of the systems with oxygens in the side chains is superior to those without, i.e. (a) is always more
ordered than (c) and (b) more ordered than (d). This might be due to dipoles induced by the negative partial charge
on the oxygen and positive partial charges on the surrounding carbons, which cause stronger interactions between
neighboring molecules. (a) has the best ordering overall leading to the highest mobility. It is followed by (b) and
(d), where the cores approach each other more closely than in the rather disordered (c), which shows the lowest
mobility. Electrostatic disorder reduces all mobilities, but not in an identical fashion. The mobility drops more
strongly for the compounds with three side chains than for those with six. In ref. [94] it is shown that the energy
difference between two neighboring HBC cores due to electrostatics is non-zero only if the molecules are tilted
with respect to each other. Because the order parameter is higher for compounds (a) and (c), on average the tilt
between neighboring molecules is less and they are thus less effected by electrostatics. Overall, compound (a) with
six oxygen-containing side chains retains its superiority.
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8. Hexabenzocoronene

System S nx ny nz

(a) 0.963 0.49 0.44 0.66
(b) 0.898 -0.06 0.02 0.98
(c) 0.948 -0.05 -0.04 0.95
(d) 0.892 0.03 -0.04 0.97

Tab. 8.2: Order parameter S and components of the director n for all systems. The order parameter is close to one
for the systems with six side chains, i.e. (a) and (c), and slightly worse for those with three. All directors
are well-aligned with the z-axis (the stacking direction of the column) except for (a), where molecules
are strongly tilted.

8.4 Conclusions

The modifications of the HBC side chains could be linked to changes in the corresponding morphologies and
resulting mobilities. However, the neither side chain design present here yields significantly higher mobilities than
the others and all mobilities are of the same order as for the alkyl side chains already presented in ref. [93, 94].
For the compounds (a) and (c) the molecular ordering along the columns due to the space-filling nature of their
side chains is very good. However, the average distances between the conjugated cores along the columns is too
high to allow for strong electronic coupling. For compounds (b) and (d) the molecules align in a helical structure
with a 60◦ degree twist, which allows a close approach between neighboring molecules. The drawback is that there
is too much disorder due to molecular motions perpendicular to the columnar stacking direction, which leads to
disorder in the transfer integral distributions and thus low transfer rates in the columns. The molecules also have
enough space to tilt in irregular fashion with respect to each other, thereby increasing the effect of electrostatic
disorder and reducing the mobility. However, the influence of electrostatic disorder in all systems is low and thus
not an important parameter in columnar phases of HBC. Finally, the only structural modification of the side chains
with solely positive effect on the ordering and mobility appears to be the addition of oxygen atoms.
We thus conclude that modification of the side chains is unlikely to improve charge mobility by orders of mag-
nitude. Side chains chosen such that they provide either a cofacial or a 60◦ twist molecular arrangement yield
similarly high mobilities no matter what the chemical details.
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9 Discussion

Understanding the connection between chemical structure and charge transport properties in organic semiconduc-
tors is necessary to allow significant improvements of charge mobility and thus device performance in the future.
While the general understanding of charge transport within band and disorder models has substantially improved in
the past, the precise relations between chemical structure, bulk and interface morphology and device performance
are up to this point mostly unknown.
Quantum chemical studies have helped to identify the orbitals relevant for charge transport and in combination
with the hopping formalism and Marcus theory also explained the dependence of the transfer integral on molecular
alignment. The latter shows the importance of the sign of the wave function and the resulting bonding-antibonding
pattern between neighboring molecules. Theoretical physics and computer simulations have successfully described
temperature, charge carrier density and electric field dependence of mobility in organic semiconductors. In this
work we additionally used molecular dynamics simulations to capture the realistic molecular motion and thereby
gain access to static and dynamic disorder by analysis of corresponding transfer integral distributions and result-
ing percolation pathways. Previous studies performed in our group have been able to uncover the dependence of
one-dimensional transport in hexabenzocoronene on the tail of the transfer integral distributions. They have also
allowed improvement of charge transport by choice of core and side chain morphologies aligning molecules at a
60◦ twist instead of attempting to achieve cofacial alignment. In this work we have both continued the study of
columnar systems with carbazole macrocycles and hexabenzocoronene derivatives as well as performed a com-
parative study of semi-classical dynamics and rate-based simulations for organic crystals such as BTBT, rubrene,
indolocarbazole and BBBT. For the understanding of charge transport in organic crystals we have developed new
ways of visualizing transfer integral distributions and their effect on charge percolation. Not only were we able to
connect transfer integral distributions with their corresponding neighboring pairs in the crystal, but we have also
proposed the use of connectivity graphs for the visualization of charge percolation, and cluster analysis, yielding
a reasonable approximation for an effective transfer integral value and also offering a visualization for the depen-
dence of cluster size on the strength of the coupling between neighbors. While neither rate equations nor SCD
are capable of predicting absolute values of mobilities, we were certainly able to gain a qualitative understanding
of charge transport and to give precise advice on how to modify chemical structures of molecules and material
morphologies to yield higher mobilities.

9.1 Charge transport in columnar systems

The dominance of the lowest transfer integrals over the transport along one-dimensional columns is a severe lim-
itation for columnar systems. This limitation is overcome for carbazole macrocycles. Since their side chains
are facing inwards, molecules of neighboring columns are able to approach each other closely, thus allowing for
transport in three dimensions. In the traditional molecular design of discotics, side chains face outwards thus
blocking all possibility of other than one-dimensional transport. The three-dimensionality enables charge carriers
to circumvent defects along columns and improves the mobility by orders of magnitude.
For hexabenzocoronene, chemically modified side chains with six-fold and three-fold symmetry were compared
to see whether the chemical details of the side chains significantly influence charge transport in discotic liquid
crystals. This does not appear to be the case. As long as either cofacial alignment or a twist of 60◦ between
neighboring molecules along the column exists in the self-assembled morphology, charge transport is equally good
no matter the chemical details. Additionally, a better ordering in the self-assembled morphologies is observed for
side chains containing oxygen compared to those without.
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9.2 Static disorder

To reduce the production cost of electronic devices, solution processing must replace high vacuum vapor deposition
in the fabrication of crystalline organic layers. This requires soluble molecules, i.e. alkyl or similar side chains, and
inevitably leads to more disorder in the final device morphologies. As an example of such a solution-processable
crystal we analyzed BTBT. The slow dynamics of the side chains lead to static disorder on the timescale of charge
transport. This results in broad transfer integral distributions. That this is not an effect of dynamic disorder could be
proven by comparing the configurational with the time-dependent transfer integral distributions between specific
neighboring pairs in the system. Even though the transfer integrals distributions in BTBT are centered at low
couplings, the crystal retains a charge percolation network with sufficient connectivity not to hinder transport.
Nonetheless the coupling of 0.022 ev found between all nearest neighbor pairs in the ideal crystal is reduced to
an effective coupling of roughly 0.015 eV in the equilibrated case. For higher coupling the connectivity of the
network breaks down according to cluster analysis. This also shows that theoretical approaches based on ideal
crystal morphologies and effective coupling strengths can both result in misleading conclusions.

9.3 Dimensionality

The effect of going from one-dimensional to multi-dimensional transport is illustrated in the comparison between
fully conjugated carbazole macrocycles, where only transport along the column is taken into account, versus three-
dimensional intercolumnar transport, which improves the mobility by orders of magnitude. BTBT also illustrates
how disorder in a two-dimensional system does prevent charge transport as in the one-dimensional case but instead
only modifies the underlying connectivity network. In the chapter on organic crystals, we deal with one-, two- and
three-dimensional charge percolation networks and show that even very high average coupling along one direction
is not capable to compensate for the loss of dimensionality (BBBT with C4H9 side chains). It is thus preferable
to have two good coupling directions rather than to have a single excellent one with no alternative directions to
circumvent defects. Regarding the difference between two- and three-dimensional networks, it appears that no
major improvements are to be expected by going from 2D to 3D percolation networks. It is important for a system
to have alternative pathways to circumvent defects, not how many such pathways there are. Thus it is acceptable
to have one non-conductive direction, for example that of the side chains required for solubility.

9.4 Ideal morphologies

The highest electronic coupling between two molecules is found in cofacial alignment. Hence it is often believed
that the highest mobilities will also be achieved in morphologies where the molecules are cofacially aligned.
However, cofacial coupling between molecules in one direction tends to reduce the electronic coupling in all other
directions, thus creating an effectively 1D transporting system prone to defects. The highest mobilities today are
observed in organic crystals such as rubrene, which features shifted cofacial alignment between neighbors along its
main transport direction. While the coupling is reduced compared to perfect cofacial alignment, it is still strong and
the fact that the charge travels a greater distance upon hopping compensates for part of the loss. While increasing
the distance between cofacially aligned molecules leads to an exponential drop in coupling, the effect of shifting
the molecules with respect to each other is more complex and depends on the bonding-antibonding pattern of the
orbitals and thus on the underlying chemical structure. Most importantly, shifted cofacial alignment gives rise
to two-dimensional transport, allowing charges to circumvent weakly coupled neighbors and thus decreasing the
influence of defects. In case of linearly conjugated molecules such as BTBT, BBBT and rubrene, the molecules
must be shifted along their linear axis with respect to each other to enable high electronic coupling in shifted
cofacial alignment. Therefore, we propose to attach the side chains perpendicular to the linear axis of the core to
allow such structures to self-assemble.
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9.5 SCD vs. rate-based descriptions

Semi-classical dynamics is designed to treat materials with medium strength coupling, where neither fully delo-
calized nor fully localized descriptions are valid. It does so taking into account both diagonal and off-diagonal
dynamic disorder. Its weakness is the one-dimensionality, which does not allow for a sensible treatment of static
disorder and can only take into account one coupling direction in crystals. Nevertheless, the mobility and its
temperature dependence obtained for rubrene are in agreement with experiments and show that diffusion limited
by thermal disorder is a good description of charge transport in well-ordered organic crystals. Rate-based de-
scriptions, on the other hand, have been shown to correctly describe hopping transport. Since in strongly coupled
systems such as organic crystals the assumption of charge localization is invalid, rate equations predict too low mo-
bilities. However, neighboring pairs with extremely weak coupling due to unfavorable alignment of neighboring
molecules cannot be treated by any other approach. In addition the comparison of three-dimensional rate-based
simulations for ideal and equilibrated systems gives information on the influence of static disorder. Thus in the
case of crystalline systems dominated by static disorder, for example due to slow side chain dynamics such as
BTBT, a rate-based description is advisable, since it is then important to capture the low rates correctly.

9.6 Future possibilities

A promising approach to treat charge transport in well-ordered organic crystals in the future is by two- or three-
dimensional semi-classical dynamics taking its input parameters from MD simulations. It is the appropriate way to
treat dynamic disorder and intermediate coupling strengths. Static disorder could be implemented by calculating
the set of parameters for each neighboring pair on its own, i.e. analyzing the J(t) distribution for each pair separately
instead of averaging over pairs of the same type as was done in this work.
It is also of great interest to improve the analysis tools for charge transport in given morphologies. Code is currently
being written to display the residence time of electrons in certain locations, a visualization of the most commonly
taken percolation pathways and local electric currents and finally a tool to find more complex traps, such as areas
where the charge moves in a circle or constantly hops back and forth between two neighbors. It is also important
to take into account the interaction between charges in simulations to allow multiple charges to travel at the same
time and thereby take into account the charge carrier density.
To study the influence of defects in morphologies and not just static disorder, it is worthwhile to look at larger
systems, using for example systematic coarse-graining, until defects appear. Charge transport could then be studied
by reintroducing atomistic details into the final coarse-grained morphologies and using the methods described in
this thesis.
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A Appendix

A.1 Quantum Chemistry

A.1.1 Variational principle

To find the ground state energy and wave function of a molecule, it is sufficient to look at the non-relativistic,
time-independent Schrödinger equation

H |Φ⟩ = ϵ |Φ⟩
where H is the Hamiltonian, Φ the multi-electron wave function and ϵ the energy of the system. It can be shown
that for the hermitian operator H there exists an infinite set of exact solutions, labelled by α, to this eigenvalue
problem. Namely:

H |Φα⟩ = ϵα |Φα⟩
Assuming the set of eigenvalues is discrete ϵ0 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵα ≤ · · · , since H is hermetian, the eigenvalues
are real and the corresponding eigenfunctions are orthonormal. Therefore the eigenfunctions also form a complete
basis set and any function Φ̃ satisfying the same boundary conditions may be expressed as a linear combination
thereof

|Φ̃⟩ =
∑
α

cα |Φα⟩ =
∑
α

|Φα⟩ ⟨Φα|Φ̃⟩

These considerations suffice to prove the following theorem .

The Variational Principle. Given a normalized wavefunction |Φ̃⟩ which satisfies the appropriate boundary con-
ditions, the expectation value of the Hamiltonian is an upper bound to the ground state energy, i.e.: If ⟨Φ̃|Φ̃⟩ = 1
then ⟨Φ̃|H|Φ̃⟩ ≥ ϵ0.

Proof. Begin by rewriting the normalization criterion in terms of the eigenfunctions of the Hamiltonian.

⟨Φ̃|Φ̃⟩ = 1 =
∑
αβ

⟨Φ̃|Φα⟩ ⟨Φα|Φβ⟩ ⟨Φβ|Φ̃⟩ =
∑
αβ

⟨Φ̃|Φα⟩ δαβ ⟨Φβ|Φ̃⟩

=
∑
α

⟨Φ̃|Φα⟩ ⟨Φα|Φ̃⟩ =
∑
α

∣∣∣⟨Φα|Φ̃⟩∣∣∣2
Applying the same idea again to the other equation yields:

⟨Φ̃|H|Φ̃⟩ =
∑
αβ

⟨Φ̃|Φα⟩ ⟨Φα|H|Φβ⟩ ⟨Φβ|Φ̃⟩ =
∑
α

ϵα
∣∣∣⟨Φα|Φ̃⟩∣∣∣2

Since ϵα ≥ ϵ0 for all α, this leads to:

⟨Φ̃|H|Φ̃⟩ ≥
∑
α

ϵ0
∣∣∣⟨Φα|Φ̃⟩∣∣∣2 = ϵ0

∑
α

∣∣∣⟨Φα|Φ̃⟩∣∣∣2 = ϵ0

�

So one way to find an approximation for the ground state energy and wave function is to start from a normalized
trial function |Φ̃⟩ depending on a set of parameters and vary these parameters until the expectation value ⟨Φ̃|H|Φ̃⟩
reaches its minimum. This minimum is then the estimate of the exact ground state energy.
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A.1.2 Born-Oppenheimer approximation

To apply the theory outlined above it is necessary to know the Hamiltonian of the system of interest. For a molecule
composed of M nuclei and N electrons with position vectors RA and ri, respectively, define riA := |ri − RA|,
ri j :=

∣∣∣ri − r j

∣∣∣ and RAB := |RA − RB|. The Hamiltonian of the system, in atomic units, may then be written as
follows:

H = −
N∑

i=1

1
2
∇2

i −
M∑

A=1

1
2MA
∇2

A −
N∑

i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1
ri j
+

M∑
A=1

M∑
B>A

ZAZB

RAB

Here, MA is the ratio of the mass of nucleus A to the mass of an electron and ZA is the corresponding atomic
number. The Laplacians involve differentiations with respect to the coordinates of the ith electron and the Ath
nucleus. The first term represents the kinetic energy of the electrons, the second that of the nuclei, the third term
is the Coulomb attraction between electrons and nuclei and the last two terms are the repulsions between electrons
and between nuclei, respectively.
Based on ideas published by Born and Oppenheimer in 1927, one can simplify this equation by assuming that,
since nuclei are a lot heavier and therefore also move more slowly than electrons, the electrons are moving in a
field of fixed nuclei. The first step of the approximation is to write the total wave function as product of a nuclear
part Φnuc({RA}) and an electronic part Φel({ri}; {RA}):

Φ({ri}, {RA}) = Φel({ri}; {RA})Φnuc({RA}) (A.1)

The semicolon indicates that the electronic part depends explicitly on the electronic coordinates ri but only para-
metrically on the nuclear coordinates RA. In the second step, the cross terms arising from the nuclear kinetic
operator acting on the electronic part of the wave function are ignored, i.e.

∑M
A=1

1
2MA
∇2

AΦel({ri}; {RA}) is taken to
be zero. The electronic Hamiltonian may then be written as

Hel = −
N∑

i=1

1
2
∇2

i −
N∑

i=1

M∑
A=1

ZA

riA
+

N∑
i=1

N∑
j>i

1
ri j
.

To obtain the total energy for a given system of fixed nuclei, the constant nuclear repulsion must be added to the
solution obtained from the electronic Hamiltonian ϵtot = ϵel +

∑M
A=1

∑M
B>A

ZAZB
RAB

.

A.1.3 Linear combination of atomic orbitals (LCAO)

As beautiful and simple as the variational principle may appear, it is hardly possible to find a function close to
the lowest energy wave function by optimization of its functional parameters without starting from a good initial
guess. The first idea that came to mind was to use the orbitals of hydrogen (1s ,2s ,2p...), which could be calculated
analytically, for other atom types as well and construct molecular orbitals ϕ as a linear combination of atomic
orbitals ψ (LCAO): ϕ =

∑N
i=1 aiψi. The set of N functions ψi is the basis set and each function is associated with

a coefficient ai. Since the chosen atomic orbitals are not necessarily orthonormal, the energy of the guess wave
function will be given by:

E =

∫ (∑
i aiψi

)H (∑
j a jψ j

)
dr∫ (∑

i aiψi
) (∑

j a jψ j

)
dr

(A.2)

=

∑
i j aia j

∫
ψiHψ jdr∑

i j aia j
∫
ψiψ jdr

=

∑
i j aia jHi j∑
i j aia jSi j

(A.3)

Hi j is called the resonance integral, Si j the overlap integral. The latter is the spatial overlap of two basis functions,
the former is less intuitive, but a combination of basis functions giving rise to large overlap integrals will also have
large resonance integrals and Hii corresponds to the energy of an electron occupying orbital i, i.e. its ionization
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potential. Minimization of the energy with respect to all involved coefficients leads to N equations for each of the
N coefficients, namely:

N∑
i=1

ai(Hki − ESki) = 0 ∀ k (A.4)

Such a set of equations only has a non-trivial solution when the determinant formed by the coefficients, here given
byHki − ESki, is zero. The corresponding equation type is called a secular equation. The result will be N different
energy values E j, with each energy corresponding to a different set of ai j. Each set of coefficients will define an
optimal wave function, the one corresponding to the lowest energy that of the ground state of the molecule.

A.1.4 Self-consistent field (SCF)

To make numerical computations feasible the Hartree Hamiltonian splits the Hamiltonian of the entire system into
single electron HamiltoniansH = ∑

i hi, with hi given by:

hi = −
1
2
∇2

i −
M∑

k=1

Zk

rik
+ Vi{j} (A.5)

The kinetic energy of each electron as well as the interaction with the nuclei are easily separable. However, the
interaction with all the other electrons occupying the orbitals j has to be computed as follows:

Vi{j} =
∑
i, j

∫
ρ j

ri j
dr (A.6)

Here ρ j is the probability (charge) density associated with electron j. Since the probability density is given by
ρ j =

∣∣∣ψ j

∣∣∣2 we require the desired wave functions as an input. To solve this difficulty, Hartree proposed the following
self-consistent field (SCF) approach [148, 149, 150]: start with an initial guess for the wave function, evaluate the
densities required for the one-electron Hamiltonians and solve the corresponding differential equations hiψi = ϵiψi.
Use the resulting wave function to recalculate the electron densities and repeat to obtain a yet better set of ψ. Stop
iteration when the difference between preceding steps falls below a somewhat arbitrary threshold criterion. Note
that the Hamiltonian is still considered to describe non-interacting electrons, since each individual electron sees
only a constant potential, which does not instantaneously react to the electron’s motion.

A.1.5 Slater determinant

Finally, it is important to take into account the quantum mechanical nature of electrons. This requires the introduc-
tion of the spin quantum number into the formalism. The spin of the electron has only two eigenvalues ±~/2, its
eigenfunctions are orthonormal and will be denoted by α and β here. In addition the Pauli exclusion principle, that
no two electrons can be characterized by the same set of quantum numbers, must also be taken into account. The
first consequence is that each orbital may only be occupied by two electrons of opposite spin. The second is that
the electronic wave function must be antisymmetric, i.e. change sign whenever two electrons are interchanged. So
the wave function for two electrons of like spin has to have the following form:

Ψ =
1
√

2

[
ψa(1)α(1)ψb(2)α(2) − ψa(2)α(2)ψb(1)α(1)

]
(A.7)

Equation A.7 may be rewritten by use of the determinant as follows:
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Ψ =
1
√

2

∣∣∣∣∣∣ψa(1)α(1) ψb(1)α(1)
ψa(2)α(2) ψb(2)α(2)

∣∣∣∣∣∣ (A.8)

The convenient coincidence, that determinants possess exactly the antisymmetric properties desired for electronic
wave functions, was first noticed and used by Slater [151] in the construction of the so-called Slater determinants
(SD) as N-electron wave functions,

ΨS D =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN(1)
χ1(2) χ2(2) · · · χN(2)
...

...
. . .

...
χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣∣∣∣ (A.9)

where χ is a spin-orbital, i.e. a product of the spatial orbital and the spin eigenfunction. Note that the rows of
the determinant correspond to electrons, while the columns are the different orbitals. This description therefore
corresponds to closed shell systems, i.e. systems where each orbital is either doubly occupied (spin up and spin
down) or empty, with the lowest energy E0 being the ground state and the highest energy EN belonging to the high-
est occupied molecular orbital (HOMO). An even more compact notation than eqn. A.9 is ΨS D = |χ1χ2χ3 · · · χN⟩.
Upon expansion of the Slater determinant every electron appears in every spin orbital. This is a manifestation of
the indistinguishability of quantum particles. When evaluating the Coulomb repulsion between the electron clouds
in two orbitals a and b, the classical Coulomb repulsion is reduced by Kab for electrons of like spin. This is the
so-called ’Fermi hole’, reflecting the reduced probability of finding two electrons of like spin close to each other.
For two electrons of the same spin it is given by Kab =

∫
ψa(1)ψb(1) 1

r12
ψa(2)ψb(2)dr1dr2.

A.1.6 Restricted Hartree Fock

Fock was the first to propose the use of Slater determinants in the SCF procedure introduced by Hartree. It was
Roothaan, however, who described the matrix equations necessary to use a basis set representation for molecular
orbitals (MOs) and stated the underlying mathematical proofs [152]. It is this formalism, that we describe in the
following and that is the basis of most quantum chemical methods in use today [153]. The energy of a closed shell
system is given by

E = 2
∑

i

Hi +
∑

i j

(2Ji j − Ki j), (A.10)

where H represents the nuclear-field single electron energies, Ji j refers to the coulomb and Ki j to the exchange
integrals between the molecular orbitals i and j. The precise mathematical definitions of these energies are:

Hi =

∫
χ̄iHχidr (A.11)

Ji j = e2
∫

χ̄i(µ)χ̄ j(ν)χi(µ)χ j(ν)
rµν

dr(µ)dr(ν) (A.12)

Ki j = e2
∫

χ̄i(µ)χ̄ j(ν)χ j(µ)χi(ν)
rµν

dr(µ)dr(ν) (A.13)

Here ν and µ label different electrons. Note that Jii = Kii and that due to the orthogonality of the two different
spin functions Ki j is zero for electrons of opposite spin. In the quantum mechanical spirit we may define the
corresponding operators Ji and Ki as follows:
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Ji(µ)χ(µ) = e2
(
χ̄i(ν)χi(ν)

rµν
dr(ν)

)
χ(µ) (A.14)

Ki(µ)χ(µ) = e2
(
χ̄i(ν)χ(ν)

rµν
dr(ν)

)
χi(µ) (A.15)

(A.16)

This is sufficient to define the Fock operator, which is the sum of the total electron interaction and all one-electron
energies taking into account only the potential of the fixed nuclei, i.e.:

F = H +
∑

i

(2Ji − Ki) (A.17)

It can be shown by taking into account the condition that molecular orbitals have to remain perpendicular even
when undergoing small variations, that for a closed shell system it is sufficient to solve

F ϕi = ϵiϕi (A.18)

The matrix form thereof used for numerical evaluation based on the LCAO approach (sec. A.1.3) is

Fci = ϵiSci (A.19)

Where ci is the vector of atomic orbital coefficients corresponding to the molecular orbital i. S is the matrix of
overlap integrals between different MOs arising from the secular equation det(F− ϵS) to find the minimum energy
basis functions. The Fock matrix is given by:

Fµν =

⟨
µ

∣∣∣∣∣−1
2
∇2|ν

⟩
−

nuclei∑
k

Zk

⟨
µ

∣∣∣∣∣ 1
rk
|ν
⟩
+

∑
λσ

Pλσ

[
(µν|λσ) − 1

2
(µλ|νσ)

]
(A.20)

Here the lower-case Greek letters refer to the basis functions of which the MOs are built and the latter so-called
”four-index integrals” correspond to the coulomb and exchange interaction (Ji j and Ki j). Between two electrons
labelled one and two they are defined as:

(µν|λσ) =
∫ ∫

ϕµ(1)ϕν(1)
1

r12
ϕλ(2)ϕσ(2)dr(1)dr(2) (A.21)

The density matrix Pλµ describes how strongly individual basis functions contribute to the many-electron wave
function. Equation A.18 is the best known form of the Fock equations. They state that the molecular orbitals
which correspond to the most accurate Slater determinants are all eigenfunctions of the Hermetian operator F .
Once the Fock equations have been solved numerically, it is worthwile to consider the eigenvalue problem of the
now known Fock matrix Fc = ϵSc. The lowest n eigenvalues thereof correspond to the solutions of eqn. A.18 and
hence the energies of the occupied ground-state orbitals of the molecule. Orbitals corresponding to higher energies
are excited states thereof. All eigenvalues are termed Hartree-Fock orbital energies.
The actual evaluation is done based on a chosen basis set in a self-consistent manner. As explained in sec. A.1.4 the
initial coefficients of the wave functions are guessed to allow calculation of the Fock matrix. The Fock equations
are then solved and result in a new set of wave function coefficients. This procedure is repeated until convergence
is achieved. Due to the one-electron nature of the Fock operator, any electron correlation other than exchange is
ignored. Two approaches have been developed to go beyond Hartree-Fock. The first is semi-empirical with the
idea in mind to simplify the Fock equations by fitting coefficients to experimental data and yet gain accuracy. The
second is to continue the ab initio approach and treat the electron correlation.
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A.1.7 Semi-empirical methods

There are two main interests in the development of semi-empirical methods. First, to reduce the computational
time by approximating extremely expensive calculations and second, to closer approach the real solution of the
Schrödinger equation by taking the electron correlation into account better. Computationally the most costly step
of the Hartree Fock (HF) theory is the evaluation of the two-electron or four-index integrals appearing in the
definition of the Fock matrix (eqn. A.20). The main problem is that for N basis functions there are N4 such
integrals to be evaluated. A priori estimation of the integral values would save a lot of time. Since the coulomb
integrals measure the repulsion between electrons whose location is defined by basis functions, basis functions
occupying regions of space far away from each other should have close to zero integrals. Therefore, a cut-off for
the distance between electrons is introduced above which all coulomb integrals are taken to be zero. While this is
a purely numerical approximation and a choice of infinity as cut-off recovers the exact result, the approximations
leading to truly efficient methods require some chemical background and intuition. One such approximation done
by most semi-empirical methods is to ignore all core electrons, since they are taken to be sufficiently invariant to
different chemical surroundings. Remaining valence orbitals are described by Slater-type orbitals (STO), which
follow from the analytical solution of the Schrödinger equation for hydrogen and have the following form:

ϕ(r, θ, ϕ; ζ, n, l,m) =
(2ζ)n+1/2

[(2n)!]1/2 rn−1 e−ζr Ym
l (θ, ϕ) (A.22)

where ζ is chosen based on the atomic number, n is the principal quantum number for the valence orbital and
Ym

l (θ, ϕ) are the spherical harmonics depending upon the angular momentum quantum numbers l and m.
In the following, we shall focus on methods fully or partially neglecting molecular overlap computations. The
method for replacing Fock or overlap matrix elements was described by Pople and co-workers in 1965 and is
termed complete neglect of differential overlap (CNDO) [154, 155]. It introduces the following simplifications:

i. The basis set is formed from STOs, one per valence orbital.

ii. Overlap matrix elements are defined by S µν = δµν

iii. Two-electron integrals (eqn. A.21) are taken to be zero unless the two orbitals on each atom are identical,
i.e.:

(µν|λσ) = δµνδλσ = (µµ|λλ) (A.23)

iv. The remaining integrals are taken to be

(µµ|λλ) = γAB (A.24)

where A and B are the atoms belonging to the basis functions and γ may either be computed from s-type
STOs or treated as a parameters. An example for the latter case is the Pariser-Parr approximation [156],
where γAA = IPA − EAA with IAA being the atomic ionization potential and EAA the electron affinity.

v. One-electron integrals for diagonal matrix elements are defined by⟨
µ

∣∣∣∣∣∣∣−1
2
∇2 −

nuclei∑
k

Zk

rk

∣∣∣∣∣∣∣ µ
⟩
= −IPµ −

nuclei∑
k

(Zk − δZAZk )γAk (A.25)

Here the basis function µ is centered on atom A. The energy associated with the diagonal matrix element is
the ionization potential in case the number of valence electrons and the valence nuclear charge are equal, i.e.
all atoms have a partial charge of zero. The delta functions simply correct for self-interaction of electrons.

vi. One-electron integrals for off-diagonal elements are given by⟨
µ

∣∣∣∣∣∣∣−1
2
∇2 −

nuclei∑
k

Zk

rk

∣∣∣∣∣∣∣ ν
⟩
=

(βA + βB)S µν

2
(A.26)
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µ and ν are centered on atoms A and B, respectively. S µν is the overlap matrix and the β values are semi-
empirical parameters originally fitted to reproduce experimental data.

Thanks to eqn. A.23 the computational cost is reduced from N4 to only N2 and the evaluation of the remaining
integrals is extremely simplified. However, failure to distinguish between different types and orientations of orbitals
lead to significant errors and also to the development of a new formalism named intermediate neglect of differential
overlap (INDO) [157]. The main change was simply to take different values for unique one-center two-electron
integrals. For an atom having only s and p orbitals this lead to five such integrals instead of just one as in CNDO:
(ss|ss) = Gss, (ss|pp) = Gsp, (pp|pp) = Gpp, (pp|p′p′) = Gpp′ and (sp|sp) = Lsp. These parameters may either
be regarded as free parameters or estimated from spectroscopic data. Ridley and Zerner were the first to carefully
parameterize INDO specifically for spectroscopic problems [158]. The resulting parameterization has been coined
ZINDO and is also the method we use to calculate the HOMO orbitals of optimized geometries and the overlap
between them to save computational time.

A.1.8 Basis sets

Prior to the discussion of further advances of HF theory it should be noted that the choice of basis set used is
of key importance, when intent on reducing computational time while still retaining chemical accuracy. In the
development of basis function three main goals are to be achieved:

i. Minimization of the number of basis functions.

ii. Choice of functional forms allowing efficient evaluation of all integrals appearing in the HF equations.

iii. Chemical applicability, i.e. the basis functions should have a large amplitude in areas where the probability
density of the electron is also high.

The obvious choice for basis functions are Slater orbitals, but since they defy analytical solution of the four-index
integrals (eqn. A.21) the functional form was changed from e−r to e−r2

. This lead to the use of Gaussian-type
orbitals (GTOs) with the following normalized, atom-centered Cartesian coordinate form:

ϕ(x, y, z;α, i, j, k) =
(

2α
π

)3/4 [
(8α)i+ j+ki! j!k!
(2i)!(2 j)!(2k)!

]1/2

xiy jzke−α(x2+y2+z2) (A.27)

α controls the width of the GTO and i, j and k are non-negative integers defining the shape of the orbital. When
all three integers are zero, the GTO has spherical symmetry and corresponds to s-type orbitals. When only one of
the indices is equal to one, the function has symmetry about a single Cartesian axis. Depending on the choice of
the index this corresponds to px, py or pz orbitals. If the sum of the indices is equal to two, they represent d-type
orbitals and so on. The main problem arising from choosing GTOs over STOs is the change in shape. GTOs are
smooth and differentiable at the nucleus instead of possesing a cusp and the reduction in amplitude with distance
is also too rapid. To obtain better agreement between functional forms, many basis functions are defined as a
linear combination of Gaussian functions to approximate the Slater shape. Such basis functions are referred to as
contracted basis functions, while the individual Gaussian are named primitive Gaussians. A single basis function is
defined by its contraction coefficients c and the exponents α of its primitives. The first to systematically determine
optimal contraction coefficients for GTOs mimicking STOs were Hehre, Stewart and Pople [159]. The resulting
basis set appears as STO-MG in todays basis set terminology, short for ’Slater Type Orbital approximated by M
Gaussians’. STO-3G basis functions have been defined for most atoms in the periodic table. STO-3G is a single-ζ
meaning there is one and only one basis function for each type of orbital from the orbital core up to valence. This
is the absolute minimum size possible for a reasonable basis set. A way to increase the flexibility of a basis set is to
decontract it. For example one might decontract STO-3G and describe each AO by two basis functions, one being
the contraction of two primitives, the other being the remaining primitive. Such a basis set, with two functions per
AO, is called a double-ζ basis set. Examples thereof are the ”correlation-consistent polarized Core and Valence
(Double/Triple/etc.) Zeta” sets cc-pCVDZ, cc-pCVTZ, etc. developed by Dunning and co-workers [160]. The
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fact that core orbitals are only weakly affected by bonding, while valence orbitals on the other hand may vary
greatly, lead to the introduction of ’split-valence’ or ’valence-multiple-ζ’ basis sets. Here, core orbitals continue to
be represented by single contracted basis functions, while valence orbitals are split into arbitrarily many. The most
widely used split-valence sets were also developed by Pople et al. They include 3-21G, 6-21G, 4-31G, 6-31G and
6-311G. The first number refers to the number of primitives in the contracted core functions, the numbers after the
hyphen indicate the number of primitives in the valence functions. Two numbers correspond to a valence-double-ζ,
three to a valence-triple-ζ basis set.

Polarization

Molecular in contrast to atomic orbitals require more flexible mathematical functions. An illustrative example
is ammonia (NH3), which has a pyramidal minimum energy structure, but the one predicted by above basis sets
would be planar. Adhering to the convention that basis functions are centered on atoms, the added basis functions
correspond to one quantum number higher angular momentum than the valence orbitals. In the Pople basis func-
tions such polarization functions are indicated by one or two stars. For the 6-31G basis, a single star, i.e. 6-31G*,
refers to a set of d functions added to polarize the p functions. A second star implies p functions on hydrogen
and helium. Today, explicit enumeration of the polarization functions used in parentheses is also commonly used.
6-31G* is then denoted as 6-31G(d) and 6-31G(3d2f,2pd) implies heavy atoms to be polarized by three sets of d
and two sets of f functions as well as hydrogen atoms by two sets of p and one of d functions.

Diffuse functions

Molecular orbitals of loose supermolecular complexes, anions or excited states have a tendency of being more dif-
fuse than standard MOs. To be able to treat such weakly bound electrons standard basis sets are often ’augmented’
with diffuse basis functions. In the Pople basis sets diffuse functions are indicated by a plus in the basis set name.
6-31+G(d) states that one set of s and one of p functions with small exponents have been added. The diffuse func-
tions usually have exponents a factor of four below the smallest valence exponent. In the Dunning basis set such
functions are indicated by prefixing the names with ’aug’. For the calculation of electron affinities and acidities
use of such functions is highly recommended.

A.1.9 Post Hartree Fock

The fundamental assumption governing Hartree Fock theory is that each electron moves in a static electric field
created by all others. The main difference between the Hamiltonian and the Fock operator is therefore that the
former returns the electronic energy of the many-electron system while the latter is only a set of all interdependent
one-electron operators, which is then used to find the one-electron MOs and build the Slater determinant. It is
impossible to improve on HF theory with a single determinant, so it immediately comes to mind to instead take a
linear combination of multiple determinants, i.e.:

Ψ = c0ΨHF + c1Ψ1 + c2Ψ2 + · · · (A.28)

where the coefficients ci reflect the weight of each determinant. The main error in HF stems from the correlated
motion of each electron with every other. It is referred to as dynamical correlation. Empirically it was shown that
in this case the HF wave function dominates the linear combination given by eqn. A.28. In case of near or exactly
degenerate frontier orbitals (HOMO or LUMO), different determinants may have similar weights. To distinguish
this case it was named non-dynamical correlation.

Multiconfigurational Self-Consistent Field Theory (MCSCF)

Assuming a doubly degenerate frontier orbital, only one of the two orbitals π2 or π3 can be filled in the calculation
of the Slater determinant. Even when including the other orbital in the calculation, only the occupied orbitals are
optimized in the SCF process since only they contribute to the energy. Hence there is no driving force to optimize
virtual orbitals, they are solely made to be orthogonal to occupied MOs. For our two-dimensional example the
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obvious solution is to form the wave function as a linear combination of two wave functions, one with orbital π2
and one with π3 occupied:

ΨMCS CF = a1
∣∣∣· · · π2

1π
2
2

⟩
+ a2

∣∣∣· · · π2
1π

2
3

⟩
(A.29)

The coefficients a1 and a2 take care of the normalization and relative weighting. This approach is called Multi-
configurational Self-Consistent Field (MCSCF), because the orbitals are optimized for a combination of different
configurations. Each term in the linear combination is termed configuration state function (CSF) and refers to the
molecular spin state and the occupation numbers of the orbitals. The resulting variational algorithm has to find
not only the ideal shape for each MO but also the correct weight for each CSF in the MCSCF wave function. The
resulting orbitals do not have unique eigenvalues and thus the energy of an orbital cannot be discussed. How many
different orbitals to include in these considerations depends on the chemistry. The resulting choice is the active
space given by (m, n), where m is the number of electrons and n the number of orbitals. Distributing the electrons
on the orbitals gives the possible number of CSFs:

N =
n!(n + 1)!(

m
2

)
!
(

m
2 + 1

)
!
(
n − m

2

)
!
(
n − m

2 + 1
)
!

(A.30)

Permitting all possible arrangements of electrons in the MCSCF expansion is referred to as choosing a complete
active space (CAS), i.e. doing CASSCF. If one chooses to do CASSCF for all electrons including all orbitals in the
complete active space the calculation is called full configuration interaction or full CI. A full CI with an infinite
basis set would be the exact solution of the non-relativistic, Born-Oppenheimer, time-independent Schrödinger
equation. Note, however, that already for methanol in 6-31G(d) basis the number of coefficients to optimize in full
CI for this (14,38) system would be 2.4 · 1013 despite the small basis set choice.

Configuration Interaction (CI)

To move from the enormous task of a full CI calculation to a feasible task one approach is to allow only a limited
number of excitations. For this purpose we rewrite eqn. A.28 as

Ψ = c0ΨHF +

occ.∑
i

virt.∑
r

ar
iΨ

r
i +

occ.∑
i< j

virt.∑
r<s

ars
i jΨ

rs
i j + · · · (A.31)

Here, i and j are occupied MOs in the HF wave function, r and s are virtual MOs in ΨHF and the other CSFs are
generated by exciting an electron from the occupied (subscripts) to the virtual (superscripts) orbitals. Including
single and double excitations leads to CISD, which scales as N6, however.

A.1.10 Perturbation Theory

A completely different approach is to apply the well-known Rayleigh-Schrödinger perturbation theory to solve the
Schrödinger equation. In general, perturbation theory deals with an operatorA, that may be rewritten as

A = A(0) + λV (A.32)

with A(0) being an operator, where the eigenfunctions are easy to find, V being the perturbing operator and λ the
dimensionless parameter, which upon variation from zero to one maps A to A(0). If the perturbation is small the
ground state eigenfunctions and eigenvalues may be expanded into a Taylor series in λ. Since Taylor series are well-
known we will denote the expansions as follows: Ψ0 = Ψ

(0)
0 +λΨ

(1)
0 +λ

2Ψ
(2)
0 + · · · and a0 = a(0)

0 +λa(1)
0 +λ

2a(2)
0 + · · · .

a(0)
0 is the eigenvalue for Ψ(0)

0 , the normalized ground-state eigenfunction for A(0) and the terms with superscripts
(n) are the nth-order corrections to the zeroth order term. This allows us to write
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(A(0) + λV) |Ψ0⟩ = a |Ψ0⟩ (A.33)

Evaluating eqn. A.33 and sorting the resulting terms by powers of λ allows the calculation of the coefficients using⟨
Ψ0

∣∣∣Ψ(0)
0

⟩
= 1 and

⟨
Ψ

(n)
0

∣∣∣Ψ(0)
0 = δn0

⟩
. The results for the first and second order corrections of the energy are

a(1)
0 =

⟨
Ψ

(0)
0 |V |Ψ

(0)
0

⟩
(A.34)

a(2)
0 =

∑
j>0

∣∣∣∣⟨Ψ(0)
j |V |Ψ

(0)
0

⟩∣∣∣∣2
a(0)

0 − a(0)
j

(A.35)

The first to apply this theory to the complete Hamiltonian operator were Møller and Plesset in 1934. The resulting
methods are termed MPn, where n is the order at which the expansion is truncated. We have used MP2 for the
computation of dihedral parameters and the geometry optimization of single molecules. H(0) is chosen to be the
sum of one-electron Fock operators

H(0) =

n∑
i=1

fi (A.36)

where n is the number of basis functions. In addition Ψ(0) is the Slater determinant made up of the occupied
orbitals. The eigenvalue of H(0) is then given by sum of the occupied orbital energies, since:

H(0)Ψ(0) =

occ.∑
i

ϵiΨ
(0) = a(0)Ψ(0) (A.37)

The correction term V yielding the full Hamiltonian is:

V =
occ.∑

i

occ.∑
j>i

1
ri j
−

occ.∑
i

occ.∑
j

(Ji j −
1
2

Ki j) (A.38)

The first term on the right hand side is the proper way to calculate electron repulsion, while the second term is how
it is computed by summation over Fock operators for occupied orbitals. Note that the first order correction simply
reproduces the Hartree Fock energy, i.e. a(0) + a(1) = EHF . So the approach only makes sense starting from second
order, the corresponding correction is

a(2) =

occ.∑
i

occ.∑
j>i

vir.∑
a

vir.∑
b>a

[(i j|ab) − (ia| jb)]2

ϵi + ϵ j − ϵa − ϵb
(A.39)

Here the terms in the nominator correspond to the four-index integrals defined by eqn. A.21. The sum of a(0), a(1)

and a(2) is the MP2 energy. MP2 scales roughly as N5, MP4 as N7, where N is the number of basis functions. Note
that perturbation theory is built on the assumption that the perturbation is small, but this is hardly the case for the
electron-electron repulsion energy. Also in contrast to all other methods presented this far perturbation theory is
not based on the variational principle. Therefore, the estimate for the correlation energy may be too large instead
of too small.
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A.2 Density Functional Theory (DFT)

A.2.1 Thomas Fermi theory

Since the early 1920s this theory was used to roughly compute the electronic energy based on electron density
distributions. However, it did not predict chemical binding and therefore was of almost no use for questions of
chemistry and material science. It did, however, consider interacting electrons moving in an external potential v(r)
and provided an implicit relation between v(r) and the density distribution n(r):

n(r) = γ(µ − ve f f (r))3/2 ; γ =
1

3π2

(
2m
~2

)3/2

(A.40)

ve f f (r) = v(r) +
∫

n(r′)
|r − r′|dr′ (A.41)

Here µ is the chemical potential and the first equation is based on the expression n = γ(µ − v)3/2 for the density of
a uniform, non-interacting, degenerate electron gas in a constant external potential. The second term in the second
equation is the classically computed electrostatic potential, also referred to as the Hartree potential vH . Despite
the fact that TF theory was a rough solution to the many-electron Schrödinger equation, it was unclear whether
there was a strict connection between them and whether knowledge of the ground state density n(r) alone uniquely
determined the system. This mystery was solved by Hohenberg and Kohn [161].

A.2.2 The Hohenberg Kohn theorem

The Hohenberg Kohn theorem. The ground state density n(r) of a bound system of interacting electrons in some
external potential v(r) determines this potential uniquely.

Proof. The proof is given for a non-degenerate ground state, but may easily be expanded to degenerate ground
states as well. Let n(r) be the non-degenerate ground state density of N electrons in the potential v1(r), corre-
sponding to the ground state Φ1 and the energy E1. Then:

E1 = ⟨Φ1|H1Φ1⟩ =
∫

v1(r)n(r)dr + ⟨Φ1|(T + U)Φ1⟩ ,

whereH1 is the total Hamiltonian corresponding to v1 and T and U are the kinetic and interaction energy operators.
Note that the external potential v1 is a multiplicative operator with respect to Φ. Now assume that there exists a
second potential v2(r), not equal to v1(r) + constant, with ground state Φ2, necessarily , eiθΦ1, which gives rise to
the same n(r). Then

E2 =

∫
v2(r)n(r)dr + ⟨Φ2|(T + U)Φ2⟩ .

Since Φ1 is assumed to be non-degenerate, the variational principle (sec. A.1.1) for Φ1 gives rise to the following
inequality:

E1 < ⟨Φ2|H1Φ2⟩ =
∫

v1(r)n(r)dr + ⟨Φ2|(T + U)Φ2⟩ (A.42)

= E2 +

∫
[v1(r) − v2(r)]n(r)dr

Analogously

E2 ≤ ⟨Φ1|H2Φ1⟩ = E1 +

∫
[v2(r) − v1(r)]n(r)dr (A.43)
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where ≤ is used since non-degeneracy of Φ2 was not assumed. Adding equations (A.42) and (A.43) leads to the
contradiction:

E1 + E2 < E1 + E2

This shows that the assumption of the existence of a second potential v2(r), which is unequal to v1(r) + const but
yet yields the the same n(r), must be wrong.

�

Since n(r) determines both N and v(r) it gives us the full H and N for the electronic system. Therefore n(r)
implicitely determines all properties of the system derivable from solving the Schrödinger equation forH .

N- and V-representability

A question that may arise immediately linked to the HK theorem is how one knows, after having minimized a given
density, whether this density is a density arising from an antisymmetric N-body wave function (N-representability)
and whether it actually corresponds to the ground-state density of a potential v(r) (v-representability). It has been
shown that any non-negative function can be written in terms of someΦ(r1, r2, · · · , rN), so N representability is not
a problem. However, for v-representability no general solution exists, but the constrained search algorithm [162,
163] of Levy and Lieb shows that this is irrelevant for the proof above.

A.2.3 Applications of DFT

• Since v(r) depends on a set of parameters - lattice constants or nuclei positions - the energy may be min-
imized with respect to these quantities yielding molecular geometries and sizes, lattice constants, charge
distributions etc.

• Compressibilities, phonon spectra, bulk moduli (solids) and vibrational frequencies (molecules) may be
obtained from the change in energy with respect to the corresponding parameters.

• Dissociation energies are calculated as the energy difference between a composite system (e.g. a molecule)
and its constituent parts (e.g. individual atoms).

• Electron affinities and ionization energies correspond to the energy difference between the neutral ground
state energy and the total energy of the system with one additional or one less electron. Note that within
the local density and generalized gradient approximations the (N + 1)st electron is too weakly bound or even
unbound. The asymptotic potential obtained decays exponentially and not as 1/r, so the binding of negative
ions is strongly suppressed. Self-interaction corrections or other fully non-local functionals are needed to
improve this behavior.

• Forces are calculated from the derivative of the total energy with respect to the nuclear coordinates using the
Hellmann-Feynman theorem.

A.2.4 The Kohn-Sham equations

In principle it is sufficient to express the total energy of a system in terms of its density and minimize this functional
to obtain the ground state energy, density and wave function. The total energy of a typical molecule or solid is
given by:

E(n) = T (n) + U(n) + V(n) = T (n) + U(n) +
∫

n(r)v(r) d3r. (A.44)

Here T is the kinetic energy of the electrons, U the potential energy due to the interaction between them and V
the potential energy from an external potential v, usually the electrostatic potential of the nuclei, which are taken
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to be fixed in space (Born-Oppenheimer approximation, sec. A.1.2). This is the only potential that is easy to treat
since it is a multiplicative operator. For the others a universal density functional is unknown at this time, but it is
possible to treat them with the Kohn-Sham equations.
The idea of the Kohn-Sham approach is to reintroduce a special type of wave functions (single particle orbitals)
into the formalism, to treat the kinetic and interaction energy terms. In this approach the energy is taken to be
composed of the following terms:

E(n) = T (n) + U(n) + V(n) = Ts{ϕi(n)} + UH(n) + Exc(n) + V(n) (A.45)

Here the kinetic energy is split into two contributions:

T (n) = Ts(n) + Tc(n)

Ts stands for the kinetic energy of non-interacting particles of density n with s denoting ’single particle’ and Tc

being the remainder with c denoting ’correlation’. The interaction energy U is approximated by the classical
electrostatic interaction or Hartree energy UH . The new energy term Exc stands for a correction due to exchange
(x) and correlation (c) effects, i.e. is given by Exc = (T − Ts)+ (U −UH) = Tc + (U −UH). It is often decomposed
as Exc = Ex + Ec, where Ex is the exchange energy due to the Pauli principle (antisymmetry) and Ec is due to
correlations (Tc is then a part of Ec).

The kinetic energy of non-interacting particles Tc

For non-interacting particles, the kinetic energy is nothing other than the sum of the kinetic energies of each
particle. Written in terms of wave functions that is:

Ts(n) = − ~
2

2m

N∑
i

∫
ϕ∗i (r)∇2ϕi(r)d3r (A.46)

Ts(n) = Ts[{ϕi(n)}] is an explicit orbital functional, but only an implicit density functional, due to the dependence
of the wave functions on the density. Because Ts is defined as the expectation value of the kinetic energy operator
T̂ with the Slater determinant arising from the density n, i.e. Ts(n) = ⟨Φ(n)|T̂ |Φ(n)⟩, all consequences of anti-
symmetrization (exchange) are described by employing a determinal wave function in defining Ts. Hence, Tc, the
difference between Ts and T is a pure correlation effect.

The Hartree energy UH

The classical electrostatic interaction energy (Hartree energy) as well as the mean field result UH in terms of
density is given by

UH =
q2

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′| (A.47)

The exchange energy Ex

Since the exchange energy correction stems purely from the interaction potential, it may be written in terms of
single-particle orbitals as:

Ex[{ϕi(n)}] = −q2

2

∑
jk

∫
d3r

∫
d3r′

ϕ∗j(r)ϕ∗k(r′)ϕ j(r′)ϕk(r)

|r − r′| (A.48)
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where a single term in the sum corresponds to the energy of exchanging molecule j located at r with molecule
k located at r′. No exact expression in terms of the density is known. The exchange energy therefore describes
the energy lowering due to antisymmetrization, i.e. the tendency of electrons with like spin to avoid each other,
giving rise to the so-called ’exchange-hole’. It also corrects the Hartree term (A.47) for the self-interaction (see
eqn. A.49).

The correlation energy Ec

The correlation energy is the difference between the full ground-state energy obtained from the correct many-
body wave function and the one obtained from the Hartree-Fock or Kohn-Sham Slater determinant. Recalling the
interpretation of the wave function as probability amplitude, the product form of the many-body wave function
corresponds to treating the probability amplitude of a many-electron system as a product of the probability ampli-
tudes of individual electrons (the orbitals). This is only the same when the individual electrons are independent.
Clearly this is not the case, so such wave functions neglect the fact that electrons try to avoid each other due to
Coulombic repulsion. The correlation energy is therefore the additional energy lowering obtained in a real system
due to the mutual avoidance of the interacting electrons. To understand the correlation for interaction energy, let
us take another look at the corresponding operator written in two perfectly equivalent ways:

Û =
∑
i< j

q2

|r − r′| =
q2

2

∫
d3r

∫
d3r′

n̂(r)n̂(r′) − n̂(r)δ(r − r′)
|r − r′| (A.49)

The operator character is only carried by the density operators n̂ (in occupation number representation) and the
term with the delta function subtracts out the interaction of a charge with itself (which is taken care of by i < j in
the other case). The expectation value of this operator U = ⟨Φ|Û |Φ⟩ involves the expectation value of a product
of density operators ⟨Φ|n̂(r)n̂(r′)|Φ⟩, which in the Hartree term (A.47) is replaced by a product of expectation
values, each of the form n(r) = ⟨Φ|n̂(r)|Φ⟩. This replacement amounts to a mean field approximation, which
neglects quantum fluctuations. Therefore, the correlation energy accounts for the energy lowering due to quantum
fluctuations, i.e. the ’correlation hole’, which arises because electrons with unlike spins try to coordinate their
movement to minimize their Coulomb energy. The other significant part of the correlation energy is due to the
difference Tc between non-interacting and interacting kinetic energies.

Nomenclature and properties regarding Exc

• Since both exchange and correlation tend to keep electrons apart, the term ’electron hole’ was coined, de-
scribing the region of reduced probability for encountering a second electron in the vicinity of a given
reference electron.

• Both exchange and correlation energies give negative contributions, which leads to an upper bound of 0 for
the energy correction, the lower one given by the Lieb-Oxford bound: Exc ≥ −1.68

∫
d2r n(r)4/3

• In the one electron limit Ec(n(1)) = 0 and Ex(n(1)) = −UH(n(1)), where n(1) is a one-electron density. Note:
this is satisfied by HF, but not by standard LDA and GGA functionals.

The Kohn-Sham equations

To get the ground state energy, i.e. to minimize eqn. (A.45) with respect to the density, one cannot directly
minimize with respect to n, since Ts is written as an orbital functional. Instead, Kohn and Sham proposed the
following scheme for indirect minimization. To minimize E with respect to density means, we want:

0 =
δE[n]
δn(r)

=
δTs[n]
δn(r)

+
δV[n]
δn(r)

+
δUH[n]
δn(r)

+
δExc[n]
δn(r)

=
δTs[n]
δn(r)

+ v(r) + vH(r) + vxc(r) (A.50)
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As a consequence of eqn. (A.44) δV
δn = v(r), which is nothing other than the external potential due to the fixed

nuclei, the lattice or a truly external field. The term δUH
δn yields the Hartree potential introduced in eqn. (A.40). The

term δExc
δn can only be calculated after an approximation has been chosen, but nevertheless we can call the result

vxc. Now consider this brillian idea: look at a system of non-interacting particles moving in the arbitrary potential
vs(r). For this system the minimization condition is:

0 =
δEs[n]
δn(r)

=
δTs[n]
δn(r)

+
δVs[n]
δn(r)

=
δTs[n]
δn(r)

+ vs(r)

The density solving this Euler equation is ns(r). Comparison with eqn. (A.50) shows that both minimizations have
the same solution ns(r) = n(r), if we choose:

vs(r) = v(r) + vH(r) + vxc(r) (A.51)

Therefore we can calculate the density of an interacting many-body system in the potential v(r), described by a
many-body Schrödinger equation, by simply solving the equations of a noninteracting single-body system in the
potential vs(r), given by:

[
− ~

2

2m
∇2 + vs(r)

]
ϕi(r) = ϵiϕi(r) (A.52)

This yields orbitals that reproduce the density n(r) of the original system via:

n(r) = ns(r) =
N∑
i

fi |ϕi(r)|2 , (A.53)

where fi is the occupation of the ith orbital. Equations (A.51) to (A.53) are the celebrated Kohn-Sham equations.
The problem of minimizing E(n) (and originally of solving the corresponding many-body Schrödinger equation) is
reduced to that of solving a noninteracting Schrödinger equation. The solution to this nonlinear problem is usually
found by starting with an initial guess for n(r), calculating the corresponding vs(r) and then solving the differential
equation A.52 for the ϕi. From these a new density is calculated using eqn. (A.53) and the process is restarted until
reasonable convergence is reached.

A.2.5 Construction of exchange functionals

Local density approximation (LDA)

The general idea of LDA is to take the known result for a homogeneous system and apply it locally to a non-
homogeneous system. The exchange energy of a homogeneous system is known to be:

ehom
x (n) = −3q2

4

(
3
π

)1/3

n4/3

So in the LDA one takes:

ELDA
x (n) = −3q2

4

(
3
π

)1/3 ∫
n(r)4/3d3r (A.54)

Expressions for ELDA
c (n) are parameterizations of accurate Quantum Monte Carlo (QMC) calculations for the

electron liquid.
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Gradient expansion approximation (GEA)

In this case one tries to systematically calculate gradient corrections of the form |∇n(r)|, |∇n(r)|2, ∇2n(r) etc. to
the LDA to take into account the rate of density variation in the system. The lowest order correction to the LDA
exchange energy is given by the Weizsäcker term [26]:

EGEA(2)
x (n) = ELDA

x (n) − 10q2

432π(3π2)1/3

∫
d3r
|∇n(r)|2
n(r)4/3 (A.55)

In practice, low-order gradient corrections almost never improve the LDA results and higher-order corrections are
exceedingly difficult to calculate.

Generalized gradient approximation (GGA)

It was a major breakthrough, when it was realized that instead of power-series-like systematic gradient expansions
one could experiment with more general functions of n(r) and ∇n(r), which need not proceed order by order. Such
functional have the general form:

EGGA
xc (n) =

∫
d3r f (n(r),∇n(r)) (A.56)

The most popular GGAs are PBE (denoting the functional proposed in 1996 by Perdew, Burke and Ernzerhof) and
BLYP (denoting the combination of the exchange functional by Becke and the correlation functional of Lee, Yang
and Parr, both in 1988). GGAs give reliable results for chemical bonds, but mostly fail for dispersion interactions
(van der Waals terms).

Meta-GGA

These functionals depend, in addition to the density and its derivatives, also on the Kohn-Sham kinetic-energy
density τ(r).

τ(r) =
~2

2m

∑
i

|∇ϕi(r)|2 (A.57)

The exchange-correlation energy is therefore written as Exc[n(r),∇n(r), τ(r)]. The additional degree of freedom is
used to satisfy additional constraints on Exc, such as a self-interaction correlation functional, etc. In recent tests,
Meta-GGAs have performed favorably even when compared to the best GGAs.

B3LYP

One of the most popular functionals in quantum chemistry today is B3LYP [164], which combines the meta-
GGA correlation functional LYP developed by Lee, Yang and Parr [165] with Becke’s three-parameter hybrid
functional B3 for exchange [166, 167]. The latter mixes a fraction of Hartree-Fock exchange into the DFT exchange
functional. This mixing involves a certain amount of empiricism and optimization for selected classes of molecules.
The functional, which is implemented in Gaussian and hence used in our computation is given by:

EB3LYP
xc = a0Eexact

x + (1 − a0)ELS DA
x + ax∆EB88

x + EVWN−RPA
c + acELYP

c (A.58)

Here a0, ax and ac are the three empirical parameters. They were determined by fitting to series of atomization
energies, proton affinities and ionization potentials yielding a0 = 0.20, ax = 0.72 and ac = 0.81 [168]. Eexact

x
is the exchange energy calculated by Hartree-Fock-like methods. ELS DA

x is the energy of a uniform free-electron
gas (local spin density approximation). EB88[169] satisfies the experimentally known asymptotic behavior of
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finite many-electron systems [170, 171]. EVWN−RPA
c is the local density approximation of the correlation energy

introduced by Vosko, Wilk and Nusair[172] with parameters obtained by fitting to a uniform electron gas calculated
in the random-phase approximation. Finally, ELYP

C is the meta-GGA correlation functional of Lee, Yang and
Parr [165].

A.3 Force field parameterization

A.3.1 [1]Benzothieno[3,2-b]benzothiophene (BTBT)

The atom types as well as the force constants were taken from the OPLS force field as far as possible by using
analogies to thiazole, furan, benzene and indole. The atom type CC was introduced to denote the carbon connecting
the phenyl rings with the side chains. The resulting atom labeling is shown in figure A.1. Equilibrium values for
bond distances and angles were taken from x-ray data and quantum chemical geometry optimizations in case the
differences to existing OPLS values exceeded 2 pm for bonds or one degree for angles. The planarity of the core
was ensured by identical impropers. The side chain parameters had to be adjusted since they were modelled by
united atoms. Ryckaert-Belleman dihedrals were used to describe the attachment of the united atom side chain
to the core as well as the links within the side chain itself. An additional improper fixes the planarity of the first
side chain atom with respect to the core. All parameters were calculated using Gaussian with B3LYP functional
and 6-311G(d,p) level of accuracy in analogy to [93]. All self-calculated parameters as well as those equilibrium
values taken from x-ray data to replace the OPLS entries are displayed in tables A.1 and A.2.

Fig. A.1: Atom types used in the MD force field.

Bond b0 Angle ϕ0

CA-CA 0.138 CA-CA-CB 119.5
CA-CC 0.139 CA-CB-CN 118.8
CH2-CH2 0.153 CA-CB-CS 131.0
CH2-CH3 0.153 CA-CN-S 125.5

Tab. A.1: Equilibrium bond lengths b0 in nano meters and angles ϕ0 in degrees.

Partial charges were calculated based on geometry optimization of a single molecule in vacuum using DFT with
B3LYP/6-311G(d,p). The wave function was further optimized using higher level basis sets and finally charges
were computed using CHELPG method [42]. Convergence of charge with basis set was checked starting from
3-21G(d) up to 6-311++(3df,3pd). An example of the convergence for the three different representative atoms,
sulfur (S9), carbon (C4) and hydrogen (H3), is shown in figure A.2. On the side chains only the atom closest to the
core has partial charge. The resulting charges are listed in table A.3. The dipole moment of the optimized BTBT
core is only 0.005 Debye, which justifies neglecting electrostatic disorder in the charge transport simulations.
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Dihedral V1 V2 V3 V4 V5

CH2-CH2 17.45 1.14 -27.2 0.0 0.0
CC-CH2 -0.03 9.44 0.49 -5.15 -0.47
Improper ϕ0 kϕ
CA-CC-CA-CA 0.0 167.4
CC-CA-CA-CH2 0.0 170.6

Tab. A.2: Parameters of the torsional potentials. Units are kJ mol−1 for Ryckaert-Belleman dihedrals and
kJmol−1rad−2 for impropers. The CA-CC-CA-CA improper constant is used for every improper in the
core. For the dihedral definitions only the two central atoms of the dihedral are given.
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Fig. A.2: (a) Convergence of partial charge with basis set. The basis sets (1-6) are: 3-21G(d), 6-31G(d), 6-
311g(d,p), 6-311++G(d,p), 6-311++G(2d,2p) and 6-311++G(3df,3pd). Number seven corresponds to
the final choice in the force field. (b) Atom labels for BTBT core and first side chain atoms.

Label Charge Label Charge
C1 0.045 C2 -0.109
C3 -0.280 C4 0.276
C5 -0.046 C6 -0.137
C7 -0.083 C8 -0.083
S9 -0.090 S10 -0.090
C11 -0.046 C12 0.276
C13 -0.137 C14 0.045
C15 -0.109 C16 -0.280
C17 0.010 C18 0.000
C29 0.010 C30 0.000

Tab. A.3: Partial charges used for BTBT simulation given in multiples of the elementary charge e.
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A.3.2 Indolocarbazole

The force field parameters are based on those of carbazole (sec. 5.1), but in this case OPLS all atom parameters
were used for the CH3 side chains. The resulting atom types and labels are displayed in fig. A.3. The OPLS force
field did not contain dihedral parameters for CN-NA-CT -HC , describing the attachment of the simple CH3 side
chains to the core, or for CA-OS -CT -HC and CN-CA-OS -CT , required to describe the rotation of the O-CH3 side
chains. Because hydrogen motion is not of major importance, we chose parameters already present in the OPLS
force field. Two dihedral parameter sets were subject to consideration: CA-OS -CT -HC from ethers and CT -CT -
CT -HC from hydrocarbons. They are compared in fig. A.4a. Both potentials correspond to the same equilibrium
configurations with one of the three hydrogens at 0◦, 120◦ or 240◦. The only difference is the barrier height and
we chose the stiffer one corresponding to CA-OS -CT -HC .
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Fig. A.3: (a) Atom types used in the Indolocarbazole force field. (b) Labeling of the atoms.
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Fig. A.4: (a) Comparison of the two dihedral parameter sets for HC hydrogens in OPLS. (b) Results of B3LYP
energy calculations for the CN-CA-OS -CT dihedral and different basis sets.

For CN-CA-OS -CT we compared the available OPLS-AA dihedral corresponding to CA-CA-OS -CT from anisole
with parameters calculated based on B3LYP. The results of energy calculations with basis sets 6-31G(d), 6-
311G(d,p) and 6-311++G(d,p) are shown in fig. A.4b. Next, we calculated the dihedral parameters by subtracting
the force-field results without parameters for this dihedral from the DFT results and fitting to a Ryckaert-Belleman
(RB) function. The geometries obtained by DFT calculation were optimized using the steepest decent method
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before calculating the corresponding energies with the force-field (see sec. 3.3.2). Thereafter we compared our di-
hedral parameters with those given in the OPLS force field. The significantly smaller barrier in case of OPLS-AA
is due to the geometry of anisole, which allows the side chain to freely rotate, while this is sterically hindered in
case of indolocarbazole by the CH3 side chain and phenyl rings in the core. Lastly, we compared the total change
in energy due to dihedral rotation from DFT calculations with the force-field based on our and the OPLS param-
eterizations in fig. A.5. The better agreement between B3LYP and force field energies based on the recalculated
parameters at low values led us to choose them over the OPLS parameters for the following MD simulations. All
parameters are presented in tab. A.4. In addition equilibrium angles were adjusted in case x-ray data and QC
computations deviated too strongly from the OPLS force field values. Partial charges were calculated based on
a B3LYP/6-311G(d,p) optimized geometry and converged with respect to basis set. Results are summarized in
tab. A.5.
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Fig. A.5: (a) Self-calculated (FFCARB) and OPLS dihedral potentials. (b) Change in total energy upon rotation
of dihedral as computed by B3LYP and the MD force-field using either FFCARB or OPLS dihedral
parameters.

dihedral V1 V2 V3 V4 V5

CN − CA − OS − CT (OPLS) 0.0 -12.552 0.0 0.0 0.0
CN − CA − OS − CT (FFCARB) 0.0 9.702 0.0 -13.016 0.0
CA − CA − OS − CT 0.0 -12.552 0.0 0.0 0.0
CA − OS − CT − HC 4.770 0.0 -6.360 0.0 0.0
CN − NA − CT − HC 4.770 0.0 -6.360 0.0 0.0
CT − CT − CT − HC 1.883 0.0 -2.510 0.0 0.0

Tab. A.4: Coefficients of the Ryckaert Belleman function (eqn. 5.1) for the side chain dihedrals in kJ/mol. FF-
CARB refers to our calculated force field parameters.

A.3.3 Benzo[1,2-b:4,5-b’]bis[b]benzothiophene (BBBT)

The force field used is almost identical to that of BTBT except that some atom types had to be changed to incor-
porate the central phenyl ring. Again, side chains were treated using the united atom approach and equilibrium
angles were adjusted in case the QC optimized geometry or the x-ray data deviated too strongly from the initial
OPLS values. Atom types and labels are shown in fig. A.6. Partial charges were calculated based on a B3LYP/6-
311G(d,p) optimized geometry and convergence with respect to basis set was checked up to 6-311++G(3df,3pd)
for both compounds. Except for the first, all side chain atoms were considered to have neutral charge.
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C13
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Label Charge Label Charge
O1 -0.37 O2 -0.37
C1 0.027 C2 0.27
C3 -0.05 C4 -0.05
C5 -0.21 C6 -0.21
N7 -0.03 N8 -0.03
C9 0.18 C10 0.03
C11 0.03 C12 0.18
C13 -0.15 C14 -0.15
C15 -0.15 C16 -0.15
C17 -0.11 C18 -0.11
C19 -0.11 C20 -0.11
C21 0.29 C22 0.29
C23 0.12 C24 0.12
H1 -0.03 H2 -0.03
H3 -0.03 H4 -0.03
H5 -0.03 H6 -0.03
H7 0.01 H8 0.01
H9 0.01 H10 0.01
H11 0.01 H12 0.01
H13 0.09 H14 0.09
H15 0.09 H16 0.09
H17 0.09 H18 0.09
H19 0.08 H20 0.08

Tab. A.5: (a) Charge convergence with respect to basis set. The numbers one through six refer to 3-21G(d), 6-
31G(d), 6-311G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) and 6-311G(2df,2pd), respectively. Number
seven is the final choice. The table summarizes the final partial charges for indolocarbazole with CH3
side chains. For labeling refer to fig. A.3.

C2

C3

C5 C6
C1

C8

S9

C4
C7

C10C11

C12

S14

C15

C16
C13

C17

C18

C19

C20 C21

C22

C23

C24C25

C26

C27

C28

H2
H3

H6

H10

H13

H17

H19
H20

S

CA

HA
CN

CB
CC

CH2

CH3

a b

Fig. A.6: (a) Atom types used in the BBBT force field. (b) Labeling of the atoms. In case of BBBT without side
chains the atom type CC does not exist and the side chain is replace by an HA atom.
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BBBT (1)
Label Charge Label Charge
C1 -0.158 C2 -0.006
C3 -0.176 C4 0.106
C5 0.045 C6 -0.074
C7 -0.015 C8 0.083
S9 -0.150 C10 -0.183
C11 0.083 C12 -0.015
C13 -0.183 S14 -0.150
C15 0.045 C16 0.106
C17 -0.074 C18 -0.158
C19 -0.006 C20 -0.176
H1 0.087 H2 0.067
H3 0.80 H6 0.120
H10 0.174 H13 0.174
H17 0.120 H18 0.087
H19 0.067 H20 0.080

BBBT (2)
Label Charge Label Charge
C1 0.099 C2 -0.149
C3 -0.127 C4 0.031
C5 0.094 C6 -0.224
C7 0.027 C8 0.088
S9 -0.162 C10 -0.210
C11 0.088 C12 0.027
C13 -0.210 S14 -0.162
C15 0.094 C16 0.031
C17 -0.224 C18 0.099
C19 -0.149 C20 -0.127
C21 -0.007 C25 -0.007
H2 0.109 H3 0.077
H6 0.176 H10 0.178
H13 0.178 H17 0.176
H19 0.109 H20 0.077

Tab. A.6: Partial charges used in the force field for BBBT (1) without and (2) with C4H9 side chains. For labeling
refer to fig. A.6.
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[15] Laquai, F.; Wegner, G.; Im, C.; Bässler, H.; Heun, S. Journal of Applied Physics, 2006, 99(3), 033710.

[16] Infelta, P. P.; de Haas, M. P.; Warman, J. M. Radiation Physics and Chemistry, 1977, 10, 353–365.

[17] Piris, J. Optoelectronic Properties of Discotic Materials for Device Applications. PhD thesis, TU Delft,
2004.

[18] Schouten, P. G.; Warman, J. M.; de Haas, M. P. The Journal of Physical Chemistry, 1993, 97(38), 9863–
9870.

[19] Warman, J. M.; Schouten, P. G.; Gelinck, G. H.; de Haas, M. P. Chemical Physics, 1996, 212(1), 183 – 192.

[20] van de Craats, A. M.; Warman, J. M.; de Haas, M. P.; Adam, D.; Simmerer, J.; Haarer, D.; Schuhmacher, P.
Advanced Materials, 1996, 8(10), 823–826.

[21] Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.;
Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S. D.; Duan, H. Nature, 2002, 417, 384–387.

121



Bibliography

[22] Feng, X.; Marcon, V.; Pisula, W.; Hansen, M.; Kirkpatrick, J.; Grozema, F.; Andrienko, D.; Kremer, K.;
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[130] Herwig, P. T.; Müllen, K. Advanced Materials, 1999, 11(6), 480–483.

[131] Murphy, A. R.; Frchet, J. M. J.; Chang, P.; Lee, J.; Subramanian, V. Journal of the American Chemical
Society, 2004, 126(6), 1596–1597.

[132] Haemori, M.; Yamaguchi, J.; Yaginuma, S.; Itaka, K.; Koinuma, H. Jpn. J. Appl. Phys., 2005, 44, 3740 –
3742.

[133] Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. Applied Physics Letters, 2007, 91(6), 063514.

[134] Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J. A.; Gershenson, M. E. Phys. Rev. Lett.,
Aug 2004, 93(8), 086602.

[135] Sundar, V.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willet, R.; Someya, T.; Gershenson, M.; Rogers, J.
Science, 2004, 303, 1644.

[136] Podzorov, V.; Menard, E.; Rogers, J. A.; Gershenson, M. E. Phys. Rev. Lett., Nov 2005, 95(22), 226601.

[137] Ostroverkhova, O.; Cooke, D. G.; Hegmann, F. A.; Anthony, J. E.; Podzorov, V.; Gershenson, M. E.;
Jurchescu, O. D.; Palstra, T. T. M. Applied Physics Letters, 2006, 88(16), 162101.

[138] Wrobel, N. Synthese und photophysikalische Eigenschaften von Indolocarbazolen und hoeheren Analoga.
PhD thesis, Johannes Gutenberg Universität Mainz, 2008.

[139] Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X.; Enkelmann, V.; Pisula, W.; Müllen, K. Chemical Communi-
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[143] Tinker 5.1. http://dasher.wustl.edu/tinker/.

[144] Zeng, X.; Zhang, D.; Duan, L.; Wang, L.; Dong, G.; Qiu, Y. Applied Surface Science, 2007, 253(14), 6047
– 6051.

[145] Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K.
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