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Introduction and Motivation

Coarse-graining stands for replacing a detailed (fine-grained) description with a lower
resolution (coarse-grained) model by reducing the amount of degrees of freedom
through averaging or smoothing out. Correspondingly small scale motions in the fine
grained model are not resolved on the coarse scale and thus, these different length
scales correspond to different characteristic time scales. While the length scaling is
obvious, the link between different time scales is not. Of special interest is the a priori
knowledge about the time scaling behavior while linking one description to another.

Computer simulations in physics are widely used to gain a better understanding of
various systems. One particular simulation method, Molecular Dynamics, allows one
to investigate physics and its applications in, e.g., chemistry starting from the macro-
scopic down to the atomistic scale hitting the limits of classical mechanics. Choosing
the right resolution, dependent upon the questions one is engaged in, can be the key
task to success while looking for answers.

Molecular Dynamics and its variations contain time as an explicit variable and dy-
namic properties, for instance, conformational changes, are directly accessible. The
main idea in any Molecular Dynamics algorithm is solving the discretized and there-
fore approximated equations of motion for a small timestep. Here, the physical and
chemical task is the right set-up of the model, especially the correct definition of po-
tentials and forces involved, whereas the computational task is the efficient calcula-
tion of these forces and integration of the equations of motion.

Different models for the same system not only point out different properties, but
also influence the computer time needed for a simulation run. Coarse-grained models
have two advantages: the computational part is accelerated, resulting in accessible
time and length that are far beyond atomistic simulations, and unneccessary details
are ignored. Both are consequences of a reduced set of degrees of freedom. E.g.,

1. an atomistic model of a polymer contains all atoms which are present in the
real polymer. Furthermore, their interactions are modelled as completeley as
possible and are summed up as mathematical functions and parameters into
so-called force-fields. The enormous number of force-fields[1] illustrates the
complexity of this task.

2. A coarse-grained model of the same polymer simplifies its representation by
introducing beads, which consist of a group of atoms, e.g. monomers, parts of
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monomers or even parts of atoms (see figure A). Effective interactions are used
only between these beads.

Figure A: Polystyrene C8H8. The spheres indicate the grouping of atoms. This picture is
taken from reference [2].

A coarse-grained model will reproduce certain features of the atomistic model. Of-
ten, it will also allow one to reobtain the atomistic resolution by applying a reverse,
non-bijective mapping, called back-mapping. However, the other side of the coin is
usually a loss of accuracy by giving up certain degrees of freedom.

Accuracy is also an issue in every atomistic model. All models are approximations
themselves; most are based on experimental data and calculations from quantum
chemistry.

The aim of this work is to systematically investigate the time scaling behavior of
coarse-graining mappings. Also, possibilites and limits of predictions for the time
speed-up are shown. Chapter 1 gives the theoretical background of a supposedly
simple system and its description by the Langevin equation of motion. In chapter 2,
a very general procedure for computer simulations is briefly introduced. Additional
methods are combined with the general idea and applied to simple and more realistic
systems. The results are collected and discussed in chapter 3.



1 Langevin Dynamics

“Time Scaling in Coarse-Graining Mappings” – a title that certainly needs some ex-
planation.
If physical systems become too complex – realistic systems unfortunately tend to –
one often has to leave an analytic description and can instead use, for instance, a nu-
merical approach1. Numerical approaches introduce new and unphysical errors.
Nevertheless, they allow one to characterize a system to a certain level. Computer
simulations are based on numerical approaches. Their correctness is in addition lim-
ited by the computer’s hardware. While setting up a model for a simulation, one
has to include the parameters characterizing the real system and translate the physi-
cal behavior into a computer-friendly algorithm. Some of these algorithms solve the
given equation of motion step by step – a computer time step. Before one can inter-
pret the results, a link to the real time has to be established. This link is usually based
on experiments. The simulation is then able to reproduce previous results and mo-
tivate – based on a simulation set-up that can not be realized as easily in a real lab –
new experiments. However, setting up a simulation is a non-trivial task and there are
many different ways to describe the very same system leading to different simulation
models. Among others, one question is especially eminent: how are different (sim-
ulation) models of one system linked to each other? How does the time scale while
switching from one description to another?

We will compare the two time scales of two different models by studying diffusive
dynamics. Diffusive dynamics gives us information about the intrinsic time scale. As-
suming we had two models (of the same system) resulting in two different effective
potentials, we would still expect diffusive dynamics to be the same. The difference in
dynamics caused by the difference in potentials would therefore require to be com-
pensated by an adjustment of the time scale. That means, if the diffusion belonging
to potential 1 and characterized by the diffusion constant Dp1 is faster than the dif-
fusion belonging to potential 2, i.e. Dp1

> Dp2, we need to rescale the time tp1 in
order to match diffusive dynamics belonging to each potential. Since we know from
Einstein’s equation for the diffusion constant that D ∝ 1/time, the ratio of Dp1 and
Dp2 gives us the scaling factor. In other words, if we could calculate the diffusion
constant for any given potential, we would be able to predict the link between the
time scales of different potentials. Thus, the calculation of the diffusion constant is

1Analytic approaches themselves are approximated models of the real world.
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1 Langevin Dynamics

our main task. We start with a simple system.

1.1 Langevin and Kramers Equation

The Langevin equation describes the Brownian motion of one particle with mass m
in a potential U(x) and reads

mẍ = − d

dx
U(x)− γmẋ + ξ(t), (1.1)

where γ is the constant friction and ξ(t) the Gaussian white noise fulfilling the fluctuation-
dissipation theorem (kBT is the Boltzmann constant multiplied by the temperature)

〈ξ(t)〉 = 0,

〈ξ(t)ξ(s)〉 = 2mγkBT δ(t − s).

The equivalent[3, p. 72] Klein-Kramers equation, a special case of the more general
Fokker-Planck equation (FPE), describes the time evolution of the probability density
ρ(x, v, t) for the coordinate x and velocity v = ẋ,

∂

∂t
ρ(x, v, t) =

[

− ∂

∂x
v +

∂

∂v

(
1

m

d

dx
U(x) + γv

)

+ γv2
th

∂2

∂v2

]

ρ(x, v, t). (1.2)

Using the Fokker-Planck operator LK, equation (1.2) reads

∂

∂t
ρ = LKρ, (1.3)

where LK can be split into an irreversible and reversible part[3, p. 231]

LK = Lir + Lrev, (1.4)

Lir = γ
∂

∂v

(

v + v2
th

∂

∂v

)

, (1.5)

Lrev = −v
∂

∂x
+

1

m

dU

dx

∂

∂v
, (1.6)

with the thermal velocity v2
th = kBT/m. We multiply Lir from the right with the

square root of the stationary solution, exp
[
−v2/(2v2

th)
]
, and from the left with the

inverse of the square root of the stationary solution, in order to bring Lir to an hermi-
tian form (we include the mass m in our potential and redefine U(x),
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1.1 Langevin and Kramers Equation

mŨ(x) = U(x) ⇒ Ũ(x) = U(x)/m =: U(x))

L̄ir = e
1
4 v2/v2

th Lir e−
1
4 v2/v2

th (1.7)

= γe
1
4 v2/v2

th

(
∂

∂v
v + v2

th

∂2

∂v2

)

e−
1
4 v2/v2

th

= γe
1
4 v2/v2

th e−
1
4 v2/v2

th

×
(

1 − 1

2

v2

v2
th

+ v
∂

∂v
+

1

4

v2

v2
th

− v
∂

∂v
− 1

2
+ v2

th

∂2

∂v2

)

= γ

(

1

2
− 1

4

v2

v2
th

+ v2
th

∂2

∂v2

)

⇒ L̄ir = γ

(

1

2
− 1

4

v2

v2
th

+ v2
th

∂2

∂v2

)

= L̄+
ir . (1.8)

L̄+
ir is the hermitian adjoint of L̄ir. The obvious analogy with the Hamilton opera-

tor for the harmonic oscillator in quantum mechanics is used and we introduce the
creation and annihilation operators b+ and b,

b = vth
∂

∂v
+

1

2

v

vth
, b+ = −vth

∂

∂v
+

1

2

v

vth
,

[b, b+] = 1,

where the brackets denote the commutator for these boson operators. L̄ir can be now
written as

L̄ir = −γb+b (1.9)

and motivates the transformation of the reversible part as well. However, we choose
a more general transformation[3, p. 233]:

L̄K = L̄rev + L̄ir (1.10)

L̄ir,rev = exp

[

1

4

v2

v2
th

+
1

2

U(x)

v2
th

]

Lir,rev exp

[

−1

4

v2

v2
th

− 1

2

U(x)

v2
th

]

. (1.11)
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1 Langevin Dynamics

Since Lir does not act on x, L̄ir is still given by equation (1.9). L̄rev is obtained to

L̄rev = exp

[

1

4

v2

v2
th

+
1

2

U(x)

v2
th

] (

−v
∂

∂x
+

dU

dx

∂

∂v

)

exp

[

−1

4

v2

v2
th

− 1

2

U(x)

v2
th

]

(1.12)

= exp

[

1

4

v2

v2
th

+
1

2

U(x)

v2
th

]

exp

[

−1

4

v2

v2
th

− 1

2

U(x)

v2
th

]

×
(

1

2

v

v2
th

dU

dx
− v

∂

∂x
− 1

2

v

v2
th

dU

dx
+

dU

dx

∂

∂v

)

= −v
∂

∂x
+

dU

dx

∂

∂v
= Lrev. (1.13)

We introduce the differential operators D and D̂

D = vth
∂

∂x
− 1

2vth

dU

dx
, D̂ = vth

∂

∂x
+

1

2vth

dU

dx
,

[D, D̂] =
d2U

dx2
and D+ = −vth

∂

∂x
− 1

2vth

dU

dx
= −D̂.

This gives us

L̄rev = −bD − b+D̂,

L̄+
rev = −b+D+ − bD̂+ = b+D̂ + bD = −L̄rev

and L̄K becomes

L̄K = −bD − b+D̂ − γb+b. (1.14)

The velocity part of ρ(x, v, t) can be expanded into Hermite functions. These are the
eigenfunctions of L̄ir = −γb+b,

L̄irψn(v) = −γnψn(v), (1.15)

and are given by

ψn(v) =
(b+)n

√
n!

ψ0(v), (1.16)

ψ0(v) =
e−

1
4 v2/v2

th

4

√

2πv2
th

, (1.17)
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1.1 Langevin and Kramers Equation

or in terms of Hermite polynomials Hn(x),

ψn(v) = Hn (v/
√

2vth)
e−

1
4 v2/v2

th

√

n!2nvth

√
2π

. (1.18)

After artificially rewriting LK,

LK = L̄K,

LK = exp

[

−1

4

v2

v2
th

− 1

2

U(x)

v2
th

]

L̄K exp

[

+
1

4

v2

v2
th

+
1

2

U(x)

v2
th

]

,

= exp

[

−1

4

v2

v2
th

− 1

2

U(x)

v2
th

]

(
−bD − b+D̂ − γb+b

)
exp

[

+
1

4

v2

v2
th

+
1

2

U(x)

v2
th

]

,

= −ψ0(v) e−
1
2 U(x)/v2

th
(
bD + b+D̂ + γb+b

)
ψ−1

0 (v) e
1
2 U(x)/v2

th , (1.19)

where we used equation (1.17) in the last step, the form of LK suggests to expand
ρ(x, v, t) as follows:

ρ(x, v, t) = ψ0(v) e−
1
2 U(x)/v2

th

∞

∑
n=0

cn(x, t)ψn(v). (1.20)

We have transformed the problem of solving equation (1.2) to finding the expansion
coefficients cn(x, t). By inserting equation (1.20) into the Fokker-Planck equation (1.2),
we obtain an equation of motion for those coefficients:

∂

∂t
ρ(x, v, t) = −ψ0(v) e−

1
2 U(x)/v2

th
(
bD + b+D̂ + γb+b

)
ψ−1

0 (v) e
1
2 U(x)/v2

th ρ(x, v, t)

(1.21)

⇔
∞

∑
n=0

ċn(x, t)ψn(v) = −
(
bD + b+D̂ + γb+b

) ∞

∑
n=0

cn(x, t)ψn(v) (1.22)

• γb+b
∞

∑
n=0

cn(x, t)ψn(v) = n
∞

∑
n=0

γcn(x, t)ψn(v)

• b+D̂
∞

∑
n=0

cn(x, t)ψn(v) =
∞

∑
n=0

D̂cn(x, t)
√

n + 1ψn+1(v)

• bD
∞

∑
n=0

cn(x, t)ψn(v) =
∞

∑
n=0

Dcn(x, t)
√

nψn−1(v)

11



1 Langevin Dynamics

⇔
∞

∑
n=0

ċn(x, t)ψn(v) = −
∞

∑
n=0

[

Dcn(x, t)
√

nψn−1(v)

+ D̂cn(x, t)
√

n + 1ψn+1(v)

+ γncn(x, t)ψn(v)

]

(1.23)

• cn(x, t)
√

nψn−1(v)
n→n−1−−−−→ cn+1(x, t)

√
n + 1ψn(v)

• cn(x, t)
√

n + 1ψn+1(v)
n→n+1−−−−→ cn−1(x, t)

√
nψn(v)

⇔
∞

∑
n=0

ċn(x, t)ψn(v) = −
∞

∑
n=0

[

Dcn+1(x, t)
√

n + 1

+ D̂cn−1(x, t)
√

n

+ γcn(x, t)n

]

ψn(v) (1.24)

We obtain

⇒ ċn(x, t) = −
√

nD̂cn−1(x, t) − nγcn(x, t) −
√

n + 1Dcn+1(x, t) (1.25)

with cn(x, t) = 0 for n ≤ 0. This tridiagonal coupled system has in general no exact
solution. A numerical approach is applied to periodic potentials[3, p. 249]. Never-
theless, the steps made are also useful for further analytical studies.

The result in equation (1.25) was obtained by transforming the Fokker-Planck op-
erator in order to use Hilbert space methods. The particular transformation in equa-
tion (1.11) is based on the stationary solution and reads more generally

L̄ir,rev = exp

[

1

4

v2

v2
th

+ ε
U(x)

v2
th

]

Lir,rev exp

[

−1

4

v2

v2
th

− ε
U(x)

v2
th

]

. (1.26)

Nevertheless, analogous calculations and

D = vth
∂

∂x
− ε

vth

dU

dx
, D̂ = vth

∂

∂x
+

1 − ε

vth

dU

dx
, (1.27)

will lead to equation (1.25) as well[3]. While we have used ε = 1
2 in our above calcu-

lations, other values for ε may be suited better depending on the specific question.

Nuclear magnetic resonance studies have shown, that for dense polymers the bal-
listic part is damped out on a very short time range. This implies a large friction
constant. Thus, we now consider the high friction limit of equation (1.1).
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1.2 Smoluchowski Limit

1.2 Smoluchowski Limit

For the special case of a large friction constant, one may neglect the inertia term in
equation (1.1). The derivation of the corresponding Fokker-Planck equation for the
Langevin equation

γẋ +
dU

dx
= ξ(t) (1.28)

follows (still considering the potential as mU(x)).
We use equation (1.25) to obtain

n = 0 : ċ0 = −Dc1

n = 1 : ċ1 = −D̂c0 − γc1 −
√

2Dc2

n = 2 : ċ2 = −
√

2D̂c1 − 2γc2 −
√

3Dc3

. . . . . .

and truncate this system after the second term, i.e. c2 = c3 = · · · = 0. In

∂

∂t
c0 + Dc1 = 0 and (1.29)

∂

∂t
c1 + D̂c0 + γc1 = 0 (1.30)

we furthermore neglect the time derivative ∂c1/∂t for large friction constants. With

D = vth
∂

∂x
and D̂ = vth

∂

∂x
+

1

vth

dU

dx
, (1.31)

(ε = 0 in equation (1.27)) equations (1.29) and (1.30) lead to

∂

∂t
c0 =

1

γ

∂

∂x

(

v2
th

∂

∂x
+

dU

dx

)

c0, (1.32)

where

c0(x, t) =
∫

dv ρ(x, v, t) = ρ(x, t) (1.33)

is the distribution in position only[3]. Equation (1.32) is the Smoluchowski equation
and describes the one-dimensional Brownian motion of a particle in the potential
mU(x) for the high-friction limit.

We concentrate on the stationary case ρ(x, t) ≡ ρ(x),

0 =
∂

∂t
ρ(x) =

1

γ

∂

∂x

(
dU

dx
+ v2

th

∂

∂x

)

ρ(x) = − ∂

∂x
S, (1.34)
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1 Langevin Dynamics

where we have introduced[3, p. 287] the constant probability current S,

γS = −
(

dU

dx
+ v2

th

∂

∂x

)

ρ(x). (1.35)

The solution of equation (1.34)[3, p. 288] with N as a normalization constant reads

ρ(x) = e−U(x)/v2
th



N − γ
S

v2
th

x∫

0

dx′ eU(x′)/v2
th



 . (1.36)

We add a constant force F to our system and replace U(x) by the total potential
φ(x) = U(x) − Fx. We will later take the limit of F → 0 and apply the result to
a 2π-periodic potential. We therefore expect ρ(x) to be 2π-periodic as well. The
proof follows: (0 ≤ x < 2π)

2πn+x∫

0

dx′ eφ(x′)/v2
th =

2π∫

0

dx′ eφ(x′)/v2
th + · · · +

2πn∫

2π(n−1)

dx′ eφ(x′)/v2
th +

2πn+x∫

2πn

dx′ eφ(x′)/v2
th (1.37)

We make use of the following relations and definitions

• φ(2πn + x′) = U(x′) − (2πn + x′)F = φ(x′) − 2πnF,

•
2πn∫

2π(n−1)

dx′ eφ(x′)/v2
th =

2π∫

0

dx′ eφ(x′)/v2
th e−2π(n−1)F/v2

th ,

• Ω :=

2π∫

0

dx′ eφ(x′)/v2
th

and obtain

⇔
2πn+x∫

0

dx′ eφ(x′)/v2
th = Ω + Ω e−2πF/v2

th + · · · + Ω e−2π(n−1)F/v2
th

+

x∫

0

dx′ eφ(x′)/v2
th e−2πnF/v2

th . (1.38)

The geometric series simplifies to

n−1

∑
i=0

e−2πiF/v2
th =

1 − e−2πnF/v2
th

1 − e−2πF/v2
th

(1.39)
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1.2 Smoluchowski Limit

and equation (1.38) becomes

2πn+x∫

0

dx′ eφ(x′)/v2
th = Ω

1 − e−2πnF/v2
th

1 − e−2πF/v2
th

+

x∫

0

dx′ eφ(x′)/v2
th e−2πnF/v2

th . (1.40)

(1.36)⇒ ρ(x + 2πn) = e−φ(x+2πn)/v2
th



N − γ
S

v2
th

2πn+x∫

0

dx′ eφ(x′)/v2
th



 (1.41)

= e−φ(x)/v2
th e2πnF/v2

th

[

N − γ
S

v2
th

(

Ω
1 − e−2πnF/v2

th

1 − e−2πF/v2
th

+

x∫

0

dx′ eφ(x′)/v2
th e−2πnF/v2

th

)]

(1.42)

= e−φ(x)/v2
th

[(

N − γSΩ

v2
th(1 − e−2πF/v2

th)

)

e2πnF/v2
th

+
γSΩ

v2
th(1 − e−2πF/v2

th)
− γ

S

v2
th

x∫

0

dx′ eφ(x′)/v2
th

]

(1.43)

For n → ∞ and F > 0 or n → −∞ and F < 0, the first round bracket has to vanish,

⇒ N(1 − e−2πF/v2
th) = γSΩ/v2

th. (1.44)

Equation (1.43) becomes

ρ(x + 2πn) = e−φ(x)/v2
th




γSΩ

v2
th(1 − e−2πF/v2

th)
− γ

S

v2
th

x∫

0

dx′ eφ(x′)/v2
th



 ,

(1.44)
= e−φ(x)/v2

th



N − γ
S

v2
th

x∫

0

dx′ eφ(x′)/v2
th



 , (1.45)

⇒ ρ(x + 2πn) = ρ(x), (1.46)

as stated above. We normalize ρ(x) on its periodicity interval 0 . . . 2π,

1
!
=

2π∫

0

dx ρ(x) = N

2π∫

0

dx e−φ(x)/v2
th − γ

S

v2
th

2π∫

0

dx



e−φ(x)/v2
th

x∫

0

dx′ exp eφ(x′)/v2
th





(1.47)
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and obtain for the mean drift velocity 〈v〉 from equation (1.28)

〈v〉 =
1

γ
〈ξ(t)− d

dx
φ(x)〉,

=
1

γ
〈0〉 − 1

γ
〈F − dU

dx
〉,

=
1

γ

2π∫

0

dx

(

F − dU

dx

)

ρ(x),

=
1

γ

2π∫

0

dx

(

γS + v2
th

∂

∂x
ρ(x)

)

, with S = const.,

= 2πS,

where we used equations (1.35), (1.46). N and S are replaced by combining equation
(1.44) with (1.47) and it follows

γ〈v〉 = 2πγS = 2πγ
Nv2

th(1 − e−2πF/v2
th)

γ
∫ 2π

0 dx eφ(x)/v2
th

, (1.48)

= 2πv2
th

1 − e−2πF/v2
th

∫ 2π
0 dx eφ(x)/v2

th





2π∫

0

dx e−φ(x)/v2
th

− 1 − e−2πF/v2
th

∫ 2π
0 dx eφ(x)/v2

th

2π∫

0

dx



e−φ(x)/v2
th

x∫

0

dx′ eφ(x′)/v2
th









−1

, (1.49)

=
2πv2

th(1 − e−2πF/v2
th)

2π∫

0

dx eφ(x)/v2
th

2π∫

0

dx e−φ(x)/v2
th − (1 − e−2πF/v2

th)
2π∫

0

dx

(

e−φ(x)/v2
th

x∫

0

dx′ eφ(x′)/v2
th

) .

(1.50)

Applying linear response theory[3, p. 289] by taking F → 0, 〈v〉 = lim
F→0

Fµ, µ is the

mobility, and e−2πF/v2
th → 1 − 2πF/v2

th, gives us

γµ = lim
F→0

γ〈v〉
F

(1.51)

⇒ γµ =
2π 2π

∫ 2π
0 dx eU(x)/v2

th

∫ 2π
0 dx e−U(x)/v2

th

(1.52)
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1.3 Kramers’ Rate Theory

We can now apply this result to a simple cosine potential, mU(x) = ±d cos(x) (the
sign does not matter and mass m will be set to one). The (co)sine is the most basic rep-
resentation of wells and barriers in more realistic systems. Inserting U(x) = dcos(x)
in equation (1.52) leads to

γµ =
1

I0

(
d/v2

th

)2
, (1.53)

where I0(x) is the modified Bessel function of the first kind. However, numerical
integration allows us to use any tabulated periodic potential mU(x). This makes
equation (1.52) – in the limit of large frictions – quite powerful.

It is known[3, 4], that the more general theory of Green-Kubo relations predicts

D = γµDfree, (1.54)

for any periodic potential, where the diffusion constant for the free Brownian motion
is Dfree = kBT/(mγ). For large friction constants γ, we have therefore derived an
analytic equation for the diffusion constant D.

The following section considers a different limit – the limit of low temperatures.

1.3 Kramers’ Rate Theory

Kramers’ rate theory[5] considers one classical particle trapped in a potential hole
and its escape due to random forces (Brownian motion). It was introduced to describe
chemical reactions using transition state theory (TST).

x

U(x)

ω0 = ωa

ωb

A

xa

B

xb

C

xc

Eb

kA→C

Figure 1.1: Potential U(x) with two metastable states A and C. A particle inside the A-well
can escape over the barrier at B. The barrier height is Eb. The escape occurs with
the rate kA→C.
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Kramers studies an asymmetric double well potential U(x), schematically plotted
in figure 1.1, and the Langevin equation (1.1). If the thermal energy kBT is much
smaller than the barrier height Eb,

kBT ≪ Eb, (1.55)

the random force acts only as a small perturbation and its influence can be neglected
on the time scale of an unperturbed, damped motion, resulting in2

mẍ = − d

dx
U(x)− γmẋ. (1.56)

This system will relax to one of the minima and stay there for a long time ∝ eEb/kBT,
before eventually the random force will drive the system over the barrier into a neigh-
boring metastable state. The average of the escape time τ results in an escape rate

kA→C =
1

τ
. (1.57)

Following reference [5], we consider a stationary situation in which a steady proba-
bility current from A to C is maintained by sources and sinks. In particular:

• supply the A-well with particles (particle energy ≪ barrier height) and

• remove particles beyond the barrier.

The total probability flux j over the barrier is then given by the product of kA→C and
the population of the A-well, nA

j = kA→C · nA ⇔ kA→C =
j

nA
. (1.58)

For the construction of a stationary current with probability density ρ(x, v, t) ≡ ρ(x, v),
we require that neither sources nor sinks should exist at the barrier. Further, we re-
quire ρ(x, v) to obey the stationary Fokker-Planck equation around the barrier at B
(x ≈ xb),

0 =
∂

∂t
ρ(x, v) =

[

− ∂

∂x
v +

∂

∂v

(
1

m

d

dx
U(x) + γv

)

+ γv2
th

∂2

∂v2

]

ρ(x, v). (1.59)

With x confined to a small neighborhood around the barrier top and

ω2
b = − 1

m

d2

dx2
U(x)

∣
∣
∣
x=xb

> 0,

2In contrast to the previous sections, we do not include the mass m in the potential U(x).
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1.3 Kramers’ Rate Theory

we approximate the potential to

U(x) ≈ U(xb) −
1

2
mω2

b (x − xb)
2 . (1.60)

Equation (1.59) then reads

0 =

[

− ∂

∂x
v +

∂

∂v

(
−ω2

b (x − xb) + γv
)
+ γv2

th

∂2

∂v2

]

ρ(x, v). (1.61)

We use Kramers’ ansatz[5] for ρ(x, v),

ρ(x, v) = ζ(x, v) exp

[

−
1
2 mv2 + U(x)

kBT

]

, (1.62)

in equation (1.61) to obtain

0 =

[

− ∂

∂x
v +

∂

∂v

(
−ω2

b (x − xb) + γv
)
+ γv2

th

∂2

∂v2

]

ζ(x, v) exp

[

−
1
2 mv2 + U(x)

kBT

]

.

(1.63)
With

• ∂

∂x

[

vζ(x, v)e
−

1
2 mv2+U(x)

kBT

]

= ve
−

1
2 mv2+U(x)

kBT

[

∂

∂x
ζ(x, v) − ω2

b(x − xb)

v2
th

ζ(x, v)

]

,

• ∂

∂v

[

ζ(x, v)e
−

1
2 mv2+U(x)

kBT

]

= e
−

1
2 mv2+U(x)

kBT

[

∂

∂v
ζ(x, v) − v

v2
th

ζ(x, v)

]

,

• ∂

∂v

[

vζ(x, v)e
−

1
2 mv2+U(x)

kBT

]

= e
−

1
2 mv2+U(x)

kBT

[

v
∂

∂v
ζ(x, v) + ζ(x, v)

(

1 − v2

v2
th

)]

,

• ∂2

∂v2

[

ζ(x, v)e
−

1
2 mv2+U(x)

kBT

]

= e
−

1
2 mv2+U(x)

kBT

[

1

v2
th

(

−2v
∂

∂v
+

v2

v2
th

− 1

)

ζ(x, v)

+
∂2

∂v2
ζ(x, v)

]

,

equation (1.63) becomes equivalent to

0 =

[

−v
∂

∂x
−

(
ω2

b(x − xb) + γv
) ∂

∂v
+ γv2

th

∂2

∂v2

]

ζ(x, v). (1.64)

One solution of equation (1.64) is ζ(x, v) ≡ ζ = const. This corresponds to thermal
equilibrium without a diffusive process. Equation (1.64) also allows[5] one solution
where ζ(x, v) is a linear combination of x and v,

u = (x − xb) + av. (1.65)
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We rewrite equation (1.64) to

0 =

[

−
(
(1 + γa)v + ω2

ba(x − xb)
) ∂

∂u
ζ(u) + γv2

tha2 ∂2

∂u2
ζ(u)

]

. (1.66)

Equation (1.66) looks like an ordinary differential equation if the factor belonging to
the first derivative is proportional to u,

−λu = (1 + γa)v + ω2
ba(x − xb). (1.67)

(We keep in mind that we are still considering x ≈ xb.) Equation (1.66) then leads to

λu
∂

∂u
ζ(u) + b

∂2

∂u2
ζ(u) = 0, (1.68)

(with b = γv2
tha2) and has the solution

ζ(u) =
1

N

u∫

0

dũ exp

[

− ũ2

2

λ

b

]

, (1.69)

where the normalization constant ist determined to N =
√

πb
2λ . λ and a immediately

follow from equations (1.65) and (1.67)

λ± = −γ

2
±

√

ω2
b +

γ2

4
, (1.70)

a± = −λ±
ω2

b

, (1.71)

where we choose the plus sign to allow the integral in equation (1.69) to converge.
ζ(x, v) is then

ζ(x, v) =

√

2ω4
b

πγv2
thλ+

(x−xb)−λ+v/ω2
b∫

0

du exp

(

−1

2
u2 ω4

b

γv2
thλ+

)

. (1.72)

Analogous considerations also apply for the A-well, where x ≈ xa, and

U(x) ≈ U(xa) +
1

2
mω2

0 (x − xa)
2 , (1.73)

ω2
0 =

1

m

d2

dx2
U(x)

∣
∣
∣
x=xa

> 0. (1.74)
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1.3 Kramers’ Rate Theory

However, as stated above, the source at A provides the well with thermalized parti-
cles,

ρ(x, v) ∝ exp

[

−
1
2 mv2 + U(x)

kBT

]

, x ≈ xa, ∀v, (1.75)

implying – with equation (1.62) – that

ζ(x, v) = 1 for x ≈ xa, ∀v. (1.76)

We directly obtain

nA =
∫

A−well

dx dv ρ(x, v) =
2πv2

th

ω0
exp

[

−U(xa)

kBT

]

(1.77)

and[6]

j =

∞∫

−∞

dv vρ(xb, v) =
λ+

ωb
v2

th exp

[

−U(xb)

kBT

]

(1.78)

where we used equations (1.62) and (1.72). Kramers’ rate now follows from equa-
tion (1.58)

kA→C =
ω0

ωb

1

2π

(√

γ2

4
+ ω2

b −
γ

2

)

exp

[

− Eb

kBT

]

. (1.79)

We can now apply this result to, a simple cosine potential, U(x) = −d cos(x). From
equations (1.60) and (1.73) we obtain

ω2
b = ω0

2 =
d

m
(1.80)

and note that Eb = 2d. The rate kA→C tells us how often – per time unit τ – the particle
crosses the barrier, i.e., moves from one minimum by 2π to the next. From Einstein’s
equation for the diffusion constant D in one dimension follows,

〈(x(t) − x(0))2〉 = 2Dt, for t → ∞ (1.81)

⇔ (2π)2 = 2Dτ, (1.82)

where the second line uses the system’s length and time unit. We therefore obtain

⇔ 2 × (2π)2

2τ
= D. (1.83)
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The factor of 2 in the numerator arises from the fact, that we consider a symmetri-
cal potential and crossing occurs in both directions, resulting in a twice as big rate.
Following from equation (1.57) and equation (1.79),

D = (2π)2kA→C, (1.84)

⇒ D = 2π

(√

γ2

4
+

d

m
− γ

2

)

exp

[

− 2d

kBT

]

. (1.85)

We finally use equation (1.54) to obtain a results for µγ,

µγ =
2πγ

v2
th

(√

γ2

4
+

d

m
− γ

2

)

exp

[

− 2d

kBT

]

. (1.86)

We have derived an analytic expression for the diffusion constant in the limit of
kBT ≪ Eb. A comparison of equation (1.53) and equation (1.86) is shown together
with numerical results in section 3.1.

We started with the general description of one particle in a one-dimensional poten-
tial influenced by stochastic forces. The derivation of equation (1.25) is an important
step for further calculations. In the limiting cases of high frictions and low temper-
atures, respectively, we found an analytic solution for the diffusion constant D. We
test these results in chapter 3.1.
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2 Simulation Methods

2.1 Molecular Dynamics

Molecular dynamics (MD) simulation is a technique for computing the equilibrium
and transport properties of a classical many-body system. It is based on an approx-
imation of known physics. A simple algorithm, the Euler algorithm, as well as the
slightly more advanced velocity Verlet algorithm that is used in this thesis, is given
in appendix A. A complete introduction into MD is beyond the scope of this work.
Instead, the author refers to the introductory literature by Frenkel and Smit [4].

2.2 Hyper-MD

Voter introduced a method for accelerating molecular dynamics simulations of infre-
quent events in his 1997 papers[7, 8]. This method, Voter calls it hyper-MD, is based
on transition state theory. In TST, the transition rate between states equals the flux
through a dividing surface separating these states. This flux is an equilibrium prop-
erty of the system and does therefore not require actual dynamics to be performed.
Voter used hyper-MD to accelerate dynamics by modifying the potential and reestab-
lishing the connection to the original system, in particular, to the original time scale.

TST assumes that each crossing of the dividing surface corresponds to a true reac-
tive event, in which the system passes from one state to another and then loses all
memory of this transition before the next event occurs. The rate constant is then of-
ten an extremely good approximation to the true rate for strongly coupled systems.
Hyper-MD does not use any advanced knowledge of neither the dividing surfaces
nor the states through which the system may evolve. Instead, the potential energy
surface (PES) is modified in such a way, that the correct relative probabilities for es-
cape are conserved. The potential modifications are derived from local properties of
the Hessian matrix only.

Adding to the Potential V(x) a continous, non-negative bias boost potential ∆Vb(x),
designed so that ∆Vb(x) = 0 where δA(x) 6= 01, i.e., the potential is unaffected at the
transition state region, leads to a single boosted time step

∆tb
i = ∆tMD exp

[

β∆Vb (x(ti))
]

(2.1)

1δA(x) is the Dirac delta function positioned at the boundary to state A.
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and results in a total boosted time

tb =
ntot

∑
i

∆tMD exp
[

β∆Vb (x(ti))
]

, (2.2)

where ntot is the total number of MD steps, ti the time at the ith MD step and β = 1/kBT

the inverse of the temperature times the Boltzmann constant. The total boost factor is
then given by

tb

tMD
=

1

ntot

ntot

∑
i=1

exp
[

β∆Vb (x(ti))
]

, (2.3)

with tMD = ntot∆tMD. The ideal bias potential is required to

• give a large boost factor,

• vanish at all dividing surfaces,

• cause a low computational overhead,

• avoid utilizing any prior knowledge of the dividing surfaces or the available
escape paths and

• to show uncorrelated events only.

These requirements are anything but easily to fulfil. In particular, the calculation of
the Hessian matrix leads to a computational overhead. Although this original ap-
proach was successfully applied to simulations, for instance the diffusion of adatoms
(see figure 2.1), numerous variations with approximations have been developed[9,
10]. Most adaptions, however, focus on different strengths of hyper-MD while ne-
glecting less relevant artifacts[11, 12, 13, 14].

The derivation (or rather modeling) of the bias potential is the key task of the
hyper-MD method. If successful, the simulation time can be extended by a few orders
of magnitude without using more computer time. A few examples of bias potentials
are given in figure 2.2 to visualize the idea. Hyper-MD has been applied in various
fields and aims at accerlating unfrequent events. A similar approach, metadynamics,
was presented by Laio and Parrinello [16]. It is questionable, whether such meth-
ods in general – while beautiful in theory – can be applied to complex systems. For
instance, both hyper-MD and Metadynamics make use of the potential and its mod-
ifications to accelerate dynamics. With an increasing number of degrees of freedom,
this potential becomes very complicated and rough. It is then generally not possible
to fulfil the requirements for these methods, for example, ∆Vb always greater zero.
Without prior knowledge of relevant information, e.g. dividing surfaces, a definition
for ∆Vb or similar properties in other methods, will not be possible. Also, the total
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2.2 Hyper-MD

Figure 2.1: Simulation of a 10 atom Ag cluster on the Ag(111) surface. Boosted times tb values
– the boost ratio is over 8000[8] – are shown. The figure is taken from reference [8].

potential V in a many-body system is usually an implicit property. Its extraction is
not trivial as shown in section 3.3.

In this work, we do not concentrate on the derivation of the bias potential ∆Vb,
but rather use an existing potential to test the method in general. We take a one-
dimensional potential as V(x) and a modified potential as V(x) + ∆Vb(x).2 Then, we
compute a boosted time step ∆tb for each MD time step ∆tMD using equation (2.1),
resulting in a total boosted time tb. At the end of the simulation we compare both
dynamics by analyzing the diffusion constants. Since the speed-up of tMD (leading
to tb) is taken into account, we expect the diffusion constants of both runs to be the
same. If they are not the same, the calculated speed-up – which would neutralize
faster dynamics when obtaining the diffusion constant – must be wrong.

In section 3.2 the method is applied to two cases. The first one, where the potential
in figure 2.2(b) is used as suggested in reference [11], should validate the method,

2The modification is done in such a way, that the manipulated potential offers lower barrier heights.
Thus, we expect faster dynamics.
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(a) A simple cosine and a boosted potential
based on Rudd and Voter [15].
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(b) A flat boosted potential by Steiner et al. [11].
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(c) An extension of Steiner’s flat implementa-
tion by Hamelberg et al. [14]. The underlying
shape of the potential is preserved.
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(d) A modulated cosine and the boosted plain
cosine potential.

Figure 2.2: Different realizations of a boosted potential. (b) and (c) introduce errors due to dis-
regarding TST requirements. However, (b) also offers obvious advantages: zero
forces in the flat region reduce the computational effort. A completely different
interpretation of a boosted potential is shown in (d).

while the second one, using the potential in figure 2.2(d), is closer to a situation one
usually considers. As shown in the figure, the boosted potential is the “smoothened”
form of the original potential. Smoothening, or averaging, the potential is the key
property of a method called “coarse-graining”. It is introduced in the following sec-
tion.
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2.3 Coarse Graining

2.3 Coarse Graining

A variety of quantum mechanical methods are used to address properties on a high-
resolution microscopic level. However, they are limited to short length and time
scales. Material properties of soft matter systems offer a big range of applications
due to the variance of physical properties. The interplay of local chemical and global
conformational properties makes soft matter macromolecues very flexible[17]. This
means, that many different length and time scales are relevant. Coarse-graining is
one method to overcome limits of simulations at a fixed scale. It stands for replac-
ing a detailed description with a lower-resolution model by reducing the amount of
degrees of freedom through averaging or smoothing out.

The link between different scales in multiscale simulations is given by param-
eters characterizing each level. These parameters are typically related to experi-
ments. However, linking different scales is in general not obvious. Many different
approaches have been followed, ranging from the quantum mechanical, via the clas-
sical, to the coarse-grained level[18].

Coarse-graining methods can be described by the physical quantities, which are
supposed to be reproduced by the model on different levels. One distinguishes
structure-, force- and potential energy based approaches. All approaches use the un-
derlying model (e.g., all-atom) to determine the CG interactions. These interactions
are derived by[18]

• (iterative) Boltzmann inversion of distribution functions,

• inverse Monte Carlo sampling or

• force matching.

The (different) resulting CG potentials therefore reproduce some physical quantities
better than other. A recent study[19] compares these approaches and current research
deals with the question, whether it is possible to derive CG potentials that are both
thermodynamically as well as structurally consistent with the underlying model[18].
Nevertheless, coarse-graining is not only used to obtain structural information. Its
goal is also to allow a better understanding of the dynamics of the considered system.

The next section introduces the coarse-grained model for polystyrene. In chap-
ter 3.4, simulations of polystyrene based on both the atomistic, which is taken from
reference [20], as well as the coarse-grained model follow.

2.3.1 Coarse-Grained Model of Polystyrene

The model in reference [2] was used for all coarse-grained simulations of polystyrene
(chemical formula: C8H8) in chapter 3. A quick summary follows.
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For the derivation of the model, Fritz et al. assume, that the total potential en-
ergy UCG for a CG chain can be split in a bonded and nonbonded part

UCG = ∑ UCG
bond + ∑ UCG

nonbonded. (2.4)

The methodology is described and summarized in four steps.

1. Atomistic simulations of isolated random walks are performed. Only local in-
teractions are taken into account.

2. The distribution functions PCG (r, θ, φ, T) are calculated. These are functions of
the CG bond length r, bending angles θ and dihedral angles φ.

3. Using inverse Boltzmann relations, the CG bonded potentials read

UCG(r, T) = −kBT ln
(

PCG(r, T)/r2
)

, (2.5)

UCG(θ, T) = −kBT ln
(

PCG(θ, T)/ sin(θ)
)

, (2.6)

UCG(φ, T) = −kBT ln
(

PCG(φ, T)
)

. (2.7)

4. Effective nonbonded potentials in a tabulated form are added to complete the
CG force field.

The used mapping scheme was originally introduced by Harmandaris et al. [21].
Each monomer is mapped onto two coarse-grained, spherical beads of different types.
Quoting reference [2]:

Bead A contains carbon atoms in the backbone connecting two subse-
quent phenyl rings and hydrogen atoms attached to these carbon
atoms. The CH groups in the backbone to which the phenyl rings
are attached, belong to two neighboring beads. The center of bead A
is the center of mass of the CH2 group and the two CH groups, which
are taken into account with half of their masses.

Bead B contains the atoms of the phenyl group. The center of bead B
is mapped onto the center of mass. The beads are connected by
CG bonds A-B between the alternatig types of beads. This leads to
a chain without side groups. There are no bonds A-A or B-B between
neighboring beads of the same type.

The mapping scheme is shown in figure 2.3(a). In order to study the angular diffusion
of polystyrene, we limit our polymer in its spatial dimension.
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(a) Original mapping scheme as described in ref-
erence [2].

(b) Adjusted mapping scheme.

Figure 2.3: Visualization of the performed adjustments. (a) shows the original mapping
scheme. It is continued to both directions. This thesis’ scheme only consisting
of two phenyl rings is shown in (b).

This thesis uses an adjusted mapping scheme with only two phenyl rings and their
connecting CH2 group. Instead of continuing the polymer to both directions by at-
taching another CH2 group, we replace these by CH3 groups and saturate all valen-
cies. Secondly, the mapping points at the ends of our oligomer coincide with the
C atoms. The adjusted scheme is shown in figure 2.3(b). The coarse-graining process
is visualized in figure 2.4. This adjustment is purely geometric (implying different in-

(a) Atomistic (b) Towards CG (c) Coarse-grained

Figure 2.4: A polystyrene dimer in different representations. The all-atom model is shown
in (a). Atoms and parts of atoms are grouped into beads, visualized in (b). The
resulting CG description (c) contains only A (red spheres) and B (blue spheres)
beads. The white beads and bonds in (b) indicate the “new” backbone.

teractions due to modified distances). Its effects and possibly introduced errors have
not been studied. A future analysis should cover a systematic investigation of differ-
ences between large polymers and short oligomers as well as different orientations.
We limit our effort to an isotactic – both phenyl rings are pointing to the same side –
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2 Simulation Methods

chain. The reason for these adjustments is to keep the system as simple as possible.
Nevertheless, it provides information about the angular diffusion. Results follow in
the next chapter.
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3 Results

3.1 One Dimensional Diffusion

Computer stochastic dynamics simulations have been performed to confirm the ana-
lytic results of chapter 1. The simulations are based on the algorithm presented in ap-
pendix A. The results in this section have been confirmed by using the ESPResSo[22]
package.

All values are presented in reduced Lennard-Jones units (see table 3.1). To simplify
tests, the particle’s mass m was set to one. Each simulation data point was obtained
by fitting the mean square displacement (MSD) for x according to equation (1.81)
using Mathematica[23].

Quantity Symbol Relation to SI

Length r∗ r σ−1

Mass m∗ m M−1

Energy E∗ E ǫ−1

Temperature T∗ kBT ǫ−1

Time t∗ t σ−1
√

ǫ/M

Table 3.1: Reduced Lennard-Jones units. M is the total mass of the system (here: always set
to one). ǫ defines the energy scale, σ the length scale.

Figure 3.1 shows the results obtained from the Smoluchowski limit (equation (1.53)),
Kramer’s rate theory (equation (1.86)) and the simulation data for different friction
constants γ. The figure shows how the Smoluchowski limit is slowly approached for
increasing friction constants reaching a very good agreement for γ = 5.0. Kramers’
result is also plotted over the full range of temperature. As expected, this theory leads
to good agreement for small temperatures only. The limit of its validity depends on γ.
Figure 3.2 shows the data for small temperatures and allows us to take a closer look at
the results from Kramers’ theory. For γ = 0.1, Kramers underestimates the diffusion
at temperatures higher than 0.3. With higher friction, the agreement improves and
reaches its maximum for γ = 0.5. Further increasing the friction constant leads to
an overestimation at temperatures above 0.3. For better comparison, this data is also
numerically shown in appendix D. The numerical results for the cosine potential
agree with Risken [3], p. 319.
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3 Results

Furthermore, numerical integration allows us to apply equation (1.52) to any pe-
riodic potential. A modulated cosine potential, U(x) = cos(x) + 1

5 cos(20x), was
chosen as another example. The results are shown in figure 3.3. For this potential,
good agreement is reached more slowly. For γ = 5.0, the deviation between simula-
tion data and calculation is notably larger than for the plain cosine.
Although this approach is promising at first sight, its disadvantage is rather obvious:
it is limited to large friction constants. However, it is useful for testing conceptual
ideas.

An application of Kramers’ rate theory for the modulated cosine is not directly
possible. U(x) would lead to two escape rates – one for the first and one for the
second, high-frequency cosine term. Combining these two rates was not covered
in this thesis. It is already clear at this point, that Kramers’ rate theory can not be
efficiently applied to more complex periodic potentials: every barrier would need
special attention.
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3.1 One Dimensional Diffusion
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Figure 3.1: Simulation data and analytic results for the potential U(x) = − cos(x). The mobil-
ity times the friction is shown as a function of the temperature for different friction
constants. Each plot shows 28 single simulations.
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Figure 3.2: Simulation data and analytic results for the potential U(x) = − cos(x) and small
temperatures. The mobility times the friction is shown as a function of the tem-
perature for different friction constants. Each plot shows 13 single simulations.
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3.1 One Dimensional Diffusion
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Figure 3.3: Simulation data and analytic results for the potential U(x) = cos(x) + 1
5 cos(20x).

The mobility times the friction is shown as a function of the temperature for dif-
ferent friction constants. Each plot shows 28 single simulations.
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3 Results

3.2 Boosted Dynamics Using Hyper-MD

Based on the theory of section 2.2, the previously used simulation program was
modified in order to take the “boost” between two potentials into account. It was
applied to the potentials in figure 2.2(b) (plain cosine and Steiner’s implementa-
tion of a boosted potential) and 2.2(d) (modulated cosine and a plain cosine as the
smoothened, boosted potential), respectively. First, we study the case for γ = 1.0 and
temperatures T=0.5 and T=1.0, respectively.

The results for the plain cosine are shown in figure 3.4 and table 3.2. This potential
was used to validate the method. The data denoted as “MD” corresponds to a reg-
ular MD simulation including stochastic forces, while “Hyper-MD” was obtained
using the boosted potential and taking the boosted time into account. In principle,
both should lead to the same diffusion constant. This is because we compensate the
speed-up of the dynamics by accelerating the time (i.e., increase the time step) accord-
ing to equation (2.1). The advantage of hyper-MD is then the extended time scale. In
particular, figure 3.4(a) shows the mean square displacement as a function of time
for the temperature of 0.5. The same amount of simulation steps leads – using h-MD
– to a roughly five times longer time scale. Figure 3.4(b) confirms the approximate
equality of the diffusion. However, for the temperature of 1.0, figures 3.4(c) and (d)
show significant deviations. Firstly, the time scale is extended by a factor of roughly
two, reducing the benefit of hyper-MD drastically. Secondly, h-MD fails to compen-
sate the boost factor correctly and underestimates the dynamics. The bias potential
∆V violates the requirements for transition state theory and might thereby cause the
shown deviations[11].

Temperautre Method D Time Scale

0.5 MD 0.0616(1) 2.0 × 104

H-MD 0.0562(1) 1.1 × 105

1.0 MD 0.4796(7) 2.0 × 104

H-MD 0.4258(4) 4.0 × 104

Table 3.2: Numerical results of figure 3.4 – hyper-MD based on Steiner. The friction constant γ
and the mass m were set to one.

Figure 3.5 and table 3.3 show the results for the modulated cosine. The modulated
cosine mimics a rough potential surface. The underlying (unmodulated) cosine rep-
resents the corresponding smoothened potential surface – similar to coarse-graining.
In other words, we test hyper-MD for the key property of the coarse-graining method.
While the diffusion constants in figures 3.5(b) and (d) show a similar behavior to the

36



3.2 Boosted Dynamics Using Hyper-MD
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Figure 3.4: Hyper-MD results for a plain cosine and Steiner’s boosted potential for different
temperatures. The potential is shown in figure 2.2(b). The plots on the left side
show the mean square displacement as a function of the time together with the
least-squares fit. The plots on the right side show the corresponding diffusion
constants. The friction constant γ was set to one.

previous potential1, the MSD plots indicate an important difference: the time scale
is not extended. This is due to the fact that we neglect a requirement, namely ∆Vb

always greater zero. As a consequence of the symmetry of the considered potential,
equation (2.1) leads to a likewise speed-up (positive ∆Vb) and slow-down (negative
∆Vb) of tb. The single contributions sum up to a speed-up of roughly zero.

These simulations were repeated for both potentials over a wide range of friction
constants and temperatures. Their results are shown in figures 3.6 and 3.7. The dif-
ference in diffusion constants of both methods increases with higher temperatures
and friction constants. In the case of Steiner’s implementation for the boosted poten-
tial, h-MD underestimates the diffusion constant (by overestimating the time boost).
In contrast, h-MD overestimates the diffusion for the modulated cosine potential

1H-MD overestimates the diffusion constant this time.
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3 Results

Temperautre Method D Time Scale

0.5 MD 0.0359(1) 2.0 × 104

H-MD 0.0602(1) 2.0 × 104

1.0 MD 0.3785(6) 2.0 × 104

H-MD 0.4812(7) 2.0 × 104

Table 3.3: Numerical results of figure 3.5 – hyper-MD for the modulated cosine. The friction
constant γ and the mass m were set to one.

U(x) = cos(x) + 1
5 cos(20x). However, for the latter, the difference in diffusion con-

stants does not depend on the temperature. These distinct behaviors were not further
examined. A future study should investigate the influence of violated requirements
for the bias potential.

We recap above observations: Hyper-MD is not always able to correctly include the
speed-up of dynamics in the speed-up of the time. The boosted potentials used in this
section violate the requirements and consequently lead to deviations in their results.
However, we still used simple model potentials – models describing a given chemical
system more precisely are yet more unlikely to fulfil the assumptions of h-MD. Fur-
thermore, the characteristic property of CG is a smoothened potential surface of the
original description. Smoothening also lowers barrier heights and therefore violates
stated requirements. Strictly speaking, hyper-MD can not be applied to more realistic
systems.

The presented methods use the previously obtained potential of the system. How-
ever, the potential of a many-body system is usually not explicitly given. Its extrac-
tion can be rather difficult, as the next section shows.
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3.2 Boosted Dynamics Using Hyper-MD
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Figure 3.5: Hyper-MD results for a modulated cosine and a plain cosine as the boosted po-
tential for different temperatures. The potential is shown in figure 2.2(d). The
plots on the left side show the mean square displacement as a function of the time
together with the least-squares fit. The plots on the right side show the corre-
sponding diffusion constants. The friction constant γ was set to one.
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Figure 3.6: Regular MD and h-MD simulations for Steiner’s boosted potential in figure 2.2(b).
The particle’s mass was set to one.
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Figure 3.7: Regular MD and h-MD simulations for the modulated cosine potential in fig-
ure 2.2(d). The particle’s mass was set to one.
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3 Results

3.3 Dihedral Potential Energy Surface

We would like to apply the introduced methods to the more realistic system of poly-
styrene. We study the dihedral potential of ψ1 and ψ2 (see figure 3.10) in both de-
scriptions (see figure 2.4). Gromacs[24] is used for all simulations in this section.
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(b) Coarse-Grained PES

Figure 3.8: The potential energy surface for the atomistic and the coarse-grained description.
Obtained using a MD simulation at T=0K (almost equivalent to steepest descent).
Energy values in units of kJ/mol. Regions with energies above 120 kJ/mol appear
white.

The dihedral potential energy surface of the CG model, shown in figure 3.8(b),
confirms the results in reference [2]. It shows the expected symmetrical shape for
the mirror plane going through (ψ1 = 0◦, ψ2 = 360◦) - (ψ1 = 360◦, ψ2 = 0◦). The
energetically unfavorable regions at the “corners” of the plot correspond to the un-
favorable conformation, where the molecule is confined to a plane. The minima are
well defined and located at (150◦, 85◦), (150◦, 200◦), (280◦, 200◦) and surrounding
angles.

The situation for the dihedral PES in the atomistic description, shown in figure 3.8(a),
however, is certainly more complex. Firstly, we note the artifacts for ψ1 > 200◦. These
dislocations along the ψ2-axis are caused by the extraction method. For the extraction,
ψ1 was fixed at a certain degree and ψ2 was rotated in steps of 5◦ with a subsequent
energy minimization. However, due to the rough surface, the energy minimization
(a simple MD simulation, i.e., no stochastic terms) did not always lead to the energeti-
cally most favorable configuration belonging to a local minimum. Instead, the system’s
all remaining degrees of freedom relaxed to the closest local minimum. From there,
further rotating ψ2 might lead to a very unfavorable configuration and forces the sys-
tem to “flip”. This explains why the dislocations occur along the ψ2-axis.
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3.4 Angular Diffusion of Polystyrene

Nevertheless, we neglect this dependance on the initial configuration and the re-
sulting artifical deviations for a moment. From figure 3.8(a), we can still guess the
symmetry together with the minima. We note the in general more detailed reso-
lution of the potential and the maximum at (25◦, 175◦), which does not appear in
the CG dihedral PES. Particularly noticeable is the maximum at (150◦, 200◦), which
corresponds to a minimum in the CG plot. This leads to the conclusion, that coarse-
graining not only smoothens the surface, but – due to the new geometry including
the new effective potential – also changes the system fundamentally.

A more detailed description of the extraction method as well as further (unsuccess-
ful) effort to get rid of the artifacts are shown in appendix B.

3.4 Angular Diffusion of Polystyrene

Figure 3.9 shows the mean square displacement (∆ψ)2 for the atomistic as well as for
the coarse-grained system (see equation (3.2) and figure 3.10 for the definition of ∆ψ).
The simulation runtime for the atomistic model was doubled, since the dynamics
was expected to be slower than the dynamics in the coarse-grained model. The data
for both models were obtained in a stochastic dynamics simulation at T=503K using
Gromacs[24] . The friction constant γ was set according to γ = 1

0.01 ps . A complete

listing of the input parameters are shown in section C.
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Figure 3.9: Regular mean square displacement plot. The single data dots appear as a solid line
due to their enormous number. The dashed lines indicate the linear fitting model
from equation (3.4), the arrows mark the starting points for the fitting routine.
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3 Results

Einstein’s relation in one dimension,

lim
t→∞

〈

(∆x)2
〉

= 2Dxt, (3.1)

where ∆x = x(t) − x(0), the brackets 〈〉 denote an ensemble average and Dx is the
diffusion coefficient for the x-coordinate, is used for both dihedrals ψ1 and ψ2 (see
figure 3.10), with

ψ1
ψ2

Figure 3.10: The dihedral angles in the CG model of polystyrene. They are mapped to the
atomistic description according to figure 2.4(b).

(∆ψ)2 = (∆ψ1)
2 + (∆ψ2)

2 , (3.2)

and extended to two dimensions. This results in

lim
t→∞

Dψ =
1

2 · 2t

(

(∆ψ1)
2 + (∆ψ2)

2
)

(3.3)

and suggests

(∆ψ1)
2 + (∆ψ2)

2 = 4Dψt (3.4)

to fit our data for large t. The fit results using equation (3.4)2 are also shown in
figure 3.9 and the following diffusion coefficients were obtained3 (in units of squared
degrees per picosecond):

D
cg
ψ = 2.5560(2)

Dat
ψ = 1.0804(1) and

ζ ≡ D
cg
ψ /Dat

ψ = 2.3657(3). (3.5)

A higher angular diffusion coefficient implies faster dynamics for that particular de-
gree of freedom. As expected, coarse-graining polystyrene speeds up the angular
diffusion (among others).

2Equation (3.4) was modified to 4Dψt + y0.
3Simple propagation of uncertainty was used in equation (3.5).
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3.4 Angular Diffusion of Polystyrene

In a log-log plot, the difference in diffusion coefficients becomes an additive num-
ber,

log MSDψ = log 4 + log Dψ
︸ ︷︷ ︸

additive difference

+ log t, (3.6)

as shown in figure 3.11. Coarse-graining must not modify physics, but speed up
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Figure 3.11: Log-log plot of the MSD. The plot shows one in one hundred data points.

simulation runs, i.e., in the long-time limit, both models should lead to the same
diffusion. Rescaling the data obtained from the atomistic run according to

t → t′ = t/ζ, (3.7)

will lead to matched diffusive dynamics (for t → ∞), shown in figure 3.12. However,
the graphs deviate from each other for smaller times. Zooming into the region for
times less than 1000 ps (figure 3.13), one notices an increasing gap for t < 500 ps,
which corresponds to an MSDψ of approximately 15000 squared degrees.

If both angles are treated equally, we then obtain from equation (3.2)

∆ψi ≈ 85◦. (3.8)

The increasing gap shows that – while the models produces a similar MSD for large
times (after rescaling) – we observe different physics for small times. Coarse-graining
polystyrene will fundamentally change short-time dynamics and is not suited, nor
was it meant to be, for short simulation runs.

We will now try to predict at which particular angle ∆ψi we expect the comparison
to brake down. The atomistic model uses a dihedral potential[20] in the form of (see
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Figure 3.12: Log-log plot of the MSD after the atomistic data was rescaled using equa-
tion (3.7). This matches both MSD’s for large t. The plot shows one in one hun-
dred data points.

figure 3.15):
V(ψi) = 1 − cos (3 (ψi − ψi,0)) , (3.9)

where ψi,0 = 180◦ and cis corresponds to a dihedral angle of 0◦(see figure 3.14(a)).
Equation (3.9) gives not the true dihedral potential. If one takes the sidegroups and
their non-bonded interactions into account, the potential looks less symmetric and its
minima at 60◦ and 300◦ are shifted to higher energies. We neglect these additional
terms in our discussion.

The potential in equation (3.9) implies that a particle will have to move fore more
than 60◦ in order to escape from one minimum and cross the barrier. This marks the
end of short-time dynamics and allows for diffusion, the crucial point for a CG model
which aims at accelerating long-time dynamics.

The value of 60◦ is confirmed by simulation data, where we performed successful
rescaling down to an angle of approximately 85◦.

Finally, we investigate both angles seperately. Table 3.4 sums up the results of
figures 3.16 and 3.17. We expect the single angles to be the same, since the system
under consideration is symmetric in both descriptions. In fact, we notice a small,
about 5%, difference for the diffusion constants in the atomistic description. In the
CG description, the angles are fully equivalent.
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3.4 Angular Diffusion of Polystyrene
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Figure 3.13: Regular MSD plot, zoomed into the region 0 ps < t < 1000 ps. An increasing gap
between the trajectories starts at t ≈ 500 ps and MSD ≈ 15000 squared degrees,
respectively.

Direction Dcg Datom Scale Factor ζ

ψ1 2.5557(2) 1.0567(2) 2.4119(5)

ψ2 2.5562(2) 1.1040(1) 2.3153(4)

Table 3.4: Direction dependent diffusion coefficients of both models (in degree2/ps). The
scale factor ζ is calculated in analogy to equation (3.5) and is of unit 1.

(a) cis state (b) trans state

Figure 3.14: Two conventions in a molecule consisting of four atoms (or beads). Biochemistry
uses the state shown in (a) to define the 0◦ dihedral angle, while the polymer
world uses (b) as 0◦. In this thesis, cis is used as the default state in order to stay
consistent with reference [20].
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3 Results
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Figure 3.16: Regular (a) and log-log (b) plot of (∆ψ1)
2. Log-log MSD plot (c) after time rescal-

ing. (d) shows a smaller section.
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3.4 Angular Diffusion of Polystyrene
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Figure 3.17: Regular (a) and log-log 3.17(b) plot of (∆ψ2)
2. Log-log MSD plot (c) after time

rescaling. (d) shows a smaller section.

49



3 Results

50



Summary and Conclusion

The aim of this work was the investigation of the time scaling behavior of coarse-
graining mappings. The chosen approach uses diffusive dynamics to characterize
the time scale of a modeled system. Possibilites of an analytic description of the
diffusion were shown in chapter 1. The corresponding Fokker-Planck equation can
not be solved exactly for the general case. Nevertheless, the performed steps are also
useful for further thoughts and limiting cases.

Kramers’ rate theory uses a harmonic approximation of wells and barriers and of-
fers therefore only limited application to more realistic systems. For the test-system
(U(x) = cos(x)), Kramers’ theory agrees with the simulation data as long as kBT ≪ Eb

holds. The agreement also depends on the friction constant. Due to the mentioned
limited application concerning potential form and temperature range, studies beyond
testing cases have not been carried out. However, it is in principle possible to split
any potential into multiple wells-barriers-pairs and combine the single rate constants
to a global one. To do this for a specific system however, is significantly beyond the
scope of this work.

The Smoluchowski limit describes the system in the high friction limit. Besides the
analytically evaluated integration, numerical integration allows one to apply equa-
tion (1.52) to any periodic potential. The Smoluchowski result for the mobility µ was
confirmed by simulations and is very useful to test conceptual ideas.

The underlying, more general, theory based on the Fokker-Planck equation is suited
to be solved semi-analytically. The tridiagonal system in equation (1.25) can be solved
numerically up to a very high accuracy level. Also, it can be generalized to multi-
dimensional problems[25]. Thus, calculations made for the Smoluchowski limit lead-
ing to equation (1.52) can also be generalized to a multi-dimensional case.

Hyper-MD, a method that aims at accelerating dynamics, was introduced in sec-
tion 2.2 and tested in section 3.2. It was shown that its application is very limited,
due to the complicated potentials of more realistic systems.

All these approaches are based on the knowledge of the potential energy surface.
One therefore needs to extract this potential beforehand. The most naive approach
was unsuccessful and showed clearly how complex the situation is. Especially for
molecular liquids, which contain strongly fluctuating local concentrations, this will
not be possible without a huge effort.

Finally, a minimal polystyrene model was simulated using the atomistic as well as
the coarse-grained description. The stochastic dynamics simulations allowed us to
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directly measure the angular diffusion of both dihedrals. A manual rescaling of the
data was performed in order to test the general idea of an uniform time scaling. It was
shown that the CG model modifies the original dynamics and a rescaling based on the
diffusive dynamics (long-time limit) will not hold for the ballistic regime (short-time
limit).

In conclusion, the investigation and, especially, prediction of the time-scaling be-
havior of coarse-graining mappings is a challenging task, since neither the calculation
of diffusion constants is possible for the general case, nor are the potentials simple
enough to be suited for various methods.

All presented approaches and methods offer plenty of space for improvements.
However, the original goal is probably unreachable – no simple method will be able
to predict the time scaling behavior. In most cases the more pragmatic approach as
tested for of certain motions and the question, whether they can lead to estimates of
contributions to specific processes.



A Algorithms

Integration Scheme for Molecular Dynamics: Velocity-Verlet

Newton

One can use the force f from Newton’s equation of motion for a single particle with
mass m and cartesian coordinates r

f(t) = mr̈(t) (A.1)

to rewrite the discretized trajectory

r(t + ∆t) = r(t) + ∆tṙ(t)

+
1

2
∆t2 r̈(t)

+
1

6
∆t3...

r (t)

+ O(∆t4)

(A.2)

to

r(t + ∆t) = r(t) + ∆tv(t) +
∆t2

2m
f(t) + O(∆t3) (A.3)

and

v(t + ∆t) = v(t) +
∆t

m
f(t) +

∆t2

2m
ḟ(t) + O(∆t3). (A.4)

Equations (A.3) and (A.4) are the scheme for the Euler algorithm. Since this algorithm
neither preserves phase-space nor is time-reversible, we take the next step towards
a more sophisticated algorithm. Adding and substracting

r(t − ∆t) = r(t) − ∆tv(t) +
∆t2

2m
f(t)− 1

6
∆t3...

r (t) + O(∆t4) (A.5)

to and from equation (A.3) leads to

r(t + ∆t) = 2r(t)− r(t − ∆t) +
∆t2

m
f(t) + O(∆t4) (A.6)
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A Algorithms

and

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+ O(∆t2). (A.7)

Finally, we use

∆tḟ(t) = f(t + ∆t) − f(t) + O(∆t3) (A.8)

to rewrite equation (A.4) and obtain the velocity Verlet algorithm

r(t + ∆t) = r(t) + ∆tv(t) +
∆t2

2m
f(t) + O(∆t3),

v(t + ∆t) = v(t) +
∆t

2m
[f(t) + f(t + ∆t)] + O(∆t3).

(A.9)

We obtain the same result by solving Liouville’s equation. Liouville’s equation is the
basis for deriving symplectic integrators.

Let Γ(t) be a trajectory in the phase-space Γ = {r, p} formed by all positions and
momenta and let ρ(r, p) be the phase-space density. Using the Liouville operator L

L = iLr + Lp, (A.10)

= ṙ
∂

∂r
+ ṗ

∂

∂p
. (A.11)

consisting of a position and a momentum part we can formulate and formally inte-
grate the equation of motion for one observable A(Γ; t),

d

dt
A(Γ; t) = iLA(Γ; t) (A.12)

to obtain (omitting Γ)

A(t + ∆t) = eiL∆t A(t). (A.13)

Trotter expanding the Liouville operator

ei(Lr+Lp)∆t = ei ∆t
2 Lp ei∆tLr ei ∆t

2 Lp + O(∆t3) (A.14)

and subsequently applying these single factors to r or p, respectivley, leads to equa-

tion (A.9). Since the operators Lr and Lp are hermitian, ei ∆t
2 Lp ei∆tLr ei ∆t

2 Lp is unitary
and implies phase-space preservation. Also, time-reversibility is satisfied since the
equations are symmetric with respect to future and past coordinates.
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Langevin

For the Langevin equation of motion

ṙ(t) =
1

m
p(t)and (A.15)

ṗ(t) = F − γ
p(t)

m
+ f, (A.16)

where F(r) = −∇U(r) is the force derived from the Potential U, γ the friction con-
stant (mass m included) and f the Gaussian white noise with

〈f(t)〉 = 0, (A.17)
〈
f(t) f(t′)

〉
= 2 γkBT δ(t − t′). (A.18)

We use the Fokker-Planck picture (Kramers-Moyal expansion, see reference [26])

∂t ρ(Γ; t) = (L1 + L2 + L3 + L4) ρ(Γ; t) (A.19)

with

L1 = − ∂

∂r
· p

m
, (A.20)

L2 = − ∂

∂p
· F, (A.21)

L3 = γ
∂

∂p
· p

m
, (A.22)

L4 = kBT γ
∂2

∂p2
, (A.23)

and again the Trotter expansion (note that only L1 has derivatives with respect to the
position, whereas L2 + L3 + L4 differentiates with respect to the momentum)

e(L1+L2+L3+L4+)∆t

= eL1
∆t
2 e(L2+L3+L4)∆teL1

∆t
2 + O(∆t3)

(A.24)

to derive an algorithm which subsequently shifts the position by ∆t
2 , the momentum

by ∆t and again the position by ∆t
2 . The only approximation we made is neglect-

ing terms of the order of ∆t3 and higher. The solution for the equations of motion
(obtained in analogy to equation (A.13)) can be found exactly from here on.

The position update is given by

r(t +
∆t

2
) = r(t) +

∆t

2

p(t)

m
. (A.25)
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The momentum update is given by solving the Langevin equation (A.16). The force
F is constant during this step allowing us to find an exact solution.

Rewrite equation (A.16) to

(
d

dt
+

γ

m

)

p = F + f. (A.26)

The homogenous case

(
d

dt
+

γ

m

)

p = 0 (A.27)

is solved by

p(t) = e−
γ
m t p(0). (A.28)

Variation of constants suggests the ansatz

p(t) = e−
γ
m t π(t) (A.29)

which results in

d

dt
π(t) = e

γ
m t (F + f(t)) . (A.30)

Equation (A.30) for one timestep is solved by

π(∆t) =
m

γ

(

e
γ
m ∆t − 1

)

F +

∆t∫

0

dt e
γ
m tf(t) + π(0) (A.31)

⇔ p(∆t) = e−
γ
m ∆t p(0) +

m

γ

(

1 − e−
γ
m ∆t

)

F +

∆t∫

0

dt e−
γ
m (∆t−t)f(t) (A.32)

Since the RHS of equation (A.32) consists of constant terms and a white noise term,
p(∆t) must be a Gaussian white noise variable, too. An explicit calculation for the
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first two moments:

〈p(∆t)〉 = e−
γ
m ∆t p(0) +

m

γ

(

1 − e−
γ
m ∆t

)

F, (A.33)

〈

(p(∆t) − 〈p(∆t)〉)2
〉

=

〈



∆t∫

0

dt e−
γ
m (∆t−t)f(t)





2〉

=

〈 ∆t∫

0

dt e−
γ
m (∆t−t)f(t) ·

∆t∫

0

dt′e−
γ
m (∆t−t′)f(t′)

〉

= 2 γkBT

∆t∫

0

dt e−2 γ
m (∆t−t)

= mkBT
(

1 − e−2 γ
m ∆t

)

, (A.34)

where we used the fluctuation-dissipation relation. We can rewrite p(∆t) now to

p(∆t) = e−
γ
m ∆t p(0)

+
m

γ

(

1 − e−
γ
m ∆t

)

F

+

√

mkBT
(

1 − e−2 γ
m ∆t

)

ξ.

(A.35)

The Gaussian white noise ξ has now unit variance. Taylor expanding equation (A.35)
up to the order of one in ∆t gives us the Euler algorithm of the update scheme. Thus,
equation (A.35) is exact up to the order of two as a result of the Trotter expansion in
equation (A.14) as stated above.

The three constant factors in equation (A.35) must be calculated only once at the
beginning of the simulation.
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l v v v x f a c = 0 . 5 ∗ t imestep / mass ;
lvvv d = exp(−lv gamma / mass ∗ t imestep ) ;
lvvv q = mass / lv gamma ∗ ( 1 . 0 − lvvv d ) ;
lvvv sigma = s q r t ( mass ∗ temperature ∗ \

( 1 . 0 − exp (−2.0 ∗ lv gamma / mass ∗ t imestep ) ) ) ;

Listing A.1: Setting constant factors.

mdtime += timestep ;
x += p∗ l v v v x f a c ;
f = p o t e n t i a l I n . c a l c F o r c e ( x ) ;
ze ta = g s l r a n g a u s s i a n ( rng , 1 . 0 ) ;
p = p ∗ lvvv d + f ∗ lvvv q + zeta ∗ lvvv sigma ;
x += p∗ l v v v x f a c ;

Listing A.2: Integration of the equation of motion for one timestep.

Calculation of the Dihedral Angle

The dihedral angle as used in the context of this thesis is the angle between two planes
and has a value between 0 and 2π. These planes are defined by four connected atoms
or virtual sites.

Let φ be the angle between two planes with normal vectors n1 and n2. For the four
given points ai, i = 1 . . . 4, in cartesian coordinates, we calculate their connecting
vectors.

b1 = a2 − a1,

b2 = a3 − a2,

b3 = a4 − a3. (A.36)

The normal vectors are obtained by using the cross product,

n1 = b1 × b2, (A.37)

n2 = b2 × b3. (A.38)

It is clear at this point, that we will need an inverse angle operation to obtain φ. In
order to obtain a bijective mapping, we will make use of the atan2(φ) function that
expects sin(φ) and cos(φ) as arguments and takes their sign into acccount to place
the angle in the correct quadrant.

n1 · n2 = n1n2 cos(φ) and (A.39)

|n1 × n2| = n1n2 sin(φ), (A.40)
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where n1,2 is the length of n1,2. Equation (A.40) can be simplified as follows (Einstein
summation convention)

n1 × n2 = n1 × (b2 × b3) (A.41)

= ε ijk ni
1 ε lmj bl

2 bm
3 ek (A.42)

= −ε ikj ε lmj ni
1 bl

2 bm
3 ek (A.43)

= − (δil δkm − δim δkl) ni
1bl

2bm
3 ek (A.44)

= − (n1 · b2)
︸ ︷︷ ︸

=0

b3 + (n1 · b3) b2 (A.45)

= (n1 · b3) b2 (A.46)

⇒ n1n2 sin(φ) = |(n1 · b3) b2| (A.47)

= (n1 · b3) b2
b2

b2
(A.48)

= (n1 · b3) b2 (A.49)

| · | denotes the lenthg of the argument. The dihedral angle φ is then returned after
calling atan2 ((n1 · b3) b2, n1 · n2).
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B Extracting the Dihedral Potential

Energy Surface of Polystyrene

This section describes the method used for the extraction of the potential in sec-
tion 3.3.

1. We start the procedure from the minimum configuration at (ψ1 = 150◦, ψ2 = 85◦).

2. ψ2 is incremented by 5◦ and both dihedral angles are restrained to their values
using a spring potential, Vrestr ∝ (ψi − ψi,0)

2.

3. A MD simulation drives the system into the next local minimum. The resulting
configuration is saved and used for the next iteration. The minimum energy is
extracted.

4. Steps 2 and 3 are repeated until ψ2 reaches 85◦ again. At 360◦, ψ2 is mapped
back to 0◦.

5. ψ1 is now incremented by 5◦ and steps 2 - 4 are repeated until ψ1 reaches 150◦

again. At 360◦, ψ1 is mapped back to 0◦.

This is the most naive approach and leads to the following problems in systems with
more than a few degrees of freedom1: The energy minimization depends on the ini-
tial configuration. E.g., rotating backward and forward, respectively, leads to dif-
ferent (local) minima. Also, the resulting potential is not 2π-periodic and thereby
contradicts physics. This behavior is highly unwanted and makes the extraction of
one meaningful potential impossible.

In a MD simulation, local minima prevent the system to overcome even the small-
est barriers in order to find more favorable minima surrounding the desired config-
uration at (ψ1, ψ2 + 5◦). Thus, a stochastic term was added to the MD simulation
to enable to system to fully relax. Instead of the potential energy surface, the free
energy surface (FES) was extracted. It is shown in figure 2.1 and offers only a small
improvement. This means that higher energies are needed to overcome local barriers.

1E.g., for the CG dihedral PES, the method works well. However, it fails for the atomistic dihedral
PES.
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B Extracting the Dihedral Potential Energy Surface of Polystyrene

Thus, one needs to consider other methods for the purpose of finding a unique
PES/FES. A quick study using simulated annealing and replica exchange[27], respec-
tively, and temperatures up to 700K did still not lead to a FES that does not depend
on the initial configuration.

A future analyis should use random initial configurations and – after applying
dihedral restraints – slowly force the system into the desired configuration.
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(a) Atomistic FES, T=10K
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(b) Coarse-Grained FES, T=10K
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(c) Atomistic FES, T=50K
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(d) Coarse-Grained FES, T=50K

Figure 2.1: The free energy surface for the atomistic and the coarse-grained description. Ob-
tained using a SD simulation at two different temperatures. Energy values in units
of kJ/mol. Regions with energies above 120 kJ/mol appear white.
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C Sample Gromacs .mdp File

A sample .mdp file as used in section 3.4 follows.

t i t l e = PS
cpp = /usr/bin/cpp
i n t e g r a t o r = sd
t i n i t = 0 . 0
dt = 0 . 0 0 1
nsteps = 100000000
i n i t s t e p = 0
comm−mode = Angular
nstcomm = 1000
ld−seed = −1
emtol = 10
emstep = 0 . 0 1
n i t e r = 20
f c s t e p = 0
ns tcgs teep = 1000
nbfgscorr = 10
nstxout = 10
nstvout = 0
n s t f o u t = 0
nstcheckpoint = 1000000
n s t l o g = 0
nstenergy = 0
n s t x t c o u t = 0
x t c p r e c i s i o n = 2000
xtc−grps =
energygrps = system
n s t l i s t = 0
ns type = simple
pbc = no
r l i s t = 1 . 5
domain−decomposition = no
coulomb type = cut−o f f
rcoulomb switch = 0
rcoulomb = 1 . 5
e p s i l o n r = 1 . 0
vdw type = Cut−o f f
rvdw switch = 0
rvdw = 1 . 5
DispCorr = No
tab le−extens ion = 1
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C Sample Gromacs .mdp File

f o u r i e r s p a c i n g = 0 . 1 2
pme order = 4
ewald r to l = 1e−05
ewald geometry = 3d
e p s i l o n s u r f a c e = 0
o p t i m i z e f f t = no
gb algorithm = S t i l l
n s t g b r a d i i = 1
r g b r a d i i = 2
g b s a l t c o n c = 0
i m p l i c i t s o l v e n t = No
tcoupl = v−r e s c a l e
tc−grps = system
t a u t = 0 . 0 1
r e f t = 503
Pcoupl = no
tau p = 2 . 0
c o m p r e s s i b i l i t y = 2 . 7 5 5 e−5
r e f p = 1 .01325

Listing C.1: Sample .mdp file as used in section 3.4.
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D Numerical Data

(a) γ = 0.1

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0000 0.0000 0.0000 0.0000
0.18 0.0001 0.0000 0.0000 0.0005
0.20 0.0002 0.0000 0.0001 0.0013
0.22 0.0004 0.0000 0.0003 0.0030
0.26 0.0016 0.0000 0.0010 0.0102
0.30 0.0041 0.0000 0.0025 0.0243
0.34 0.0084 0.0001 0.0049 0.0462
0.38 0.0142 0.0000 0.0081 0.0754
0.40 0.0189 0.0004 0.0101 0.0924
0.42 0.0217 0.0003 0.0122 0.1107
0.46 0.0315 0.0008 0.0168 0.1503
0.50 0.0437 0.0011 0.0219 0.1924

(b) γ = 0.2

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0000 0.0000 0.0000 0.0000
0.18 0.0001 0.0000 0.0001 0.0005
0.20 0.0003 0.0000 0.0003 0.0013
0.22 0.0006 0.0000 0.0006 0.0030
0.26 0.0023 0.0000 0.0020 0.0102
0.30 0.0056 0.0000 0.0048 0.0243
0.34 0.0112 0.0002 0.0093 0.0462
0.38 0.0186 0.0002 0.0155 0.0754
0.40 0.0240 0.0000 0.0192 0.0924
0.42 0.0295 0.0001 0.0231 0.1107
0.46 0.0423 0.0001 0.0320 0.1503
0.50 0.0568 0.0008 0.0417 0.1924

(c) γ = 0.5

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0000 0.0000 0.0000 0.0000
0.18 0.0002 0.0000 0.0002 0.0005
0.20 0.0005 0.0000 0.0006 0.0013
0.22 0.0012 0.0000 0.0013 0.0030
0.26 0.0044 0.0000 0.0043 0.0102
0.30 0.0105 0.0000 0.0104 0.0243
0.34 0.0203 0.0000 0.0201 0.0462
0.38 0.0328 0.0003 0.0334 0.0754
0.40 0.0403 0.0004 0.0413 0.0924
0.42 0.0484 0.0007 0.0499 0.1107
0.46 0.0675 0.0002 0.0690 0.1503
0.50 0.0885 0.0004 0.0899 0.1924

(d) γ = 1.0

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0000 0.0000 0.0000 0.0000
0.18 0.0003 0.0000 0.0003 0.0005
0.20 0.0009 0.0000 0.0009 0.0013
0.22 0.0020 0.0000 0.0020 0.0030
0.26 0.0070 0.0001 0.0068 0.0102
0.30 0.0155 0.0004 0.0165 0.0243
0.34 0.0299 0.0003 0.0318 0.0462
0.38 0.0495 0.0005 0.0529 0.0754
0.40 0.0610 0.0001 0.0654 0.0924
0.42 0.0725 0.0006 0.0790 0.1107
0.46 0.1025 0.0004 0.1092 0.1503
0.50 0.1328 0.0002 0.1422 0.1924

Table D.1: Numerical data of figure 3.2. Part one of two.
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D Numerical Data

(a) γ = 2.0

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0000 0.0000 0.0000 0.0000
0.18 0.0005 0.0000 0.0004 0.0005
0.20 0.0012 0.0000 0.0012 0.0013
0.22 0.0026 0.0000 0.0027 0.0030
0.26 0.0093 0.0002 0.0091 0.0102
0.30 0.0211 0.0002 0.0221 0.0243
0.34 0.0389 0.0004 0.0427 0.0462
0.38 0.0643 0.0003 0.0709 0.0754
0.40 0.0804 0.0004 0.0877 0.0924
0.42 0.0961 0.0007 0.1060 0.1107
0.46 0.1350 0.0008 0.1464 0.1503
0.50 0.1741 0.0014 0.1907 0.1924

(b) γ = 5.0

T γµ ∆γµ Kramers Smoluchowski

0.10 0.0000 0.0000 0.0000 0.0000
0.14 0.0001 0.0000 0.0000 0.0000
0.18 0.0006 0.0000 0.0005 0.0005
0.20 0.0015 0.0000 0.0014 0.0013
0.22 0.0029 0.0000 0.0031 0.0030
0.30 0.0242 0.0000 0.0257 0.0243
0.30 0.0242 0.0000 0.0257 0.0243
0.34 0.0446 0.0005 0.0496 0.0462
0.38 0.0735 0.0010 0.0825 0.0754
0.40 0.0913 0.0004 0.1019 0.0924
0.42 0.1090 0.0011 0.1232 0.1107
0.46 0.1518 0.0013 0.1701 0.1503
0.50 0.1946 0.0035 0.2216 0.1924

Table D.2: Numerical data of figure 3.2. Part two of two.
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E List of Abbreviations and Remarks

List of used abbreviations

CG Coarse-graining / coarse-grained
MD Molecular dynamics
SD Stochastic dynamics

MSD Mean square displacement
TST Transition state theory
FPE Fokker-Planck equation
PES Potential energy surface
FES Free energy surface

Mathematica’s Fitting Routine

The Mathematica function NonlinearRegress[] (least-squares fit) was used for all
fits. The Standard Error from the ParameterCITable was taken as the fitting error.

Plots

All plots have been created using Gnuplot 4.5.
The visualization of molecular structures were created with Visual Molecular Dy-
namics 1.8.6 (VMD) and the ray tracing system Tachyon 0.98.
Chemicals schemes were drawn using MSketch 5.0.

Source and Data

This document, source codes and data – unless its size exceeds the capacatiy of a DVD
– can be found on the disc attached to the back cover.
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