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Zusammenfassung

Die Lattice-Boltzmann-Methode ist ein verbreitetes Verfahren zur Simulation hydrodyna-
mischer Wechselwirkungen in weicher Materie und komplexen Flüssigkeiten. Dabei wird
das Lösungsmittel durch ein räumliches Gitter repräsentiert, auf dem Teilchenpopulationen
entlang der diskreten Kanten zwischen den Gitterpunkten propagieren und lokal mitein-
ander kollidieren. Diese Mikrodynamik führt auf großen Skalen zu einem hydrodynami-
schen Strömungsfeld, wie es die Navier-Stokes-Gleichung beschreibt. In der vorliegenden
Arbeit werden verschiedene methodische Erweiterungen der Lattice-Boltzmann-Methode
entwickelt.

In komplexen Flüssigkeiten, z. B. Suspensionen, ist die Brownsche Molekularbewegung
von zentraler Bedeutung. Sie kann jedoch mit der klassischen Lattice-Boltzmann-Methode
nicht simuliert werden, da die Dynamik vollständig deterministisch ist. Es ist jedoch mög-
lich, zusätzliche thermische Schwankungen einzuführen, mit denen fluktuierende Hydro-
dynamik reproduziert werden kann. In der Arbeit wird mit Hilfe eines verallgemeinerten
Gitter-Gas-Modells eine systematische Herleitung der Gleichgewichtsverteilung aus Prin-
zipien der Statistischen Mechanik präsentiert. Der stochastische Anteil der Dynamik wird
als Monte-Carlo-Prozess betrachtet, der dem Prinzip des detaillierten Gleichgewichts ge-
nügen muss. Hieraus lässt sich eine Bedingung für die thermischen Fluktuationen ableiten,
die insbesondere besagt, dass alle Freiheitsgrade des Systems einschließlich der kinetischen
Moden thermalisiert werden müssen. Der entwickelte Formalismus stellt sicher, dass die
verbesserte fluktuierende Lattice-Boltzmann-Methode sowohl die fluktuierende Hydrody-
namik reproduziert als auch konsistent auf der Statistischen Mechanik aufbaut. Dies könnte
die Grundlage für zukünftige Erweiterungen der Methode sein, z. B. im Hinblick auf Multi-
Phasen-Systeme oder Thermo-Hydrodynamik.

Ein wichtiges Anwendungsgebiet der Lattice-Boltzmann-Methode ist die Mikrofluidik.
Simulationen leisten hier neben Theorie und Experiment einen wichtigen Beitrag auf dem
Weg zum “Labor auf dem Chip”. Mikrofluidik-Systeme zeichnen sich durch ein hohes Ver-
hältnis von Oberflächen zu Volumen aus. Besonderes Augenmerk muss daher auf die Rand-
bedingungen gelegt werden, wobei im Mikrobereich die in der Hydrodynamik übliche Haft-
bedingung an der Oberfläche durch eine Gleitbedingung zu ersetzen ist.

In dieser Arbeit wird eine Randbedingung für die Lattice-Boltzmann-Methode konstru-
iert, die die Einstellung der Gleitlänge über einen entsprechenden Modellparameter ermög-
licht. Es wird weiterhin ein neuer Ansatz zur Konstruktion von Randbedingungen unter-
sucht. Ausgangspunkt ist dabei die explizite Berücksichtigung der gebrochenen Symmetrie
an einer Oberfläche innerhalb des Gittermodells. Die Lattice-Boltzmann-Methode wird sy-
stematisch auf die gebrochene Symmetrie verallgemeinert. Am Beispiel einer Poiseuille-
Strömung wird gezeigt, dass eine spezielle Wahl des Kollisionsoperators an der Wand er-
forderlich ist, damit das Strömungsprofil korrekt reproduziert wird. Die systematische Vor-
gehensweise führt dabei zu einem erweiterten Verständnis von Randbedingungen in der
Lattice-Boltzmann-Methode, das nicht nur bei der Interpretation von Simulationsergebnis-
sen hilfreich ist, sondern auch zu zukünftigen Verbesserungen der Methode führen könnte.





Abstract

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interac-
tions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose
nodes are populated by particle distributions that propagate on the discrete links between
the nodes and undergo local collisions. On large length and time scales, the microdynamics
leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis,
several extensions to the lattice Boltzmann method are developed.

In complex fluids, for example suspensions, Brownian motion of the solutes is of para-
mount importance. However, it can not be simulated with the original lattice Boltzmann
method because the dynamics is completely deterministic. It is possible, though, to intro-
duce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics.
In this work, a generalized lattice gas model is used to systematically derive the fluctuat-
ing lattice Boltzmann equation from statistical mechanics principles. The stochastic part
of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy
the condition of detailed balance. This leads to an expression for the thermal fluctuations
which implies that it is essential to thermalize all degrees of freedom of the system, includ-
ing the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann
equation is simultaneously consistent with both fluctuating hydrodynamics and statistical
mechanics. This establishes a foundation for future extensions, such as the treatment of
multi-phase and thermal flows.

An important range of applications for the lattice Boltzmann method is formed by mi-
crofluidics. Fostered by the “lab-on-a-chip” paradigm, there is an increasing need for com-
puter simulations which are able to complement the achievements of theory and experi-
ment. Microfluidic systems are characterized by a large surface-to-volume ratio and, there-
fore, boundary conditions are of special relevance. On the microscale, the standard no-slip
boundary condition used in hydrodynamics has to be replaced by a slip boundary condi-
tion. In this work, a boundary condition for lattice Boltzmann is constructed that allows
the slip length to be tuned by a single model parameter. Furthermore, a conceptually new
approach for constructing boundary conditions is explored, where the reduced symmetry at
the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method
is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow
in a plane channel, it is shown that a special choice of the collision operator is required to re-
produce the correct flow profile. This systematic approach sheds light on the consequences
of the reduced symmetry at the boundary and leads to a deeper understanding of boundary
conditions in the lattice Boltzmann method. This can help to develop improved boundary
conditions that lead to more accurate simulation results.
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List of symbols and notations

A variety of symbols and notations is used in this thesis. The following table shall help the
reader to find the way through. Many formulas in this work can be written in more than one
notation, the most frequent option probably being the choice of vector or index notation.
The choices made in the text are an attempt to present the formulas in a way that is at the
same time simple and intuitive, with the aim to guide the reader along the lines of thought.
Therefore, we sometimes deliberately switch between different notations “on the fly”. The
table below lists the elementary symbols, some of which can be indexed in several ways and
combinations of indexes can be used. We have not listed all possible combinations here.
The meaning of combinations of symbols and notations should always become clear in the
respective context.

Symbol/Notation Meaning

Miscellanea
a · b scalar product of two vectors a and b

a⊗ b, ab tensor product of two vectors a and b (cf. footnote 6 on page 15)
a : b full contraction of rank-two tensors a and b
〈f |g〉 scalar product of two functions f and g
∂
∂r

gradient or divergence (nabla operator)
δ
δfi

functional derivative with respect to fi
(∂f)coll general collision operator in kinetic theory
1 unit matrix

Dimensionless numbers
Bo Boltzmann number
Kn Knudsen number
Ma Mach number

Latin letters
A,B,C, . . . coefficients in the discrete equilibrium distribution
Ã, B̃, C̃, . . . coefficients in the discrete boundary equilibrium distribution

A,B1, B2, C1, . . . coefficients of the lattice tensors in the reduced symmetry
a lattice spacing

Continued on next page
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Symbols & Notations

Symbol/Notation Meaning

Continued from previous page
a(n), a

(n)
α1...αn tensor coefficients in the Hermite expansion

b, bk lengths of the basis vectors eki of mode space
cs speed of sound

ci, ciα discrete velocity vectors
ĉi, ĉiα dimensionless form of velocity vector, ci = ĉi a/τ
En
D,d quadrature of degree d in D dimensions using n nodes

E(2), E(3) tensors occurring in the Chapman-Enskog expansion
eki basis vectors of mode space
F external force in the Boltzmann equation

f(r,v, t) one-particle distribution function in kinetic theory
fN(r,v, t) truncated Hermite expansion of f(r,v, t)
f eq(ρ,u) local equilibrium distribution function, Maxwell-Boltzmann dis-

tribution
fi(r, t) discrete velocity population in lattice models
f eq
i (ρ,u) local equilibrium population of discrete velocities
f , fi population numbers in general
f ∗i post-collisional value of population number

f eq
i , f

neq
i equilibrium and non-equilibrium part of discrete velocity popula-

tion
f

(0)
i , f

(1)
i , f

(2)
i different orders of the Chapman-Enskog expansion of the popula-

tions
fB,eq(ρ,u) local equilibrium population at a boundary

fext external force
G, Gαβ tensor in the forcing term of the lattice Boltzmann equation
g, gα volumetric force
j, jα hydrodynamic momentum density
kB Boltzmann’s constant
lmfp molecular mean free path
L hydrodynamic length scale, typically the width of a channel
m mass
mp (fictitious) mass of a lattice Boltzmann particle
M transformation matrix from populations to modes
MB transformation matrix from populations to modes at a boundary

m, mk hydrodynamic modes or moments
meq
k equilibrium value of the moment mk

m∗
k post-collisional value of the moment mk

n, nα normal vector of a boundary surface
P projector on the boundary normal P = nnT

p hydrostatic pressure
Continued on next page

xvi



Symbols & Notations

Symbol/Notation Meaning

Continued from previous page
p(r,v, t) polynomial in v
Qαβγδ correlations of the fluctuations of the stress tensor s
q fraction of a cut link that lies outside a boundary

r, rα position vector
r1, r1α coarse-grained position vector r1 = εr
S ({νi}) associated entropy in the generalized lattice gas model

S ({νi}, χ,λ) entropy functional with Lagrange multipliers
s, sαβ fluctuating stress in Landau-Lifshitz fluctuating hydrodynamics
T temperature

T(n), T
(n)
α1...αn lattice tensor or lattice sum (includes the weights wi)
t time variable
t1 coarse-grained time variable, convective scale t1 = εt
t2 coarse-grained time variable, diffusive scale t2 = ε2t

u, uα hydrodynamic flow velocity
uslip slip velocity at a boundary
v molecular velocity in kinetic theory

wi, wq weights in the lattice Boltzmann model, i indexes individual ci
while q indexes a subshell with the same absolute velocity

Greek letters
α Maxwell’s accommodation coefficient
β slip coefficient
γ friction parameter in the hydrodynamic slip boundary condition
γk relaxation parameter of the k-th moment mk

δαβ Kronecker delta
δαβγδ rank-4 cubic anisotropy, δαβγδ = δαβδβγδγδ (no summation over

double indices)
δ(n), δ

(n)
α1...αn n-th rank isotropic tensor, sum of all (2n − 1)!! products of Kro-

necker deltas
∆i discrete collision term in the lattice Boltzmann equation
∆′
i stochastic collision term

∆g
i forcing term

∆
(0)
i , ∆

(1)
i , ∆

(2)
i different orders of Chapman-Enskog expansion of the collision

term
δB slip length at a boundary
ε expansion parameter in the Chapman-Enskog expansion
ζ friction parameter in the wall friction model

ηαβγδ viscosity tensor
Continued on next page
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Symbols & Notations

Symbol/Notation Meaning

Continued from previous page
ηb bulk viscosity
ηs shear viscosity
θ reduced (dimensionless) temperature
κ4 coefficient of the anisotropic term of the rank-4 lattice sum
λ eigenvalue of the BGK collision operator (single-relaxation-time

approximation)
λb eigenvalue of the bulk stress modes, related to bulk viscosity
λg eigenvalue of the kinetic (ghost) modes
λk eigenvalues of the k-th mode mk of the collision operator
λs eigenvalue of the shear stress modes, related to shear viscosity

λρ, λj, λΠ Lagrange multipliers
λ, λα Lagrange multiplier

λ
(1)
α , λ

(2)
α low velocity expansion of the Lagrange multiplier

λB Lagrange multiplier at a boundary
λ
B,(1)
α , λ

B,(2)
α low velocity expansion of the Lagrange multiplier at a boundary

µ mass density parameter
ν, νi integer population numbers in the generalized lattice gas model
ν∗i post-collisional integer population number

Π, Παβ pressure or stress tensor
Π∗, Π∗

αβ post-collisional stress tensor
Πeq, Πeq

αβ equilibrium (Euler) stress tensor
Πneq, Πneq

αβ non-equilibrium (Newtonian) stress tensor
Π(0),Π(1) different orders of the Chapman-Enskog expansion of the stress

tensor
ρ density

σ, σαβ, σαβ Navier-Stokes viscous stress tensor (overline denotes traceless
part)

σr, σrαβ, σ
r
αβ random fluctuating stress in the lattice Boltzmann model (overline

denotes traceless part)
σ2 coefficient of the rank-2 lattice sum
σ4 coefficient of the isotropic term of the rank-4 lattice sum
τ lattice Boltzmann time step

Φeq, Φeq
αβγ equilibrium value of the third-moment

Φ(0), Φ
(0)
αβγ lowest order Chapman-Enskog expansion of the third moment

ϕk amplitude of the random noise for the k-th moment mk

χi indicator variable
χ Lagrange multiplier

χ(1), χ(2) low velocity expansion of the Lagrange multiplier
χB Lagrange multiplier at a boundary

Continued on next page
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Symbol/Notation Meaning

Continued from previous page
χB,(1), χB,(2) low velocity expansion of the Lagrange multiplier at a boundary

ω(v) weight function in kinetic theory
ω(m→ m∗) transition probability from m to m∗ for stochastic collisions

Calligraphic letters
B(v′ → v) boundary scattering kernel in kinetic theory

Bij discrete boundary scattering kernel
C linear collision operator in kinetic theory

CBGK BGK collision operator in kinetic theory
F ({fi}) functional of the population numbers
FB ({fi}) functional at a boundary

H(n), H(n)
α1...αn n-th order Hermite tensor polynomial

L, Lij discrete linear collision operator
LM collision operator in mode space
N normalization factor

xix





1 Introduction

Soft matter systems and in particular complex fluids are receiving ongoing research interest
from both theoretical and experimental perspectives. Typical examples are colloidal disper-
sions and polymer solutions. More recently, evolved systems such as membranes, vesicles
and cells have attracted growing interest. A decisive property of such systems is the presence
of a hierarchy of time and length scales, ranging from the “atomistic” scale of the molecular
interactions to the “macroscopic” scale of continuum hydrodynamics. The length scales in
between are called “mesoscopic” and are pivotal for the rich diversity of phenomena that
can be observed in soft matter. The additional mesoscopic length scale provided by parti-
cles dispersed in a solvent can lead to a qualitative change of the behavior in complex fluids
compared to the pure solvent. For example, the addition of a small amount of polymer to
water can lead to a significant reduction of drag when the solution is pumped through tubes
or channels. Such phenomena are induced by the physics that takes place on the mesoscopic
scale, which therefore can not be neglected in a theoretical description of complex fluids.

The behavior of soft matter is usually governed by a variety of different physical mecha-
nisms, e.g., thermodynamics and phase transitions, electrokinetic and rheological effects,
nonlinear phenomena and instabilities. A complete analytical treatment including all these
mechanisms is certainly out of reach, and available theoretical predictions are generally
based on more or less crude approximations. For this reason, soft matter and complex fluids
belong to the realm of computer simulations. Simulations can serve as a powerful tool to
investigate the principles underlying the experimental observations. They allow one to study
simple model systems extensively and under well-defined conditions, where the influence
of different interactions can be systematically identified and isolated. In this way, computer
simulations form another pillar besides analytical theory and experiment, that is indispens-
able for gaining a better understanding of soft matter. The latter is clearly of paramount im-
portance for practical applications, ranging from engineering processes to medical diagnosis
and therapy. The development of successful and efficient computer simulation methods is
therefore an important branch of contemporary physical research.

Efficient simulation models for complex fluids are mostly based on the concept of coarse-
graining. The number of degrees of freedom in a complex fluid is so huge that an explicit
treatment of all of them is impracticable. Moreover, the dynamics of the dispersed particles
takes place on much longer time scales than the solvent dynamics, so that following every
solvent molecule’s trajectory is unnecessary and wastes a lot of computing time. This latter
observation, which is the so-called separation of scales, is at the heart of the improvements
achieved through coarse-graining. Since the molecular details of the solvent are irrelevant on
the scales of the dispersed particles, it can be treated as a continuous hydrodynamic medium
that is governed by the Navier-Stokes equation. Complex fluids can typically be described

1



1 Introduction

in the incompressible and creeping flow limit, i.e., the Mach number and the Reynolds
number are small. In this limit, the effect of the solvent on the dispersed particles can be
modeled in terms of a Stokes friction. One of the simplest approaches to include solvent
effects is Langevin dynamics, where each dispersed particle is subject to a friction force
proportional to its velocity. The diffusion of the particles in Langevin dynamics is consistent
with the Einstein relation. However, the simple friction force can not capture the momentum
transport through the solvent. If a dispersed particle moves, the flow field of the solvent is
changed. This perturbation propagates through the solvent and affects the motion of other
particles. The correlations mediated by this effect are called hydrodynamic interactions.
They are of a long-ranged nature and their efficient implementation in computer simulations
is a topic still undergoing active development.

Among the techniques for simulating hydrodynamic interactions, the so-called mesoscopic
methods have proven particularly useful for soft matter applications. They are based on
representing the solvent degrees explicitly but via simplistic models on a mesoscopic scale.
Particle based methods, such as dissipative particle dynamics and multi-particle collision
dynamics, use explicit solvent particles that represent a collective lump of fluid. Besides
particle methods, the lattice Boltzmann method has become a popular approach to simulate
complex fluids. Lattice Boltzmann is built on a special space-time discretization of kinetic
theory, where the solvent is modeled in terms of particle distributions on a regular lattice.
Although it was originally devised as an alternative tool for computational fluid dynamics, it
has successfully been applied to a variety of soft-matter systems. The reason for the success
of the lattice Boltzmann method is its versatility originating from the possibility to pad
the plain solvent dynamics with specific details describing the structure of complex fluids.
Numerous examples show that lattice Boltzmann is a very flexible simulation method for
many different kinds of systems, ranging from suspensions over reactive and multi-phase
flows to turbulence.

Besides hydrodynamic interactions, thermal fluctuations play an important role in many
soft matter systems. They arise from the underlying microscopic dynamics of the solvent
molecules and are responsible for the observed Brownian motion of dispersed particles. On
the hydrodynamic level, thermal fluctuations in the hydrodynamic variables can be described
within the framework of fluctuating hydrodynamics. A simulation method for complex flu-
ids should therefore be capable of reproducing the fluctuating hydrodynamic equations and
provide a means for adjusting the strength of the thermal fluctuations at will. In the lattice
Boltzmann method, the evolution of the hydrodynamic variables is completely determinis-
tic, hence Brownian motion is not automatically reproduced. It is possible though, to equip
the lattice Boltzmann method with thermal noise in a way that is consistent with fluctuat-
ing hydrodynamics. However, this approach lacks a rigorous justification in terms of the
underlying statistical mechanics. In fact, some criticism of the original fluctuating lattice
Boltzmann was put forward and a modified approach was suggested by Adhikari et al. [1].
The ultimate clarification of this debate was only achieved recently during the course of this
thesis [2].
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Another more recent development in soft matter research is an increasing trend of turning
towards microfluidics. Modern experimental methods make it possible to fabricate microflu-
idic devices with dimensions on the micro- or even the nanoscale. The development of the
first MEMS (micro-electromechanical systems) and µTAS (micro total analysis systems)
has led to an ever-growing interest in the so-called lab-on-a-chip paradigm. Microchips are
designed to displace, transport, manipulate and separate very small fluid volumes. The aim
is to be able to conduct all typical elements of physico-chemical processing – mixing, re-
acting, analyzing and so on – on a microscopic scale. Potential applications emerge from
the rapid developments in molecular biotechnology and include, for example, bioanalytic
devices that can be used for medical diagnosis.

With the reduced spatial dimensions of microfluidic devices the surface-to-volume ratio
is significantly increased. Therefore the flow through microchips is largely dominated by
surface and interface effects and fluid-solid interactions play an important role. With re-
gard to simulation methods this means that special emphasis has to be put on the bound-
ary conditions. There is ample experimental evidence that the classical no-slip boundary
condition becomes inappropriate in microchannels when the Knudsen number exceeds a
value of roughly 0.1. The fluid does not stick to the boundary any more, but an effective
slip velocity is observed that is determined by surface roughness and the physico-chemical
properties of the boundary. While the no-slip boundary condition is the standard boundary
condition in lattice Boltzmann simulations, apparent slippage has been rarely addressed. In
general, boundary conditions in lattice Boltzmann simulations are often based on heuristic
arguments, and a systematic and unified framework is still lacking.

The aim of this thesis is to advance the development of the lattice Boltzmann method in order
to make it applicable to the flow of complex fluids in microfluidic devices. For this purpose,
two major points shall be addressed. First, the fluctuating lattice Boltzmann equation shall
be revisited in order to restore the statistical mechanics origin of the thermal fluctuations.
This will make the method consistent with both statistical mechanics and continuum hy-
drodynamics at the same time. The second major topic shall be boundary conditions for
the lattice Boltzmann model. A novel way of implementing a tunable slip boundary condi-
tion based on a mesoscopic wall friction model will be devised. Furthermore, a conceptually
new approach to boundary conditions shall be explored that systematically treats the reduced
symmetry at the wall. The purpose of the latter point is twofold: On one hand, we aim at a
general local scheme for boundary conditions that can efficiently be implemented in a paral-
lel computing environment. On the other hand we seek a better understanding of boundary
conditions with respect to the symmetry breaking induced by the boundary. For both thermal
fluctuations and boundary conditions, another goal is to develop an efficient and versatile
implementation of the methods for use in the ESPResSo software package [3, 4].

The remainder of this work is structured as follows. In chapter 2, the lattice Boltzmann
method is reviewed from a modern perspective. Instead of following the historical route
starting out with lattice gas automata, we base the presentation on the kinetic nature of the
lattice Boltzmann equation. In chapter 3, the statistical mechanics of the lattice Boltzmann
equation will be developed. The connection between the lattice Boltzmann equation and
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macroscopic hydrodynamics is established by asymptotic analysis in terms of the Chapman-
Enskog expansion, which will be the subject of chapter 4. The following chapters are de-
voted to boundary conditions. In chapter 5, standard boundary conditions are reviewed, and
a novel boundary condition for a tunable slip is devised. The conceptually new treatment of
reduced symmetries at the boundary will be introduced and discussed in detail in chapter 6.
Finally, chapter 7 closes with conclusions and discussion. The appendix contains details on
the lattice Boltzmann implementation in the ESPResSo package. It also contains some of
the more technical derivations which would have disturbed the flow of the main text.

4



2 The lattice Boltzmann method: a modern overview

This section introduces the theoretical background of the lattice Boltzmann method for fluid
mechanics. In view of its development over the past twenty years and its popularity, it is not
surprising that there is a vast corpus of existing literature on LB (see for example the book
by Succi [5] or the reviews [6–8]). Nevertheless, some details in the understanding of the
lattice Boltzmann method have only been worked out recently, e.g., the fluctuating lattice
Boltzmann equation [2, 8], and some open questions still remain for example with respect
to multiphase LB models. In the course of its evolution the theoretical insights into LB have
led to a formal framework that is rather different from the original description related to
lattice-gas automata. Therefore, it is useful to give an overview of the lattice Boltzmann
theory from this modern perspective, which forms the basis for the further developments in
this work. The material in this section is mainly a review of existing work. Nevertheless,
some effort was put on a comprehensive and unified presentation of the lattice Boltzmann
framework.

The remainder of this section is organized as follows: After some short historical remarks,
the foundations of kinetic theory and its relation to continuum fluid mechanics will be in-
troduced. Then it will be discussed how the Boltzmann equation can be systematically
discretized, leading to an a-priori derivation of the lattice Boltzmann equation. Finally, the
construction of lattice Boltzmann models will be outlined, and as a specific example, the
D3Q19 model will be explained in detail.

2.1 Historical remarks

The historical roots of the lattice Boltzmann method lie in the lattice gas automata (LGA),
a special class of cellular automata aiming at simulating fluid dynamics in terms of discrete
microscopic models [9, 10]. They were inspired by the observation that the macroscopic
flow behavior is similar for many fluids even when the microscopic structure is quite dif-
ferent. While the microscopic details may influence the dimensional values of transport
coefficients, the form of the macroscopic hydrodynamic equations depends solely on sym-
metries and conservation laws. An early precursor of the LGA was introduced by Kadanoff
and Swift [11] already in 1968. The first lattice gas model for fluids was proposed by Hardy,
Pomeau and de Pazzis [12] and became known as the HPP model. It conserves mass and
momentum and leads to sound waves, but it can not reproduce the Navier-Stokes equation
because the underlying square lattice lacks sufficient rotational invariance. This issue was
resolved in the FHP model by Frisch, Hasslacher and Pomeau [13] by using a triangular
lattice with hexagonal symmetry. The FHP model was the first lattice gas automaton fluid
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that successfully reproduces the Navier-Stokes equation, yet only in two dimensions. The
development of three-dimensional lattice gas automaton fluids was first hindered by the fact
that there is no lattice with sufficient symmetry which is at the same time space-filling [9].
Fortunately, the way out was found in four dimensions where the face-centered hypercu-
bic (FCHC) lattice has sufficient symmetry [14]. The FCHC can be projected into three-
dimensional space yielding a lattice gas automaton for three-dimensional Navier-Stokes hy-
drodynamics. The theoretical foundations of the LGA were presented, for example, by
Frisch et al. [10] and Wolfram [15]. These works contain already essential insights that
are also at the heart of the lattice Boltzmann method, namely, that besides conservation
of mass and momentum, the isotropy of tensors up to fourth rank is required for Navier-
Stokes behavior, which has to be guaranteed by a sufficient symmetry of the underlying
lattice. Navier-Stokes behavior is obtained in the double limit of small Mach number and
small Knudsen number [10, 16]. Concerning the symmetry properties, Hasslacher pointed
out that instead of using high symmetry, one can also use multiple speeds corresponding to
different neighbor shells of the lattice [see 9]. The isotropy of the lattice tensors in these
model is achieved by introducing speed dependent weights for the different subshells. A
first multi-speed model has been proposed by d’Humières, Lallemand and Frisch [14] as
early as in 1986 – and turns out to be the LGA analogon of what is today used under the
name D3Q19 model.

Lattice gas automata became very popular because, due to their Boolean nature, they pro-
vided an easy to implement and round-off free method to simulate fluid flows. They were,
however, “plagued by several diseases” [9], the most severe of which being the lack of
Galilean invariance and statistical noise [5]. To overcome the statistical noise inherent to
the Boolean occupation numbers, one can introduce ensemble-averaged populations. This
had already been done by Frisch et al. [10] to calculate the viscosity through linear response
theory, which could be viewed as the first occurrence of a lattice Boltzmann equation. The
first “real” lattice Boltzmann (LB) model, where the populations are used as dynamic vari-
ables, was put forward by McNamara and Zanetti [17]. In their model, the collision rules
were derived from the microdynamics of the underlying LGA. A substantial simplification
can be made by linearizing the collision operator around the equilibrium, as introduced by
Higuera and Jimenez [18]. Not only did this reduce the complexity of the collision operator
significantly, but it was also an important step in realizing the direct relation of lattice Boltz-
mann and continuum kinetic theory. An immediate follow-up is the single relaxation time
approximation tantamount to the Bhatnagar-Gross-Krook (BGK) collision operator [19–
21]. With the advent of the lattice BGK model, the lattice Boltzmann method had basically
fledged into a self-standing form, the main ingredients of which are the local equilibrium
distribution and the linear collision operator. In a 1992 seminal paper, Qian et al. [22] have
presented a whole family of LB models and coined the now common nomenclature DnQm
for n-dimensional models with m velocities.

Subsequently, many studies were conducted to gain a better understanding of the lattice
Boltzmann method and to devise further refinements. One of them is the (re-)introduction
of a multi-relaxation-time (MRT) collision operator to overcome the limitations of fixed
Prandtl number and fixed ratio of bulk and shear viscosity in the lattice BGK model [23–
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25]. The MRT model provides more flexibility to tune the macroscopic behavior of the
lattice fluid and, on top of that, it is much more stable than lattice BGK [26]. In the view of
this author, the MRT model is indeed the generic case of the lattice Boltzmann method, and
lattice BGK is merely a special choice of relaxation parameters. Another important series
of studies was concerned with the H-theorem in the lattice Boltzmann method [27–32]. It
was shown by Wagner [27] that the usual polynomial form of the discrete local equilibrium
distribution does not admit a H-theorem. Karlin et al. [28–30] have developed a framework
to derive local equilibria from entropy functions in such a way that a discrete H-theorem
can be proven. The approach has become known as entropic lattice Boltzmann and can be
used to stabilize numerical algorithms [31]. More importantly, it has brought the concep-
tual advance that instead of prescribing an ansatz for the equilibrium distribution, it can be
supported by an appropriate entropy function. Along a different line, Shan and Luo and
their coworkers have established a systematic a-priori derivation of the lattice Boltzmann
equation from continuum kinetic theory [33–35]. In this sense, the lattice Boltzmann equa-
tion can be seen as a fully discretized version of the continuum Boltzmann equation. This
was a major finding that shows that the LB model is indeed more than just a plain Navier-
Stokes solver and potentially led to a “conceptual shift in devising models of complex fluid
behavior” [5].

The mentioned shift was also supported by many practical developments. A major push in
modeling complex fluids were the simulations of particle suspensions pioneered by Ladd
[36–38]. In order to account for Brownian motion, Ladd introduced fluctuations in the
lattice Boltzmann equation. This was an important step towards linking the hydrodynamic
variables to the statistical fluctuations of the lattice Boltzmann populations. It constitutes the
starting point for applications of LB to various soft matter systems, where it is meanwhile
one of the standard methods for hydrodynamic interactions [8]. A lot of interest is attracted
to simulations of multiphase flows. The first multicomponent LB method was developed
by Gunstensen et al. based on color-component lattice gas models [9]. In the Shan-Chen
model, explicit interaction potentials are introduced to model interface forces between the
phases [39, 40]. An improvement over these phenomenological approaches are the free
energy models introduced by Swift et al. [41, 42]. They try to devise a local equilibrium
distribution that is consistent with the thermodynamics of the interface. A fully consistent
multiphase approach in terms of statistical mechanics is to date not available. Another active
topic are thermal fluids where heat transport has to be modeled. It is well known that a
quadratic equilibrium can not reproduce the heat transport equation. To this end, third-order
terms were included by Alexander et al. [43], and Qian and Chen have used larger velocity
sets to devise thermal LB models [44, 45]. However, these models suffer from the lack of a
rigorous justification in terms of statistical mechanics.

Nowadays, it is well perceived that lattice Boltzmann is more than a Navier-Stokes solver.
As a discrete kinetic scheme, it is capable of simulating behavior in the non-hydrodynamic
regime up to Knudsen numbers as high asKn ∼ O(1) [46]. It is realized that the systematic
derivation from the Boltzmann equation in terms of quadratures gives rise to a whole hierar-
chy of lattice Boltzmann models. Shan et al. have recently presented a systematic account
of higher approximations to the Boltzmann equation beyond the Navier-Stokes level [47].
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The framework can be used to devise LB models for thermohydrodynamics, which requires
to employ higher level expansions and leads to larger velocity sets. Numerical results ob-
tained by Ansumali et al. [48] within the entropic lattice Boltzmann method give strong
support that the LB hierarchy is indeed capable of representing kinetic theory beyond the
hydrodynamic regime.

In the following, we will pick up the spirit of these latest developments in the following
and outline the lattice Boltzmann method as a fully discretized approximation to kinetic
theory.

2.2 Kinetic theory and continuum fluid mechanics

Hydrodynamic interactions in a complex fluid are mediated by the flow field of the solvent,
the time evolution of which can be described by the continuity equation and the Navier-
Stokes equation1 [49]

∂

∂t
ρ+

∂

∂r
· (ρu) = 0,

∂

∂t
(ρu) +

∂

∂r
· (ρu⊗ u) = − ∂

∂r
p+

∂

∂r
· σ + g,

(2.1)

where ρ is the mass density, ρu = j the momentum density, p the scalar pressure, σ the
deviatoric (viscous) stress tensor, and g an external volumetric force. The deviatoric stress
has the form

σαβ = ηαβγδ
∂uγ
∂rδ

, (2.2)

where the viscosity tensor is given by

ηαβγδ = ηs (δαγδβδ + δαδδβγ) +

(
ηb − 2

3
ηs

)
δαβδγδ (2.3)

with ηs and ηb being the shear and bulk viscosity of the fluid, respectively.

These equations describe the fluid as a continuum in the hydrodynamic limit, that is, on
large length and time scales. Therefore we will refer to equations (2.1) as the macroscopic
description of the fluid dynamics. The mass density ρ and the momentum density j describe
the state of the fluid and are termed the macroscopic or hydrodynamic fields.

An important feature of the Navier-Stokes equation is its universality, i.e., it applies to a
whole class of fluids and its structure is independent of the microscopic interactions that
can be quite different, for example, in a liquid compared to a gas. The microscopic details
of the dynamics are subsumed in the transport coefficients, in other words, the irrelevant
degrees of freedom have been “projected out” and do not show up in the structure of the

1 The full Navier-Stokes-Fourier description of continuum fluid mechanics includes also the heat transport
equation, which we deliberately omit here because we will concentrate on an isothermal fluid.
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macroscopic equations any more. This is an essential feature of continuum fluid mechanics
because it means that, in order to simulate a solvent, we can use a wide range of micro-
models2, as long as they give rise to the Navier-Stokes equation on the macroscopic level
and reproduce the correct values for the transport coefficients. However, such models have
to be devised with care since it is not a-priori clear which are the basic physical properties
they have to retain. The development of models that reproduce the relevant physics while
ignoring irrelevant details is called coarse-graining and forms a field of vivid research in
computational physics and chemistry.

A common approach in coarse-graining is to follow a “bottom-up” strategy: starting with the
microscopic equations, simplified mesoscopic models are derived that reproduce the macro-
scopic dynamics. The microscopic dynamics of the particles (atoms or molecules) of a fluid
is described by Newton’s equation of motion. In principle, these equations can be solved for
given initial conditions, for example by a molecular dynamics (MD) algorithm. However,
this is usually not feasible for a fluid since the number of particles whose trajectories one
has to compute is on the order of the Avogadro number Av ∼ 1023. Another problem is
that such a system falls into the regime of Lyapunov instability, such that it is impossible to
compute a deterministic trajectory due to the omnipresent round-off errors.3 On the other
hand, the observables used to describe the state of the fluid also depend on a large number
of particles. The macroscopic properties are quite stable and insensitive to deviations in the
initial conditions. This suggests that the global observables can be described as statistical
averages over a large number of particle trajectories. The exact knowledge of the individual
trajectories is not required any more, hence we can use a probabilistic picture to describe
the motion of the particles itself. These assumptions are the basis of kinetic theory [50].

2.2.1 The Boltzmann equation

A central quantity in kinetic theory is the (single-particle) distribution function f(r,v, t)
depicting the probability to find a particle with velocity v around the point r at time t. That
is, the quantity

f(r,v, t) dr dv (2.4)

represents the mean number of molecules in the phase-space volume drdv. The distribution
function f is linked to the macroscopic observables by its moments, for example the mass,
momentum and energy densities are given by

m

∫
f dv = ρ(r, t),

m

∫
vf dv = ρu(r, t),

m

∫
v2

2
f dv = ρe(r, t).

(2.5)

2 From this viewpoint, the micro-model is in principle arbitrary, but it will turn out that there are a number of
prerequisites that have to be fulfilled in order to obtain Navier-Stokes behavior.

3 In fact, it is impossible to specify the initial conditions precisely, and the computed trajectories always
diverge exponentially from the exact solution.
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The time evolution of the distribution function f is governed by the equation [50, 51]
(
∂

∂t
+ v · ∂

∂r
+

F

m
· ∂
∂v

)
f(r,v, t) = (∂f)coll , (2.6)

where m is the mass of the particles and F an external force acting on them. The left
hand side describes the streaming of the particles along their trajectories. The term (∂f)coll

on the right hand side describes the change of the distribution due to collisions between the
particles. It is a shorthand notation and contains the information about the microscopic inter-
actions between the particles. In principle, it contains the two-particle distribution function
which itself is governed by a dynamical equation involving the three-particle distribution
function and so on. This infinite hierarchy of equations is called the BBGKY hierarchy and
stems from the Liouville equation for the full phase space probability density [50]. A closed
form of equation (2.6) can be obtained when point particles are considered and the collisions
between them are assumed to be binary and uncorrelated. This is the so-called molecular
chaos assumption (or Stosszahlansatz) that leads to the celebrated Boltzmann equation

(
∂

∂t
+ v · ∂

∂r
+

F

m
· ∂
∂v

)
f(r,v, t) =

∫
dv1

∫
dΩσ(‖vrel‖,Ω) ‖vrel‖

× [f(r,v′, t)f(r,v′1, t))− f(r,v, t)f(r,v1, t)] ,

(2.7)

where vrel = v1 − v is the relative velocity before the binary collision, σ(vrel,Ω) is the
scattering cross section, and v′ and v′1 are the post-collisional velocities characterized by
the scattering angle Ω [see Ref. 50 for details]. In spite of the closed form, the integro-
differential equation (2.7) is in general complicated to solve.

2.2.2 The Maxwell-Boltzmann equilibrium distribution

A pivotal role in kinetic theory is played by the local equilibrium distribution, that is, a
solution of the Boltzmann equation which, in the absence of external forces, is independent
of r and t, or equivalently, is a collisional invariant satisfying (∂f eq)coll = 0. From the
collision term in the Boltzmann equation (2.7) we can deduce the condition of detailed
balance

f(r,v′1, t)f(r,v′2, t) = f(r,v1, t)f(r,v2, t). (2.8)

Detailed balance implies that the logarithm of f is an additive invariant, hence in thermody-
namic equilibrium, ln f must be a linear combination of the collisional invariants

ln f = γ0 + γ · v + γ4v
2. (2.9)

The parameters γi can be expressed in terms of the hydrodynamic fields which leads to the
Maxwell-Boltzmann equilibrium distribution [50–52]

f eq(v) =

(
m

2πkBT

) 3
2 ρ

m
exp

[
−m(v − u)2

2kBT

]
, (2.10)

where kB is the Boltzmann constant.
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2.2.3 The linearized Boltzmann equation

In practice, it is usually suitable to assume that the actual distribution function deviates only
slightly from the local equilibrium distribution. In this case, we have

f = f eq + f neq,
f neq

f eq ¿ 1, (2.11)

and the collision term can be linearized around the equilibrium. Thus we get the linearized
Boltzmann equation

(
∂

∂t
+ v · ∂

∂r
+

F

m
· ∂
∂v

)
f(r,v, t) = Cfneq, (2.12)

where C is a linear operator. It can be shown that the operator C is self-adjoint with respect
to the scalar product

〈g|h〉 =

∫
1

f eq(v)
g∗(v)h(v) dv, (2.13)

and its eigenvalues are negative or equal to zero. It is clear from the definition that C has the
degenerate eigenvalue zero corresponding to the collisional invariants.

The simplest form of the linear collision operator is the BGK approximation (after Bhatna-
gar, Gross and Krook [19]), which assumes a collision frequency λ such that during the time
interval dt a fraction λ dt of particles is relaxed to equilibrium. The collision operator then
becomes

CBGKf
neq = −λf neq. (2.14)

This expression is much easier to treat in analytical calculations and many lattice Boltzmann
models are based on the BGK approximation. We will use the BGK approximation in some
of the derivations that follow in order to keep the formal presentation simple. In most cases,
a general linear operator does not introduce additional complications and can be treated
along the same lines.

2.2.4 Hydrodynamic fields and macroscopic equations

We have already seen that the connection between the kinetic level and the hydrodynamic
level is obtained by calculating moments of the distribution function f . In general, a moment
is given by

mψ(r, t) =

∫
ψ(v)f(r,v, t) dv, (2.15)

where ψ(v) is a polynomial in the components of v. The integration over velocity space is
essentially an averaging process which reflects the statistical nature underlying the kinetic
theory picture. The equations of motion for these averages, i.e., the macroscopic dynamics,
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are the local conservation laws obtained by multiplying the Boltzmann equation (2.7) with
the collisional invariants. This yields

∂ρ

∂t
+
∂j

∂r
= 0,

∂j

∂t
+
∂Π

∂r
=

ρ

m
F,

(2.16)

where j = ρu and the pressure tensor

Π(r, t) =

∫
(v ⊗ v)f(r,v, t) dv (2.17)

was introduced. This tensor describes the flow of macroscopic momentum due to micro-
scopic motion of the particles. Its equilibrium value can be computed from the Maxwell-
Boltzmann distribution (2.10)

Πeq =

∫
(v ⊗ v)f eq dv = p1+ ρu⊗ u, (2.18)

where p = ρkBT
m

is the scalar thermodynamic pressure. Since v ⊗ v is not a collisional in-
variant, the pressure tensor has a non-equilibrium contribution which has to be determined
from the distribution function f . This means that without explicit knowledge of the distri-
bution function we can not obtain a closed form of the equation system (2.16) in terms of ρ
and u. Comparison with the Navier-Stokes equation (2.1) shows that we have to require

Π = Πeq + Πneq = p1+ ρu⊗ u− σ. (2.19)

The missing link is an explicit expression for the non-equilibrium pressure tensor Πneq which
has to match the viscous stress tensor −σ. What remains to be done to come full circle is to
find a closure for the equation system (2.16). This is usually done with certain approxima-
tions. In the Chapman-Enskog method, a closure is obtained by expressing the distribution
function f and the higher moments in terms of ρ and u and their gradients. It is based on
the assumption that these macroscopic variables vary on scales much larger then the charac-
teristic microscopic scales (limit of small Knudsen number). The Chapman-Enskog method
will be explained in detail in chapter 4. An alternative approach is to expand the distribu-
tion function in Hermite polynomials. Such an expansion was used by Grad [53] to obtain
partial differential equations for the 13 hydrodynamically significant moments. Since there
is a close connection between the lattice Boltzmann method and the Hermite expansion,
we sketch the procedure in the following paragraphs. A systematic non-perturbative proce-
dure was presented by Levermore [54] which leads to a whole hierarchy of closed systems.
However, since we are only interested in the Navier-Stokes behavior, we will not discuss
this approach further.

2.2.5 Dimensionless formulation

For what follows, it will be useful to non-dimensionalize the Boltzmann equation. The
absence of physical units is also needed for the implementation of a computer algorithm.
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In order to remove the units, we introduce a length scale l0 and a time scale t0. We choose
them in such a way that l0/t0 = c0 is a characteristic velocity. The form of the Maxwell-
Boltzmann distribution suggests to use c0 =

√
kBT0/m which is the speed of sound in the

fluid at a characteristic temperature T0. The dimensionless ratio of the actual temperature
T and T0 will be denoted by θ. With these definitions, the Maxwell-Boltzmann distribution
comes as

f eq(v) =
ρ

(2πθ)3/2
exp

[
−(v − u)2

2θ

]
(2.20)

where v and u have been made dimensionless by scaling with c0, and ρ by scaling with
m/l30, respectively. With the above choice of the characteristic scales the Boltzmann-BGK
equation keeps the same form when λ is understood as a dimensionless relaxation frequency.
For the rest of this section, we will stick to the dimensionless formulation which has the
advantage that the moments have the same units.

2.2.6 Hermite-Expansion

According to Grad [53], the distribution function f can be expanded in the basis of the
Hermite polynomials as

f(r,v, t) = ω(v)
∞∑
n=0

1

n!
a(n)(r, t)H(n)(v), (2.21)

where the weight function ω(v) is given by

ω(v) = (2π)−
3
2 exp

[
−v2

2

]
. (2.22)

Here, both the Hermite polynomials H(n) (cf. appendix B.1) and the coefficients a(n) are
tensors of order n. The latter are given by

a(n)(r, t) =

∫
H(n)(v)f(r,v, t) dv. (2.23)

The motivation behind this expansion is that the coefficients a(n)(r, t) are linear combina-
tions of the moments, i.e., the lower order expansion coefficients are directly related to the
hydrodynamic variables by the following identities:

a(0) =

∫
f dv = ρ,

a(1) =

∫
vf dv = ρu,

a(2) =

∫
(v ⊗ v − 1) f dv = Π− ρ1.

(2.24)
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The hydrodynamic variables of the Navier-Stokes level are completely determined by the
first coefficients. Consequently, the macroscopic equations can be represented by partial
differential equations for the coefficients a(n). From equation (2.21) and (2.23) it follows
that a truncation of the Hermite expansion at a certain order does not change the expansion
coefficients up to that order, because the Hermite polynomials are mutually orthogonal. This
means that we can approximate the distribution function by the first N Hermite polynomi-
als

fN(r,v, t) = ω(v)
N∑
n=0

1

n!
a(n)(r, t)H(n)(v) (2.25)

without changing the moments up to order N , i.e., the conservation equations for the lower
order moments are not affected by the truncation.4 The gain of the truncation is that the
system of partial differential equations for the a(n) is now determined and can be used to
obtain a closed set of hydrodynamic equations. In this way, Grad used the third order ap-
proximation to obtain his 13-moment system.5 Because of its special properties, the Hermite
expansion is also particularly well suited for further discretizations. This will be used in the
next section to derive the lattice Boltzmann equation from the linear Boltzmann equation.

2.3 Discretization of the Boltzmann equation

Having achieved a closure of the moment equation system, we now turn to the problem of
discretizing the Boltzmann equation in order to make it accessible for a computer simulation.
For the sake of simplicity, we focus on the Boltzmann-BGK equation without a forcing term
in this section

∂

∂t
f + v · ∂

∂r
f = −λ (f − f eq) . (2.26)

We seek a discrete representation of phase space and time (r,v, t) such that (2.26) can be
turned into a finite-difference scheme where all quantities are evaluated at discrete points.
We will do this stepwise by first discretizing velocity space by means of a Gauss-Hermite
quadrature. This yields a so-called discrete velocity model (DVM). If chosen appropriately,
the abscissae of the quadrature naturally lead to a discretization of configuration space in
form of a regular lattice. Finally, the derivatives in the Boltzmann equation are replaced by
finite differences. This route of discretizing the Boltzmann equation follows the work of
Shan and He [35], Shan et al. [47]. The Gauss-Hermite quadrature was already used earlier
by He and Luo [33, 34] to derive the lattice Boltzmann equation in a slightly different way
than the one presented here.

4 The truncated terms may, however, affect the dynamics of the hydrodynamic variables. Therefore the trun-
cation is really an approximation whose validity will be justified later.

5 In principle, there are 20 moments for the third order approximation, but only thirteen are considered hy-
drodynamically significant in Grad’s moment system.
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2.3 Discretization of the Boltzmann equation

2.3.1 Discretization of velocity space

In the following, we assume that the distribution function can be approximated by its trun-
cated Hermite expansion fN . We will see later that this approximation corresponds to the
limit where the typical hydrodynamic flow velocity u is small compared to the speed of
sound cs, that is, the Mach number Ma = u/cs is small. The expansion coefficients are then
given by

a(n) =

∫
H(n)(v)fN(r,v, t) dv =

∫
ω(v) p(r,v, t) dv. (2.27)

Since p = H(n)fN

ω
is a polynomial of degree less than or equal to 2N , we can use the Gauss-

Hermite quadrature explained in appendix B.1 to calculate the integral in (2.27) using the
values of p at a set of discrete velocities ci

a(n) =
∑
i

wi p(r, ci, t) =
∑
i

wi
H(n)(ci)f

N(r, ci, t)

ω(ci)
. (2.28)

The nodes ci and the weights wi are given by the quadrature and depend on the chosen
degree of the quadrature. We now introduce

fi(r, t) =
wif

N(r, ci, t)

ω(ci)
(2.29)

which are functions of space and time only. It is important to note that the truncated distri-
bution function fN is completely determined by the fi. Therefore, without approximation
the hydrodynamic variables can be written as

ρ = a(0) =
∑
i

fi,

ρu = a(1) =
∑
i

fici,

Π = a(2) + a(0)1 =
∑
i

fici ⊗ ci

(2.30)

This is already the form of the hydrodynamic fields that will be used in the lattice Boltzmann
method.6

The Maxwell-Boltzmann equilibrium distribution can be expanded in Hermite polynomials
in the same way. This is necessary because f eq has non-zero Hermite coefficients at all
orders, such that the conservation laws for the collisional invariants hold exactly only when
f eq is truncated similarly to f [35]. This corresponds to a projection into the subspace
spanned by the Hermite polynomials up to the respective order. Replacing fN by f eq in

6 From now on, we will skip the symbol ⊗ in the tensor product. In the opinion of the author, this makes the
structure of the formulas more visible to the reader’s eye. For the more mathematically inclined readers,
please accept this apology for the lack of notational rigor.
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2 The lattice Boltzmann method: a modern overview

equation (2.27) and inserting into (2.21) we get the Hermite expansion of the Maxwellian.
Up to second order it reads

f eq,(2)(v) ≈ ω(v)ρ

[
1 + u · v +

1

2
uu : (vv − 1) +

1

2
(θ − 1)(v2 −D)

]
. (2.31)

For an isothermal system θ = 1 and the last term in the brackets vanishes. Then this expres-
sion is equal to the Taylor expansion of f eq up to terms of order u2. The latter has been used
by He and Luo [33, 34] to derive the lattice Boltzmann equation on a slightly different route.
In analogy to (2.29), we introduce the equilibrium distribution for the discrete velocities

f eq
i =

wif
eq,(2)(ci)

ω(ci)
= wiρ

[
1 + u · ci + 1

2
uu : (cici − 1)

]
. (2.32)

Finally, we formulate the Boltzmann-BGK equation in terms of the discrete velocity dis-
tributions fi. Taking equation (2.26) at ci and multiplying again with wi/ω(ci) we arrive
at

∂

∂t
fi + ci · ∂

∂r
fi = −λ(fi − f eq

i ). (2.33)

This set of differential equations in space and time constitutes a discrete velocity model
(DVM) and represents an approximation to the continuous Boltzmann-BGK equation [55,
56]. The moments ρ and u are preserved, an important feature if one aims at the hydro-
dynamic limit of the kinetic equations. It is also possible to preserve higher moments by
going to higher order Hermite approximations. The relation of the DVM and the lattice
Boltzmann equation has been emphasized by Luo [57], in particular with respect to some
rigorous results concerning thermodynamics and the H-theorem. In this context it should
be noted that the positivity of the Maxwell-Boltzmann distribution is sacrificed in the finite
Hermite expansion. This is of relevance when the stability of the lattice Boltzmann method
is concerned. Even more important, it has the consequence that no H-theorem exists for the
truncated equilibrium distribution, i.e., it is not guaranteed that any initial distribution will
converge to the equilibrium distribution. For this reason, the latter is sometimes also termed
pseudo-equilibrium. The lack of an H-theorem has motivated alternative approaches which
have led to the development of the entropic lattice Boltzmann models [28–30, 32]. The
concept of entropy will be used later in this work when we discuss the statistical mechanics
of the lattice Boltzmann equation, cf. chapter 3. We close this section here by quoting the
unscaled discrete equilibrium distribution

f eq
i = wiρ

[
1 +

u · ci
c2s

+
uu : (cici − 1)

2c4s

]
, (2.34)

where cs =
√
kBT/m is the isothermal speed of sound. Note that we have deliberately

made the transition to a mass density here, whereas before the distribution functions where
number densities.
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2.3 Discretization of the Boltzmann equation

2.3.2 Discretization of configuration space and time

In order to discretize space and time, we rewrite the discrete velocity equation (2.33) as an
ordinary differential equation

dfi
dt

+ λfi = λf eq
i . (2.35)

This can be formally integrated over a time τ to give

fi(r + τci, t+ τ) = e−λτfi(r, t) + λe−λτ
∫ τ

0

eλt
′
f eq
i (r + t′ci, t+ t′) dt′. (2.36)

For small τ , we can to a first approximation write

f eq
i (r + t′ci, t+ t′) = f eq

i (r, t) + t′
f eq
i (r + τci, t+ τ)− f eq

i (r, t)

τ
+O(τ 2). (2.37)

Expanding the exponential as well and neglecting all terms of order O(τ 2), we arrive at

fi(r + τci, t+ τ) = fi(r, t)− λ [fi(r, t)− f eq
i (r, t)] . (2.38)

This equation is now fully discrete in phase space and time. It is to be noted that the use
of the BGK approximation does not mean a loss of generality here. The result of the full
discretization for the Boltzmann equation with a general linear operator reads

fi(r + τci, t+ τ) = fi(r, t) + Lij
[
fj(r, t)− f eq

j (r, t)
]
. (2.39)

Equation (2.39) is nothing but the famous lattice Boltzmann equation (LBE). The derivation
shows that it is merely a finite difference approximation to the continuous Boltzmann equa-
tion. In particular, the expression for the equilibrium distribution is a result of the projection
onto the lower order Hermite polynomials and the weightswi are a priori known through the
choice of the quadrature. This is in contrast to the alternative approach where the weights
are determined within the Chapman-Enskog expansion such that the correct hydrodynamic
equations are obtained. What remains to be done at this stage in order to complete the de-
velopment of the lattice Boltzmann method is to choose an appropriate quadrature to obtain
the discrete velocities ci and the corresponding weights wi.

2.3.3 Choice of truncation and quadrature

As pointed out in the previous section, the truncated Hermite expansion fN preserves the
moments up to order N . In what follows, we will use the second order truncation which
preserves ρ, j and Π. We will only be concerned with isothermal models, hence the heat
flux contained in the third moment is not of primary interest. However, in the Chapman-
Enskog analysis it turns out that the third moment enters the dynamics of the pressure tensor,
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2 The lattice Boltzmann method: a modern overview

Quadrature LB model q bq wq cq
E3

1,5 D1Q3 0 1 2
3 0

1 2 1
6 ±√3

E9
2,5 D2Q9 0 1 4

9 (0, 0)
1 4 1

9 (±√3, 0), (0,±√3)
2 4 1

36 (±√3,±√3)
E15

3,5 D3Q15 0 1 2
9 (0, 0, 0)

1 6 1
9 (±√3, 0, 0), (0,±√3, 0), (0, 0,

√
3)

3 8 1
72 (±√3,±√3,±√3)

E19
3,5 D3Q19 0 1 1

3 (0, 0, 0)
1 6 1

18 (±√3, 0, 0), (0,±√3, 0), (0, 0,
√

3)
2 12 1

36 (±√3,±√3, 0), (±√3, 0,±√3), (0,±√3,±√3)
E27

3,5 D3Q27 0 1 8
27 (0, 0, 0)

1 6 2
27 (±√3, 0, 0), (0,±√3, 0), (0, 0,

√
3)

2 12 1
54 (±√3,±√3, 0), (±√3, 0,±√3), (0,±√3,±√3)

3 8 1
216 (±√3,±√3,±√3)

Table 2.1: Gauss-Hermite quadratures of degree 5 in different dimensions and the corresponding lat-
tice Boltzmann models. Following Shan et al. [47], the naming convention En

D,d denotes a degree-d
quadrature in D dimensions with n abscissae. The vectors cq with the same value of q = ‖ci‖2/3
form a symmetry class within which the weight wq does not vary. By scaling the cq with

√
3 sublat-

tices of the standard cubic lattice are obtained.

such that in principle the second order truncation is not sufficient to reproduce the Navier-
Stokes equation [47]. The error is, however, of order O(Ma3) and can be neglected.7 The
calculation of the Hermite coefficients of the N th order expansion involves polynomials up
to degree 2N . The quadrature therefore must have a degree n ≥ 2N , i.e., for the second
order approximation we need a quadrature of degree n ≥ 4. In addition to the accurateness,
the quadrature is required to induce a regular lattice, i.e., the nodes ci should leave the
spatial grid invariant under the transformation r → r + τci. For details on the production
rules for three dimensional quadratures, we refer to appendix B.1. It turns out that some of
the commonly used lattice Boltzmann models, e.g., the D2Q9, D3Q19 and D3Q27 models
after the naming convention of Qian et al. [22], stem from a degree-5 quadrature. The
corresponding quadratures are listed in table 2.1, where we follow the nomenclature of
Shan et al. [47]. An important property of the quadratures is that they automatically imply
isotropy of the lattice tensors of rank up to the degree of the quadrature [59]

T (n) =
∑
i

wici . . . ci =

{
0 n odd
δ(n) n even

, ∀n ≤ m. (2.40)

This is an important requirement to obtain hydrodynamic behavior. If instead of a quadra-
ture an ad-hoc ansatz for the lattice model is used, the weightswi have to be determined such

7 The second order truncation leads to errors in the viscosity of order O(u2) which are related to incomplete
Galilean invariance of the higher moments [58, 59].
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2.4 The lattice Boltzmann equation

that isotropy of the lattice tensors up to a certain rank is satisfied. This approach is worked
out in more detail in section 2.5 for the D3Q19 model. It should be remarked that a lat-
tice Boltzmann model does not necessarily need to correspond to an exact quadrature. For
example, the D3Q13 model does not stem from a quadrature and still obeys isotropy and
Galilean invariance [24]. However, the models related to quadratures usually yield better
accuracy and stability [60].

All the quadratures listed in table 2.1 yield regular cubic lattices because their velocities
can be expressed by integer multiples of a common constant, i.e.,

√
3. In general, the ratio

of the velocities of a quadrature can be irrational such that they do not connect the nodes
of a simple lattice. This holds in particular for most higher degree quadratures, e.g., E27

3,7,
which have to be considered for thermo-hydrodynamics, or the Burnett level momentum
flow. In this case, the simple lattice Boltzmann method can not be used and one has to resort
to more complex algorithms, for example the interpolation scheme by He et al. [61] or the
volumetric scheme by Chen [62].

Having obtained an explicit quadrature, the lattice Boltzmann equation is fully specified and
an algorithm can in principle be implemented. The derivation presented here is systematic
and shows the underlying kinetic nature of the lattice Boltzmann method. However, when
working on algorithms for computer simulations, it is useful to also have a more vivid un-
derstanding of the physics behind the equations. In the next section, we will therefore depict
the lattice Boltzmann equation from a more algorithmic view in order to demonstrate how
it works.

2.4 The lattice Boltzmann equation

As we have seen, the lattice Boltzmann equation is in essence a systematically discretized
form of the continuous Boltzmann equation. However, to be algorithmically useful, the
discretizations of phase space and time should be chosen coherently in such a manner that
the discrete velocities form the links of a regular lattice. Then we can interpret the discrete
distribution functions fi(r, t) as quantities assigned to a lattice site r at time t. We will refer
to the fi as populations of the lattice site r in this context. The lattice Boltzmann equation
describes the dynamic evolution of these populations, which can be written in two parts as

fi(r + τci, t+ τ) = f ∗i (r, t) = fi(r, t) + ∆i (f(r, t)) (2.41)

These two parts can be illustrated as follows: the transition from fi to f ∗i is an instantaneous
local process where the populations are redistributed among the different velocity directions
according to the operator ∆i. This process is due to the collisions at the microscopic level
and is therefore called the collision step. The second part of the lattice Boltzmann equa-
tion is the streaming step which assigns the post-collisional population f ∗i at r and time t to
the new population at r + τci and time t + τ . One can think of the streaming as a whole
population moving along a link ci of the lattice, but this should not be confused with the
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2 The lattice Boltzmann method: a modern overview

real motion of single particles. The information about the latter is not included in the ki-
netic picture and can not be recovered at this level. The lattice Boltzmann equation is thus
a truly mesoscopic approach to fluid dynamics, as it contains more information than just
the macroscopic Navier-Stokes description while at the same time not representing the full
microscopic degrees of freedom. The combination of collisions and streaming leads to an
update scheme for the whole lattice. Because of the simple structure and the locality of most
of the operations, the scheme is very well suited for highly efficient implementations on par-
allel computing platforms. We will deal with implementing an efficient lattice Boltzmann
kernel in some detail in appendix A.

The equilibrium distribution appearing in equation (2.39) was derived in the previous section
from the standard Maxwell-Boltzmann equilibrium, based on the systematic discretization
of velocity space. As pointed out by d’Humières [23], it is also admissible to consider the
set of discrete velocities as a free choice and use the form of the equilibrium distribution as
an ansatz with certain parameters that allow the model to be tuned for specific properties.
Basically, this means that the type of lattice can be chosen with respect to certain constraints.
The introduced free parameters in the equilibrium distribution correspond to choosing the
equilibrium values of the conserved and non-conserved moments.8 Similarly, the collision
operator ∆i provides some freedom through its eigenvalues which are unspecified parame-
ters so far. Since we aim at constructing a mesoscopic model for fluid mechanics, the choice
of these parameters is dictated by the intrinsic properties of the Navier-Stokes equation, that
is, the symmetries and conservation laws of macroscopic fluid mechanics.

While the explicit link will be established within the Chapman-Enskog expansion, we an-
ticipate the results of chapter 4 at this point and list the requirements that the construction
of a lattice Boltzmann model has to meet:

1. The lower moments corresponding to hydrodynamic fields have to satisfy

• mass conservation: ∑
i

fi =
∑
i

f eq
i = ρ, (2.42)

• momentum conservation:
∑
i

fici =
∑
i

f eq
i ci = ρu, (2.43)

• Euler form of equilibrium stress:
∑
i

f eq
i cici = p1+ ρuu. (2.44)

8 It can be shown that the form of the hydrodynamic equations is completely determined by the lower mo-
ments of the equilibrium distribution [59]. The number of free parameters depends on the order at which
the Hermite expansion is truncated. This determines also the order to which the equilibrium moments agree
with those of the Maxwell-Boltzmann distribution.
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2.5 The D3Q19 model

2. The collision operator ∆i must obey

• mass conservation: ∑
i

∆i = 0, (2.45)

• momentum conservation: ∑
i

∆ici = 0, (2.46)

• Navier-Stokes form of the deviatoric momentum flux:
∑
i

(f ∗neq
i + f neq

i )cici = −2σ. (2.47)

Before we proceed to the systematic derivation of these requirements, we illustrate them in
terms of the D3Q19 model, which is one of the most popular lattice Boltzmann models for
simulating complex fluids.

2.5 The D3Q19 model

2.5.1 Equilibrium distribution

The D3Q19 model is based on a three-dimensional regular cubic lattice and the set of 19
discrete velocities consists of the zero velocity vector, the six nearest neighbors and twelve
next-nearest neighbors on the cubic lattice, see figure 2.1. The corresponding dimensionless
lattice vectors ĉi are the columns of the matrix

C =




0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1




and the velocity vectors are ci = ĉi a/τ . The ansatz for the equilibrium distribution is the
low Mach number expansion

f eq
i (ρ,u) = wiρ

(
1 + Au · ci +B(u · ci)2 + Cu2

)
. (2.48)

We have to retain at least terms up toO(u2) in order to obtain the quadratic term in the Euler
stress. Sometimes, the non-linear terms are neglected which corresponds to the creeping-
flow limit [63, 64]. However, the uu-terms ensure Galilean invariance of the Euler stress
[65, 66] and will not be neglected here. For symmetry reasons, the wi must be independent
of the direction of the ci and must only depend on the length |ci|. The other coefficients
A, B and C are independent of ci. Since mass conservation is to be satisfied independently
of the value of u, we can use u = 0 in (2.48) to obtain the normalization condition for the
weights ∑

wi = 1. (2.49)
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2 The lattice Boltzmann method: a modern overview

Figure 2.1: Illustration of the D3Q19 model. There are 19 populations on every lattice site: six
that move to the nearest neighbors during streaming (red), twelve that move to to the next nearest
neighbors (blue), and one population that stays on the same lattice site (yellow).

The remaining conditions on the moments on f eq
i yield

∑
f eq
i = ρ

(
1 + AT (1)

α uα +BT
(2)
αβ uαuβ + Cuαuα

)
,

∑
f eq
i ciα = ρ

(
T (1)
α + AT

(2)
αβ uβ +BT

(3)
αβγuβuγ + T (1)

α uβuβ

)
,

∑
f eq
i ciαciβ = ρ

(
T

(2)
αβ + AT

(3)
αβγuγ +BT

(4)
αβγδuγuδ + T

(2)
αβ uγuγ

)
,

(2.50)

where the lattice sums
T (n)
α1...αn

=
∑
i

wiciα1 . . . ciαn . (2.51)

are involved. The lattice sums are treated in appendix B.2. Using (B.22), (B.24) and (B.26)
in (2.50) we get

∑
f eq
i = ρ+Bσ2ρuαuα + Cρuαuα,∑
f eq
i ciα = Aσ2ρuα,∑
f eq
i ciαciβ = ρσ2δαβ +Bκ4δαβγδρuγuδ

+Bσ4 (δαβδγδ + δαγδβδ + δαδδβγ) ρuγuδ + Cσ2δαβρuγuγ.

(2.52)

By comparison with (2.42) to (2.44), we can find a unique solution for the coefficients of
the equilibrium distribution and the lattice tensors:

A =
1

c2s
, B =

1

2c4s
, C = − 1

2c2s
,

σ2 = c2s, σ4 = σ2
2, κ4 = 0.

(2.53)

22



2.5 The D3Q19 model

The weights are then given by

wi =
1

3
for ĉ2

i = 0 (zero velocity),

wi =
1

18
for ĉ2

i = 1 (nearest neighbors),

wi =
1

36
for ĉ2

i = 2 (next-nearest neighbors),

(2.54)

and the speed of sound has the fixed value

c2s =
1

3

(a
τ

)2

. (2.55)

This solution corresponds to the case where the mass density is equally distributed among
the different subshells. It was noted earlier that this is beneficial for the stability of the
D3Q19 model, and the maximum entropy formalism provides a deeper explanation for this
improved stability. This was already recognized by Karlin et al. [30], albeit the formalism
was slightly different there. We can now write down the equilibrium distribution for the
D3Q19 model:

f eq
i (ρ,u) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u2

2c2s

)
, (2.56)

which is the same form as obtained by the truncated Hermite expansion in equation (2.34).

2.5.2 Collision operator

Having constructed the equilibrium distribution, we now turn to the linear collision oper-
ator. It has to satisfy mass and momentum conservation and must be compatible with the
symmetries of the D3Q19 lattice. Furthermore, it has to yield the Navier-Stokes form of the
deviatoric momentum flux, which indicates that the form of the collision operator is related
to the viscosity of the fluid. The precise link will be established within the Chapman-Enskog
expansion. In this subsection, we develop a representation for the general linear collision
operator.

∆i(f(r, t)) = Lij
(
fj − f eq

j

)
= Lijf neq

j . (2.57)

The simple BGK collision operator corresponds to the choice Lij = −λδij , which has some
drawbacks such as fixed ratio of bulk and shear viscosity. A more general collision operator
is provided by the multi-relaxation time model (MRT) of d’Humières et al. [25], which uses
a diagonal representation of Lij in the so-called mode space.

The basis vectors ek of mode space are constructed by orthogonalizing polynomials of the
dimensionless velocity vectors ĉi. The corresponding orthogonality relation is

∑
i

wiekieli = bkδkl, (2.58)
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where the weights from the equilibrium distribution enter. This is not necessary in general,
but it has the advantage that the kinetic moments have no projection on the equilibrium
distribution. The backward relation is then

∑

k

b−1
k ekiekj = w−1

i δij. (2.59)

The bk are normalization factors with respect to the scalar product

bk =
∑
i

wie
2
ki. (2.60)

With this, we can apply Gram-Schmidt orthogonalization to polynomials of the ĉi in a care-
fully chosen order. The first basis vectors are given by

e0i = 1,

e1i = ĉix,

e2i = ĉiy,

e3i = ĉiz.

(2.61)

They correspond to the mass and the momentum, respectively. The next six basis vectors
are obtained from quadratic polynomials

e4i = ĉ2
i − 1,

e5i = 3ĉ2ix − ĉ2
i ,

e6i = ĉ2iy − ĉ2iz,

e7i = ĉixĉiy,

e8i = ĉixĉiz,

e9i = ĉiy ĉiz.

(2.62)

They correspond to bulk (k = 4) and shear (k = 5 . . . 9) modes. Up to here, the polynomials
are complete. The higher order polynomials are not complete due to degeneracies in the
D3Q19 model, i.e., ĉiα = ĉ3iα. Nevertheless, by sorting out the degeneracies we can construct
a complete basis. Orthogonalization of the non-degenerate higher order polynomials yields
the remaining basis vectors

e10i = (3ĉ2
i − 5)ĉix,

e11i = (3ĉ2
i − 5)ĉiy,

e12i = (3ĉ2
i − 5)ĉiz,

e13i = (ĉ2iy − ĉ2iz)ĉix,

e14i = (ĉ2iz − ĉ2ix)ĉiy,

e15i = (ĉ2ix − ĉ2iy)ĉiz,

e16i = 3ĉ4
i − 6ĉ2

i + 1,

e17i = (2ĉ2
i − 3)(3ĉ2ix − ĉ2

i ),

e18i = (2ĉ2
i − 3)(ĉ2iy − ĉ2iz).

(2.63)
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The normalization factors of these basis vectors are

b =

(
1,

1

3
,
1

3
,
1

3
,
2

3
,
4

3
,
4

9
,
1

9
,
1

9
,
1

9
,
2

3
,
2

3
,
2

3
,
2

9
,
2

9
,
2

9
, 2,

4

9
,
4

3

)T

. (2.64)

The basis vectors are used to calculate a complete set of moments, the so-called modes

mk =
∑
i

ekifi. (2.65)

The back transformation from mode space to the populations can be obtained using (2.59)
and is given by

fi = wi
∑

k

b−1
k mkeki. (2.66)

By construction, the moments originating from polynomials up to quadratic order yield the
hydrodynamic variables

ρ = m0,

jx = m1 a/τ,

jy = m2 a/τ,

jz = m3 a/τ,

Παα = (m0 +m4) (a/τ)2,

Πxx =
1

3
m5(a/τ)

2,

Πyy = −m5 − 3m6

6
(a/τ)2,

Πzz = −m5 + 3m6

6
(a/τ)2,

Πxy = m7(a/τ)
2,

Πxz = m8(a/τ)
2,

Πyz = m9(a/τ)
2,

(2.67)

where we have decomposed the pressure tensor into its trace and the traceless part

Παβ = Παβ +
1

3
Πγγδαβ. (2.68)

The first moments m0 to m3 are the conserved hydrodynamic modes, i.e., mass density
and momentum density. The equilibria of the non-conserved hydrodynamic modes can be
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2 The lattice Boltzmann method: a modern overview

expressed as functions of the mass density and the momentum density:

meq
4 =

j2
x + j2

y + j2
z

ρ
,

meq
5 =

j2
x − j2

y

ρ
,

meq
6 =

2j2
x − j2

y − j2
z

ρ
,

meq
7 =

jxjy
ρ
,

meq
8 =

jxjz
ρ
,

meq
9 =

jyjz
ρ
.

(2.69)

The higher moments m10 to m18 are related to the additional degrees of freedom due to the
kinetic representation. They will therefore be referred to as kinetic modes.9 By construction,
they have no equilibrium part. Although the kinetic modes do not influence the dynamics
in the hydrodynamic limit, they can have an effect through the underlying kinetic model.
This becomes important when adding fluctuations to the model and in the case of boundary
conditions.

It should be remarked that in principle one can choose the equilibrium values of all the
non-conserved moments at will, as long as they are compatible with the symmetry of the
lattice. The chosen values then enter the MRT algorithm (cf. equation (2.71) below) instead
of those obtained from the explicit expression for the equilibrium distribution. However, it
was shown in Lallemand and Luo [26] that the additional parameters, if chosen to satisfy
Galilean invariance and isotropy, reduce to the ones that come out of the equilibrium distri-
bution. We will therefore use the expressions (2.69) without any additional parameters.

The transformation to mode space can be written in matrix-vector form

m = M f (2.70)

where the entries of the transformation matrix M are the components of the basis vectors
eij . For the D3Q19 model, the matrix is given in figure 2.2. Since M represents a basis
transformation, the collision operator can be represented in mode space as

L f neq = M−1
(
MLM−1

)
M f neq = M−1LM mneq (2.71)

where LM = MLM−1. In mode space, we can choose the collision operator to be diagonal
such that the collisions describe a linear relaxation of the non-equilibrium moments

m∗neq
k = (1 + λk)m

neq
k . (2.72)

9 The kinetic modes are sometimes also called ghost modes, because they have no relevance on the hydrody-
namic level.
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2 The lattice Boltzmann method: a modern overview

The choice of the eigenvalues λk must reflect the symmetries of the lattice, that is, the modes
that are related by a symmetry must have the same eigenvalue. For the conserved modes m0

to m3, the eigenvalue is irrelevant because mneq
k = 0. The remaining modes can be grouped

into six symmetry classes using the explicit expression for the basis vectors; the bulk mode
m4, the shear modes m5 to m9, and four groups of kinetic modes: the triplet m10 to m12, the
triplet m13 to m15, the singlet m16 and the doublet m17 and m18. From (2.67) we get that
the eigenvalues λb and λs for the bulk and shear modes correspond to the relaxation of the
trace and the traceless part of the pressure tensor

Π∗neq
αα = (1 + λb)Π

neq
αα ,

Π
∗neq
αβ = (1 + λs)Π

neq
αβ .

(2.73)

Within the Chapman-Enskog expansion it will be shown that this relaxation process leads
to the correct Newtonian viscous stress, where the viscosities are given in terms of the
eigenvalues

ηs = −ρc
2
sτ

2

2 + λs
λs

,

ηb = −ρc
2
sτ

3

2 + λb
λb

.

(2.74)

The eigenvalues for the kinetic modes are not related to any macroscopic transport coeffi-
cients and their value is irrelevant on the Navier-Stokes level. They do, however, influence
the dynamics on the kinetic level. This is important in the case of boundary conditions
where the kinetic eigenvalues can be tuned to improve the accuracy of the boundary con-
dition. Moreover, the kinetic eigenvalues are related to the noise strength in the fluctuating
lattice Boltzmann model, which will be discussed in section 3.3.4.
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3 Statistical mechanics of the lattice Boltzmann
equation

The lattice Boltzmann model presented in the previous section is completely deterministic
and does not include fluctuations. This is a result of the coarse-graining procedure, where
the averaging process for the single-particle distribution leads to a mean population number
while the information about the variance is dropped. The connection to statistical mechanics
of the microscopic degrees of freedom is thus lost. However, fluctuations can be essential
at the mesoscopic level. Brownian motion, for example, is an immediate consequence of
the fluctuations of the solvent molecules beyond the hydrodynamic scale. Besides Brow-
nian motion, fluctuations are also relevant for non-linear phenomena and they have great
impact on many critical phenomena. While other simulation methods for hydrodynam-
ics, e.g., dissipative particle dynamics (DPD) [67–71] and multi-particle collision dynamics
(MPCD) [7, 72–80], include those fluctuations automatically via the underlying particle
representation of the solvent, the lattice Boltzmann method must be extended by suitable
inclusion of thermal fluctuations. On the continuum level, this extension corresponds to
describing the mesoscale dynamics of a fluid by fluctuating hydrodynamics [81].

In this section, we will introduce fluctuating hydrodynamics and the fluctuating lattice Boltz-
mann model. The original version of the fluctuating lattice Boltzmann equation was devel-
oped by Ladd [36–38] and connects the fluctuations of the populations to the fluctuating
stress by solving a discrete Langevin equation. Although the derivation gives rise to the cor-
rect fluctuating hydrodynamics, it does not provide a direct link to the statistical mechanics
of the model. Adhikari et al. [1] observed in practical simulations that in fact the variance of
the fluctuating hydrodynamic quantities is not fully captured within Ladd’s approach. They
demonstrated that this can be improved by adding fluctuations to the non-hydrodynamic
moments as well, but without a detailed theoretical clarification of the statistical mechan-
ics. In the course of this work, we succeeded in finding a new derivation of the fluctuating
lattice Boltzmann equation that provides a consistent link to statistical mechanics [2]. The
presentation here will be based on the latter derivation, which also gives a clear quantitative
meaning to the fluctuations of the populations.

3.1 Fluctuating hydrodynamics

We first present the equations of fluctuating hydrodynamics as put forward in [81]. The
basic idea is that the structure of the hydrodynamic equations (2.1) remains unchanged in the
presence of fluctuations because they are conservation equations for mass and momentum
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3 Statistical mechanics of the lattice Boltzmann equation

that hold in general. Fluctuations in the fluid can only lead to local momentum fluxes1 that
vanish globally. Hence they must enter the equations as a divergence, which can be achieved
by adding a fluctuating part s to the stress tensor σ

σ → σ + s. (3.1)

The properties of the fluctuating stress s have to be consistent with the thermodynamics of
the fluid. They can be derived within the theory of Gauss-Markov processes [82] or by using
methods from Langevin analysis [83]. The fluctuating stress must have zero mean

〈sαβ〉 = 0, (3.2)

and must be delta-correlated in space and time

〈sαβ(r1, t1) sγδ(r2, t2)〉 = 2Qαβγδ δ(r1 − r2)δ(t1 − t2). (3.3)

Another way of looking at the fluctuations is to see them as the balancing forces as opposed
to the viscous dissipation in the fluid. From this point of view, the properties of the noise
follow from the appropriate fluctuation dissipation relation. The non-dissipative part of
hydrodynamics, i.e., an Euler fluid is described by the Hamiltonian

HEF =

∫
dr

(ρ
2
u2 + ε(ρ)

)
, (3.4)

where ε(ρ) is the internal energy density of the fluid, which is related to the pressure p by

ρ
∂2ε

∂ρ2
=
∂p

∂ρ
. (3.5)

The latter equation can be used to construct ε(ρ). The Liouville operator for the Hamiltonian
system is

LEF =

∫
dr

[
∂αjα

δ

δρ
+ ∂βΠ

E
αβ

δ

δjα

]
, (3.6)

where δ
δρ

and δ
δjα

denote functional derivatives with respect to mass density and momentum
density, and ΠE

αβ = pδαβ + ρuαuβ is the Euler stress. LEF can be used to write the Fokker-
Planck equation for the Euler fluid

∂tP ({ρ}, {j}) = LEFP ({ρ}, {j}). (3.7)

This formulation can now easily be extended to include dissipative (viscous) and fluctuating
(stochastic) parts by adding the appropriate terms to the Liouville operator for the Euler
fluid, i.e., we replace

LEF → LEF + Lv + Ls. (3.8)
1 We restrict the discussion to an isothermal fluid and the momentum equation. The heat transport equation

can in principle be treated in the same way by introducing local fluctuating heat fluxes.
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3.2 The fluctuating lattice Boltzmann equation

The viscous and fluctuating operators can be obtained from the Navier-Stokes equation by
a Kramers-Moyal expansion [see Ref. 84] and are given by

Lv = −ηαβγδ
∫
dr ∂β∂γuδ

δ

δjα
,

Ls = −Qαβγδ

∫
dr ∂β∂γ

δ

δjα

δ

δjδ
.

(3.9)

The fluctuation dissipation relation requires that the Boltzmann factor exp(−HEF/kBT ) is
a stationary solution of the Fokker-Planck equation. Therefore we have to require

0 = (Lv + Ls) exp

(
−HEF

kBT

)

= −
[
ηαβγδ

∫
dr ∂β∂γuδ

δ

δjα
+Qαβγδ

∫
dr ∂β∂γ

δ

δjα

δ

δjδ

]
exp

(
−HEF

kBT

)
.

(3.10)

This condition is satisfied if

0 =

[
ηαβγδ∂β∂γuδ +Qαβγδ∂β∂γ

δ

δjδ

]
exp

(
−HEF

kBT

)

=

[
ηαβγδ∂β∂γuδ − 1

kBT
Qαβγδ∂β∂γuδ

]
exp

(
−HEF

kBT

)
,

(3.11)

which yields
Qαβγδ = kBT ηαβγδ. (3.12)

Using this result in (3.3) we get the correlations for the traceless and trace parts of the
fluctuating stress tensor

〈sαβ(r1, t1) sγδ(r2, t2)〉 = 2ηskBT

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
δ(r1 − r2)δ(t1 − t2),

〈sαα(r1, t1) sββ(r2, t2)〉 = 18ηbkBT δ(r1 − r2)δ(t1 − t2),

〈sαβ(r1, t1) sγγ(r2, t2)〉 = 0.

(3.13)

These are the same expressions as originally put forward by Landau and Lifshitz [81]. They
introduce fluctuations into the hydrodynamic equations in a thermodynamically consistent
way. The derivation presented here points out that the stochastic momentum flux can be seen
as the counterbalance to the viscous friction. The fluctuation dissipation relation between the
dissipative and the fluctuating part assures that the correct isothermal ensemble is obtained.
We will see later that such a balance is important for every degree of freedom in the system,
even for those that are irrelevant on the hydrodynamic level.

3.2 The fluctuating lattice Boltzmann equation

Fluctuations can be incorporated into the lattice Boltzmann equation by adding a stochastic
contribution to the collision term

∆i = Lijf neq
j + ∆′

i. (3.14)
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3 Statistical mechanics of the lattice Boltzmann equation

Mass and momentum conservation imply that the zeroth and first moment of the stochastic
contribution must vanish

∑
i

∆′
i = 0,

∑
i

∆′
ici = 0. (3.15)

It is assumed that the fluctuations ∆′
i are uncorrelated in space and time such that the

stochastic collision operator is still local. The mean of the fluctuations vanishes 〈∆′
i〉 = 0,

and the covariance matrix 〈∆′
i∆

′
j〉 has to generate the correct fluctuations on the hydrody-

namic level, cf. equation (3.13). The stochastic collision operator gives rise to a random
contribution to the non-equilibrium stress

σrαβ =
∑
i

∆′
iciαciβ. (3.16)

The modification of equations (2.73) for the stochastic collision operator reads

Π∗neq
αα = (1 + λb)Π

neq
αα + σrαα,

Π
∗neq
αβ = (1 + λs)Π

neq
αβ + σrαβ.

(3.17)

It is to be noted that σrαβ corresponds to fluctuations on the lattice time scale τ , as opposed
to the fluctuations sαβ of the hydrodynamic momentum flux on the kinetic time scale. The
connection between the two scales will become explicit within the Chapman-Enskog expan-
sion. The relation between the hydrodynamic fluctuations and the random stresses on the
lattice level is

σrαα = λbsαα,

σrαβ = λssαβ,
(3.18)

which leads to the following correlations for the random stresses

〈
σrαβσ

r
γδ

〉
=

2ηskBTλ
2
s

a3τ

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
,

〈
σrαασ

r
ββ

〉
=

18ηbkBTλ
2
b

a3τ
,

〈
σrαβσ

r
γγ

〉
= 0.

(3.19)

The delta distributions of equation (3.13) have been replaced here by the lattice units a−3

and τ−1 to reflect the locality of the stochastic collisions on the discrete lattice. These are the
expressions for the random stresses as originally derived by Ladd [36, 37], which guarantee
correct fluctuating hydrodynamics at the macroscopic level. They can be directly imple-
mented in the MRT lattice Boltzmann model by adding the random contributions in mode
space during the collision phase. In the original implementation of Ladd and various follow-
ups by other authors [38, 85–88], the random contribution was only imposed on the stress
modes, while the kinetic modes where not thermalized but projected out entirely during the
collision phase. Although this is perfectly consistent with fluctuating hydrodynamics, it was
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3.3 The generalized lattice gas model (GLG)

shown by Adhikari et al. [1] that the procedure leads to poor accuracy on shorter length
scales. The reason is that the procedure neglects the kinetic nature of the lattice Boltzmann
method, which includes more degrees of freedom than just the hydrodynamic ones, namely
the higher order kinetic modes. These are non-conserved modes that take part in the dis-
sipative processes in the fluid, which suggests that they should be thermalized as well. It
was shown numerically that additional noise on the kinetic modes significantly improves the
accuracy on short length-scales [1]. In the course of this thesis, this observation could be
clarified theoretically from a statistical mechanics viewpoint, making use of a generalized
lattice gas model [2]. The generalized lattice gas model and the derivation of the statistical
mechanics of the fluctuating lattice Boltzmann model will be the subject of the following
section.

3.3 The generalized lattice gas model (GLG)

One of the motives that drove the development of the lattice Boltzmann method was the aim
to cope with the large statistical noise inherent to the preceding lattice gas automaton mod-
els. Since the dynamic quantities in the lattice gas automata are boolean variables, a con-
siderable amount of sampling is needed to obtain good data statistics for the hydrodynamic
fields. To circumvent this inefficiency, the lattice Boltzmann method replaces the boolean
variables with their ensemble-averaged populations. This yields smooth dynamic variables
that are not subject to noise any longer. On the other hand, the complete absence of fluctu-
ations means that the connection to the underlying statistical properties of the populations
is lost, which makes it necessary to reintroduce the fluctuations a posteriori. In the previous
section we have shown how this can be done for fluctuating hydrodynamics. However, that
approach fails to restore the connection to the statistics of the underlying micro-model. For
simulations of soft matter systems it is of pivotal importance to sample a well defined sta-
tistical ensemble. In order to put the lattice Boltzmann method back onto the fundament of
statistical mechanics, we have developed the conceptual model of a generalized lattice gas
(GLG).

In the GLG model, the equilibrium distribution of the population numbers can be derived
from fundamental statistical considerations. For this purpose, we introduce an ensemble of
population numbers on the local lattice site where each velocity direction ci can be occupied
by an integer number νi of particles. The evolution equation for a single realization of the
occupancies has the same form as in the lattice gas and lattice Boltzmann models

νi(r + cih, t+ h) = ν∗i (r, t) = νi(r, t) + ∆i (ν(r, t)) . (3.20)

The collision operator ∆i of this model redistributes particles among the different velocity
directions.The difference to the LG and LB models lies in the nature of the νi, for in a lattice
gas the occupation variables are boolean whereas in lattice Boltzmann real-valued variables
are used. The ensemble picture behind the occupancies allows to quantify the difference by
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3 Statistical mechanics of the lattice Boltzmann equation

looking at the fluctuations of the variables νi. The dimensionless Boltzmann number (Bo)
is defined by

Bo =

√
〈ν2
i 〉 − 〈νi〉2
〈νi〉 , (3.21)

where the angle brackets denote ensemble averages. In the LG models, Bo ∼ 1, i.e., the
fluctuations are on the same order as the mean which corresponds to a fully microscopic
model. Conversely, erasing any fluctuations as in the deterministic LB models leads toBo =
0. Our aim is to introduce thermal fluctuations in such a way that fluctuating hydrodynamics
is obtained and at the same time statistical consistency is retained at the microscopic level.

The connection between the integer variables νi and the hydrodynamic variables can be
established by introducing the mass density

µ =
mp

a3
, (3.22)

where mp is the mass of a particle and a is the lattice spacing. The relation between the
GLG occupancies νi and the LB mass densities fi is then

fi = µνi, (3.23)

and the hydrodynamic fields can be obtained as usual in lattice Boltzmann.

3.3.1 Statistics of the generalized lattice gas

The statistics on the microscopic level is governed by the probability distribution of the
occupation numbers. In a homogeneous equilibrium state, we can consider the individ-
ual occupancies of the different velocity directions as independently sampled from a large
reservoir. The probability distribution for an individual νi is then Poissonian

p(νi) =
ν̄νi
i

νi!
e−ν̄i , (3.24)

which is in accordance with the phase-space occupancies in an ideal gas [89]. ν̄i = 〈νi〉
denotes the mean number of particles occupying ci. This mean occupation number ν̄i can
be written in terms of the total number of particles ν̄ on the lattice site

ν̄i = wi
∑
i

ν̄i = wiν̄, (3.25)

where, for symmetry reasons, the weights wi depend on the absolute speed of ci only and
not on the direction. The total occupation is related to the mass density by µν̄ = ρ. From
Poisson statistics it follows that 〈ν2

i 〉− 〈νi〉2 = 〈νi〉 and the variance of the LB mass density
〈f 2
i 〉 − 〈fi〉2 = µ 〈fi〉 = mp/a

3 〈fi〉 is controlled by the mass mp of a particle. The latter
can be related to the temperature through the ideal gas equation of state

mp =
kBT

c2s
. (3.26)
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3.3 The generalized lattice gas model (GLG)

This means that 〈f 2
i 〉 − 〈fi〉2 ∼ T and the thermal fluctuations can thus be controlled by the

temperature as desired.

The joint probability distribution P of the occupation numbers is the product of the individ-
ual Poissonians, but subject to the constraints that it has to correspond to a given total mass
and momentum

P ({νi}) ∝
(∏

i

ν̄νi
i

νi!
e−ν̄i

)
δ

(
µ

∑
i

νi − ρ

)
δ

(
µ

∑
i

νici − j

)
. (3.27)

Using Stirling’s approximation for the factorial in (3.27) we can introduce an associated
entropy for the occupation numbers

S ({νi}) = −
∑
i

(νi ln νi − νi − νi ln ν̄i + ν̄i) , (3.28)

and the probability P can be rewritten as2

P ({νi}) ∝ exp [S ({νi})] δ
(
µ

∑
i

νi − ρ

)
δ

(
µ

∑
i

νici − j

)
. (3.29)

3.3.2 Equilibrium distribution

We now take as the equilibrium distribution νeq
i of the GLG the most probable set of occu-

pation numbers for given values of mass and momentum. It can be obtained by maximizing
P , or equivalently, by maximizing the entropy S subject to the constraints. We take the
constraints into account via Lagrange multipliers and maximize the functional

S({νi}, χ,λ) = S({νi}) + χ

(∑
i

νi − ρ

µ

)
+ λ ·

(∑
i

νici − j

µ

)
. (3.30)

Differentiation with respect to νi, χ and λ results in the following equation system

∂S

∂νi
+ χ+ λ · ci = 0, (3.31a)

µ
∑
i

νi − ρ = 0, (3.31b)

µ
∑
i

νici − j = 0. (3.31c)

2 The associated entropy and equation (3.29) can also be derived by considering a Bernoulli experiment where
particles are selected with probability p0 such that ν̄ = Np0 particles are drawn in total:

p(ν) =
N !

ν!(N − ν)!

( ν̄

N

)ν (
1− ν̄

N

)N−ν

.

The entropy (3.28) then follows from ln p(ν) in the limit N →∞ at fixed ν̄ [see also Ref. 8].
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3 Statistical mechanics of the lattice Boltzmann equation

The formal solution of (3.31a) is

νeq
i = ν̄i exp (χ+ λ · ci) , (3.32)

where the Lagrange multipliers χ and λ are functions of mass and momentum and have to be
determined from the constraints (3.31b) and (3.31c). Due to the nonlinearity of the equation
system, the explicit solution is difficult to obtain. However, in analogy to the low Mach
number approximation in the conventional lattice Boltzmann models, we seek a polynomial
approximation for νeq

i . We expand the equilibrium distribution around the reference state
where the fluid is at rest. For this case, we can write the equilibrium distribution explicitly

ν
(0)
i = νeq

i (j = 0) = wiν̄. (3.33)

The solution for non-vanishing momentum is obtained by perturbing around j = 0, that is,
we expand the Lagrange multipliers as

χ =
∞∑
n=1

ε̃nχ(n), λ =
∞∑
n=1

ε̃nλ(n), j = ε̃j(1) (3.34)

where ε̃ is a formal parameter that will be set to one at the end. Expanding the equilibrium
distribution up to second order in the Lagrange multipliers yields

νeq
i = wi ν̄

[
1 + ε̃χ(1) + ε̃λ(1) · ci

+
1

2
ε̃2

(
χ(1) + λ(1) · ci

)2

+ ε̃2χ(2) + ε̃2λ(2) · ci + . . .
]
.

(3.35)

The constraints for mass and momentum should be satisfied by this expansion at all orders.
The zeroth order does this by construction. The higher orders can be solved recursively. On
the first order, we have

µν̄
∑
i

wi

(
χ(1) + λ(1) · ci

)
= 0,

µν̄
∑
i

wi

[
(1 + χ(1))ci + λ(1) · cici

]
= j(1).

(3.36)

For the evaluation, we use the symmetry properties of the lattice sums of a cubic lattice
derived in section B.2. The result for the Lagrange multipliers on the first order is

χ(1) = 0, λ(1) =
j(1)

µν̄σ2

. (3.37)

Inserting this result into the next order we obtain the equations for the second order

µν̄
∑
i

wi


χ(2) +

1

2

(
j(1) · ci
µν̄σ2

)2

 = 0,

µν̄
∑
i

wi

(
λ(2) · cici

)
= 0,

(3.38)
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and using the lattice sums again we get the second order Lagrange multipliers

χ(2) = − 1

2σ2

(
j(1)

µν̄

)2

, λ(2) = 0. (3.39)

The procedure can be systematically carried out to higher orders. Results up to 8th order
are for example given by Ansumali [90]. Here, we shall be satisfied with the second order
approximation. Combining (3.37) and (3.39) into (3.35) we get the explicit solution for the
equilibrium distribution up to quadratic terms in j

νeq
i = wiν̄

[
1 +

j · ci
µν̄σ2

+
1

2σ2
2

(
j · ci
µν̄

)2

− 1

2σ2

(
j

µν̄

)2
]
. (3.40)

Converting the GLG occupation numbers into LB mass densities, f eq
i = µνeq

i , we have ex-
actly the same form of the equilibrium distribution as used in the standard lattice Boltzmann
models, cf. equations (2.34) and (2.56).

It should be remarked that the procedure described here is very similar to the entropic lattice
Boltzmann approaches of Karlin and Succi [29], Karlin et al. [30], Ansumali et al. [91]. In
that framework, however, the aim is to obtain an H-theorem for lattice Boltzmann models,
and the derivation starts from a convex H-functional. The resulting equilibrium has, in con-
trast to the derivation presented here, no connection to an underlying probability distribution
and consequently the entropic lattice Boltzmann is focused on deterministic models without
fluctuations.

3.3.3 Fluctuations around equilibrium

The equilibrium distribution is the most probable set of populations of a lattice site for given
mass and momentum. The actual populations νi fluctuate around those mean values accord-
ing to the probability distribution P . Using the Fourier representation of the δ-distributions
we can rewrite P as

P ({νi}) ∝
∫
dq

∫
dk exp

[
S({νi}) + iq

(
µ

∑
i

νi − ρ

)
+ ik ·

(
µ

∑
i

νici − j

)]
.

(3.41)
The expression in the square brackets is identical to the functional S({νi}, iq, ik) where the
Lagrange multipliers χ and λ have been replaced by iq and ik, respectively. The solution
({νeq

i }, iq0, ik0) obtained from the equation system (3.31a) above is a saddle point, around
which we can expand to second order

S ({νi}, iq, ik) = S ({νeq
i }, iq0, ik0)−

∑
i

(νi − νeq
i )

2

2νeq
i

+ iµ (q − q0)
∑
i

(νi − νeq
i ) + iµ (k− k0) ·

∑
i

ci (νi − νeq
i ) ,

(3.42)
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3 Statistical mechanics of the lattice Boltzmann equation

where we have used the explicit form (3.28) of the entropy. This yields

∂2S

∂νi∂νj

∣∣∣∣
{νeq

i }
= − 1

νeq
i

δij,

∂2S

∂νi∂q
= iµ,

∂2S

∂νi∂k
= iµci.

(3.43)

Inserting the expansion into (3.41) we can write the probability distribution for νneq
i = νi −

νeq
i

P ({νneq
i }) ∝

∫
d(q − q0)

∫
d(k− k0)

× exp

[
−

∑
i

(νneq
i )

2

2νeq
i

+iµ (q − q0)
∑
i

νneq
i + iµ (k− k0)

∑
i

νneq
i ci

]
.

(3.44)

where we have transformed the variables of the Fourier integrals and absorbed all constant
factors in the normalization. Finally, we reintroduce the δ-distributions and obtain

P ({νneq
i }) ∝ exp

[
−

∑
i

(νneq
i )

2

2νeq
i

]
δ

(
µ

∑
i

νneq
i

)
δ

(
µ

∑
i

νneq
i ci

)
. (3.45)

This expression shows that the fluctuations around the equilibrium have a Gaussian dis-
tribution subject to constraints. The variance is νeq

i and depends on direction, which is a
consequence of the broken Galilean invariance. However, since the non-equilibrium popu-
lations are small compared to the equilibrium value, we can approximate the latter by the
limit of vanishing fluid velocity u = 0. In this case, Galilean invariance is restored and the
variance

lim
u→0

νeq
i = wiν̄ (3.46)

becomes independent of direction.3 The final result for the fluctuations, written in terms of
the lattice Boltzmann populations fi, is

P ({f neq
i }) ∝ exp

[
−

∑
i

(f neq
i )

2

2µwiρ

]
δ

(∑
i

f neq
i

)
δ

(∑
i

f neq
i ci

)
, (3.47)

which shows again that the fluctuations are controlled by µ.

In order to look at the fluctuations of the hydrodynamic variables, we transform to modes
according to equation (2.65). The probability distribution for the non-equilibrium parts in

3 Consequently, the weights wi do not depend on direction. The approximation can be justified within the
Chapman-Enskog expansion. It turns out that up to second order, the macroscopic dynamics is not changed
by the approximation.
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3.3 The generalized lattice gas model (GLG)

mode space is

P ({mneq
k }) ∝ exp

[
−

∑

k

(mneq
k )

2

2bkµρ

] ∏

k≤3

δ (mneq
k ) ∝

∏

k>3

exp

[
−(mneq

k )
2

2µbkρ

]
. (3.48)

Here, the constraints have been eliminated because the conserved moments mk, k = 0 . . . 3
do not fluctuate and hence do not contribute to P . The fluctuations in mode space are
independent and Gaussian with variance µbkρ.

3.3.4 Stochastic collision operator and detailed balance

Having obtained the probability distribution for the statistical fluctuations of the non-equili-
brium moments explicitly, we turn to the implementation in the lattice Boltzmann equation.
Similar to section 3.2, we introduce a stochastic collision operator that adds noise to the
deterministic dynamics.We extend the update rule for the moments by an additional random
noise in the following way

m∗neq
k = γkm

neq
k + ϕkrk, (3.49)

where γk = 1 + λk and rk is a Gaussian random number with zero mean and unit variance.
The amplitude ϕk of the random noise for the k-th mode remains to be determined. This can
be achieved by interpreting the update rule (3.49) as a Monte-Carlo process: the fluctuations
of the modes are sampled by random moves. Such a process has to satisfy detailed balance
to generate the correct distribution. The condition of detailed balance is

ω (mneq
k → m∗neq

k ) exp

[
−(mneq

k )
2

2µbkρ

]
= ω (m∗neq

k → mneq
k ) exp

[
−(m∗neq

k )
2

2µbkρ

]
. (3.50)

The probability for a move from the pre-collision momentmneq
k to the post-collision moment

m∗neq
k is equal to the probability of generating the Gaussian random noise ϕkrk = m∗neq

k −
γkm

neq
k

ω (mneq
k → m∗neq

k ) =

√
1

2πϕ2
k

exp

[
−(m∗neq

k − γkm
neq
k )

2

2ϕ2
k

]
. (3.51)

The probability of the reverse transition is obtained analogously. Combining (3.50) and
(3.51) we get

ω (mneq
k → m∗neq

k )

ω (m∗neq
k → mneq

k )
=

exp
[
− (m∗neq

k )
2
/(2µbkρ)

]

exp
[
− (mneq

k )
2
/(2µbkρ)

] =
exp

[
− (m∗neq

k − γkm
neq
k )

2
/(2ϕ2

k)
]

exp
[
− (mneq

k − γkm
∗neq
k )

2
/(2ϕ2

k)
] .

(3.52)
Taking the logarithm yields

(mneq
k )

2 − (m∗neq
k )

2

2µbkρ
=

(1− γ2
k)

[
(mneq

k )
2 − (m∗neq

k )
2
]

2ϕ2
k

, (3.53)
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which is satisfied if and only if

ϕ2
k = µbkρ

(
1− γ2

k

)
=
ρkBT

c2sa
3
bk

(
1− γ2

k

)
. (3.54)

This relation holds for all modes in the system, where γk = 1 applies to conserved modes
without fluctuations. The value γk = 0 projects out the deterministic part and makes the
mode entirely random. It is important to note that the relation (3.54) ensures consistent
sampling of the fluctuations on the microscopic level. Therefore, it guarantees that detailed
balance is satisfied on all scales. This is in contrast to the previous fluctuating lattice Boltz-
mann, where only the stress modes are thermalized while the kinetic modes are entirely
projected out, i.e., γk = 0 and ϕk = 0 at the same time. Our derivation shows that such a
procedure violates detailed balance, because ω (mneq

k → 0) = 1 and ω (0 → mneq
k ) = 0, and

explains why it leads to the observed poor thermalization. The fluctuations of the kinetic
modes are needed for detailed balance and proper thermalization beyond fluctuating hydro-
dynamics. The relation (3.54) has a general interpretation: every degree of freedom in the
system that is subject to dissipation, i.e., γk 6= 1, needs random fluctuations to counterbal-
ance dissipation. That is, the number of random variables needed to thermalize the system
must be equal to the number of non-conserved degrees of freedom. This is necessary to en-
sure that for every trajectory the reverse trajectory can be generated as well, which is another
formulation of detailed balance. Otherwise the system will not reach thermal equilibrium.
Although this general argument seems rather trivial, the consequences for the lattice Boltz-
mann equation have long been overlooked. It is among the benefits of the development of
the generalized lattice gas model that it makes a rigorous statistical mechanics derivation of
these concepts possible in the framework of the fluctuating lattice Boltzmann equation.

It should also be noted that the expressions obtained in section 3.2 for the fluctuating stress
remain valid. But they have now a bottom-up justification in terms of the statistical fluctu-
ations on the microscopic level, whereas they were previously derived top-down by com-
parison with the macroscopic equations. For the connection between the microscopic level
and the macroscopic hydrodynamics we once again refer to the Chapman-Enskog expansion
described in chapter 4.
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4 Asymptotic analysis and the Chapman-Enskog
expansion

The lattice Boltzmann method is based on the idea that the mesoscale kinetic description of
the system gives rise to hydrodynamic behavior on the macroscale. The formal connection
between the different levels of description can be achieved within an asymptotic analysis of
the lattice Boltzmann equation. In particular, such an analysis makes the relation between
the parameters of the lattice Boltzmann model and the macroscopic transport coefficients
explicit.

There exist different approaches to link the microscopic dynamics of a system to a reduced
description in terms of macroscopic variables. Most of them are multiscale methods that are
based on the separation of scales, i.e., different physical mechanisms can be distinguished
according to the time and length scales they are governed by. The mechanisms do not
interfere dynamically and can thus be treated separately. Formally, this separation can be
treated by multiscale expansion techniques [10, 65, 92]. The commonly used method for
asymptotic analysis of the lattice Boltzmann equation is the Chapman-Enskog expansion,
which will be described in the following sections.

4.1 Asymptotic analysis and scaling

The separation of scales for the kinetic description manifests itself in different transport
phenomena. The hierarchy of time scales in a fluid ranges from the time between particle
collisions over the time needed for a fluid element to travel a typical distance up to the dif-
fusion time scale. Similarly, the length scales range from the molecular mean free path lmfp

to the typical macroscopic length scale L. The ratio of these two length scales defines the
Knudsen number Kn = lmfp/L. In the lattice Boltzmann method, the mean free path cor-
responds to the lattice spacing a. To distinguish between different phenomena, the relation
between the time and length scales characterizing the transport processes is important, the
so-called scaling. In a fluid, we can expect two types of transport processes to be relevant.
First wave-like phenomena, that obey convective scaling ∆t ∼ ∆x, i.e., the time scale ∆t
is linearly related to the length scale ∆x. And second diffusive phenomena with diffusive
scaling ∆t ∼ (∆x)2 where the time scale is quadratically related to the length scale. This
suggests to consider three different time scales within the analysis of the lattice Boltzmann
method: the lattice time scale τ , the convective time scale t1 and the diffusive time scale
t2. The separation of length scales is guaranteed by a small Knudsen number. This is an
important premise which, in addition to the low Mach number assumption, sets the limits
within which the lattice Boltzmann method can reproduce hydrodynamic behavior.
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4 Asymptotic analysis and the Chapman-Enskog expansion

4.2 Chapman-Enskog expansion

The lattice Boltzmann equation describes the system on microscopic lattice scales. In order
to analyze the dynamics on hydrodynamic scales, we have to coarse-grain time and space.
We introduce a small dimensionless scaling parameter ε, where the above suggests that
ε = Kn is a natural choice.1 A coarse-grained length scale is introduced by writing

r1 = ε r, (4.1)

which corresponds to measuring positions with a coarse-grained ruler, e.g., instead of nano-
meters we can only resolve the position up to micrometers.

Further, we introduce the convective time scale t1 and the diffusive time scale t2 by

t1 = εt, t2 = ε2t. (4.2)

The time-scales can be interpreted as the different hands of a clock: The lattice time t is the
sweep hand counting every clock-tick, t1 is the minute hand, whereas t2 is the hour hand.
In the course of the LB algorithm, the hands advance according to the scaling (4.2). One
time step corresponds to t → t + τ , while t1 → t1 + ετ and t2 → t2 + ετ 2. Measuring a
coarse-grained time corresponds to reading-off the minute and hour hand (t1, t2).

To analyze the dynamics on the coarse-grained scales, we write the lattice Boltzmann vari-
ables fi as functions of r1, t1 and t2. The deterministic lattice Boltzmann equation is then

fi(r1 + ετci, t1 + ετ, t2 + ε2τ) = fi(r1, t1, t2) + ∆i (f(r1, t1, t2)) . (4.3)

While on the lattice scale r and t are discrete variables, the coarse-grained variables can
be considered as continuous because ε is assumed to be very small. The lattice Boltzmann
equation written in terms of the coarse-grained variables can therefore be Taylor-expanded.
Up to order O(ε2), we get

fi(r1 + ετci, t1 + ετ, t2 + ετ 2) = fi(r1, t1, t2) + ετ

(
∂

∂t1
+ ci · ∂

∂r1

)
fi(r1, t1, t2)

+ ε2τ

[
∂

∂t2
+
τ

2

(
∂

∂t1
+ ci · ∂

∂r1

)2
]
fi(r1, t1, t2).

(4.4)

Similarly to the space-time variables, also the LB populations and the collision operator are
expanded in powers of the scaling parameter ε

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3), (4.5a)

∆i = ∆
(0)
i + ε∆

(1)
i + ε2∆

(2)
i +O(ε3). (4.5b)

1 In other words, the Chapman-Enskog expansion is a perturbation expansion in the Knudsen number.
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4.2 Chapman-Enskog expansion

Because the collision operator is a function of the LB populations, we can also write [5,
93]

∆i (f) = ∆i(f
(0)) + ε

∑
j

∂∆i

∂fj

∣∣∣∣
f (0)

f
(1)
j

+ ε2

(∑
j

∂∆i

∂fj

∣∣∣∣
f (0)

f
(2)
j +

∑

j,k

∂2∆i

∂fj∂fk

∣∣∣∣
f (0)

f
(1)
j f

(1)
k

)
+O(ε3).

(4.6)

Since the conservation laws hold on all scales, i.e., independently of ε, the collision operator
must satisfy mass and momentum conservation at all orders,

∑
i

∆
(k)
i = 0,

∑
i

∆
(k)
i ci = 0, (4.7)

for all k.

Inserting the expansions (4.4), (4.5a) and (4.5b) into (4.3) we get the (quasi-)continuous and
scale separated version of the lattice Boltzmann equation

ε

(
∂

∂t1
+ ci · ∂

∂r1

)
f

(0)
i + ε2

[
∂

∂t2
+
τ

2

(
∂

∂t1
+ ci · ∂

∂r1

)2
]
f

(0)
i

+ ε2
(
∂

∂t1
+ ci · ∂

∂r1

)
f

(1)
i =

1

τ

(
∆

(0)
i + ε∆

(1)
i + ε2∆

(2)
i

)
,

(4.8)

where we have neglected all terms of order O(ε3). The different orders in (4.8) can be
treated separately and we get a hierarchy of equations at different powers of ε:

O(ε0) : ∆
(0)
i = 0, (4.9a)

O(ε1) :

(
∂

∂t1
+ ci · ∂

∂r1

)
f

(0)
i =

1

τ
∆

(1)
i , (4.9b)

O(ε2) :

[
∂

∂t2
+
τ

2

(
∂

∂t1
+ ci · ∂

∂r1

)2
]
f

(0)
i +

(
∂

∂t1
+ ci · ∂

∂r1

)
f

(1)
i =

1

τ
∆

(2)
i . (4.9c)

In the following, we will investigate these equations by constructing the moments on the
different scales.

4.2.1 Zeroth order

On the zeroth order, the collision operator ∆
(0)
i vanishes and from (4.9a) it follows that f (0)

is a collisional invariant. The latter can hence be identified with the equilibrium distribu-
tion f eq. The local conserved variables must be moments of the equilibrium distribution
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only, that is, mass density ρ and momentum density j can be written as

∑
i

f eq
i = ρ,

∑
i

f eq
i ci = j.

(4.10)

The vanishing zeroth order allows to simplify the collision operator. Neglecting all terms of
order O(ε2) we obtain

∆i = ε∆
(1)
i = ε

∑
j

∂∆i

∂fj

∣∣∣∣
f (0)

f
(1)
j =

∑
j

Lij
(
fj − f eq

j

)
, (4.11)

where Lij = ∂∆i

∂fj

∣∣∣
f (0)

. This justifies the use of a linear collision operator in the lattice
Boltzmann method [18, 93].

4.2.2 First order

The zeroth and first moment of the ε-order equation (4.9b) are

∂

∂t1
ρ+

∂

∂r1

· j = 0, (4.12a)

∂

∂t1
j +

∂

∂r1

· Π(0) = 0, (4.12b)

where Π(0) =
∑

i f
(0)
i cici is the equilibrium momentum flux. These are exactly the inviscid

fluid equations when the equilibrium momentum flux is equal to the Euler stress

Π(0) = p1+ ρuu, (4.13)

where p is the scalar fluid pressure. For further reference, we calculate the second moment
equation on this order which yields

∂

∂t1
Π(0) +

∂

∂r1

· Φ(0) =
1

τ

∑
i

∆
(1)
i cici =

1

τ

(
Π∗(1) − Π(1)

)
. (4.14)

Φ(0) =
∑

i f
(0)
i cicici is the equilibrium third moment and Π∗(1) is the ε-order of the post-

collisional momentum flux.
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4.2.3 Second order

Before we construct the moments on the ε2-order, we rewrite equation (4.9c) by inserting
the ε-order which eliminates the second derivatives

∂

∂t2
f

(0)
i +

1

2

(
∂

∂t1
+ ci · ∂

∂r1

) (
f
∗(1)
i + f

(1)
i

)
=

1

τ
∆

(2)
i . (4.15)

We have written f ∗(1)
i = f

(1)
i + ∆

(1)
i for the O(ε) post-collisional population. The equations

for the zeroth and first moment then come as

∂

∂t2
ρ = 0, (4.16a)

∂

∂t2
j +

1

2

∂

∂r1

·
(
Π∗(1) + Π(1)

)
= 0. (4.16b)

Here we have used that the zeroth and first moment of f (1) vanish. In the following, we
will merge the moment equations of the different orders to obtain a single equation in the
variables r and t.

4.2.4 Merging orders

The macroscopic fields depend on the coarse-grained variables r1, t1 and t2, and thus in-
directly on the lattice length and time r and t. The derivatives with respect to the lattice
variables come as

∂

∂r
= ε

∂

∂r1

,

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
.

(4.17)

Up to the order O(ε2) of the Chapman-Enskog expansion, the second-order of the popu-
lations f (2)

i and the collision operator ∆
(2)
i do not show up in the zeroth and first moment

equations, therefore we can set

f eq
i = f

(0)
i ,

f neq
i = εf

(1)
i ,

∆i = ε∆
(1)
i .

(4.18)

We merge (4.12a) and (4.12b) with (4.16a) and (4.16b) and obtain the combined equations
for mass and momentum

∂

∂t
ρ+

∂

∂r
· j = 0, (4.19a)

∂

∂t
j +

∂

∂r
Πeq +

1

2

∂

∂r
(Π∗neq + Πneq) = 0, (4.19b)
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4 Asymptotic analysis and the Chapman-Enskog expansion

where Πeq = Π(0) and Πneq = εΠ(1). The mass equation is the continuity equation which
is automatically satisfied by the lattice Boltzmann equation. The momentum equation re-
sembles the the Navier-Stokes equation if Πeq equals the Euler stress and the pre- and post-
collisional non-equilibrium stresses are related to the Newtonian viscous stress σ , cf. equa-
tion (2.19)

Π∗neq + Πneq = −2σ (4.20)

In order to evaluate this expression explicitly, we need to use the specific equilibrium dis-
tribution and the collision operator of the LB model. Below we will use the D3Q19 model
introduced in section 2.5 to finalize the Chapman-Enskog expansion.

4.2.5 Closing the Chapman-Enskog expansion

Using theO(u2) polynomial expansion of the equilibrium distribution, we can calculate the
equilibrium third moment

Φ
(0)
αβγ =

∑
i

f eq
i ciαciβciγ =

ρuδ
c2s

∑
i

wiciαciβciγciδ = ρc2s (uαδβγ + uβδαγ + uγδαβ) ,

(4.21)
where we have exploited that only the even-rank lattice sums contribute. Equation (4.14)
then becomes

Π
∗(1)
αβ − Π

(1)
αβ = τ

∂

∂t1

(
ρc2sδαβ + ρuαuβ

)
+ τc2s

∂

∂r1γ
(ρuαδβγ + ρuβδαγ + ρuγδαβ) . (4.22)

The time derivative of the Euler stress can be expressed with the help of ε-order moment
equations (4.12a) and (4.12b)

∂

∂t1

(
ρc2sδαβ + ρuαuβ

)

= ρc2sδαβ
∂

∂t1
ρ+ uβ

(
∂

∂t1
ρuα

)
+ uα

(
∂

∂t1
ρuβ

)
− uαuβ

∂

∂t1
ρ

= −ρc2sδαβ
(

∂

∂r1γ
ρuγ

)
− c2suβδαγ

(
∂

∂r1γ
ρ

)
− c2suαδβγ

(
∂

∂r1γ
ρ

)
+O(u3),

(4.23)

where we have neglected terms of O(u3). Inserting this into (4.22) yields

Π
∗(1)
αβ − Π

(1)
αβ = ρc2sτ

(
∂

∂r1α
uβ +

∂

∂r1β
uα

)
. (4.24)

Using (4.17) we can write this in unscaled form

Π∗neq
αβ − Πneq

αβ = ρc2sτ

(
∂

∂rα
uβ +

∂

∂rβ
uα

)
. (4.25)
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With the linear collision operator Lij , alternative expressions for the non-equilibrium stres-
ses were obtained in (2.73)

Π
∗neq
αβ = (1 + λs) Π

neq
αβ ,

Π∗neq
αα = (1 + λb) Πneq

αα .
(4.26)

From this equation system we obtain a solution for the non-equilibrium stresses in terms of
velocity gradients

Π
neq
αβ =

ρc2sτ

λs

(
∂

∂rα
uβ +

∂

∂rβ
uα − 2

3

∂

∂rγ
uγδαβ

)
,

Πneq
αα =

2ρc2sτ

λb

∂

∂rα
uα.

(4.27)

This yields the viscous stresses

σαβ = −1

2

(
Π
∗neq
αβ + Π

neq
αβ

)
= −ρc

2
sτ

2

2 + λs
λs

(
∂

∂rα
uβ +

∂

∂rβ
uα − 2

3

∂

∂rγ
uγδαβ

)
,

σαα = −1

2
(Π∗neq

αα + Πneq
αα) = −ρc2sτ

2 + λb
λb

∂

∂rα
uα.

(4.28)

By comparing with the Newtonian form we find the relation between the eigenvalues λs and
λb and the shear and bulk viscosities

ηs = −ρc
2
sτ

2

2 + λs
λs

= −ρc2sτ
(

1

λs
+

1

2

)
, (4.29)

ηb = −ρc
2
sτ

3

2 + λb
λb

= −2

3
ρc2sτ

(
1

λb
+

1

2

)
. (4.30)

This result closes the Chapman-Enskog expansion of the lattice Boltzmann equation. The
additional 1

2
in the brackets is a lattice correction originating at the ε2-scale. This correction

is the reason that, despite the underlying lattice structure, Galilean invariance is restored
at the macroscopic level. Strictly speaking, there comes another correction term due to the
O(u3) terms in (4.23). This would be of the form ∂

∂rβ

∂
∂rγ
ρuαuβuγ , and hence there areO(u2)

corrections to the viscosity [58]. The resulting inaccuracy in the momentum equation can
be compensated by including higher orders in the Hermite expansion corresponding to third
order velocity terms in the equilibrium distribution [47]. However, for nearly incompressible
flows at low Mach number the corrections are very small and can be neglected completely.

The higher order terms of the populations f (2)
i and ∆

(2)
i do not contribute to the momentum

equation up to O(ε2). Therefore the eigenvalues of the collision operator corresponding to
the kinetic modes are irrelevant on the Navier-Stokes level. The reason is that the Navier-
Stokes equation contains only gradients of the velocity field. The second derivatives of the
flow field only contribute to the kinetic modes, which do not appear on the macroscopic
level. However, the second derivatives are important for accurate boundary conditions, as
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4 Asymptotic analysis and the Chapman-Enskog expansion

shown by Ginzburg and d’Humières [64]. In that case, the kinetic eigenvalues have to be
tuned to specific values, sometimes called “magic values”, that yield second-order accurate
boundary conditions. More down-to-earth, they can be obtained from the second-order
Chapman-Enskog solution. We will therefore derive explicit expressions for f (1)

i and f (2)
i in

the following.

4.2.6 Explicit expressions for f (1) and f (2)

Instead of using the third equilibrium moment Π(0), we can also evaluate the ε1-scale equa-
tion (4.9b) directly. Using the polynomial expansion for the equilibrium distribution and
inserting the mass and momentum equation we get
(
∂

∂t1
+ ciα

∂

∂r1α

)
f

(0)
i =

(
∂

∂t1
+ ciα

∂

∂r1α

)
wi
c2s

[
ρc2s + ρuβciβ +

ρuβuγ
2c2s

(
ciβciγ − c2sδβγ

)]

=
wi
c2s

{
∂

∂r1α

[
ρc2s + ρuβciβ +

ρuβuγ
2c2s

(
ciβciγ − c2sδβγ

)]
ciα

− ∂

∂r1α

[
c2sρuα +

(
ρc2sδαβ + ρuαuβ

)
ciβ

]

− uβ
2c2s

(
ciβciγ − c2sδβγ

) ∂

∂r1α

(
ρc2sδαγ + ρuαuγ

)

− uγ
2c2s

(
ciβciγ − c2sδβγ

) ∂

∂r1α

(
ρc2sδαβ + ρuαuβ

)

+uβuγ
(
ciβciγ − c2sδβγ

) ∂

∂r1α
(ρuα)

}

=
wi
c2s

{
∂

∂r1α
ρuβ

(
ciαciβ − c2sδαβ

)

+
∂

∂r1α

ρuβuγ
2c2s

(
ciαciβciγ − c2sciαδβγ − c2sciβδαγ − c2sciγδαβ

)

−uβ ∂

∂r1α
ρ

(
ciαciβ − c2sδαβ

)}
+O(u3)

= ρ
∂

∂r1α
uβE

(2)
iαβ +

∂

∂r1α

ρuβuγ
2cs

E
(3)
iαβγ +O(u3),

(4.31)

where we have introduced tensors E(2) and E(3) as shorthand notations

E
(2)
iαβ =

wi
c2s

(
ciαciβ − c2sδαβ

)
,

E
(3)
iαβγ =

wi
c3s

(
ciαciβciγ − c2sciαδβγ − c2sciβδαγ − c2sciγδαβ

)
.

(4.32)

Note that these tensors are dimensionless and have no projection onto the conserved modes.
The time derivatives in (4.31) have been expressed in terms of spatial derivatives with the
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4.2 Chapman-Enskog expansion

help of the moment equations, and terms ofO(u3) have been neglected according to the low
Mach number approximation. With the linear collision operator, the ε1-scale equation now
comes as

1

τ

∑
j

Lijf (1)
j = ρ

∂

∂r1α
uβE

(2)
iαβ +

ρ

3

∂

∂r1α
uβE

(2)
iγγδαβ +

∂

∂r1α

ρuβuγ
2cs

E
(3)
iαβγ (4.33)

where we have decomposed the tensor E(2)
iαβ into its trace and traceless part. Now we use the

specific form of the collision operator in mode space. By projecting equation (4.33) onto the

modes we can assign the terms to the different symmetry classes: E(2)
iαβ has a projection onto

the shear stress modes only, E(2)
iγγδαβ has a projection onto the bulk stress modes only, while

E
(3)
iαβγ has projections onto the kinetic modes only. We can therefore use the eigenvalues of

the collision operator to write

f
(1)
i =

ρτ

λs

∂

∂r1α
uβE

(2)
iαβ +

ρτ

3λb

∂

∂r1α
uβE

(2)
iγγδαβ +

τ

λg

∂

∂r1α

ρuβuγ
2cs

E
(3)
iαβγ, (4.34)

where we have assumed that all kinetic (ghost) modes have the same eigenvalue λg. From
this, we can determine the non-equilibrium stresses

Π
(1)

αβ =
∑
i

f
(1)
i ciαciβ =

ρτ

λs

∂

∂r1γ
uδ

∑
i

E
(2)
iγδciαciβ

=
ρc2sτ

λs

∂

∂r1γ
uδ

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
,

Π(1)
αα =

∑
i

f
(1)
i ciαciα =

ρτ

3λb

∂

∂r1β
uβ

∑
i

E
(2)
iγγciαciα

=
2ρc2sτ

λb

∂

∂r1β
uβ,

(4.35)

in accordance with (4.27). We know already, that there are no contributions from f
(2)
i and

∆
(2)
i to the Navier-Stokes equation. However, here we are interested in the full Chapman-

Enskog solution of the populations fi up to second order. We therefore continue with the
ε2-scale equation (4.9c),

1

τ

∑
j

Lijf (2)
j =

[
∂

∂t2
+
τ

2

(
∂

∂t1
+ ciα

∂

∂r1α

)2
]
f

(0)
i +

(
∂

∂t1
+ ciα

∂

∂r1α

)
f

(1)
i

=
∂

∂t2
f

(0)
i +

(
∂

∂t1
+ ciα

∂

∂r1α

) (
1

2

∑
j

Lijf (1)
j + f

(1)
i

)
.

(4.36)

We are interested in the solution f (2)
i up to second derivatives in the velocity field and ignore

all higher order terms. That is, in the following we will neglect all third and higher deriva-
tives of the velocity, and all second and higher derivatives of the mass and the nonlinear
terms.
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4 Asymptotic analysis and the Chapman-Enskog expansion

First we evaluate the t2 time derivative of the equilibrium distribution

∂

∂t2
f

(0)
i =

∂

∂t2

wi
c2s

[
ρc2s + ρuβciβ +

ρuβuγ
2c2s

(
ciβciγ − c2sδβγ

)]
. (4.37)

On the t2-scale, the fluid is incompressible ∂ρ
∂t2

= 0. The time derivative of the momentum
can be replaced by spatial derivatives using the O(ε2) momentum equation

∂

∂t2
ρuα = −1

2

∂

∂r1β

(
Π
∗(1)
αβ + Π

(1)
αβ

)

= ηs
∂2

∂r1β∂r1γ
uδ

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
+ ηb

∂2

∂r1β∂r1γ
uδδαβδγδ.

(4.38)

The t2 derivative of the nonlinear term produces terms of the form uα
∂

∂r1β

∂
∂r1γ

uδ which are
of order ε2u2 and can also be neglected.

Next we turn to the t1 time derivative of the first-order solution f (1)
i . From equation (4.34)

we see that it produces only terms that are at least of order ε2u2, hence ∂
∂t1
f

(1)
i can be

neglected. Dropping also the second derivative of the nonlinear term, equation (4.36) comes
as

1

τ

∑
j

Lijf (2)
j =

wi
c2s

∂

∂t2
ρuβciβ + ciα

∂

∂r1α

(
1

2

∑
j

Lijf (1)
j + f

(1)
i

)

=
wiηs
c2s

∂2

∂r1α∂r1γ
uδ

(
ciδδαγ + ciγδαδ − 2

3
ciαδγδ

)

+
wiηb
c2s

∂2

∂r1α∂r1γ
uδciαδγδ

+ ciα
∂

∂r1α

[(
1

2
+

1

λs

)
ρτ

∂

∂r1γ
uβE

(2)
iβγ

+

(
1

2
+

1

λb

)
ρτ

3

∂

∂r1γ
uβE

(2)
iγγδβγ

]

=
wiηs
c2s

∂2

∂r1α∂r1γ
uδ

(
ciδδαγ + ciγδαδ − 2

3
ciαδγδ

)

+
wiηb
c2s

∂2

∂r1α∂r1γ
uδciαδγδ

− ciα
∂

∂r1α

[
wiηs
c4s

∂

∂r1γ
uβ

(
ciβciγ − 1

3
ciδciδδβγ

)

+
wiηb
2c4s

∂

∂r1γ
uβ

(
ciδciδ − 3c2s

)
δβγ

]

(4.39a)
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= −ηs ∂2

∂r1α∂r1γ
uβ
wi
c2s

(
1

c2s
ciαciβciγ − ciβδαγ − ciγδαβ

+
2

3
ciαδβγ − 1

3c2s
ciδciδciαδβγ

)

− 3ηb
2

∂2

∂r1α∂r1γ
uβ
wi
c2s

(
1

3c2s
ciδciδciαδβγ − 5

3
ciαδβγ

)

= −ηs
cs

∂2uβ
∂r1α∂r1γ

E
(3)
iαβγ −

ηb
2cs

∂2uβ
∂r1α∂r1γ

E
(3)
iαδδδβγ,

(4.39b)

where the traceless part of the third-rank tensor is to be understood in the following way:

E
(3)
iαβγ = E

(3)
iαβγ −

1

3
E

(3)
iαδδδβγ. (4.40)

Since E(3)
iαβγ projects only on the kinetic modes, the final result for f (2)

i is

f
(2)
i = − ηsτ

csλg

∂2uβ
∂r1α∂r1γ

E
(3)
iαβγ −

ηbτ

2csλg

∂2uβ
∂r1α∂r1γ

E
(3)
αδδδβγ. (4.41)

Putting all parts together and using unscaled variables, we get the second order Chapman-
Enskog solution for the lattice Boltzmann populations fi

fi = wi ρ+
wiciα
c2s

ρuα +
ρuαuβ
2c2s

E
(2)
iαβ

+
ρτ

λs

∂

∂rα
uβE

(2)
iαβ +

ρτ

3λb

∂

∂rα
uαE

(2)
iγγ +

τ

csλg

∂

∂rα

ρuβuγ
2

E
(3)
iαβγ

− ηsτ

csλg

∂2uβ
∂rα∂rγ

E
(3)
iαβγ −

ηbτ

2csλg

∂2uβ
∂rα∂rβ

E
(3)
αδδ.

(4.42)

A similar expression has been derived by Ginzburg and d’Humières [64]. There, however,
the two-relaxation time model was used which makes the expressions slightly simpler. In
contrast, we have here derived the more general solution for the case of independent re-
laxation rates for shear and bulk modes. The kinetic modes are all relaxed with the same
eigenvalue λg. In principle, we could also use independent eigenvalues for the kinetic modes
by splitting the tensor E(3) into symmetry-related parts. Since this makes the calculations
unnecessarily tedious, we have not done this here.

The second-order solution (4.42) shows that the Chapman-Enskog procedure yields an ex-
pansion of the LB populations in terms of the conserved hydrodynamic fields and the gra-
dients of the velocity field, while gradients of the mass density do not contribute. The
equilibrium distribution depends on the mass and momentum densities exclusively, and the
non-equilibrium contributions are obtained as derivatives of the flow velocity with increas-
ing order. On the Navier-Stokes level, only the gradients of the velocity play a role which
enter on the ε-scale. As a consequence of the lattice discretization, the ε2-scale yields an ad-
ditional correction to the viscosity which is not present in the Chapman-Enskog expansion
of the continuous Boltzmann equation [50, 52]. The various truncations we have made do
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4 Asymptotic analysis and the Chapman-Enskog expansion

not effect the dynamics on the Navier-Stokes level as long as the Mach number is small. In
particular, the error terms stemming from the ε3-scale are negligible [65], and the truncation
error in the viscosity is of order O(u2) [58]. In the continuous case, the Chapman-Enskog
expansion can be continued at higher orders to yield the Burnett and super-Burnett equa-
tions. For the lattice Boltzmann equation, this requires to take into account higher-order
Hermite approximations of the equilibrium distribution, but in principle it is also possible.
It should also be remarked that we have only looked at the mass and momentum equations,
but not the heat transport equation (cf. [94] for a treatment of thermal transport).

Another type of asymptotic analysis was carried out by Junk et al. [92], which differs from
the Chapman-Enskog expansion in some aspects. First, a purely diffusive scaling ∆t ∼ ∆x2

is used, while acoustic effects are considered as numerical artifacts. Second, all quanti-
ties including the hydrodynamic variables are cast in a regular expansion, whereas in the
Chapman-Enskog procedure the hydrodynamic fields are usually not expanded (for reasons
explained in Ref. [8]).

The Chapman-Enskog expansion makes the requirements for a successful lattice Boltzmann
model explicit, i.e., symmetry requirements and conservation laws. This makes it possible
to construct LB models without referring to the Hermite-expansion of the continuous Boltz-
mann equation. From another point of view, asymptotic expansions like Chapman-Enskog
can also be viewed as a means of validating a given LB model. This is specifically important
when one pursues extensions of the conventional LB models like multi-phase lattice Boltz-
mann. Furthermore, initial and boundary conditions have to be validated by asymptotic
expansion to show that they are well-behaved in terms of Navier-Stokes hydrodynamics.
For initial conditions, this has been carried out by Mei et al. [95], Caiazzo [96]. Asymptotic
expansions have been applied to various boundary conditions by Junk and Yang [97] and
have led to the development of more accurate reflection rules by Ginzburg and d’Humières
[64]. This will be discussed in more detail in chapter 5.

4.2.7 Fluctuations

In the analysis of the preceding subsections, we have not taken into account fluctuations. It
is straightforward to incorporate the fluctuating part by setting

Π∗neq + Πneq = −2 (σ + s) (4.43)

and using the stochastic collision operator ∆i =
∑

j Lijf neq
j + ∆′

i such that

Π
∗neq
αβ = (1 + λs)Π

neq
αβ + σrαβ,

Π∗neq
αα = (1 + λb)Π

neq
αα + σrαα.

(4.44)

Using (4.25) we can eliminate the post-collisional stress Π∗neq and get

Π
neq
αβ =

ρc2sτ

λs

(
∂

∂rα
uβ +

∂

∂rβ
uα − 2

3

∂

∂rγ
uγδαβ

)
− 1

λs
σrαβ,

Πneq
αα =

2ρc2sτ

λb

∂

∂rα
uα − 1

λb
σrαα.

(4.45)
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Inserting into (4.43) leads to

σαβ + sαβ = −ρc
2
sτ

2

2 + λs
λs

(
∂

∂rα
uβ +

∂

∂rβ
uα − 2

3

∂

∂rγ
uγδαβ

)
+

1

λs
σrαβ,

σαα + sαα = −ρc2sτ
2 + λb
λb

∂

∂rα
uα +

1

λb
σrαα,

(4.46)

from which we can read off

sαβ =
1

λs
σrαβ,

sαα =
1

λb
σrαα.

(4.47)

Therefore the fluctuations sαβ on the hydrodynamic level are related to the random stresses
σrαβ in the stochastic collision operator via

〈sαβ sγδ〉 =
1

λ2
s

〈
σrαβσ

r
γδ

〉
,

〈sααsββ〉 =
1

λ2
b

〈
σrαασ

r
ββ

〉
,

〈sαβsγγ〉 =
1

λsλb

〈
σrαβσ

r
γγ

〉
.

(4.48)

The fluctuations on the hydrodynamic level are thus different from the fluctuations on the
lattice Boltzmann level because the former are present on the convective time scale t1, while
the latter enter on the lattice time scale τ .

Comparing with the expressions (3.13) for fluctuating hydrodynamics,

〈sαβsγδ〉 =
2kBT

a3τ
ηαβγδ =

2kBTηs
a3τ

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
+

2kBTηb
a3τ

δαβδγδ,

(4.49)
and taking into account the results (4.29) and (4.30) for the shear and bulk viscosities we
finally arrive at

〈
σrαβσ

r
γδ

〉
= −ρc

2
skBT

a3
λs(2 + λs)

(
δαγδβδ + δαδδβγ − 2

3
δαβδγδ

)
,

〈
σrαασ

r
ββ

〉
= −6ρc2skBT

a3
λb(2 + λb),

〈
σrαβσ

r
γγ

〉
= 0.

(4.50)

In section 3.3.4, we have shown that for consistency with statistical mechanics, the variance
of the k-th mode must satisfy ϕ2

k = µρbk(1− γ2
k). Using the formulas (2.67), the bk-values
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in (2.64) for the D3Q19 model and c2s = 1/3(a/τ)2, we get

〈σαασββ〉 = ϕ2
4 = 6µρc4s(1− γ2

b )

〈σrxxσrxx〉 =
1

9
ϕ2

5 =
4

3
µρc4s(1− γ2

s )

〈
σryyσ

r
yy

〉
= 〈σrzzσrzz〉 =

〈
σryyσ

r
zz

〉
=

1

36
ϕ2

5 +
1

4
ϕ2

6 =
4

3
µρc4s(1− γ2

s )

〈
σrxxσ

r
yy

〉
= 〈σrxxσrzz〉 = − 1

18
ϕ2

5 = −2

3
µρc4s(1− γ2

s )〈
σrxyσ

r
xy

〉
= ϕ2

7 = µρc24(1− γ2
s )

〈σrxzσrxz〉 = ϕ2
8 = µρc24(1− γ2

s )〈
σryzσ

r
yz

〉
= ϕ2

9 = µρc24(1− γ2
s ).

(4.51)

Plugging in γk = 1 + λk and µc2s = kBT/a
3 we see that these expressions are equivalent

to (3.19). This shows that the result does not only recover fluctuating hydrodynamics, but
it is at the same time consistent with statistical mechanics. The fluctuations of the kinetic
modes do not influence the hydrodynamic behavior because the non-equilibrium parts of Φ
and other kinetic modes do not appear at the Navier-Stokes level. They are only important
for proper thermalization on microscopic scales.

4.2.8 External forces

So far we have only looked at the lattice Boltzmann equation without external forces, where
momentum is strictly conserved. In many applications it is desirable to be able to transfer
momentum to the fluid by an external force density g(r, t). In the same spirit as in the case
of fluctuations, we incorporate the effect of the external force by adding an additional term
∆g
i to the collision operator

∆i =
∑
j

Lijf neq
j + ∆g

i . (4.52)

While the external forces have no effect on the mass density, they transfer an amount gτ of
momentum to the fluid in one time step. Therefore, the zeroth and first moment of ∆g

i have
to satisfy

∑
i

∆g
i = 0, (4.53a)

∑
i

∆g
i ci = gτ. (4.53b)

Since the momentum before and after the collision differ, but the collisions are assumed to
take place instantaneously, the hydrodynamic momentum density is not uniquely defined.
Any value between the pre- and the post-collisional value could be used. Consequently, there
is an ambiguity which value to use for calculating the equilibrium distribution f eq

i . In the
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literature, different propositions have been made to define the momentum density [8, 64, 65].
Here, we continue without an a-priori definition and use the Chapman-Enskog expansion
to deduce an appropriate choice afterwards. For this purpose, we introduce the following
notations to distinguish between the momentum densities obtained from the different orders
of the Chapman-Enskog expansion

j′ =
∑
i

fici = j(0) + εj(1), (4.54)

where

j(0) =
∑
i

f
(0)
i ci,

j(1) =
∑
i

f
(1)
i ci.

(4.55)

Since momentum is not conserved, j(1) is not necessarily equal to zero.

The forcing term must enter the Chapman-Enskog expansion at order O(ε), hence

∆g
i = ε∆

g(1)
i + ε2∆

g(2)
i +O(ε3). (4.56)

As previously, we can expand the lattice Boltzmann equation and evaluate the moments at
different orders of ε. The first three moments at O(ε) are

∂

∂t1
ρ+

∂

∂r1

· j(0) = 0,

∂

∂t1
j(0) +

∂

∂r1

· Π(0) = g(1),

∂

∂t1
Π(0) +

∂

∂r1

· Φ(0) =
1

τ

(
Π∗(1) − Π(1)

)
.

(4.57)

Here we identify f (0)
i with the equilibrium distribution f eq

i , where we plug in u(0) = j(0)/ρ
for the flow velocity. We can also evaluate Π(0) and Φ(0). This yields a similar result as in
(4.24), but with additional terms due to the forcing contribution in the momentum flux

Π
∗(1)
αβ − Π

(1)
αβ = ρc2sτ

(
∂

∂r1α
u

(0)
β +

∂

∂r1β
u(0)
α

)
+ τ

(
u(0)
α g
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α u
(0)
β

)
+O(u3). (4.58)

A second relation is again obtained from the collision operator

Π
∗(1)
αβ − Π

(1)
αβ = λsΠ

(1)

αβ +
λb
3

Π(1)
γγ δαβ +

∑
i
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g(1)
i ciαciβ. (4.59)
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4 Asymptotic analysis and the Chapman-Enskog expansion

Solving the equation system as before yields
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(4.60)

The additional terms due to the forcing can be compensated if the second moment of the
collision operator is made to satisfy

∑
i

∆
g(1)
i ciαciβ =

(2 + λs)τ

2

(
u
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∆
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(0)
α g(1)

α .
(4.61)

Proceeding to the order O(ε2) where the zeroth and first moment equations are
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(4.62)

Inserting the above result for Π(1) in the momentum equation yields
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(4.63)

where we have used (4.60) and (4.61). After merging orders we arrive at
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4.2 Chapman-Enskog expansion

This can be cast in the form of the Navier-Stokes equation by using the following definition
for the hydrodynamic momentum density:

j ≡ j(0) ≡ j′ +
1

2
τg =

∑
i

fici +
1

2
τg. (4.65)

Note that this implies
∑
i

f eq
i ci = j,

∑
i

f neq
i ci = −1

2
τg.

(4.66)

The definition (4.65) corresponds to the arithmetic mean of the pre- and post-collisional
momentum density. This has been determined as the optimal value previously, in both
numerical and theoretical studies. However, in those works the redefined value was not
plugged in the equilibrium distribution. While Ladd and Verberg [65] used j′ and accord-
ingly

∑
i f

neq
i ci = 0, in Ginzburg and d’Humières [64] two different values are used: j′ for

the linear part in f eq
i , and j′ + 1

2
τg for the nonlinear part. Since only the non-linear part

enters the equilibrium stress tensor, this makes no difference in the usual implementation of
an MRT model. However, the mixed use of different momentum densities makes the theo-
retical derivation rather obscure. In contrast, our redefinition is strictly compatible with the
Chapman-Enskog expansion and all spurious terms are canceled for a proper choice of the
forcing term. Let us define

Gαβ =
2 + λs

2

(
uαgβ + gαuβ − 2

3
uγgγδαβ

)
+

2 + λb
3

uγgγδαβ. (4.67)

The forcing term is determined from the conditions (4.53a), (4.53b) and (4.61), and can be
written as

∆g
i =

wi τ

c2s

[
g · ci + 1

2c2s
G :

(
cici − c2s1

)]
. (4.68)

This expression leads to the Navier-Stokes equation with the same viscosities as in the case
without forcing. Moreover, no additional assumptions about the external force have to be
made, i.e., the result holds for time-varying and inhomogeneous forces as well. It was first
derived by Guo et al. [98], while in other works only constant or homogeneous forces were
treated [65].
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5 Boundary conditions for lattice Boltzmann models

The lattice Boltzmann method has become a popular approach for simulating complex flu-
ids and soft matter. This is due to its mesoscopic nature and the underlying kinetic picture,
which opens up the possibility to augment the model with more microscopic information
beyond the Navier-Stokes level. For example, one can simulate particulate suspensions
where the solute particles do not only interact which each other directly, but also via the ex-
change of momentum that is propagated through the surrounding solvent, so called solvent-
mediated or hydrodynamic interactions. In this context, the lattice Boltzmann method plays
the role of an efficient solver for the momentum propagation in the solvent and meanwhile
is an established alternative to other mesoscopic solvent models, such as dissipative particle
dynamics and multi-particle collision dynamics (see for example Yeomans [7] for a recent
comparison of lattice Boltzmann and multi-particle collision dynamics). The presence of
solute particles makes it necessary to deal with interactions between the fluid and the solid
phase. For geometrically extended objects like colloids or walls, boundary conditions have
to be invoked at the object’s surface to prevent the fluid from leaking into the solid. Another
case where boundary conditions become important are confined flows, that is, the fluid is
bounded in a geometrical domain of relatively small dimensions. Confined flows can exhibit
interesting behavior even at low Reynolds numbers [16], and the observed phenomena de-
pend strongly on the precise nature of the boundary condition. Even a straight wall can give
rise to complicated effects, such as boundary layer effects and the Kramers problem [5, 6].
Such effects are of paramount importance in modern microfluidics: The so called “lab on
a chip”-paradigm has led to the construction of microfluidic devices where fluids can be
manipulated on the micro- or even the nanoscale. Figure 5.1 shows two examples of such
microfluidic devices. Due to the large surface-to-volume ratio of such structures, the flow
behavior is to a wide extent dominated by surface and interface effects. A successful simu-
lation of the flow through a microfluidic device therefore depends critically on appropriate
modeling of the boundary conditions.

One of the main objectives of this thesis was the development and implementation of bound-
ary conditions for the lattice Boltzmann method. It is sometimes perceived that boundaries
can be readily mapped to the lattice and hence boundary conditions are simple to implement,
e.g., by the bounce-back rule [5]. On closer inspection, however, it turns out that numerous
difficulties arise and an efficient and at the same time accurate treatment of the boundary
can be an intricate affair [101]. The challenges one is faced with while developing boundary
conditions shall be discussed in detail in this chapter. It is organized as follows: In section
5.1 we discuss boundary conditions in hydrodynamics and kinetic theory. Then we move
on to boundary conditions in lattice Boltzmann models in section 5.2, where we review the

59
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From [99]. Reprinted with kind permission
from Prof. Charles Baroud, LadHyX, Ecole
Polytechnique.

From [100]. Reprinted with permission from
AAAS.

Figure 5.1: Two examples of microfluidic devices. In the left device, a water stream is injected into
an oil phase and passes a “gate” after which droplets are formed. The right device is a microfluidic
“memory”. Two fluids are injected into the device, a bright one and a dark one. By imposing a
pressure peak in the narrow channel on the right, the flow can be switched such that the dark fluid
streams to the top and the bright fluid streams to the bottom. In this way the “state” of the device can
serve to store a binary number.

commonly used boundary models. In section 5.3, we turn to the phenomenon of boundary
slippage and develop a novel boundary condition for tunable slip.

Algorithmic boundary conditions

Before we proceed with the boundary conditions at the surface of solid objects, we shall
mention another type of boundary conditions that is omnipresent in computer simulations.
Due to memory limitations, any computer simulation is necessarily restricted to a finite sim-
ulation volume. Hence, one has to define a rule for what should happen at the boundaries
of the finite simulation domain. Such rules are usually also referred to as boundary condi-
tions. Let us call them algorithmic boundary conditions here, in order to distinguish from
solid-fluid or hydrodynamic boundary conditions. The most commonly used algorithmic
boundary conditions are periodic boundaries, where any mass portion that leaves the simula-
tion domain on one side, simultaneously re-enters the domain at the opposite side. This rule
conserves mass and usually momentum by construction1, and the simulated system becomes
effectively infinite whilst finite-size corrections are taken into account. Another possibility
are in- and outflow boundary conditions, where the mass and momentum flux at the domain
boundary is prescribed by some rule. For example this could be known values from an alter-
native simulation of a similar system. A special case of in- and outflow boundary conditions

1 It is possible to modify the momentum of the periodically re-entering mass portion, but this is then usually
not referred to as periodic boundary conditions any more. For example, Lees-Edwards boundary conditions
can be applied to generate a shear-profile in the simulation domain.
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5.1 Hydrodynamic boundary conditions

are open boundaries, where mass just flows out of the simulation domain. Finally, it is of
course possible to employ a solid boundary condition at the domain boundary. In this case,
the distinction between algorithmic and hydrodynamic boundary conditions is immaterial.
Algorithmic boundary conditions will be discussed in conjunction with the implementation
of a lattice Boltzmann kernel in appendix A. In the remainder of this section, we will focus
exclusively on hydrodynamic boundary conditions at solid surfaces.

5.1 Hydrodynamic boundary conditions

5.1.1 Boundary conditions on the Navier-Stokes level

The Navier-Stokes equation of classical hydrodynamics is a partial differential equation.
From the viewpoint of mathematics, the partial differential equation itself is not enough
to determine a unique solution, but we have to pose the boundary value problem, that is,
the initial and boundary conditions have to be specified.The boundary value problem corre-
sponds to filtering from all admissible solutions to the Navier-Stokes equation exactly the
ones that satisfy the specific initial and boundary conditions. Typical boundary conditions
for the Navier-Stokes equation are either Dirichlet or Neumann boundary conditions. The
Dirichlet boundary conditions prescribes the value of the flow velocity at the boundary

u(rB) = UB, (5.1)

while the Neumann boundary condition prescribes a value to the normal derivatives of the
velocity and can be written in the form

n · ∂u
∂r

∣∣∣∣
rB

= hB. (5.2)

In classical hydrodynamics, it is usually assumed that the fluid at the surface moves along
with the same velocity as the solid object. This is the so called stick or no-slip boundary
condition. For an object at rest it reduces to

u(rB) = 0, (5.3)

i.e., the flow velocity at the boundary is zero. Conversely, the free-slip or full-slip boundary
condition assumes that the fluid glides freely over the surface, which can be expressed by a
vanishing normal velocity gradient at the surface. To ensure impermeability of the solid, the
normal velocity must equal the normal velocity of the surface.

n · ∂u
∂r

∣∣∣∣
rB

= 0, n · u(rB) = n ·UB. (5.4)

The full-slip boundary condition is an example of a mixed Dirichlet and Neumann bound-
ary condition, which in conjunction with a curved boundary is sometimes referred to as a
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Cauchy boundary condition. Virtually all applications in classical hydrodynamics make use
of the no-slip boundary condition. It is well justified on the macroscopic level where the
characteristic scales of the flow are much larger then molecular scales, i.e., at small Knud-
sen number. The no-slip boundary condition is also often used as a reference case for the
development of boundary conditions in kinetic models like lattice Boltzmann.

In microfluidic devices, the separation between molecular and hydrodynamic length scales
is less pronounced and finite Knudsen number effects come into play. Flows can generally
be divided into different regimes according to the value of the Knudsen number: continuum
flows at small Knudsen numbers Kn ≤ 0.001, slip flows at intermediate Knudsen numbers
0.001 ≤ Kn ≤ 0.1, the transition regime at higher Knudsen numbers 0.1 < Kn < 10,
and free molecular flows beyond Kn ≥ 10 [102, 103]. The continuum hydrodynamic
description of fluids remains valid up to Kn ∼ 0.1. Microflows are typically in the slip-flow
regime, where the Navier-Stokes equation remains valid but the no-slip boundary condition
breaks down [104, 105]. It has been observed in various experiments that the velocity of the
flow does not entirely vanish at the surface [102, 106–109]. The appearance of the apparent
slip velocity is a consequence of the microscopic structure of the surface and its interactions
with the fluid, e.g., the wetting properties. The effects of apparent slip in a microfluidic
device may include a reduction of the surface stresses such that the flow throughput can
significantly be enhanced [110, 111].

The latter observation suggests to formulate a simple linear constitutive equation for the
stress at the surface [111]

n · σ = γ (u(rB)−UB) ≡ γ uslip. (5.5)

Combining this with the expression (2.2) for the Newtonian viscous stress in the bulk we
arrive at the following slip-flow boundary condition

n · u(rB) = n ·UB, n · ∂u
∂r

∣∣∣∣
rB

=
γ

ηs
uslip. (5.6)

If we choose the coordinate system such that the boundary normal is in z-direction and the
flow is in x-direction, we can rewrite (5.6) as the Navier slip boundary condition [112]

uslip =
ηs
γ

∂ux
∂z

∣∣∣∣
zB

= δB
∂ux
∂z

∣∣∣∣
zB

. (5.7)

Here the slip length δB = ηs/γ is introduced, which can be illustrated as the distance into
the solid at which the linearly extrapolated flow profile is equal to zero, cf. figure 5.2. The
limiting case δB = 0 corresponds to the no-slip boundary condition, whereas for δB → ∞
equation (5.7) resembles the full-slip boundary condition. A negative slip length indicates
an apparent change in the flow direction close to the boundary. According to its definition,
the slip length depends on the viscosity ηs and the coefficient γ. It is thus the ratio of a
bulk property and a surface property. In other words, the parameter that truly describes the
properties of the surface is not the slip length δB but the coefficient γ. Therefore, the latter
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xu (z)

Hydrodynamic
boundary

δ
B
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z

z

B
Slip length
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Figure 5.2: Illustration of the slip-length. The flow profile has a finite slip velocity uslip at the hydro-
dynamic boundary zB . The slip length is defined as the distance at which the linearly extrapolated
profile is equal to zero.

should be varied to model different solid-fluid interfaces. This suggests furthermore that it
is desirable to be able to implement the coefficient γ directly in a simulation method. One
such method is developed within the lattice Boltzmann model in section 5.3.

5.1.2 Boundary conditions in kinetic theory

Boundary conditions in kinetic theory have the same mathematical origin as Navier-Stokes
boundary conditions: the Boltzmann equation is a differential equation and thus the bound-
ary value problem has to be solved. However, the physical picture is quite different because
kinetic theory describes the system at much smaller scales, namely at the level of the one-
particle distribution function. Therefore molecular details of the interaction between fluid
particles and the solid surface can not be ignored completely, but have to be incorporated
appropriately into the kinetic description. Influencing factors are for example surface rough-
ness and chemical details of the solid-fluid interaction such as hydrophobicity or chemical
bonding. At the mesoscopic level of description, the interactions should be characterized by
their statistical properties [110]. The boundary conditions therefore have to be formulated
in terms of the distribution functions and transition probabilities, respectively. One of the
first systematic accounts of boundary conditions in the kinetic theory of fluids was presented
by Maxwell in the appendix of [113]. A more recent overview can be found in the book by
Cercignani [51].

A key feature of kinetic boundary conditions is that the velocity space has to be split into
incoming velocities and outgoing velocities according to the projection n · v onto the wall
normal [114–116]. The distinction between incoming and outgoing velocities is in general
related to a discontinuity in the distribution function f . The simplest case is a perfectly
flat elastic surface, which reflects the impinging particles in such a way that their normal
velocity component is reversed while the other components remain unchanged. This is
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5 Boundary conditions for lattice Boltzmann models

called specular reflection and is described by the relation

f(rB,v, t) = f(rB,v − 2n(n · v), t), n · v > 0. (5.8)

However, the idealized flat elastic surface is an unrealistic assumption and the specular
reflection rule is in general not applicable in practice.

In general, the effect of the surface can be described by a scattering kernel B(v′ → v)
indicating the probability that an impinging particle with velocity v′ will be deflected to a
new velocity v. The distribution function for the reflected (outgoing) particles can then be
written in the form [51]

|n · v| f(rB,v, t) =

∫

n·v′<0

dv′ B(v′ → v) |n · v′| f(rB,v
′, t), n · v > 0. (5.9)

The scattering kernel must be non-negative. If the surface is impermeable and non-adsor-
bing, every impinging particle is re-emitted and the scattering kernel satisfies the normal-
ization condition ∫

n·v>0

B(v′ → v) dv = 1. (5.10)

This is equivalent to the statement that the normal hydrodynamic momentum density at the
boundary vanishes:

n · ρu =

∫
dvn · vf(rB,v, t)

=

∫

n·v>0

dv |n · v| f(rB,v, t)−
∫

n·v<0

dv |n · v| f(rB,v, t)

=

∫

n·v>0

dv

∫

n·v′<0

dv′B(v′ → v) |n · v′| f(rB,v
′, t)−

∫

n·v<0

dv |n · v| f(rB,v, t)

=

∫

n·v′<0

dv′ |n · v′| f(rB,v
′, t)−

∫

n·v<0

dv |n · v| f(rB,v, t) = 0,

(5.11)

where we have inserted (5.9) and used (5.10). Specular reflections are just the special case
where

B(v′ → v) = δ (v′ − v + 2n(n · v)) . (5.12)

If the dynamics of the system at the molecular level is time-reversible, the scattering kernel
satisfies the detailed balance condition for thermal equilibrium (cf. figure 5.3) [51]

|n · v′| B(v′ → v)f eq(v′) = |n · v| B(−v → −v′)f eq(v), (5.13)

where f eq denotes the Maxwell-Boltzmann equilibrium distribution. This implies that the
equilibrium distribution automatically satisfies the boundary condition

|n · v| f eq(v) =

∫

n·v′<0

dv′ |n · v′| B(v′ → v)f eq(v′). (5.14)
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n
v

dA

v −v’
v’−v

Figure 5.3: Illustration of boundary conditions in kinetic theory. (Left) Detailed balance: the blue
scattering process v → v′ has the same probability as the red time reversed process −v′ → v.
(Right) A particle emerging from a surface element dA with a velocity v propagates into a skewed
volume element dV = dA |n · v| dt. This is the reason for the factor |n · v| in the kinetic boundary
conditions.

In other words, if the incoming particles have a Maxwellian distribution, then the outgoing
particles have the same Maxwellian distribution. It should be noted that (5.14) is a weaker
requirement than (5.13).

The construction of the scattering kernel B(v′ → v) is a formidable task because of the
complexity of the underlying microscopic fluid-solid interactions. Usually one has to resort
to simplified models that satisfy the basic requirements of the boundary condition such as
mass conservation and detailed balance. In his seminal work, Maxwell [113] put forward a
boundary model in which a fraction of the impinging particles is specularly reflected from
the surface, while the remaining fraction is re-emitted according to a boundary equilibrium
distribution f eq. The latter is assumed to have a Maxwellian form where the temperature TB
of the boundary enters. The scattering kernel for this model can be written as [51, 113]

B(v′ → v) = (1− α) δ (v′ − v + 2n(n · v)) +
α

N |n · v| f eq(v), (5.15)

where the factor |n · v| is illustrated in figure 5.3, and the normalization N is introduced
to satisfy (5.10). For simplicity, we have assumed that the boundary is at rest. The gener-
alization to a moving boundary can be easily achieved by substituting v by v − UB. The
fraction α of the particles is reflected diffusively, i.e., they completely loose memory of their
incoming velocity. After the collision with the surface, they have accommodated a veloc-
ity as if they were evaporated from the surface. For this reason, the coefficient α is called
accommodation coefficient. The value α = 0 corresponds to specular reflections (5.8). The
other limiting case α = 1 corresponds to a completely diffusive boundary condition where
any memory of the state before the surface collision is lost. The scattering kernel is then
independent of the incoming velocities, and from equation (5.14) we get [51, 114, 117]

B(v) ≡ B(v′ → v) =
|n · v| f eq(v)∫

n·v′<0
dv′ |n · v′| f eq(v′)

. (5.16)

Inserting this into (5.9) yields an explicit expression for the outgoing distribution function
[117]

f(rB,v, t) = f eq(v)

∫
n·v′<0

dv′ |n · v′| f(rB,v
′, t)∫

n·v′<0
dv′ |n · v′| f eq(v′)

, n · v > 0. (5.17)
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α
diffuse reflections

1−α
specular reflections

lmfp

Figure 5.4: Maxwell’s diffuse scattering boundary condition. A fraction α of particles is diffusely
reflected from the wall and accommodated to the boundary equilibrium distribution. The remaining
fraction 1−α is specularly reflected. At a fictitious plane infinitesimally close to the surface, half of
the particles impinge from a distance a mean free path away from the surface, and the other half is
made up of reflected particles.

This is the so-called diffusive boundary condition within kinetic theory. For general values
of α the reflected distribution is given by

f(rB,v, t) = (1− α)f(rB,v − 2n(n · v), t) + αf eq(v)

∫
n·v′<0

dv′ |n · v′| f(rB,v
′, t)∫

n·v′<0
dv′ |n · v′| f eq(v′)

.

(5.18)
where n · v > 0. Once the boundary condition for the distribution function is specified, we
can proceed to evaluate the hydrodynamic flow velocity at the boundary. As shown above,
the normal velocity at the boundary is zero. The flow velocity at the boundary is

u(rB) =
1

ρ

∫
vf(rB,v, t) dv

=
1

ρ

∫

n·v≤0

vf(rB,v, t) dv +
1

ρ

∫

n·v>0

vf(rB,v, t) dv

=
1

ρ

∫

n·v≤0

vf(rB,v, t) dv

+
1− α

ρ

∫

n·v>0

vf(rB,v − 2n(n · v), t) dv

+
α

ρ

∫

n·v>0

vf eq(v)

∫
n·v′<0

dv′ |n · v′| f(rB,v
′, t)∫

n·v′<0
dv′ |n · v′| f eq(v′)

dv.

(5.19)

The evaluation of this expression requires explicit knowledge of the distribution function
f(rB,v, t) and, as stated above, there is an essential discontinuity at the surface of the
boundary. Despite this complication, Maxwell used the bulk solution to approximate the
distribution function at the surface [113]. He obtained the tangential flow velocity u(rB) =
|u(rB)| at the surface in terms of the bulk velocity at a distance of the order of the mean free
path away from the surface

u(rB) =
1

2
[u(rB + lmfpn) + (1− α)u(rB + lmfpn) + αUB] , (5.20)
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where UB = |UB| is the absolute velocity of the boundary. The formula is illustrated in
figure 5.4. Conversely, the bulk velocity close to the boundary can be Taylor expanded
around the surface velocity

u(rB + lmfpn) = u(rB) + lmfpn · ∂u
∂r

∣∣∣∣
rB

+
1

2
l2mfpnn :

∂2u

∂r∂r

∣∣∣∣
rB

+ . . . . (5.21)

Solving these equations for u(rB) yields the celebrated expression for the slip velocity as an
expansion in powers of the Knudsen number [51, 118]

uslip = u(rB)− UB =
2− α

α

[
Kn n · ∂u

∂r̂

∣∣∣∣
r̂B

+
Kn2

2
nn :

∂2u

∂r̂∂r̂

∣∣∣∣
r̂B

+ . . .

]
, (5.22)

where the spatial variables r̂ = r/L have been scaled with the characteristic hydrodynamic
length L. To first-order, this resembles the Navier slip boundary condition, cf. equation
(5.7), where the slip length is given by

δB =
2− α

α
lmfp. (5.23)

In the context of kinetic theory the slip length was earlier referred to as Gleitungs coefficient
[113, 119]. Again, the slip length depends on both a bulk (lmfp) and a surface (α) property.

Equation (5.22) shows that for finite Knudsen number, Maxwell’s kinetic boundary condi-
tion always leads to a non-vanishing slip velocity. The slip length δB is on the order of the
mean free path, if the accommodation coefficient α is close to unity, i.e., a purely diffusive
boundary condition. Conversely, the slip length diverges in the limit α → 0 corresponding
to the full-slip boundary condition. The hydrodynamic no-slip boundary condition is only
valid in the limit of vanishing Knudsen number. The first-order approximation describes the
slip flow regime up to Knudsen numbers of the orderKn ∼ 0.3 [107]. Although beyond this
limiting value the validity of the Navier-Stokes equation is in general questionable, some re-
sults have been reported where the inclusion of the second-order slip coefficient leads to
reasonable improvements [see Refs. 107, 118].

Maxwell’s kinetic boundary model is in agreement with a range of experimental and nu-
merical findings [109, 120]. At the same time, it is a very simple model as it describes the
surface properties by only one parameter, i.e., the accommodation coefficient α. Therefore
it is a promising starting point to devise mesoscopic boundary models for use in computer
simulations [110].
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Figure 5.5: Lattice representation of a rigid object. (Left) Node-based representation. (Middle)
Mid-link representation. (Right) Link representation with boundary markers.

5.2 Boundary conditions for lattice Boltzmann models

Boundary conditions for computer algorithms differ conceptually from boundary conditions
in analytical theories. While in the latter, they are posed as additional equations that filter
from the admissible solutions of the differential equation the unique solution to the boundary
value problem, in computer simulations the boundary conditions are part of the algorithm
that generates the sought-after solution as a trajectory in time. That is, the boundary con-
ditions are part of the dynamical updating scheme and are applied in every iteration step
changing the state of the system. Consequently, they have to be constructed in such a way
that the theoretical boundary condition is satisfied during the course of the simulation. It
can be expected that this is only possible to a certain degree of accuracy, in the same sense
as the discretized dynamics can only mimic the real system approximately. As the bound-
ary condition is part of the dynamics, it can potentially deteriorate the whole method if its
accuracy is inferior compared to the bulk dynamics. Therefore, it is highly desirable to use
boundary conditions that attain at least the same accuracy as the method in general.

In order to represent boundaries in the lattice Boltzmann method, one has to map the solid
objects to the lattice structure. This can be done in several ways, three of which are illus-
trated in figure 5.5 for the example of a circle. A simple way is the node based approach
where the lattice sites are divided into solid, fluid and boundary nodes. Solid nodes are
completely covered by the solid object; boundary nodes have at least one velocity link to
a solid node whereas fluid nodes are only linked to boundary nodes or other fluid nodes.
An alternative way is the link based approach where boundary markers are put on the ve-
locity links that connect solid and fluid nodes. If no further information is included, the
boundary markers are simply located halfway between the solid and the fluid nodes, which
yields a staggered representation of the solid object. In a more elaborate variant of the link
based approach, the boundary markers are assumed to lie directly on the boundary surface.
This requires some additional effort to determine the exact intersection of the velocity link
and the boundary, but it has the benefit that the obtained representation of the solid object
is somewhat more precise. Aside from the different positioning of the boundary nodes or
markers, all the different versions have in common that some of the velocity links are cut
by the surface. On these links, the population moving from the interior to the exterior of the
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specular reflectionbounce back slip−reflection

r s=1−r

Figure 5.6: Illustration of simple mid-link reflection rules. (Left) Bounce-back reverses the veloc-
ity of the impinging population. (Middle) Specular reflections reverse only the normal momentum
during reflection of the populations. (Right) Slip-reflections combine bounce-back and specular re-
flections.

solid object is undefined. These unknown populations have to be specified by the boundary
condition. The role of a lattice Boltzmann boundary condition is thus to define a rule for
the unknown populations that is compatible with the dynamics of the system and produces
the desired hydrodynamic boundary condition. This can either be done by discretizing the
kinetic boundary conditions discussed in the previous section, or by imposing explicit rules
and verifying the macroscopic behavior. In the following paragraphs, some of the most
commonly used boundary conditions for the lattice Boltzmann model are reviewed.

5.2.1 Bounce-back

The oldest but nevertheless still the most widely used boundary condition for lattice Boltz-
mann is the bounce-back rule [10]. It was already introduced in the context of lattice gas au-
tomata and is applied to obtain a hydrodynamic stick boundary condition. The rule reflects
the populations at the boundary nodes by a bounce-back collision, in which an incoming
population is bounced back whereupon its velocity is reversed. Depending on the lattice
representation of the solid object, there are two ways to implement the bounce-back. In
the node-based implementation, the reversion of the velocity takes place on the boundary
nodes rB

fi(rB + τci, t+ τ) = f ∗i−(rB, t), (5.24)

where the index i− is defined by ci− = −ci. It can be shown theoretically [121, 122], that
the node-based bounce-back rule leads to a hydrodynamic boundary that is shifted into the
fluid by half a lattice spacing. Hence, the stick boundary is effectively located on the links.
It has therefore become common to use a link-based formulation [65, 121, 123]

fi(rB, t+ τ) = f ∗i−(rB, t), (5.25)

where rB is now a fluid node linked to a boundary marker by ci− . The link-based bounce-
back rule is illustrated in figure 5.6. The stick boundary is located on the boundary markers
in the middle between the nodes. In the following, we will refer to the link-based imple-
mentation.
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The bounce-back rule has no direct analogon in kinetic theory, as a bounce-back process is
rather improbable to occur in the microscopic dynamics. The boundary condition is con-
structed to enforce a vanishing flow velocity at the boundary. For simple flows, it is possible
to solve the linear lattice Boltzmann equation with bounce-back boundary conditions ana-
lytically [124–126]. The result for Poiseuille flow shows that the bounce-back rule is only
first order exact, i.e., the boundary location is subject to O(L−1) corrections, where L is
the channel width. The flow velocity profile deviates from the exact no-slip solution by a
constant offset [65, 126]

∆u(rB) = βumax
a2

L2
. (5.26)

The correction factor β depends on the collision operator and the definition of the hydrody-
namic momentum density. With the definition (4.65) the result is

β =
1

3

(
16

λ2
− 16

λ
+ 1

)
, (5.27)

for the BGK collision operator and

β =
1

3

(
8

λ
− 7

)
(5.28)

for the MRT collision operator with equal eigenvalues λ = λs = λb for the bulk and shear
modes [65]. A detailed asymptotic analysis of the bounce-back rule shows further that
the pressure is at most first-order accurate, even for boundaries that are aligned along a
lattice direction. For inclined boundaries and arbitrary shaped objects, the order of accuracy
reduces to first order for velocity and zeroth order for the pressure [97]. These deficiencies
have motivated various attempts to improve the bounce-back scheme, some of which will
be discussed below.

5.2.2 Specular reflections

An equally simple scheme as bounce-back is the specular reflection rule [see e.g. 121],
where an incoming population is reflected from the wall such that only the normal veloc-
ity component changes sign while the tangential component is unchanged. The link-based
formulation of specular reflections is given by

fi(rB + τ [ci − n(n · ci)] , t+ τ) = f ∗i+(rB, t), (5.29)

where n is the boundary normal and the index i+ is defined by ci+ = ci − 2n(n · ci). The
specular reflections are illustrated in figure 5.6. They directly correspond to their counterpart
in kinetic theory, cf. equation (5.8), hence they produce a hydrodynamic full slip boundary
condition. As stated above, a full slip boundary without momentum transfer at the surface
is usually not desirable in realistic applications. The specular reflection rule is therefore
not widely applied and is mainly used in conjunction with alternative rules. Nevertheless,
it can function as a starting point to develop more sophisticated boundary schemes, see
section 5.3.
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5.2.3 Diffuse reflections

The bounce-back and specular reflection rules define the unknown population by a simple
reflection of one single population. In general, an outgoing population can be a function of
all incoming populations, and an obvious generalization of the link based reflection rules is
a linear combination of the known populations [127]

fi(rB, t) =
∑

n·cj<0

Bij(rB, rB − τPcj, t)f
∗
j (rB − τPcj, t). (5.30)

P = 1 − nn is the projection operator that projects cj onto the tangential subspace of
the boundary, and Bij is a scattering matrix that satisfies conservation of mass and normal
momentum by the condition

∑
n·ci>0

Bij(rB, rB − τPcj, t) = 1. (5.31)

In the simplest case, the scattering matrix implements a combination of bounce-back and
specular reflections resulting in a slip boundary condition [110, 127–129]. In fact, com-
parison of equations (5.30) and (5.9) shows that Bij is nothing but a discrete version of the
scattering kernel in kinetic theory. Ansumali and Karlin used this to discretize the diffusive
boundary condition2 and obtained the discrete diffusive boundary condition [117], which
can be straightforwardly generalized to a discrete version of Maxwell’s accommodation
condition, cf. equation (5.18) and [130],

fi(rB, t+ τ) = (1−α)f ∗i+(rB − τPci, t) +αf eq
i (ρB,uB)

∑
n·cj<0 |n · cj|f ∗j (rB − τPcj, t)∑

n·cj<0 |n · cj|f eq
j (ρB,uB)

,

(5.32)
where n · (ci − uB) > 0. This rule constitutes a direct implementation of kinetic boundary
conditions which is in line with the mesoscopic spirit of the lattice Boltzmann method. It
can reproduce the Knudsen number dependent wall slip to very good agreement and yields
the same convergence to the hydrodynamic limit as the Boltzmann equation [117]. On the
other hand, (5.32) is still a reflection rule based on either a node-based or a link-based
representation of the boundary surface. The ramifications for arbitrary shaped objects are
to date not very well explored. Moreover, the implementation of the diffusive boundary
condition [117] is more complicated compared to the simpler slip-reflection models [127,
128]. It is probably for these reasons, that the kinetic boundary condition is yet rarely used
in practical applications, where the bounce back boundary condition is frequently favored
for its striking simplicity. This holds in particular for arbitrary geometries and particulate
suspensions [8, 131].

2 In principle this can be done along the same lines as in the bulk. However, due to the occurrence of half-
space integrals, the quadrature nodes are different, resulting in a lattice mismatch. Ansumali and Karlin
therefore resort to using the bulk quadrature for the boundary nodes as well, which strictly speaking in-
troduces additional discretization errors [117]. It is also to be noted, that in their work the equilibrium
distribution of the entropic lattice Boltzmann model was used.
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5.2.4 Advanced closure schemes

Apart from the diffusive reflections, many other attempts to improve the accuracy of the
bounce-back boundary condition have been proposed. One class of these approaches tries
to find a solution for the unknown populations in terms of the populations on adjacent lattice
sites. Let us refer to this class as closure schemes. Their aim is to generate a set of pop-
ulations that satisfies the desired boundary conditions at the hydrodynamic level, i.e., the
desired velocity field (Dirichlet condition) and its gradients (Neumann condition). Ziegler
[132] combined the nodal bounce-back with setting the grazing directions to the average of
the incoming directions. This scheme ensures the no-slip condition by construction, but it
is not mass conserving on the boundary nodes. Skordos [133] addressed the problem of in-
versely mapping the hydrodynamic fields to the lattice Boltzmann populations. A modified
collision operator was introduced for the boundary nodes, which relaxes the populations
towards an equilibrium distribution that includes velocity gradients as additional correction
terms. Although a modified equilibrium distribution at the boundary is a reasonable as-
sumption, the inclusion of gradient terms is questionable and lacks a rigorous justification in
terms of the Chapman-Enskog expansion. If the velocity gradients are unknown, they must
be evaluated using finite-differences. Moreover, the density was assumed to be known at
the boundary nodes, which may not always be appropriate. Noble and coworkers [134, 135]
developed a two-dimensional closure scheme where the density is a computed quantity and
only the velocity components at the boundary have to be prescribed. The scheme is based on
dividing the populations into groups that stream in from neighboring fluid nodes, boundary
nodes or solid nodes, respectively. The latter of these three are the unknown quantities in
an equation system which is obtained from the conservation laws for mass and momentum.
Noble et al. solved this equations system for a seven velocity model, and a generalization
to the three-dimensional D3Q15 and D3Q18 models was developed by Maier et al. [136].
A similar technique was used by Inamuro et al. [137, 138] and combined with the idea of
diffusive scattering. The unknown populations are drawn from an equilibrium distribution
for the wall, but with an additional counterslip velocity in the tangential direction which is
adjusted to satisfy mass conservation on the wall. The Inamuro method yields an equation
system that can be solved for arbitrary lattice models. On another route, Zou and He [139]
proposed a closure based on the concept of bounce-back of non-equilibrium parts. The
approach was used to derive pressure and velocity boundary conditions for the D2Q9 and
D3Q15 models. However, the inherent mismatch between the number of unknown parame-
ters and the number of constraint equations was only heuristically solved, but no systematic
procedure to cope with this problem was devised [5]. Lätt and coworkers [101, 140] have
recently applied bounce-back of non-equilibrium parts together with a so-called regularized
LBGK model. This approach turns out to be a mixture of the Inamuro and the Zou/He
methods, while the Dirichlet condition is ensured by implicitly making use of the moment
representation familiar in MRT models.

A more systematic approach was put forward by Ginzbourg and d’Humières [141]. The
basic idea is to exploit the Chapman-Enskog result for the populations to compute the nec-
essary derivatives of the velocity field locally at the boundary node without using finite
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differences. With the help of the expression (4.42) it is possible to write the unknown
outgoing population numbers as linear combinations of the known populations and the pre-
scribed boundary constraints. While it is not obvious that a unique solution for this linear
equation system exists in general, an algorithm for a flat wall aligned to a lattice direction
was presented in [141]. For simple flows, it yields a local second order boundary condition
at the expense, however, of a second-order mass flux across the boundary. More recently,
Halliday et al. [142] have revisited the method of Ginzbourg and d’Humiéres and presented
an enhanced unified framework to tackle the boundary closure problem in a systematic way.
Since most of the above closure schemes can be subsumed under this framework, it deserves
to be outlined in a little more detail [see also 101]. For simplicity, we restrict the formal pre-
sentation to lattice models with ciα ∈ {−1, 0,+1}.3 If the wall normal is assumed to point in
the positive z-direction, the populations can be divided into impinging, grazing and reflected
directions according to the z-component of the velocity vector.

Closure for equilibrium parts

The mass density at the boundary node can then be written as

ρ =
∑
i

fi =
∑
ciz<0

fi +
∑
ciz=0

fi +
∑
ciz>0

fi. (5.33)

Similarly, the normal boundary velocity can be written as

ρuB,z =
∑
i

ficiz =
∑
ciz<0

ficiz +
∑
ciz>0

ficiz = −
∑
ciz<0

fi +
∑
ciz>0

fi. (5.34)

Eliminating the unknown populations yields an expression for the density in terms of the
known incoming populations

ρ =
1

1− uB,z

(
2

∑
ciz<0

fi +
∑
ciz=0

fi

)
. (5.35)

A similar expression was used in the works [101, 134, 137, 139]. Having determined the
density, it can be used together with the prescribed boundary velocity to compute the equilib-
rium part f eq

i of the boundary populations using the standard equilibrium distribution (2.56).
By this procedure, any Dirichlet condition on the hydrodynamic fields can be satisfied.

Closure for non-equilibrium parts

It remains to determine the non-equilibrium parts of the populations such that the correct
velocity gradients at the boundary are recovered. Using the Chapman-Enskog result (4.42),

3 Halliday et al. [142] have treated only the D2Q9 explicitly. The presentation here is a straightforward
generalization.
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we are left with the following equation system

0 =
∑
ciz>0

f neq
i +

∑
ciz=0

f neq
i +

∑
ciz<0

f neq
i ,

0 =
∑
ciz>0

f neq
i ciα +

∑
ciz=0

f neq
i ciα +

∑
ciz<0

f neq
i ciα,

ρτc2s
λ

(
∂uα
∂rβ

+
∂uβ
∂rα

)
=

∑
ciz>0

f neq
i ciαciβ +

∑
ciz=0

f neq
i ciαciβ +

∑
ciz<0

f neq
i ciαciβ.

(5.36)

This system is in principle under-determined, such that there is no general procedure to
determine the solution f neq

i . This is due to the additional degrees of freedom in the lattice
Boltzmann method compared to the number of hydrodynamic variables. A solution of (5.36)
can be obtained by choosing a set of the incoming populations to take their known values
after streaming. The choice of this set should include a maximum number of populations
that stream from the bulk to the boundary in order to facilitate the coupling of the bulk and
the surface. On the other hand, the explicit choice must guarantee the solvability of the
equation system. In [142], this was achieved by computing the determinant for all possi-
ble combinations and enumerating all forbidden combinations. Another difficulty arises in
measuring the velocity gradients at the boundary. Ginzbourg and d’Humières [141] con-
sidered the velocity derivatives as additional unknowns of the closure system, which makes
it even more complicated to solve because more known populations are required. Such an
approach is thus infeasible in complex geometries. Therefore, Halliday et al. [142] chose to
use finite differences to determine the velocity derivatives, like Skordos [133]. In [137] the
gradients are not necessary for the equilibrium forcing, whereas in [101, 139] they are fixed
implicitly by the bounce-back of non-equilibrium parts. In the works [132, 134–136] the
gradients were not accounted for explicitly, which is the reason why the respective schemes
are only first order for arbitrary geometries. The different closure schemes show that there is
a trade-off between accuracy and locality because second-order closures require the veloc-
ity derivatives whose local computation is only possible in simple geometries. Second-order
accuracy is in general difficult to achieve locally, a fact which has led to the development of
non-local inter- and extrapolation schemes. A comprehensive comparison of several of the
above boundary schemes for straight walls aligned to the lattice can be found in Latt et al.
[101].

5.2.5 Interpolation and extrapolation schemes

One of the first extrapolation schemes was introduced by Chen et al. [143]. They introduced
an additional layer inside the solid and extrapolated the populations at those nodes from the
boundary nodes and the first fluid node. After the extrapolation, an equilibrium forcing is
applied at the surface similar to the Inamuro method. The location of the wall is, however,
only first order in the lattice spacing. This is because the simple node or link-based schemes
lead to a staggered representation of curved boundaries. To treat the boundary with higher
accuracy, it is necessary to use boundary markers that specify the exact cutting points with
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rbcibr − r b ci+ cibr − r b rb ci+ rbcibr − r b ci+

q > 1/2 q
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q’q < 1/2
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Figure 5.7: Illustration of the interpolation rules used in the boundary condition by Bouzidi et al.
[154]. Depending on the value of q, either a pre-collision or a post-collision population is inter-
polated. The rightmost picture shows the case where only one lattice node is present between two
surfaces. While Bouzidi’s scheme is not applicable any more, equilibrium interpolation is still pos-
sible, cf. section 5.2.6.

the lattice vectors, i.e., for every cut link the fraction which lies outside the solid needs to be
known. The application of this representation was pioneered by Filippova and Hänel [144–
146] in their boundary-fitting scheme. The unknown reflected populations are computed
as a linear combination of the incoming population and a fictitious boundary equilibrium,
where the velocity inside the solid is obtained by linear extrapolation from the last fluid node
and the prescribed boundary velocity. The weighting coefficients of the linear combination
are functions of the respective link’s cut ratio and can be determined by a Chapman-Enskog
expansion [145]. However, if the link fraction outside the solid becomes small, the method
shows strong instabilities for pressure driven channel flows [147, 148]. Mei et al. [147]
reexamined the boundary fitting scheme and proposed an improved version by refining the
extrapolation for the velocity used in the boundary equilibrium. It was numerically shown
that the stability is improved considerably [147, 149].

A different scheme was put forward by Verberg and Ladd [150, 151] under the name con-
tinuous bounce back. It is related to the volumetric formulations of the lattice Boltzmann
method [62, 152, 153] and uses special interpolated bounce-back rules for lattice cells that
are partially occupied by solid objects. The continuous bounce back rules for general ge-
ometries are however quite complicated. Furthermore, it was found that they lead to im-
paired stability below a critical shear viscosity [151]. On the other hand, the accuracy of the
method is not affected by the shape or position of the fluid-solid interface with respect to
the lattice since only the fraction of fluid per node is needed in the algorithm.

In essence, the method of Verberg and Ladd is a special interpolation scheme. A simpler,
physically intuitive interpolation scheme has been introduced by Bouzidi et al. [154]. An
essential feature of the approach is that only populations along one direction are used for
the interpolation. Hence, it is enough to consider the one-dimensional situations depicted in
figure 5.7. We seek an interpolation scheme for the reflected population at the fluid node A
next to the surface. If we imagine that this population was bounced-back by the surface, it
would fictitiously originate at the location D. Let the fraction of the link outside the solid be
denoted by q. Then two cases have to be distinguished: If q < 1/2, the fictitious population
at D can be obtained by interpolation from A and C. In the other case q ≥ 1/2, the pre-
streaming population at D can only be obtained extrapolation, which is inferior in terms of
stability and should be avoided. To this end, the fictitious post-streaming population at D
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Figure 5.8: Illustration of the multireflection boundary condition of Ginzburg and d’Humières [64].
The five blue populations are weighted with coefficients κl to calculate the unknown red population.

can be used to interpolate the sought reflected population at A by interpolation from C and
D. This leads to the following linear interpolation scheme for the unknown population at
A

fi−(rB, t+ τ) = 2qf ∗i (rB, t) + (1− 2q)f ∗i (rB − τci, t), q <
1

2
,

fi−(rB, t+ τ) =
1

2q
f ∗i (rB, t) +

2q − 1

2q
f ∗i−(rB, t), q ≥ 1

2
.

(5.37)

These expressions are continuous in q and for q = 1/2 they reduce to the standard bounce-
back rule. The scheme can straightforwardly be extended to quadratic interpolation and is
applicable to moving boundaries as well [154, 155]. Rohde et al. [156] have applied the
interpolation rules to the volumetric schemes and carried out a theoretical analysis for plane
Poiseuille flow. They find that the Bouzidi scheme is subject to errors in mass conservation,
whereas the volumetric interpolation schemes are mass conservative. For inclined bound-
aries, however, the methods are still first-order accurate.

Furthermore, the effective location of the boundary depends on the viscosity, and for ex-
ample in Poiseuille flows, exact parabolic profiles are not obtained for arbitrary inclined
channels. This was pointed out by Ginzburg and d’Humières [64] in a seminal paper, in
which they present a comprehensive analysis of the accuracy of interpolation boundary con-
ditions. For this purpose, they introduce the multireflection boundary condition which sub-
sumes bounce-back and the linear and quadratic interpolation schemes. The multireflection
rule uses three fluid nodes and five populations along a lattice direction. The set-up is de-
picted in figure 5.8. The weighting factors κl for the interpolation are derived by matching
the second-order Chapman-Enskog result with a Taylor expansion at the boundary. The
multireflection rule for general flows is [64, 131]

fi−(rB, t+ τ) = f ∗i (rB, t)−
1− 2q − 2q2

(1 + q)2
f ∗i−(rB, t) +

1− 2q − 2q2

(1 + q)2
f ∗i (r− τci, t)

− q2

(1 + q)2
f ∗i−(r− τci, t) +

q2

(1 + q)2
f ∗i (r− 2τci, t).

(5.38)

It constitutes a third order kinetic accurate boundary scheme and is therewith the most accu-
rate boundary condition available. It was also shown in [64] that the standard bounce-back
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can be tuned to yield second order accuracy by setting the collision eigenvalues for the
kinetic (ghost) modes to

λg(λ) = −8
2 + λ

8 + λ
, (5.39)

where λ = λs = λb. This choice compensates the viscosity dependent corrections to the
location of the boundary surface.

5.2.6 Equilibrium interpolation

Like all interpolation methods, the multireflection boundary condition has the drawback that
information from several fluid nodes is needed to determine the unknown populations. Be-
sides rendering the scheme non-local this is problematic in applications where solid objects
are close together and the distance is on the order of the lattice spacing. Then there may
occasionally not be enough fluid nodes available in between the solid objects, such that
the interpolation schemes break down. To overcome this drawback, Chun and Ladd [131]
have very recently proposed to interpolate only the equilibrium distribution. This idea is
justified by the fact that the non-equilibrium distribution enters the Chapman-Enskog ex-
pansion an order later than the equilibrium distribution. Thus a boundary condition which
is second-order for the equilibrium distribution, and only first order for the non-equilibrium
distribution, will still be sufficient to guarantee overall second-order accuracy. Chun and
Ladd suggest to use the Bouzidi method for the equilibrium distribution and simple bounce-
back for the non-equilibrium part. The equilibrium interpolation boundary condition is
given by

f eq
i−(rB, t+ τ) = 2qf eq

i (rB, t) + (1− 2q)f eq
i (rB − τci, t) q <

1

2
,

f eq
i−(rB, t+ τ) =

1− q

q
f eq
i (r, t) +

2q − 1

q
f eq
i (rB + qτci) q ≥ 1

2
,

f neq
i− (rB, t+ τ) = f neq

i (rB, t),

(5.40)

where f eq
i (rB + qτci) is the boundary equilibrium. Equation (5.40) still requires two fluid

nodes in between solid objects. If the objects are very close, the equilibrium distribution on
the other surface is used and (5.40) is replaced by

f eq
i−(rB, t+ τ) =

q′ + 2q − 1

q′
f eq
i (rB, t) +

1− 2q

q′
f eq
i (rB − q′τci). (5.41)

where q′ is the fraction of ĉi− outside the second surface, cf. figure 5.7. The equilibrium
interpolation rule is second-order accurate and requires only one fluid node in between the
boundaries. With the choice (5.39) for the collision eigenvalues of the kinetic modes, the
location of the boundary is independent of viscosity. It was shown numerically that the
equilibrium interpolation boundary condition is more accurate than the linear and quadratic
interpolation rules [131]. Equilibrium interpolation is probably the best compromise be-
tween accuracy and simplicity of implementation among all boundary conditions presented
so far.
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5.2.7 Critical discussion of the existing boundary conditions

The body of works on boundary conditions is considerable and quite some progress has been
made in recent years. The main findings can be summarized as follows: Simple reflection
rules like bounce-back in either node-based or link-based formulations are only first-order
accurate with respect to general flows. They are affected by corrections to the flow veloc-
ity at the surface and a viscosity dependent location of the hydrodynamic boundary with
respect to the underlying lattice. Advanced closure schemes aiming at second-order ac-
curacy can improve matters, but they tend to be complicated to implement and locality of
the scheme has to be sacrificed when velocity gradients are required. Furthermore, the im-
proved accuracy is often annuled by inclined or curved boundaries. Arbitrary shaped objects
can be handled with inter- and extrapolation schemes. Since extrapolation is connected to
deteriorated stability, interpolation is generally preferable. Interpolation rules are easier to
implement than closure schemes and can systematically be tuned to the desired accuracy.
However, interpolation schemes are inherently non-local and rely on a minimum number
of nodes available between solid objects. In general, there seems to be a trade-off between
accuracy and locality of the boundary condition. In addition, some of the methods are faced
with the problem that the local mass conservation constraint is violated.

Another point has to be made with respect to the role of the higher moments of the distri-
bution function. The Chapman-Enskog analysis of the multireflection boundary condition
shows that the collisional eigenvalue of the kinetic modes affects the location of the wall. In
other words: Boundary conditions are affected by the dynamics of the kinetic modes of the
lattice Boltzmann model. This suggests that the more flexible MRT collision operator should
be favored over the BGK collision operator, which does not allow to tune the relaxation rates
of the modes separately.

Kinetic type boundary conditions such as diffusive reflections have received broader at-
tention only recently. A conceptual problem is that the systematic discretization in terms of
quadratures leads to a mismatch of nodes and incompatible lattice structures at the boundary
(cf. footnote 2 on page 71). So far, this could only be resolved by abandoning the system-
atic expansion and accepting additional discretization errors. A fully consistent adoption of
kinetic type boundary conditions to the discrete Boltzmann lattice is to date not available.

The latter point gives evidence that the very nature of lattice Boltzmann boundary condi-
tions is still not understood completely in regard to the mesoscopic origin of the method.
This is of particular relevance in view of an upcoming trend to use the lattice Boltzmann
method for complex flows beyond the Navier-Stokes equation [46–48, 157]. Much interest
is attracted to simulations of microflows at non-vanishing Knudsen number, especially in
the slip flow regime. Most of the boundary conditions described above focus on realizing
a stick-boundary condition for the Navier-Stokes equation. These methods are clearly not
capable of reproducing slip-flows in microchannels. The apparent slip velocity according to
(5.26) is merely a numerical artifact [158]. Kinetic type boundary conditions can reproduce
the apparent slip-effects in microflows, but as pointed out, their discrete counterparts are
affected by discretization errors such that the accuracy of the results is difficult to assess.
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It is therefore fair to claim that boundary conditions for simulations in the slip-flow regime
need further investigation. The following specific issues are raised:

• The hydrodynamic stick boundary condition is replaced by the Navier slip condition
(5.7) where the slip length δB enters. The latter is a function of the boundary coef-
ficient γ that models the properties of the boundary. A lattice Boltzmann boundary
condition for slip-flow needs to be tunable by an analogous parameter. There is yet
no consensus about the best way of implementing a partial slip boundary condition. It
is desirable to have a theoretical relation for the slip length and the model parameter
and, optimally, an estimate for the numerical errors. These are basic tools needed to
compare results with analytical theory, experiments and other simulation methods.

• As the Knudsen number becomes finite, the kinetic nature of the fluid becomes more
pronounced and effects beyond Navier-Stokes behavior occur, for example, the ap-
pearance of Knudsen layers. The lattice Boltzmann method is in principle a valid
tool to simulate such effects because it constitutes an approximation to the Boltzmann
equation. This kinetic nature has to be reflected by the boundary condition as well.
This brings up two points: firstly, the influence of the higher order moments to the
dynamics can eventually not be neglected any more; secondly, two kinds of collision
processes have to be taken into account at the boundary, namely interparticle colli-
sions and collisions with the boundary. Both of these points have to be tackled by an
appropriate choice of the collision operator at the boundary.

• Another aspect with respect to the lattice Boltzmann approximation of kinetic theory
is the impact of discretization errors due to the underlying lattice structure. In the
bulk, the systematic discretization up to a given degree naturally leads to a quadrature
that implies related symmetries of the emanating lattice. As a consequence, isotropy
of tensors up to the rank of the quadrature is automatically satisfied. This situation
changes at the boundary where the bulk symmetry is broken. To the best of the au-
thor’s knowledge, systematic half-range quadratures have not been applied and the
effects of the broken symmetry at the boundary have not been treated systematically
in any available work on lattice Boltzmann boundary conditions.

The aforementioned issues shall be addressed in the remainder of this work. In the next sub-
section, a novel way of imposing a partial slip boundary condition in the lattice Boltzmann
model is developed. In chapter 6, an attempt is made to devise a conceptually new method
for lattice Boltzmann boundary conditions, which is completely local and takes the reduced
symmetry at the boundary into account in a systematic and consistent fashion.
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5.3 Partial slip boundary conditions

In microfluidic devices, such as those shown in figure 5.1, the surface-to-volume ratio is
high. Another way of saying this is that the dimensions of these devices are small, and so is
the typical length scale of the fluid flow. With decreasing size of the devices the Knudsen
number increases and the flow in typical microchips reaches the slip-flow regime. Experi-
mental studies show that in this regime, the boundary condition is affected by an interplay of
a variety of physico-chemical parameters, such as surface charge, hydrophobicity and wet-
ting, surface roughness etc. The most relevant phenomenon is the appearance of an effective
slippage of the fluid on the boundary and reduced hydrodynamic stresses, which can lead
to a significant enhancement of the flow throughput in microchannels [see Ref. 109 for an
overview of slip phenomena in experiments]. Clearly, the no-slip boundary condition is in-
appropriate in this situation and a more microscopic approach is needed to model details of
the fluid-surface interactions. While molecular dynamics and direct simulation Monte Carlo
can shed some light on specific aspects of the fluid-surface interactions, such as rarefaction
or dewetting [159], they are computationally too expensive to simulate complex flows on
reasonable time and length scales. The lattice Boltzmann method is much better suited for
simulating flows and, due to its kinetic origin, it is practically well suited to handle the prop-
erties of the slip-flow regime [103, 104]. Sbragaglia and Succi [46] have recently argued
that the lattice Boltzmann approximation indeed remains valid up to Kn ∼ O(1). An es-
sential requirement is yet an appropriate boundary condition that can model the appearance
of partial slippage on a mesoscopic level.

In the following, we will develop a method to implement partial slip in the lattice Boltzmann
method. It aims at capturing slip at a coarse-grained level, where the details of the fluid-
surface interaction are modeled by a single parameter. This is in contrast to other works,
where the fluid-surface interaction is modeled as an explicit potential within a multi-phase
LB model [7, 160–162]. In the same spirit, we do not incorporate the roughness of the sur-
face explicitly, as it was for example done by Kunert and Harting [163, 164]. Furthermore,
we seek a general coarse-grained model for partial slip which is not specific to the lattice
Boltzmann method but can be used in other simulation methods as well, e.g., dissipative
particle dynamics. In fact, a collaborating group has recently succeeded in implementing
tunable-slip boundaries in DPD in an analogous fashion [165]. This opens the possibility to
compare simulation results from different methods, which allows to differentiate the errors
that stem from the model from those that arise as artifacts of the specific implementation.

5.3.1 Modeling wall friction

Our starting point is the constitutive equation (5.5) which leads to the Navier slip boundary
condition. Let us consider the case where the boundary normal is in z-direction and a flow
in the x-direction. Then the slip boundary condition says that the stress exerted on the
boundary surface is proportional to the flow velocity at the boundary [111]

σxz = γ uslip. (5.42)
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This suggests that we can model the fluid-solid interactions as an effective friction force,
which includes all the microscopic details that lead to dissipation of energy at the surface
and thereby decelerate the flow

F (rB) = −ζux(rB). (5.43)

The idea is then to combine specular reflections at the boundary with the friction force,
where the friction coefficient ζ is meant to control the amount of slippage over the surface.
Such an approach has several advantages: first, it is very general and can be applied to
off-lattice particle-based methods as well. Second, the friction force is similar to Langevin
like forces, which are well established in computer simulations and provide a framework
to ensure correct thermodynamics by obeying the fluctuation dissipation relation, that is, a
link to statistical mechanics is readily available for our boundary model. A third point to
mention is that the friction force is local and hence the validity of local conservation laws
can be ensured. Finally, the implementation of forces in the lattice Boltzmann model is
possible without major complications.

5.3.2 Analytical solution of the wall friction model for Poiseuille flow

Before we turn to the implementation of the wall friction model in the lattice Boltzmann
method, we discuss the analytical solution in the case of a plane Poiseuille flow. This serves
as a further justification and is used to compare the simulation results below.

Let us consider a stationary flow of an incompressible fluid driven by a volumetric force
fext in the x-direction and confined between two plane walls whose normals point in the
z-direction. It can be described by the Stokes equation

ηs
∂2ux
∂z2

= −fext. (5.44)

Since we have built the boundary condition on a constitutive equation for the friction force,
there are additional terms that enter the bulk equation. The continuum transcription of the
friction force on the last layer of fluid nodes comes in terms of δ-distributions. Let us assume
that the walls are located at z = 0 and z = L, then the friction force acts on the layers z = zB
and z = L− zB, and we arrive at the differential equation

ηs
∂2ux
∂z2

= −fext +
ζ

a2
u(z)δ(z − zB) +

ζ

a2
u(z)δ(z − L+ zB). (5.45)

Because of the additional specular reflections, this equation has to be solved with full-slip
boundary conditions:

u′(0) ≡ ∂ux(0)

∂z
= 0, u′(L) ≡ ∂ux(L)

∂z
= 0. (5.46)

The solution of the second order differential equation is piecewise parabolic, as qualitatively
shown in figure 5.9,
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Integration constants
A1 0

A2
fextLa2

2ζ
+

fextz2B
2ηs

B1
fextL
2ηs

B2
fextLa2

2ζ
+

fextz2B
2ηs

− fLzB

2ηs

C1
fextL
ηs

C2
fextLa2

2ζ
+

fextz2B
2ηs

Figure 5.9: Analytical solution of the partial slip boundary condition. The flow profile is piecewise
parabolic. The table lists the integration constants appearing in (5.47).

ux(z) = −fext

2ηs
z2 + A1z + A2, z < zB,

ux(z) = −fext

2ηs
z2 +B1z +B2, zB ≤ z ≤ L− zB,

ux(z) = −fext

2ηs
z2 + C1z + C2, z > L− zB.

(5.47)

From the boundary conditions (5.46) we get A1 = 0 and C1 = fextL
ηs

. From symmetry around
the centerline of the channel we get B1 = fextL

2ηs
.

The δ-distributions imply a jump in the first derivatives of the velocity. The height of this
jump can be determined by formally integrating over an ε-interval centered around the sup-
port of the distribution. For the first δ-distribution in (5.45), we get

lim
ε→0

[u′x(zB + ε)− u′x(zB − ε)] =
ζ

ηsa2
ux(zB). (5.48)

The second δ-distribution can be treated analogously. Plugging in the results obtained so far
we arrive at

ux(zB) =
fextLa

2

2ζ
= ux(L− zB). (5.49)

This is just another way of expressing that the center piece of the solution satisfies a slip
boundary condition with a slip velocity

uslip =
fextLa

2

2ζ
(5.50)
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∆ j reflections

Figure 5.10: Canonical implementation of the wall friction force. Each population has a contribution
from the momentum transfer ∆j. This implementation leads to artifacts in the velocity profiles
measured in simulations.

at the hydrodynamic wall locations z = zB and z = L− zB. In the limit zB → 0 we get the
velocity profile

ux(z) = −fext

2ηs
z2 +

fextL

2ηs
z +

fextLa
2

2ζ

= −fext

2ηs

(
z − L

2

)2

+
fextL

2

8ηs
+
fextLa

2

2ζ
,

(5.51)

which is nothing but a Poiseuille profile shifted by uslip. The tangential stress at the wall
is

ηs
∂ux(0)

∂z
=
fextL

2
, (5.52)

and the slip length is
δB =

ηs
ζ
a2. (5.53)

The latter relation shows that the force friction parameter ζ is related to the coefficient γ in
the hydrodynamic constitutive equation (5.42).

5.3.3 Implementation of wall friction: “canonical” method

Force implementations in the lattice Boltzmann model have been discussed by several au-
thors [47, 85, 86, 166–169]. The most stringent way is to discretize the forcing term in
the continuous Boltzmann equation in terms of a truncated Hermite expansion [47, 166].
The obtained result is to second order equivalent to the forcing terms derived within the
Chapman-Enskog expansion, cf. chapter 4 and [8, 65]. Here, we accordingly modify the
force coupling method of Ahlrichs and Dünweg [85, 86], which was originally developed
to couple polymers to the lattice Boltzmann fluid. The modification consists of adding the
second-order correction term derived within the Chapman-Enskog expansion. The forcing
term is given by

∆g
i =

wiτ

c2s

[
g · ci + 1

2c2s
G :

(
cici − c2s1

)]
, (5.54)
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where the tensor G is given by equation (4.67). The volumetric force is obtained by the
above friction force

g(rB) = − ζ

a3

j(rB)

ρ(rB)
. (5.55)

In principle, the modified definition (4.65) for the hydrodynamic momentum density has
to be used. This brings up an additional complication because the redefined momentum
contains the force and at the same time the force is a function of the momentum. Strictly
speaking, the equations (4.65) and (5.55) have to be solved self-consistently which would
require an iterative scheme. However, if the velocity at the boundary is small4, the correc-
tions are negligible. The localized force density is applied on the last layer of fluid nodes
in front of the boundary. In addition, the specular reflections are applied on the boundary
links. The complete scheme is illustrated in figure 5.10. We call this scheme the “canoni-
cal” implementation of the friction force because it uses the forcing term without any further
adjustments.

5.3.4 Simulation results for the “canonical” implementation

To validate the new partial slip scheme, we have simulated a Poiseuille flow through a plane
channel. The channel is aligned with the lattice such that the wall normals point in the
positive or negative z-direction, respectively. The simulation box has a width of 20 lattice
spacings in the z-direction, where the walls are located at the first and the last lattice layer.
Taking into account the shift of a/2 for the hydrodynamic boundaries, the channel has an
effective width of Leff = 19a. Periodic boundary conditions are applied in the x- and y-
directions. The fluid is driven by a volumetric force fext in the x-direction. The density of
the fluid is ρ = 1.0 and the kinematic viscosity is set to ν = 3.0, both measured in lattice
units. In figure 5.3.4, the velocity profiles are shown for a lattice spacing of a = 1.0 and a
driving volumetric force of fext = 0.01. The value of the friction coefficient ζ varied from
1.0 to 5.0. The analytical solutions, cf. (5.47), for the respective parameter sets are plotted
as dotted lines. The velocities on the vertical axis are scaled by the theoretical maximum
velocity for ζ = 1.0.

The measured velocity profiles have a parabolic shape in the bulk, as expected. However,
they deviate from the analytical prediction significantly and close to the boundary the pro-
files are distorted due to a kink on the next nearest fluid node. Nevertheless, the velocity
on the last fluid node visibly matches the theoretical value. This indicates that, while the
friction induced deceleration of the fluid at the boundary is captured correctly, there is an
undesirable jump in the tangential stress at the next nearest layer. This has to be interpreted
as an artifact in the simulation. As the most likely source of such artifacts is the discreteness
of the lattice structure, the effect of reducing the lattice spacing a was investigated. Figure
5.12 shows the results for a lattice spacing of a = 0.1 and an effective channel width of

4 In the simulations that were performed, the fluid is initially at rest. Therefore the slip velocity in the station-
ary state is approached from below. The friction force increases only up to the value where, together with
the viscous stresses in the fluid, the external driving force is balanced.
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Figure 5.11: Simulation results for the wall friction model with the “canonical” implementation of
the friction force. The profiles deviate from the analytical solution due to the occurrence of a kink
next to the wall.
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Figure 5.12: Simulation results for reduced lattice spacings a. The kink moves closer to the surface,
according to the value of a, but it does not disappear. In the lower plot, the bare friction constant ζ is
reduced to keep the effective friction in the same range.
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Leff = 199a. Due to the reduced lattice spacing, the kink moves closer to the boundary, but
the offset from the analytical curve remains unchanged in its relative order of magnitude.
This outcome is not altered when the lattice spacing is further reduced. With a lattice spac-
ing of a = 0.05 and an effective channel width of Leff = 200a the kink is still clearly visible.
Note that in this case the friction coefficient was reduced to ζ = 0.001 to keep the absolute
velocities in the same order of magnitude to avoid instabilities.5

These observations suggest that the kink and the jump in the tangential stress are not just a
discretization artifact, but rather are related to the specific implementation of the wall fric-
tion force. Apparently, the “canonical” implementation leads to an unphysical tangential
stress at the boundary, which must be induced by the way the boundary condition is imple-
mented at the level of the populations. We also verified that this is a first order effect by
omitting the second-order contribution from the forcing term (4.68) and the redefinition of
the momentum density (4.65), without any visible effect. To investigate this in more depth, a
theoretical analysis of the implementation of the wall friction force in the lattice Boltzmann
model is necessary.

5.3.5 Theoretical analysis

The analysis in this section is inspired by the work of He et al. [126], in which the lattice
BGK equation was solved analytically for a two-dimensional stationary channel flow. We
consider the situation where ρ = const. and the flow is invariant in the x and y directions.
Then we can write a one-dimensional lattice Boltzmann equation

fα+ĉiz
i (t+ τ) = fαi (t) +

∑
j

Lij
(
fαj (t)− f eq

j (ρ, uαx)
)

+ ∆g,α
i , (5.56)

where fαi denotes the population and uαx the flow velocity at rz = α a, and α = 0 . . . L. The
forcing term is given by

∆g,α
i =

wiτ

c2s
cix

(
fext − ζ

a3
uαx(δ1,α + δα,N)

)
, (5.57)

where the Kronecker deltas implement the wall friction and second order terms have been
dropped. In the stationary case, equation (5.56) simplifies to

fα+ĉiz
i =

∑
j

(δij + Lij) fαj −
∑
j

Lijf eq
j (ρ, uαx) + ∆g,α

i . (5.58)

The explicit expressions for the D3Q19 model are given in appendix B.3. These expressions
can be used to obtain the finite-difference solution of the lattice Boltzmann equation. The
algebra is straightforward but rather tedious. Therefore, it is also carried out in the appendix.

5 Equation (5.50) shows that the velocity shift uslip scales with the square of the lattice spacing. We could
also introduce an effective friction ζeff = ζ/a2 which takes into account this scaling. The reduction of the
bare ζ then corresponds to keeping the effective friction ζeff roughly constant.
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For simplicity, we use the single-relaxation time approximation where all eigenvalues of the
collision operator are identical. The final result is

ηs
uα−1
x − 2uαx + uα+1

x

a2
= −fext +

8 + 9λ+ 5λ2

6λ2

ζ

a3
uαx(δ1,α + δα,N)

− 5λ+ 4

6λ2

ζ

a3
(uα−1

x δ1,α−1 + uα+1
x δα+1,N),

(5.59)

which is a second-order finite difference approximation of the Stokes equation. The crucial
point to note here is the fact that there appear four Kronecker deltas on the right-hand side of
equation (5.59), which stem from the friction force. Two of them, δ1,α and δα,N , act on the
boundary layers, which is the expected effect of the wall friction. The other two however,
δ1,α−1 and δα+1,N , are additional contributions acting on the next nearest layer to the bound-
ary. Their appearance in the second-order finite difference approximation corresponds to a
peak in the second derivative of the velocities, which implies a jump in the first derivative
and a kink in the velocity profile accordingly. It is a consequence of an effective delocal-
ization of the friction force, which distorts the profile at the next nearest lattice layer. This
explains why the canonical implementation of the wall friction force leads to the kink in the
profiles. This effect can also be understood descriptively by looking at figure 5.10 again:
In the first stage, the force is applied which changes all populations on the lattice site. In
the second stage, the reflections occur which take one time step. However, only some of
the populations to which the force has been applied do actually collide with the wall, while
the others propagate to the bulk immediately (the dashed red ones in the middle picture).
In other words, the effect of the force is split in two parts where one of them propagates
into the bulk “too early” and distorts the flow profile. In conclusion, the kink induced by the
canonical implementation of the friction force can be explained by undesirable contributions
on the next nearest lattice sites. These contributions will be eliminated in the following.

5.3.6 Force implementation revisited: “primitive” method

In order to avoid the kink in the velocity profiles, we have to eliminate the Kronecker deltas
δ1,α−1 and δα+1,N in (5.59). Their source can be easily tracked down by looking at the
derivation in the appendix. The contributions from δ1,α−1 and δα+1,N entering in (B.41b)
and (B.41c) cannot possibly cancel and must be eliminated. In equation (B.42) the unwanted
terms stem from f11 to f14 while in equation (B.45) they stem from f7 to f10. Consequently,
all the Kronecker deltas have to be removed in (B.39) from the bulk populations in order to
restore the desired Stokes form of the second-order finite difference equation. This means
that the only remaining possibility for the friction force to be applied are the populations
which actually collide with the wall. In the D3Q19 model, only four of the populations col-
liding with the wall have a tangential projection onto the force. Hence, the friction force can
be applied by adding half of it to the population with the positive projection, and subtracting
the other half from the population with the negative projection:

∆g
i = −1

2

ζτ 3

a5
(ci · Pu) n · ci < 0 (5.60)
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∆ j reflections

Figure 5.13: Primitive implementation of the wall friction force. Only the populations colliding with
the wall get a contribution from the momentum transfer ∆j. This implementation leads to correct
velocity profiles in the simulations.

The resulting scheme is schematically depicted in figure 5.13. We call it the “primitive”
implementation of the friction force because it leads back to a very simple force application
scheme, which was already discussed by Ahlrichs and Dünweg [85] for the polymer cou-
pling. In that context, however, the scheme turned out to be an unfavorable choice and was
superseded by the canonical implementation [86].

5.3.7 Simulation results for “primitive” implementation

The results for the wall friction boundary condition in the primitive implementation are
shown in figure 5.14. Plotted are the measured velocity profiles for a Poiseuille flow in a
plane channel of width Leff = 20 lattice spacings. The fluid has a density of ρ = 1.0 and
a kinematic viscosity of ν = 3.0. The flow is driven by a volumetric force of f = 0.01,
which is implemented as usual. The value of the friction coefficient ζ varied from 1.0 to 5.0.
The analytical solutions are plotted as dotted curves. For comparison also the results of the
canonical implementation are plotted again as grey dashed curves. The measured velocity
profiles for the primitive implementation show a perfect visible match to the analytical pre-
diction. There is no kink in the curves and the amount of slippage is reproduced correctly.
This shows that the primitive implementation of the wall friction model yields the desired
behavior and is superior compared to the canonical implementation. This is in contrast to
the bulk case, where the canonical implementation is more favorable.

5.3.8 Comparison with slip-reflection models

The primitive implementation of the friction force has an interesting connection to the family
of heuristic boundary conditions motivated by kinetic theory [110, 127, 128]. This can
be seen as follows. First we modify the friction force at the wall such that it acts on the
momentum density

jB =
∑

n·ci<0

fici, (5.61)
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Figure 5.14: Simulation results for the “primitive” implementation of the wall friction model. The
match of the measured profiles with the analytical solution is visibly perfect. For comparison, the
results from the “canonical” implementation are plotted again as dashed grey curves.
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where only the populations colliding with the wall contribute. This corresponds to applying
the friction force after the streaming on the first lattice layer inside the wall, before the pop-
ulations are reflected. In the steady state, the effect of this modification is a renormalization
of the friction constant. The forcing term (5.60) can then be written as

∆g
i = −1

2

ζ̃τ 3

a2
(ci · PjB) = −1

2

ζ̃τ 3

a2


ci ·

∑
n·cj<0

fjPcj


 , n · ci < 0, (5.62)

where ζ̃ now has units of an inverse time. Since ∆g
i is applied to the populations that

collide with the wall and are reflected, we can combine the forcing term with the specular
reflections

fi(rB, t+ τ) = f ∗i+(rB − τPci, t)− 1

2

ζ̃τ 3

a2


ci ·

∑
n·cj<0

f ∗j (rB − τPcj, t)Pcj




=
∑

n·cj<0

Bij(rB, rB − τPcj, t)f
∗
j (r− τPcj, t),

(5.63)

where we have introduced the boundary kernel

Bij(rB, rB − τPcj, t) = δj,i+ − 1

2

ζ̃τ 3

a2
ci · Pcj. (5.64)

This boundary kernel can be written as a matrix. For the specific case of the D3Q19 model
and the wall normal n pointing in the positive z-direction, we have




f15

f11

f5

f14

f18




=




1
2
ζ̃τ 0 0 0 1− 1

2
ζ̃τ

0 1
2
ζ̃τ 0 1− 1

2
ζ̃τ 0

0 0 1 0 0

0 1− 1
2
ζ̃τ 0 1

2
ζ̃τ 0

1− 1
2
ζ̃τ 0 0 0 1

2
ζ̃τ







f16

f12

f6

f13

f17



. (5.65)

The same goes for the D2Q9 model and when we set

s = 1− 1

2
ζ̃τ , (5.66)

exactly the same boundary kernel as for the slip-reflection model in [110, 127] is obtained.
The parameter s quantifies the reflectivity of the wall, i.e., a specularly reflecting wall has
s = 1 while a bounce-back wall has s = 0. Sbragaglia and Succi [127] show that a boundary
kernel as in (5.65) leads to a slip velocity which to first order is given by

uslip = ABKn
∂ux
∂n̂

∣∣∣∣
rB

, (5.67)

where in the continuum limit of small time and space increments

AB =
1

cs

s

1− s

a

τ
. (5.68)
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Comparing this with the expressions from kinetic theory, cf. (5.22) and (5.23), we obtain an
accommodation coefficient of α = 2− 2s and a slip length of

δB =
s

1− s

lmfp

cs

a

τ
=

2− ζ̃τ

ζ̃τ

ηs
ρc2s

a

τ
. (5.69)

This is nothing but the expression (5.53) with a renormalized friction constant. The close
connection of the wall friction model to the kinetic slip-reflection models gives confidence
that the friction force is indeed a reasonable mesoscopic model for apparent slippage on
boundary surfaces.

5.3.9 Discussion of the wall friction model

In summary, the simulation results and the theoretical analysis show that the wall friction
model can successfully be used to implement a boundary condition with a tunable amount
of slippage at the boundary. The basic concept is very general and can be applied to other
simulation methods as well [165]. Some care has to be taken when implementing the wall
friction force in the lattice Boltzmann method. If the friction force is implemented in a
canonical way, the resulting Poiseuille profiles are distorted by a kink next to the boundary
which is a consequence of undesirable momentum flux contributions. These can be elimi-
nated by an apparently more primitive implementation of the friction force where only the
populations that actually collide with the wall are changed. This result may seem surprising
since the primitive force implementation has no systematic justification and is usually con-
sidered unfavorable in the bulk [86]. On the other hand, there is no stringent reason to expect
that the formula for the bulk case is applicable at the boundary and in fact our analysis shows
that this is not the case. We have rather shown that the correct discrete Stokes profile can
be reproduced without artifacts only if the application of the wall friction is restricted to the
populations that actually collide with the wall. In retrospective, this stands to reason because
it introduces an explicit asymmetry among the different velocity directions. The breaking
of the bulk symmetry is an effect of the presence of the boundary, which is explicitly built
into the primitive wall friction force implementation. In this sense, this implementation,
though called primitive, is more appropriate for boundary conditions. Furthermore, it can
be connected to a family of kinetically motivated slip-reflection models. The wall friction
force hence seems an appropriate mesoscopic simulation model that gives rise to apparent
slip at boundary surfaces. The relation between the slip length and the wall friction param-
eter is known such that it is possible to tune the slip length systematically. The fact that this
is in direct correspondence to the Navier-slip condition is thereby particularly appealing, as
it makes the boundary condition compatible with kinetic theory and hydrodynamics at the
same time.

The simulation results presented in this section mainly serve as a proof of concept, showing
that the wall friction model leads to tunable slip in the desired way. The applicability of
the wall friction boundary condition in practical simulations has yet to be explored. A
concerning study of electro-osmotic flow in plane channels and a comparison with DPD
simulations is currently underway.
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In this chapter, an attempt is made to tackle the issue of lattice Boltzmann boundary con-
ditions in a conceptually novel way. As pointed out in the previous sections, most of the
existing boundary conditions can only accomplish second-order accuracy if the locality of
the method is abandoned. The respective inter- and extrapolation schemes can be rather
complicated and require a minimum number of nodes, which can lead to severe difficulties
when the implementation has to be parallelized for execution on modern high-performance
computing clusters. Moreover, the conservation laws are not directly built into these rules
and, in particular, strict local mass conservation is not guaranteed in a number of schemes.
One reason for the deficiencies is the heuristic nature of these boundary conditions, i.e.,
they are based on reflection rules for the populations that are constructed on rather ad-hoc
assumptions. While this leads to the desired macroscopic boundary conditions, the system-
atic connection to conservation laws and symmetries – key features of the lattice Boltzmann
method in the bulk – is somewhat weakened. From the viewpoint of a sound understanding
of the foundations of the method this is clearly an unsatisfactory situation. For this reason,
we have explored another approach for boundary conditions which is quite different from
the existing ones. It is based on a lattice model that explicitly takes into account the re-
duced symmetry and respects the local conservation laws. The main aims of investigating
the model are the following:

• We attempt to develop a completely local boundary condition that allows straightfor-
ward and easy implementation in a parallel computing environment. The conservation
laws shall be built into the rules locally, and the collisions of fluid particles with each
other and with the boundary shall be modeled consistently into a lattice Boltzmann
collision operator at the boundary.

• We intend to get a better understanding of boundary conditions with respect to the
symmetry properties of the underlying lattice structure. By treating the boundary ex-
plicitly in terms of a reduced symmetry model, we hope to be able to clarify the impli-
cations of the broken symmetry at the boundary on the lattice Boltzmann dynamics.
This is particularly interesting in regard to moment systems, where self-consistent
boundary conditions are impossible to provide for the moments [48, 170, 171].

In the next section, we will explain the basic ideas of the new approach and introduce the
concept of reduced symmetry. Then we will treat the lattice sums and invariant tensors for
the reduced symmetry. In section 6.3, we introduce several variants to construct the equilib-
rium distribution in the reduced symmetry. This will be used in the following subsections to
devise boundary conditions for the reduced symmetry. Finally, we sketch some attempts to
carry out a Chapman-Enskog expansion at the boundary in section 6.7.
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fluid phase

solid phase

boundary

Figure 6.1: Illustration of local boundary conditions. The dotted links point into the solid and must
not be populated. They are “forbidden” links that are to be excluded from the model.

6.1 Boundaries and reduced symmetry

The fundamental objective of the boundary condition is to allow for a completely local
update of the lattice Boltzmann variables, that is, only information that is available on the
local lattice site is used in the boundary scheme. For this purpose, it stands to reason to use
a node based representation of the solid object where the surface is located directly on the
lattice sites. For simplicity and as a first starting point, we consider the case of a straight wall
boundary. Curved boundaries could easily be represented by specifying the surface normal
individually on every boundary node. The representation of a straight wall is schematically
depicted in figure 6.1. The central idea for the update scheme at the boundary is that it
should have a similar structure as the bulk update in terms of streaming and collisions. The
figure shows, however, that some of the links on the boundary node point into the solid.
If there were populations streaming on those links, they would give rise to a fluid current
into the solid. Consequently, we have to require that the links pointing into the solid are
not populated at the beginning of the streaming phase. Vice versa, there are links that point
into the fluid and which are undefined after the streaming phase because their populations
would come from solid nodes. These populations have to be computed during the collision
phase of the boundary scheme such that their value can be used in the next streaming step.
In addition, we have the tangential links whose populations stream along the surface. They
can be propagated in the usual way, but they can also be modified in the collision phase of
the boundary rule.

In order to specify the situation formally, let us consider the pre-streaming situation where
the links pointing into the solid must not be populated

f ∗i (rB, t) = 0, if ci · n < 0. (6.1)

These links are so-called forbidden links, and hence they are excluded from the lattice
model. For a plane wall on a D3Q19 lattice, there is a total of five forbidden links. The
remaining set of 14 links depicted in figure 6.2 forms a subset of the D3Q19 model and
obviously has a reduced symmetry compared to the full set. We will refer to the model with
14 links as the reduced D3Q19 model.

The idea is now to systematically construct a lattice Boltzmann scheme based on the links
of the reduced D3Q19 model. The construction is done on the same footing as in the bulk,
that is, we assume that the update of the populations consists of a streaming step and a
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n

Figure 6.2: Lattice model with reduced symmetry. The forbidden links are excluded from the model.
For the D3Q19 model, there are 14 remaining populations. The smaller set of velocity directions has
a reduced symmetry that has to be taken into account in a formally consistent fashion.

collision step. As in the bulk, the collision step is local and has to satisfy the conservation
laws for mass and momentum in the directions parallel to the plane. We assume further
that the collisions can be implemented as a linear relaxation towards a local equilibrium
distribution, the form of which has yet to be determined. In analogy to the MRT model, the
relaxation is most generally formulated in mode space where the basis has to be constructed
from the reduced symmetry D3Q19 vectors. To sum up, the central questions arising for the
construction of the reduced D3Q19 model are:

• What is the equilibrium distribution for the reduced symmetry model?

• How can the reduced mode space be constructed?

• What is an appropriate collision operator for the reduced symmetry?

Before we attempt to answer these questions, we first have to look at the lattice sums and
invariant tensors in the reduced symmetry.

6.2 Lattice sums and invariant tensors in the reduced
symmetry

As in the bulk case, we will assume that the equilibrium distribution can be written as a poly-
nomial expansion in the velocities. The expansion coefficients are determined by requiring
that the conservation laws and symmetry properties are satisfied. The explicit calculation
involves the moments of the equilibrium distribution, for which the lattice sums have to
be evaluated. For the bulk case, this was done in appendix B.2. To prepare the derivation
of the equilibrium distribution in the reduced symmetry, we first discuss the lattice sums
and their relation to invariant tensors in the reduced symmetry. We focus on the reduced
D3Q19 model for a plane wall boundary here. Generalizations to other models or geomet-
rically complex boundaries are tedious and the existence of a solution is not guaranteed for
arbitrary lattices.
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6 Reduced symmetries in lattice Boltzmann models

6.2.1 Lattice sums for a locally plane boundary

Consider a plane wall whose normal points in the positive z-direction n = (0, 0, 1)T . The
velocity vectors of the corresponding reduced D3Q19 model are the columns of the matrix

CB =




0 1 −1 0 0 0 1 −1 1 −1 1 −1 0 0
0 0 0 1 −1 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 0 0 0 0 1 1 1 1


 . (6.2)

Any of these vectors satisfies n · ci ≥ 0. The lattice sums for the reduced symmetry thus
come as

T (n)
α1...αn

=
∑

n·ci≥0

wiciα1 . . . ciαn . (6.3)

The n-th lattice sum is a tensor of rank n which is invariant under any symmetry transfor-
mation for the cubic lattice and leaves the wall normal invariant. The most general form
of such tensors can be constructed from proper combinations of δαβ and nα plus potential
cubic anisotropies of the respective rank, e.g., δαβγδ. In essence, the tensors can be obtained
from the respective expressions in the bulk by replacing all occurrences of δαβ by δ⊥αβ ,

δ⊥αβ = δαβ − nαnβ, (6.4)

and accordingly for the anisotropies in higher rank tensors. This procedure yields the fol-
lowing general expressions for the lattice sums up to fifth rank

T (0) = K,

T (1)
α = Anα,

T
(2)
αβ = B1δαβ +B2nαnβ,

T
(3)
αβγ = C1 (nαδβγ + nβδαγ + nγδαβ) + C2nαnβnγ,

T
(4)
αβγδ = D1 (δαβδγδ + δαγδβδ + δαδδβγ)

+D2 (nαnβδγδ + nαnγδβδ + nαnδδβγ + nβnγδαδ + nβnδδαγ + nγnδδαβ)

+D3δαβγδ

+D4nαnβnγnδ,

T
(5)
αβγδε = E1 [nαδβγδε + nβδαγδε + nγδαβδε + nδδαβγε + nεδαβγδ]

+ E2 [nα (δβγδδε + δβδδγε + δβεδγδ) + nβ (δαγδδε + δαδδγε + δαεδγδ)

+ nγ (δαβδδε + δαδδβε + δαεδβδ) + nδ (δαβδγε + δαγδβε + δαεδβγ)

+ nε (δαβδγδ + δαγδβδ + δαδδβγ)]

+ E3 [nαnβnγδδε + nαnβnδδγε + nαnγnδδβε + nβnγnδδαε + nαnβnεδγδ

+ nαnγnεδβδ + nβnγnε δαδ + nαnδnεδβγ + nβnδnεδαγ + nγnδnεδαβ]

+ E4 nαnβnγnδnε.
(6.5)
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weight ĉ2
i n · ĉi ĉi

w0 0 0 (0, 0, 0)T

w1 1 0 (1, 0, 0)T , (−1, 0, 0)T , (0, 1, 0)T , (0,−1, 0)T

w2 2 0 (1, 1, 0)T , (−1,−1, 0)T , (1,−1, 0)T , (−1, 1, 0)T

w3 1 1 (0, 0, 1)T

w4 2 1 (1, 0, 1)T , (−1, 0, 1)T , (0, 1, 1)T , (0,−1, 1)T

Table 6.1: Weight factors for the equilibrium distribution of the reduced D3Q19 model. There are
five independent weights, according to the length of the links and the projection on the boundary
normal.

The coefficients in these expressions are related to the weights wi. Using the vectors of the
reduced D3Q19 model in equation (6.3), we get the following set of equations

w0 + 4w1 + 4w2 + w3 + 4w4 = K

(w3 + 4w4)
a

τ
= A

(2w1 + 4w2 + 2w4)
a2

τ 2
= B1

(w3 + 4w4)
a2

τ 2
= B1 +B2

(2w4)
a3

τ 3
= C1

(w3 + 4w4)
a3

τ 3
= 3C1 + C2

(2w1 + 4w2 + 2w4)
a4

τ 4
= 3D1 +D3

(w3 + 4w4)
a4

τ 4
= 3D1 + 6D2 +D3 +D4

(4w2)
a4

τ 4
= D1

(2w4)
a4

τ 4
= D1 +D2

(2w4)
a5

τ 5
= E1 + 3E2

0 = E2

(2w4)
a5

τ 5
= E2 + E3

(w3 + 4w4)
a5

τ 5
= 5E1 + 15E2 + 10E3 + E4,

(6.6)

where the weights w0 to w4 are assigned to the different classes of velocity vectors as listed
in table 6.1. The free parameters are the five weights wi which allow to tune at most five
of the coefficients of the lattice sums. The remaining coefficients are related by various
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degeneracies, e.g.,A(a/τ)3 = (B1+B2)(a/τ)
2 = (3C1+C2)(a/τ) = 3D1+6D2+D3+D4.

In the D3Q19 model, we had already seen in the bulk that ĉiα = ĉ3iα. In the reduced D3Q19
model we have the additional degeneracy ĉiz = ĉ2iz = ĉ3iz = . . . which leads to subtle
dependencies of the moments. The choice of a complete set of conditions used to determine
the weights wi is therefore a crucial step in the construction of a reduced symmetry lattice
Boltzmann model.

6.3 Approaches for constructing the equilibrium distribution

In this section we treat the equilibrium distribution for the reduced symmetry model. In the
course of this work, we have worked out several approaches to devise the equilibrium distri-
bution. Although the statistical mechanics based derivation is the most consistent approach
and supersedes the prior ones, the other approaches shall be outlined here as well because
in comparing the different methods the important features can be highlighted. In fact, the
earlier approaches have inspired and eventually led to the development of the statistical
mechanics of the lattice Boltzmann model.

6.3.1 Method 0: Direct ansatz for the equilibrium distribution

In the bulk, the equilibrium distribution is a polynomial expansion in the velocities up to
second order. It can be systematically derived from the continuous Maxwell-Boltzmann
distribution in terms of an expansion in Hermite tensor polynomials. However, the polyno-
mial expansion can also just be viewed as an ansatz which is justified within the Chapman-
Enskog expansion. At the boundary, we have to generalize the ansatz to the reduced sym-
metry appropriately. Since the normal vector n of the boundary is an additional invariant,
the equilibrium distribution must incorporate respective terms u ·n up to orderO(u2). This
suggest to modify the bulk ansatz in the following way:

fB,eq
i (ρ,u) = wiρ

[
1 + Ãu · ci + B̃(u · ci)2 + C̃u2 + D̃u · n + Ẽ(u · n)2

+ F̃n · ci + G̃(u · n)(u · ci) + H̃(u · n)(n · ci)
+ Ĩ(u · u)(n · ci) + J̃(u · ci)(n · ci) + K̃(n · ci)(n · ci)

]
.

(6.7)

The coefficients have to be determined such that the moment relations for the hydrodynamic
variables hold,

ρ =
∑

n·ci>0

fB,eq
i , j =

∑
n·ci>0

fB,eq
i ci, Π =

∑
n·ci>0

fB,eq
i cici. (6.8)
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With the help of the lattice sums in the reduced symmetry the mass and momentum equa-
tions yield the following set of equations

K + AF̃ + (B1 +B2)K̃ = 1,

KC̃ + AĨ +B1B̃ = 0,

KD̃ + AÃ+ AH̃ + (B1 +B2)J̃ = 0,

KẼ + AG̃+B2B̃ = 0,

B1Ã+ C1J̃ = 1,

B1G̃+ 2C1B̃ = 0,

A+ (B1 +B2)F̃ + (3C1 + C2)K̃ = 0,

AD̃ + (B1 +B2)(Ã+ H̃) + (3C1 + C2)J̃ = 1,

AC̃ + (B1 +B2)Ĩ + C1B̃ = 0,

AẼ + (B1 +B − 2)G̃+ (2C1 + C2)B̃ = 0.

(6.9)

These are ten equations which is not enough to specify the solution for the coefficients Ã,
B̃, C̃,. . . uniquely. In principle, we can get further conditions by requiring that the pressure
tensor has the form of the Euler stress. However, some of the additional equations impose
certain conditions on the coefficients of the lattice sums at the same time. This renders the
whole procedure rather complicated and it is not straightforward how to solve the equation
system. It will become clear below that in fact we are trying to determine a solution for
all orders up to O(u2) simultaneously here. This is because in the direct ansatz for the
equilibrium distribution we can not say more about the origin of the terms appearing in
(6.7). Therefore, the line of the calculations is a bit unsystematic for this approach and
we will not follow it further here. Instead, we develop a much more consistent formalism
to derive the equilibrium distribution from variational principles that can be systematically
generalized to the reduced symmetry at the boundary.

6.3.2 Method I: Derivation from quadratic functional

Although the a-priori ansatz for the equilibrium distribution can be justified by asymptotic
analysis, it is more desirable to devise the equilibrium distribution systematically from gen-
eral principles. In particular, we have looked for variational principles that have proven suc-
cessful in many branches of theoretical physics. The idea is that the equilibrium distribution
can be interpreted as a stationary state that can be found by minimizing or maximizing an
appropriate functional, possibly subject to constraints. This reasoning is indeed similar to
the idea of the entropic lattice Boltzmann method [28–32, 91], where a discrete lattice anal-
ogon to the Boltzmann H-function is sought in order to comply with a H-theorem. In that
case, the equilibrium is not only a stationary solution of the functional but also an attractor
of the dynamics. Here, we do not consider the attracting property. We merely search a
functional where with a fixed-point solution that has the usual form of the bulk equilibrium
distribution. The aim is then to generalize the functional to the reduced symmetry.
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The bulk equilibrium distribution is a polynomial expansion in the velocities up to second
order. In terms of the moments, this corresponds to a linear combination of the zeroth,
first and second moment. Since the equilibrium form of the moments is known, we can
incorporate them as constraints via Lagrange multipliers. A general form of the functional
can then be written down as

F({fi}) =
∑
i

Fi(fi) + λρ

(
ρ−

∑
i

fi

)

+ λj,α

(
jα −

∑
i

ficiα

)
+ λΠ,αβ

(
Πeq
αβ −

∑
i

ficiαciβ

)
,

(6.10)

where Fi(fi) denotes a functional of a single population fi. It should be remarked that the
inclusion of the stress tensor as a constraint is not dictated by the local conservation laws,
and conventionally only the “real” collisional invariants, mass and momentum, are included
as constraints [32]. In this sense, the inclusion of the stress tensor yields an over-constrained
equilibrium which makes it more complicated to guarantee positive entropy production [29].
That is, however, not our primary concern here. On the other hand, the stress constraint
has some technical advantages because it automatically yields Galilean invariance of the
equilibrium distribution. Furthermore, it is much easier to obtain the correct form of the
equilibrium stress tensor in this way than by finding a functional that implies the correct
form.

It remains to find an appropriate form for the Fi. A set of linear equations for the Lagrange
multipliers is only obtained, if the functional is quadratic in the populations. The simplest
choice would be Fi = f 2

i , but to allow for a relative weighting of the different neighbor
shells we choose Fi = f 2

i /(2wi) where the weights wi are model dependent. The complete
functional then is

F({fi}) =
∑
i

f 2
i

2wi
+ λρ

(
ρ−

∑
i

fi

)

+ λj,α

(
jα −

∑
i

ficiα

)
+ λΠ,αβ

(
Πeq
αβ −

∑
i

ficiαciβ

)
.

(6.11)

The equilibrium distribution is the stationary distribution of this functional,

f eq
i = wi (λρ + λj,αciα + λΠ,αβciαciβ) , (6.12)

where the Lagrange multipliers can be determined from the constraint equations. The cal-
culation for the bulk case is carried out in appendix B.4. The result is the familiar expres-
sion for the lattice Boltzmann equilibrium distribution in the bulk, which justifies the above
choice of the functional.

The next step is to generalize the variational formalism to the reduced symmetry. At the
boundary, the outgoing populations are enforced to be zero. Formally, this can be included
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as another set of constraints of the form

FB = F −
∑

n·ci<0

λifi

= F −
∑
i

χiλifi,
(6.13)

where the indicators χi are introduced to formally sum over all i

χi =

{
1 if n · ci < 0

0 else.
(6.14)

The boundary equilibrium then comes as

fB,eq
i = wi (λρ + λj,αciα + λΠ,αβciαciβ + χiλi) , (6.15)

which differs from the bulk expression only by the last term in the brackets. This can be
exploited to rearrange terms in the constraint equations which can be written in the form

ρ−
∑
i

χiλiwi =
∑
i

wi (λρ + λj,αciα + λΠ,αβciαciβ) , (6.16a)

jα −
∑
i

χiλiwiciα =
∑
i

wiciα (λρ + λj,βciβ + λΠ,βγciβciγ) (6.16b)

Πeq
αβ −

∑
i

χiλiwiciαciβ =
∑
i

wiciαciβ (λρ + λj,γciγ + λΠ,γδciγciδ) , (6.16c)

χif
B,eq
i = 0. (6.16d)

The right-hand sides of the first three equations have the same structure as in the bulk case,
hence the Lagrange multipliers for the boundary can be obtained by replacing the moments
ρ, jα and Παβ by the respective left-hand sides in (6.16a) to (6.16c). The resulting expres-
sions yield a linear equation system of the form

χi
∑

k

Aikλk = −χif eq
i . (6.17)

In principle, this could be solved numerically in order to obtain the λk. However, a solution
only exists if the matrix Aik is not singular, which not necessarily needs to be the case. This
is because some of the constraint equations may be degenerate. For example, in the D3Q19
model we have

Πzz = jz
a

τ
, (6.18)

because ĉ2iz = ĉiz for a plane wall in the xy-plane. That is, the zz-momentum flux is linearly
dependent on the momentum in z-direction and therefore jz and Πzz must not be constrained
simultaneously.

A possible way to avoid the dependencies between the moments is to reduce the number of
stress components that are constrained. Specifically, the constraints on Πzz, Πxz and Πyz

101



6 Reduced symmetries in lattice Boltzmann models

are omitted for the plane wall. This corresponds to not fixing any normal stress component
and is similar in spirit to the concept of reaction forces in mechanics, which are initially
considered unknown and have to be found with the solution. The functional with the reduced
set of constraints reads

FB =
∑
i

f 2
i

2wi
+ λρ

(
ρ−

∑
i

fi

)
+ λj,α

(
jα −

∑
i

ficix

)
− λΠ,xy

∑
i

ficixciy

+ λΠ,xx

(
ρc2s +

j2
x

ρ
−

∑
i

ficixcix

)
+ λΠ,yy

(
ρc2s −

∑
i

ficiyciy

)
−

∑
i

χiλifi

(6.19)

and yields an equation system that can now be solved for the unknown Lagrange multipli-
ers.

Before the explicit calculations are carried out, some remarks are in order to clarify the
meaning of the weights wi. For symmetry reasons, not every velocity direction i can have
an individual weight. In the bulk, the wi have to be constant within a neighbor shell. On
the boundary, where the symmetry is reduced, there is more freedom to vary the weights:
within a neighbor shell, the velocity directions can have different weights according to their
projection on the boundary normal n · ci. In the D3Q19 model, for example, there are three
different weights in the bulk while five different weights are possible at the boundary, cf.
table 6.1. One could in principle attempt to just use the bulk weights for the boundary as
well. This leads to some problems, however, as will be discussed below.

Let us now sketch the calculation of the stationary distribution of the functional FB. Mini-
mization of (6.19) leads to

fB,eq
i = wi

(
λρ + λj,αciα + λΠ,xxc

2
ix + λΠ,yyc

2
iy + λΠ,xycixciy + χiλi

)
, (6.20)

and the constraint equations are

ρ =
∑

n·ci≥0

fB,eq
i ,

jα =
∑

n·ci≥0

fB,eq
i ciα,

Πeq
xx =

∑
n·ci≥0

fB,eq
i cixcix,

Πeq
yy =

∑
n·ci≥0

fB,eq
i ciyciy,

Πeq
xy =

∑
n·ci≥0

fB,eq
i cixciy.

(6.21)

The evaluation of the right-hand sides of the constraints involves the lattice sums for the
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reduced symmetry. With the formulas devised in section 6.2 we get the equation system

ρ = Kλρ + Anαλj,α +B1 (λΠ,xx + λΠ,yy) ,

jα = Anαλρ + (B1δαβ +B2nαnβ)λj,β + C1nα (λΠ,xx + λΠ,yy) ,

Πeq
xx = B1λρ + C1nαλj,α + (3D1 +D3)λΠ,xx +D1λΠ,yy,

Πeq
yy = B1λρ + C1nαλj,α +D1λΠ,xx + (3D1 +D3)λΠ,yy,

Πeq
xy = D1λΠ,xy.

(6.22)

Solving this system involves some lengthy algebra which finally yields

λρ =
(B1 +B2)(4D1 +D3)− 2C2

1

R
ρ+

2B1C1 − A(4D1 +D3)

R
jz

+
AC1 −B1(B1 +B2)

R
(Πeq

xx + Πeq
yy),

λj,x = B−1
1 jx,

λj,y = B−1
1 jy,

λj.z =
2B1C1 − A(4D1 +D3)

R
ρ+

K(4D1 +D3)− 2B2
1

R
jz

+
AB1 −KC1

R
(Πeq

xx + Πeq
yy),

λΠ,xx =
AC1 −B1(B1 +B2)

R
ρ+

AB1 −KC1

R
jz

+
K(B1 +B2)− A2

2R
(Πeq

xx + Πeq
yy) +

1

2(4D1 +D3)
(Πeq

xx − Πeq
yy),

λΠ,yy =
AC1 −B1(B1 +B2)

R
ρ+

AB1 −KC1

R
jz

+
K(B1 +B2)− A2

2R
(Πeq

xx + Πeq
yy)−

1

2(4D1 +D3)
(Πeq

xx − Πeq
yy),

λΠ,xy = D−1
1 Πxy,

(6.23)

where

R = K(4D1 +D3)(B1 +B2 − A2

K
)− 2B2

1(B1 +B2) + 2C1(2AB1 −KC1). (6.24)

The coefficients K, A, B1, . . . are related to the weights wi. In principle, any set of weights
that is compatible with the reduced symmetry at the boundary can be chosen. The systematic
determination of an appropriate set of weights shall be postponed to the next subsection.
Nevertheless, we can already make some observations. The coefficient K is the sum of all
the weights, which represents a normalization and hence the choice K = 1 suggests itself.
Furthermore, the coefficient D3 is the prefactor of the cubic anisotropy in the fourth-rank
lattice sum. Since we still have rotational invariance in the xy-plane, the cubic anisotropy
should vanish, i.e., D3 = 0. If the bulk weights were used as a first guess for the boundary,
we would get K = 5/6 and D3 = −1/18, in contradiction to what has just been proposed.
Therefore, the bulk weights are inappropriate at the boundary.
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At this point, a guideline for choosing further conditions for the coefficients and the weights
is not obvious. This is because there is no clear physical interpretation of the quadratic func-
tional, which merely forms a formal starting point for deriving the equilibrium distribution
from a variational formalism. The form of the functional is only justified a-posteriori by the
correct outcome for the equilibrium distribution in the bulk. It is much less straightforward
to construct the equilibrium distribution at the boundary because the connection to physical
principles remains somewhat obscure. The situation can be improved by using the underly-
ing statistical mechanics of the lattice Boltzmann method to apply it at the boundary. This
will be done in the next subsection, which supersedes the previous results.

6.3.3 Method II: Statistical mechanics based derivation

In chapter 3, we have discussed the statistical mechanics of the lattice Boltzmann method.
It provides a systematic derivation of the equilibrium distribution from the entropy of the
generalized lattice gas model. The statistical considerations remain valid for the reduced
symmetry lattice model, hence the entropy at the boundary keeps the same form as in the
bulk but with the sum running only over allowed links

S({νi}) = −
∑

n·ci>0

(νi ln νi − νi − νi ln ν̄i + ν̄i) . (6.25)

The constraints of mass and momentum conservation are again taken into account via La-
grange multipliers. The functional to maximize at the boundary is then

S({νi}, χ,λ) = S({νi}) + χ

( ∑
n·ci>0

νi − ρ

µ

)
+ λ ·

( ∑
n·ci>0

νici − j

µ

)
. (6.26)

The formal solution for the allowed links has still the same form as in the bulk, if expressed
in terms of the Lagrange multipliers

νB,eq
i = ν̄i exp (χ+ λci) . (6.27)

We can again expand the equilibrium distribution about the reference state where the fluid
is at rest. Furthermore, we assume that the mass density of the boundary node is distributed
among the velocity directions according to

fB,eq
i (ρ, j = 0) = wiρ, (6.28)

which fixes the normalization of the weights to
∑

n·ci>0

wi = K = 1. (6.29)

The reduced symmetry is now taken into account by a larger set of possible weights wi
for the different velocity directions, cf. section 6.2 and table 6.1. After expanding the
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equilibrium distribution up to second order, we have

fB,eq
i = wiρ

[
1 + εχB,(1) + ελB,(1) · ci

+
1

2
ε2

(
χB,(1) + λB,(1) · ci

)2

+ ε2χB,(2) + ε2λB,(2) · ci
]
.

(6.30)

This looks still the same as the bulk expression, but the reduced symmetry is contained in
the Lagrange multipliers. On the first order, the mass and momentum constraints yield

ρ = ρ
(
1 + χB,(1) + AλB,(1)

z

)

jα = ρ
[
Anα(1 + χB,(1)) + (B1δαβ +B2nαnβ)λ

B,(1)
β

] (6.31)

where we have used the lattice sums for the reduced symmetry. The solution for the first-
order Lagrange multipliers is

χB,(1) = −A
P

(u(1)
z − A),

λB,(1)
x =

u
(1)
x

B1

,

λB,(1)
y =

u
(1)
y

B1

,

λB,(1)
z =

u
(1)
z − A

P
,

(6.32)

where

P = B1 +B2 − A2. (6.33)

Proceeding to the second order, we get

0 =
1

2
(χB,(1))2 + AχB,(1)λB,(1)

z +
1

2
(B1δαβ +B2nαnβ)λ

B,(1)
α λ

B,(1)
β

+ χB,(2) + AλB,(2)
z ,

0 =
A

2
(χB,(1))2 + (B1 +B2)χ

B,(1)λB,(1)
z + AχB,(2) + (B1 +B2)λ

B,(2)
z

+
C1

2
λB,(1)
α λB,(1)

α +
2C1 + C2

2
(λB,(1)

z )2,

0 = B1χ
B,(1)λB,(1)

x,y +B1λ
B,(2)
x,y + 2C1λ

B,(1)
x,y λB,(1)

z ,

(6.34)
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and the second-order Lagrange multipliers thus are

χB,(2) =

(
AZ

P
− P

2

)
(u

(1)
z − A)2

P 2
−

(
A(AB1 − C1)

2P
+
B1

2

)
(u

(1)
x )2 + (u

(1)
y )2

B2
1

,

λB,(2)
x =

AB1 − C1

B1

u
(1)
x (u

(1)
z − A)

B1P
,

λB,(2)
y =

AB1 − C1

B1

u
(1)
y (u

(1)
z − A)

B1P
,

λB,(2)
z =

AB1 − C1

2P

(u
(1)
x )2 + (u

(1)
y )2

B2
1

− Z

P

(u
(1)
z − A)2

P 2
,

(6.35)

where

Z = A3 − 3

2
A(B1 +B2) +

1

2
(3C1 + C2). (6.36)

These expressions are generally valid for a locally plane boundary whose normal points
in the positive z-direction. In the next step, the coefficients of the lattice sums have to be
determined. This will be done by looking at the pressure tensor. We have already seen in the
previous section that it is useful to start with the tangential components Πxx, Πyy and Πxy,
for which we have

ρc2s + ρu2
x = ρ

[
B1

(
1 + εχB(1) +

1

2
(εχB,(1))2 + ε2χB,(2)

)

+C1

(
ελB,(1)

z + ε2χB,(1)λB,(1)
z + ε2λB,(2)

z

)

+
D1

2
ε2λB,(1)

γ λB,(1)
γ +

2D1 +D3

2

(
ελB,(1)

x

)2
+
D2

2

(
ελB,(1)

z

)2
]

= ρ
[
B1 + (C1 − AB1)ελ

B,(1)
z

+

(
−AB1(AB1 − C1)

2P
− B2

1

2

+
C1(AB1 − C1)

B1

+
3D1 +D3

2

) (
ελB,(1)

x

)2

+

(
−AB1(AB1 − C1)

2P
− B2

1

2

+
C1(AB1 − C1)

B1

+
D1

2

) (
ελB,(1)

y

)2

+

(
B1A

2

2
+
B1AZ

P
− B1P

2

− AC1 − C1Z

P
+
D1 +D2

2

) (
ελB,(1)

z

)2
]
,

(6.37)
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ρc2s + ρu2
y = ρ

[
B1

(
1 + εχB(1) +

1

2
(εχB,(1))2 + ε2χB,(2)

)

+C1

(
ελB,(1)

z + ε2χB,(1)λB,(1)
z + ε2λB,(2)

z

)

+
D1

2
ε2λB,(1)

γ λB,(1)
γ +

2D1 +D3

2

(
ελB,(1)

x

)2
+
D2

2

(
ελB,(1)

z

)2
]

= ρ
[
B1 + (C1 − AB1)ελ

B,(1)
z

+

(
−AB1(AB1 − C1)

2P
− B2

1

2

+
C1(AB1 − C1)

B1

+
D1

2

) (
ελB,(1)

x

)2

+

(
−AB1(AB1 − C1)

2P
− B2

1

2

+
C1(AB1 − C1)

B1

+
3D1 +D3

2

) (
ελB,(1)

y

)2

+

(
B1A

2

2
+
AZB1

P
− B1P

2

− AC1 − ZC1

P
+
D1 +D2

2

) (
ελB,(1)

z

)2
]
,

(6.38)

and

ρuxuy = ρ
[
D1ε

2λB,(1)
x λB,(1)

y

]
. (6.39)

This almost directly leads to

B1 = c2s,

C1 = AB1,

D1 = c4s,

D2 = B1B2,

D3 = 0.

(6.40)

6.3.4 Weights wi for the reduced D3Q19 model

Since in the D3Q19 model we have, cf. equation (6.6)

B1
a2

τ 2
= 3D1 +D3, (6.41)

the speed of sound is fixed to c2s = 1
3
a2

τ2 , which is compatible with the bulk speed of sound.
If we plug in the results obtained so far in the equation system (6.6), we get the following
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equations for the coefficients

K = 1,

B1 = c2s,

B2 = A
a

τ
− c2s,

C1 = Ac2s,

C2 = A
a2

τ 2
− 3Ac2s = 0,

D1 = c4s,

D2 = Ac2s
a

τ
− c4s,

D3 = 0,

D4 = A
a3

τ 2
+ 3c4s − 6Ac2s

a

τ
.

(6.42)

This system shows that we are left with only one free parameter A, for which we have to
find an additional condition.

Up to here, only local constitutive equations for the moments were considered. At the
boundary, however, it is also important to take into account the fluxes between the bulk
and the boundary. In particular, it has to be assured that the boundary does not lead to
an accumulation of mass on the wall, that is, the mass fluxes between the bulk and the
surface have to balance. In equilibrium, the amount of mass that streams to the wall has
to be compensated by an equal amount of mass that leaves the wall. We will refer to this
condition as the bulk balance condition. In a pure bulk system, the balance is guaranteed
because the equilibrium distribution is the same on all lattice sites. On the boundary, where
the equilibrium is different from the bulk, we have to satisfy bulk balance as an additional
condition. In a fluid at rest, the mass streaming from the bulk to the surface is given by

ρin =
∑

n·ci<0

f eq
i (u = 0). (6.43)

Vice versa, the mass streaming from the surface to the bulk is given by

ρout =
∑

n·ci>0

fB,eq
i . (6.44)

The condition of bulk balance then reads

ρin = ρout. (6.45)

The evaluation of the sum of the bulk equilibrium can be carried out explicitly for u = 0
and yields

ρin =
∑

n·ci<0

f eq
i =

1

6
ρ. (6.46)
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On the boundary, we consequently have to require that ρout = ρ/6. We get

ρout =
∑

n·ci>0

wiρ = Aρ
τ

a
, (6.47)

which delivers the desired condition on the coefficient A

A =
1

6

a

τ
. (6.48)

Now we have enough equations, namely five, to determine the five free weights of the re-
duced D3Q19 model. From the equation system (6.6) we finally obtain

w0 =
7

18
, w1 =

1

12
, w2 =

1

36
, w3 =

1

18
, w4 =

1

36
. (6.49)

This is a nontrivial result which was previously not known.

6.3.5 Boundary equilibrium for reduced D3Q19 model

The boundary equilibrium distribution for the reduced D3Q19 model is now completely
specified. The most instructive way to write it down is in terms of the first order Lagrange
multipliers λB,(1)

α . Collecting all intermediate results we finally arrive at

fB,eq
i = ρwi

{
1 + ε [ciα − Anα]λ

B,(1)
α + ε2

[
1

2
ciαciβ − B1

2
δαβ

− Anαciβ − Z

P
nαnβnγciγ

+

(
AZ

P
− P

2
+
A2

2
+
B1

2

)
nαnβ

]
λB,(1)
α λ

B,(1)
β

}
(6.50)

where the Lagrange multipliers can be generally expressed as

λB,(1)
α =

u
(1)
β

B1

δαβ +

(
u

(1)
β − A

P
− u

(1)
β

B1

)
nαnβ. (6.51)

In the expression (6.50) we can conveniently identify the terms that are already present in
the bulk equilibrium distribution, and the new terms that are due to the reduced symmetry
at the boundary. The x- and y-components of the Lagrange multipliers are still the same as
in the bulk, whereas the z-component has to be modified at the boundary. We can observe
that there is a shift A for the normal component uz of the fluid velocity in the Lagrange
multiplier. This means that the reference state around which we expand actually has a non-
vanishing velocity component normal to the boundary of uz = 1/6 (a/τ). The reason for
this is the bulk balance condition, which requires that there is a mass flux from the surface
that balances the incoming mass flux from the bulk. This is important for the implementation
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equilibrium distribution

fB,eq
i = ρwi

{
1 + ε [ciα − Anα]λ

B,(1)
α + ε2

[
1
2
ciαciβ − B1

2
δαβ − Anαciβ − Z

P
nαnβnγciγ

+
(
AZ
P
− P

2
+ A2

2
+ B1

2

)
nαnβ

]
λ
B,(1)
α λ

B,(1)
β

}

Lagrange multipliers
χB,(1) −A

P
(u

(1)
z − A)

λ
B,(1)
x

u
(1)
x

B1

λ
B,(1)
y

u
(1)
y

B1

λ
B,(1)
z

u
(1)
z −A
P

χB,(2) − (u
(1)
x )2+(u

(1)
y )2

2B1
+

(
AZ
P
− P

2

) (u
(1)
z −A)2

P 2

λ
B,(2)
x 0

λ
B,(2)
y 0

λ
B,(2)
z − Z

P 3 (u
(1)
z − A)2

coefficients
A 1

6
a
τ

B1
1
3
a2

τ2

B2 −1
6
a2

τ2

C1
1
18
a3

τ3

C2 0

D1
1
9
a4

τ4

D2 − 1
18
a4

τ4

D3 0

D4
1
6
a4

τ4

P 5
36
a2

τ2

Z 5
108

a3

τ3

weights
w0

7
18

w1
1
12

w2
1
36

w3
1
18

w4
1
36

Table 6.2: Summary of the results for the equilibrium distribution of the reduced D3Q19 model.

of the algorithm, because it means that we have to plug in the value of the reflected velocity
into the equilibrium distribution, and not the desired hydrodynamic velocity of the boundary.
The hydrodynamic velocity is given by the arithmetic mean of the pre- and post-reflection
velocities at the boundary node. This is in accordance with the definition (4.65) of the
hydrodynamic velocity in the presence of external forces. To conclude the derivation of the
equilibrium distribution for the reduced D3Q19 model, we summarize the results for the
relevant quantities again in table 6.2.

6.4 MRT model for the reduced symmetry

The equilibrium distribution is already enough to implement a simple BGK model at the
boundary. However, as stated above, the collision processes at the surface are more com-
plex and hence it is desirable to have a more flexible collision operator. In the following, we
therefore attempt to construct a MRT-like collision operator for the boundary. In analogy
to the bulk, this requires first to construct the basis for mode space in which the collision
operator is assumed to be diagonal. The construction of the moment basis follows the same
reasoning as in the bulk: Starting with the conserved moments, we systematically orthogo-
nalize polynomials of the ĉi by the Gram-Schmidt procedure. The orthogonality relation

∑
i

wiekieli = bkδkl (6.52)
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has the same form as in the bulk, but the weights wi are replaced with the weights for the
boundary equilibrium. The same holds for the weights used to calculate the normalization
factors

bk =
∑
i

wie
2
ki. (6.53)

The mass mode still corresponds to the basis vector

e0i = 1. (6.54)

Next, we orthogonalize the polynomials ĉiα and get

e1i = ĉix,

e2i = ĉiy,

e3i = ĉiz − 1

6
.

(6.55)

The last of these basis vectors shows that ĉiz is not automatically orthogonal to the mass
mode any more, which is a result of the missing parity in the reduced symmetry. The
form of the basis vector is another hint that the bulk balance condition for the mass flux is
important at the boundary. To proceed to the next basis vectors, we orthogonalize quadratic
polynomials. The reduced symmetry implies the degeneracy ĉiz = ĉ2iz such that ĉ2iz is not
independent any more and must not be orthogonalized. We thus get five basis vectors from
quadratic polynomials

e4i = ĉ2ix + ĉ2iy −
2

3
,

e5i = ĉ2ix − ĉ2iy,

e6i = ĉixĉiy,

e7i = ĉix(ĉiz − 1

6
),

e8i = ĉiy(ĉiz − 1

6
).

(6.56)

In analogy to the bulk, we can identify e4i as a bulk-like mode, and e5i to e8i as shear like
modes. Continuing the Gram-Schmidt procedure with the higher order polynomials and
carefully sorting out any degeneracies, we obtain the remaining five basis vectors

e9i = (ĉ2i −
3

5
ĉ2iz −

7

5
)ĉix,

e10i = (ĉ2i −
3

5
ĉ2iz −

7

5
)ĉiy,

e11i = (ĉ2ix + ĉ2iy −
2

3
)(ĉiz − 1

12
),

e12i = (ĉ2ix − ĉ2iy)(ĉiz −
1

4
),

e13i = ĉ4i −
19

11
(ĉ2ix + ĉ2iy)−

14

11
(ĉ2ix + ĉ2iy)ĉiz −

67

55
ĉiz +

12

55
.

(6.57)
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These are the kinetic modes of the reduced D3Q19 model. From equation (6.53) we get the
normalization factors of the boundary basis vectors

b =

(
1,

1

3
,
1

3
,

5

36
,
4

9
,
4

9
,
1

9
,

5

108
,

5

108
,

1

15
,

1

15
,

11

324
,

1

12
,

28

165

)
. (6.58)

With these basis vectors, the populations can be transformed into the mode space of the
boundary via the transformation

m = MBf , (6.59)

where the transformation matrix is obtained from the basis vectors eki as

MB =




1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 1 −1 1 −1 1 −1 0 0
0 0 0 1 −1 0 1 −1 −1 1 0 0 1 −1

−1
6

−1
6

−1
6

−1
6

−1
6

5
6
−1

6
−1

6
−1

6
−1

6
5
6

5
6

5
6

5
6

−2
3

1
3

1
3

1
3

1
3

−2
3

4
3

4
3

4
3

4
3

1
3

1
3

1
3

1
3

0 1 1 −1 −1 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 −1

6
1
6

0 0 0 −1
6

1
6
−1

6
1
6

5
6
−5

6
0 0

0 0 0 −1
6

1
6

0 −1
6

1
6

1
6
−1

6
0 0 5

6
−5

6

0 −2
5

2
5

0 0 0 3
5
−3

5
3
5
−3

5
0 0 0 0

0 0 0 −2
5

2
5

0 3
5
−3

5
−3

5
3
5

0 0 0 0
1
18

− 1
36

− 1
36

− 1
36

− 1
36

−11
18

−1
9
−1

9
−1

9
−1

9
11
36

11
36

11
36

11
36

0 −1
4

−1
4

1
4

1
4

0 0 0 0 0 3
4

3
4
−3

4
−3

4
12
55

−28
55

−28
55

−28
55

−28
55

0 42
55

42
55

42
55

42
55

0 0 0 0




.

The relations between the moments and the hydrodynamic variables at the boundary are

ρ = m0

jx = m1 a/τ

jy = m2 a/τ

jz = (m3 +m0/6) a/τ

Πxx =
1

2

(
m4 +m5 +

2

3
m0

)
(a/τ)2

Πyy =
1

2

(
m4 −m5 +

2

3
m0

)
(a/τ)2

Πxy = m6 (a/τ)2

Πxz = (m7 +m1/6) (a/τ)2

Πyz = (m8 +m2/6) (a/τ)2.

(6.60)

To proceed further, the projections of the mode basis on the equilibrium distribution have to
evaluated. With the expression (6.50) for the equilibrium distribution and the mode basis eki,
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we get

meq
0 = ρ

meq
1 = ρux (a/τ)−1

meq
2 = ρuy (a/τ)−1

meq
3 = ρ

(
uz − 1

6

a

τ

)
(a/τ)−1

meq
4 = ρ(u2

x + u2
y) (a/τ)−2

meq
5 = ρ(u2

x − u2
y) (a/τ)−2

meq
6 = ρuxuy (a/τ)−2

meq
7 = ρux

(
uz − 1

6

a

τ

)
(a/τ)−2

meq
8 = ρuy

(
uz − 1

6

a

τ

)
(a/τ)−2

meq
9 = 0

meq
10 = 0

meq
11 = 0

meq
12 = 0

meq
13 = 0.

(6.61)

Like in the bulk, the kinetic modes have no projection on the equilibrium distribution be-
cause of the inclusion of the weights wi in (6.52). We further note the special role of
the z-component of the flow velocity, which always appears in its orthogonalized form
uz − 1/6 (a/τ) in the above expressions. This observation has a connection to the bulk
balance condition, as can be seen from the relation

ρouta

τ
= jz. (6.62)

It was already noted above that in order to satisfy bulk balance, the reflected momentum has
to be used for jz and that it has to be jz = 1/6 ρ (a/τ) for a fluid at rest. Here we observe
now, that the corresponding moment m3 vanishes in this case, that is, for a fluid at rest the
momentum-like moments m1 to m3 are consistently all zero. Moreover, there is a relation
between the momentum modes and the first order Lagrange multipliers

ρc2sλ
B,(1)
x = m1 (a/τ),

ρc2sλ
B,(1)
y = m2 (a/τ),

ρPλB,(1)
z = m3 (a/τ).

(6.63)

These relations are similar to the ones obtained in the bulk, except for the z-component
which encodes the effects of the reduced symmetry. It is a striking feature of our formal-
ism, that the reduced symmetry can be systematically incorporated and automatically yields
consistent expressions, if the additional bulk balance condition is taken into account.
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6.4.1 Collision operator at the boundary

It remains to construct a linear collision operator at the boundary. As in the bulk, we as-
sume that the operator is diagonal in mode space such that the collisions describe a linear
relaxation of the non-equilibrium part of moments

m∗neq
k = (1 + λk)m

neq
k . (6.64)

The choice of the eigenvalues λk has to be guided by the symmetry properties of the model.
Looking at the basis vectors, we can divide the modes at the boundary into the conserved
modes m0 to m3, the bulk-like mode m4, the shear-like modes m5 to m8 and the kinetic
modes m9 to m13. We choose to relax the bulk and shear modes with the same eigenvalues
as in the bulk

m∗neq
4 = (1 + λb)m

neq
4 ,

m∗neq
k = (1 + λs)m

neq
k 5 ≤ k ≤ 8.

(6.65)

For the kinetic modes, we use λk = −1 which corresponds to project them out during the
collision step. It should be emphasized that this is only a first guess. Strictly speaking, the
choice of the eigenvalues has to be justified by an asymptotic analysis. This turns out to be
rather complicated and eventually impossible, such that we have to stick to the guess at this
point. It will turn out, unfortunately, that this choice of the MRT collision operator leads to
undesirable artifacts in simulations of simple Poiseuille flow.

6.5 Results for the reduced symmetry model

We have tested the reduced symmetry model for boundary conditions in the case of a
Poiseuille flow in a plane channel, similar to the case in section 5.3. The channel has a
width of Leff = 20a in the z-direction. Periodic boundary conditions were applied in the x-
and y-direction. The fluid has a density of ρ = 1.0 and a kinematic viscosity of ν = 3.0, both
measured in lattice units. The flow is driven by a volumetric force fext = 0.01. The boundary
nodes are located on the first and last lattice layer with respect to the z-coordinate. On these
nodes, boundary conditions are applied in the following way. After the streaming step, we
transform the incoming populations into moment space according to equation (6.59). Note
that some of the entries in the matrix MB change their sign depending on whether we treat
the top or bottom wall. After the transformation, we can apply the necessary operations
in moment space: the z-component of the flow velocity is reversed, while the x- and y-
components are decreased by a frictional force in order to generate a tunable slip boundary
condition, cf. section 5.3. The shear and bulk-like modes are then relaxed towards their
equilibrium value which is evaluated with the intermediate flow velocity. The eigenvalues
λb = λs = λ are calculated from the viscosity ν. Having applied these modifications to the
moments, they are transformed back to the outgoing populations with the respective inverse
matrix for the space spanned by the reflected directions. This completes the boundary colli-
sion process. It should be noted that all operations require local information only, and that
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Figure 6.3: Simulation results with the local boundary condition in the reduced symmetry. The
profiles deviate from the analytical solution and show a kink next to the boundary. The latter is
caused by an unphysical momentum transfer due to artifacts stemming from the reduced symmetry.
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6 Reduced symmetries in lattice Boltzmann models

only two parameters are involved, namely the viscosity ν (a bulk property) and the friction
coefficient ζ (a surface property).

The results for the velocity profiles in the channel are shown in figure 6.5 for three different
friction coefficients between 1.0 and 5.0. The plots show a parabolic profile but, once more,
a kink is present at the fluid node next to the boundary. Although visibly the curves with
the kink look similar to those observed in section 5.3, the kink has a different origin here,
as will be brought out below. To clarify that the kink is not an artifact related to the force
application, we have tried different variants of applying the force directly to the populations
rather than in mode space. The results for the velocity profiles remain visibly unchanged.
By experimenting with the eigenvalues of the collision operator, the modes m7 and m8 can
be identified as being relevant for the kink. This stands to reason because these modes are
connected to the normal stress components Πxz and Πyz which must have a jump, if the
velocity profiles has a kink. However, the quantitative impact of those modes can not be
systematically assessed so far. In principle it is required to conduct an asymptotic analysis
or Chapman-Enskog expansion of the boundary condition for the reduced symmetry model.
Some attempts to do this are presented below, but they eventually remained unsuccessful.
Nevertheless, the origin of the kink can be semi-systematically identified by investigating
how the Stokes equation emerges from the lattice Boltzmann equation.

6.5.1 The Stokes equation and the reduced symmetry lattice Boltzmann
model

One of the central ideas of the boundary condition in the reduced symmetry is that the
correct macroscopic boundary values emerge from the dynamics on the lattice level, in the
same way that the lattice Boltzmann equation generates Navier-Stokes behavior in the bulk.
Instead of rigorously proving this by a Chapman-Enskog expansion, a slightly more heuristic
argument shall be followed here.

The lattice Boltzmann equation consists of the collision and the streaming phase. During
the latter, populations propagate on the lattice and transport information about the hydrody-
namic fields from one lattice site to another. The interplay of the collisions and the streaming
eventually leads to the macroscopic flow profile. To study this in more detail, one can look
at the x-component of the momentum density. We first consider the behavior in the bulk.
Using the definition (2.30) and the lattice Boltzmann equation (2.39), we have

jx(r, t) =
∑
i

fi(r, t)cix

=
∑

n·ci>0

fi(r, t)cix +
∑

n·ci=0

fi(r, t)cix +
∑

n·ci<0

fi(r, t)cix

=
∑

n·ci>0

f ∗i (r− τci, t− τ)cix +
∑

n·ci=0

f ∗i (r− τci, t− τ)cix

+
∑

n·ci<0

f ∗i (r− τci, t− τ)cix.

(6.66a)
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If we assume that the flow is in the stationary state and that the profile is invariant in the x-
and y-direction, the momentum density is only dependent on the z-coordinate and we can
write

jx(z) =
∑
ciz=+1

f ∗i (z − a)cix +
∑
ciz=0

f ∗i (z)cix +
∑
ciz=−1

f ∗i (z + a)cix. (6.67)

The second-order Chapman-Enskog result for this specific flow is given by, cf. (4.42)

f ∗i = wiρ+ wicix
ρux
c2s

+
ρu2

x

2c2s
E

(2)
ixx + ρτ

(
1

λs
+ 1

)
∂ux
∂rz

E
(2)
ixz

+
τ

2c2s

(
1

λg
+ 1

) (
τ

2c2s

∂ρu2
x

∂rz
− τηs

cs

∂2ux
∂r2

z

)
E

(3)
ixxz +

wiτ

c2s
cixfext.

(6.68)

If we plug this expression into (6.67) and exploit that sums over odd polynomials in cix
vanish, we obtain

∑
ciz=+1

f ∗i (z − a)cix =
1

6
ρux(z − a) +

ρa

6

(
1

λs
+ 1

)
∂ux
∂rz

∣∣∣∣
z−a

+
τ

6
fext,

∑
ciz=0

f ∗i (z)cix =
2

3
ρux(z) +

2τ

3
fext,

∑
ciz=−1

f ∗i (z + a)cix =
1

6
ρux(z + a)− ρa

6

(
1

λs
+ 1

)
∂ux
∂rz

∣∣∣∣
z+a

+
τ

6
fext,

(6.69)

where the bulk weights wi of the D3Q19 model were explicitly used. The hydrodynamic
flow velocity ux can be Taylor expanded around z, and the same goes for the gradient. If
only second derivative terms are kept we get

ux(z ± a) = ux(z)± a
∂ux
∂rz

∣∣∣∣
z

+
a2

2

∂2ux
∂r2

z

∣∣∣∣
z

± . . . ,

∂ux
∂rz

∣∣∣∣
z±a

=
∂ux
∂rz

∣∣∣∣
z

± a
∂2ux
∂r2

z

∣∣∣∣
z

+ . . . .

(6.70)

Putting all results together yields a differential equation for the flow velocity profile

ρux(z) =
1

6
ρux(z − a) +

ρa

6

(
1

λs
+ 1

)
∂ux
∂rz

∣∣∣∣
z−a

+
τ

6
fext

+
2

3
ρux(z) +

2τ

3
fext

+
1

6
ρux(z + a)− ρa

6

(
1

λs
+ 1

)
∂ux
∂rz

∣∣∣∣
z+a

+
τ

6
fext

= ρux(z) +
ρa2

6

∂2ux
∂r2

z

∣∣∣∣
z

− ρa2

3

1 + λs
λs

∂2ux
∂r2

z

∣∣∣∣
z

+ τfext

= ρux(z)− ρc2sτ
2

2

2 + λs
λs

∂2ux
∂r2

z

∣∣∣∣
z

+ τfext.

(6.71)
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Figure 6.4: Schematic illustration of the emergence of the Stokes equation on the lattice. The full
difference equation arises from a combination of terms that carry information about the flow profile
from both sides of any given lattice site. At the boundary, the information from one side is missing,
thus the Stokes equation is not reproduced.

Finally we arrive at

ηs
∂2ux
∂r2

z

= −fext, (6.72)

which is nothing but the Stokes equation. The important point to note here is that the Stokes
equation emerges from the combination of terms streaming to the node at z from both sides,
as illustrated in figure 6.4. If either one of the terms with argument z − a or z + a is
omitted, the resulting equation is different from the Stokes equation. In other words, the
Stokes equation is inherently a bulk equation. Therefore it is not necessarily fulfilled at a
boundary node, where information streams in from only one side. As a consequence, it can
not be expected that the correct Stokes profile is generated by the boundary condition in
the reduced symmetry. To be more precise, this is because the information about how the
profile extrapolates beyond the boundary is missing. The local boundary scheme hence has
to impose the desired velocity at the boundary, in the very sense of a Dirichlet boundary
condition. In this aspect, local boundary conditions differ crucially from the simple link-
based reflection schemes. Following this line of thinking further, it becomes clear that in
fact all hydrodynamically relevant moments have to be prescribed correctly at the boundary.
Besides the mass and momentum, this includes the gradients of velocity field, i.e., the non-
equilibrium part of the stress tensor. The need to fix Πneq was already pointed out by Lätt
[101, 140] in regard to various closure relations. In the reduced symmetry, however, the
attempt to fix the normal stresses at the boundary reveals another complicacy.

6.5.2 A closer look on the collisions in the reduced mode space

The tangential stresses Πxz and Πyz are related to the modes m7 and m8 in the reduced
symmetry, cf. expressions (6.60). Consequently, in order to prescribe the tangential stresses
we have to find the correct values to fix m7 and m8. However, a second look reveals another
subtlety here. In the reduced symmetry mode space, Πxz does not only depend on m7 but
also on m1 ∝ jx. Looking at this relation in another way, this means that the stress com-
ponent Πxz has projections on the populations in the parallel subspace, i.e., ci = (±1, 0, 0).
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This leads to a problem when relaxing the modes during the collision process because there
is an inherent coupling of degrees of freedom that one would rather relax independently.
For example, if we were to relax the stress component Πxz, this would imply a relaxation
of m7 and m1 simultaneously according to equation (6.60). This is clearly not feasible as it
would violate momentum conservation. Conversely, the relaxation of the mode m7 can not
be interpreted in terms of the hydrodynamic variables, since the reduced symmetry mixes
m7 with the conserved mode m1. It remains unclear, how the relaxations in the reduced
mode space can be made consistent with the hydrodynamic fields in the bulk. We believe
that more light could be shed on this issue by asymptotic analysis. Since our attempts have
remained unfruitful so far, this constitutes an unresolved problem.

6.6 Revised boundary model

Although the above analysis may deliver some doubts about the feasibility of the reduced
symmetry approach, we shall show that the model can still be tamed to our needs, at least for
the simple Poiseuille flow. For this purpose, we will take the various points of the analysis as
hints for additional modifications of the boundary condition in the reduced symmetry. The
first essential observation is that none of the listed issues is related to the equilibrium distri-
bution, which we can therefore keep in its current form. We have to modify the boundary
scheme to impose the Dirichlet conditions on the hydrodynamic variables. Instead of modi-
fying the momentum density by a friction force, we prescribe the desired slip velocity at the
boundary by setting the momentum modes to the corresponding values. Fixing of the non-
equilibrium stresses is yet not straightforward because of the structure of the mode space.
Therefore we resort to an indirect way using a bounce-back scheme for the non-equilibrium
parts of the populations

f+B,neq
i = fB,neq

i− , (6.73)

where ci− = −ci. This does not alter the conserved moments and it assures that the non-
equilibrium stress before and after the reflection is the same

∑
n·ci≤0

fB,neq
i cici =

∑
n·ci≥0

fB,neq
i cici. (6.74)

Furthermore, the relaxation at the wall has to be modified as the MRT-like model can not be
implemented consistently. In this context, we resort to the simpler BGK model with a single
relaxation rate λ. This has the advantage that it does not rely on the structure of the mode
space and it can directly be formulated in terms of the populations

f ∗B,neq
i = −λfB,neq

i . (6.75)

The difference compared to the MRT-like relaxations used above is that the kinetic modes
are not projected out instantaneously, but they are relaxed at the same rate as the hydrody-
namic modes.
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6 Reduced symmetries in lattice Boltzmann models

In summary, we are now back to a boundary closure scheme that expresses the outgoing
populations in terms of the incoming populations at the boundary node

f ∗Bi = fB,eq
i − λ

(
fBi− − fB,eq

i−

)
, (6.76)

where the equilibrium distributions are calculated by the formula for the reduced symme-
try.

The modified boundary condition with bounce-back of non-equilibrium parts and BGK-like
relaxation was once more applied to the case of Poiseuille flow in a plane channel. The
setup of the system was as described above and the same parameters for the fluid were used.
Instead of varying the friction coefficient, several values for the slip velocity at the boundary
were imposed, ranging from stick boundaries to uslip = 0.4. The results are plotted in fig-
ure 6.5. There is no kink visible in the curves and the match with the analytical solution is
visibly perfect. The amount of slippage can be controlled by the prescribed value of the slip
velocity uslip as desired. This shows that the modifications to the boundary condition can
indeed avoid the artifacts observed for the earlier attempts. The reason is that the boundary
scheme is now capable of controlling the momentum flux at the boundary node, an essential
prerequisite to reproduce the Stokes equation at the hydrodynamic level. However, it should
be noted that this is only possible by avoiding the mode space of the reduced symmetry
model and thereby the advantages of MRT-like models are sacrificed. Moreover, a rigorous
justification in terms of a Chapman-Enskog expansion is still missing. On the pro-side, it
should be pointed out that the results for the Poiseuille flow show that reduced symmetry
lattice Boltzmann models are a feasible approach to treat rigid boundaries. The equilib-
rium distribution for such models can be derived systematically in the statistical mechanics
framework and can be readily applied to straight boundaries. The resulting boundary scheme
satisfies the conservation laws and is completely local, which makes it very useful for par-
allel implementations. It has yet to be shown whether the novel boundary condition yields
acceptable results for more complicated flows than plane Poiseuille flow.
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Figure 6.5: Simulation results for the reduced symmetry model with bounce-back of non-equilibrium
parts and a BGK collision operator. No kink is visible in the profiles and an accurate match to the
analytical solution is achieved.
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6 Reduced symmetries in lattice Boltzmann models

6.7 Attempts for a Chapman-Enskog expansion at the
boundary

The construction of the boundary condition in the reduced symmetry is mainly based on
heuristic arguments so far. A rigorous proof of its correctness and an assessment of the order
of accuracy requires a more systematic analysis. The Chapman-Enskog expansion is the
standard technique to derive the hydrodynamic equations in the bulk case. In this section, we
attempt to apply the Chapman-Enskog expansion to the reduced symmetry model. Although
we have not completely succeeded in finding a consistent way of doing this, it is worthwhile
to sketch some pieces of the puzzle in order to point out some of the difficulties involved
with the boundary.

6.7.1 Second and third moment in the reduced symmetry

Some of the components of the pressure tensor were not explicitly evaluated during the
construction of the equilibrium distribution. Since they are needed in the Chapman-Enskog
expansion, we evaluate them now. From equations (6.60) and (6.61) we immediately get

ΠB,eq
xx = ρc2s + ρu2

x

ΠB,eq
yy = ρc2s + ρu2

y

ΠB,eq
xy = ρuxuy,

ΠB,eq
xz = ρuxuz,

ΠB,eq
yz = ρuyuz,

ΠB,eq
zz = ρuz

a

τ
.

(6.77)

The last expression makes the degeneracy of the zz-stress and the z-momentum explicit. On
the lowest order in the Chapman-Enskog expansion, it is also necessary to evaluate the third
moment Φ of the equilibrium distribution. At the boundary we get

ΦB,eq
αβγ =

∑
n·≥0

fB,eq
i ciαciβciγ

= ρ

[(
1 + εχB,(1) +

1

2
(εχB,(1))2 + ε2χB,(2)

) ∑
n·≥0

wiciαciβciγ

+
(
ελ

B,(1)
δ + ε2χB,(1)λ

B,(1)
δ + ε2λ

B,(2)
δ

) ∑
n·≥0

wiciαciβciγciδ

+
1

2
ε2λ

B,(1)
δ λB,(1)

ε

∑
n·≥0

wiciαciβciγciδciε

]
.

(6.78)
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Using the lattice tensors for the reduced symmetry and the explicit values for the reduced
D3Q19 model we can determine the components of the third moment as

ΦB,eq
xxx = ρux

a2

τ 2
,

ΦB,eq
yyy = ρuy

a2

τ 2
,

ΦB,eq
zzz = ρuz

a2

τ 2
,

ΦB,eq
xxy =

ρc2s
a
τ
− A

(
uy
a

τ
− uyuz

)
,

ΦB,eq
xyy =

ρc2s
a
τ
− A

(
ux
a

τ
− uxuz

)
,

ΦB,eq
xxz = ρc2s

(
uz +

A

c2s
u2
x −

A

2c2s
u2
y

)
,

ΦB,eq
yyz = ρc2s

(
uz − A

2c2s
u2
x +

A

c2s
u2
y

)
,

ΦB,eq
xzz = ρuxuz

a

τ
,

ΦB,eq
yzz = ρuyuz

a

τ
,

ΦB,eq
xyz = 0.

(6.79)

These expressions are clearly very different from the bulk expression (4.21). If they were
plugged into the first order equation (4.9b), the derivative

∂

∂t1
Πeq
αβ +

∂

∂rγ
Φeq
αβγ (6.80)

would yield additional spurious terms in the normal components. However, it is doubtful
whether the Chapman-Enskog expansion directly carries over from the bulk to the boundary.
This will be discussed in the next subsection.

6.7.2 Anisotropic Chapman-Enskog expansion: a potential way out?

The pivotal point in the Chapman-Enskog expansion is the scale-separated version of the lat-
tice Boltzmann equation (4.8) which can then be solved stepwise by inserting the solution
on lower orders into the equations on higher orders. In the derivation of the scale-separated
equations two expansion steps are involved. The first step is the introduction of the scaling
parameter ε and the expansion of the populations in powers of ε. The second step is the
introduction of the coarse-grained variables r1, t1, t2 and the Taylor expansion of the popu-
lations written in terms of the coarse-grained variables. In the philosophy of our boundary
condition, we have assumed that the notion of an equilibrium distribution is still valid and
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that the populations relax towards that equilibrium during the collisions. In this sense, the
expansion in powers of ε remains valid

fBi = fB,eq
i + εf

B,(1)
i + ε2f

B,(2)
i + . . . . (6.81)

However, since the equilibrium distribution on the boundary is different from the equilib-
rium distribution in the bulk, there is a spatial discontinuity in the populations at the bound-
ary. Therefore the Taylor expansion around a boundary node is not applicable. We have
to avoid expanding the populations in the direction of the discontinuity. In the case of a
straight boundary with normal in the z-direction this means that the Taylor expansion can
only be executed in the x- and y-direction but not in the z-direction. In this way, we may try
to expand the populations as

fi(r1x + ετcix, r1y + ετciy, rz + τciz, t1 + ετ, t2 + ετ 2)

= fi(r1x, r1y, rz + τciz, t1, t2)

+ ετ

(
∂

∂t1
+ cix

∂

∂r1x
+ ciy

∂

∂r1y

)
fi(r1x, r1y, rz + τciz, t1, t2)

+ ε2τ

[
∂

∂t2
+
τ

2

(
∂

∂t1
+ cix

∂

∂r1x
+ ciy

∂

∂r1y

)2
]
fi(r1x, r1y, rz + τciz, t1, t2).

(6.82)

For directions i with ciz = 0 this reduces to the same expression as in the bulk, thus the
anisotropy induced by the boundary does not affect the parallel directions. In the normal
direction, however, there is an additional non-local difference term involving populations at
rz and rz + τciz which contributes at all orders of the expansion. In particular the zeroth-
order equation becomes

f
(0)
i (r1x, r1y, rz + τciz, t1, t2)− f

(0)
i (r1x, r1y, rz, t1, t2) = ∆

(0)
i (r1x, r1y, rz, t1, t2). (6.83)

That is, the collision operator has non-vanishing contributions at the zeroth order due to the
discontinuity at the boundary. The difference-term on the left hand side leads to difficulties
when one tries to construct the moment equations because the sum

∑
i f

(0)
i (r1x, r1y, rz +

τciz, t1, t2) runs through different locations, i.e., it is not a local moment on a lattice site.
It is therefore unclear how macroscopic equations should be derived within the anisotropic
Chapman-Enskog expansion.

There is actually an even more severe problem, which has to do with the reflections at the
wall. Let us look at an outgoing link ci · n > 0 at a boundary node. The post-streaming
population of this link is by construction zero

fi(rB, t) = 0, n · ci > 0, (6.84)

because no populations stream from the solid into the boundary node. Consequently we
have

f neq
i (rB, t) = fi(rB, t)− f eq

i (rB, t) = −f eq
i (rB, t). (6.85)
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This leads to a contradiction because according to the expansion (6.81), the left-hand side
is of the order O(ε1) while the right-hand side is of the order O(ε0). Hence, the suggested
anisotropic Chapman-Enskog expansion is faced with an inconsistency. The source are
the reflections at the wall, which instantaneously change the populations by an O(1) term.
Another way to look at this is to notice that the subspace of the full lattice model that is
allowed to be populated is changed by the reflections, i.e., the reduced symmetry before and
after the reflections is not the same but is changed by a parity transformation. In this sense,
the equilibrium distribution is not an invariant under reflections. We have not succeeded in
incorporating this into a consistent Chapman-Enskog procedure, which we therefore have
to leave as an open issue.

In conclusion, it can be said that the reduced symmetry seems so far inaccessible to the
Chapman-Enskog expansion. The reasons are the discontinuity of the populations at the
wall and the reduced symmetry, which preclude a straightforward expansion of the lattice
Boltzmann equation. A rigorous asymptotic analysis turns thus out to be highly complicated.
Probably it even requires to develop more sophisticated mathematical techniques which are
beyond the scope of this work [cf. Refs. 92, 97 and the references therein].
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7 Conclusions, discussion and outlook

This thesis presents aspects of method development for simulations of complex fluids and
microflows within the lattice Boltzmann model. The lattice Boltzmann model was chosen
because it has proven to be successful in simulating hydrodynamic interactions in soft matter
systems. It has an established foundation in terms of kinetic theory and can be systematically
linked to the hydrodynamic level by methods from asymptotic analysis. The properties
of the solvent, such as density and viscosity, can be directly adjusted by the respective
simulation parameters. In addition, lattice Boltzmann is very flexible and extensible, for
example, it is possible to couple coarse-grained representations of colloids and polymers to
the hydrodynamic flow field. The basics of the lattice Boltzmann method and its asymptotic
analysis were introduced in chapters 2 and 4.

One major topic of this work was the treatment of thermal fluctuations in the lattice Boltz-
mann model, which was discussed in chapter 3. Previously, there was a lack of clarity
about the correct way of adding thermal fluctuations to the lattice Boltzmann variables. In
particular, it was debated whether the kinetic modes have to be thermalized even though
they yield no contribution to the hydrodynamic equations. To tackle this problem, the gen-
eralized lattice gas model was developed and subsequently used to derive the equilibrium
distribution of the lattice Boltzmann populations within a maximum entropy formalism. In
doing so, the connection to the underlying statistical mechanics was restored. If the colli-
sion operator includes thermal fluctuations, it can be viewed as a Monte-Carlo process. The
statistical perspective then implies that detailed-balance has to be satisfied, which leads to
thermal fluctuations that are simultaneously consistent with statistical mechanics and hydro-
dynamics. The crucial result is that detailed-balance is only satisfied if the kinetic modes
are thermalized accordingly. This ultimately clarifies the role of fluctuations in the lattice
Boltzmann model, a question which, until now, was not answered satisfactorily.

The statistical mechanics framework of the lattice Boltzmann equation bears potential for
future extensions. One particular case where the generalized lattice gas model will be use-
ful is the development of advanced multiphase models. The difficulty in this context is to
couple the thermodynamics of the interface between the phases to the hydrodynamics of
the fluids in a consistent way. The existing multiphase models are constructed in a rather
heuristic fashion. We believe that the statistical mechanics approach helps to improve these
algorithms systematically.

In chapters 5 and 6, boundary conditions for the lattice Boltzmann model were discussed.
Boundary conditions become particularly important in microfluidic devices where the sur-
face to volume ratio is large. In this case, the fluid flow can be strongly affected by fluid-
solid interactions at the boundary. The classical hydrodynamic stick boundary condition is
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only valid up to Knudsen numbers of the order of 0.1. Beyond this value, apparent slip is
observed at the boundary and the no-slip condition is no longer appropriate. Most work
on boundary conditions in the lattice Boltzmann model has focused on the no-slip boundary
condition. In this work, a boundary condition for tunable slip was developed that is based on
the idea of a mesoscopic friction force at the boundary. The model has the advantage that it
only introduces a single additional parameter for the boundary condition, which can be used
to tune the amount of slippage. Moreover, the concept of a friction force at the boundary
can be directly applied in other mesoscopic simulation methods, such as dissipative particle
dynamics or multi-particle collision dynamics. In the lattice Boltzmann method, the de-
tails of the microscopic implementation of the friction force are highly relevant. This was
demonstrated by the comparison of the “canonical” and the “primitive” implementation in
section 5.3. While the canonical force implementation was known to be superior in the bulk,
it has to be discarded at the boundary in favor of the primitive force implementation. The
reason was identified by an analytical analysis of the flow profile revealing that the canonical
implementation is affected by spurious momentum terms that lead to a kink in the measured
velocity profile. In contrast, the primitive implementation produces smooth velocity profiles
that match the analytical prediction. This shows that the wall friction model can be used
to model a slip velocity in microflows. The friction parameter is related to the slip length,
which is a quantity that can be either measured in experiments or fitted to available data. The
method can thus be used to study the impact of the slip length on the behavior of microflows.
So far, only Poiseuille flow in a plane channel geometry has been simulated, which served
as a basic test case. Since this is a very special situation, it does not say too much about
the general behavior of the boundary condition. For example, the accuracy of the method in
curved geometries remains to be investigated. Also patterned surfaces with locally varying
boundary friction are interesting and particularly relevant in regard to generalizations of the
boundary condition to the recently introduced concept of tensorial slip [172]. Furthermore,
it would be very interesting to compare the lattice Boltzmann implementation of the wall
friction model to its counterpart in dissipative particle dynamics.

With regard to the Navier slip boundary condition in hydrodynamics, several other open
questions remain to be investigated. Recent experimental results suggest that the linear
constitutive equation for the slip velocity has to be replaced by a second-order boundary
condition above a critical Knudsen number of 0.3. Such a nonlinear dependence can prob-
ably not be modeled accurately within the wall friction model. It needs to be investigated
how far the validity of the wall friction model extends. Another point concerns thermal
effects in microflows. It is known that, besides velocity slip, flows in microchannels show
a temperature jump at the wall. Moreover, the viscous dissipation at low Reynolds number
can lead to considerable heat generation in the fluid. It is therefore questionable whether the
isothermal assumption is still valid in microflows. On the hydrodynamic level, the Navier-
Stokes-Fourier description might be more appropriate in this case. As for the boundary
condition, it is unclear whether the slip length is enough to capture the temperature jump or
whether another parameter is needed. These questions could be tackled by using a thermal
lattice Boltzmann model which is able to reproduce the heat transport equation. This was
beyond the scope of this thesis, but it forms an interesting topic for future research.
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In chapter 6, a new conceptual approach to implementing lattice Boltzmann boundary condi-
tions was developed. It is based on the notion of reduced symmetry, which is a consequence
of the fact that at the boundary some of the links of the lattice point into the solid and must
have zero fluid populations. The remaining set of “allowed” links has a reduced symme-
try compared to the bulk symmetry of the lattice. The idea in chapter 6 was to use this
set of links as the basis for a reduced symmetry lattice Boltzmann model, which can be
systematically constructed within the framework developed earlier in this thesis. Namely,
the generalized lattice gas model can be used to derive the equilibrium distribution in the
reduced symmetry. The boundary condition should then be incorporated in the collision
process in the reduced symmetry. It turned out, however, that it is not clear how to set up an
appropriate MRT model at the boundary because the mode space in the reduced symmetry
is affected by degeneracies of the model that obscure the physical interpretation of the mo-
ments. A back door was found by resorting to BGK-like collisions and using bounce-back
of the non-equilibrium parts to fix the normal stresses at the boundary. The resulting bound-
ary condition requires only local information and can therefore be easily implemented in a
parallel simulation environment. However, a systematic analysis in terms of a Chapman-
Enskog expansion proves to be highly complicated, such that a rigorous assessment of the
accuracy remains an open issue. Nevertheless, the exploration of reduced symmetry models
sheds some light on the effects of the small velocity set at the boundary. An interesting
question for future work would be, for example, whether the degeneracies in mode space
can be removed by using a higher number of discrete velocities that include more neighbor
shells.

In the course of this work, it became clear that the technical details in the reduced symmetry
are quite involved and require careful treatment. Applications of the newly devised methods
therefore had to take a back seat and mainly served as proof (and even more frequently as
disproof) of the concepts. There is no doubt that many more practical simulations are needed
to further verify the applicability and accuracy of the methods. To round up this discussion,
some routes that could be followed in the future shall be outlined.

A field that attracts non-ceasing interest in the lattice Boltzmann community is turbulence.
With regard to soft matter the phenomenon of turbulent drag reduction has received grow-
ing attention. It is known that dilute polymer solutions show a substantially reduced drag
when pumped through channels. One hypothesis to explain this effect is that there is an
interplay between polymer dynamics and turbulence that damps vortex structures near the
wall. The lattice Boltzmann method is an ideal candidate to study this effect in simulations,
because both the fluid-polymer coupling and the boundary effects are readily included. The
question is whether sufficient time and length scales can be simulated within acceptable
computing time. More sophisticated multiscale techniques that try to cope with the problem
are currently under active development.

Another potentially very interesting application is to study electrophoresis and electro-
osmosis in microchannels. The presence of charged particles adds another level of com-
plexity to a soft matter system as electrokinetic effects come into play. In a channel filled
with a polyelectrolyte, the walls usually become charged through the release of counterions
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into the solution. The counterions form a charged Debye layer close to the wall, which can
be acted on by an external electric field thereby generating a plug flow in the channel. The
electro-osmotic mobility is determined by the chemico-physical properties of the surface,
and a finite slip length on the wall increases the mobility. This effect could be exploited to
improve the efficiency of electro-osmotic pumps. So far, there are only a few simulations of
electro-osmotic flow which mostly focus on the free-flow case. The interplay of boundary
conditions and electro-kinetic effects has not been studied extensively and forms an interest-
ing application for the tunable slip boundary condition developed. Going one step further in
the method development, one could think about how polarization effects of the solvent can
be incorporated in the simulation methods.

A different application field which is more related to the fluctuating lattice Boltzmann is
formed by multiphase flows. For example, the flow behavior of emulsions is highly relevant
for commercial applications in the cosmetic or food industries. A number of interesting
questions arises concerning the phase behavior under flow, e.g., mixing, demixing and var-
ious kinds of pattern formation. Of particular interest is the dynamics of liquid droplets in
microdevices. Multiphase flows are governed by the interplay of interface and surface ef-
fects. Concerning boundary conditions, the wetting properties of the different phases have
to be taken into account. The difficulty in a computer simulation is that both thermody-
namics and hydrodynamics have to be accurately reproduced. As to the lattice Boltzmann
method, is has to be taken into account that the speed of sound and the equation of state in
the different phases may vary. Hence, a standard D3Q19 model is clearly not appropriate
for multiphase flows. A variable speed of sound requires a larger set of discrete veloci-
ties. The generalized lattice gas model is a promising starting-point for the development of
new methods that treat the thermodynamics of interfaces in a consistent way. Apart from
droplets, this could be combined with electrokinetic methods to study the behavior of jets
and sprays.

Finally, a future direction that encompasses several of the above mentioned aspects is the
simulation of deformable particle suspensions. Deformable particles are omnipresent in bi-
ological systems, the most prominent examples being vesicles and cells. In contrast to rigid
colloids, vesicles and cells make it necessary to treat their intrinsic deformation mechanics.
The coupling of the elastic energy of the deformable particles and the viscous dissipation
in the fluid can lead to viscoelastic behavior of the suspension, which in turn may give rise
to non-Newtonian rheological effects. An important example where these effects are highly
relevant is blood, the flow behavior of which is strongly determined by the deformability
of the red blood cells. The flow of blood through microvessels is subject to migration and
aggregation mechanisms of the cells which cause a shear-thinning behavior of blood. The
microscopic mechanisms underlying the blood flow are under vivid investigation, and an
efficient simulation method could help to enhance the scientific progress. For the treatment
of deformable particles with the lattice Boltzmann method, a combination of force-coupling
schemes and boundary conditions seems a promising approach which has so far not been
explored much.
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These examples are, of course, far from being exhaustive. Nevertheless, they give an im-
pression of what might be done with lattice Boltzmann simulations and why method devel-
opment for computer simulations continues to be an interesting and challenging research
topic. Altogether, it can be said that the road is paved with exciting applications for the
lattice Boltzmann method.
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A Implementation of the lattice Boltzmann method

In this appendix, the lattice Boltzmann implementation in the ESPResSo software package
[3, 4] is described. The implementation features a D3Q19 model with a MRT collision oper-
ator and thermal fluctuations. Molecular dynamics particles can be coupled to the LB fluid
by the method of Ahlrichs and Dünweg [85]. Various boundary conditions are implemented
as well. The algorithms are parallelized using the message passing interface MPI [173].

A.1 Usage in ESPResSo

In the ESPResSo software package, every simulation is a sequence of TCL commands.
The lattice Boltzmann method can be used with the command lbfluid which has the fol-
lowing syntax:

lbfluid (<lbvariable> <value>)+

The possible choices for <lbvariable> are listed in table A.1. The parameter values
<value> have to be given in the MD unit system used throughout the TCL script, which
typically means Lennard-Jones units. Although any variable can be set individually, it is
recommended to use the lbfluid command in the form

lbfluid grid <grid> tau <tau> dens <dens> visc <viscosity>

where abbreviated forms of the variable names can be used. The coupling of MD particles
to the LB fluid can be switched on separately by

LB variable Description
grid lattice spacing a
tau lattice Boltzmann time step τ
density average density ρ of the fluid
viscosity kinematic viscosity ν of the fluid
friction friction coefficient ζbare for the fluid-particle coupling
ext_force external volumetric force g driving the fluid flow

Table A.1: ESPResSo variables for the various parameters of the lattice Boltzmann model. They
can be set with the lbfluid command.
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lbfluid friction <friction>

where <friction> is the bare friction coefficient for the Stokes drag force.

The fluctuating lattice Boltzmann model is implemented as a thermostat. Thermal fluctua-
tions can be switched on with the command

thermostat lb <temp>

where <temp> is the desired temperature. The thermostat command sets the temperature
for both the fluctuations of the LB populations and the random noise balancing the friction
force.

Boundaries are implemented as constraints and can be defined with the constraint com-
mand (see the ESPResSo documentation for details). So far, only wall constraints are
supported by the lattice Boltzmann implementation. The type of lattice Boltzmann bound-
ary conditions can be chosen with the command

lbboundaries <type> <parameters>*

The possible <type>s that have been implemented so far comprise bounce_back,
specular_reflection, slip_reflection and partial_slip.

A.2 Internal unit conversions

Since ESPResSo is originally a Molecular Dynamics package, the simulation parameters
set on the TCL level are typically measured in Lennard-Jones units. We have decided to
keep this convention for the lattice Boltzmann parameters. Internally, however, lattice units
are used where a = 1, τ = 1 and mp = 1. The conversion of the unit systems is done
in the initialization routines. This has the advantage that all conversions are collected at
a central place and need to be executed only when parameters change. The only point
where a unit conversion has to be done on-the-fly is the calculation of the fluid-particle
coupling. The recipe for unit conversions is straightforward: A quantity that has dimensions
(mass)k(length)l(time)m is transformed from MD to LB units through division by mp

kalτm

where the respective values of mp, a and τ in the MD unit system are used. The quantities
in lattice units can then be used in the equations where all occurrences of mp, a and τ have
been dropped. The reverse conversion goes along the same lines.
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A.3 The lattice Boltzmann kernel

In the basic lattice Boltzmann algorithm, the following steps have to be performed in each
time-step update t→ t+ 1:

1. Calculation of the local moments mk from the actual populations fi according to

mk =
∑
i

fiêki.

2. Calculation of the equilibrium moments meq
k from the mass density ρ = m0 and the

momentum densities jx = m1, jy = m2 and jz = m3.

3. Relaxation of the moments towards their equilibrium value

m∗
k = meq

k + (1 + λk)(mk −meq
k ).

4. Back-transformation from the moments to the populations according to

f ∗i = wi
∑

k

b−1
k m∗

kêki.

5. Propagation of the post-collisional populations f ∗i (r, t) along the lattice links ĉi to the
new populations fi(r + ĉi, t+ 1).

The steps one to four constitute the collision phase, while the fifth step is the streaming
step. By counting the number of arithmetic operations, it is found that the collision phase is
the computationally more intensive part. The streaming step just shifts data in memory. On
modern computing hardware, however, the last step turns out to be the most time consuming
because floating point operations can be executed very fast while memory access is limited
by bandwidth and latency.

A.3.1 Naive implementation

The above algorithm is straightforward to implement. A crucial observation is that the
collision phase in steps one to four is completely local and can be executed independently
for all cells whereas the propagation step is non-local and replaces the old populations with
the new ones. The simplest possibility for the implementation is the following: One uses
two separate sweeps for collisions and streaming, each consisting of three nested loops for
the three spatial directions. In the first sweep, the collisions are executed and in the second
sweep, the post-collisional populations are loaded and written back to the shifted position.
The streaming step has to be done in a carefully chosen order to not overwrite any relevant
data. At the boundaries of the domain, an additional halo layer is needed to implement
periodic boundary conditions and for the parallelization, respectively. This halo layer has to
be filled with the periodic images of the populations at the beginning of the streaming step.
The naive implementation could look like in the following code snippet.
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for (x = 1; x <= n_grid[0]; x++) {
for (y = 1; y <= n_grid[1]; y++) {
for (z = 1; z <= n_grid[2]; z++ { /* collisions */

double moments[19], m_eq[19];

lb_calc_moments(x,y,z,f,moments);
lb_calc_equilibrium(x,y,z,moments,m_eq);
lb_relaxation(x,y,z,moments,m_eq);
lb_calc_f(x,y,z,f,moments);

}
}

}

lb_halo_update();

for (x = n_grid[0]; x >=0 ; x--) {
for (y = n_grid[1]; y >= 0; y--) {
for (z = m_grid[2]; z >= 0; z--) { /* streaming ‘upwards’ in memory */

lb_stream_up(x,y,z,f);

}
}

}

for (x=1; x <= n_grid[0]+1; x++) {
for (y=1; y <= n_grid[1]+1; y++) {
for (z=1; z <= n_grid[2]+1; z++ { /* streaming ‘downwards’ in memory */

lb_stream_down(x,y,z,f);

}
}

}

A.3.2 Combined collisions and streaming

Closer inspection of the memory access pattern in the naive implementation reveals that ev-
ery population is read and written twice, once in the collision phase and once in the stream-
ing phase. On modern computing hardware, where memory access is a bottleneck, this
limits the performance of the implementation. The situation can be improved by reducing
the number of data transfers from and to memory, which is achieved by combining collisions
and streaming in one loop [174, 175]. This leads to either the “pull” scheme or the “push”
scheme, both of which are illustrated in figure A.1. In the pull scheme, the propagation is
realized first while in the push scheme, the propagation is the last step after the collisions. In
order not to overwrite any relevant data, the new populations are stored in a separate array
and after each time step the roles of the two arrays are interchanged. An implementation
with combined collisions and streaming could look like in the following code snippet.

lb_halo_update();

for (x = 1; x <= n_grid[0]; x++) {
for (y = 1; y <= n_grid[1]; y++) {
for (z = 1; z <= n_grid[2]; z++ {
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collisions

collisionspull

push

Figure A.1: Illustration of the pull scheme (stream-collide) and the push scheme (collide-stream). In
the pull scheme, the populations are read from the neighbor sites for the collision process, while in
the push scheme, they are written to the neighbor sites after the collisions.

double moments[19], m_eq[19];

#ifdef PUSH

lb_calc_moments(x,y,z,f[0],moments);
lb_calc_equilibrium(x,y,z,moments,m_eq);
lb_relaxation(x,y,z,moments,m_eq);
lb_calc_f_and_push(x,y,z,moments,f[1]);

#endif

#ifdef PULL

lb_pull_f_and_calc_moments(x,y,z,f[0],moments);
lb_calc_equilibrium(x,y,z,moments,m_eq);
lb_relaxation(x,y,z,moments,m_eq);
lb_calc_f(x,y,z,moments,f[[1]);

#endif

}
}

}

swap_pointers(f[0],f[1]);

A.3.3 Data layout optimization

In the combined implementation every population is read and written only once in each time
step. Although this seems already optimal, the performance can yet depend critically on the
actual data layout in memory.

First, it has to be noted that every array is a sequential data structure in memory, no mat-
ter how many logical dimensions there are. In other words, any array is physically one-
dimensional in memory. Consequently, the three nested loops over the three spatial direc-
tions boil down to a loop over one-dimensional memory locations. The crucial point is how
the logical dimensions are mapped to the physical memory locations and in which order the
sequential data in memory is accessed. This is especially important on cache-based archi-

137



A Implementation of the lattice Boltzmann method

tectures where non-consecutive data access is connected to severe performance impairment.
The reason is the way in that data is transferred from main memory to the caches.

Cache memories are intermediate memories that are located on the processor chip and pro-
vide high bandwidth and low latency at the expense of being much smaller than the main
memory. They are organized in cache lines that are always fetched from or stored to main
memory as a whole contiguous block of data. Since not the whole main memory fits into
cache, cache lines have to be replaced frequently during the course of the program. The
aim is to use the cache lines as efficient as possible, that is, accessing data should lead to
a minimum number of fetch and store operations for the same cache line. Optimally, all
entries of a cache line are used once it resides in the cache memory. This can be achieved by
organizing the data layout such that consecutively used data is contiguous in memory and
can be grouped into the same cache line.

The lattice Boltzmann populations can be stored in a five dimensional array with three in-
dices x, y and z for the spatial dimensions, one index i for the velocity direction, and one
index t ∈ {0, 1} for the double buffering. The mapping between the five-dimensional array
and the linear memory layout is defined by the order of the indices. The index t is typically
the “slowest” index.1 Intuitively, one would group together the 19 velocities of each lattice
site which is achieved when the index i is the “fastest”. This yields an array of structures, or
the so-called collision optimized data layout [174] which is schematically depicted in figure
A.2. During the collision phase, the populations f0:18(x, y, z) have to be fetched from mem-
ory which typically involves two cache lines of 16 doubles. The populations f0:12(x, y, z+1)
are then automatically resident in the cache and can be used in the next iteration. However,
in the propagation phase the populations are stored to non-contiguous locations and, in the
worst case, 19 cache lines are stored of which only one entry was modified. This is a rather
inefficient access pattern and, in addition, it is likely to generate many cache misses, espe-
cially if the cache size is small. The collision optimized data layout is therefore sub-optimal
on many hardware architectures [174].

A better performance is achieved with structures of arrays, or the so-called propagation
optimized data layout (see figure A.1). It groups the populations for one velocity direction
together, i.e., the index i is the “next slowest” following the index t. The index z is now the
“fastest” and should be iterated in the innermost loop. As the populations of a local lattice
site are not contiguous in memory, the collision phase now requires 19 cache lines to be
loaded. The same holds for the propagation phase, where also 19 cache lines are accessed.
Given that the cache can keep at least 38 lines resident at the same time, the cached data
can be reused in successive iterations over z. In this way, all cache entries are used once
they have been loaded from main memory, or vice versa, they are modified before they are

1 Since the order of indexing has different semantics in different programming languages, the terms “slow”
and “fast” are used to describe the position of the indices. “Slowest” means that all other indices run through
their whole range before the “slowest” index is increased by one. Thus, the “slowest” index corresponds to
the first array index in C’s row major order, while it corresponds to the last index in Fortran’s column major
order. In this terminology, the “fastest” index always addresses consecutive memory locations.
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Figure A.2: Illustration of the collision optimized (top) and the propagation optimized data layout
(bottom). Colors are used to distinguish different lattice sites. The black box indicates the popula-
tions that have to be fetched for the collision step. In the propagation optimized data layout, more
cache lines have to be loaded in the collision phase, but they can be exploited during the propagation
phase. In practice, the propagation optimized data layout is superior on many computer architectures.
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stored back. The propagation optimized data layout is hence much more efficient and shows
superior performance on many common hardware architectures [174].

A subtle problem with the propagation optimized data layout is that cache thrashing can
occur if the “fastest” array dimension z is a power of two. This is because associative
caches map physical memory locations to specific cache locations. With a power of two in
the “fastest” array dimension, subsequent z-planes are mapped to the same cache address
which causes many cache misses. The effect is a severe performance breakdown. A power
of two in the z dimension should therefore be avoided, for example by array padding.

Further optimizations with respect to the memory access pattern are possible. For example
one could use blocking techniques or loop splitting. However, these techniques are highly
specific and tend to make the program code less extensible. They shall therefore not be
discussed further here.

The lattice Boltzmann kernel of ESPResSo uses the propagation optimized data layout.
The memory for the lattice Boltzmann populations is allocated during the initialization.

static void lb_realloc_fluid() {
int i;

lbfluid[0] = realloc(*lbfluid,2*lbmodel.n_veloc*sizeof(double *));
lbfluid[0][0] = realloc(**lbfluid,

2*lblattice.halo_grid_volume*lbmodel.n_veloc*sizeof(double));
lbfluid[1] = (double **)lbfluid[0] + lbmodel.n_veloc;
lbfluid[1][0] = (double *)lbfluid[0][0] + lblattice.halo_grid_volume*lbmodel.n_veloc;

for (i=0; i<lbmodel.n_veloc; ++i) {
lbfluid[0][i] = lbfluid[0][0] + i*lblattice.halo_grid_volume;
lbfluid[1][i] = lbfluid[1][0] + i*lblattice.halo_grid_volume;

}

}

The first index of the array lbfluid is the index t for the double buffering. The second index
is the index i for the velocities. lbfluid[t][i] is the spatial array for the velocity direction
i. It is addressed with a single index which can be calculated from the spatial coordinates x,
y and z via

index = get_linear_index(x,y,z,lblattice.halo_grid);

After a sweep through the whole lattice, the pointers for the source and destination arrays
are swapped with

double **tmp;
tmp = lbfluid[0];
lbfluid[0] = lbfluid[1];
lbfluid[1] = tmp;
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Figure A.3: Schematic illustration of the domain decomposition scheme used for parallelizing the
lattice Boltzmann kernel. On each processor, the physical domain is surrounded by a halo region that
serves to communicate the populations that cross the domain boundaries to the neighbor processors.

Accessing the populations is straightforward: the population fi(x, y, z) is read in the colli-
sion phase with lbfluid[0][i][index], and in the streaming phase the population fi(x+
cix, y + ciy, z + ciz) is written with lbfluid[1][i][index+shift], where shift is calcu-
lated from cix, ciy and ciz. The algorithm is basically independent of the data layout. The
crucial point is the appropriate initialization of the array lbfluid, which has to be done in
a way that leaves access to the populations transparent.

A.4 Parallelization

Parallelization can be a tricky issue and is certainly one of the most error-prone parts of
any simulation software. The lattice Boltzmann method is comparatively easy to parallelize
due to the specific structure of the update rule. The regular lattice suggests to use a domain
decomposition scheme where the whole simulation box is divided into smaller rectangular
subdomains. Each subdomain is taken care of by an individual processor. While the colli-
sion phase can be executed individually on every processor, the streaming phase requires the
exchange of data between different processors. In ESPResSo, the message passing inter-
face MPI is used for communication between the different processes. In order to facilitate
the inter-processor data-exchange, an artificial halo region is introduced around the physical
domain of each process, cf. figure A.3. The halo region contains the populations that leave
or enter the local physical domain to or from another processor’s domain. It has to be com-
municated in every time step, either before the collision loop over the internal lattice sites
(pull scheme), or after the collision loop (push scheme). The halo is divided into planes that
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direction send populations receive populations
positive x f1, f7, f9, f11, f13 f2, f8, f10, f12, f14

negative x f2, f8, f10, f12, f14 f1, f7, f9, f11, f13

positive y f3, f7, f10, f15, f17 f4, f8, f9, f16, f18

negative y f4, f8, f9, f16, f18 f3, f7, f10, f15, f17

positive z f5, f11, f14, f15, f18 f6, f12, f13, f16, f17

negative z f6, f12, f13, f16, f17 f5, f11, f14, f15, f18

Table A.2: The populations that have to be communicated between processes in the respective di-
rections. In each of the six necessary communications, five populations are sent and five populations
are received.

have to be communicated to the respective neighbor processes in the three spatial directions.
In the domain decomposition scheme, the structure of the memory areas and the processes
between which they are exchanged remain static. This information can hence be stored in
a C-struct, the HaloCommunicator, which is set up during the initialization. It contains
the information about the six different communications (two per spatial direction) and the
respective halo planes. The structure of the data is represented using MPI datatypes. While
an x-plane is contiguous in memory, the y- and z-planes are strided. By defining appropri-
ate MPI datatypes, the exact layout is hidden in an abstraction layer. The communication
procedure can then be implemented generically by exploiting the information stored in the
HaloCommunicator. The actual data transfer is handled by the call

MPI_Sendrecv(s_buffer, 1, datatype, r_node, REQ_HALO_SPREAD,
r_buffer, 1, datatype, s_node, REQ_HALO_SPREAD,
MPI_COMM_WORLD, &status);

in the function void halo_communication(HaloCommunicator *hc, void *base). The
benefit of this abstract parallelization scheme is that the details of the implementation can
be hidden in separate functions. Hence, in the lattice Boltzmann kernel, a single call to
halo_communcation at the right place is sufficient. In this way, the algorithm and the paral-
lelization are clearly separated, which reduces the risk of programming errors considerably
and makes the code much more readable. Nonetheless, the parallelization scheme can be
easily extended if necessary.

In practice, there is still potential for improvement. One point is the observation that only a
subset of all velocity directions can cross the domain boundary in a given direction, namely
those five with a positive projection on that direction. Hence, there is no need to communi-
cate all 19 populations of the halo plane but it is sufficient to send the five populations that
leave the domain and receive the five that enter. Table A.2 lists the populations that have
to be communicated in the different directions. The set of populations that is sent to the
right neighbor and the set received from the left neighbor is always the same. It is therefore
convenient to combine the sent-to-right and receive-from-left into a single MPI_Sendrecv

call. The optimized communication routine for the x-direction, for example, could look like
the following:
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/***************
* X direction *
***************/
count = 5*lblattice.halo_grid[1]*lblattice.halo_grid[2];
sbuf = malloc(count*sizeof(double));
rbuf = malloc(count*sizeof(double));

/* send to right, recv from left i = 1, 7, 9, 11, 13 */
snode = node_neighbors[0];
rnode = node_neighbors[1];

buffer = sbuf;
index = get_linear_index(lblattice.grid[0]+1,0,0,lblattice.halo_grid);
for (z=0; z<lblattice.halo_grid[2]; z++) {
for (y=0; y<lblattice.halo_grid[1]; y++) {

buffer[0] = lbfluid[1][1][index];
buffer[1] = lbfluid[1][7][index];
buffer[2] = lbfluid[1][9][index];
buffer[3] = lbfluid[1][11][index];
buffer[4] = lbfluid[1][13][index];
buffer += 5;

index += yperiod;
}

}

if (node_grid[0] > 1) {
MPI_Sendrecv(sbuf, count, MPI_DOUBLE, snode, REQ_HALO_SPREAD,

rbuf, count, MPI_DOUBLE, rnode, REQ_HALO_SPREAD,
MPI_COMM_WORLD, &status);

} else {
memcpy(rbuf,sbuf,count*sizeof(double));

}

buffer = rbuf;
index = get_linear_index(1,0,0,lblattice.halo_grid);
for (z=0; z<lblattice.halo_grid[2]; z++) {
for (y=0; y<lblattice.halo_grid[1]; y++) {

lbfluid[1][1][index] = buffer[0];
lbfluid[1][7][index] = buffer[1];
lbfluid[1][9][index] = buffer[2];
lbfluid[1][11][index] = buffer[3];
lbfluid[1][13][index] = buffer[4];
buffer += 5;

index += yperiod;
}

}

/* send to left, recv from right i = 2, 8, 10, 12, 14 */
snode = node_neighbors[1];
rnode = node_neighbors[0];

buffer = sbuf;
index = get_linear_index(0,0,0,lblattice.halo_grid);
for (z=0; z<lblattice.halo_grid[2]; z++) {
for (y=0; y<lblattice.halo_grid[1]; y++) {

buffer[0] = lbfluid[1][2][index];
buffer[1] = lbfluid[1][8][index];
buffer[2] = lbfluid[1][10][index];
buffer[3] = lbfluid[1][12][index];
buffer[4] = lbfluid[1][14][index];
buffer += 5;
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index += yperiod;
}

}

if (node_grid[0] > 1) {
MPI_Sendrecv(sbuf, count, MPI_DOUBLE, snode, REQ_HALO_SPREAD,

rbuf, count, MPI_DOUBLE, rnode, REQ_HALO_SPREAD,
MPI_COMM_WORLD, &status);

} else {
memcpy(rbuf,sbuf,count*sizeof(double));

}

buffer = rbuf;
index = get_linear_index(lblattice.grid[0],0,0,lblattice.halo_grid);
for (z=0; z<lblattice.halo_grid[2]; z++) {
for (y=0; y<lblattice.halo_grid[1]; y++) {

lbfluid[1][2][index] = buffer[0];
lbfluid[1][8][index] = buffer[1];
lbfluid[1][10][index] = buffer[2];
lbfluid[1][12][index] = buffer[3];
lbfluid[1][14][index] = buffer[4];
buffer += 5;

index += yperiod;
}

}

free(rbuf);
free(sbuf);

The above version is for the push scheme. It can easily be adopted to the pull scheme with
minimal modifications. In this example, we have not used the MPI datatypes and instead,
the data is packed into buffers manually. The scheme uses the minimal number of com-
munications between processes (at least in case the neighbors in all directions are different
processes) and no overhead data is transferred. It is in this sense an optimal scheme. Further
optimizations might be possible with respect to the buffering strategy and for special process
topologies. The latter cases are so far not addressed in the ESPResSo implementation.

A.5 Thermal fluctuations

The implementation of thermal fluctuations is straightforward. The amplitudes of the ran-
dom fluctuations are calculated from the relaxation parameters during the initialization:

for (i=0; i<3; i++) lb_phi[i] = 0.0;
lb_phi[4] = sqrt(mu*e[19][4]*(1.-SQR(gamma_bulk)));
for (i=5; i<10; i++) lb_phi[i] = sqrt(mu*e[19][i]*(1.-SQR(gamma_shear)));
for (i=10; i<n_veloc; i++) lb_phi[i] = sqrt(mu*e[19][i]);

The random fluctuations are added to the modes after the relaxation.
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double rootrho = sqrt(mode[0]+lbpar.rho);

/* stress modes */
mode[4] += rootrho*lb_phi[4]*gaussian_random();
mode[5] += rootrho*lb_phi[5]*gaussian_random();
mode[6] += rootrho*lb_phi[6]*gaussian_random();
mode[7] += rootrho*lb_phi[7]*gaussian_random();
mode[8] += rootrho*lb_phi[8]*gaussian_random();
mode[9] += rootrho*lb_phi[9]*gaussian_random();

/* ghost modes */
mode[10] += rootrho*lb_phi[10]*gaussian_random();
mode[11] += rootrho*lb_phi[11]*gaussian_random();
mode[12] += rootrho*lb_phi[12]*gaussian_random();
mode[13] += rootrho*lb_phi[13]*gaussian_random();
mode[14] += rootrho*lb_phi[14]*gaussian_random();
mode[15] += rootrho*lb_phi[15]*gaussian_random();
mode[16] += rootrho*lb_phi[16]*gaussian_random();
mode[17] += rootrho*lb_phi[17]*gaussian_random();
mode[18] += rootrho*lb_phi[18]*gaussian_random();

Note that both the stress modes and the kinetic modes have random fluctuations. For each
fluctuating mode, a Gaussian random number has to be drawn. This is done in the func-
tion double gaussian_random() which implements a simple Box-Muller transformation
[176].

A.6 Force coupling

The lattice Boltzmann implementation in ESPResSo includes the coupling of MD particles
(polymers, colloids, etc.) to the LB fluid. For a theoretical description of the method, the
reader is referred to the original publication of Ahlrichs and Dünweg [86]. The calculation of
the coupling force is wrapped in the function void calc_particle_lattice_ia(). First,
the random numbers for the fluctuating part of the force are pre-drawn for all particles and
communicated.

/* draw random numbers for local particles */
for (c=0;c<local_cells.n;c++) {
cell = local_cells.cell[c] ;
p = cell->part ;
np = cell->n ;
for (i=0;i<np;i++) {
p[i].lc.f_random[0] = lb_coupl_pref*gaussian_random();
p[i].lc.f_random[1] = lb_coupl_pref*gaussian_random();
p[i].lc.f_random[2] = lb_coupl_pref*gaussian_random();

}
}

/* communicate the random numbers */
ghost_communicator(&cell_structure.ghost_lbcoupling_comm) ;

This is necessary to make sure that ghost particles use the same random number as their
real counterparts. The synchronization of random numbers can lead to severe complications
when strict positivity of the populations is required. The reason is that the order of ghost
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and real particles is interchanged between neighboring processes. Consequently, a random
force does not necessarily lead to negative populations on both processes. The revocation
of a “bad” random number can therefore be triggered on different processes, which makes
it very complicated to synchronize the redrawing of random numbers. In the worst case,
the program can get stuck in a loop just redrawing random numbers. Therefore, the strict
positivity of the populations is waived and small negative values are allowed. This should
be a rare event if the simulation parameters have physically reasonable values.

The viscous drag force exerted by the fluid on the particle is calculated in the function void

lb_viscous_coupling(Particle *p, double force[3]). First, the interpolated fluid
velocity at the particle’s position is determined.

/* calculate fluid velocity at particle’s position
this is done by linear interpolation
(Eq. (11) Ahlrichs and Duenweg, JCP 111(17):8225 (1999)) */

interpolated_u[0] = interpolated_u[1] = interpolated_u[2] = 0.0 ;
for (z=0;z<2;z++) {
for (y=0;y<2;y++) {
for (x=0;x<2;x++) {

local_node = &lbfields[node_index[(z*2+y)*2+x]];

if (local_node->recalc_fields) {
lb_calc_local_fields(node_index[(z*2+y)*2+x],local_node->rho,local_node->j,NULL);
local_node->recalc_fields = 0;
local_node->has_force = 1;

}

local_rho[0] = local_node->rho[0];
local_j[0] = local_node->j[0];
local_j[1] = local_node->j[1];
local_j[2] = local_node->j[2];

interpolated_u[0] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*local_j[0]/(*local_rho);
interpolated_u[1] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*local_j[1]/(*local_rho);
interpolated_u[2] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*local_j[2]/(*local_rho);

}
}

}

Then the viscous drag is calculated and added to the random force.

/* calculate viscous force

* take care to rescale velocities with time_step and transform to MD units

* (Eq. (9) Ahlrichs and Duenweg, JCP 111(17):8225 (1999)) */
force[0] = - lbpar.friction * (p->m.v[0]/time_step - interpolated_u[0]*agrid/tau);
force[1] = - lbpar.friction * (p->m.v[1]/time_step - interpolated_u[1]*agrid/tau);
force[2] = - lbpar.friction * (p->m.v[2]/time_step - interpolated_u[2]*agrid/tau);

force[0] = force[0] + p->lc.f_random[0];
force[1] = force[1] + p->lc.f_random[1];
force[2] = force[2] + p->lc.f_random[2];

In the next step, the force is transformed to the momentum transfer in lattice units, cf.
Equation (12) of [86].
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/* transform momentum transfer to lattice units
(Eq. (12) Ahlrichs and Duenweg, JCP 111(17):8225 (1999)) */

delta_j[0] = - force[0]*integrate_pref2/time_step*tau/agrid;
delta_j[1] = - force[1]*integrate_pref2/time_step*tau/agrid;
delta_j[2] = - force[2]*integrate_pref2/time_step*tau/agrid;

Finally, the momentum transfer is extrapolated to the lattice sites and added to the volumetric
force acting on the fluid at that site.

for (z=0;z<2;z++) {
for (y=0;y<2;y++) {
for (x=0;x<2;x++) {

local_f = lbfields[node_index[(z*2+y)*2+x]].force;

local_f[0] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*delta_j[0];
local_f[1] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*delta_j[1];
local_f[2] += delta[3*x+0]*delta[3*y+1]*delta[3*z+2]*delta_j[2];

}
}

}

The force is applied in the function void lb_apply_forces(index_t index, double*
mode) which is called from within the main collide-stream loop. It has to be mentioned
that this implementation is not fully self-consistent, because the force enters the redefined
hydrodynamic momentum density which itself determines the force. To deal with this prob-
lem one could use an iterative scheme. However, since the linear interpolation of the fluid
velocity is only a first approximation, an iterative scheme is probably not very beneficial in
view of the computational overhead.

A.7 Boundary conditions

The implementation of boundary conditions depends heavily on the specific type of bound-
ary conditions, i.e., node based or link based boundary conditions. In ESPResSo, both
types have been implemented. The link based implementation comprises bounce-back,
specular reflections and slip-reflection. Link based boundary conditions affect the streaming
of the populations at the boundary. Instead of following their velocity link, they are deflected
to a different direction. This could in principle be implemented within the streaming step
by redirecting the copy operation of the population to the correct target node. However,
additional if statements would have to be introduced in the main loop which would de-
teriorate the efficiency. Furthermore, there is a danger to spoil the cache optimized data
layout. Therefore, the streaming step is left unchanged such that the populations end up on
nodes outside the fluid domain. They are then moved to the correct target node in a separate
boundary loop. This works for any link based scheme. The specific steps for the different
boundary conditions are outlined in the following.
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A.7.1 Bounce-back

In the bounce-back rule, the populations that have moved out of the fluid domain have to be
copied back to the reversed velocity direction on the node they came from. The index shift
to the bounce-back node is pre-calculated and stored in the array next.

int yperiod = lblattice.halo_grid[0];
int zperiod = lblattice.halo_grid[0]*lblattice.halo_grid[1];
int next[19];
next[0] = 0; // ( 0, 0, 0) =
next[1] = 1; // ( 1, 0, 0) +
next[2] = - 1; // (-1, 0, 0)
next[3] = yperiod; // ( 0, 1, 0) +
next[4] = - yperiod; // ( 0,-1, 0)
next[5] = zperiod; // ( 0, 0, 1) +
next[6] = - zperiod; // ( 0, 0,-1)
next[7] = (1+yperiod); // ( 1, 1, 0) +
next[8] = - (1+yperiod); // (-1,-1, 0)
next[9] = (1-yperiod); // ( 1,-1, 0)
next[10] = - (1-yperiod); // (-1, 1, 0) +
next[11] = (1+zperiod); // ( 1, 0, 1) +
next[12] = - (1+zperiod); // (-1, 0,-1)
next[13] = (1-zperiod); // ( 1, 0,-1)
next[14] = - (1-zperiod); // (-1, 0, 1) +
next[15] = (yperiod+zperiod); // ( 0, 1, 1) +
next[16] = - (yperiod+zperiod); // ( 0,-1,-1)
next[17] = (yperiod-zperiod); // ( 0, 1,-1)
next[18] = - (yperiod-zperiod); // ( 0,-1, 1) +

The reversion of the velocity is achieved by using the following index map

int reverse[] = { 0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17 };

The bounce-back operation at the top wall then looks like

/* bottom-up sweep */
for (k=lblattice.halo_offset;k<lblattice.halo_grid_volume;k++) {

if (lbfields[k].boundary) {

/* bounce back to lower indices */
lbfluid[1][reverse[5]][k-next[5]] = lbfluid[1][5][k];
lbfluid[1][reverse[11]][k-next[11]] = lbfluid[1][11][k];
lbfluid[1][reverse[14]][k-next[14]] = lbfluid[1][14][k];
lbfluid[1][reverse[15]][k-next[15]] = lbfluid[1][15][k];
lbfluid[1][reverse[18]][k-next[18]] = lbfluid[1][18][k];

}

}

The implementation for the bottom wall works analogously.
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A.7.2 Specular reflections

Specular reflections differ from the bounce-back rule in the target nodes and the velocity
mapping. The shift to the target nodes is again stored in an array next

int zperiod = lblattice.halo_grid[0]*lblattice.halo_grid[1];
int next[19];
next[0] = 0; // ( 0, 0, 0)
next[1] = 0; // ( 1, 0, 0)
next[2] = - 0; // (-1, 0, 0)
next[3] = 0; // ( 0, 1, 0)
next[4] = - 0; // ( 0,-1, 0)
next[5] = zperiod; // ( 0, 0, 1)
next[6] = - zperiod; // ( 0, 0,-1)
next[7] = 0; // ( 1, 1, 0)
next[8] = - 0; // (-1,-1, 0)
next[9] = 0; // ( 1,-1, 0)
next[10] = - 0; // (-1, 1, 0)
next[11] = zperiod; // ( 1, 0, 1)
next[12] = - zperiod; // (-1, 0,-1)
next[13] = - zperiod; // ( 1, 0,-1)
next[14] = zperiod; // (-1, 0, 1)
next[15] = zperiod; // ( 0, 1, 1)
next[16] = - zperiod; // ( 0,-1,-1)
next[17] = - zperiod; // ( 0, 1,-1)
next[18] = zperiod; // ( 0,-1, 1)

and the index mapping for specular reflections is given by

int reflect[] = { 0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 13, 14, 11, 12, 17, 18, 15, 16 };

The sweep through the nodes of the top wall is implemented as follows:

/* bottom-up sweep */
for (k=lblattice.halo_offset;k<lblattice.halo_grid_volume;k++) {

if (lbfields[k].boundary) {

/* reflect to lower indices */
lbfluid[1][reflect[5]][k-next[5]] = lbfluid[1][5][k];
lbfluid[1][reflect[11]][k-next[11]] = lbfluid[1][11][k];
lbfluid[1][reflect[14]][k-next[14]] = lbfluid[1][14][k];
lbfluid[1][reflect[15]][k-next[15]] = lbfluid[1][15][k];
lbfluid[1][reflect[18]][k-next[18]] = lbfluid[1][18][k];

}

}
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A.7.3 Slip reflections

Slip reflections are a mixture of bounce-back and specular reflections. The implementation
is therefore very similar to the above. We just quote the example of the top wall again:

double s = lb_boundary_par.slip_pref;
double r = 1.0 - s;

double **n = lbfluid[1];

/* bottom-up sweep */
for (k=lblattice.halo_offset; k<lblattice.halo_grid_volume; k++) {

if (lbfields[k].boundary) {

/* slip reflect to lower indices */
n[6][k-zperiod] = n[5][k];
n[12][k-zperiod] = s*n[14][k] + r*n[11][k-zperiod+next[11]];
n[13][k-zperiod] = s*n[11][k] + r*n[14][k-zperiod+next[14]];
n[16][k-zperiod] = s*n[18][k] + r*n[15][k-zperiod+next[15]];
n[17][k-zperiod] = s*n[15][k] + r*n[18][k-zperiod+next[18]];

}

}

A.7.4 Local boundary collisions

In contrast to the link-based boundary conditions, local boundary conditions can be directly
integrated into the main loop. Instead of the normal collisions and streaming, the corre-
sponding sequence of boundary functions has to be called:

void lb_boundary_collisions(int index, double *modes) {

double pi[6];

lb_boundary_calc_modes(index, modes, pi);
lb_boundary_relax_modes(index, modes, pi);
lb_boundary_apply_forces(index, modes);
lb_boundary_calc_n_push(index, modes);

}

For the special case of the bounce-back of non-equilibrium parts combined with BGK-
relaxation, the whole processing of the boundary collisions is combined in the function
lb_boundary_bb_neq_BGK(index, modes). It mimics the same operations as in the bulk,
but with modified values for the reduced symmetry at the boundary. For details, the reader
is referred to chapter 6 of this thesis.
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B Technical material

This appendix collects various technical details which have been skipped in the main text.

B.1 Hermite tensor polynomials and Gauss-Hermite
quadratures

B.1.1 Hermite tensor polynomials

The Hermite tensor polynomials as used by Grad [177] are a complete basis set of Hilbert
space with respect to the scalar product

〈f |g〉 =

∫
ω(v)f(v)g(v) dv. (B.1)

The orthonormality relation reads
∫
ω(v)H(n)

α (v)H(m)
β (v) dv = δmnδ

(n)
αβ, (B.2)

where δ
(n)
αβ = 1 if α = (α1, . . . , αn) is a permutation of β = (β1, . . . , βm=n) and zero

otherwise. The weight function associated with the Hermite polynomials is given by

ω(v) = (2π)−
D
2 exp

[
−v2

2

]
. (B.3)

The latter can be used to define the Hermite polynomials explicitly

H(n)
α1...αn

=
(−1)n

ω(v)

∂

∂vα1

. . .
∂

∂vαn

ω(v). (B.4)

The first few polynomials are

H(0)(v) = 1,

H(1)
α (v) = vα,

H(2)
αβ(v) = vαvβ − δαβ,

H(3)
αβγ(v) = vαvβvγ − vαδβγ − vβδαγ − vγδαβ.

(B.5)
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The Hermite tensor polynomials satisfy the recurrence relation

vαH(n)
α1...αn

= H(n+1)
αα1...αn

+
n∑

k=1

δααk
H(n−1)
α1...αk−1αk+1...αn

. (B.6)

Any square integrable function in the Hilbert space can be expanded in the basis as

f(v) = ω(v)
∞∑
n=0

1

n!
a(n)

α H(n)
α (v), (B.7)

where a contraction over the n-fold index α = (α1, · · · , αn) of the tensors a(n) and H(n) is
to be understood. Since H(n) is symmetric in α, we will assume that a(n) is symmetric in α
as well. To obtain the expansion coefficients, we multiply by H(m)(v) and integrate

∫
f(v)H(m)

β (v)dv =

∫
ω(v)

∞∑
n=0

1

n!
a(n)

α H(n)
α (v)H(m)

β (v)dv

=
∞∑
n=0

1

n!
a(n)

α δmnδαβ

= a
(m)
β ,

(B.8)

where we have exploited that there appear n! permutations of α in the contraction a
(n)
α δαβ.

Thus we obtain the Hermite coefficients as

a(n) =

∫
f(v)H(n)(v)dv. (B.9)

B.1.2 Gauss-Hermite quadrature

The Gaussian quadrature is a means to approximate the integrals
∫
ω(v)f(v) dv for a given

function f(v) by ∫
ω(v)f(v) dv ≈

n∑
i=1

wif(ci), (B.10)

where wi is a set of weights and ci are called the nodes or abscissae of the quadrature.
The aim is to find a choice of n nodes that maximizes the degree of precision m of the
approximation, that is, the degree of a polynomial up to which (B.10) holds exactly.

For the weight function (B.3) and the integration interval (−∞,∞) in D = 1 dimension,
the Gauss-Hermite quadrature can be applied [178, 179]. The optimal nodes for an n-point
quadrature are the roots of the one-dimensional Hermite polynomialsHn(v) and the weights
are given by

wi =
1

Hn−1(ci)
d
dv
Hn(ci)

∫
ω(v)Hn−1(v)Hn−1(v) dv

=
n!

[nHn−1(ci)]
2 ,

(B.11)
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Quadrature ci wi

E1
1,1 0 1

E2
1,3 ±1 1/2

E3
1,5 0 2/3

±√3 1/6

E4
1,7 ±

√
3−√6 (3 +

√
6)/12

±
√

3 +
√

6 (3−√6)/12

Table B.1: Nodes and weights of some one-dimensional Gauss-Hermite quadratures.

where the relation d
dv
Hn = vHn−Hn+1 = nHn−1 was used and δ(n)

αα = n! in one dimension.
The degree of precision of the n-point quadrature in one dimension ism = 2n−1. The nodes
and the weights for some one-dimensional Gauss-Hermite quadratures are listed in table
B.1. The nomenclature En

D,m is adopted from Shan et al. [47], where D is the dimension of
space, n is number of nodes and m is the degree of precision.

In higher dimensions D > 1, there is no unique quadrature procedure available. Nev-
ertheless, one can construct quadratures in higher dimensions from the one-dimensional
quadrature by writing

∫
ω(v)

D∏
α=1

vnα
α dv =

D∏
α=1

(∫
ω(vα)v

nα
α dvα

)
=

D∏
α=1

(∑

kα

wkαc
nα
kα

)

=
∑

k1

· · ·
∑

kD

wk1 · · ·wkD
cn1
k1
· · · cnD

kD
,

(B.12)

where n1 + · · · + nD ≤ n. This means that a D-dimensional quadrature emerges from a
combination of D one-dimensional quadratures:

∫
ω(v)p(v) dv =

∑
wk1...kD

p(ck1...kD
), (B.13)

where wk1...kD
= wk1 · · ·wkD

and ck1...kD
= (ck1 , . . . , ckD

), and p(v) is a polynomial of de-
gree n. For example, using the one-dimensional quadrature E3

1,5, we obtain the quadratures
E9

2,5 and E27
3,5 using the full set of abscissae in two and three dimensions, respectively (see

table 2.1 on page 18).

In three dimensions, the number of nodes can be reduced without affecting the overall degree
of the quadrature. The weights of the quadrature E27

3,5 can be grouped into four symmetry
classes wq according to q = ‖ck1...k3‖2/3. For D = 3 and n = 5 we have n1 + n2 + n3 ≤ 5.
We can assume n1 ≤ n2 ≤ n3 without loss of generality. The ni ≥ 0 for i = 1, 2, 3 implies
n1 ≤ 1. If n1 = 1, the integral (B.12) vanishes for parity reasons. The sum on the right
hand side also vanishes as the weights are symmetric with respect to c1 = 0. Conversely, if
n1 = 0, p(v) reduces to a two-dimensional polynomial and the quadrature retains its degree
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if the weights of the three-dimensional quadrature match the weights of the two-dimensional
quadrature E9

2,5:

wq=0 + 2wq=1 =
2

3
· 2

3
=

4

9
,

wq=1 + 2wq=2 =
2

3
· 1

6
=

1

9
,

wq=2 + 2wq=3 =
1

6
· 1

6
=

1

36
.

(B.14)

This is an under-determined system that can be rewritten in the parametric form1

wq=0 =
1

9
(2 + t),

wq=1 =
1

18
(2− t),

wq=2 =
1

36
t,

wq=3 =
1

72
(1− t).

(B.15)

The original quadrature E27
3,5 is recovered for t = 2/3. By choosing t = 0 or t = 1 we can

omit either the q = 2 or the q = 3 symmetry class and thus effectively reduce the number
of abscissae. Note that this does not affect the accuracy of the quadrature. The result are the
quadratures E15

3,5 and E19
3,5 that correspond to the D3Q15 and D3Q19 models, respectively.

Besides the production formulas we shall demonstrate that quadratures can also be con-
structed from a predefined set of abscissae ci. We note that the orthonormal relation implies

∫
ω(v)H(n) dv = δ0,n. (B.16)

The quadrature (B.13) is of degree m, if and only if
n∑
i=1

wiH(n)(ci) = δ0,n. (B.17)

For a set of abscissae that obeys parity symmetry, this relation is automatically satisfied for
the odd tensor polynomials. The even tensor polynomials up to n = 4 yield the following
conditions on the weights wi:

∑
i

wi = 1,

∑
i

wiciαciβ = δαβ,

∑
i

wiciαciβciγciδ = δαβδγδ + δαγδβδ + δαδδβγ .

(B.18)

1 This was previously derived by Shan et al. [47], but equation (A 20) in their paper contains typographic
errors.
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We note that this is closely related to the conditions on the weights that follow from the
physical requirements within the Chapman-Enskog equation. This shows the intimate rela-
tionship between the Hermite expansion and the symmetry properties of the velocity set and
the lattice sums.

Finally, we remark that quadratures can also be obtained on different routes [179]. The
smallest number of nodes among the known quadratures is used by the 13-point quadrature
E13

3,5, which is of degree 5.2 In general, it is yet an open problem, how the minimal quadrature
for a given geometry, weight function and degree of accuracy can be found.

B.2 Lattice sums and isotropic lattice models

The lattice sums
T (n) =

∑
i

wici . . . ci (B.19)

play a pivotal role in the derivation and analysis of the lattice Boltzmann method. In this
section, we treat some important properties of the lattice sums with respect to the isotropy
of the lattice model.

B.2.1 Lattice sums for discrete velocity sets

Lattice Boltzmann models are often constructed from a given discrete velocity set. This set
then has to satisfy certain symmetry properties in order to guarantee Galilean invariance and
isotropy of the macroscopic equations. The requirements can be conveniently formulated in
terms of the lattice sums, which have to take the form of certain invariant tensors. Here we
derive the general form of the lattice sums for simple cubic lattices.

The n-th rank lattice sum for a given set of discrete velocities is

T (n)
α1...αn

=
∑
i

wiciα1 . . . ciαn . (B.20)

The wi are the weights from the equilibrium distribution which we consider as free param-
eters here. For symmetry reasons, wi depends on the length of ci but not its direction. The
lattice sum can therefore be split into contributions from the different subshells indexed
by q = c2

i

T (n)
α1...αn

=
∑
q

wq

bq∑
i=1

cqiα1 . . . cqiαn , (B.21)

2 The abscissae of E13
3,5 correspond to the vertices of an icosahedron. It is therefore not related to the D3Q13

model [24] which uses the next-nearest neighbors on a cubic grid.
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where bq is the coordination number of the q-subshell. On a simple cubic lattice, the velocity
set is invariant under parity transformations. Hence the odd lattice sums vanish

T (n)
α1...αn

= 0 if n is odd. (B.22)

We proceed to evaluate the sums for n = 0, n = 2 and n = 4 explicitly. For n = 0, we get

T (0) =
∑
q

wq

bq∑
i=1

1 =
∑
q

bqwq = 1. (B.23)

The second-rank lattice sum on the cubic lattice is an isotropic tensor. We obtain

T
(2)
αβ =

∑
q

wq

bq∑
i=1

cqiαcqiβ =
∑
q

qbq
D
wqδαβ = σ2 δαβ, (B.24)

where

σ2 =
∑
q

qbq
D
wq. (B.25)

To evaluate the fourth-order lattice sum, we note that a fourth rank tensor that is invariant
under transformations in the symmetry group of the cubic lattice can be written as a linear
combination of a fourth-rank isotropic tensor and a cubic anisotropy δαβγδ, which is one if
all four indices are equal and zero otherwise:

T
(4)
αβγδ = κ4δαβγδ + σ4 (δαβδγδ + δαγδβδ + δαδδβγ) . (B.26)

For a lattice with cqiα ≤ 1, we can evaluate

T (4)
xxxx =

∑
q

wq

bq∑
i=1

cqixcqixcqixcqix =
∑
q

wq
qbq
D

= κ4 + 3σ4, (B.27)

and

T
(4)
ααββ =

∑
q

wq

bq∑
i=1

cqiαcqiαcqiβcqiβ =
∑
q

wqbqq
2 = Dκ4 +D(D + 2)σ4. (B.28)

From this it follows

κ4 =
∑
q

wq
qbq(D + 2− 3q)

D(D − 1)
,

σ4 =
∑
q

wq
qbq(q − 1)

D(D − 1)
.

(B.29)
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For the D3Q19 model with q = 0, 1, 2, we get the following equation system for the weights

1 = w0 + 6w1 + 12w2,

σ2 = 2w1 + 8w2,

σ4 = 4w2,

κ4 = 2w1 − 4w2.

(B.30)

This admits a solution only if
σ2 = 3σ4 + κ4. (B.31)

Then the solution is
w0 = 1− 2σ2 − κ4 = 1− 6σ4 − 3κ4,

w1 =
1

6
(σ2 + 2κ4) =

1

2
(σ4 + κ4) ,

w2 =
1

4
σ4 =

1

12
(σ2 − κ4) ,

(B.32)

which is used in the main text to obtain the values (2.54).

B.2.2 Lattice sums and Gauss-Hermite quadrature

Next we prove equation (2.40) of the main text. It states that, for a given lattice with links
ci and corresponding weights wi, isotropy of the lattice sums

T (n) =
∑
i

wici . . . ci =

{
0 n odd
δ(n) n even,

(B.33)

is equivalent to wi and ci being the weights and nodes of a Gauss-Hermite quadrature of
degree m ≥ n. Let us define pn(v) ≡ v . . .v︸ ︷︷ ︸

n times

, then it holds

∫
ω(v)pn(v)dv =

{
0 n odd
δ(n) n even.

(B.34)

Since pn(v) is a tensor polynomial of degree n, it is exactly evaluated by a Gauss-Hermite
quadrature of degree m ≥ n, i.e.,

∑
i

wici . . . ci =

∫
ω(v)pn(v)dv, (B.35)

which proves one direction of the equivalence. For the other direction we note that any
polynomial p(v) of degree m is a linear combination of pn(v), n ≤ m, hence

∫
ω(v)p(v) dv =

∫
ω(v)

m∑

k=0

akpk(v) dv

=
m∑

k=0

ak

∫
ω(v)pk(v) dv =

bm
2
c∑

k=0

a2kδ
(2k).

(B.36)
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Then, if the lattice sums are isotropic, we can insert (B.33) for the δ’s in (B.36) and use the
definition of pn(ci) to obtain

∫
ω(v)p(v) dv =

m∑

k=0

ak
∑
i

wici . . . ci =
∑
i

wi

m∑

k=0

akpk(ci) =
∑
i

wip(ci). (B.37)

The equality of the leftmost with the rightmost side implies that wi and ci are the weights
and nodes of a quadrature of degree m. This completes the proof of the equivalence. ¤

B.3 Theoretical analysis of the slip boundary condition

The stationary solution of the lattice Boltzmann equation for the a one-dimensional flow
profile can be obtained as follows. For simplicity, we use the single relaxation time approx-
imation for which the stationary solution of the lattice Boltzmann equation reads

fα+ĉiz
i = (1 + λ)fαi − λf eq

j (ρ, uαx) + ∆g,α
i . (B.38)

In the specific case of the D3Q19 model, the stationary solution for the 19 populations is
explicitly given by

fα0 =
ρ

3

(
1− (uαx)

2

2c2s

)
,

fα1 =
ρ

18

(
1 +

uαxa

c2sτ
+

(uαx)
2

c2s

)
− afext

18λc2s
+

ζ

18λc2sa
2
uαx(δ1,α + δα,N),

fα2 =
ρ

18

(
1− uαxa

c2sτ
+

(uαx)
2

c2s

)
+

afext

18λc2s
− ζ

18λc2sa
2
uαx(δ1,α + δα,N),

fα3 =
ρ

18
,

fα4 =
ρ

18
,

fα5 =
ρ

18
,

fα6 =
ρ

18
,

fα7 =
ρ

36

(
1 +

uαxa

c2sτ
+

(uαx)
2

c2s

)
− afext

36λc2s
+

ζ

36λc2sa
2
uαx(δ1,α + δα,N),

fα8 =
ρ

36

(
1− uαxa

c2sτ
+

(uαx)
2

c2s

)
+

afext

36λc2s
− ζ

36λc2sa
2
uαx(δ1,α + δα,N),

fα9 =
ρ

36

(
1 +

uαxa

c2sτ
+

(uαx)
2

c2s

)
− afext

36λc2s
+

ζ

36λc2sa
2
uαx(δ1,α + δα,N),

fα10 =
ρ

36

(
1− uαxa

c2sτ
+

(uαx)
2

c2s

)
+

afext

36λc2s
− ζ

36λc2sa
2
uαx(δ1,α + δα,N),

(B.39)
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fα11 = −λ ρ
36

(
1 +

uα−1
x a

c2sτ
+

(uα−1
x )2

c2s

)
+ (1 + λ)fα−1

i +
afext

36c2s
− ζ

36c2sa
2
uα−1
x δ1,α−1,

fα12 = −λ ρ
36

(
1− uα+1

x a

c2sτ
+

(uα+1
x )2

c2s

)
+ (1 + λ)fα+1

i − afext

36c2s
+

ζ

36c2sa
2
uα+1
x δα+1,N ,

fα13 = −λ ρ
36

(
1 +

uα+1
x a

c2sτ
+

(uα+1
x )2

c2s

)
+ (1 + λ)fα+1

i +
afext

36c2s
− ζ

36c2sa
2
uα+1
x δα+1,N ,

fα14 = −λ ρ
36

(
1− uα−1

x a

c2sτ
+

(uα−1
x )2

c2s

)
+ (1 + λ)fα−1

i − afext

36c2s
+

ζ

36c2sa
2
uα−1
x δ1,α−1,

fα15 = −λ ρ
36

+ (1 + λ)fα−1
j ,

fα16 = −λ ρ
36

+ (1 + λ)fα+1
j ,

fα17 = −λ ρ
36

+ (1 + λ)fα+1
j ,

fα18 = −λ ρ
36

+ (1 + λ)fα−1
j .

Let us assume that the direction of the flow is the x-direction. The flow velocity in this
direction is obtained as

ρuαx =
∑
i

fαi cix

= (fα1 − fα2 + fα7 − fα8 + fα9 − fα10)
a

τ
+ (fα11 − fα14)

a

τ
+ (fα13 − fα12)

a

τ
,

(B.40)

where we have grouped the populations in a practically convenient way. The different subex-
pressions can be evaluated by plugging in the explicit solutions for the populations

(fα1 − fα2 + fα7 − fα8 + fα9 − fα10) =
2a

9c2sτ
ρuαx −

2fexta

9λc2s
+

2ζ

9λc2sa
2
uαx(δ1,α + δα,N),

(B.41a)

(fα11 − fα14) = (1 + λ)(fα−1
11 − fα−1

14 )− λa

18c2sτ
ρuα−1

x +
fexta

18c2s
− ζ

18c2sa
2
uα−1
x δ1,α−1,

(B.41b)

(fα13 − fα12) = (1 + λ)(fα+1
13 − fα+1

12 )− λa

18c2sτ
ρuα+1

x +
fexta

18c2s
− ζ

18c2sa
2
uα+1
x δα+1,N ,

(B.41c)

which leads to

ρuαx = (fα1 − fα2 + fα7 − fα8 + fα9 − fα10)
a

τ
+ (fα11 − fα14)

a

τ
+ (fα13 − fα12)

a

τ

=
2

3
ρuαx −

λ

6
ρ

(
uα−1
x + uα+1

x

)
+
λ− 2

3λ
fextτ

+ (1 + λ)
a

τ

(
fα−1

11 − fα−1
14 + fα+1

13 − fα+1
12

)

+
2ζτ

3λa3
uαx(δ1,α + δα,N)− ζτ

6a3

(
uα−1
x δ1,α−1 + uα+1

x δα+1,N

)
.

(B.42)
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Furthermore, we can write

(fα11 − fα14 + fα13 − fα12)
a

τ
=

1

3
ρuαx +

2fextτ

3λ
− 2ζτ

3λa3
uαx(δ1,α + δα,N). (B.43)

Using (B.42) and plugging in (B.41a) to (B.41c) we get the following recurrence relations

(fα11 − fα14)
a

τ
=

1

3
ρuαx +

2fextτ

3λ
− 2ζτ

3λa3
uαx(δ1,α + δα,N)− (fα13 − fα12)

a

τ

=
1

3
ρuαx +

λ

6
ρuα+1

x +
4− λ

6λ
fextτ − 2ζτ

3λa3
uαx(δ1,α + δα,N)

+
ζτ

6a3
uα+1
x δα+1,N − (1 + λ)

a

τ
(fα+1

13 − fα+1
12 ),

(fα13 − fα12)
a

τ
=

1

3
ρuαx +

2fextτ

3λ
− 2ζτ

3λa3
uαx(δ1,α + δα,N)− (fα11 − fα14)

a

τ

=
1

3
ρuαx +

λ

6
ρuα−1

x +
4− λ

6λ
fextτ − 2ζτ

3λa3
uαx(δ1,α + δα,N)

+
ζτ

6a3
uα−1
x δ1,α−1 − (1 + λ)

a

τ
(fα−1

11 − fα−1
14 ).

(B.44)

Adding these two relations leads to

(
fα−1

11 − fα−1
14 +fα+1

13 − fα+1
12

) a
τ

=
1

3
ρuα−1

x +
λ

3
ρuαx +

1

3
ρuα+1

x +
4− λ

3λ
fextτ

− 2ζτ

3λa3
uα−1
x δ1,α−1 +

ζτ

6a3
uαx(δ1,α + δα,N)− 2ζτ

3λa3
uα+1
x δα+1,N

− (1 + λ)
a

τ
(fα11 − fα14 + fα13 − fα12)

=
1

3
ρuα−1

x +
λ

3
ρuαx +

1

3
ρuα+1

x +
4− λ

3λ
fextτ

− 2ζτ

3λa3
uα−1
x δ1,α−1 +

ζτ

6a3
uαx(δ1,α + δα,N)− 2ζτ

3λa3
uα+1
x δα+1,N

− (1 + λ)

(
1

3
ρuαx +

2fextτ

3λ
− 2ζτ

3λa3
uαx(δ1,α + δα,N)

)

=
1

3
ρ

(
uα−1
x − uαx + uα+1

x

)
+

2− 3λ

3λ
fextτ − 2ζτ

3λa3
uα−1
x δ1,α−1

+
5λ+ 4

6λ

ζτ

a3
uαx(δ1α + δα,N)− 2ζτ

3λa3
uα+1
x δα+1,N ,

(B.45)
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which we can finally use in (B.42) to obtain

ρuαx =
2

3
ρuαx −

λ

6
ρ

(
uα−1
x + uα+1

x

)
+
λ− 2

3λ
fextτ

+ (1 + λ)
a

τ

(
fα−1

11 − fα−1
14 + fα+1

13 − fα+1
12

)

+
2ζτ

3λa3
uαx(δ1,α + δα,N)− ζτ

6a3

(
uα−1
x δ1,α−1 + uα+1

x δα+1,N

)

=
1− λ

3
ρuαx +

2 + λ

6
ρ(uα−1

x + uα+1
x )− λfextτ

− 5λ+ 4

6λ

ζτ

a3
(uα−1

x δ1,α−1 + uα+1
x δα+1,N)

+
8 + 9λ+ 5λ2

6λ

ζτ

a3
uαx(δ1,α + δα,N).

(B.46)

Reordering terms and plugging in the expression (4.29) for the viscosity ηs, we finally arrive
at the finite difference equation

ηs
uα−1
x − 2uαx + uα+1

x

a2
= −fext +

8 + 9λ+ 5λ2

6λ2

ζ

a3
uαx(δ1,α + δα,N)

− 5λ+ 4

6λ2

ζ

a3
(uα−1

x δ1,α−1 + uα+1
x δα+1,N).

(B.47)

This is equation (5.59) of the main text. ¤

B.4 Functional derivation of the bulk equilibrium distribution

Here, we rederive the bulk equilibrium distribution as the minimizer of the quadratic func-
tional (6.11). The stationary distribution of the functional is

f eq
i = wi (λρ + λj,αciα + λΠ,αβciαciβ) . (B.48)

The equilibrium distribution has to satisfy the constraints

ρ =
∑
i

f eq
i ,

jα =
∑
i

f eq
i ciα,

Πeq
αβ =

∑
i

f eq
i ciαciβ.

(B.49)

Plugging in (B.48) and using the lattice sums from section B.2 in this appendix, we get

ρ = λρ + σ2λΠ,αα,

ρuα = σ2λj,α,

3ρc2s + ρuαuα = 3σ2λρ + 5σ4λΠ,αα,

ρuαuβ − 1

3
ρuγuγδαβ = 2σ4λΠ,αβ,

(B.50)
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where have decomposed the stress tensor and the corresponding Lagrange multiplier into
their trace and traceless part. Moreover, we have assumed κ4 = 0 to ensure isotropy of
fourth-rank tensors. The solution of the above equation system is

λρ =
1

5σ4 − 3σ2
2

(
5σ4ρ− 3σ2ρc

2
s − σ2ρuαuα

)
,

λj,α =
1

σ2

ρuα,

λΠ,αα =
1

5σ4 − 3σ2
2

(
3ρc2s − 3σ2ρ+ ρuαuα

)
,

λΠ,αβ =
1

2σ4

(
ρuαuβ − 1

3
ρuγuγδαβ

)
.

(B.51)

For convenience, we continue with the explicit values for the D3Q19 model, where σ4 =
σ2

2 = c4s and c2s = 1/3. Then the Lagrange multipliers are

λρ = ρ

(
1− 1

2c2s
uαuα

)
,

λj,α =
1

c2s
ρuα,

λΠ,αβ =
1

2c4s
ρuαuβ,

(B.52)

and we finally arrive at the equilibrium distribution

f eq
i = wiρ

[
1− 1

2c2s
uα uα +

uαciα
c2s

+
uαuβciαciβ

2c4s

]

= wiρ

[
1 +

uαciα
c2s

+
uαuβ (ciαciβ − c2sδαβ)

2c4s

]
.

(B.53)

This is the familiar expression for the bulk equilibrium distribution. ¤
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C Sourcecode

The lattice Boltzmann implementation that was developed during this work has been inte-
grated in the ESPResSo software package [3, 4]. The sourcecode can be found on the
accompanying CD-ROM. It contains the full ESPResSo package which is distributed un-
der the GNU General Public License (GPL) [180]. The parts whose development has been
initiated by this author comprise, inter alia, the following files:

lattice.h Data structures for lattices and
lattice.c mapping functions
halo.h Data structures for halo regions and
halo.c parallelization routines
lb-d3q18.h Data structures for D3Q18 model
lb-d3q19.h Data structures for D3Q19 model
lb.h The lattice Boltzmann kernel, including
lb.c fluctuations and force coupling
statistics_fluid.h Data structures for fluid observables
statistics_fluid.h and analysis routines
lb-boundaries.h Lattice Boltzmann boundary conditions
lb-boundaries.c

The author has further contributed various bug-fixes and several extensions to ESPResSo,
for example a second order accurate Langevin integrator. A full list is set aside in order to
put emphasis on those parts that are relevant for this work.
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