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Chapter 1

Introduction

The determination of the detailed microscopic structure and dynamics of complex

supramolecular systems is still a challenge for modern physics and chemistry. The

interplay of intramolecular (often covalent) and intermolecular (non-covalent)

interactions is crucial for a broad range of chemical, biological, and physical

processes that occur in nature (1; 2; 3; 4).

With the recent advances in computational methodology as well as computer

hardware, the first-principles prediction of such non-covalent effects on structure

and experimentally observable spectra has come into reach for many systems of

technological and fundamental scientific interest (5; 6; 7). Several methods ex-

ist to incorporate the influence of the chemical environment into such electronic

structure calculations. The explicit consideration of a large number of neighbor-

ing molecules is in principle most accurate, but computationally very demanding

and thus only applicable in simple cases (8; 9; 10).

The most accurate and generally applicable methods in computational physics

and chemistry are those based on quantum mechanics, which solve partially sim-

plified the Schrödinger equation using different numerical schemes and approx-

imations. Density functional theory (DFT) (11; 12; 13; 14) is based on the
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solution of the Kohn Sham equations, which are derived from Schrödinger equa-

tion and it employs a strategy by avoiding the calculation of the many-electron

wave function. Due to its accuracy for a wide range of compounds and because

the computational effort is in general lower than that of wave function based

methods, DFT has become the method of choice for many practical applications.

However, DFT relies on the use of an approximate functional for the exchange-

correlation energy (13; 15; 16; 17; 18), and the accuracy of DFT calculations is

limited by the quality of this approximate functional.

Besides quantum chemical methods, there are the molecular mechanics (MM)

methods, which are based on classical force fields obtained from fitting to exper-

imental data or to the results of quantum chemical calculations. MM methods

are computationally inexpensive, and can be applied to very large systems. How-

ever, the applicability of the available force fields is limited to those of molecules

for which the force field has been designed, and chemical reactions could not be

modelled reliably.

As this short overview shows, the methods available in computational physics

and chemistry differ significantly in their applicability, their accuracy and the

computational effort that is required. As a rule of thumb, more accurate methods

are in general computationally more expensive, and usually show a less favourable

scaling of the computational effort with the size of the system. Calculations using

the most accurate methods are generally limited to small molecules in the gas

phase, while calculations on larger systems are only feasible with less accurate

methods.

One of the biggest challenges for computational physics and chemistry is the

realistic description of large systems such as biological systems (e.g., reactions

catalyzed by enzymes) or of molecules in solution. Such a description requires

not only the calculation of large systems, but also that the dynamics of the system
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at finite temperature is accounted for. This means that long time scales have to be

considered by performing calculations for a large number of different structures.

Therefore, such calculations which are of the focus of this work are only within

reach if one tries to apply suitably simplified quantum chemical methods.

On the experimental side, the primary output of all theoretical methods and

tools is structural data. The latter, however, is often not directly accessible ex-

perimentally . The predominant way to analyze complex supramolecular systems

is via their spectroscopic fingerprints. Nuclear magnetic resonance (NMR) is a

widespread analysis tool in many areas of chemistry and biology. One of the

key quantities in this context are NMR chemical shifts spectra, which allow the

characterization of the chemical environment of individual atoms, in particular re-

garding hydrogen bond strength (19). A special advantage of magnetic resonance

is that the quantitative determination of many structural properties is possible

for systems which are only ordered locally. No long-range order is required, in

contrast to conventional diffraction and scattering methods. In exchange, the

data obtained from NMR experiments does not directly provide the ensemble of

three-dimensional atomic coordinates (as do many diffraction techniques), but

only a set of distance and angle constraints, including packing effects such as

hydrogen bonding structure and aromatic π-electron interactions. Nevertheless,

magnetic resonance techniques are able to reveal details about structure and

dynamics of complex supramolecular systems (20; 21; 22).

On the level of computational chemistry, the corresponding electronic struc-

ture based calculation of nuclear shielding tensors is nowadays well-established (23;

24; 25; 26). These approaches, developed in the framework of density functional

theory (DFT) (13; 27) or explicitly correlated post-Hartree-Fock theory (28; 29)

have enabled an accurate analysis of NMR chemical shifts in many systems of high

chemical and biological relevance, be it isolated molecules and clusters (22; 30),
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crystalline solids (31; 32; 33), nanotubes (34; 35), molecular liquids (8; 36), or

solutions (9).

In many cases, the calculation of NMR chemical shifts or other properties of

a large system is not only prohibitively expensive, but also not particularly inter-

esting. For instance, in enzymes focus can be placed on the active center, where

the reaction of interest takes place, while the protein environment is important

for stabilizing this active center, but in general does not take part in the reaction

itself. In the case of solvent effects, the main interest lies usually on properties

of the solute molecule, while the surrounding solvent molecules are only impor-

tant because of their effect on the solute. Therefore, it is often not necessary to

treat the whole system at the same level, but instead to apply methods in which

different parts of the system are described using different approximation. Usu-

ally, one combines a high-level method for the important part of the system (the

subsystem of interest) with a low-level method for the environment. This allows

to focus on the important parts, while not wasting computational effort on parts

of the system were an accurate description is not essential. In such cases, only

this sub-system merits the computationally intensive treatment with quantum

mechanical methods (QM) whereas the large remaining part of the system can

be described with less accurate empirical molecular mechanics (MM) approaches.

In this way, the advantages of both types of simulation can be combined.

There are a number of different embedding schemes available, that can be dis-

tinguished by the methods that are combined and by their treatment of the cou-

pling between these different methods. In this context, a hybrid QM/MM method

is often adopted which splits the total system into a larger and a smaller part. A

variety of methods to accomplish this task have been presented in the last decades.

Fundamental work in this field is given in (37; 38; 39; 40; 41; 42; 43; 44; 45). A

novel implementation of the QM/MM idea has been presented (45), which com-
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bines a classical force field (in this case from the GROMOS96 (46) or AMBER

codes (47)) with a Car-Parrinello Molecular Dynamics package (CPMD (48; 49)).

The CPMD package is based on a pseudopotential plane-wave scheme within den-

sity functional theory (DFT) under periodic boundary conditions. This hybrid

QM/MM combination allows an efficient simulation of picosecond dynamics of

extended systems like solvated macromolecules or liquids, keeping the accuracy

and flexibility of DFT while incorporating the ability to simulate explicitly all

degrees of freedom of thousands of atoms.

This thesis focuses on improving the methods for the calculation of NMR

chemical shifts within the QM/MM framework. In particular, a realistic system

in the condensed phase will be considered whose NMR chemical shifts of the

atoms at the border of the QM subsystem are computed. The NMR lines of

those atoms which are close or in direct contact with the classical part of the

system are likely to be more difficult to describe. Their electrons see the QM

fragment on one side, while the other side consists of a distribution of point

charges, thus lacking any quantum-mechanical effects (e.g. chemical bonds, Pauli

repulsion). To this purpose, the approach is pushed to its limits by investigating

the case that only a single molecule is treated quantum mechanically, surrounded

by a solvent, described on the molecular mechanics level.

Handling the boundary between the QM and MM regions need extreme cau-

tion, because wrong assumptions can easily lead to unphysical results. The prob-

lem in such a setup is the cut between QM and MM system since the valence

shell of the QM atom, which is part of a mixed QM/MM bond is not saturated.

A popular choice is to cap all boundary bonds by hydrogens. However, this of-

ten leads to a distortion of the electronic density. For this purpose, a special

“dummy” pseudopotential is used to connect the QM and MM parts in a more

physical way, in order to preserve important chemical properties like bond lengths
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1.1 Thesis Overview

and vibrational frequencies. The specific aim of the present thesis work is to tune

this peudopotential such as to reproduce the electronic structure of the quantum

region as similar as possible to a full QM calculation.

1.1 Thesis Overview

The topic of this thesis is the methodological improvement and the application

of the existing QM/MM implementation, based on the computer codes CPMD (

Car-Parrinello Molecular Dynamics, for the QM part) and Gromos (force field,

for the MM part).

This thesis work is organized in two introductory chapters in which the gen-

eral motivation and the fundamental theoretical concepts are outlined (chapters

1 and 2), followed by an application to adenine in aqueous solution (chapter 3)

and the central methodological development, the QM/MM capping potentials

(chapter 4). The introduction and general theory parts draw in parts on review

papers and previously published work (41; 45; 50; 51; 52; 53; 54; 55) while the

original research development (an automatized scheme that is able to systemati-

cally optimize QM/MM capping potentials) and the application project (solvent

effects on adenine NMR chemical shifts from QM/MM calculations) have been

published in the framework of this thesis (56; 57). An additional project that has

been carried out during this doctoral work has been published separately (58),

but is not included in this thesis, as it was performed in a separate collaboration

outside the specific QM/MM context, and thus does not fit the scope of this

dissertation.
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Chapter 2

Theory

2.1 General

In the following sections, the general theory for the quantum mechanical descrip-

tion of matter that is used in this work will be presented. Physical and chemical

intuition can suggest the use of several approximations, which render numerical

calculations affordable. When it comes to the actual calculation of the prop-

erties of matter through a numerical description of the atoms and electrons, a

theoretical framework is needed to represent them in a suitable way.

To investigate the properties of matter, a combination of a variety of compu-

tational methods will be employed. In this work, a hybrid of quantum mechanics

and molecular mechanics (QM/MM) calculations based on density functional the-

ory (DFT) is chosen. This allows the efficient calculation of large systems and,

in combination with molecular dynamics, good statistical sampling. It consti-

tutes the fundamental concept underlying all the calculations done lateron, thus

justifying that it be described in detail in this section.

The starting point is the basic equation of quantum theory, the Schrödinger

equation, which is then transformed to simplified formulations that can be treated
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2.2 Density Functional Theory

by computer programs. Then, several additional approximations are introduced,

which need to be used in order to lower the consumption of computational re-

sources. Finally, the division of the system into a quantum and a classical part

forms the core of hybrid QM/MM calculations is presented, which form the basis

of this scheme and combination with NMR calculations that is the topic of this

thesis.

In the following sections, a brief overview will be given of the theories un-

derlying the quantum mechanical description of matter used throughout this

work. Both general aspects of the density functional theory (DFT) approach

in combination with gradient corrected exchange correlation energy function-

als (11; 12; 13; 14; 51; 52) and an introduction to hybrid QM/MM molecular

dynamics calculations (41; 45; 50; 52; 53; 54; 55) will be discussed.

2.2 Density Functional Theory

2.2.1 Born-Oppenheimer approximation

The Schrödinger equation for a system containing n electrons and N nuclei has

the form of an eigenvalue problem:

HΨ(r1, .., rn,R1, ..RN) = EΨ(r1, .., rn,R1, ..RN), (2.1)

The many body Hamiltonian operator H can be written in dimensionless form:

H =
∑

i

−1

2
∇2

i +
∑

I

− 1

2MI

∇2
I +

1

2

∑

i6=j

1

|ri − rj| +

1

2

∑

I 6=J

QIQJ

|RI −RJ | −
∑
iI

QI

|ri −RI | . (2.2)
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2.2 Density Functional Theory

by atomic units transformation:

r → r

a
; E → E

Ea

(2.3)

where

a =
4πε0~2

mee2
; Ea =

~2

mea2
(2.4)

The Bohr radius a = 0.529Å ≡ 1bohr and Hartree energy Ea = 27.212eV ≡
1Hartree are the new units for a length and an energy respectively. Here, e

and me are the electronic charge and mass, ~ is Planck’s constant divided by 2π,

and ε0 is the permittivity of vacuum. In Hamiltonian 2.2, ri and RI designate

the dimensionless position operators acting on the electrons i and the nuclei I,

respectively. MI and QI are the masses and charges of the nuclei in atomic units.

The Born-Oppenheimer (BO) approximation (14; 59) is based on the fact that

the mass of the ions is much larger than the mass of the electrons. This implies

that the typical electronic velocities are much larger than the ionic ones, and

that by consequence, the dynamical evolution can be decoupled. Energetically,

the decoupling corresponds to a separation of the spectra in such a way that in

practice the electrons are always in their instantaneous ground state. The total

wavefunction is therefore written as the product of the nuclear and electronic

parts:

Ψ(r1, . . . , rn,R1, . . . ,RN) = Ψel
R1,...,RN

(r1, . . . , rn)Ψi(R1, . . . ,RN) (2.5)

where the electronic wavefunction Ψel
R1,...,RN

(r1, . . . , rn)depends only parametri-

cally on the ionic position variables. In most cases, this approximation turns

out to be justified. This adiabatic behaviour leads to separating the Schrödinger
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2.2 Density Functional Theory

equation (2.1) into two decoupled ones: the Schrödinger equation for the elec-

trons in the electrostatic field of the fixed nuclei, and the other one for the nuclei,

in which the potential function is given by the electronic energy eigenvalue for the

corresponding nuclear positions. A further approximation is to treat the nuclei

like classical particles, so that in the end, the nuclear position operators can all

be turned into position variables. The quantum effects are then limited to the

electronic wavefunctions, which obey a simpler Schrödinger equation:

HelΨel
R1,...,RN

(r1, . . . , rn) = Eel
R1,...,RN

Ψel
R1,...,RN

(r1, . . . , rn) (2.6)

with

Hel =
∑

i

−1

2
∇2

i +
1

2

∑

i 6=j

1

|ri − rj| −
∑
iI

QI

|ri −RI | . (2.7)

In the following sections, one of the currently most popular theories will be

described in detail. Its main idea is to take the electronic density instead of the

wavefunction as the fundamental variable, thus reducing the degrees of freedom

drastically.

2.2.2 Many-body electronic wave function

The exact quantum mechanical treatment of systems consisting of nuclei and

electrons is not possible at present, even within the BO approximation, and

independently of the system size. A simple analysis of the complexity of the

problem shows that its computational requirements are prohibitive. Also in the

foreseeable future, such calculations will very probably be impossible.

One of the simplest systems that one can assume to be a representative exam-

ple for a practical calculation is a single isolated atom, for instance the neon atom.
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2.2 Density Functional Theory

As a first simplification, only the electronic wavefunction shall be described as a

system of ten particles. The electronic wavefunction has the form

Ψ(r1, r2, . . . , r10) (2.8)

where ri are the position variables of the electrons. For simplicity, this wave-

function shall be described on a real space grid of only ten points per axis, and

the values of Ψ on this mesh are assumed to be representable by numbers requir-

ing ten bytes of storage capacity. The various simplifications that can be made

thanks to the symmetry of this particular system shall not be taken into account,

as these symmetries can easily be broken.

The storage requirements of the wavefunction for this isolated system are then

10
bytes

point
×

(
10

points

axis

)3axis×10particles

= 1031 bytes. (2.9)

This number of bytes needs to be stored in order to represent the wavefunction

of the ten electrons. Assuming heuristically that a DVD disc has a theoretical

storage capacity of 10 Gigabytes = 1010 bytes, one needs a total of 1021 DVD

discs for the storage. With a weight of ten grams per DVD, the total weight of

those discs is 1016 tons. A heavy truck can carry less than 100 tons of weight, so

that more than 1014 trucks are needed to carry the DVDs to the computer that is

responsible for the calculation. If these trucks are ten meters long, the distance

of 1015m or 1012km is equivalent to ten thousand times the distance between the

sun and the planet on which this work has been done.

This little example makes evident that an exact solution of the quantum many

body problem is not feasible. Therefore, many concepts have been developed to

overcome the complexity of the problem and to introduce physically reasonable
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2.2 Density Functional Theory

simplifications.

Fortunately, it turns out that the use of several approximations still repro-

duces the experimental results with a good accuracy. Only these approximations

make numerical calculations affordable. In this chapter, one of the currently most

popular theories shall be described in detail. It basically consists of taking the

electronic density instead of the wavefunction as the fundamental variable, thus

reducing the degrees of freedom drastically.

The BO approximation provides a way to separate the ionic degrees of freedom

from the electronic ones. The additional simplifications and approximations are

necessary to describe the electrons numerically therefore concern the Schrödinger

equation (2.1) only.

Quantum chemical methods are based on the fact that any antisymmetric

many-electron wavefunction can be written as a sum of Slater determinants of

atomic basis functions. The simplest method is just to take one determinant,

built from the occupied states of the atom. This is called the Hartree-Fock

wavefunction.

When not only considering occupied, but also unoccupied or virtual atomic

orbitals, one can increase the accuracy of the method. The size of the set of atomic

orbitals used in the determinants characterizes the level of precision of these

methods: configuration interaction (60), multi-configuration Hartree-Fock (61),

multi-reference configuration interaction (62) and the coupled cluster methods

(63; 64; 65) belong to this category and are nowadays routinely used to calculate

molecular properties. Their accuracy is very high, and especially the coupled

cluster approach can actually compete with experiment.

In the configuration interaction method, the wavefunction is a linear com-

bination of Slater determinants constructed from occupied and virtual atomic

basis functions, and the linear coefficients are varied to find the minimum of
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2.2 Density Functional Theory

the total energy. In the limit of a complete atomic basis, the configuration in-

teraction approaches yield the correct solution of the Schrödinger equation. In

practice, the basis set is truncated after a few excited states. In the multi con-

figuration configuration interaction method, not only the linear coefficients of

the determinants, but also the orbital coefficients of the underlying atomic basis

orbitals within each determinant are varied to find the minimum energy. This

procedure basically speeds up the convergence with respect to the simple con-

figuration interaction scheme. Another approach is the so-called Møller-Plesset

perturbation theory (MP2), where the wavefunction contributions from excited

states are taken into account through a perturbation theory calculation, starting

with the standard Hartree-Fock determinants.

The disadvantage common to all these approaches is that they have a rela-

tively high computational cost and are therefore restricted to small systems. The

definition of small changes in time, but the scaling of these methods with the

system size is such that at a reasonable expense, only systems with less than

roughly hundred atoms can be treated.

Density functional theory (DFT) is conceptually different from the previ-

ous approaches. In this method, the large-dimensional many body problem of

interacting electrons is transformed into a system of equations of independent

electrons. This method is described in detail in the following sections. It shall be

noted here that in the following, DFT will be used as a synonym for ground state

DFT. It has turned out that DFT is able to treat excited states as well (14), even

though its results need to be used with more care. However, in this work, only

the electronic ground state shall be considered.
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2.2 Density Functional Theory

2.2.3 Hohenberg-Kohn and Kohn-Sham formalism

Density functional theory is based primarily on two theorems by Hohenberg and

Kohn (11). The first one states:

The all electron many body ground state wavefunction Ψ(r1, . . . , rn)

of a system of n interacting electrons is a unique functional of the

electronic density n(r).

Ψ(r1, . . . , rn) = Ψ[n(r)](r1, . . . , rn) (2.10)

n(r) =

∫
d3r2

∫
d3r3 ...

∫
d3rn |Ψ(r1, . . . , rn)|2(2.11)

The immediate consequence of this theorem is that all physically measurable

quantities based on the electronic structure are in fact unique functionals of the

electronic ground state density alone. Note that in general, there is no closed

expression for these functionals.

The proof of this theorem is based on the variational Ritz principle: The

wavefunction which minimizes the energy functional, i.e. the expectation value

of the Hamiltonian, is the ground state solution of the Schrödinger equation.

In Eq. (2.7), the electronic Hamiltonian is completely determined by the

Coulomb potential of the nuclei, which can be generalized to a universal ex-

ternal potential v(r). The all electron wavefunction being well defined through

the variational principle from this fixed Hamiltonian, it follows that this wave-

function is a functional of this external potential. Thus, the Hohenberg Kohn

theorem as stated above is equivalent to saying that the ground state electronic

density determines the external potential. It shall be noted here that this ex-

ternal potential has nothing to do with the Coulomb potential the electronic

density creates by itself, this interaction is taken into account by the second term
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2.2 Density Functional Theory

in Eq. (2.7). Assume there were two external potentials v and v′ differing by

more than a constant and leading to the same ground state density n. This

density would be obtained through the solutions Ψ and Ψ′ determined from the

variational principle of the corresponding Hamiltonians H and H′, respectively.

Then, the following inequalities hold:

E0 = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (2.12)

E ′
0 = 〈Ψ′|H′|Ψ′〉 < 〈Ψ|H′|Ψ〉 (2.13)

Adding Eq. (2.12) to Eq. (2.13) yields

E0 + E ′
0 < 〈Ψ′|H|Ψ′〉+ 〈Ψ|H′|Ψ〉

= 〈Ψ′|H′|Ψ′〉+ 〈Ψ′|H −H′|Ψ′〉

+〈Ψ|H|Ψ〉+ 〈Ψ|H′ −H|Ψ〉

0 < 〈Ψ′|H −H′|Ψ′〉+ 〈Ψ|H′ −H|Ψ〉. (2.14)

But since the difference of the two Hamiltonians in Eq. (2.14) is equal to the

difference of their external potentials, this becomes:

0 < 〈Ψ′|v − v′|Ψ′〉+ 〈Ψ|v′ − v|Ψ〉. (2.15)

This external potential, however, is a local operator, so that it can be expressed

as a simple integral:

0 <

∫
d3r [v(r)− v′(r)] |Ψ′|2(r) + [v′(r)− v(r)] |Ψ|2(r). (2.16)

But since the two solutions Ψ and Ψ′ were supposed to give the same electronic

density, |Ψ′|2(r) = |Ψ|2(r) and the right hand side of Eq. (2.16) vanishes and the
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2.2 Density Functional Theory

inequality results in a contradiction

0 < 0. (2.17)

Therefore, there cannot be two external potentials that yield the same electronic

density. Or, in other words, a given electronic density can be uniquely assigned

to one external potential.

In this theorem, it is important to note that it can not be applied to any

arbitrary density. Only densities that result from the solution Ψ of the true

Schrödinger equation by Eq. 2.11) can be assigned to the originating external

potential. If a density can be obtained this way, it is said to be v-representable.

The second Hohenberg-Kohn theorem is essentially a minimum principle for

the density. In contrast to the ordinary variational principle, which is formulated

only with respect to the wavefunctions in combination with the energy functional,

it states:

For all v-representable densities n, the one that minimizes the energy

functional with a given external potential is the ground state density,

i.e. the density which corresponds to the solution of the Schrödinger

equation.

The Hohenberg Kohn theorems show that it is possible in principle to calculate all

quantities of physical interest from the electronic density alone. The remaining

problem, how to find this density in practice, is more involved than it seems at

first glance. In terms of wavefunctions, the total electronic energy is given by the

expectation value of the Hamiltonian, Eq. (2.7):

Eel = Etot[Ψ] =

〈
Ψ

∣∣∣∣∣
∑

i

−1

2
∇2

i +
1

2

∑

i 6=j

1

|ri − rj| +
∑

i

vext(ri)

∣∣∣∣∣ Ψ

〉
.(2.18)
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Here and in the following, calligraphic letters indicate a functional, whereas arabic

ones designate a scalar quantity.

There are no closed expressions to calculate the first two parts of the total

energy directly from the electronic density only, because the involved operators

∇i and 1
|ri−rj | act on individual orbitals. In order to turn DFT into a practical

tool for real calculations, Kohn and Sham (12) proposed an indirect approach to

this functional by introducing a fictitious system of independent, non interacting

electrons. Their goal was to tune the electrical potential of this fictitious system in

such a way that will eventually lead to the same electronic density as for the true

system. The idea is to define a new functional subtracting from Eq. (2.18) several

terms calculated from the wave function of a non interacting gas of electrons with

the same density as would have the exact solution of interacting particles. Let

|ϕi〉 be the single particle wavefunctions of the independent electron gas. Its

kinetic energy and density are:

T[ϕ] = −1

2

∑
i

〈ϕi|∇2|ϕi〉 (2.19)

n(r) =
∑

i

|ϕi(r)|2. (2.20)

This density is by construction equal to the one of the interacting electrons. If

the density were a classical charge distribution, its interaction energy would be:

EH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| . (2.21)

EH [n] is called the Hartree energy of the system. Finally, the interaction with

the external potential remains:

Eext[n] =

∫
d3r vext(r)n(r) (2.22)
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2.2 Density Functional Theory

Thus, the Kohn Sham energy functional of the fictitious non interacting system

is:

EKS[n] = T[ϕ[n(r)]] + EH[n] + Eext[n]. (2.23)

Substitution of T, EH and Eext in the energy functional of the interacting sys-

tem introduces an error even when assuming identical electronic densities. The

error contains all many body effects which cannot be treated in an exact way.

This difference between the correct functional and the one which can be com-

puted, EKS, shall be compensated by the exchange-correlation functional Exc of

the system, which still needs to be defined. Formally, it is given by the difference

between Eq. (2.18) and Eq. (2.23):

Exc[n] = Etot[n]− EKS[n]. (2.24)

If this functional is known, one is able to compute the ground state density of

interacting system by minimizing the total energy EKS +Exc. However, no closed

expression has been found up to date for this. Several approximations for Exc

proposed in literature are discussed in the next section.

The minimization of the total electronic energy functional must be done re-

quiring the electronic wavefunctions be orthonormal to each other:

〈ϕi|ϕj〉 = δij ∀i, j. (2.25)

This is achieved by a Lagrange multiplier method (66) in combination with

the stationarity condition for the energy functional:

δ

δϕi(r)
(EKS + Exc) = 0. (2.26)
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2.2 Density Functional Theory

This technique yields the Kohn Sham equations, which read:

[
−1

2
∇2 + vH(r) + vxc(r) + vext(r)

]
ϕi(r) = εi ϕi(r). (2.27)

Here, εi are the eigenvalues of the KS Hamiltonian and the potentials are the

derivatives of the corresponding energy functionals with respect to the density:

vH(r) =
δ

δn(r)
EH[n] =

∫
d3r′

n(r′)
|r− r′| (2.28)

vxc(r) =
δ

δn(r)
Exc[n] (2.29)

vext(r) =
δ

δn(r)
Eext[n] =

∑
I

QI

|r−RI | (2.30)

Since these potentials still depend on the density, Eq. (2.27) has to be solved

self-consistently. For a density computed from a set of trial wavefunctions, the

potentials are calculated, and inserted in (2.27). Then, a better set of trial

wavefunctions is obtained and the procedure is repeated until the changes in the

orbitals and the density are neglegible according to a chosen convergence criterion.

At first sight, this single particle formulation due to Kohn and Sham has some

similarity with a mean-field approach: the independent electrons move in the

electrostatic field created by themselves and by the nuclei. However, the many

body effects are taken into account through the exchange-correlation functional,

even if there is no straightforward way to write it down.

2.2.4 Exchange-correlation functionals

As already mentioned, DFT is formally an exact theory, but the difficulties related

to the many body nature of the Schrödinger equation have only been reformu-
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lated in the exchange-correlation energy functional. To proceed to a practical

calculation, an approximation has to be found for this expression. Even if nowa-

days, where there is a tendency towards more elaborate theories, a very popular

one is the local density approximation (LDA) which yields good results in a large

number of systems and which is still used in ab initio calculations (13; 15).

In this approximation, the exchange-correlation energy functional is chosen

to have the same formal expression as the one of a uniform electron gas with the

same density:

ELDA
xc =

∫
d3r εxc(n(r)) n(r), (2.31)

where the function εxc(n(r)) depends locally on the density at the position r.

This function has been calculated through a Monte Carlo simulation (67), pro-

viding the total energy of the ground state of a homogeneous interacting electron

gas. This data, which was obtained for several densities, has been parametrized

(68), yielding a function usable in Eq. (2.31). Considering the way this approx-

imation has been obtained, it is obvious that for a uniform system, it is exact.

Furthermore, it is expected to be still valid for a slowly varying electronic density.

In other cases, its behaviour is not well controlled. It is used anyhow, mainly

because of its ability to reproduce experimental ground state properties of many

systems. Although there is no direct proof why it works correctly, it turns out

that LDA can successfully deal with atoms, molecules, clusters, surfaces and in-

terfaces. Even for dynamical processes like the phonon dispersion, it has been

shown to yield good results (69; 70). However, in the course of time, many sys-

tems have been found that are incorrectly described by LDA. The most popular

examples of this class are dielectric constants and related quantities, as well as

weak bonds, in particular hydrogen bonds. In the field of metals, the ground
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state structure of crystalline iron is predicted to be paramagnetic fcc instead of

ferromagnetic bcc (71).

Various corrections have been introduced in the course of the years to improve

the local density approximation, but none of them has yet been generally accepted

as being ’the best’. The class of gradient-corrected (GC) functionals can in many

situations significantly increase the accuracy of DFT. These functionals assume

that the exchange correlation energy does not only depend on the density, but

also on its spatial derivative:

Exc[n,∇n] =

∫
d3r εxc[n(r),∇n(r)] n(r) (2.32)

Among the GC schemes two of the popular ones, also used in this work, are

the Perdew-Burke-Ernzerhoff (PBE) (16) functional and the BLYP functional,

which is constructed from the exchange functional of Becke (17) and the corre-

lation functional of Lee, Yang, and Parr (18). For illustration, the the exchange-

correlation function for the BLYP functional is given below:

εxc = εxc[n(r),∇n(r)]

= −
(

CX + β
x[n]2

1 + 6β sinh−1 x[n]

)
n1/3

−a
1 + b n−5/3

[
CF n5/3 − 21

9
tW [n] + 1

18
∇2n

]
e−c n−1/3

1 + d n−1/3
(2.33)

x[n] =
|∇n|
n4/3

(2.34)

tW [n] =
1

8

|∇n|2
n

− 1

8
∇2n (2.35)

where for simplicity, an implicit dependence n ≡ n(r) is assumed. The parameters

CX , CF , β, a, b, c, d are chosen in such a way that to fit the known exchange-
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2.3 Pseudopotential approximation

correlation energy of selected atoms in their ground state.

2.3 Pseudopotential approximation

The Kohn Sham equations, Eq. (2.18), can be solved expanding the KS orbitals

in a complete set of known basis functions. Among the various existing possi-

bilities, only the plane wave (PW) basis set shall be discussed in further detail.

When describing a periodic system, they have invaluable numerical advantages,

besides their conceptual simplicity. PWs allow a simple integration of the Pois-

son equation for the calculation of the Hartree potential, Eq. (2.21), and for the

calculation of the kinetic energy expression, Eq. (2.19).

Due to the large oscillations of the core orbitals in the neighborhood of

the atoms, plane waves cannot be used directly in the Kohn Sham formalism,

Eq. (2.27). These oscillations would require an enormous basis set size to be

described with acceptable resolution. However, the total energies associated with

the core orbitals are several orders of magnitude larger than those of the valence

band wavefunctions. Further, chemical reactions involve exclusively the valence

electrons which are relatively far away from the nuclei. In contrast to this, the

core electrons remain almost unaffected by the chemical bonding situation. They

can be approximated to be “frozen” in their core configurations. This approxi-

mation considerably simplifies the task of solving the Kohn Sham equations, by

eliminating all the degrees of freedom related to the core orbitals.

This process of mapping the core electrons out of Eq. (2.27) is done by the

introduction of pseudopotentials. In the Hamiltonian, the nuclear potential is

replaced by a new one, whose lowest energies coincide with the energies of the

valence electrons in an all-electron calculation. In addition, this pseudopoten-

tial is required to reproduce the shape of the valence wavefunctions in regions
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2.3 Pseudopotential approximation

sufficiently far from the nucleus. Close to the nucleus, the strong oscillations of

the valence orbitals due to orthogonality requirements in the all-electron case are

smoothed out.

In a typical pseudopotential, there is an attractive Coulomb term, whose

charge is given by the atomic valence, as well as a short-ranged term, which

is supposed to reproduce the effects of core-valence orthogonality, core-valence

Coulomb interaction, exchange and correlation between core and valence. In a

practical pseudopotential, these requirements are only partially satisfied. Nev-

ertheless, it turns out that pseudopotentials allow the description of the valence

properties up to a very good accuracy with a reasonable number of plane waves.

Common pseudopotentials are mostly norm-conserving. This means that in

addition to reproducing the all-electron valence wavefunctions outside a certain

core radius, the charge of the pseudo-wavefunction inside this core region is re-

quired to be identical to the corresponding charge in an all-electron calculation.

This can be achieved through non-local pseudopotentials of the form:

VI(r) = V loc
I (r) +

lmax∑

l=0

V nl
I,l(r) Pl (2.36)

where Pl is a projector on the angular momentum l:

Pl =
m=+l∑

m=−l

|l, m〉〈l,m| (2.37)

with the spherical harmonics |l, m〉, the eigenfunctions of the angular momentum

operator (L2, L3). The functions V loc
I (r) and V nl

I,l(r) are the local and nonlocal

radial parts of the pseudopotential, respectively, and their concrete forms vary.

These functions are optimized numerically in such a way that the criteria men-

tioned above are best satisfied. Several expressions have been proposed for V loc
I (r)
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and V nl
I,l(r) (72; 73; 74; 75; 76).

In general, it turns out that by means of pseudopotentials, the number of plane

waves necessary to obtain physically meaningful valence orbitals is drastically

reduced.

2.4 Plane wave representation

The Kohn Sham orbitals can be obtained from an expansion in a complete set

of known basis functions and solving the KS equations self-consistently. There

are several basis sets introduced in computational chemistry. However, since for

this thesis, mostly plane waves have been used, they will be refered as basis.

Apart for their intuitive concept, plane waves are more suited for calculations

of periodic solids, as they naturally have the desired periodicity. They have a

striking conceptual simplicity, and the kinetic energy and Coulomb interaction

expressions between them are straightforward to implement. In addition, plane

waves are not attached to the ions, so that moving the latter during a simulation

does not give rise to any Pulay forces (77). To obtain the electronic density

n(r) =
∑

i |ϕi(r)|2 from an electronic state, they have to be transferred to direct

space or R-space. This can be done very efficiently by using the Fast Fourier

Transformations technique (78).

One of their drawbacks is that fast oscillations in R-space cannot be rep-

resented easily. Nevertheless, adopting the pseudopotential approximation in-

roduced above the plane wave description is sufficiently accurate and provides

an efficient method to analyze extended systems, in particular under periodic

boundary conditions.

The electronic orbitals in a periodic system can be written according to
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2.4 Plane wave representation

Bloch’s theorem (59):

ψn,k(r) = ϕn,k(r) exp[ik · r], (2.38)

with a wavevector k, a band index n and a function ϕn,k(r) which is periodic in

space, with the periodicity of the primitive cell:

ϕn,k(r + R) = ϕn,k(r) (2.39)

for any lattice vector R. In the plane wave representation, this periodic function

can therefore be expanded as:

ϕn,k(r) =
1√
Ω

∑
G

cn,k,G exp[iG · r], (2.40)

where Ω is the volume of the primitive cell and G are the reciprocal space vectors.

These vectors are characterized through

1

2π
|G ·R| ∈ IN (2.41)

with IN representing the set of integer numbers and R being any lattice vector.

Thus, Eq. (2.39) is automatically satisfied. In fact, Eq. (2.40) is a discrete complex

Fourier series development of the wavefunction ϕn,k. The coefficients can be

obtained by means of the inverse transformation:

cn,k,G =
1√
Ω

∫

Ω

d3r ϕn,k(r) exp[−iG · r]. (2.42)

In practice, the wavefunction ϕn,k(r) is not known for all points r in space, but

rather on a finite mesh. Thus, the integral in Eq. (2.42) must be transformed
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into a discrete sum.

In the reciprocal space representation, the kinetic energy of an orbital can be

simply written as

Tn = −1

2
〈ϕn,k| ∇2 |ϕn,k〉 (2.43)

=
1

2Ω

∑
G

|k + G|2 |cn,k|2. (2.44)

The accuracy of a calculation is determined by the number of plane waves in the

series (2.40). In practice, this is commonly controlled through a maximum value

for the contribution to the kinetic energy expression, Eq. (2.44), called cut-off

energy Ec. Only those vectors G are taken into account which satisfy

1

2
|k + G|2 ≤ Ec. (2.45)

2.5 Molecular Dynamics

One important achievement of computational chemistry is the possibility of simu-

lating the time evolution of a system. This allows efficient scanning of the config-

urational space, as compared with geometry optimization procedures which can

easily be trapped in local minima which may differ from the correct equilibrium

geometry (this is especially true for large molecules like proteins). Furthermore, it

makes possible to observe chemically relevant events, compute activation barriers

or thermochemical properties.

Depending on the desired timescale and the phenomena one is interested in,

different approaches are available. For large systems or long timescales, the least

computationally demanding approach is based on classical molecular mechanics

(MM). For a more accurate description and to allow for chemical reactions, ab
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initio molecular dynamics is the method of choice, but the latter is also much

more expensive in terms of computational time.

In the following, we will briefly illustrate the principle of the classical molec-

ular dynamics and the Car Parrinello Molecular Dynamics method. Finally, for

large systems of which only a small part requires an accurate quantum descrip-

tion, the two previously mentioned methods can be combined into a so-called

hybrid QM/MM scheme which will be presented in section 2.7.

2.5.1 Equations of motion

The starting point for the solution of the equation of motion for a system of N

particles interacting via a potential Φ is the Lagrangian equation of the motion

(79):

d

dt

∂L

∂Ṙk

− ∂L

∂Rk

= 0, (k = 1, ..., 3N) (2.46)

where the Lagrangian L(R, Ṙ) is a function of the generalized coordinates Rk

and their time derivatives Ṙk. Such a Lagrangian is defined in terms of kinetic

and potential energies:

L = T − Φ. (2.47)

If we consider now a system of atoms, with Cartesian coordinates rI and mass

MI , then the kinetic energy reads:

T =
N∑

I=1

1

2
MI Ṙ2

I (2.48)

and the potential energy:

Φ = V (R1, ...,RN). (2.49)
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Using these definitions, Eq.(2.46) becomes:

MI R̈I = FI , (2.50)

and

FI = −∇RI
V, (2.51)

is the force on the atom I. The equation of motion (2.50) can be integrated

numerically. The simplest method of integration is the Verlet algorithm (80),

which is a direct solution of Eq. (2.50) using a finite-difference representation of

the time derivative.

R(t + δt) = 2R(t)−R(t− δt) +
δt2FI(t)

MI

. (2.52)

In this approach velocities do not appear at all. The velocities are not needed to

compute the trajectories, but they are useful for estimating the kinetic energy.

They may be obtained using finite differences:

Ṙ(t + δt) =
R(t + δt)−R(t− δt)

2δt
. (2.53)

Whereas Eq.(2.52) is correct to order δt4 the velocities from Eq.(2.53) are subject

to errors of order δt2(81). In order to solve this problem, several algorithms were

introduced. The one used in the calculations presented in this thesis is called

“velocity Verlet” (82) and reads:

R(t + δt) = R(t) + δtṘ(t) +
δt2FI(t)

MI

, (2.54)

and

Ṙ(t + δt) = Ṙ(t) +
1

2MI

δt[FI(t) + FI(t + δt)]. (2.55)
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The explicit treatment of the velocities not only gives a more accurate integration

scheme, but also allows the time step to be changed during the run and to control

the temperature by simple velocity scaling (83).

2.5.2 Car-Parrinello molecular dynamics (CPMD)

The molecular dynamics technique requires the calculation of the atomic forces

FI from the knowledge of the positions of the atoms. In the ab-initio molecu-

lar dynamics approach, these forces are directly computed from the electronic

orbitals of the system. This can be achieved by a regular solution of the elec-

tronic Schrödinger or Kohn-Sham equations for each atomic conformation, which

is commonly called Born-Oppenheimer molecular dynamics. The Car-Parrinello

approach which is outlined below and used throughout this thesis work is another

specific ab-initio molecular dynamics method, which allows the calculation of the

atomic forces ”on the fly”, meaning that the electronic orbitals are propagated

in time on the same footing as the atomic coordinates.

In Born-Oppenheimer MD the static electronic structure problem is straight-

forwardly solved, given in each molecular dynamics step the set of fixed nuclear

positions at that instance of time. The instantaneous forces on the nuclei are

obtained as gradients of the computed total electronic energy with respect to

nuclear positions. After the nuclei have been moved according to these forces

substituted into the classical Newtonian equations of motion, the new forces are

then obtained by re-solving the KS-equations 2.27 under the new external poten-

tial. The advantage of the scheme is a relatively big time step for the integration

of molecular dynamic equations, since no electronic dynamics is involved in the

time-depended equations of motion for the nuclei, i.e. they can be integrated on

the time scale given by nuclear motion. However, this means that the electronic
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density has to be fully optimized self-consistently for every timestep.

An alternative approach for ab-initio MD simulations which has turned out to

be more efficient in many cases was introduced by Car and Parrinello in 1985 (48).

This scheme has been used extensively since then for simulating real materials

previously inaccessible for such studies. The forces acting on the classical nuclear

degrees of freedom are calculated from the appropriate electronic ground state

along the trajectory. This involves adiabatically evolving of the ground-state

electronic wavefunction along with the nuclear motion by introducing a fictitious

classical dynamics on the electronic degrees of freedom, ( the KS orbitals). Car

and Parrinello postulated the following extended Lagrangian:

L(RI , ṘI , ϕi, ϕ̇i) =
∑

I

1

2
MIṘ

2
I +

∑
i

1

2
µi〈ϕ̇i|ϕ̇i〉 − Eel(RI , n(r))−

∑
i,j

Λij(〈ϕi|ϕj〉 − δij). (2.56)

Here, MI are the masses of the nuclei and µi (= µ) are the fictitious masses or

inertia parameters associated with the electronic degrees of freedom. RI are the

position vectors of the nuclei. The last term represents orthonormality require-

ments for the wavefunctions with associated Lagrangian multipliers Λij.

The physical total energy of the system, which is a sum of Eel and the kinetic

energy of nuclei, remains always close to the exact Born-Oppenheimer surface,

with fluctuations of a magnitude comparable to the fictitious kinetic energy of

electronic orbitals, the second term in 2.56. In the adiabatic limit, where elec-

tronic and nuclear degrees of freedom are decoupled, the Car-Parrinello approach

yields accurate nuclear trajectories. Proper adiabaticity is ensured by the appro-

priate choice of the fictitious electron mass µ (84). While a small value necessi-

tates a short timestep for the integration of the equations of motions, too large
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of a value will increase the coupling of the nuclear and electronic subsystems. An

optimal range for the fictitious electron mass turns out to be from 200 up to 900

a.u. depending on the system under consideration. Also the available computer

resources play a role, since smaller µ leads to faster fictitious electronic dynamics

and hence requires a smaller time step, which in turn means more MD steps for

the same simulation time.

The Car-Parrinello forces deviate at most instants of time from the exact

Born-Oppenheimer force. However, this does not disturb the physical time evo-

lution due to the intrinsic averaging effect of small-amplitude high-frequency os-

cillations within a few molecular dynamics time steps, i.e. on the sub-femtosecond

time scale which is irrelevant for nuclear dynamics.

2.5.3 Empirical Force-Fields

In Molecular mechanics calculations, the interactions between particles are mod-

eled using empirical force fields insead of energy expression based on electronic

structure calculations. The approach of molecular mechanics is much more radi-

cal, assuming a simple empirical ”ball-and-spring” model of molecular structure.

Atoms (balls) are connected by springs (bonds) that can be stretched or com-

pressed by intra or intermolecular forces. Hence, the basis of molecular mechanics

is that a good estimate of the geometry of a molecule can be obtained by taking

into account all the forces between the atoms, calculated using a mechanical ap-

proach. For example, bonded atoms are treated as if they are held together by

forces that behave as mechanical springs, and non-bonded interactions are taken

to be made up of attractive and repulsive forces that together produce the typi-

cal van der Waals curve. The parameters that define the strength of the springs

or the steepness of the van der Waals curves are derived, in the first instance,
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from experimental observables such as infrared vibrational frequencies and gas

compressibility data. However, the parameters are normally modified empirically

to enhance the reproduction of experimentally determined values as geometries

or thermodynamic stabilities. To optimize the geometry of a molecule, the total

energy that arises from these forces or stresses, is minimized by computational

methods. The minimized total energy is taken to be an indication of the strain

present in the molecule. It is related to the molecule’s potential energy and

stability.

Some of the potential energy functions used to calculate the total strain energy

of a molecule are similar to the functions used in the analysis of vibrational

spectra. Because the parameters used to derive the strain energies from these

functions are fitted quantities, which are based on experimental data (for example

X-ray structures). The quality of such calculations is strongly dependent on the

reliability of potential energy functions and the corresponding parameters (the

force field). Thus, the selection of experimental data to fit the force field is one

of the most important steps in a molecular mechanics study. An empirical force

field calculation is in essence a method where the structure and the strain energy

of an unknown molecule are interpolated from a series of similar molecules with

known structures and properties.

The basic idea of classical molecular dynamics approach is to represent every

atom (or group of atoms) by an interaction site associated with an unpolarizable

point charge, and to compute forces from an empirical force field designed to fit

experimental data like geometries and vibrational frequencies for example. The

classical equations of motion derived from these forces can then be integrated

over time. The AMBER force field (47), which was used in this work, has the
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following functional form:

E =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2

+
∑

dihedrals,n

Vn

2
[1 + cos(nφ− γ)] +

∑
i<j

Aij

R12
ij

− Bij

R6
ij

+
∑
i<j

qiqj

εRij

(2.57)

The two first terms describe the potential energy due to bond and angle distor-

tions by a simple harmonic potential. Dihedral angles are treated by a sum of

2π
n

periodic functions to represent the rotational barrier(s) encountered during

a complete rotation around the corresponding bond. The Van der Waals inter-

actions are modelled by a function with an attractive part decreasing with 1
R6

and a repulsive part decreasing more rapidly with 1
R12 . The potential energy

contribution arising from this function is very high for small distances, gets to a

minimum and then tends to 0 as the distance increases. Finally, the electrostatic

interactions are taken into account by a simple Coulomb potential. It has to be

mentioned that beyond a cutoff radius, non-bonded interactions are not treated

explicitely. Van der Waals interactions are estimated by a continuum model, and

electrostatic interactions by the particle-mesh Ewald summation method (79).

Classical methods are well suited for studying large systems – like proteins –

for which quantum calculations are impossible up to now. They are also a useful

tool for studying compounds in solution, by using a periodically repeated box of

solvent. They allow calculations on long timescales (several ns), and make it pos-

sible to observe, for example, diffusion or solvent molecule exchange. The main

limitation of these models is that they do not take the electronic structure of the

molecules explicitely into account. Therefore, they cannot simulate events like

chemical reactions, where bonds are broken or formed, photoexcitation or elec-

tron transfer. Furthermore, they cannot accurately represent any molecule. The

force fields are developed to fit experimental data for a certain type of molecules,
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and cannot be transferred to very different ones. For example, one cannot expect

a good representation of small strained organic molecules or metal-ligand coor-

dination from a force field which has been developed for proteins without adding

ad-hoc parameters, or even changes in the functional form.

Despite its overwhelming success, the bias that is necessarily introduced when

the interatomic interactions are described through empirical potentials implies

serious drawbacks. Apart from a lack of description of changes in chemical bond-

ing, the transferability of the force field parameters can often be questioned.

Moreover, induced polarization and charge transfer effects are difficult to imple-

ment and are currently neglected in most MD studies. As a rule of thumb, a

first-principles description is necessary when the chemistry of the system plays

an important role, e.g. when there is making and breaking of chemical bonds,

changing environments, variable coordination, etc. If this is not the case, then it

is better to use classical MD, which allows for much longer simulations of much

larger samples, leading to a significant improvement in the statistics required to

estimate thermodynamic quantities.

Force-field optimization. Force field parameters are fitted to reproduce

chemical-physical properties of a class of model compounds representative of the

biomolecules of interest. To this end quantum mechanics geometry optimizations

are used to obtain bond and valence angle equilibrium constants and the dihedral

phase and multiplicity, whereas vibrational spectra calculations are used to adjust

force constants. Lennard-Jones parameters are fitted to reproduce observable

such as enthalpies of vaporization, free energies of solvation and densities of

molecular liquids. Atomic charges are optimized to reproduce the QM-determined

electrostatic potential (ESP) on a grid surrounding the molecule. As ESP charges

tend to be undetermined, a widely used approach is to use restraints during fitting

(usually to Hirshfeld charges), a method referred as Restrained ESP (RESP) (85).
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Of course gas-phase calculations do no properly represent some of the condensed

phase properties, thus a further refinement based on available experimental data

is necessary.

2.6 Realization of MD in Statistical Ensembles

The idea behind MD simulations echoes the way real-life experiments are per-

formed. The equilibrium behavior of a complex system is studied by following its

time evolution in the absence of external impulses and thermodynamic properties

are calculated from averages over a sufficient long trajectory. Such a procedure

is well founded only for the so-called ergodic systems, which are assumed to

fully sample the accessible phase space during the observation (i.e. simulation)

time. The ergodic hypothesis for a system is described by the microcanonical

distribution (NVE). The dynamics of such system follows the Hamiltonan (or

the equivalent Newtonian) laws of motion:

Ṙi =
pi

mi

(2.58)

ṗi = Fi (2.59)

However, the conditions of constant volume V , number of particles N and

total energy E do not fit those in which experiments are usually made. Thus,

it is necessary to define schemes allowing for the evolution of systems under

conditions of constant volume and temperature (NV T ), or constant pressure

and temperature (NPT ), corresponding to typical real-life situations.

There are several methods for obtaining such an ensemble in a MD simulation.

Anderson has proposed to include stochastic “collisions” of the particles, i.e. at
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intervals some or all of the velocities are resampled according to the Boltzmann

distribution (86). This method has the disadvantage that it does not yield a con-

tinuous trajectory with well defined conserved quantities anymore. The approach

used in this work has been developed based on the extended Lagrangian formal-

ism, originally proposed by Nosé (87), then extended by Nosé-Hoover (87; 88)

and finally brought to its final form by Tuckerman and Martyna (83). It is based

on the introduction of new, unphysical degrees of freedom that represent the

coupling to the heat bath. The equations of motion are defined as follows:

Ṙi =
pi

m
(2.60)

ṗi = Fi − pη

Q
pi (2.61)

η̇ =
pη

Q
(2.62)

ṗη =
3N∑
i=1

p2
i

mi

−NkT (2.63)

where {Ri}, {pi} are coordinates and and momenta of the N particles with

masses mi, the forces Fi are derived from the N -particle potential. The two

nonphysical variables η and pη in Eq. 2.63 regulate the fluctuations in the total

kinetic energy of the physical variables, and can be thus regarded as an effective

“thermostat” for the physical system. The parameter Q controls the strength

of the coupling to the thermostat: high values result into a low coupling and

viceversa.

Additionally, the equation for η helps with the interpretation of the parameter

Q. It can be considered the mass of the new, fictitious particle. This mass has

to be chosen in a way, that the coupling between the thermostat and the real

degrees of freedom is optimal. Often, the fastest vibrational frequency of the
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real system is taken as a good reference for Q. Eq. (2.62) reveals, that the

momentum pη acts as a friction term for the momenta pi. It is increased, if the

kinetic energy of the real system is greater than NkT , decreased if the energy

is smaller. These equations of motion are supposed to reproduce the desired

Boltzmann distribution for the canonical ensemble.

Unfortunately it turns out, that even for the harmonic oscillator this is not

the case. However, the problem can be cured, if not only a single thermostat, but

a chain of thermostat is used. That means, that the thermostat η itself is coupled

to a second thermostat, which is coupled to a third one, and so on. Tuckerman

and Martyna showed, that a chain of length 3 is sufficient to yield almost perfect

agreement with the theoretical distribution. The equations of motion for the

general case can be found in (83). Finally, it should be noted that within this

extended system approach, the conserved quantity is not the total energy of the

real system but the extended Hamiltonian below:

H′ = V (R) +
3N∑
i=1

p2
i

2mi

+
p2

η

2Q
+ NkTη . (2.64)

Therefore, this quantity needs to be monitored during the simulation and is a

measure for the quality of the MD run. A good conservation of H′ lends credence

to the choices of the parameters used.

2.7 Hybrid DFT-QM/MM Simulations

is the realistic description of large systems such as biological systems (e.g., reac-

tions catalyzed by enzymes) or of molecules in solution.

In many cases, the realistic description of large systems such as biological

systems (e.g., reactions catalyzed by enzymes) or of molecules in solution is not
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only prohibitively expensive, but also not particularly interesting. Often, the

chemically or biologically relevant parts are located in a small region, as in the

case of a molecule in solution or the active site of an enzyme. In such cases, only

this sub-system merits the computationally intensive treatment with quantum

mechanical methods (QM) whereas the large remaining part of the system can

be described with less accurate empirical molecular mechanics (MM) approaches.

For this class of problems the so-called quantum mechanical/molecular mechan-

ical (QM/MM) approach offers a satisfactory compromise between accuracy and

computational efficiency.

2.7.1 The QM/MM Approach to Complex Systems

Pure Quantum calculations are today restricted to the treatment of at most a

few hundreds of atoms. Classical Molecular Mechanics, on the other hand, can

deal with systems containing 105 - 106 atoms, but cannot take into account the

quantum nature of chemical bonds. Since most of times the relevant chemistry

of a biological process is restricted to a small subset of atoms, hybrid schemes

have been developed that model different parts of the system at a different level

of modeling. These schemes allow to evaluate the effect of the biological environ-

ment on chemical processes, and represents thus an improvement over a quantum

calculation in vacuo. In particular a widely adopted approach is to partition the

system into two regions and to treat one at Quantum Mechanics and the other at

Molecular Mechanics levels. Such approach, as implemented in the CPMD (49)

code, has been used in the works reported in this thesis, and is based on a single

hybrid Hamiltonian:

H = HQM + HMM + HQM/MM (2.65)
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where HQM is the quantum Hamiltonian, HMM is the Molecular Mechanics

Hamiltonian and HQM/MM is the Hamiltonian describing the interaction between

the two subsystems. This section partly follows the work by J. VandeVondele

(45; 50; 89).

2.7.2 The partitioning of the system

A central decision in the modelling of any system within a QM/MM approach

is the partitioning into QM subsystem and MM environment. A larger QM

model increases the accuracy and predictive power of the simulation, however,

the computational cost of a QM/MM simulation is almost completely determined

by the size of the QM subsystem, which for a typical plane wave based DFT

implementation, scales in general with roughly the third power of the system

size. An appropriate partitioning strongly depends on the system under study,

and on the quality of both the MM model and the quantum mechanical interaction

potential. With increasing accuracy of either of the two facets, more challenging

problems can be studied with eventually smaller sizes of the QM system. An

adequate QM method will be needed to describe all the chemical and physical

aspects of molecular interactions that are not taken into account by the MM

model. Given the current limitations of classical force fields in describing reactive

events such as bond breaking, charge transfer or polarisation, a minimal QM

model should at least contain the parts of the system that undergo significant

changes in their electronic structure. One of the simplest examples (see figure 2.1)

for a possible choice of QM/MM partitioning is a typical solute/solvent system

in which the former is treated quantum mechanically and the latter classical. In

this specific case, the interactions between the two subsystems do not involve any

chemical bonds and the two zones are perfectly differentiated, that can be taken
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QM

MM QM/MM

Figure 2.1: Schematic representation of the separation of the total system into
two subsystem used in the QM/MM model.

into account as described in Section 2.7.3

A very important issue related to QM/MM calculations is the treatment of the

QM/MM boundary region. For solvent effects on organic molecules, the division

in a QM and a MM system is straightforward and does not cause any problems.

However, for a protein this no longer holds; in order to make a division in a QM

and a MM system, one has to cut through covalent bonds (see figure 2.2).

For instance, in Retinyl palmitate structure, if the first residue of this amino

Figure 2.2: An illustration of the QM/MM partitioning of Retinyl palmitate
structure. The active part of the system is treated with a QM method while the
rest of the protein is the MM part. The QM model is shown with the solid lines
representation, while the MM part is represented using thin lines. The carbon
atom labeled with “P“ indicates the link-atom or a pseudopotential that is needed
to describe the boundary between the QM and the MM fragments of the total
molecules.
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acid (consisting of Retinol) is supposed to be put in the QM system due to their

highly complex electronic properties and their directional nature of bonding, and

the rest residues in the MM system, residue 1 is left with dangling bonds. In this

case the way to link the QM and MM part is not straightforward. A problem

occurs at this frontier because the electron from QM part involved in the covalent

bond with the rest MM is not paired with any other electron because in molecular

mechanics the electrons of MM part are not explicitly represented. This unpaired

electron would give a radical character in the QM part that would change all the

chemistry. For the MM system this poses no problem, as the interaction with the

QM system is treated on a MM level in which the QM system can be treated as

if it were a MM system.

Several options are available to circumvent the problem with the dangling

bonds of the QM system. One option, that is preferred if one uses plane-wave

basissets, is to use pseudo potentials. However, for regular QM calculations

with atomic basisfunctions this is less straightforward to implement. Another

solution is to use localized orbitals, but the most commonly chosen way to solve

the problem is to use link atoms. In this method, capping (link) atoms are

added to the QM system in order to fulfil the valency of the system, which are

normally chosen to be hydrogens. The QM calculation is then performed on the

capped QM system, while the capping atoms are not involved in the interaction

between the QM and MM systems. We will describe in detail in Section 2.7.4

how a covalent bond can be ’cut’ and ’terminated’, so that the influence of the

QM/MM boundary can be kept minimal.
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2.7.3 Non-bonded QM/MM interactions

So far the partitioning of the MM and QM system has been described. The next

step is the detailed interaction between the QM and the MM system, focusing on

the non-bonded interaction terms. These non-bonded interactions are of primary

importance since they can impose additional steric constraints on the QM sub-

systems, and can significantly stabilise certain states by electrostatic interactions.

Different QM/MM techniques are available in the literature (90; 91; 92; 93;

94; 95; 96; 97), which differ for instance in how the interface between the MM and

QM parts is treated and or in how the environment is simulated. The non-bonded

interactions between the MM and the QM parts are modelled as:

HNB =
∑

i∈MM

qi

∫

Ω

d3r
ρ(r)

|r− ri| +
∑

i∈MM, j∈QM

vvdW (rij) (2.66)

where ρ(r) is the density of the electrons and the nuclei of the QM system,

qi are the MM partial charges at positions ri , and vvdW is the van der Waals

interactions between the MM-atom i and the QM-atom j.

The use of this expression is however problematic if the QM system is close

to some positively charged MM atoms since the electrons will be attracted by

the MM charges and the density overpolarized. This so-called spill-out effect is

non physical and is particularly severe when a plane-wave basis is used as in the

CPMD(49) code. To avoid this problem, a screening term is introduced for the

point charges which are in proximity of the QM system. The electrostatic interac-

tion of electrons with the close MM atoms (NN) in the non-bonded Hamiltonian

is rewritten as
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HNB−SR =
∑

i∈MM

qi

∫

Ω

d3r ρ(r) vi(|r− ri|) (2.67)

In this definition vi(r) is a function which goes to 1
r

for large values of r and

to a constant for small r, preventing a too strong attractive interaction between

the electronic density ρ and positive qi at short range. It takes the following

functional form:

vi(r) =
rn
ci − rn

rn+1
ci − rn+1

, (2.68)

with n = 4 and rci the covalent radius of atom i.

This functional form resembles that obtained by smearing the MM point

charges into Gaussian charge distributions of finite width. In the context of

plane-waves, the QM/MM scheme devised above cannot be used for practical

purposes without an additional approximation. Indeed, the quantum charge dis-

tribution is distributed on a grid of Nr ∼ 1003 points, so that an exact evaluation

of EQM/MM would involve Nr × NMM operations, with NMM ≥ 105. There-

fore, this interaction term is split into a short and a long-range part, in a way

reminishent of the Ewald method (79). The direct evaluation of the integral in

Eq. (2.67) is done only for a subset (NN) of MM atoms. The latter is defined in

such a way as to include all non neutral atoms belonging to charge groups with

at least one atom inside a shell of thickness Rc around any QM atom. The rest

of MM atoms belong to the second shell. For those, the electrostatic interaction

with the QM system is calculated using for the charge density of the QM system

a multipolar expansion around the geometrical center of the quantum system

r̄α = 1/NQM

∑
J rJ up to the quadrupole order. In particular, the electrostatic
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interaction Hamiltonian can be expressed as:

HNB =
∑

i∈NN

qi

∫

Ω

d3r ρ(r) vi(|r− ri|) + HNB−LR (2.69)

where HNB−LR is defined as:

HNB−LR = C
∑

i/∈NN

qi

τi

+
∑

α

Dα
∑

i/∈NN

qi

τ 3
i

τα
i +

1

2

∑

αβ

Qαβ
∑

i/∈NN

qi

τ 5
i

τα
i τβ

i (2.70)

C =

∫
drρ (r) (2.71)

Dα =

∫
drρ (r) (rα − rα) (2.72)

Qαβ =

∫
drρ (r)

[
3 (rα − rα)

(
rβ − rβ

)− δαβ |r − r|2] (2.73)

where τα
i = rα

i − r̄α
i ; This long range electrostatic scheme is based on a

multipole expansion of the QM density and effectively couples the monopole

(C), dipole (Dα) and quadrupole (Qαβ) of the electronic charge distribution with

the far MM atoms (LR).

This two level coupling scheme can also be refined introducing an intermediate

third layer in which the charge density of the QM system is replaced by variational

D-RESP charges (89). These charges are obtained by a fit to the electrostatic

field at the classical atoms close to the QM-region (i ∈ NN) and restrained to
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the corresponding Hirshfeld charges with a quadratic penalty function. Thus, the

charges will reproduce the electrostatic potential due to the QM-charge density,

which is polarized by the MM-part including thus automatically polarization

effects. Furthermore, since they are evaluated at every MD-step, fluctuations

during the MD can be monitored easily.

In order to evaluate the electrostatic interactions within the first shell, the

potential at each MM-atom in this part has to be calculated according to Eq. (2.74

and thus at each MM-atom the electrostatic potential Vi is given by:

Vi =

∫

Ω

d3r ρ(r) vi(|r− ri|) (2.74)

The D-RESP charges are then obtained by minimizing the norm of the fol-

lowing restraining function by a least squares fit:

E =
∑

i∈NN

(
∑

j∈QM

qD
j /rij − Vi)

2 + W (qD
j ) (2.75)

where W is a restraining function, which makes use of the Hirshfeld charges

and is of the form:

W (qD
j ) = wq

∑

k∈QM

(qD
k − qH

k ) (2.76)

where wq is an adjustable parameter and the Hirshfeld charges are given by:
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qH
k =

∫
drρel(r)

ρat
k (|r − rk|)∑
i ρ

at
i (|r − ri|) (2.77)

where ρat
k is the atomic (pseudo) valence charge density of the atom k and Zk =

∫
drρat

k is its valence. The Hirshfeld charges provide a physically sound restraining

set, since they are directly related to the charge distribution of the system and

therefore more physical than a restraint to neutral charges.

One limitation of this method is that it still needs a fixed van der Waals

parameter for the QM/MM interactions. QM atoms that undergo a significant

change in van der Waals radius cannot be described with a time-independent,

classical van der Waals radius. In principle, a pseudopotential that takes into

account the van der Waals repulsion could be parametrized for all the MM atom

types, as was done in (98) for water. If the pseudopotential is local, and has a

simple analytical form, this could be included in the code without a significant

increase of computational cost.

2.7.4 The bonded QM-MM interactions

In this section, the treatment of bonded QM-MM interactions is described, i.e.

how a chemical bond through the QM-MM interface is treated in this approach.

This is an important question, and several approaches exist in the literature (99;

100; 101; 102; 103; 104). A good strategy is to design the cut in such a way that

the MM and QM system have, as computed based on the force field charges, an

integer charge, since otherwise artifacts in the electrostatic interactions will be

introduced. The most tricky part is the cut between QM and MM system since

the valence shell of the QM atom, which is part of a mixed QM-MM bond is not

saturated, therefore the cut between QM and MM system has to be treated in
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special ways. An unsaturated bond of the QM system is a strong perturbation

of the electronic structure. Therefore the valence has to be saturated in such a

way as to make this perturbation as small as possible. The simplest solution is to

cap this bond with an atom or a group that makes a single covalent bond, e.g. a

hydrogen, a fluorine or a methyl group. If a cut through a single, non-polar bond

that is far away from the reactive center can be made the effect of those different

substituents will be small and the effect of the capping can be understood. If

the cut is close to the reactive center, through a conjugated system or a highly

polar bond, the effect will be larger. In that case, a careful consideration of the

minimum number of unpertubed bonds between the reactive center and the cut

will be necessary.

There exist several ways to remedy this problem, such as the link-atom ap-

proach, the frozen orbitals or monovalent pseudopotentials. In the first approach,

the last QM-atom is saturated by additional hydrogen atoms that is not present

in the real system, and that is located in an unphysical location, e.g. a hydrogen

between the C and P atom in figure 2.2. It should be pointed out that this strat-

egy introduces additional artifacts and a correction for the interactions between

the ghost atoms and the classical environment is required. The correct treatment

of this additional atom is problematic in the electrostatic coupling approach. The

QM-charge density will however be perturbed due to the presence of additional

hydrogen atoms.

The second consists of the use of a monovalent pseudopotential that replaces

one of the physical atoms situated at the position of the MM involved in the

bond crossing the QM/MM interface. The pseudopotential is empirical and has

only one valence electron. The parametrisation is such that it reproduces binding

properties typically found in a generic C-C apolar bond. As shown in figure 2.2,

we remark that from the partitioning point of view, the P boundary atom should
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be considered a quantum atom.

The advantages of this approach are that no additional degrees of freedom

are introduced and that more accurate pseudopotentials can be parametrized for

specific situations. E.g. a boundary P can be parametrized to have electronic

properties that resemble more those of the backbone than those of a methyl group.

It can be checked that the HOMO, LUMO, electronic gap, proton affinities of the

QM/MM system reproduce as good as possible these properties of a reference

full QM system.

In the boundary pseudopotential approach, the binding geometry over the in-

terface can be kept by the standard bonded terms of the force field. These terms,

i.e. bonds, angles, dihedrals, and exclusions are introduced, as soon as one of the

atoms involved in these terms belongs to the classical partition. Note that these

classical terms have not been parametrized to describe chemical reactions and

might have limited accuracy in cases where this boundary is strongly distorted.

Rearrangements of the QM system should not be hindered by these boundary

terms that might, as in the case of dihedral (1-4) interactions, extend quite far

into the quantum region. In Chapter 4, a new capping model is presented that

does not have this unwanted behavior; furthermore, the introduction of the new

parameters of capping atom is corrected for afterwards, and in principle its in-

troduction however be modelled accurately.

2.8 NMR chemical shifts

Knowledge of the electronic density (or electronic orbitals) is only one of the goals

of computational chemistry. In itself, the electronic density has only a limited

value, but many important physical and chemical quantities can be derived from

it. The most prominent ones are the equilibrium geometries and corresponding
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molecular energies, as well as atomic forces and dynamical conformations at finite

temperatures. Another very important class of quantities are response proper-

ties, like IR-, UV-, Raman and nuclear magnetic resonance (NMR) frequencies,

which can provide direct comparison of the computed spectroscopic parameters

with measured spectra. They can also be used for an indirect validation of com-

putational results obtained for properties which are not easily accessible from

experiment, like structural properties of low-ordered systems or the character of

an H-bond network. Being included in the same computational framework, the

calculation of spectroscopic parameters is a tool to enable the dialogue between

theory and experiment.

The NMR chemical shift is derived from the Larmor frequency of the nuclear

spin of an atom, which describes the precession of the spin when the system is

placed in a magnetic field. Since the electrons also react to the external field,

the total magnetic field responsible for this precession is the superposition of

the external field and the field induced by the electronic response. The latter

is heterogeneous field created by local ring currents of electronic orbitals. The

interaction of electron spins with external magnetic field is not considered here,

since for the closed-shell system the total electron spin is equal to zero. Hence,

non-equivalent atoms feel different total magnetic fields, and their nuclear spins

therefore have different energy levels. The nuclear shielding tensor is defined as

a proportionality matrix between the induced field at the position of a nucleus

and the externally applied field:

σ(R) =
∂Bind(R)

∂Bext
. (2.78)

In order to obtain this tensor numerically, the impact of the magnetic field on the
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electronic orbitals has to be calculated. It acts through a vector potential A(r)

in the Hamiltonian of the electronic system, whose effect on the orbitals is usu-

ally calculated by perturbation theory. The outline of the theoretical framework

described in detail in (105; 106) will be presented in the next sections.

2.8.1 Magnetic perturbation theory

According to the Maxwell’s equation, a magnetic field B is divergence-free and

therefore can be represented by a vector potential A which has to satisfy the

relation

B = ∇×A(r) (2.79)

The vector potential is an auxiliary quantity, it has no direct physical meaning.

For a given magnetic field, a whole class of vector potentials exist which fulfill

the constituting equation 2.79.

It contains a degree of freedom in form of an arbitrary scalar function Φg(r)

whose gradient may be added to A(r) without affecting the resulting magnetic

field:

A(r) 7→ A′(r) = A(r) +∇Φg(r) (2.80)

B′ = ∇× (A(r) +∇Φg(r)) = ∇×A(r) = B. (2.81)

Φg(r) is called the gauge function, and its choice should not affect any physi-

cal results (gauge invariance). A typical choice for A in the case of a desired

homogeneous magnetic field B is

A(r) = −1

2
(r−Rg)×B (2.82)
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where a particular class of gauge functions was taken. It obviously satisfies

eq. (2.79). A cyclic variable Rg is called the gauge origin of the vector potential

A and describes a translation of the origin of the coordinate system by Rg. This

gauge origin does not change the physics of the system, but furthermore it will

be shown that a careful choice of the gauge function is essential for ensuring good

numerical accuracy.

The incorporation of the magnetic field into the system’s Hamiltonian is done

by replacing the standard momentum operator by its generalized expression in

the presence of a magnetic field (107):

p̂ 7→ π̂ππ = p̂− eA(r̂) (2.83)

This generalized momentum replaces the standard momentum operator p̂ in the

Hamiltonian. Developing the latter in powers of the magnetic field (i.e. in powers

of A), this yields a linear and a quadratic term:

H(1) = − e

m
p̂ ·A(r̂) (2.84)

H(2) = − e2

2m
A(r̂) ·A(r̂). (2.85)

with the momentum operator p̂, and the charge e and mass m of the electron.

These modifications of the field-free Hamiltonian are treated within perturbation

theory and represent the first and second order perturbation Hamiltonians.

Density functional perturbation theory (DFPT), also known as the coupled

perturbed Kohn-Sham (KS) method (105; 106) provides the electronic linear

response |ϕ(1)
i 〉 to the magnetic field.

The DFT energy functional in the Kohn-Sham (KS) scheme denoted by EKS,

is modified by an additional term EB which describes the effect of an external
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magnetic field B. The additional contribution is very small compared to EKS

and can therefore be treated perturbatively:

EKS 7→ EKS + EB. (2.86)

Eq. (2.86) is expanded in powers of the perturbation, i.e. in the strength B of

the magnetic field:

EKS + EB = E(0) + B E(1) +
1

2
B2 E(2) + . . . (2.87)

The variational principle is applied to all orders that arise from the expan-

sion (106). At zero order, this formalism yields the usual Kohn-Sham equations:

H(0) |ϕ(0)
i 〉 = εi |ϕ(0)

i 〉 (2.88)

with the KS-Hamiltonian H(0), its energy eigenvalues εi and the corresponding

unperturbed Kohn-Sham orbitals ϕ
(0)
i . The expansion of the Hamiltonian and

the orbitals is done in complete analogy to Eq. (2.87):

H = H(0) + BH(1) +
1

2
B2H(2) (2.89)

|ϕi〉 = |ϕ(0)
i 〉+ B|ϕi

(1)〉+
1

2
B2|ϕ(2)

i 〉+ . . . (2.90)

The second order expansion of the energy functional results in a linear equation

(Eq. (34) of (105)) for the wavefunction components ϕi
(1) which are first order in

the magnetic field:

∑
j

(
H(0) δij − εij

) |ϕj
(1)〉 = −H(1) |ϕ(0)

i 〉 (2.91)

εij = 〈ϕ(0)
j | H(0) |ϕ(0)

i 〉 (2.92)
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where H(1) is the perturbation Hamiltonian. In the original formulation of

ref. (106), H(1)|ϕ(0)
i 〉 was written as the derivative of a perturbation functional

EB with respect to the KS orbitals. In the case of a finite molecular system, it is

given by Eq. (2.84)

2.8.2 Electronic current density

The electronic current density at a position r′ is defined as the expectation value

of the current operator:

ĵr′ =
e

2m

[
π̂ππ|r′〉〈r′|+ |r′〉〈r′|π̂ππ

]
. (2.93)

Using first order perturbation theory, one can show (105) that the first non-

vanishing term in the expansion of the expectation value for the induced electronic

current density is given by:

j(1)(r′) =
e

2m

∑
j

〈ϕ(0)
j |

(
p̂|r′〉〈r′|+ |r′〉〈r′|p̂

)
|ϕ(1)

j 〉+ c.c.

−e2

m

∑
j

A(r′) 〈ϕ(0)
j |r′〉〈r′|ϕ(0)

j 〉 (2.94)

The two terms of the expression 2.94 are called para– and diamagnetic current

densities, respectively. Both contributions individually depend on the gauge,

whereas the total current j = j(1)(r′) is gauge-independent. However, the two

contributions are large numbers and have opposite signs. For the choice of the

vector potential given in eq. 2.82, A(r) is linear in the gauge origin Rg. There-

fore, the diamagnetic current also grows linearly in Rg, and paramagnetic term

must compensate this in order to fulfill the invariance of the total current. Thus,

for large distances |r − Rg|, the current density j results from the cancellation
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of two large terms, making the actual calculation rather challenging. In a com-

puter simulation using a finite basis set, the gauge invariance of Rg is no longer

numerically verified.

To circumvent the problem, the so-called “Rg = r”–variant of the continuous

set of gauge transformations (CSGT method (108)) is used (105) . In this ap-

proach, for each point r′ in space at which the current density is calculated, the

gauge origin Rg is set to r′. Thus, the last term of eq. 2.94 vanishes analytically

and the cancellations of large numbers no longer occur.

In a QM/MM framework, the gauge is not affected by the presence of the

external potential of the MM atoms. From the view of the magnetic linear re-

sponse calculation, the only effect of the MM system is the change in the local

electrostatic potential.

2.8.3 Induced field, susceptibility and shielding

Once the induced electronic current density 2.94 is properly defined and can be

computed numerically, the induced inhomogeneous magnetic field can be obtained

by the Biot-Savart law:

Bind(r) =
µ0

4π

∫
d3r′

r′ − r

|r′ − r|3 × j(r′), (2.95)

where µ0 is the permeability of the vacuum. The integral in eq. (2.95) is well-

known as the solution of the Poisson equation for the electrostatic field. Since

the system is treated under periodic boundary conditions, the current density

j(r) is periodic and can be represented in reciprocal space. The difficulty lies in

the point that 1
|r′−r| is not periodic. Under periodic boundary conditions, the

convergence of eq. (2.95) in reciprocal space is not assured generally; but with

the exception of the G = 0 component. In this case, its Fourier transform can
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be computed in a straightforward way (81) and reads:

Bind(G 6= 0) = µ0 i
G

|G|2 × j(G). (2.96)

where the j(G) denote the vectors of Fourier coefficients, defined in analogy to

equation 2.42. The G = 0 component of the field depends on the bulk magnetic

susceptibility tensor, χ, and the shape of the sample. In general, it is expressed

as:

Bind
0 = κ χ Bext (2.97)

with the macroscopic bulk susceptibility χ and a prefactor which describes the

dependence on the macroscopic geometry of the system. The bulk susceptibility

χ can be expressed (105) as a function of the orbital electronic current:

χ =
µ0

2Ω

∂

∂Bext

∫

Ω

d3r r× j(r), (2.98)

where the integral is done over one unit cell of volume Ω. In the case of a spherical

system, κ is given by κ = 2/3 (105).

As we already discussed above, the chemical shift tensor, one of the main

physical observables calculated in this work, is defined as the proportionality fac-

tor between the induced and the externally applied magnetic field at the positions

of the nuclei:

σ(R) =
∂Bind(R)

∂Bext
. (2.99)

Hence, it can be straightforwardly calculated since the induced magnetic field is

known.
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In experiment, this shielding tensor is measured and quoted relative to a

reference material, e.g. for hydrogen commonly tetramethylsilane (TMS). This

yields the chemical shift tensor:

δ(R) = σref (R)− σ(R) (2.100)

The trace of this tensor is the central quantity measured in NMR spectroscopy.

2.8.4 Effect of pseudopotentials on NMR chemical shifts

A special note has to be devoted to the use of pseudopotentials in combination

with the nuclear shielding calculations. In the analysis of chemical bonding, this

frozen core approximation has been shown to work reliably, since only changes

in the valence region are of interest. The chemical shift, however, is extremely

sensitive to the core region, because the interaction between nuclear spin and

electronic current is proportional to 1/r2. Thus, it is not clear a priori whether

a pseudopotential implementation can give meaningful results at all.

The normconserving pseudopotentials which have been used in the context

of the calculations are used to represent the ionic core and the inner electrons

for non-hydrogen atoms. Therefore, these computed nuclear shieldings do not

account for the effect of core electrons, which is a matter of recent discussions,

especially for very heavy atoms (109; 110).

For first-row atoms, there is a variety of studies in which the performance of

the pseudopotential approximation was generally found to be acceptable (5; 31;

32; 105; 111; 112; 113; 114). The absolute values of NMR chemical shifts for first-

row atoms may not be as accurate as in all-electron calculations (115). It turns

out that often, the contribution of the core orbitals to the chemical shift is almost

constant with respect to the chemical environment of the atom: however, It is
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believed that the trends for phenomena such as solvation are well reproduced

and reliable (22; 34; 116). There is a reconstruction scheme of Pickard and

Mauri (115) which permits a significant reduction of this error, but in this work,

the aim is to focus on the effects of solvation on the hydrogen NMR chemical

shifts, which are not significantly affected by this problem.

2.8.5 Combination of NMR and QM/MM

In the previous section, the theoretical description of combining spectroscopic

properties and QM/MM method which are of particular interest in this work

have been outlined. In most QM/MM schemes, the interaction of the classical

atoms with the quantum part is described by means of an external field that is

added to the quantum Hamiltonian. In this approach, this field represents the

effects of point charges placed at the positions of the classical atoms. The imple-

mentation of the QM/MM interaction Hamiltonian into an electronic structure

calculation scheme has the effect of polarizing the quantum system by means

of the electrostatic field of the classical point charges. Both the ground state

Kohn-Sham orbitals as well as the spectroscopic properties of the system will be

affected by this polarization.

It follows from the Hohenberg-Kohn theorem that the change in the electro-

static potential due to the additional classical field will result in new KS orbitals

and a different electronic density. Together with a suitable interaction scheme

for the QM/MM interface region, this is the basic ingredient for the total energy

calculation (45).

In addition, the perturbation theory equations themselves are modified. Both

the unperturbed Hamiltonian H(0), its matrix elements Eq.(2.92) and the unper-

turbed KS-orbitals |ϕ(0)〉 must be replaced by those of the QM/MM calculation.
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After substitution into Eq. (2.91), the new linear response orbitals |ϕ(1)〉 can

readily be inserted into the formula for the induced current density, Eq. (2.94).

Finally, the induced magnetic field is given by Eq. (2.95), yielding the NMR

chemical shielding tensors, Eq. (2.99), within the QM/MM framework.
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Chapter 3

NMR solvent shifts of adenine in

aqueous solution from hybrid

QM/MM molecular dynamics

simulations

3.1 Introduction

The focus of this this chapter is the calculation of NMR properties of Adenine

in aqueous solution. The solvation of such molecules is of crucial importance in

biological systems, where highly important structural information, such as proto-

nation states, can be obtained and verified with the combination of experimental

NMR (117; 118; 119) and first principles calculations (120; 121; 122). The in-

fluence of the aqueous environment on the NMR chemical shift is called solvent

shift, a well known phenomenon in magnetic resonance spectroscopy.

When modeling extended liquid systems, and in particular for molecules in

aqueous solution, the highly fluctuating dynamical structure of the molecules
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of the liquid must be dealt in an appropriate way. In many cases, molecular

dynamics simulations within an all-atom scheme of the solvent molecules can

yield a suitable description of the relevant effects, providing an atomistic time-

dependent picture of the molecular structure (123).

In biology and biochemistry, the solvation of hydrophilic species is normally

not specifically investigated, although it represents a highly relevant issue in

most biological environments. Also in the area of quantum chemistry, calcula-

tions of solvent shifts and related phenomena based on realistic molecular dy-

namics simulations at ambient conditions are rare in literature, in spite of their

great importance. Most electronic structure based studies rely on more simpli-

fied embedding schemes, such as continuum approaches (90; 91; 92; 93) or other

models (94; 95; 96; 97). Further, many static cluster calculations of a set of

molecular configurations with a few specifically placed solvent molecules exist in

literature. However, the most realistic description of spectroscopic solvent effects

via Car-Parrinello (48) and QM/MM molecular dynamics simulations (124) in

combination with an adequate sampling of the resulting trajectories is still an

exception in literature. Such calculations are especially valuable in non-standard

environments, where predictions based on interaction scheme are difficult to ap-

ply.

The present chapter deals with molecular dynamics simulations based on a

hybrid quantum mechanical/mechanical modeling (QM/MM) approach, which is

capable of describing atomistic details of solvation, using density functional the-

ory for the description of the electronic structure of the solute (37; 45; 124). The

solvent is represented by classical (non-quantum) point charges, interacting elec-

trostatically and sterically with the solute molecule. This approach is combined

with the QM/MM calculation of NMR chemical shifts, which enables a direct

comparison of the results to existing spectroscopic experiments (44; 55; 125; 126).
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The particular feature of this present implementation (55; 105; 114) is that how

to define a special repulsive potential between the classical atoms and the quan-

tum electrons, which is meant to mimic the Pauli repulsion due to the “classical

electrons”, which are not present in the molecular mechanics description of the

classical atoms.

Besides a benchmark study on a series of molecular dimers, intended to verify

this approach, to gauge its accuracy and to understand its capabilities and lim-

its, my focus lies on the study of the adenine molecule in aqueous solution (see

fig. 3.1). The electronic structure as well as the NMR spectrum of an isolated

adenine molecule have already been calculated on various levels of theory (119).

However, the complex interplay of the structure and dynamics of hydrogen bond-

ing networks – leading to the solvation effects mentioned above – in a solvated

Figure 3.1: Illustration of the adenine molecule in aqueous solution. The num-
bering scheme is also shown.
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biomolecule system can not yet be computed by accurate ab-initio calculations

at correlated levels of theory. While Møller-Plesset (MP2) and coupled-cluster

(CC) calculations are highly precise (24; 26; 127; 128; 129), they are still compu-

tationally too expensive to be applied to dynamical problems involving a large

number of atoms. Hence, in this chapter, the writer relied on Kohn-Sham density

functional theory for the quantum-mechanical part (13; 27), and the Amber force

field for the classical surroundings (47).

3.1.1 Hybrid quantum-classical (QM/MM) molecular dy-

namics simulations

Car-Parrinello molecular dynamics (MD) simulations have been performed of an

adenine molecule solvated in water, using the CPMD simulation package (49;

81; 130) and applying a quantum mechanical/mechanical modeling (QM/MM)

Hamiltonian coupling scheme (45) for the description of the solvent.

The QM part is based on Kohn-Sham density functional theory (DFT (13)),

relying on the BLYP exchange-correlation functional (17; 18) and a plane-wave

basis set with a 70 Ry kinetic energy cutoff for the valence orbitals. Martins-

Troullier pseudopotentials (74) were used to describe the interaction of the valence

shell electrons with the nuclei and their core electrons. The QM part contained

only the solute molecule and was placed inside a cubic simulation box of 12Å lat-

tice parameter. The interaction with the periodic images was removed using the

Tuckerman solver for the Poisson equation (83).

The classical atoms of the solvent were modeled with a modified version of

the GROMOS96 simulation library (46), using the TIP3P water model (131).

The solute was solvated by 826 water molecules in a cubic box of (30Å)3 size.

This lattice parameter was obtained from the average box size in an initial NPT
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molecular dynamics equilibration run at P=1bar. A cutoff distance of Ewald

sums at 10Å was used for the classical nonbonded interactions, while the bonds

involving hydrogen atoms were kept constrained via the SHAKE algorithm (132).

The inclusion of the QM/MM interaction Hamiltonian into an electronic struc-

ture calculation scheme has the effect of polarizing the quantum system by means

of the electrostatic field of the classical point charges. Both the ground-state

Kohn- Sham orbitals as well as the spectroscopic properties of the system are

affected by this polarization, because the electrostatic field from the MM charges

is present in the unperturbed KS-Hamiltonian.

For the solvated molecules, an initial equilibration run was performed using

purely classical MD at T=300K. The overall simulation length was 1 ns, using

an integration time step of 1.5fs. The QM/MM Car-Parrinello simulations were

started from the last frame of the classical simulation. The overall duration

of the CP-MD-QM/MM simulations was 12ps with a time step of 4 a.u.(∼0.1

fs). In both the classical and the QM/MM molecular dynamics simulations, the

temperature was held constant by a chain of Nosé-Hoover thermostats at T=300K

with a coupling frequency of 2000 cm−1.

3.1.2 QM/MM NMR chemical shift calculations

As the basis for study of spectroscopic calculations, trajectories obtained pre-

viously via canonical QM/MM Car-Parrinello molecular dynamics simulations

were used, in the spirit of ref. (8). For consistency, the computational setup in

the calculation of the spectroscopic parameters was the same as in the QM/MM

MD simulations. The NMR chemical shifts were calculated via density functional

perturbation theory (106; 133) for 40 snapshots extracted from the aqueous solu-

tion. The set of computed nuclear shieldings was subsequently time-averaged, as
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indicated by 〈〉 brackets in eq. (3.2). This averaging yields single numerical val-

ues compatible with experiment, where the same averaging process takes place,

since the experimental measurement process has a finite duration (of the order

of microseconds).

In this respect, it is also important to verify that within the relatively short

simulation time of 12ps, all relevant relaxation processes have taken place, and

that the statistical averages of our spectroscopic parameters are accurate and

well converged. In order to verify this point, standard deviations of the proton

chemical shifts have been computed during the MD run.

Following the experimental convention, chemical shifts are quoted relative to

computed nuclear shieldings of standard reference systems. As for the bulk sus-

ceptibility correction, a sample with spherical shape was assumed (105; 112). The

hydrogen and nitrogen shifts are given with respect to the computed shieldings

of tetramethylsilane (TMS) and nitromethane, respectively:

δH(X) =
1

3

〈
Tr

[
σH(Si(CH3)4)− σH(X)

] 〉
(3.1)

δN(X) =
1

3

〈
Tr

[
σN(NO2CH3)− σN(X)

] 〉
. (3.2)

For the solvated adenine, the NMR chemical shifts have been computed from

about 40 snapshots, all taken from a QM/MM molecular dynamics trajectory

of a total duration of 12ps. The nuclear shieldings have been calculated at five

different levels regarding the treatment of the solvating water environment:

1. As a reference, an isolated adenine molecule was optimized within the com-

putational setup used for the QM/MM simulations, but with no solvent.

2. To estimate the purely geometrical effect of the solvent, the snapshots from

the QM/MM run were taken without the classical water molecules. In
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other words, the adenines were computed as isolated molecules, but in the

geometries extracted from the QM/MM run.

3. The polarization effect of the solvent was obtained by including the classical

point charges from the QM/MM model (45) into the ground-state Hamilto-

nian in the NMR calculation. This involves a Coulomb interaction between

the classical point charges and the electrons, which needs to be smoothened

in order to remove the 1/r singularity:

vQM/MM(r) =
∑

R

qR
|r−R|4 − r4

c

|r−R|5 − r5
c

. (3.3)

Here, qR and R are the charges and positions of the classical particles,

and rc is a cutoff radius, which is set equal to the covalent radius of the

respective atom.

4. Using the same computational QM/MM setup, further chemical shift cal-

culations were performed with an additional repulsive potential according

to ref. (55). This potential is intended to represent the (missing) Pauli-type

repulsion effect of the electrons from the classically treated atoms onto the

actual electrons in the QM region (134). It has the following form:

vext(r) = v0 exp

[
−1

2

(
r−RI

Rcov
I

)2
]

(3.4)

where RI are the atomic positions, Rcov
I the corresponding covalent radii,

and v0 is a global amplitude for the potential. This empirical potential of

Gaussian shape was originally designed for 1H NMR chemical shift calcula-

tions of liquid water. Here, the transferability of this empirical potential is

investigated via extend to the 1H and 15N shifts of a more complex system.

This computational setup is denoted QM/MM+REP in the following.
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5. Finally, NMR calculations have been performed using an implicit treat-

ment of the solvent within the PCM model (135; 136). To this purpose, an

isolated adenine has been geometry optimized at B3LYP/6-311+G(2d,p)

level, surrounding the molecule with the SCRF-IEFPCM polarized contin-

uum model (137). In this model, a self-consistent reaction field technique

is employed, using a solvent cavity which is defined by a set of overlapping

spheres. For the dielectric constant the value of εr=78.39 (for water at

T=300K) was chosen. The proton and nitrogen NMR chemical shifts were

calculated with the same computational setup, with and without solvent.

All calculations used the Gaussian 03 code (138).

In this way, we can separate out the contributions of the aqueous solvation from

the geometry of the solute, the polarisation of the electronic orbitals and the

influence of an additional repulsion potentional in the QM/MM scheme.

The NMR chemical shifts calculations which have been done in the context

of this chapter are based on a plane-wave pseudopotential implementation. The

chemical shift, however, is extremely sensitive to the core region. This prob-

lem has been further investigated, by comparing also 13C NMR chemical shifts

between the pseudopotential and all-electron implementations, which have been

summarized in table 3.1. The nuclear shieldings were referenced to those of ben-

zene computed under the same computational setup and then corrected with the

experimental TMS-shift of benzene:

δTMS(X) = σcalc(C6H6)− σcalc(X) + δTMS
exp (C6H6) (3.5)

It turns out that there are sizeable deviations in the chemical shift anisotropy,

which is due to the somewhat smaller spread of the chemical shift eigenvalues
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scheme: isolated isolated
geometry: G03 CPMD

C(1) 162.9(151.8) 161.8(101.8)
C(2) 126.7(123.3) 122.9( 77.0)
C(3) 142.6(107.6) 143.4( 73.2)
C(4) 159.5(142.4) 157.6(101.3)
C(5) 164.7(139.6) 164.1( 92.6)

Table 3.1: Calculated values of the 13C NMR chemical shifts of adenine relative to
TMS obtained with a quantum chemistry code relying on localized basis sets (138)
and with the CPMD code. The nuclear shieldings were referenced to those of ben-
zene computed under the same computational setup and then corrected with the
experimental TMS-shift of benzene: δTMS

(x) = σcalc(C6H6)−σcalc(x)+δTMS
(exp) (C6H6)

in a pseudopotential calculation. However, the anisotropies are not very large

on the absolute scale. This leads to a good mutual agreement for the isotropic

carbon chemical shifts which in turn confirms the principal validity of the present

approach.

3.2 QM/MM NMR benchmark calculations on

hydrogen bonded molecular dimers

3.2.1 Water dimer

In this section, the accuracy of this present QM/MM NMR implementation is

gauged by applying it to a series of hydrogen-bonded molecular dimers. The

NMR parameters of these systems can easily be computed in a standard QM

fashion, in order to obtain a reference for the QM/MM calculations. In this way,

the performance of the QM/MM NMR approach will be illustrated, i.e. explore

its capabilities, but also learn about its limits. To this purpose, the chemical shift

changes upon variation of the oxygen-oxygen distances have been computed .

73



3.2 QM/MM NMR benchmark calculations on hydrogen bonded
molecular dimers

The first system, a water dimer, is shown in figure 3.2 (top). The 1H NMR

chemical shifts of the H-bond donor and acceptor protons as a function of the

dimer separation (ROO) are investigated. In the QM/MM prescription, this re-

quires two different calculations, one with the donor molecule in the quantum part

(the acceptor water being treated with the classical point charge model TIP3P),

and another one with the inverse repartitioning.

ROO

ROO

Figure 3.2: Illustration of the two benchmark systems: The water dimer and the
methanol dimer. For all systems, NMR chemical shift dependences as a function
of the oxygen-oxygen distance have been computed. The three configurations
have been considered: (i) both molecules quantum-mechanically (QM), (ii) the
H-bond donor molecule as QM and the acceptor molecule classically (MM), and
(iii) the H-bond acceptor molecule as QM with the donor as MM. The geometries
of the clusters were not re-optimized for the different distances.
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Figure 3.3: Distance dependence of the 1H NMR chemical shift of the donor and
acceptor protons in a water dimer as illustrated in fig. 3.2, using a full QM, the
standard QM/MM, and QM/MM+REP treatment of the different components.
The calculation in which the donor molecule is treated quantum-mechanically
is shown using solid lines, and the results for the quantum-mechanical acceptor
are represented by dotted lines. The shifts are referenced to the corresponding
isolated molecule.

The results for the 1H NMR chemical shifts are presented in figure 3.3. While

the standard QM/MM implementation, represented by crosses (×) performs quite

well for a medium and large separation of the two waters, its performance is poor

for the strongly hydrogen bonded dimer at close distance (below ROO ≤3Å).

Especially for the donating proton, the QM/MM shifts show large deviations

from the full-QM results. However, the inclusion of the additional repulsive

potential between MM atoms and electrons yields a significantly better agreement

in this case, as shown using square symbols (¤) in fig. 3.3. The QM/MM+REP
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shifts of the donor hydrogen differ from the full-QM reference results by less

than 0.4ppm. The same value holds for the acceptor proton, although here, the

repulsive potential does not yield an improvement with respect to the QM/MM

calculation. A problem of this kind had already been found in an earlier study (44)

and mentioned in the previous work (55). The Pauli-mimiking potential is not

able to represent the full characteristics of a strong hydrogen bond for the acceptor

molecule. So far, no solution to this issue is known.

Figure 3.4: Distance dependence of the 17O NMR chemical shifts of the donor
and acceptor protons in a water dimer as illustrated in fig. 3.2 (left), using a
full QM, the standard QM/MM, and QM/MM+REP treatment of the different
components. The shifts are referenced to the corresponding isolated molecule.

A similar problem is observed for the oxygen chemical shifts, shown in fig-

ure 3.4. While the standard QM/MM scheme leads to a shift dependence of the

correct shape, the QM/MM+REP values are actually further off with respect to

the full-QM reference shifts. Only at comparably large separation, the long-range
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dipolar character dominates the water-water interaction. There, the point charge

model performs well and the three approaches converge to the same dependence.

The attribute of these discrepancies mainly to the way the repulsive poten-

tial is constructed. Its functional form is meant to mimic a Pauli-like repulsion,

which the electrons of the acceptor-oxygen have on the donor hydrogen, in the

configuration donor=QM/acceptor=MM. The polarizing function of the donor-

hydrogen on the lone pairs of the acceptor-oxygen in the configuration accep-

tor=QM/donor=MM are more difficult to model with such a simple potential.

Probably, more elaborate techniques must be used here, such as specially designed

pseudopotentials on the classical atoms, along the lines of refs. (54; 134; 139; 140).

In comparison with similar calculations from the Karplus group (44),the

hydrogen-oxygen distance ROH is used instead of ROO, the present results show

the same general trends. The variation of the shift of the donor proton in the

standard QM/MM scheme is less pronounced in this calculation; it is believed

that this effect is due to the slightly different electrostatic QM/MM interaction

potential, which is smoother (see eq. (3.3)) compared to the one used by Karplus.

For the H-bond donor molecule, our additional repulsive potential can slightly

improve the quality of the NMR parameters.

3.2.2 Methanol dimer

As an additional benchmark system, the methanol dimer has been looked at in

detail, as illustrated in the bottom of fig. 3.2. Also for this dimer, the 1H NMR

chemical shift variation has been analyzed as a function of the O–O distance .

In this system, a picture similar to the case of the water dimer emerges,

although now, both the H-bond donor and acceptors are alcoholic OH groups.

The shift of the donor proton changes considerably, with a magnitude comparable
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to that of the water dimer, while the acceptor proton shift is almost unaffected

by the hydrogen bond. The amplitude of the chemical shift dependence with

OO-distance is slightly weaker (see fig. 3.5), but the effect is relatively small.

As in the case of the water dimer discussed above, the standard QM/MM

interaction scheme via the smoothened Coulomb potential from eq. (3.3) does

not appear to be suitable for a quantitative representation of the shift variation.

Again, the weaker performance of the present conventional QM/MM calculation

is attributed to a somewhat too strong smoothing of the Coulomb potential by

Figure 3.5: Dependence of the 1H NMR chemical shifts of the donor and acceptor
protons in a methanol dimer on the oxygen-oxygen distance. The molecular
geometry is illustrated in fig. 3.2. The NMR chemical shifts of the full QM
calculation, the standard QM/MM scheme, and QM/MM+REP treatment are
shown. The line coding is the same as for the water dimer (fig. 3.3). Again, the
shifts are referenced to the corresponding isolated molecule.

78



3.2 QM/MM NMR benchmark calculations on hydrogen bonded
molecular dimers

the potential form of eq. (3.3). Only when the additional term from eq. (3.4)

is added, the distance dependence is reproduced in agreement with the full QM

calculation (× symbols in fig. 3.5). The NMR resonance of the donor proton

is well reproduced, while the acceptor proton is not improved. However, the

absolute value of its variation with dOO is even smaller than in the case of the

water-water cluster.

In conclusion, the optimization of the interactions in the QM/MM inter-

face region is the central problem in hybrid quantum–classical calculations. The

benchmark results indicate that the short-range interactions of the solvent are

not easy to model adequately (on a quantitative level) in point-charge based

QM/MM schemes. Already in the original paper describing the QM/MM inter-

action Hamiltonian, the sensitivity of geometric data (RDFs) on the choice of

the smoothing radius (rc in eq. (3.3) had been observed. Similar results have

been reported by other authors (124). In these studies, it was shown that albeit

the QM/MM approach does not yield quantitative agreement with correspond-

ing all-quantum calculations, it does have a good predictive power for trends and

environmental effects in NMR shieldings. It is believed that for an optimal treat-

ment of the quantum-classical interface, more sophisticated effective potentials

need to be generated (54; 134; 139; 140).
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3.3 Adenine solvated in water

3.3.1 Hydrogen bonding structure from radial distribu-

tion functions

The adenine molecule with its atom numbering scheme is shown in figure 3.1.

The radial distribution functions (RDF) of the acceptor nitrogens of adenine and

the water hydrogens are shown in figures 3.6 and 3.7, together with the RDFs of

the donor C–H protons and the aqueous oxygens.

The first peak of the RDF(dN,Haq
) in figure 3.6, located at 2Å, is similar

for all unprotonated nitrogen atoms (N(1),N(3),N(7)). Nevertheless, there is a

Figure 3.6: The radial pair distribution functions (RDF) computed for the dis-
tance between adenine nitrogens and water protons. The distribution functions
have been smoothened by applying running averages to the raw data.
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Figure 3.7: The radial pair distribution functions of the distances between aro-
matic carbon protons (of adenine) and water oxygens. As in fig. 3.6, running
averages have been applied.
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small difference in their nucleophilicity, in which N(7) is the strongest, followed

by N(3) and N(1). A substantially smaller first peak is associated to the amino

group (N(6)), which is sterically protected by its two protons. In most cases,

the accessibility of the free electron pair towards the water is clearly visible in

the peak at 2Å. The only exception concerns N(9), which is not accepting any

hydrogen bonds, resulting in a practically vanishing RDF.

The amino moiety (N(6)) exhibits a comparably strong peak at 3Å, which we

attribute to the protons of the water molecules whose oxygens accept H-bonds

from the amino protons. The same holds for N(9), which has its first maximum

at 3.5Å.

Concerning the two aromatic C–H protons of adenine (figure 3.7), their affinity

with regard to the oxygens of the water is significantly different. The RDF of the

H(8) proton does not show a clear structure, and the features around 2.3Å and

2.9Å are difficult to distinguish from the statistical noise. In contrast to this, the

H(2) has a clear peak at 3.1Å and the corresponding minimum at 4.2Å. Thus,

both C–H protons have no direct hydrogen bonds to the solvent.

It is believed that the stronger structure of H(2) is a consequence of the two

H-bond acceptor sites (N(1) and N(3)), which attract more water oxygens to the

neighborhood of H(2) than the single acceptor site (N(7)) of H(8). In addition to

this, the amino protons on N(6) could attract the water molecules binding to N(7)

and hence lower the oxygen density around H(8) further.

3.3.2 Solvent effect in the 1H NMR chemical shift spec-

trum

In experiment, the hydrogens attached to nitrogen atoms exchange on a fast

timescale (relative to the timescale of the NMR experiment) with those of water.
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Hence, their NMR resonances are not visible in the proton NMR spectrum. The

experimentally visible carbon protons, however, are usually not directly involved

in hydrogen bonding to an aqueous solvent, due to the nonpolar C–H bond.

Nevertheless, the H-bond acceptor sites on N(1), N(3) and N(7) are quite close to

these C–H moieties, which could allow for a measurable solvent effect despite

their non-polar character.

The 1H NMR chemical shift spectra of protons H(2) and H(8) are shown in

figure 3.8, for the four computational setups as described in section 3.1.2. In the

optimized isolated adenine, the resonance lines are separated by ∼0.4ppm, with

Figure 3.8: 1H NMR chemical shifts of the two aromatic C–H protons in adenine
under the various computational conditions as mentioned in the text. For the
numerical shift values, see table 3.2.
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H(8) at higher frequency. A similar picture (∆δ ≈0.5ppm, with H(8) less shielded)

is obtained for isolated adenine, when only its molecular geometry is extracted

from the QM/MM simulations (ignoring the solvent).

A dramatic change is observed upon inclusion of the classical point charges of

the surrounding water. The polarization due to the solvent inverts the order of

the protons, leaving H(8) at lower frequency, and reducing their shift difference to

∼0.2ppm. When comparing to the experimental results, only the full QM/MM

calculations yield the correct assignment of the NMR chemical shift lines. From

the isolated adenines, the inverse order of the resonances is obtained.

A slightly smaller difference (∼0.15ppm) is obtained when including the ad-

ditional repulsive potential; this change, however, is clearly below our statistical

and systematic errors. However, there is space for improvement on the level of

the functional form and the numerical parameters of the repulsive interaction.

The significance of the repulsive potential is presently being investigated in our

group.

The proton solvent shifts have also been computed at the PCM level of theory

(see table 3.3). Compared to the isolated molecule, the polarizable continuum is

able to improve the relative shifts of the aromatic protons considerably. However,

the inversion of the 1H NMR resonances is not observed, the shift difference

becomes +0.28ppm in the PCM as opposed to -0.04ppm in experiment.

3.3.3 Dynamical evolution of the proton shifts

The dynamical evolution of the 1H NMR chemical shifts of the aromatic C–H

protons during the QM/MM molecular dynamics simulation is shown in figure 3.9.

The results have been plotted from the full QM/MM NMR calculations as well

as the evolution of the isolated adenine molecules in the conformations extracted
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from the QM/MM trajectory, in order to see directly the effect of the polarization

due to the solvent molecules. As expected, the dynamical trends with and without

the point charges closely follow each other for both protons, which shows that

most of the microscopic oscillations in the instantaneous NMR values are due to

the atomic motion of the molecule (geometric effect).

The oscillations of the two protons show no mutual correlation. Neither the

amplitude of the oscillations nor the (partially averaged) chemical shifts them-

selves show any drift in the 12ps timescale considered here. However, the standard

deviation of H(2) is about twice as large (∼0.4ppm) as that of H(8) (∼0.2ppm). In

Figure 3.9: Evolution of the 1H NMR chemical shifts of the two aromatic C–
H protons in adenine during the QM/MM molecular dynamics trajectory. The
shifts were obtained with and without inclusion of the QM/MM point charges in
the linear response calculations.
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both cases, the statistical error keeps in the range of the systematic one (in the

order of 0.3. . . 0.4ppm). Further, there is a dramatic change in the influence of the

polarization from the solvent: While H(2) is almost unaffected and its chemical

shift trends are essentially congruent with and without solvation, the solvent shift

of H(8) manifests itself as a shift offset (of ∼0.5ppm), which is almost constant

during the entire simulation.

Surprisingly, this finding has no straightforward correlation with the radial

distribution functions of H(2) and H(8) (figure 3.7). The proton with the more

structured oxygen distribution (H(2)) exhibits a smaller solvent shift than H(8)

which appears to have the water oxygens distributed more homogeneously around

itself. However, since in both cases, the solvent oxygens do not actually form

hydrogen bonds – the RDFs vanish for distances below 2.1Å – we attribute the

different responses of the two C–H protons to indirect effects, e.g. the polarization

of the neighboring nitrogens and the interaction of the aromatic electrons with

the solvent field. Those effects are difficult to predict from simple concepts.

3.3.4 Solvent effect in the 15N NMR chemical shift spec-

trum

The 15N NMR chemical shift spectra of the five nitrogen atoms in adenine are

shown in figure 3.10, referenced to isolated nitromethane (NO2CH3). For all

computational models, the spectra shows three main features: At low frequency

(-280. . . -300ppm) appears the amino group, at medium frequency (≈-210ppm),

the secondary aromatic amino moiety is found, and the remaining unprotonated

nitrogens are located at high frequency around -150. . . -175ppm.

Again the fully optimized molecule and the isolated adenine configurations

from the QM/MM trajectory are similar, although there is a global high-frequency
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Figure 3.10: 15N NMR chemical shifts of all nitrogen atoms in adenine under the
various computational conditions as mentioned in the text. For the numerical
shift values, see table 3.2.

shift of about 5ppm when including the geometric effect from the condensed-phase

molecular dynamics simulation. It is important to note that N(3) and N(7) are

almost undistinguishable, while N(1) is about 10ppm less shielded.

The picture remains qualitatively the same when incorporating the solvation

via the QM/MM point charges. However, N(3) and N(7) separate and δ(N(3)) ap-

proaches the N(1) shift, both for the standard QM/MM interaction scheme as well

as with the additional repulsive potential. As in the case of the proton chemical

shifts, this effect of the aqueous environment brings the shape of the calculated

15N spectra closer to the experimental results. Hence, a unique assignement of
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the experimental NMR chemical shift lines is only possible by means of the full

QM/MM NMR calculations.

Still, the agreement with experiment is not perfect, especially for the amino

group. This is probably a consequence of the use of pseudopotentials, which have

certain transferability errors between differently hybridized atoms. In this case,

the chemical shift reference is an sp2 hybridized nitrogen (in NO2CH3), which

typically results in a better experimental agreement with atoms of the same or

similar hybridization state. The amino nitrogen, however, is in an sp3 state,

which causes a deterioration of the relative shifts when using an sp2 shielding

reference.

A part of this problem can be attributed to very large variations of the chemi-

cal shift anisotropy as shown in table 3.2 and table 3.3, which in adenine range up

to 400ppm in the all-electron calculation, and only up to 280ppm in the pseudopo-

tential calculation. This discrepancy shows that the pseudopotential approach is

indeed not capable of reproducing the true spread in the NMR eigenvalues ex-

actly, which in turn will also lead to larger errors in the isotropic chemical shifts.

Hence, the good agreement (for the 15N shifts) with experiment in the pseudopo-

tential scheme is probably partly fortuitous. However, it is believed that the

changes due to the chemical environment are more reliable and do reflect the

physics of solvation.

Another source of error is the actual description of the hybridization state of

N(6) in the QM/MM molecular dynamics simulation, which has been monitored

by means of the degree of planarity of NH2. It has been observed that in the MD

runs, the nature of N(6) appears to vary between sp2 and sp3 on short timescales

(∼50fs). This effect is due to changes in the momentaneous hydrogen bonding

state of these protons, which results in large-amplidute deformations of the NH2

group from its planar equilibrium geometry. However, it is not clear how accurate
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scheme: isolated isolated QM/MM QM/MM+REP exp.
geometry: optimized MD MD MD

H(2) 8.07 8.21 7.99 7.98 8.07
H(8) 7.65 7.74 8.22 8.17 8.11
N(1) -151.8(241.2) -144.8 -162.3 -158.5 -157.3
N(3) -159.1(254.1) -154.3 -166.7 -162.6 -158.2
N(6) -271.1( 54.3) -264.8 -268.8 -273.9 -304.0
N(7) -160.9(248.8) -154.1 -180.6 -174.3 -166.8
N(9) -213.0( 50.2) -213.9 -209.0 -211.1 -209.9

Table 3.2: Calculated and experimental values of the 1H and 15N NMR chemical
shifts of adenine with the CPMD code. “MD” means that an ensemble of config-
urations has been extracted from the QM/MM molecular dynamics simulations.
While the third and fourth significant digits of hydrogen and nitrogen shifts are
below the numerical accurancy, they are given here to illustrate trends between
the computational models. Values in parentheses are anisotropies of the chemical
shifts tensor.

these conformational fluctuations are modeled within the QM/MM scheme, which

can not provide the same quality in terms of energetics and structural features

as in a full QM description.

The results of the PCM model are shown in table 3.3. With respect to the

isolated molecule, most chemical shifts improve considerably, albeit they do not

reach a quantitative agreement with experiment. For all nitrogens except N(6), the

changes due to solvation are similar when compared to our QM/MM calculations

(table 3.2). The absolute values, however, are a bit less satisfactory. However, this

might also be a fortituous agreement of the pseudopotential-based calculations,

which are usually expected to underperform all-electron based approaches.
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scheme: isolated PCM exp.
geometry: optimized optimized

H(2) 8.61 8.63 8.07
H(8) 7.79 8.35 8.11
N(1) -112.3(374.4) -124.6 -157.3
N(3) -121.0(392.3) -132.8 -158.2
N(6) -295.3( 79.5) -290.1 -304.0
N(7) -103.6(394.1) -119.9 -166.8
N(9) -212.7( 92.7) -203.4 -209.9

Table 3.3: Calculated and experimental values of the 1H and 15N NMR chemical
shifts of adenine. The geometry optimizations and shielding calculations were
done using localized basis sets (138). Values in parentheses are anisotropies of
the chemical shifts tensor.
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3.4 Conclusion

In this chapter, hybrid quantum/classical (QM/MM) calculations of the aqueous

solvation of adenine have been presented, in particular regarding the 1H and 15N

NMR resonance lines and their solvent shifts. The NMR calculations are based

on a QM/MM Car-Parrinello molecular dynamics simulation, under full consid-

eration of the QM/MM solute/solvent interaction. The results show that the

adequate incorporation of electrostatic effects is crucial for a correct assignment

of the experimental NMR resonances, and that QM/MM scheme presented in

this work, is indeed suitable for a reliable description of such effects.

An investigation has been shown that in QM/MM calculations, the – fre-

quently ignored – effect of the electron clouds of the solvent molecules is often

significant for the electronic structure and the spectroscopic parameters of solute

atoms which are in direct contact with the solvent. The additional repulsive

potential, which mimics the incorporation of the Pauli exclusion principle, is ca-

pable of modeling a part of this effect (55). However, there is still a need for

improvement, in particular in the direction of pseudopotentials specifically opti-

mized for this Pauli interaction, along the lines of refs. (54; 139; 140). Work in

this direction is in progress and will be presented in a forthcoming publication.
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Chapter 4

Optimization of capping

potentials in hybrid QM/MM

calculations

4.1 Introduction

One of the difficulties of such a hybrid quantum mechanical/mechanical modeling

(QM/MM) approach is the transition region between the two different parts.

Often, chemical bonds are “broken”, i.e. one of the atoms involved in the covalent

bond is in the quantum (QM) part, the other in the classical (MM) one. This

situation is sketched in figure 4.1. Similar problems arise when MM atoms are

located near a QM region, because the QM and MM descriptions are not genuinely

compatible. Thus, a suitable interface has to be used, which can mutually couple

the two schemes in a realistic way.

In this chapter, the perturbing effect of a bond cleavage is discussed that

occurs if a part of a given molecule is treated using quantum mechanics and

another part is modeled classically (figure 4.1). There are several approaches for

92



4.1 Introduction

tackling such a situation, where most commonly a carbon-carbon bond is cut.

In the following, the resulting pseudo-atom will be referred as “dummy atom”

or capping potential synonymously (the “D” atom in fig. 4.1). There are many

implementations of QM/MM molecular dynamics simulation methods already

available in quantum chemistry software packages; many groups have further

developed specific improvements to the QM/MM idea (38; 39; 40; 41; 42; 43;

45; 96; 99; 141). In particular, there are several approaches to tackle the bond

saturation problem arising from a bond cleavage by the QM/MM repartitioning

as mentioned above. Among them are:

• Hydrogen capping: The dummy atom in figure 4.1 is represented by a

regular hydrogen atom (142). This relatively straightforward solution has

known disadvantages, but it is nevertheless used very often. Obviously, the

CH bond length is shorter than the original CC bond, and the vibrational

frequencies are different. The smaller electronegativity of the hydrogen

furthermore changes the electronic structure of the quantum subsystem in

the vicinity of the border region considerably. This perturbation can reach

over several CC bonds in the QM subsystem.

• Fluorine capping: The saturation of the dangling bond is done via a seven-

valent termination atom, for instance a fluorine, instead of a hydrogen.

While this solution, which was originally developed as a pseudo-bond ap-

proach (99), provides a better bond distance agreement (dC−F ≈ dC−C),

the electronegativity of fluorine is significantly higher than that of carbon.

Thus, the electronic subsystem can be perturbed somewhat stronger com-

pared to hydrogen capping.

• Frozen orbitals: An alternative method relies on pre-computed atomic or-

bitals that are placed at the link atom in order to ensure an adequate elec-
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trostatic interaction and an accurate orthogonality of the terminal chemical

bond of the QM subsystem (143). This frozen-orbital scheme has also been

employed for the calculation of NMR shielding constants (144). A related

approach has been developed by the Truhlar group, where auxiliary hybrid

orbitals are used to provide an optimal directionality of the termination

of the last QM bond (145). While this class of approaches is one of the

more accurate ones, it involves a higher coding effort for the incorporation

of the frozen orbitals, even though they are excluded from the actual SCF

optimization.

• Effective fragment potential: Originally designed as a discrete solvation ap-

proach to treat chemical reactions in solution (146), it has been extended

to study covalently bound clusters and bulk properties (147; 148; 149; 150).

In this method, the total system is divided into a QM region and the en-

vironment (the fragment) which interacts with the QM region via a set of

one-electron potentials. All important physical interactions between the

two fragments (which can be either covalently or non-covalently bonded)

are considered explicitly, in particular electrostatic interactions, charge pen-

etration and polarization effects. Also the effect of exchange repulsion can

be incorporated into the scheme. While this effective fragment potential

provides a highly accurate description of the original quantum-mechanical

interactions, it is not designed to be transferable between different types of

fragments. Furthermore, it requires a considerable additional effort both for

the design and implementation of the fragment potentials, and it increases

the computational effort at runtime compared to conventional QM/MM ap-

proaches based on empirical force fields for the MM part. A method that has

similar characteristics is known as the effective group potentials (151; 152),
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but has been used less frequently than the original effective fragment po-

tential approach.

• Field-adapted adjustable density matrix assembler (FA-ADMA): A related

technique exists in which the target macromolecule is divided into fragments

for which conventional quantum chemical calculations are performed (153;

154; 155). Both the fragment and its local environment up to a certain

distance are included in these calculations, and the rest of the macro-

molecule is incorporated via point charges. This approach is hence a regular

QM/MM method, with the difference that the QM region is made some-

what larger than really necessary to remove the problems related to the

QM/MM boundary region.

• Quantum capping potentials: The saturation of dangling bonds with effec-

tive potentials has already been attempted by DiLabio et al. (100; 101; 102;

103; 104) in an approach that is similar to the one proposed in this work.

A conventional pseudopotential is used to truncate the quantum region,

using a local part and nonlocal angular-momentum-dependent projectors.

These effective capping potentials, however, are not specifically tuned to

reproduce the full-QM spectroscopic properties in the QM/MM calcula-

tions. Instead, they are built in analogy to the generation of regular atomic

pseudopotentials, focusing on the capping atom’s orbitals and their energy

levels.

The aim of this work wants to go one step beyond the QM/MM capping ap-

proaches presented above, by using specially designed capping potentials. The

results of an optimization scheme designed to improve such special potentials

within a density functional theory based approach are presented. Specifically,

this work is based on analytical effective core potentials (pseudopotentials) of
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Figure 4.1: General principle of the repartitioning scheme for a QM/MM cal-
culation in which a chemical bond (here: C-R2) crosses the QM/MM border
and is hence cleaved. The link atom that saturates the resulting dangling bond
(·R2) is denoted D. Also shown is the ethane molecule, which serves as the refer-
ence molecule for optimizing the parameters of the pseudopotential by which the
dummy atoms is implemented.

Goedecker type (75; 156), in line with previous QM/MM studies (45; 157; 158).

The goal is to optimize the pseudopotential parameters in such a way that the

change of the electronic density in the quantum part of a QM/MM calculation is

minimal with respect to a ”full-QM” calculation. In this way, it also be ensured

that structural parameters and spectroscopic properties in the direct neighbor-

hood of a QM/MM bond cleavage are modeled with a high degree of reliability.

To achieve this aim, a penalty functional that quantifies the deviation of the

electronic density in a molecular fragment from the corresponding density in

the complete molecule is defined, while simultaneously penalizing changes in the

equilibrium bond distance and frequency. The penalty functional is minimized

iteratively by varying the coefficients of the capping potential placed at the bond

cleavage site. This approach is similar to the recently developed heptavalent

potential (54), where effective atom centered potentials were variationally opti-

mized to describe the methyl group in acetic acid. However, it was found that

this potential is not optimally reproducing the spectroscopic parameters of the

full molecule. In this paper, the writer modifies this approach by creating novel

design dummy atoms which are conceptually similar and easy to employ, without
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significant code modifications. The capping potentials, presented in this thesis,

can be used as link atoms replacing a carbon, and involve no further external ge-

ometry constraints. They also give reasonable results for potential energy surfaces

of the C-C bond. The perturbative effect of the bond cleavage is characterized

by means of NMR chemical shifts, which are known to be particularly sensitive

to both the intra-molecular electronic structure and intermolecular effects such

as hydrogen bonding (19; 25; 30; 159; 160). Hence, the direct perturbing effect of

the cleaved bond on the electronic structure of the remaining part of a molecule

can not be only gauged, but also quantitatively describe how strongly its response

properties are tainted by the QM/MM bond cleavage.

4.2 Methods and computational details

4.2.1 Goal of the optimization

The purpose of dummy atoms in QM/MM calculations is to enable a saturation

of the last covalent bond of the quantum region, i.e. the bond which is cleaved

by the QM/MM repartitioning. The central difficulty regarding the quantum

region is that the true character of the bond cannot be reproduced easily by a

simple terminal atom. Especially spectroscopic parameters react very sensitively

to small deviations in the electronic structure around the cleaved bond.

The aim of the optimization scheme is to provide a tool which allows to tune

the properties of the terminal “dummy” atom in such a way as to make the

electronic density in the QM part of the molecule (ρD) as similar as possible to

the reference electron density (ρQM), i.e. the density when the entire molecule

is treated quantum-mechanically. This will eventually lead to an improvement

in the spectroscopic properties of the system in the QM/MM description. The
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investigation further aim at preserving the C-C equilibrium bond length in the

dummy calculation, in order to allow an easy coupling of the “first” classical MM

atom and to avoid the need for additional geometric constraints.

To this aim, a penalty functional is defined, which expresses the deviation of

these properties from their target values obtained in a full-QM calculation via:

P =

∫

Ω

d3r [ρQM(r)− ρD(r)]2 +

Ngeom∑
J

{
wF

Nions∑
I

[
FQM

I (RJ)− FD
I (RJ)

]2

+

wE

[
∆EQM(RJ)−∆ED(RJ)

]2
}

(4.1)

The integration volume Ω is used to restrict the penalization region to areas in

which an improvement is physically meaningful. In that case, this volume corre-

sponds to the union of spheres of 1Å radius around all atoms except the carbon

which immediately follows the dummy atom. This definition ensures that the

covalent dummy-carbon bond is not included in the penalty integration volume,

while all other bonds of the first carbon are fully incorporated. The wF and

wE are weighting factors chosen such as to ensure adequate relative importance

is given to deviations of the electronic density, the forces and the total energy.

It turned out that in atomic units, both weighting factors can be set to unity.

Severel different molecular geometries (here Ngeom=3) are incorporated in the

force and energy terms of eq. (4.1), in order to ensure that not only the equilib-

rium configuration of the molecule is taken into account. Specifically, the three

geometries correspond to a stretching and shortening of the CC-bond by ±0.1Å.
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4.2.2 Functional form of the dummy potential

The capping potentials are represented in the form of analytical effective core

potentials of Goedecker type (54; 156), consisting of a local and a nonlocal part.

For a carbon atom, the local potential reads

Vloc(r) =
−Zion

|r| erf [%] + e−%2 (
C1 + C2 %2

)
(4.2)

with the reduced radius % = |r|/√2rloc and the valence charge Zion, which would

be Zion = 4e for a regular carbon pseudopotential. The local radius rloc charac-

terizes both the Gaussian smearing of the nuclear charge density resulting in the

error function and the decay of the local potential in eq. (4.2). The nonlocal part

of the carbon capping potential consists of one s-type and one p-type projector:

Vnl(r, r
′) = hs

1

2π2 r3
s

exp

(
−r2 + r′2

2r2
s

)
+

hp
32

225 π

r r′

r5
p

exp

(
−r2 + r′2

2r2
p

) ∑
m=0,±1

Y m
1 (r̂)Y m

1 (r̂′) (4.3)

with additional characteristic radii rs, rp and the amplitudes hs, hp of one s and p-

type projector respectively. The starting point for the optimization of the capping

potential parameters (C1, C2, rloc, rs, hs) was the regular carbon pseudopotential

with an adjusted valence charge (Zion = 1).

4.2.3 Optimization scheme

Common effective core potentials are often generated by means of a direct inver-

sion of the electronic Schrödinger equation for an isolated atom, with the help

of its all-electron orbitals (161). An alternative approach consists in iteratively

minimizing a penalty functional that expresses the deviations of the pseudo wave
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4.2 Methods and computational details

function from its all-electron counterpart; this method is commonly used for an-

alytic potentials of Goedecker type (75; 156).

In analogy to this concept, the writer optimizes the potentials by an itera-

tive Nelder-Mead downhill simplex minimization (78) of the penalty function in

eq. (4.1). All seven parameters of the analytic expression in eqs. (4.2) and (4.3)

are varied until the penalty functional becomes stationary. While the derivative

of the force and energy terms of the penalty functional with respect to the cap-

ping parameters is done via a three-point finite difference, the derivative of the

density deviation is done analytically via perturbation theory. This part can be

obtained by means of a perturbation theory calculation. On the example of the

radius of the s-channel of the potential, this can be achieved according to

dP

drs

= 2

∫

Ω

d3r [ρQM(r)− ρD(r)]
dρD(r)

drs

+ . . . (4.4)

in which the term dρD(r)
drs

is computed as the first order density response of the

system with respect to the “perturbation” that is induced by varying the s-

channel radius rs in the capping potential. In this context, H(1) = dVnl

d rs
represents

a perturbation Hamiltonian, as would be an external electric or magnetic field in

the case of ab external perturbation (105; 106; 162).

4.2.4 Computational details

The calculations were done within density functional theory (11; 12; 13) using

the BLYP (17; 18) exchange-correlation functional, as implemented in the CPMD

package (49; 130). Standard norm-conserving pseudopotentials (75; 156) were

used and a 70 Ry energy cutoff for the plane-wave expansion of the Kohn-Sham

orbitals. In order to simplify the problem of the bond cleavage and to eliminate

the corresponding degrees of freedom, any point charges to the atoms in the
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4.2 Methods and computational details

classical fragments have not been assigned

The calculation of magnetic resonance properties (NMR chemical shifts) were

done within density functional perturbation theory as implemented in the CPMD

package (105; 106; 114). Following the experimental convention, chemical shifts

were quoted relative to computed nuclear shieldings of standard reference systems

tetramethylsilane and nitromethane for 13C, 1H and 15N according to eq. (4.5); all

sp2-hybridized carbons are actually referenced indirectly to TMS via the exper-

imental shift and the computed shieldings of benzene (δexp
(C6H6)=128.4ppm (163))

according to eq. (4.6):

δcalc
(X) =

1

3
Tr

[
σcalc

(TMS/NMe) − σcalc
(X)

]
(4.5)

δcalc
(X) = δexp

(C6H6) +
1

3
Tr

[
σcalc

(C6H6) − σcalc
(X)

]
. (4.6)
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4.3 Results and Discussion

4.3.1 Dummy potentials in the reference molecule

The ethane molecule was chosen for the optimization of the pseudopotential pa-

rameters of the carbon dummy atom, because C-C bonds are very common within

biomolecules, and thus a controllable way of cutting is highly desirable. Fig. 4.2

shows the evaluation of the parameters rloc, rs and rp during the simultaneous

optimization.
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Figure 4.2: History of the penalty function depend on rloc, rs and rp.

The results for the potential parameters (see eq. (4.2) and eq.(4.3) for the

form of the potential) are shown in table 4.1. The results for rloc, rs and hs are

comparable to the original values of the regular carbon pseudopotential (75; 156).
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4.3 Results and Discussion

rloc indicates that the range of the Gaussian ionic charge distribution is increased.

C1 is responsible for an attracting potential that is strengthened by about 20%

in the capping atom, while the repulsive term C2 is decreased by about 75%.

This results in an overall stronger electron affinity of the capping atom, which

can be seen as a partial compensation of the change in core charge with respect

to the original pseudopotential from Zv=4 to Zv = 1. An additional p-type

projector is used for introducing a small perturbation in order to allow for a

stronger repulsion.

4.3.2 Improvement of electronic densities with Dopti

In figure 4.3, the improvements obtained due to the optimization process for

ethane are illustrated in terms of electron density differences. The density in

the full molecule have been compared to the density of the dummy-substituted

one, using the initial values for the pseudopotential (Dini) and the optimized

dummy parameters (Dopti). It can be recalled that the initial values are the

pseudopotential parameters for a regular carbon atom (except for the valence

charge, which is reduced to one). Finally, a direct comparison of D − CH3

between the initial and optimized dummy link atom D is shown in figure 4.3,

along with its projection in 2D.

The effect of the optimization is obvious. For the unoptimized dummy Di,

rloc C1 C2 rs hs rp hp

regular C 0.3376 -9.1285 1.4251 0.3025 9.6507 - -
DC 0.3593 -11.5399 0.3408 0.2786 9.5771 1.5677 0.0968

Table 4.1: Pseudopotenial parameters of the regular carbon atom and the opti-
mized dummy capping potential. DC represent the capping potentials optimized
for a C-C bond, rloc, rs, rp are given in units of Bohr, C1, C2, hs and hp in Hartree.
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4.3 Results and Discussion

the substituted molecule has an incorrect electronic density beyond the cleavage

bond (D−C), with regions of both increased and decreased electron density. In

contrast to this, the optimized dummy yields a very low density difference with

respect to the unperturbed molecule immediately after the first regular carbon

atom. When comparing the density differences between the initial and optimized

dummy atoms directly (rightmost plot in fig. 4.3), the strongest differences are

located at the dummy itself, while the density redistribution at the methyl protons

is still considerable.

4.3.3 NMR chemical shifts of the dummy-substituted ethane

The accuracy of the optimized dummy atoms is benchmarked by calculating NMR

chemical shifts, which represent the electronic response to an external magnetic

field. NMR parameters are highly sensitive to small changes in the electronic

structure around a nucleus, including orbitals up to a few Angstroms away from

the considered atom. In this way, they offer a complementary non-local and

orbital-based probe, complementary to the penalty functional itself that is based

only on the total density.

The isotropic NMR chemical shift values of the ethane reference molecule (ta-

ble 4.2) have been computed, comparing the full-quantum setup with the dummy-

R 7→ CH3 R 7→ Dini R 7→ D7v R 7→ Dopti Exp (164)

δH(R-CH3) 1.13 -0.72 3.34 0.71 0.86
δC(R-CH3) 10.97 -22.83 -0.31 10.28 7.00

Table 4.2: Calculated 1H and 13C NMR chemical shifts (in ppm) of ethane before
and after the substitution of the methyl group by dummy atoms. Besides the
initial and optimized dummy potentials (Dini and Dopti), the heptavalent potential
developed by Lilienfeld et al. (54) was used (D7v). The respective nucleus is
indicated by a bold character, the shieldings are referenced according to eq. (4.5).
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substituted molecule. For the latter, the optimized (Dopti) and the unoptimized

(Dini) monovalent dummy potentials are used, as well as the seven-valent one

(D7v) developed by Lilienfeld et al. (54), which was developed to reproduce the

electronic density in acetic acid.

It turns out (see table 4.2) that the chemical shifts from the optimized capping

atom are generally in better agreement with the all-QM calculation than for the

initial (Dini) and seven-valent (D7v) capping potentials. The initial potential

results in significantly lower chemical shifts, while the heptavalent dummy greatly

overestimates them. Only the optimized monovalent substitution yields values

close to the all-quantum calculation. A similar picture emerges for carbon, where

both the unoptimized monovalent and the heptavalent dummies yield incorrect

results. Deviations of 0.4ppm for the protons and 0.7ppm for carbon (as obtained

for Dopti) are probably unavoidable for the heteroatom directly connected to the

dummy, but errors of 30ppm and 10ppm (for Dini and D7v, respectively) are

clearly more than what would normally be deemed acceptable. In conclusion,

the NMR resonances of the dummy-substituted ethane show indeed a very good

agreement with the corresponding full-quantum calculations, even for the atom

directly connected to the bond cleavage.

4.3.4 Energetic and Geometric properties of the D-C bonds

The geometry of the reference ethane has been optimized with the methyl group

substituted by the optimized dummy atom. The results for selected distances and

angles are shown in table 4.3. The equilibrium geometry of the initial potential

exhibits somewhat elongated bonds, but the situation improves significantly with

the optimized dummy atom. Comparing the equilibrium bond distances to the

heptavalent dummy (D7v), an investigation find a clear improvement, which is
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4.3 Results and Discussion

R 7→ CH3 R 7→ Dini R 7→ Dopti R 7→ D7v

d(R-C) [Å] 1.54 1.68 1.52 2.04
d(C-H) [Å] 1.10 1.10 1.10 1.09
θH−C−C [deg] 111.3 110.3 111.9 106.8
θH−C−H [deg] 107.6 108.6 106.9 112.0

Table 4.3: Optimized bond lengths in the ethane reference molecule, before and
after substitution of the methyl group by a dummy. The bond lengths are re-
ported both for the initial capping potential (parameters of the regular carbon
pseudopotential) as well as for the optimized dummy.

most likely due to the incorporation of the atomic forces into the penalty func-

tional.

Figure 4.4: Potential energy curve for rigid stretching/compression of the C-C
bond in ethane and D-CH3 with the original and the optimized pseudopotentials.

Figure 4.4 shows the potential energy profile of ethane as a function of the C-C
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bond length. The equilibrium bond length of Dini-CH3 is somewhat longer than

the full QM value. The optimized capping potential Dopti, in turn, improved

this distance considerably. However, it does so at the expense of a somewhat

lower curvature, corresponding to a reduced harmonic stretch frequency of this

bond. The reason for this is that the parameters C1 and C2 in the local poten-

tial, eq. (4.2), which are both more negative after the optimization. A qualitative

analysis showed that this results in a less repulsive D − C potential. The opti-

mization for both the electronic structure in the equilibrium geometry and the

vibrational properties did not suceed simultaneously, which illustrates the limits

of the monovalent capping with respect to other techniques. Nevertheless, for

the analysis of structural and electronic response properties, the vibrational fre-

quencies play only a minor role. Increased weighting factors wF and wE for the

geometry-related term in the penalty potential might help to reduce this bond

strength problem.

4.3.5 Application of the capping dummy potential to his-

tidine

The good agreement obtained in the previous section might be fortituous, as the

dummy potentials were optimized for the very specific molecules that were sub-

sequently benchmarked there. Thus, the transferability of the dummy potentials

has been checked by applying them to a different molecule, namely histidine.

Table 4.4 shows the NMR chemical shifts of the full histidine molecule and its

imidazole fragment within a QM/MM description. As expected, the strongest

deviations are observed for the carbon C(2) directly involved in the bond cleav-

age. Here, the dummy optimization scheme results in the reduction of the error

by almost an order of magnitude compared to the unoptimized capping atom.
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QM

Figure 4.5: Atom numbering and bond cutting scheme for histidine molecule. The
upper part (outside the “QM” region) is being replaced by the dummy capping
potential (“D”).

Similarly, a considerable improvement is obtained for the next carbons C(3) and

C(6), as well as the nitrogen N(7). In all these cases, the optimized monovalent

potential also performs better than the heptavalent dummy atom. For C(9) and

N(8), which are further away from the bond cleavage, the situation is less drastic,

and all three choices yield similar –yet small– discrepancies with respect to the

full-QM calculation.

The hydrogens exhibit smaller absolute deviations, which is because their

NMR chemical shift spectrum spans a range that is about an order of magnitude

smaller than that of C and N nuclei. Nevertheless, the shifts of the hydrogens

adjacent to the bond cut (H(4) and H(5)) are considerably be better. The problem
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4.3 Results and Discussion

Full-QM R 7→ Dopti R 7→ Dini R 7→ D7v Exp (164)

C(2) 32.46 25.67 -2.72 11.11 30.78
C(3) 136.90 138.35 142.05 141.54 134.67
C(6) 137.37 136.69 132.52 135.03 119.55
C(9) 138.05 137.16 135.96 137.37 138.97
N(7) -202.97 -201.98 -200.70 -204.79 -
N(8) -138.91 -137.87 -139.60 -139.60 -
H(4) 3.40 4.18 2.62 5.99 3.12
H(5) 3.56 3.60 2.03 5.26 3.23
H(10) 7.60 6.89 6.56 7.28 7.06
H(11) 9.93 9.80 9.66 9.93 -
H(12) 7.33 7.19 7.09 7.20 7.80

Table 4.4: Calculated 1H, 13C and 15N NMR chemical shifts (in ppm) of histidine
and its dummy-substituted fragment (for the atom numbering, see fig. 4.5). Data
for both the initial and optimized dummy potentials (Dini and Dopti) as well as
the heptavalent one (D7v) (54) are shown. R represents the remaining fragments
in the classical regions.

Full-QM R 7→ Dini R 7→ Dopti

∆E [kcal/mol] 238.1 245.8 239.8
rD−C2 [Å] 1.57 1.69 1.55
rC2−C3 [Å] 1.51 1.49 1.50

Table 4.5: Computed and experimental proton affinities ∆E = EDFT(Hist) −
EDFT(Hist-H+) as well as geometric data for histidine and its dummy-substituted
fragment (for the atom numbering, see fig. 4.5). Data for both our initial and op-
timized dummy potentials (Dini and Dopti) are shown. R represents the remaining
fragments in the classical regions.

for H(4) might be due to the effect of the lone electron pairs of the nearby nitrogen,

which are missing entirely when the left fragment is replaced by the dummy

potential. It may be noted that that the same phenomenon applies to H(10)

which is in somewhat better agreement after the optimization. The deviations of

H(11) and H(12) are quite small and do not obviously correlate to the choice of the

capping potential. In most cases, the monovalent capping potential outperforms

the heptavalent one.
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In addition to the NMR chemical shifts, the optimized capping potential has

been used to compute the protonation energy (N(8) is the protonation site), and

structural parameters for comparison with the initial capping potential and full

QM results. Geometry optimizations of both protonated and non-protonated

form were carried out. The energy differences between these neutral and charged

histidine molecules (see table 4.5) from the Dopti capping model are fairly accurate

when compared to full-QM results. Using Dopti allow for reducing the error from

the full QM deprotonation energy ∆E by 1.7 kcal/mol, while the Dini yields an

error of 7.6 kcal/mol. Also for the D − C2 bond length, the optimized Dopti

yields the smallest deviations from the full-QM values, whereas the equilibrium

geometry of the Dini − C2 bonds is more elongated, in analogy to the situation

observed for ethane.

4.3.6 Application of the capping dummy potential to ly-

sine

Full-QM R 7→ Dini R 7→ Dopti Exp (164)

C(1) 37.54 7.33 36.27 32.60
C(2) 28.81 30.88 29.98 24.13
C(3) 35.27 43.81 37.39 29.11
C(4) 48.10 48.27 47.96 41.75
N(5) -293.21 -292.82 -292.95 -
H(6,7) 2.25 1.13 2.13 1.9
H(8,9) 2.25 2.13 2.18 1.5
H(10,11) 2.10 1.99 1.91 1.7
H(12,13) 3.72 3.59 3.65 3.0
H(14) 1.95 1.88 1.90 -
H(15) 2.78 2.70 2.74 -

Table 4.6: Calculated 1H, 13C and 15N NMR chemical shifts (in ppm) of lysine
and its dummy-substituted fragment (for the atom numbering, see fig. 4.6). Data
for both the initial and optimized dummy potentials (Dini and Dopti) are shown.
R represents the remaining fragments in the classical regions.
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QM

Figure 4.6: Atom numbering and bond cutting scheme for the lysine molecule.
The upper part (outside the “QM” region) is being replaced by the dummy
capping potential (“D”).

The second QM/MM application of the capping potential is the amino acid

lysine, which was split into QM/MM fragments as illustrated in fig. 4.6. In

this present setup, the amino group was replaced by the initial and optimized

dummy potentials; note that the Dopti parameters were obtained from the ethane

molecule without any further change, in order to benchmark the transferability

of this capping scheme presented in this chapter.
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The NMR chemical shifts obtained via the full-QM and QM/MM calculations

are summarized in Table 4.6. It turns out that the results for the Dopti capping

potential are in much better agreement with the full-QM values than that those

from the unoptimized dummy Dini. The deviation of the C(1) chemical shift is

decreased from 30 to 1.2 ppm, and for H(6) and H(7), it is reduced from 1.1 to 0.1

ppm. This suggests that the nonoptimized dummy potential leads to a seriously

flawed representation of the electron density when the C1 −D bond is broken in

the QM/MM setup. Inspecting the shifts of C(2), C(3) and C(4), it is found that

the influence of the bond cleavage is not negligible even for the atoms located

several bonds away from the QM/MM border. The Dopti instead agrees quite

well with the full-QM calculations for all atoms.

A geometry optimization of the lysine molecule was furthermore performed

within the QM/MM framework using the initial and optimized capping potentials

Dini and Dopti. The resulting C-C bond lengths for the two bonds closest to the

MM region are shown in table 4.7. While the C1−C2 bond is not affected by the

bond cleavage, the D − C1 bond length is notably different for the unoptimized

capping potential. The same is observed for the proton affinity of lysine, which

is considerably better for the optimized link atom than for the initial one.

Full-QM R 7→ Dini R 7→ Dopti

∆E [kcal/mol] 225.6 232.8 228.6
rD−C1 [Å] 1.56 1.69 1.56
rC1−C2 [Å] 1.55 1.55 1.55

Table 4.7: Computed and experimental proton affinities ∆E = EDFT(Lys) −
EDFT(Lys-H+) as well as geometric data for lysine and its dummy-substituted
fragment, using both the initial and optimized capping potentials.
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4.4 Conclusion

A new monovalent capping potential has been presented for hybrid QM/MM cal-

culations within density functional theory. The parameters of analytic effective

pseudopotentials were optimized such as to reproduce electronic density, proton

affinities, atomic forces and geometries as closely as possible with respect to the

corresponding full-QM quantities. Particular focus was put on the reliability of

NMR chemical shifts as highly sensitive probes of the ground state and response

properties of the electronic orbitals. The resulting analytic capping potentials

were shown to have a high transferability for different molecules. An important

advantage resulting from the improved electronic structure of the optimized cap-

ping potentials is that our Dopti can help to reduce the QM box size significantly,

since the perturbation of the QM/MM bond cleavage is essential undetectable in

the QM region beyond one single chemical bond.
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Chapter 5

Conclusion

The central aim of this thesis work is the application and further development of a

hybrid quantum mechanical/molecular mechanics (QM/MM) based approach to

compute spectroscopic properties of molecules in complex chemical environments.

While the method is suitable and intended for biomolecules such as proteins,

the focus of the present work was mainly on conceptual aspects. Therefore,

the chemical complexity was reduced by considering rather small molecules in

contact with a simple solvent (water), while nevertheless retaining all physical

interactions as in the case of a complex biochemical system.

In the framework of this thesis, the existing density functional theory im-

plementation of the QM/MM approach was first used to calculate the nuclear

magnetic resonance (NMR) solvent shifts of an adenine molecule in aqueous so-

lution (chapter 3). In order to obtain a realistic picture of this situation, a large

number of solvent molecules was incorporated into the calculations, and a molec-

ular dynamics trajectory was sampled with NMR calculations in order to obtain

a suitable ensemble averaging. Both the generation of the molecular dynam-

ics trajectory and the calculation of NMR chemical shifts were done within the

QM/MM scheme, in which only the adenine molecule was treated quantum me-

chanically; all the surrounding water solvent was modeled via conventional point
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charges (the so-called TIP3P all-atom force field). The findings show that the

aqueous solvation with its strongly fluctuating hydrogen bond network leads to

specific changes in the NMR resonance lines. Besides the absolute values, also

the ordering of the NMR lines changes under the influence of the solvating water

molecules. Without the QM/MM scheme, a quantum chemical calculation could

have led to an incorrect assignment of these lines. While the agreement of the

computed QM/MM NMR chemical shifts is not perfect, the overall agreement

with respect to experimental values is very good for the 1H and reasonably good

for the 15N chemical shifts.

The second part of this thesis describes a methodological improvement of the

QM/MM method that is designed for cases in which a covalent chemical bond

crosses the QM/MM boundary. The development consists in an automatized

protocol to optimize the so-called capping potential that saturates the electronic

subsystem in the QM region. While capping potentials are commonly used in

QM/MM calculations since many years, their quality turned out to be insufficient

to predict spectroscopic parameters with the desired accuracy. The optimization

scheme presented in chapter 4 is capable of tuning the parameters of generalized

capping potentials (for which analytical pseudopotentials with a small number of

parameter are used) in such a way that the deviations of the electronic orbitals

between the regular and the truncated (and ”capped”) molecule are minimized.

This in turn results in a considerable improvement of the spectroscopic parame-

ters computed with the new optimized capping potential.

In the present thesis, this optimization scheme is applied and benchmarked on

the example of truncated carbon-carbon bonds in a set of small test molecules. It

turns out that the optimized capping potentials yield an excellent agreement of

NMR chemical shifts and protonation energies with respect to the corresponding

full molecules. These first results are very promising, so that the application to
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larger biological complexes will significantly improve the reliability of the predic-

tion of the related spectroscopic properties.
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P. Blümler. Phys. Chem. Chem. Phys., 2006, 8, 4182–4188. 12

[59] N. W. Ashcroft. Solid state physics. Saunders, Philadelphia, 1976. 15, 31

[60] I. Shavitt. in Modern Theoretical Chemistry, H. F. Schaefer, Ed. Plenum

Press, New York, 1977. 18

[61] A. C. Wahl and G. Das. in Modern Theoretical Chemistry, H. F. Schaefer,

Ed. Plenum Press, New York, 1977. 18

[62] H. J. Werner. in Ab Initio Methods in Quantum Chemistry, K. Lawley, Ed.

John Wiley, Chichester, 1987. 18
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