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ABSTRACT 

 

 

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. 

These imidazolium salt containing acrylate monomers were polymerize at 70oC by free 

radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght.  

The chemical structure of the polymer electrolytes obtained by the described synthetic 

routes was investigated by NMR-spectroscopy. The polymers were doped with various 

amounts of H3PO4 and LiN(SO2CF3)2,   to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-

2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally 

stable up to about 200◦C. DSC results indicates the softening effect of the length of the 

spacers (n) as well as phosphoric acid.  

The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 

120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4.  It was observed that the 

lithium ion conductivity of the poly(AcIm-2-Li)  x LiN(SO2CF3)2  increases with blends 

(x) up to certain composition and then leveled off independently from blend content. The 

conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li)  

x LiN(SO2CF3)2  where x is 10. The phosphate and phosphoric acid functionality in the 

resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the 

formation of cross-linked materials at elevated temperature which may improve the 

mechanical properties to be used as membrane materials in fuel cells. High resolution 

nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about 

hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to 

better resolved resonances in both the backbone region and side chain region. The mobile 

and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR 

spectra. The interaction of the protons which may contribute to the conductivity is 

observed from the 2D double quantum correlation (DQC) spectra. 
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1. Introduction 
 

The development of high energy density batteries with good performance, safety, and 

reliability has been an active area of research for many years [Fenton 73, Armand 78, 

Dell 00]. Advances in electronics, especially portable electronics (i.e. mobile phones, 

portable computers, etc.), have created a demand for smaller, lighter, yet more powerful 

energy sources.  

Polymer electrolytes may generally be defined as polymers that possess ion transport 

properties comparable with that of common liquid ionic solutions. The development of 

polymer electrolytes has drawn the attention of many researchers in for their applications 

not only in fuel cells and lithium batteries but also, in other electrochemical devices such 

as super capacitors and electrochromic devices, etc. These polymer electrolytes have 

several advantages over their liquid counter parts such as no internal shorting, no leakage 

[Gray 91-97, Scrosati 93, MacCallum 871-872]. The very first example of a ‘‘dry solid’’ 

polymer electrolyte was a poly(ethylene oxide) (PEO) based blends with sodium and 

potassium thiocyanates salts showed very low ambient temperature conductivities of the 

order of 10-8 S/cm [Fenton 73, Wright 75]. The blends with inorganic salts such as LiI, 

LiPF6, LiBF4, LiClO4 etc., or more complex organic salts, for instance, LiN(SO2CF3)2, 

LiCF3SO3, among others has also been studied [Costa 2007].  Since this system does not 

possess any organic liquid, the polymer host acts as solid solvent. However, the cycling 

performance of this dry solid polymer electrolyte with lithium metal electrodes was not 

satisfactory and was restricted to as low as 200–300 cycles. The poor performance of the 

cells was attributed to poor ionic conductivity. Armand's subsequent suggestion to use 

solid polymer electrolytes in lightweight and powerful solid state batteries opened an 

intensive research for better conducting materials [Armand 78]. 

A significant amount of research has been focused on the development of materials for 

the electrolyte layer which transports lithium ions between the anode and the cathode 

[Dias 00, Vincent 00]. Polar aprotic liquid electrolytes provide good media for the 

transport of lithium ions [Vincent 00]. However, organic liquid electrolytes require bulky 

and sometimes heavy enclosures [Gray 97]. Thus, attempts have been made to develop 

solid polymer electrolytes that allow the use of complex shapes, greater ease of 
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fabrication, reduced weight containment, lower flammability, and a lower toxicity of the 

battery components [Gray 97]. So far no solid polymer electrolyte is known that 

efficiently transports lithium ions at commercially viable levels (conductivities 10−3 S/cm 

at 25°C).  

Several research groups have been actively searching for anhydrous proton conducting 

polymers for their use in high temperature fuel cells. The material design concept is 

primary based on acid-base interactions. It was shown that the addition of H3PO4 to 

polybenzimidazole (PBI) delivered appreciable proton conductivity at elevated 

temperature under anhydrous conditions [Wang 96]. Also proton–conducting polymer 

electrolytes based on phosphoric acid was reported by Bozkurt et. al. [Bozkurt 99]. In this 

approach cationic polyelectrolyte poly(diallyldimethylammonium-dihydrogenphosphate), 

PAMA+H2PO4
-  was used as the polymer matrix. The conductivity of this material 

increased with phosphoric acid content, reaching 10-2 S/cm at 100°C. 

Kreuer et. al showed that the use of imidazole as the base component in place of water 

has delivered not only higher proton conductivity, but also displayed better temperature 

stability due to the fact that imidazole is a stronger Brønsted base compared to water 

[Kreuer 98]. More recent development has been carried out on acid/base oligomer 

systems by Honma et. al [Honma 99], and on polymer blend systems bearing acid base 

functional groups by Kerres et. al. [Kerres 01].  
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2. Polymer Electrolyte Systems  
 

2.1 Hydrated Membranes 

 

2.1.1 Perfluorinated Ionomer Membranes 

Perfluorinated Ionomer Membranes are well-established low temperature materials, 

which have a Teflon-like backbone structure with sulfonated side chains attached by 

ether bonds (Figure 2.1). Within this family of ionomers, Nafion® is the best known and 

commercially available material.  

These polymers are available in a large range of equivalent weights (EW is the mass of 

polymer per mole of sulfonic acid group). The development of perfluorinated membranes 

by DuPont in the 1960s has played a significant role in electrochemical applications 

(chlor/alkali electrolysis, fuel cells, etc). These materials are particularly suitable for fuel 

cell applications. 

The unique feature of Nafion®-type ionomers is their superacidity, which is based on a 

very high degree of proton dissociation from the sulfonic acid group attached to the 

perfluorinated spacer group. 

 

 

 
 
 

  
 
                                   (a)                                                                   (b)   
 

Figure 2.1 Structures of perfluorinated ionomers (Nafion® ) from DuPont (a) and Dow   
                  Chemical (b). The values of n and x can be varied to produce materials with   
                  different equivalent weights (EW). 

 

The structural model of an ionomer membrane which comprises ionic hydrophilic 

clusters, and an amorphous hydrophobic region has been suggested previously by 

[Schlick 96] and revised by [Kreuer 01] (Figure 2.2).  

[(CF2CF2)n(CF2CF)]x

OCF2CFCF3

OCF2CFCF2SO3H

[(CF2CF2)n(CF2CF)]x

OCF2CF2SO3H
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Figure 2.2  Model for Perfluorosulfonic Polymer, Nafion [Kreuer 01]. 
 

The transport properties of perfluorosulfonic membranes are largely influenced by the 

water content. Nafion combines the extreme hydrophobicity of the polymer backbone 

with the extreme hydrophilicity of the sulfonic acid function, which leads to a 

hydrophilic/hydrophobic nano-separation (Figure 2.2) when the material comes in contact 

with water. The hydrophilic domains spontanouesly take up water and swell to form 

nanochannels. These nanochannels are formed by the aggregation of sulfonic acid 

functional groups. They are responsible for the transport of water and protons. In the 

nanochannels, charge carriers are formed by dissociation of the acidic functional groups 

in the presence of water, and proton conduction takes place through the hydrophilic 

channels. On the other hand, hydrophobic domains provide the polymer with 

morphological stability and prevent its dissolution in water [Kreuer 01]. 

The conductivity of  Nafion® is around 0.1 S/cm at room temperature  when swollen with 

100 % of water [Ren 96]. In the dry state the membrane behaves like an insulator but, 

when hydrated, it becomes a conductor [Pourcelly 90]. The proton conductivity reaches a 

maximum in the temperature range of 55-70oC. Outside of this temperature range, the 

conductivity decreases perhaps a change of the hopping distance between cluster zones 

[Rieke 87], but especially because of dehydration at temperature above 100oC.   
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2.1.2 Other Sulfonated Hydrocarbon Polymer Systems 

These polymers include aromatic polyesters, polyphenylene sulphides, polysulfones, 

polyethersulfones, various polyketones, polyphenylquinoxalines, polybenzimidazoles and 

polyimides, which all exhibit exceptional thermal and chemical stability.  In the hydrated 

state, the proton conducting properties of these sulfonated aromatic polymers are 

improved. The main representatives of sulfonated polymers and their conductivities are  

given in Table 2.1. 

 

 

2.2 Anhydrous Proton-Conducting Polymers 

 

2.2.1 Phosphoric Acid-Based Membranes 

The requirement of these membranes for fuel cells, hydrogen sensors and high 

temperature batteries has led many researchers to focus on the development of new 

materials to serve as an electrolyte [Kerres 01, Kreuer 01, 02, Schuster 04, Pu 01, Li 03]. 

During the last decade, investigations on anhydrous polymer electrolyte systems with 

high proton conductivity at intermediate temperatures (100–200oC) have been carried 

out. The proton conduction does not depend on the presence of an aqueous phase in 

anhydrous proton conducting polymer electrolytes. This requires the replacement of water 

by a suitable proton solvent which would provide proton conduction similar to water but at 

higher temperatures.  In this context, phosphoric acid is used as proton solvent. Various 

blends of Polymer-H3PO4 were studied and they are summarized in Table 2.2. 

One of the most promising new membranes for operation above the boiling point of water 

is PBI doped with phosphoric acid for proton conductivity. PBI has attracted the interest 

of scientists and engineers because of its good thermal and chemical stability.  These 

properties make phosphoric acid doped PBI useful for PEMFC at temperatures up to 

200ºC [Wainright 95]. PBI is an amorphous basic polymer with high thermal stability. 

However, in the pure state the conductivity is very low, about 10-12 S/cm [Aharoni 79, 

Pohl 64]. The conductivity of phosphoric acid doped PBI increases with increasing 

doping level, temperature and humidification. The conductivity of the PBI- H3PO4 is 

about 10-3 S/cm at  110oC  for x=1.45 [Pu 02]. 



 

 
 

Table 2.1. Sulfonated Polymer Electrolyte Membranes for Fuel Cell Applications 
 
  Sulfonated Electrolyte                           Abbreviation                      Structure                              Conductivity                        Ref.    
                                                                                                                                                         (S.cm-1) (oC)            
 

  Poly(phenylene oxide)                                S-PPO                                                                                           -                           [Walker 99] 

 

 

  Poly(ether-ether ketone)                           S-PEEK                                                                              6x10-2 (RT)          [Soczka-Guth 99]                              

 

 

  Poly(arylether sulfone)                                S-PAES                                                                                      -                              [Kerres 96]               

 

 

  Poly(4-phenoxybenzoyl-1,4-phenylene)     S-PPBP                                                                               9x10-2 (80)                   [Hogarth 01]           

 

 

 

  Polybenzimidazole                                       S-PBI                                                                                 1x10-1 (RT)              [Gieselman 92]            

 

 

 

  Polyphosphazene                                         S-PP                                                                                   7x10-2 (RT)                         [Guo 99]                              
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 Table 2.2. Anhydrous proton conducting polymer electrolytes based on blending with H3PO4 
  

 
 

    PVA-H3PO4                                                                                                                  ∼ 10-5                    hydrogen sensor                    Petty-Week 88] 

 

 

    lPEI-H3PO4                                                                                         0<x<1               ∼ 10-5                                                                          [Tanaka 00] 

 

    PEO-H3PO4                                                                                        0<x<2                ∼ 10-5                                                                         [Donoso 88] 

 

    PVA-H3PO4-IPN                                                                                                         10-4-10-5                 hydrogen sensor                               [Polak 86] 

    PEO-PMMA-H3PO4                                                                                                     > 10-3                    fuel cell                                     [Przyluski  93] 

 

    bPEI-H3PO4                                                                                        0<x<3                  1 0-4                   electrochromic display                  [Tanaka 00] 

 

    PAAM-H3PO4                                                                                  0.6<x<2                  10-3                    electrochromic display             [Rodriguez 93] 

 

    PAAM-H3PO4-MBA                                                                                                    ∼ 10-3                                                                     [Wieczorec 95] 

     

    Nylon 610-H3PO4                                                                               0<x<3               ∼ 10-3                                                                         [Grondin 95] 

 

 

    PBI-H3PO4                                                                                          0<x<3               ∼ 10-6                                                           [Pu 02, Wainright 95] 

Maximum  RT 
Conductivity  
(S/cm) 

Type of 
Electrolyte 

Polymer 
Structure Application Ref. Doping 

Ratio 
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2.2.2 Other Anhydrous Materials 

The proton-conducting properties of nitrogen-containing aromatic heterocycles such as 

imidazole and benzimidazole were studied [Kreuer 98, 99]. The pure materials showed 

reasonable conductivities in the liquid state [Kreuer 99], which was assigned to some 

degree of self-dissociation. The behavior of imidazole toward protons is very similar to 

that of water: The heterocycles are amphoteric molecules; they exhibit extensive 

hydrogen bond interactions that result in a fluctuating network, and to some extent 

undergo self-dissociation (Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2.3 Imidazole and water exhibit similar behavior toward protons                                     
                      [Schuster 02, Acheson 76]. 
 

 

The substitution of water by heterocycles such as imidazole or benzimidazole as 

alternative proton solvents was also studied.  The proton transport under anhydrous or 

low humidity conditions might be based on a non-vehicular mechanism, in which only 

protons are mobile from site to site without an assistance of mobile vehicle molecules 

Imidazole has better thermal and/or chemical stability compared to water [Gelus 68, 

pKa=7 

 

pKa1=7.2 
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Kirsche 94]. Specific conductivities of Nafion swollen with different proton solvents are 

displayed in Figure 2.4. PAA/Imidazole blends reach a conductivity of 10-3 S/cm at 

120oC [Bozkurt 03]. Another interesting material is the PAMPSA/Imidazole based blend 

which showed a maximum conductivity of 1.5x10-3 S/cm at 100oC [Erdemi 03]. 

Another interesting approach for obtaining high proton conductivity in polymers based 

on proton solvating heterocycles covalently bound via flexible spacers (EO units) was 

also presented [Schuster 01]. Intermolecular proton transfer and structural reorganization 

by hydrogen bond breaking and forming processes are to be the dominant conduction 

processes, which gave rise to proton conductivities of up to 5x10-3 S/cm at 120oC in 

completely water-free imidazole terminated oligomers. 

Additionally, the preparation and characterisation of fully polymer-bound heterocycles as 

proton solvents was also presented [Herz 03]. Two different types of polymers were 

reported: Polystyrene with imidazole terminated flexible side chains and benzimidazole 

covalently linked to an inorganic SiO2 network by a flexible spacer. High proton 

conductivities of up to 7x10-4 S/cm at 200oC were obtained for these polymers in the 

anhydrous state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Conductivities of Nafion swollen with water, phosphoric acid, and imidazole,        

                   respectively, and those of a recast Nafion/imidazole blend [Schuster 03]. 
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R'R

X-

2.3 Ionic Liquids 

 

Ionic liquids (ILs) are liquids at ambient usually below 100oC. These are comprised 

entirely of ions and are receiving an upsurge of interest for their unique physicochemical 

properties such as high thermal stability, negligible vapor pressure, relatively high ionic 

conductivity, and good electrochemical stability.  

The commonly used imidazolium based ionic liquid structures are shown in Figure 2.5. 

 

 

 

                                                  X =  Br-, Cl-, BF4
-, PF6

-, NO3
-, CF3SO3

-, ClO4
-, TFSI- 

                                                  R, R’ = CH3, CH3CH2, (CH3)3CH2, C6H5CH2 

 

 

Figure 2.5 Imidazolium-based ionic liquids with different counter ion. 

 

 

The realization that the constraints, associated with the use of water at temperatures 

higher than 100°C, place a uncertain block on the widespread use of proton exchange 

membrane fuel cells [Kreuer 02, Yang 01] which can result in an upsurge of interest in 

the option of ubiquitous ionic liquids.  Ionic liquids are very promising due to low vapor 

pressure, high ionic conductivity and greater thermal and electrochemical stability, but 

need to act as proton solvents or themselves be capable of conducting protons for their 

true use in proton conductors [Fuller 99, Doyle 00]. With the aim towards innovating 

proton conducting ionic liquids for anhydrous proton conductors at elevated 

temperatures, several research groups studied ILs as protic solvent and electrochemically 

provide insight into the proton conduction [Sun 01, Susan 031, Noda 03, Ohno 02, Hirao 

00, Souza 03]. Ionic liquids [Welton 99, Wasserscheid 00, Dupont 02, Noda 01, Tokuda 

04], due to their unique physicochemical properties mentioned above, have received 

significant attention for their use in multidisciplinary areas. These significant properties 

make the ionic liquids ideal as electrolytes for electrochemical devices. In present case, 
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lithium-ion conductivity can be molecularly designed for the ionic liquids, the scope and 

utility of the ionic liquids will expand to lithium rechargeable batteries [Shobukawa  04]. 

Studies showed that ILs as electrolyte in Li-ion batteries is promising [Shobukawa 05, 

Hayamizu 04].  

The ionicity of ionic liquids is determined by using the classification diagram shown in 

Figure 2.6 which is based on the classical Walden rule. The Walden rule relates the ionic 

mobilities (represented by the equivalent conductivity Λ (Λ=FΣµizi) to the fluidity  

� ( ) of the medium through which the ions move (where F is Faraday’s constant, 

µ is the mobility of i, z is charge of i and fluidity is the inverse of viscosity, η). In ideal 

condition which means in the absence of any ion-ion interactions, the slope should be 

unity. The position of the ideal line is established using aqueous KCl solutions at high 

dilution [Yoshizawa 03]. 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Classification diagram for ionic liquids, based on the classical Walden rule,     

                   and deviations therefrom [Yoshizawa 03]. 
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2.4 Proton Conduction Mechanisms 

 

Besides the electrode reactions, the proton transport through the separator membrane is of 

high importance for the function of a fuel cell. The proton is unique in that it is the only 

ion which does not possesses an electronic shell. It therefore strongly interacts with the 

electronegative species of its environment. Proton transfer phenomena follow two 

principal mechanisms. The most trivial case of proton migration requires the translational 

dynamics of bigger species: this is the vehicle mechanism [Kreuer 82]. In this 

mechanism, the proton diffuses through the medium together with a “vehicle” (for 

example, with H2O as H3O+). The counter diffusion of unprotonated vehicles (H2O) 

allows the net transport of protons. The observed conductivity, therefore, is directly 

dependent on the rate of vehicle diffusion (Figure 2.7a). In the other principal 

mechanism, the vehicles show pronounced local dynamics but reside on their sites. The 

protons are transferred from one vehicle to the other via hydrogen bonds (proton 

hopping). Simultaneous reorganization of the proton environment, consisting of 

reorientation of individual species or even more extended ensembles, then leads in the 

formation of an uninterrupted path for proton migration. This mechanism is known as the 

Grotthuss mechanism. This reorganization usually involves the reorientation of solvent 

dipoles (for example H2O), which is an inherent part of establishing the proton diffusion 

pathway. The rates of proton transfer and reorganization of its environment affect directly 

this mechanism. Those basic transport mechanisms are illustrated in Figure 2.7b. 

 

 

 

 

 

 

 

 

Figure 2.7 Schematic representation of phenomena involved in proton conduction     
         mechanisms: (a) Vehicle Mechanism (b) Grotthuss Mechanism [Kreuer 82]. 

(a) 

(b) 
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2.5 Applications 

 

2.5.1 Fuel Cells 

Fuel cells are electrochemical devices which convert the energy of a chemical reaction 

directly into electricity and heat. They are similar in principle to primary batteries except 

that the fuel and oxidant are stored externally, enabling them to continue operating as 

long as reactants are supplied. For instance, when hydrogen is generated from such fuels 

as gasoline, methanol, or natural gas, a fuel-reformer device must be added to the system. 

In addition, if pure hydrogen or methanol is to be used instead of gasoline, then the 

necessary infrastructure must be in place; for example some kind of facility for hydrogen 

or methanol refueling must be provided along with or instead of existing gas stations. No 

matter which fuel-based system will ultimately become the mainstream, hydrogen is a 

main fuel. Each cell consists of an electrolyte sandwiched between two electrodes. Fuel is 

oxidized at the anode, liberating electrons which flow via an external circuit to the 

cathode. The circuit is completed by a flow of ions (protons) across the electrolyte that 

separates the fuel and oxidant streams (Figure 2.8). 

Among them, solid polymer electrolyte membrane fuel cells “PEMFC” are our interest 

due to the electrolyte used in this type.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 The cross-section of a polymer electrolyte membrane fuel cell (PEMFC) 

                  [Petterson 06]. 
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2.5.1.1 Solid Polymer Electrolyte Membrane (PEM) Fuel Cells  

The schematic representation of the principle of a H2-O2 fuel cell is shown in Figure 2.8. 

Hydrogen supported from the fuel gas stream is consumed at the anode, where it yields 

electrons to the cathode. Hydrogen ions enter the electrolyte and diffuse to the cathode by 

electro-osmotic flux. At the cathode, oxygen combines with the electrons and protons 

from the electrolyte to produce water which is expelled from the electrolyte [Scherer 90]. 

Unlike internal combustion engines (ICE), fuel cells offer the potential to convert energy 

very efficiently. The most advanced fuel cell systems are fuelled with hydrogen and are 

based on perfluorinated sulfonic acid ionomers. These solid electrolytes offer numerous 

advantages over classical liquid electrolytes, such as sulphuric acid, including higher 

power densities, reduced fuel crossover and more obviously, improved handling. 

The state of the art PEM fuel cell uses an aqueous sulphonic acid electrolyte which is 

incorporated into a polymer membrane so that the separator is effectively a solid 

(ionomers). A bipolar plate provides the electrical connection between cells and acts as 

an impermeable barrier between the fuel and oxidant flows; it also supports the 

electrodes. A platinum-based catalyst is used at both, cathode and anode. 

The conventional electrolyte must be kept hydrated at all times, effectively limiting the 

operating temperature of the cell. At atmospheric pressure the operating temperature is 

about 80oC, but over 100oC has been achieved under pressure. The cell can be run 

directly on hydrogen or on reformed hydrocarbon fuels such as methanol or natural gas, 

but as platinum is poisoned by carbon monoxide (CO) this must be removed during fuel 

processing, or the catalyst  tolerance versus CO need to be improved. PEM fuel cells are 

now being demonstrated in a range of commercial applications including buses and cars, 

as a result of a massive global effort to develop this technology for automotive markets, 

and combined heat and power (CHP) systems. 

Another important variant of the PEM fuel cells is the direct methanol fuel cell (DMFC). 

DMFC directly oxidises methanol at its anode, thereby removing the need for fuel- 

reforming systems. In the long term, the DMFC is likely to be an attractive option, 

though much fundamental research is still required to improve the kinetics of the 

methanol oxidation reaction and to reduce methanol diffusion through the electrolyte. 

Methanol is either provided as gas or as aqueous solution.  
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H2O + CH3OH CO2 + H+6 e-+ 6

In methanol fuel cells [Hampson 79]  the total anodic reaction is (2.1) 

 

                                                                                                                         

                                                                                                                                 2.1 

  

 

This type of fuel cell systems is suitable for automotive application since CH3OH as a 

liquid can be safely stored and efficiently oxidized to give energy. Methanol fuel cells 

operate with proton conducting polymers as the membrane in a wide temperature range 

[Kordesch 96]. 

 

 

2.5.2 Batteries 

The importance of energy storage in the optimal utilization of our energy resources 

arises. A battery is a device that stores chemical energy and makes it available in an 

electrical form when it is needed. Batteries consist of electrochemical devices such as one 

or more galvanic cells or fuel cells.  

Two or more electrochemical cells, are electrically interconnected, each of which 

contains two electrodes and an electrolyte. The redox (oxidation-reduction) reactions that 

occur at these electrodes convert chemical energy into electrical energy. In everyday 

usage, 'battery' is also used to refer to a single cell. 

Batteries can be generally divided into two main types: primary and secondary batteries 

[Castellan 83]. Primary cells, also called disposable batteries, are intended to be used 

once, until the chemical changes that induce the electrical current supply are complete. 

The cell reaction is not reversible, and when the materials are consumed the device must 

be discarded. These are most commonly used in smaller, portable devices with either low 

current drain, only used intermittently, or used well away from an alternative power 

source. Commonly used chemical systems for primary batteries are zinc-carbon, zinc 

chloride, silver oxide, mercuric oxide, alkaline/manganese oxide, and lithium. 

In contrast to primary cells, secondary cells or rechargeable batteries can be re-charged 

after they have been drained. This is done by applying externally supplied electrical 
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current, which reverses the chemical reactions that occur in use. Some examples for 

commonly used secondary batteries are lead-acid battery especially used in vehicles, 

nickel metal hydride, nickel-cadmium, used in many domestic applications, nickel-zinc, 

lithium ion batteries. 

The performance of the batteries is evaluated according to some parameters:  

The energy density of a battery is a measure of how much energy the battery can supply 

relative to its weight (
kg

hW . ) or volume (
l
hW . ). The energy density of a battery is mainly 

dependent on the composition of its active components. This definition is purely 

theoretical as it does not take into account the mass or volume of inactive materials, or 

the variation in chemical reactions [Tarascon 01]. 

Memory Effects - As a rechargeable battery is used, recharged, and used again, it loses a 

small amount of its overall capacity, energy density. This loss is to be expected in all 

secondary batteries as a certain fraction of the active components become irreversibly 

consumed in each cycle. 

Self-Discharge Rates - All charged batteries (except some) will slowly lose their charge 

over time, even if they are not connected to a device. Moisture in the air and the slight 

conductivity of the battery housing will serve as a path for electrons to travel to the 

cathode, discharging the battery. The rate at which a battery loses power in this way is 

called the self-discharge rate. 

The cycle life of a battery is the number of discharge/recharge cycles the battery can 

sustain, with normal care and usage patterns, before it can no longer hold a useful amount 

of charge. 

Operating Temperatures - As a general rule, battery performance, which is defined 

with some parameters discussed above, deteriorates gradually with a rise in temperature. 

At very low temperatures (-20- 0oC), battery performance decreases as well. At low 

temperatures, the loss of energy density is due to the reduced discharge rate and the 

increased internal resistance of the electrolyte. At high temperatures, the loss of energy 

density is due to the increase of unwanted, parasitic chemical reactions in the electrolyte.  

Common types of commercial batteries and some of their properties are summarized in 

Table 2.3 [Frankfurter 03]. 
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Table 2.3 Properties of some common types of commercial batteries  

Battery Type 
Cell  

Voltage  
(V) 

Gravimetric  
Energy Density 

(W.h/kg) 

Volume  
Energy Density 

(W.h/l) 
Cycle Life Toxicity 

Nickel-Cd 1,25 45-80 100-130 15001 
Highly toxic 
harmful to 

environment 

Nickel-Metal  
Hydride 1,25 60-120 170-190 300-5001,2 

Relatively low  
toxicityshould 
 be recycled 

Lead-Acid 2 30-50 40-65 200-3002 
Toxic lead and  
acid,harmful to 
 environment 

Reusable 
Alkaline 1,5 80 (initial)   502 

Low toxicity, 
may contain 

mercury 

Lithium-Ion3 3,6 110-160 250-270 300-5002 
Low toxicity,can 

 be disposed  
in small quantities 

Lithium-Ion- 
Polymer4 3,6 100-130 200-240 300-500 

Low toxicity,can 
 be disposed  

in small quantities 
1Cycle life is based on battery receiving regular maintenance; 2Cycle life is based on the depth of discharge 
3liquid organic electrolyte, 4polymer as electrolyte 
 

 

2.5.2.1 Lithium Ion Batteries 

There has been enormous activity in the development of lithium batteries for portable 

electronic devices Lithium is the lightest metal and has one of the highest standard 

reduction potentials. The combination of these two characteristics gives the element 

particularly favourable energy content, with a theoretical specific capacity of 3860 Ah/kg 

in comparison with 820 Ah/kg for zinc and 260 Ah/kg for lead. Since the standard 

reduction potential of lithium is -3.045 V [Fischer 58], the metal is thermodynamically 

unstable in protic solvents such as water, and the realization of practical lithium cells had 

to await the development of suitable non-aqueous electrolyte systems. Primary cells 

normally employ lithium metal foil as anode, whereas secondary lithium cells are not 

usually based on lithium metal since experience has shown that repeated recharging of 

lithium metal anodes can be dangerous due to its flammable property which can lead to 

fires and explosions. The presence of liquids requires special battery pack sealing to 

prevent leakage and volatiles can lead to explosions. Reactions of liquid solvents with Li 
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metal also result in poor battery performance. It is therefore desirable to have all-solid-

state batteries in which the anode, electrolyte and cathode are flexible films, e.g., 

Lithium-Metal-Polymer batteries, for ease in assembly, versatility in battery 

shape/design, safety and improved performance. Thus, Li+ ions are intercalated into a 

carbon to be used as anode in the charged state and into a metal-oxide cathode in the 

discharged state. Therefore, the most promising approach is that of the “rocking chair” 

cell, in which the lithium metal is replaced by a lithium-carbon ion source [Scrosati 93]. 

During charging and discharging of such batteries, lithium ions are “rocked” between 

lithium-carbon and lithium-metal oxide intercalation compounds, which act as the 

electrode couple (Figure 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anode reaction:                                      LixC6                xLi+ + xe- + C6 

Cathode reaction:      xLi+ + xe- + Li1-xMn2O4               LiMn2O4 

                                                            charging               discharging 

 

Figure 2.9 Schematic illustration of a lithium rocking chair battery with graphite and        
                   spinel as intercalation electrodes and its electrode reactions [Meyer 98].  
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Portable electronic devices often operate at or near ambient temperature of ~25oC, 

however, producing battery which can be used at high temperature is difficult to meet this 

requirement [Tarascon 01]. As pointed out before, poly(ethylene oxide) (PEO) was the 

first polymer used as a polymer solvent for lithium salts [Armand 79]. In recent years, 

ionic liquids with organic cations have been suggested for electrolyte applications [Fung 

93, MacFarlane 99, Bonhote 96]. Unlike conventional solvents, ionic liquids have 

negligible vapor pressures. The absence of volatiles greatly improves the safety 

characteristics of a battery. Some ionic liquids have conductivities of 10-2 S/cm or higher 

at 25oC. A lithium battery, however, requires Li+ cations to be transported between the 

anode and cathode. The ionic liquids must therefore be doped with a suitable LiX salt 

[Fung 93, MacFarlane 99]. The doped ionic liquids may then be incorporated into a  

flexible, thin membrane to form a battery electrolyte.
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3. Synthesis 
 

3.1 Motivation for Synthesis 

 

Traditional ion-conducting polymers such as poly(ethylene oxide)-based polymer 

electrolytes, are solid solutions of salts in polymers [Armand 86, Vincent 87, Watanabe 

88, Ratner 88]. Ionic motion in these polymer electrolytes is coupled with the local 

segmental motion of the polymer. In this type of electrolytes an increase of carrier-ion 

density and mobility are difficult to achieve because both, depend on the interaction of 

polymer segments with the ions. These facts are reflected by the appearance of a 

maximum in ionic conductivity in polyethers with increasing salt concentration. On the 

other hand, in certain salt–polymer systems, in the range of high salt concentrations, the 

ionic conductivity increases and Tg decreases again. 

These electrolyte salts are characterized by low Tg and Tm, and they form supercooled 

liquids with high conductivity at room temperature. In the salt–polymer systems, the 

number of carrier ions and their mobility increase with increasing the electrolyte 

concentration [Watanabe 93, Angell 93]. As a result, a high ionic conductivity that is not 

coupled with the segmental motion of the polymers can be expected. 

Based on this concept, the use of ionic liquids (ILs) appears to be promising with respect 

to high ion conductivity in polymers. They are known for many years , for instance 

[EtNH3]-[NO3], which has a melting point of 12oC, was first described in 1914 [Walden 

14, Sugden 29]. However, their importance was understood only in the last two decades. 

ILs are being investigated for many applications including electroplating, batteries, 

electrochemical capacitors and photochemical (PEC) cells. Ionic liquids can be utilized as 

the electrolyte solvent in batteries and fuel cells. The physical properties which make the 

systems attractive in such a role are the following [Hussey 88, Papageorgiou 96]: 

 

 

• excellent thermal and chemical stability 

• negligible vapor pressure at elevated temperature 

• miscibility in a diverse range of solvents 
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• they are often composed of poorly coordinating ions, so they have the potential to 

be highly polar yet noncoordinating solvents.  

 

 

The comparison of melting points of different chlorides shown in Table 3.1 illustrates the 

influence of the cation on the thermal properties clearly.  

  

 

      Table 3.1. Melting points of various chloride salts              

        Salt                                                                                            m. p. (oC) 

        NaCl                                                                                                   803 

        KCl                                                                                                    772 

                                                     

                                                               

 
          
      a : MMIm = 1,3-dimethylimidazolium 
 

 

For cations of low-melting salts the following requirements should be fulfilled [Mehnert 

02, DeCastro 00, Ogawa 01]: 

 

• low  symmetry  

• weak intermolecular interactions 

• good distribution of charge in the cation 

 

In addition to the cation, the anion influences the melting point, too. In most cases, an 

increasing size of the anion with the same charge leads to a further decrease in the 

melting point as shown in Table 3.2. 

 

 

ClNNR R`
+

R=R`=methyl ([MMIm]Cl)                 125
R=methyl, R`=ethyl ([EMIm]Cl)          87
R=methyl, R`=n-butyl ([BMIm]Cl)       65
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      Table 3.2. Influence of different anions on the melting point of ILs 
 
         Imidazolium salt                                         M. p. (oC) 

         [EMIm]Cl                                                          87 

         [EMIm]NO2                                                      55            

         [EMIm]BF4                                                        8 

         [EMIm]CF3SO3                                                -9  

 

 

The initial step in the synthesis of ILs is the quaternization of alkylimidazole, pyridine 

etc. to form the desired cation such as imidazolium, pyridinium, ammonium [Hussey 88, 

Wilkes 82]. The most important, reported cation types are shown in Figure 3.1. 

 

 

 

 

 

 

 

 

           Figure 3.1 Some types of cations in ionic liquids. 

 

 

3.1.1 The Synthesis of Ionic Liquids  

It is readily apparent from Table 3.4 that the series of room temperature ionic liquids 

(RTILs) was studied. The synthesis of RTILs was described in previous works [Holbrey 

99, Bonhôte 99, Wasserscheid 00].  

Up to present, 1,3-dialkylimidazolium salts appear to be among the most stable and 

highly conducting ionic liquids [Bonhôte 96]. The thermal decomposition temperatures 

are similar for the different cations but appear to decrease as the anion hydrophilicity 

increases. The effect of water on the thermal stability of ILs is not clear yet. Relative 

NNR R`
N
R

N
R

R
R

R`

P
R

R
R

R`

+ + +
+

Imidazolium ion Pyridinium ion Ammonium ion Phosphonium ion 
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anion stabilities have been suggested as PF6
- > BF4

- > halides. Increasing the cation size 

dramatically increased thermal stability. The main factors that influence the melting point 

are the charge distribution on the ions, H-bonding ability, the symmetry of the ions and 

the van der Waals interactions [Ngo 00]. It is clearly seen that in our systems the melting 

points increased with the symmetry of the cations. However, the melting point of some 

ionic liquids is uncertain because they undergo substantial supercooling [Ngo 00]. It was 

displayed that the temperature of the phase change can differ considerably depending on 

whether the sample is heated or cooled. The materials showed supercooling when the 

temperature is about 100oC below their melting temperatures, Tm.  Phase change from 

liquid to glassy state was observed at very low temperatures. The influence of alkyl 

chains on the melting points was reported by other research groups [Holbrey 99, Visser 

01, Dzyuba 01]. They also showed that the melting point decreases from the methyl 

substitution to the butyl to hexyl compound and then increases. 

The water content of these ILs was determined by the Karl-Fischer titration method. All 

the salts were dried under high vacuum (~10-5 mbar) for 3 days before titration. 

 The identity of the anion greatly influences the water miscibility and hence water content 

which decreases as the hydrophobicity of the ILs increases. The transitions (Tg, Tm, Tc) 

and decompositions of the ILs (Td) are summarized in Table 3.4.  
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Table 3.4. Thermal properties of imidazolium salts synthesized in this work 
 

Ionic Liquid Tg (oC) Tc (oC) Tm (oC) Td (oC) 
Water 

Content 
(ppm) 

 EEImBF4    215 47,3 

 EEImPF6   69,73 175 92,7 

 EEImH2PO4    200 40,1 

 EEImCF3SO3 -91,21 -53,33 19,35 200 65,7 

 BMImBF4 -85,9   310 21,0 

 (BMIm)2ZnCl4 -46,38  46,9 295 35,6 

 (BMIm)2ZnCl2Br2 -46,63  44,76 295 92,6 

 BMImH2PO4 -44,23   200 62,3 

 BMImCF3SO3 -89,88 -53,54 10,65 340 25,4 

 BEImBF4 -87,35   265 59,8 

 BEImCF3SO3 -89,28   160 30,7 

 EMImH2PO4 -60,5   170 30,3 

 EMImPF6  -19,49 58,92 300 23,8 

 EMImBF4 -97,78 -61,71 8,06 260 63,6 

 EMImTos -55,49   135 13,1 

 (EMIm)2ZnBr4   87,62 280 32,0 

 EEImTos -52,58   150 70,2 

 BMImTos -52,12 2,44 47,68 240 67,7 
Tg :  glass transition temperature                    Tm : melting temperature                       Tos :Tosylate 
Tc  : crystallization temperature                      Td  : decomposition temperature 
 

 

3.1.2 Immobilization of Ionic Liquids 

Polymer supported ILs received much attention as media to conduct various chemical 

processes. Table 3.5 shows some monomers for the synthesis of these types of polymers. 

ILs, as mentioned before, do the most concentrated electrolytic fluids possess a high 

number of charge carriers per unit volume. When these charge carriers are mobile, very 

high conductivities are possible. In addition to this, they exhibit a wide electrochemical 
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stability window. Recent works by various groups has extended the excellent 

performance of ILs to electrochemical devices such as solar cells [Wang 03], lithium 

batteries [Garcia 04], fuel cells [Susan 032] and supercapacitors [Stenger-Smith 02].  

Liquid electrolytes do present some drawbacks difficult to overcome, such as leakage 

through the battery. On the other hand, an all solid state polymer electrolyte has 

important advantages including mechanical stability, safety and simple processing. 

However, their conductivity is still insufficient for practical use. A strategy to translate 

the benefits of ILs to polymer electrolytes is to design functional polymers presenting 

some of the characteristics of ionic liquids but in a solid electrolyte. Ohno and coworkers 

[Yoshizawa 01, Hirao 00, Ohno 04] reported the preparation of different types of 

polymeric ionic liquids (PILs), as a way of developing high performance polymer 

electrolytes. However, they are still far from the desired results. Some polymerizable 

ionic liquids are shown in Table 3.5. 
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Table 3.5. Polymerizable ionic liquids 

                                                                                        n                   X                   Ref. 

 

                                                                                        4             BF4, OTf          [Kim 04]     

 

 

 

                                                                                                      BF4, PF6          [Tang 05] 

 

 

                                                                                      1,7          Cl, TFSI  [Yoshizawa 01] 

 

 

 

                                                                                                            Tos            [Hirao 00] 

 

 

 

                                                                                   2,3,6,9             TFSI      [Washiro 04] 

 

 

                                                                                                             Cl         [Marcilla 04] 

 

 

 

                                                                                                            BF4            [Hirao 00]                               
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3.2 Synthesis of Monomers 

 

3.2.1 Imidazolium Salt Containing Acrylate Monomers 

All the acrylic monomers which may also be considered as ionic liquid and have been 

synthesized in this work have the structure 1 (Scheme 1). The -CH2- groups are used as 

linkers with  n being  2, 4 and 6. The monomers were synthesized by two different 

approaches and they are named as method 1 and 2.  

 

Method 1 

The synthesis of the imidazolium salt part is straightforward as described in the literature 

[Hussey 88, Wilkes 82]. Bromo  or chloro alcohol was successfully reacted with N-

methyl or butyl imidazole to give the respective N-(methyl or butyl)imidazolium cations. 

After that, these salts must be linked to the acrylate units ( Scheme 1). It was carried out 

according to the Schotten-Baumann method using pyridine as base. However, it was not 

possible to isolate the desired monomers. There were the following difficulties:  

- Since the solubility of by products such as pyridinium chloride, unreacted starting 

compounds and monomers are similar to each other, it was not possible to retrieve the 

monomers from the product solution by using common methods (recrystallization, 

precipitation, etc.) 

- It turned out that column chromatography is not a suitable way to purify ionic liquids, 

because they adsorb to the silica gel, and could not be removed from the column. In this 

work the silica gel 60 with 0.040-0.063 mm size was used for purification. 

 

 

 

 

 

 

 

 

 

NNR
(CH2) NR N OH

n
 

X
+ X OHn
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Scheme 1. The synthesis route of polymerizable ionic liquids. 

 

 

Method 2 

In this method, firstly the acrylic ester (4) was synthesized by the Schotten-Baumann 

reaction. 1-bromo or chloro alcohol (3) was reacted with acryloylchloride (2) in the 

presence of triethylamine which was used as HCl scavenger. Then, the ester was coupled 

with N-methyl imidazole (5) in the usual way to obtain polymerizable ionic liquids (6) 

(Scheme 2) [Hussey 88, Wilkes 82]. The synthesis of the monomers with this method 

was successful 

 

 

 

 

 

 

 

 

 

 

 

                                                                           

Scheme 2. The synthesis route of polymerizable ionic liquids. 

 

 

 

Cl

O

OH Xn
 Et3N

CH2Cl2 O X

O

n
 

/ Inh.

,  refl. 12 h
+

2 3 4

O X

O

n
 NN

X -
N NO

O

n
 + +

3 d
45oC 

4 5 6

by 
products Cl

O

CH3CN
X -

N N RO

O

n
 Pyridine

+ ++
/50oC/12 h

1

IL 



3.Synthesis 
 

29 
 

Table 3.6. Acrylic monomers synthesized after method 2 (Scheme 2) 
 
    Monomer            Sample                   n           X                 Yield (%)        Amount (g) 
 
                               AcIm-2-Br              2          Br                     72                   20.91 
 
                               AcIm-4-Cl              4          Cl                      75                  16.22 
  
                               AcIm-6-Cl              6          Cl                      61                  15.67 
 
                               AcIm-2- PF6           2          PF6                   70                    8.71 
 
                               AcIm-6- PF6           6          PF6                   67                    2.95 
 
                               AcIm-2- BF4          2           BF4                  63                    5.23 
 
                               AcIm-2                   2          H2PO4              86                     8.8 
                                                    
                               AcIm-4                   4          H2PO4              50                    5.21 
 
                               AcIm-6                   6          H2PO4              91                   14.41 
                            

 

The structure of the monomers was verified by 1H-NMR spectroscopy (Figure 3.2).  It 

can be seen that the chemical shifts of the imidazolium ring protons change with anion 

type. H-bonding causes the proton chemical shift to move to lower field depending on the 

electronegativity of the anions. Lower chemical shift is observed with more 

electronegative anions. The sharp singlet signal higher than 9 ppm is attributed to the N-

CH-N protons in the imidazolium ring. Other aromatic protons give two singlets at 7.4 

and 7.5 ppm. Typical acrylic double bond signals (CH2=CH) can be seen as triplets of 

doublet at 6 ppm. The two separate triplet peaks are assigned to O-CH2 and N-CH2 

hydrogens.  
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Figure 3.2 1H-NMR spectra of  (a) AcIm-2-Br  in CD3CN (b) AcIm-6-Cl in CD2Cl2.                    
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3.3 Synthesis of Polymers 

 

3.3.1 Polymerizable Ionic Liquids 

Free-radical polymerizations of different monomers which were carried out at different 

conditions are summarized in Table 3.7. 

  

Table 3.7. Conditions and results of the polymerization reactions 

Monomer Solvent Initiator T (oC) 
Reaction time 

(h) 
% 

Yield
Acetonitrile 2 - 24 - 48 

THF 2 - 24 - 48 
DMF 

75 
2 - 24 - 48 

Ethanol 

AIBN 

80 2 - 24 - 48 

NP2 
AcIm-2-Br 

Water AIBA1 70 0,5 82 
AcIm-4-Cl Water AIBA 70 0,5 78 

Acetonitrile 2 - 24 - 48 
THF 2 - 24 - 48 
DMF 

75 
2 - 24 - 48 

Ethanol 

AIBN 

80 2 - 24 - 48 

NP 
AcIm-6-Cl  

Water AIBA 70 0,5 80 
Acetonitrile 2 - 24 - 48 NP 

THF 2 72 AcIm-2- PF6 
DMF 

AIBN 75 
2 61 

Acetonitrile 2 - 24 - 48 NP 
THF 2 75 AcIm-6- PF6 
DMF 

AIBN 75 
2 - 24 - 48 NP 

Methanol AIBN 70 2 - 24 - 48 
Ethanol AIBN 80 2 - 24 - 48 AcIm-2- BF4   
DMF AIBN 80 2 

NP 

AcIm-2 Water AIBA 70 0,5 65 
AcIm-4 Water AIBA 70 0,5 62 
AcIm-6 Water AIBA 70 0,5 70 

1 2,2’Azo(isobutyroic acid amidine)dihydrochloride  
2  No Polymerization 



3.Synthesis 
 

32 
 

                                        

                                        

                                        

                                        

                                        

                                        

0 10 20 30 40 50 60

0

20

40

60

80

100

%
 C

on
ve

rs
io

n

Time (min.)

% initiator
 0.5 %
 1 %
 2 %

The success of the polymerizations is strongly solvent and counter ion dependent. 

Attempts to polymerize were not successful when the initiator was AIBN and the counter 

ions were halides. On the contrary, polymerizations were achieved when PF6
- was used as 

counter ion. However, the polymerizations were successful when water was used as 

solvent in combination with the water soluble initiator (AIBA). It can be concluded that 

for the acidic anion an acidic initiator is needed.  Firstly, the kinetics of the 

polymerization was investigated at 70oC (Figure 3.3). Conversions of the monomers were 

calculated from the decrease of intensity of the double bond NMR signals. According to 

the results, the polymerizations were finished with 1 mol % of initiator after 30 min. 

After polymerization, the products were purified by dialysis with a 2000 MWCO 

(molecular weight cut-off) membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3 Time-conversion curves for the polymerization of AcIm-6-Cl with    

                              various initiator concentrations (mol %) in water at 70oC. 

 

 

The counter anions of the monomers of AcIm-n-X were exchanged with H2PO4
- in 

methylenchloride to obtain AcIm-n monomers and polymerized in water at 70oC (the 
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processes were explained in experimental part). After purification of the polymers by 

dialysis, the titration of the polymers (4x10-5 M) with NaOH (0.01 M) was performed in 

water to determine ion-exchange of H2PO4
- with halides (Br-, Cl-). Figure 3.4 verifies the 

presence of H2PO4
- ions since two end points are observed clearly according to the 

following reaction: 

 

 

 

 

The presence of H2PO4
- ion couldn’t be proved with solution NMR because these 

samples were not soluble in common NMR-solvents. Polymers with H2PO4
- counter 

anions are only soluble in water and methanol. Since these solvents have also an -OH 

group their signals overlap with ones from H2PO4
- ions in the NMR spectra. However, it 

is possible to determine the presence of  the H2PO4
-   with solid-state NMR (shown in 

section 7.3, solid state NMR part)  since it gives separated signals of the different -OH 

groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 3.4 Titration curves of polymers (4x10-5 M) with NaOH (0.01N). 
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Figure 3.5 1H-NMR spectra of (a) Poly(AcIm-6)  in D2O  (b) Poly(AcIm-4) in methanol                    
                   (c) Poly(AcIm-2) in D2O. 
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The 1H-NMR spectra of the polymers, Poly(AcIm-2), Poly(AcIm-4) and Poly(AcIm-6) 

with H2PO4
- anions are shown in  Figure 3.5. The appearances of the signals at around 2 

ppm are due to backbone protons of –CH2- and –CH- groups. The signals of the N-CH-N  

protons are observed around  9 ppm. Other two protons at the imidazolium ring give a 

broad singlet with a shoulder  at 7.5 ppm. The signals of the protons from O-CH2, N-CH2  

and  –CH3 are found in between 3.5-4.5 ppm. 

 

 
3.3.2 Synthesis of Ionenes 

N,N’-bis(imidazolyl) alkanes (9) were synthesized by reacting imidazole (7) with 

dibromoalkane (8) (Scheme 3). The addition of alkyl halides to the reaction mixture just 

after the addition of the sodium metal to the solution of imidazole helped to shorten the 

time necessary for the metal to dissolve completely from several hours to one. This 

procedure avoided the use of a large volume of the solvent required to allow efficient 

stirring of the suspension [Sharma 00]. N,N’-bis(imidazolyl) alkanes (9) were reacted 

with diiodoalkanes (10)  to obtain ionenes (11) (Scheme 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Synthesis of ionenes. 
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Figure 3.6 The 1H-NMR spectra of the ionene precursor in D2O. 

 

The 1H-NMR spectra of the ionene precursor is shown in Figure 3.6. The–CH2-  groups 

which do not have nitrogen (-N-) as a neighboring atom give two triplet signal around 1.0 

and 1.5 ppm. The others, however, show signal around 4.0 ppm. It is due to the 

electronegative nitrogen atom since it is known that the resonance position of protons 

bonded to carbon is shifted down field by electronegative elements also bonded to the 

carbon. Two sharp singlets at around 7.0 ppm is assigned to the –CH-N- protons on the 

imidazol  ring. The singlet at 7.5 ppm is attributed to the other  proton (N-CH-N) on the 

imidazol ring. 
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4. Thermal Analysis 
 

The thermal properties of the samples were investigated by thermogravimetric analysis, 

(TGA) and differential scanning calorimetry (DSC). TGA measures continuously the 

weight change during a temperature scan. The information about degradation, oxidation, 

evaporation or sublimation reactions of the materials can be obtained from TGA 

thermograms [Craver 83]. The determination of moisture content in the polymer and 

determination of volatile additives in particular are also possible [Wundlich 90].  

The determination of glass transition serves to characterize an important property of a 

polymeric material. The glass transition is the temperature, Tg, at which the polymer 

changes from a hard, glass like state to a rubber like state. DSC allows to identify the 

glass transition as a change in the heat capacity as the polymer matrix goes from the 

glassy state to the rubbery state (Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

                   

 

 

                       

Figure 4.1 Specific heat (Cp) depending on temperature for a system     

                                           undergoing glass transition. 
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Tg can be significantly decreased by addition of plasticizers to the polymer. The 

molecules of the plasticizer become embedded within the polymer bulk, thus allowing 

chain segments to move past one another even at lower temperatures. The addition or 

sorption of species causes an enhancement of local segmental motion of the polymer 

chains. In polymer science, plasticization is generally considered as a positive and useful 

feature. The addition of plasticizers (low molecular weight additives) to polymers 

depresses the glass transition temperature below room temperature which enables the 

processing of polymers. 

 

 

4.1 Thermogravimetric Analysis (TGA) Results  

 

4.1.1 TGA of the Poly(AcIm-n) x H3PO4 

The TGA thermograms of the Poly(AcIm-n) and their blends with H3PO4 are shown in      

Figure 4.2. The blends were prepared by adding stoichometric amount of H3PO4 to the 

polymers, Poly(AcIm-n), in water. The blends were directly casted on the platinum 

electrode from the solution. Then, they were dried under vacuum prior to the 

measurements. All the measurement were performed under nitrogen with a heating rate 

of 10oC/min.  

Altough the first mass loss starts around 100oC due to the evaoration of physically bound 

water in those hygroscopic samples, the polymers are stable up to about 190oC. During 

the sample preparation, they might capture some moisture from the air. A hole was made 

in the pan to make it easier for the evaporation of water during heating process. As 

H3PO4 content increases the weight loss becomes remarkable low at higher temperatures. 

Removal of bound water in these materials is very difficult. The stepwise decomposition 

after 200oC can be attributed to water liberation due to the self condensation of the 

phospforic acid and also decomposition of the polymer main chain may contribute to 

further weight loss. 
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Figure 4.2 TGA curves of (a) poly(AcIm-2) x H3PO4 (b) poly(AcIm-6) x H3PO4. 
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4.1.2 TGA of the Poly(AcIm-Li) x LiN(SO2CF3)2 

Figure 4.3 presents the TGA thermograms of pure polymer of  Poly(AcIm-Li) and its 

blends with lithium salt of trifloromethylsulfonimide, LiN(SO2CF3)2. It is clearly seen 

that the polymer and blends are stable up to 200oC. The small weight loss observed 

between 180 and 230oC is due to the water absorbed in those hygroscopic samples. The 

addition of lithium salt does not have significant effect on the TG thermograms of the 

blends. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.3 TGA curves of poly(AcIm-2-Li) x LiN(SO2CF3)2 recorded under N2   

                  atmosphere. 

 

 

4.1.3 TGA of the Poly(Im-l-m) 

The thermogravimetric curves for the studied polymers are shown in Figure 4.4. The 

difference between the polymer with I- and H2PO4
- anion can be seen clearly. The 

polymers with H2PO4
- counter-ion showed a first degradation stage related to the bound 

water at a temperature range of 60–120oC. The stages corresponding to the 
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decomposition above for the materials with H2PO4
- must be related to the condensation of 

the H2PO4
- moieties. The profile of the TG curves associated with the percentage of mass 

loss suggests a higher stability up to approximately 220oC for the samples with I- anion.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
           
              Figure 4.4 TGA curves of ionenes recorded under N2 atmosphere. 
 

 

 

4.2 Differential Scanning Calorimetry (DSC) Results 

 

4.2.1 DSC Results of Poly(AcIm-n) x H3PO4 

The DSC curves of all the samples presented here were monitored with a rate of 10 

K/min. The DSC curves of polymeric ionic liquids and their blends are shown in Figures 

4.5 and 4.6. The Tg’s of the blends obtained from the DSC thermograms are illustrated. 

Each sample was scanned several times to check the repeatability of the Tg.  The glass 

transition temperatures are obtained from the intersection (onset) of the baselines before 

and after the glass transition. The lower Tg for longer side chain is expected since longer 

chains behave as spacer that causes easier segmental motion. Moreover, it has been 
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demonstrated that the glass transition temperatures are ranging from 7 to 83oC for 

poly(AcIm-2) x H3PO4 and from -7 to 22 for poly(AcIm-6) x H3PO4 with varying H3PO4 

content. H3PO4 acts as plasticizer for the polymeric host and hence a decrease in the 

H3PO4 concentration should lead to an increase in Tg. This is a result of the restrictions of 

segmental motions of the polymer host.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
                          Figure 4.5 DSC curves of poly(AcIm-2) x H3PO4. 
 
 

 

It can be clearly seen that the addition of H3PO4 leads to more change in Tg for 

poly(AcIm-2) x H3PO4. Since poly(AcIm-6) x H3PO4 already has longer side chain, and 

it has already plasticizing effect on Tg. Therefore, the increase in the amount of H3PO4 

does not cause significant change as in poly(AcIm-2) x H3PO4. Figure 4.7 shows how Tg 

of the polymer electrolytes change with H3PO4 composition. 
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                          Figure 4.6 DSC curves of poly(AcIm-6) x H3PO4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.7 Change of Tg’s with H3PO4 composition. 
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4.2.2 DSC Results of Poly(AcIm-2-Li) x LiN(SO2CF3)2 

Figure 4.8 shows the DSC curves of poly(AcIm-2-Li) x LiN(SO2CF3)2. Since the 

polymer, polymer blends and Li-salt itself have hygroscopic character, the samples were 

carefully dried before the measurements. A change in the sample weight has 

consequences in wrong specific heat capacity determination and changes the shape of 

thermal analysis curves. It typically has a strong affect on Tg, too. From the curves, it is 

seen that the addition of salt slightly increases the Tg. However, when the amount of Li-

salt is more than 10% the Tg decreases significantly. Although the samples were dried 

prior to measurements, small amount of water may be trapped inside.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
                   Figure 4.8 DSC curves of Poly(AcIm-2-Li) x LiN(SO2CF3)2. 
 
 

4.2.3 DSC Results of Poly(Im-l-m) 

Figure 4.9 presents the DSC curves of the ionenes. The Tg of the samples increases from 

8 to 30oC when the chain length between two imidazolium rings decreases. This is an 

expected result since longer chains gives the polymer backbone more freedom for the 

segmental motion at a given temperature, accordingly, shorter side chains gives rise for a 

higher Tg.  
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               Figure 4.9 DSC curves of ionenes Im-5-6-H2PO4
- and Im-6-6-H2PO4

-.  
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5. Dynamic Mechanical Analysis 
 

Dynamic mechanical analysis (DMA), is a technique used to study and characterize the 

viscoelastic properties of polymers. DMA is particularly useful for measuring transitions 

in polymers that cannot be detected by other techniques. DMA measures the mechanical 

properties of materials while they are subjected to a periodic stress, σ , usually applied 

sinusoidally. The applied stress will cause a deformation measured by the strain (ε) which 

is the deformation per unit dimension.  

 

                                                                                                                                          5.1                               

 

                                                                                                                                           5.2     

 

where ω  is the angular frequency and δ is the phase angle. DMA measures the 

amplitudes of the stress and strain as well as the phase angle (δ) between them. This is 

used to resolve the modulus into an in-phase component - the storage modulus (G’) - and 

an out-of-phase component - the loss modulus (G"). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Time dependence of stress and strain in a dynamic mechanical experiment. 
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                                                                                                                                           5.3 
  

 

Both stress σ*(t) and strain  ε*(t) can be expressed in a complex form. Then the complex 

dynamic modulus, G*(ω) is defined as : 

 

 

                                                                                                                                           5.4 

 

 

The real (storage) part describes the ability of the material to store potential energy and 

release it upon deformation. The imaginary (loss) part is associated with energy 

dissipation in the form of heat upon deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

             

         Figure 5.2 Dynamic mechanical analysis curves of different materials.  
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If a material is subjected to a mechanical force it may behave in a variety of ways, 

illustrated in Figure 5.2. A brittle material will deform reversibly to a small amount and 

then fracture. A ductile material will also deform reversibly up to a certain amount and 

then yield and flow under the applied force until it begins to harden under load and then 

fail. Up to the elastic limit, the material will return to its former shape and size when the 

force is removed. Beyond this point deformation is irreversible i.e. creep has occurred. 

The storage modulus is related with “stiffness” of a material. The dynamic loss modulus 

is often associated with “internal friction” and is sensitive to different kinds of molecular 

motions, relaxation processes, transitions, morphology and other structural 

heterogeneities. Therefore, the dynamic properties of materials provide information at the 

molecular level for understanding the polymer mechanical behaviour. 

For polymer melts the viscosity is an important parameter and is expressed as :  

 

  

                                                                                                                                           5.5

  

where   η*  is the complex  dynamic viscosity and  is the strain rate and it is defined as : 

 

                                                                                                                                           5.6 

 

 

Measurement of beta (β) and gamma (γ) transitions transitions in polymers are very 

difficult to observe by DSC. These transitions, which are often very important in 

determining the impact resistance of the polymer, are caused by local motion of the 

polymer chains as opposed to large scale co-operative motion that accompany the glass 

transition. The Tg is often measured by DSC (Differential Scanning Calorimetry), but the 

DMA technique can also yield data which can be used to investigate the frequency (and 

therefore time) dependent nature of the transition. 
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5.1 Mechanical Properties of Poly(AcIm-n)   

 

 The schematic representation of the parallel plate rheometer is shown in Figure 5.3. 

 

 

 

 

 

                                                        

 

 

  

 

 

 

 

 

Figure 5.3 Parallel Plate Rheometers: A,B are parallel plates, S sample, M motor,    
                  angular frequency of motor ω, the rotor (F), rotor frequency M(t) and (R)    
                  recorder. 
 

 

The samples were prepared as cylindrical films by melting on a hot plate. Then, they are 

placed between two parallel plates in a chamber filled with nitrogen. An oscillating force 

is applied to the sample and the resulting displacement of the sample is measured at a rate 

of 10 rad/s. From this the stiffness of the sample is determined, and the sample modulus 

is calculated. 

Figure 5.4 shows the storage (G’) and loss (G”) moduli curves of the samples as a 

function of temperature. The shape of the curves reveals some features which can be 

qualitatively assessed as follows: At lower temperatures, the membranes showed glassy 

properties with high value of G’ about 107-109 Pa.  Small peaks at this frequency zone 

may correspond to secondary relaxations, i.e., β-relaxation which disappears as n 

R
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increases. At intermediate temperature zone (0 to 90oC), storage modulus decreases due 

to cooperative segmental relaxations in these amorphous polymer electrolytes. At higher 

temperatures, a severe drop in both G’ and G” values is observed until values are reached 

to about 103-104 Pa which are typical for a highly viscous melt. The onset of this loss of 

mechanical strength shifts to lower temperatures with increasing n, which is consistent 

with the Tg shift. The reason of two broad peaks of G’ in the glass transition zone around 

104 and 106 Pa for Poly(AcIm-2) is unclear yet. 

A curvature is observed around 150oC at which the polymers undergo cross-linking due 

to condensation of phosphate moieties. The mechanical properties, however, do not start 

to change suddenly until certain time into the cross-linking process as a network of 

polymer molecules begins to form. The G’ modulus and η*, therefore, stay constant at 

temperatures around 150oC. Since the membranes are already in the melt at this 

temperature the cross-linking process occurs in the liquid state. It is clearly seen that the 

chain length of the electrolytes for Poly(AcIm-n) does not have any effect on the cross-

linking temperature. The cross-linking starts around 150oC for all of these electrolytes.  A 

marked increase when T > 160oC suggests an increase in cross-linking density with 

increasing temperature by time.   

After the process was completed the cylindrical polymer films expanded to form foam 

like structure indicating evaporation of the water. The water is the result of the cross-

linking due to condensation of the acidic units. 
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    Figure 5.4 DMA of Poly(AcIm-n), n is 2, 4, and 6 for (a), (b), and (c), respectively.  
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Both inter and intra-cross-linking are supposed to occur within the polymers according to 

following scheme: 

 

 

 

 

 

 

 

 

 

 

 

                       (a) 

 

 

 

                                                                                                          (b) 

 

Scheme 4. Cross-linking of the Poly(AcIm-n) membranes (a) intra-chain (b) inter-chain   

                  cross-linking.  

 

 

The cross-linking of the polymer electrolytes was also proved by solid state NMR which 

is discussed in section 7.3.4 in details. 
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6. Dielectric Spectroscopy 
 

The interaction of electromagnetic radiation with matter is of fundamental importance for 

polymer-based electrolytes. The frequency regime between 10-6 and 1012 Hz is the 

domain of broadband dielectric spectroscopy. Spectroscopic dispersion of dielectric 

permittivity and associated energy absorption regions may be observed for a material 

over the entire range from 10-6 to 1011 Hz due to classical electric polarization and 

electrical conduction processes. The magnitude of the effects and the frequency location 

of the energy absorption features the relaxation associated with these processes which 

will depend markedly upon the chemical and physical nature of a material and the 

temperature and pressure at which it is studied. Studies of electric polarization and 

conduction processes are made under the titles ‘Dielectric Relaxation Spectroscopy’ 

(DRS), ‘Impedance Spectroscopy’ (IS), ‘Electrical Impedance Spectroscopy’ (EIS) and 

‘Electrical Relaxation Spectroscopy’ (ERS). The diversity of the techniques is due to the 

studies made for different reasons with different classes of materials and different 

techniques. DRS is a good method for the study of dipolar molecular motions in solids. 

DRS probes the interaction of a macroscopic sample with a time-dependent electric field 

[Kremer 02]. The resulting polarization either expressed by the frequency-dependent 

complex permittivity and conductivity or as an impedance spectrum, characterizes 

amplitude and timescale (via the relaxation time) of the charge-density fluctuations 

within the sample. Such fluctuations generally arise from the reorientation of the 

permanent dipole moments of individual molecules or from the rotation of dipolar 

moieties in flexible molecules, like polymers. Other possible mechanisms include the 

transport of ions or the appearance of interfacial charges in heterogeneous systems. The 

timescale of these fluctuations depends on the sample and on the relevant relaxation 

mechanism. Relaxation times range from several picoseconds in low-viscosity liquids to 

hours in glasses, probably marking DRS as the technique with the most extensive 

coverage of dynamical processes. The corresponding measurement frequencies range 

from 10-4 Hz to 1012 Hz, which requires a series of instruments for complete coverage. 

However, it is generally sufficient to concentrate on a smaller frequency range adapted to 

the sample properties [Williams]. 
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In contrast to conventional spectroscopic methods, like NMR or vibrational spectroscopy, 

DRS is especially sensitive to intermolecular interactions (Figure 6.1). DRS is able to 

monitor cooperative processes and thus provides a link between molecular spectroscopy, 

which monitors the properties of the individual constituents, and techniques 

characterizing the bulk properties of the sample, especially the viscoelastic and 

rheological behaviour. The decomposition of the dielectric spectrum into its individual 

relaxation processes informs on the relative amplitudes and characteristic times of the 

underlying molecular motions. 

DRS is widely applied in the characterization of ion-conducting solids, polymers and 

mesophases [Kremer 02, Jonscher 83, Dominguez 88, Rietz 93-94, Ku 87].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 A dielectric permittivity (real and imaginary parts) spectrum over a wide  
                  range of frequencies [Kremer 02].  
 
 
 

The electrical conductivity measurements of the polymers are performed with   both, 

direct current (DC) and alternating current (AC) measurements. In DC methods, the 
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sample is sandwiched between two nonblocking electrodes and a DC voltage is applied. 

Direct current techniques seem to be the most straightforward methods. However, their 

use is less common in ionic conductivity studies due to the problems arising from the 

electrode contacts on the measured electrolyte conductivity. The effect of blocking 

electrodes is caused by the simple effect that ions usually can not be discharged at the 

surface of a metal electrode, which is conventionally used. Thus, an electrical potential is 

constructed caused by the formation of an ion gradient. AC measurements are the most 

popular approach for the determination of electrical properties of polymer electrolytes 

[MacDonald 74]. In this method a sinusoidal voltage is applied to a cell which functions 

as a capacitor and the resulting impedance is determined. The information about 

polarization phenomena occurring within the cell can be obtained with AC-data. 

The principle of a dielectric measurement is shown in Figure 6.2. The sample is placed 

between two round electrode plates in order to act as a capacitor as shown in Figure 6.3. 

 

 

 
 
 
 
 
 
 
 
 

Figure 6.2 Principle arrangement for a dielectric measurement. 
 
 

A generator applies an ac voltage U(ω) of the frequency ω/2π to one of the capacitor 

plates. The sample current I(ω) is determined by means of a vector current meter. The 

current amplitude Io, and the phase shift φ of the current with respect to the voltage is 

measured as well. For easy calculation and representation of the formulas it is convenient 

to use complex notations. 
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Figure 6.3 External electrodes with the sample material in sandwich arrangement. 
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                                                                                                                                 6.2                              

with                                                                                                                                                             

                            U* =U’ + I U” = Uo                                                                              6.3 

 

and 

 

   

                                                                                                                                                      

                                                                                                                                           6.4    

 

From this, the complex measured sample capacity Cm is evaluated by 

 

                                                                                                                                           6.5 

 

On the other hand, the dielectric function of the sample material is related to the complex 

capacity of an ideal sample capacitor by 

 

)sin()( ϕωω += tII o )exp(*Re( tiI ω=

)sin()( tUU o ωω = ))exp(*Re( tiU ω=



6. Dielectric Spectroscopy 
 

59 
 

o

s

C
Ci

*
* "' =−= εεε

d
AC oo ε=

"')( ZZe
I

UZ i

o

o +== ϕω

)"'(
)(

1
)(
)( εεω

ωω
ω iC

ZU
I

o +==

p
p

Ci
RZ

ω
ω

+=
1

)(
1

o

p

C
C

='ε
op CR ω

ε 1"=

 

                                                                                                                                           6.6 

 

where Co is the vacuum capacity of the empty sample capacitor and it’s defined by 

 

                                                                                                                                           6.7 

 

εo is the vacuum permittivity (εo = 8,852.10-14 F/cm) , A, and d are the area and distance 

between the electrode plates respectively. 

Experimental results rely on the determination of the complex impedance of a measured 

system. For a sample with linear characteristics the complex impedance Z is: 

 

                                                                                                                                           6.8 

 

impedance can be related to the current and voltage by 

 

                                                                                                                                           6.9   

 

 

It is convenient to consider the sample as being a frequency dependent  capacitance, Cp 

and the resistance, Rp  in an electrically equivalent parallel circuit. The complex  

impedance is Z(ω) given as 

 

                                                                                                                                         6.10  

 

the real and imaginary parts of ε* are obtained with parallel capacitor Cp and parallel 

resistor Rp 

 

                  

                                                                                                                        6.11 

The loss factor (6.12) which is related with the heat loss in the material due to the 
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motions of charges and dipoles is  

 

                                                                                                                                         6.12      

 

and the complex conductivity is 

 

                                                                                                                                         6.13     

 

The frequency dependent AC conductivity,  σac is defined by the equations     

 

                                                                                                                                         6.14 

 

                                                                                                                                         6.15 

 

Figure 6.4 shows the relations of real and imaginary parts of the permittivity with 

frequency for a typical material. In the case of materials which exhibit only polar 

relaxations the real part of the permittivity ε’(ω) decreases with increasing frequency and 

the imaginary part of permittivity ε”(ω) shows a peak as shown in Figure 6.4a. For pure 

conducting materials the real permittivity ε’(ω) is independent from frequency and the 

imaginary part ε”(ω) decreases monotonically with increasing frequency as shown in 

Figure 6.4b. 

There may be several distinct conformational relaxations in polymeric materials. The 

glass transition is assigned as α relaxation and describes the onset of the motion of the 

segments of macromolecules when the material is heated. It is observed in the low 

frequency range and/or at higher temperatures (Time-Temperature Superposition TTS). 

The β and γ relaxations describe localized motions of dipoles associated with subunits of 

the molecules. They occur in the higher frequency range [Blythe 79]. 

Figure 6.5 shows the typical frequency dependence of ionic conductivity σ. The ion-

motions averaged over individual hops of individual ions takes place in the regime III. In 

the regime II correlations between forward and backward hops are observed. Successful 

hops contributing to the total conduction are observed in the regime I. 
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Figure 6.4 Schematic plots of the dispersion of ε’(ω)  and ε"(ω)  in the frequency domain   

                  for: a) samples that exhibit dielectric relaxation b) samples that exhibit    

                  conduction [Williams]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Plot of log σ’(ω) vs log ω for model system exhibiting ionic conduction  

                  [Williams]. 

 

 

(a) (b) 
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Typically, in polymers a conductivity contribution can be observed besides a relaxation 

contribution. To separate both the Havriliak-Negami  equation can be used [Havriliak 67-

96, Ratner 88]. The conductivity region is separated from the relaxation part and the 

corresponding ionic conductivity is obtained. Generally, the observation of conductivity 

plateaus at low frequencies corresponds to the DC  conductivity, σdc (Figure 6.6). The σ‘ 

can be written  [Almond 84, Chen 92, Chowdari 87, Rietz 93] as:    

 

                                                                                                                                        6.16 

 

 

σ(0) represents the DC conductivity when frequency is extrapolated to zero 

 

                                                                                                                                         6.17 

 

 

and ωs is the critical frequency at which dispersion  of conductivity begins and p 

represents the slope of the dispersion region at higher frequencies  and it is related to the 

carrier hopping rate. The conductivity at ωs is given by 

 

 

                                                                                                                                         6.18 

 

 

 

 

 

 

 

 

 

Figure 6.6 A plot of σ’(T) vs. frequency with arbitrary parameters. 
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6.1 Theoretical Treatment of Ion Conduction in Solid Electrolytes 

 

Ionic compounds and polymers can be categorized according to their conductivity: (i) 

insulators with ionic conductivity lower than 10-10 S/cm, (the electronic contribution to 

the conductivity   is in the same range). (ii) ionic conductors; the presence of charge 

carriers increases the  conductivity up to 10-5 S/cm.  (iii) superionic conductors with 

conductivity of at least 10-4 S/cm. 

 

6.1.1. Ion Conduction in Solid Electrolytes 

The bulk conductivity in solid electrolytes depends on the concentration of free ions 

(6.19). The concentrations of these charge carriers and their mobilities should be high 

since; 

 

                                                                                                                                         6.19 

 

ni is the number of carriers of type i, zie is the net electronic charge on the ion or 

aggregate,  and  μi is mobility. The energies of activation of the formation and diffusion 

of these charge carriers should be higher than that of potential barriers to transport the 

ions. The ionic mobility, μi is related to the diffusion coefficient Di
 by the (NE) equation 

(6.20);Nerst-Einstein  

 

                                           μ  =                                                                                       6.20 

                                                                           

this yields  with (6.19) the conductivity (6.21) 

 

 

                                           σ  =                                                                                       6.21 

 

 

The conductivity in the glassy state may sometimes be expressed by the Arrhenius 

equation (6.22) 

kT       

zie Di  

ni (zie)2 D

 kT     

                           
   σ  =  ∑ ni (zie) μi        
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                                                                                                                                         6.22 

 

Ea is activation energy for conductivity and  σ0 is the preexponential factor.  

 

 

6.1.2. Ion Conduction in Amorphous Polyelectrolytes 

The multiphase behavior in a material influences the ion conductivity since the presence 

of both, crystalline and amorphous regions introduce phase boundary effects. The ion 

conductivity is usually higher in the amorph region. The conductivity of the crystalline 

material increases rapidly when it melts. In order to understand the ionic motion in solid 

electrolytes, fully homogeneous amorphous polymer-salts or polyelectrolytes are 

considered. In this type of conductor the ion transport strongly depends on the ion 

diffusion, which is cooperative rearrangement of the polymer segments, i.e., associated 

with a local free volume or viscosity of the material.  

The temperature (and frequency) dependent viscosity of amorphous polymers can be 

described by the VTF (Vogel-Tamman-Fulcher) equation (6.23) [Maccallum 871, Vogel 

26].     

  

                                                                                                                                         6.23 

                                   

 

The empirical relationship (Doolittle Eq.) between viscosity and the free volume of the 

material can be represented by the formula 6.24 [Doolittle 51,Cohen 59] 

 

                                                                                                                                         6.24 

 

bo  is a dimensionless constant, νo is the Van der Waals volume and νf is the average Free  

Volume. From the Stokes-Einstein relation [Angell 92, Ratner 92] the VTF conductivity 

equation (6.25)  results  

 

                                            
        η  =  A exp (boνo/ νf)  

                           
    σ =  σo exp(-Ea/kT)       

                                             
        η  =  C  exp (                   )        with C α T1/2 

      - B         

    k (T-To) 
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                                                                                                                                         6.25   

                                                                                                                                        

 

where  To is the Vogel temperature generally placed ∼50 K below the glass transition 

temperature which is idealized as the temperature at which all ‘‘free volume’’ vanishes or 

all polymer segmental motions disappear or the configurational entropy of the material 

vanishes. The σo contains a T-1/2 term and some other constants, B is proportional to a 

characteristic hard sphere volume of the moving polymer chain segment or to the inverse 

expansivity of the material. This equation shows the conductivity and viscosity relation 

as a function of temperature. The WLF (Williams-Landel-Ferry)  [Williams 55] (Eq 6.26) 

equation includes both the viscosity and relaxation processes in amorphous systems. 

 

    

                                                                                                                                         6.26                              

 

 

where  C1 and C2 are  WLF parameters for the temperature dependence of the ionic 

conductivity obtained experimentally , Tr is  a reference  temperature. 

Both WLF and VTF  equations  are identical  when ; C1C2 = B  and C2 = Tr-To. These two 

equations offer several advantages: they describe the temperature dependent conductivity 

and transport properties including, viscosity and conductivity. They allow for an 

interpretation of several parameters such as To ( VTF temperature ) and Vf (free volume).  

However , they don’t give information about the microscopic structure such as molecular 

weight dependence of ion transport and the mechanism of ion transport. To understand 

the microscopic transport the ‘‘Dynamic Bond  Percolation“  model was suggested           

[Ratner 92] for  amorphous materials. The static percolation model can be defined as the 

set of sides at which the moving ions can reside (hopping process). This is valid in the  

glassy framework  of solid electrolytes. When the T>Tg, then the static bond percolation 

model can not characterize the ion motion, in this case the motion of ions occurs 

dynamically by means of coordinated segmental motions of  the polymer host timescales. 

                                             
      σ  =  σo  exp  (                  )         
                                          

   - B  
k (T-To) 

                                                                           
           σ  =  σ ( Tr ) exp (                    )     
                                          

C1 [ T-Tr ] 

C2 + T-Tr 



6. Dielectric Spectroscopy 
 

66 
 

6.2 Proton Conduction in Polymer-Phosphoric Acid Systems 

 

The proton transport mechanisms in liquid phosphoric acid have been already proposed 

by Kreuer et al. [Dippel 93].  There are two main mechanisms that contribute to the 

proton conductivity in phosphoric acid doped polymer electrolytes. The first mechanism 

can be explained by correlated proton jumps (in opposite direction) so called structural 

diffusion (Grotthus mechanism) in which the proton transport occurs through phosphate 

ions, i.e. H4PO4
+, H2PO4

-.  This leads to structure diffusion of both species in the same 

direction until they finally neutralize (Figure 6.7a) 

The second is the vehicle mechanism where the protons travel through the material 

associated with neutral or charged molecules (Figure 6.7b). Several studies were reported 

about the contribution of these mechanisms on the proton conductivity of pure 

phosphoric acid and it was indicated that the character of conduction mechanism is 

mainly controlled by the structural diffusion rather than vehicle mechanism [Dippel 93, 

Bozkurt 99].  

In systems with small vehicle species such as water, the vehicle excitation required to 

induce proton transfer is of the same order as the one required for the diffusion of the 

vehicle as a whole (structure diffusion activated by molecular diffusion [Dippel 91]). For 

larger vehicles, however, such as the different phosphate species, the proton transfer 

mode can be induced by some local dynamic of the vehicle species. 
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Figure 6.7 Suggested features of proton diffusion and conductivity in fused H3PO4   

                  [Dippel 93]. 
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6.3 Dielectric Relaxation of Polymeric Ionic Liquids 

 

Polymeric ionic liquids as mentioned in the synthesis part can be good candidates for 

being used in PEMs since they represent some properties of both ionic liquids and 

polymer electrolytes. Conductivity properties of this kind of polymer electrolytes were 

studied previously [Ohno 02, Every 00, Ito 00, Susan 031, Noda 03]. However, in all 

these publications the authors describe only the conductivities of pure electrolytes. In this 

part, we present the conductivities of blends H3PO4 as well. Conductivities of the samples 

were obtained by means of the complex impedance method. The films were obtained by 

melting the samples between platinum electrodes. Then the films were sandwiched 

between two platinum blocking electrodes and placed in a temperature-controlled 

measuring cell. The impedance measurements were carried out over the 10-1-106 Hz 

frequency range and with variable temperatures. 

 

 

6.3.1 Conductivities of Poly(AcIm-n) x H3PO4 

The use of polymerizable cation was considered to be effective to maintain high mobility 

of imidazolium to obtain higher ionic conductivity for the polymerized ionic liquid. The 

ionic conductivities of poly(AcIm-n) x H3PO4 were measured in the temperature range of 

-10 and 150oC. Figs. 6.8-11 and 6.13-16 display the frequency dependence of the specific 

conductivity, ac conductivity (σac) of poly(AcIm-2) x H3PO4 and poly(AcIm-6) x H3PO4 

as a function of temperature, respectively. 

The σdc of the samples which are illustrated in Figures 6.12 and 6.17 were obtained by 

linear extrapolation of the the σac plateau values to zero frequency in the frequency plot. 

Since the polymeric ionic liquids are highly concentrated in terms of ions, ion diffusion 

depends on several parameters. The influence of columbic interaction between ionic 

species, i.e., attractive and repulsive interaction, and the equilibrium between dissociated 

ions and associated ions also seem to be important for ion conduction. Hussey et al. 

showed the importance of the ionic charge which affects the transport properties [Hussey 

90]. 
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In all samples the conductivity exhibits a plateau at medium frequencies and a strong 

increase on the high frequency side at low temperatures which can be attributed to the 

‘normal’ dispersion in polymers [McCrum 91].  The irregularities at low frequency side 

are due to the electrode polarization.  It has been already shown that doping of polymer 

electrolytes with strong acids such as H3PO4 or H2SO4 enhances the conductivity with 

increasing the number of moles of acid (x) per polymer repeat unit [Rodriguez 93, 

Bozkurt 99]. The conductivities in poly(AcIm-n)1H3PO4 are about one orders of 

magnitude higher than in poly(AcIm-n)2H3PO4. The conductivity difference between the 

samples becomes smaller with increasing temperature and frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Plot of σac vs frequency (Hz) for Poly(AcIm-2). 

 

 

 

 



6. Dielectric Spectroscopy 
 

70 
 

                                        

                                        

                                        

                                        

                                        

                                        

10-1 100 101 102 103 104 105 106

10-11

1x10-10

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

Poly(AcIm-2).0,5H3PO4

σ ac
 (S

.c
m

-1
)

Frequency (Hz)

 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0
 -10

                                        

                                        

                                        

                                        

                                        

                                        

10-1 100 101 102 103 104 105

1x10-10

1x10-9

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

Poly(AcIm-2-H2PO4
-).1H3PO4

σ ac
 (S

.c
m

-1
)

Frequency (Hz)

 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0
 -10

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Plot of σac vs frequency (Hz) for Poly(AcIm-2) 0,5 H3PO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Plot of σac vs frequency (Hz) for Poly(AcIm-2) 1H3PO4. 
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Figure 6.11 Plot of σac vs frequency (Hz) for Poly(AcIm-2) 2H3PO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 DC conductivities, σdc, of Poly(AcIm-2) x H3PO4 with temperature (doted   

                     lines represent the fit of the data to the VTF equation). 
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The temperature dependence of the d.c. conductivities of the various blends and of the 

pure polyelectrolyte are compared in Figures 6.12 and 6.17. It is clear that the 

conductivity of the blends increases with temperature and with increasing x. Influence of 

alkyl spacer on the ionic conductivity for polymerized ionic liquids was evaluated. Both 

systems, poly(AcIm-n) x H3PO4 with n=2 and 6, showed the similar ionic conductivity of 

about 10−7 S/cm at room temperature for x=1. This shows that the length of the alkyl 

spacer does not have a significant effect on ionic conductivity above glass transition 

temperatures. 

The d.c. conductivities of the blends, poly(AcIm-n) x H3PO4, at 20 and 100oC are plotted 

as a function of the phosphoric acid content (x) in Fig. 6.18 for comparison. It seems that 

the conductivities of the blends are comparable particularly at x=2.  

Obviously, the conductivities increase with increasing x, seemingly approaching about 

10-3 S/cm at 100oC and 10-6 S/cm at 20oC.  

The analysis of the temperature dependence of the conductivity shows that the behaviors 

that can be adjusted by typical curves of amorphous systems and the ionic conductivity 

can be explained by mechanism that follows the free volume theory represented by VTF 

or WLF models. These theories predict that the segmental motion of the elastomeric 

polymer assures the ion transport. According to these considerations, typical d.c. 

conductivity curves are interpreted with the VTF equation (Eq. 6.25) and this is verified 

by inserting the appropriate VTF fits into Figures 6.12 and 6.17.  

 

 

 

                                                                                                                                         

 

 

 

where σo, B and To are the parameters explained before. Clearly, at lower temperatures 

the blends display less temperature sensitive behavior which may correspond to the effect 

of the onset of a relaxation process. It has been shown that there are two main proton 

transport mechanisms that contribute to the proton conductivity in phosphoric acid doped 
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polymer systems [Bozkurt 99, Dippel 93]. The first is the structural diffusion in which the 

proton diffusion occurs through phosphate ions, i.e. H4PO4
+, H2PO4

-.  The second is the 

vehicle mechanism where the protons travel through the material on neutral or charged 

molecules. Generally, the increase of Tg causes considerable drop in the ionic 

conductivity owing to the restriction of the diffusion processes [Wilkes 82].  

The samples, poly(AcIm-n) x H3PO4, maintained the ionic conductivity of over 10−6 

S/cm at room temperature and showed the highest ionic conductivity of about 10−2 S/cm 

at 120oC for x=2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6.13 Plot of σac vs frequency (Hz) for Poly(AcIm-6). 
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Figure 6.14 Plot of σac vs frequency (Hz) for Poly(AcIm-6).0,5H3PO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Plot of σac vs frequency (Hz) for Poly(AcIm-6).1H3PO4. 
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Figure 6.16 Plot of σac vs frequency (Hz) for Poly(AcIm-6).2H3PO4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 DC conductivities, σdc, of Poly(AcIm-6) x H3PO4 with temperature (dot lines    

                    represent the fit of the data to VTF equation). 
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Figure 6.18 dc conductivities of poly(AcIm-n) x H3PO4 at 20 and 100oC as a function of    

                    the phosphoric acid content (x). 

 

 

 

6.3.2 Conductivities of Poly(AcIm-2-Li) x LiN(SO2CF3)2 

The counter ion of the polymeric ionic liquids was exchanged to 

trifluoromethansulfonimide (N(SO2CF3)2
-) ion in order to study Li+ conduction in this 

type of electrolytes. The electrolytes were blended with excess amounts of Li-salt 

(lithium trifluoromethansulfonimide (LiN(SO2CF3)2). Figures 6.19-22 show the variation 

of dielectric loss (ε”) with frequency at different temperature for pure and doped 

electrolytes. It is clear from the figures that in the low frequency region the plots are 

nearly linear. This reflects d.c. conductivity which is characterized by the equation ε”dc = 

σdc(ωCo), where σdc is the d.c. conductance and Co is the vacuum capacitance for the 

unfilled cell in which the electrode plate spacing is equal to the sample thickness 

[McCrum 91].   
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The electrolytes exhibits a relaxation process around 1x103 Hz. This relaxation process so 

called β-relaxation may be caused by some local movement of side group diploes 

[Williams 79, 94]. This relaxation is clearer for the blends which may be due to the 

plasticization effect of the added lithium salt. At higher temperatures and in high 

frequency range, the plot comprises a broad relaxation curves which is the contribution of 

α-relaxation. The α-relaxation process is the result of movement of main chain dipole 

segments [McCrum 91]. The appearance of two sets of relaxation peaks indicates that this 

materials show two different types of relaxation processes having different relaxation 

times and temperatures. It is observed from the figures that the dielectric loss 

continuously decreases with increasing frequency. A rapid decrease in dielectric loss may 

be noticed over the frequency range 103-106 Hz. This may be attributed to the tendency of 

dipoles in macromolecules to orient themselves in the direction of the applied field in the 

low frequency range. However, in the high frequency range the dipoles will hardly be 

able to orient themselves in the direction of applied filed and hence the value of dielectric 

loss decreases [Reicha 91]. This phenomena is called “conductivity relaxation” [Dyre 

91]. In order to check the effect of temperature on the relaxation process for pure and 

blended electrolytes the Figures 6.23 (a, b) were plotted. They depict the dielectric 

relaxation spectra at different temperatures. As the temperature increases the peak of the 

relaxation shifts towards a higher frequency region showing that the relaxation is strongly 

temperature and frequency dependent.  
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Figure 6.19 Variation of dielectric loss (ε”)  with frequency at different temperatures for   

                    poly(AcIm-2-Li). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Variation of dielectric loss (ε”)  with frequency at different temperatures for   

                    poly(AcIm-2-Li) with 2,5 mol % LiN(SO2CF3)2. 
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Figure 6.21 Variation of dielectric loss (ε”)  with frequency at different temperatures for   

                    poly(AcIm-2-Li) with 5 mol % LiN(SO2CF3)2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.22 Variation of dielectric loss (ε”)  with frequency at different temperatures for   

                    poly(AcIm-2-Li) with 10 mol % LiN(SO2CF3)2. 
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The d.c. conductivities of the materials are shown in Figure 6.24. These conductivities 

were obtained by the extrapolation of the plateau region of the plot of σac vs frequency 

which are not shown here to zero frequency according to equation 6.15. Figure 6.25 

shows the fitted curves of the d.c. conductivities of these materials which are obtained by 

using the VTF equation (Eq. 6.25) and the calculated parameters are shown in Table 6.1. 

The films were prepared by casting the sample solutions on the platinum electrodes then 

the solvent, DMF, was evaporated by heating. It is important to obtain nicely smooth 

films in order to minimize the obscuring effect of d.c. conductivity due to residual water 

(the samples are very hygroscopic, and it becomes more with increasing salt content). 

This procedure is also critical for removing surface voids which would affect the contact 

between the sample and the electrode.  It can be seen that ionic conductivity increases 

with blends up to certain point and reaches nearly constant value for all blend content. It 

is known that the polymer electrolytes obtained by dissolution of salts in poly(ethylene 

oxide), PEO, undergo partial crystallization with formation of crystalline PEO or 

crystalline PEO-salt complexes [Gray 97]. Ionic conductivity decreases with increasing 

content of crystalline phase. However, the low lattice-energy lithium salt with large 

flexible anion: LiN(CF3SO2)2 (lithium bis(trifluoromethanesulfone) imide, inhibits 

crystallization of the system [Dygas 03]. In our case, no crystallization process was 

observed by thermal analysis. It is known also that in the typical salt–polymer blends, so-

called salt-in-polymer electrolytes, the number of carrier ions increases, but their mobility 

decreases with increasing the electrolyte concentration. Thus, the reason for this constant 

conductivity may be due to the ionic association when the salt content is higher than 

some extent. 
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Figure 6.23 Variation of dielectric loss (ε”)  with frequency at different temperatures for   

                    pure and blended  Poly(AcIm-2-Li) (a) at 20 and 60oC (b) 80 and 120oC. 
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       Figure 6.24 Plot of σdc vs temperature (Hz) for Poly(AcIm-2-Li) and blends.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Plot of σdc vs temperature (Hz) for Poly(AcIm-2-Li) and blend. (doted   

                     lines represent the fit of the data to the VTF equation). 

 



6. Dielectric Spectroscopy 
 

83 
 

6.4 Conductivity of Poly(Im-6-6) 

 

Ionenes, cationic polyelectrolytes with quarternary imidazulium groups in the repeat unit, 

can be considered as models for polyelectrolytes. The charge density of the ionene is 

chemically changeable in the synthesis by using various kinds of reagents which consist 

of different numbers (l,m) of (-CH2-) groups between quaternized nitrogen 

(imidazolium), expressed as l,m-ionene. The polymers were synthesized and purified as 

described previously in Chapter 3. However, the yield of the 6-6-ionene  was only 

adequate to be processed for ionic conductivity.  

The conductivity was measured with impedance spectroscopy using a Novocontrol 

Impedance spectrometer. Sample preparation was carried out by casting the polymer 

solution in DMF on platinum electrode. The solvent was evaporated by heating around 

100oC. The evaluation of ionic conductivity by means of dilectric spectroscopy is well 

established and the application of this method with respect to ammonium type of ionenes 

was recently described [Kremer 89, Reisinger 981]. 

 

The temperature dependence of free volume should follow a VTF behavior for the alpha 

process, which therefore obeys temperature dependence according to 

 

 

                                                                                                                                   6.27 

 

 

where B is a pseudo activation energy, To is the Vogel temperature and τ is the relaxation 

time, but might  also be another dynamic value like conductivity as long as this is related 

to the alpha process [Reisinger 981]. In the case of conductivity, this relation has been 

confirmed for the conductivity case [Ratner 87] and it turns out that σ α 1/τ. The alpha 

relaxation in ionenes cannot be observed in dielectric spectroscopy since it is too small 

compared to the conductivity contribution [Reisinger 981]. Hence conductivity is the only 

means to investigate the temperature dependence of dynamic values around the glass 

transition. Figure 6.26 shows this temperature dependency and a conductivity spectrum, 
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with its typical behavior: low frequency dispersion due to electrode polarization, a 

conductivity plateau and a high frequency dispersion. The temperature behavior could 

either be observed in the ac conductivity modus or at a constant frequency in the 

conductivity plateau. The curvature of the Arrhenius plot indicates that there is no 

Arrhenius dependence. The empirical VTF was fitted well to the data. The fit parameters 

are displayed in Table 6.1. This temperature relationship can be explained with the free 

volume model. This model was successfully applied to ionic conductivity of ionenes 

[Reisinger 982]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 6.26 Temperature dependency of conductivity of Poly(Im-6-6). 
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Table 6.1. VTF fitting parameters for the DC conductivities of Poly(AcIm-n) .x    
                  H3PO4 , Poly(AcIm-2-Li) .x LiN(SO2CF3)2 and Poly(Im-6-6) 
 

Poly(AcIm-n) .x H3PO4            x Tg (oC) log σo B(eV) To 
            

0.5 30 1.759 0.289 -111.470
1.0 20 -0.191 0.139 -73.990 n : 2 
2.0 7 0.828 0.153 -88.220 
0.0 22 0.317 0.178 -78.950 
0.5 10 -0.330 0.163 -87.260 
1.0 0 -0.557 0.140 -74.710 

n : 6 

2.0 -7 -0.430 0.102 -68.190 
  

0.0 0 -0.408 0.090 4.630 Poly(AcIm-2-Li) .x LiN(SO2CF3)2   
5.0 12 0.151 0.120 4.910 

  
Poly(Im-6-6)   6 0.3947 0.169 -50.3239
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7. Solid State NMR 
 

Information about hydrogen bonding in solids can be obtained by a variety of methods. 

NMR spectroscopy is one of them and has the advantage of allowing the direct probing 

of the hydrogen-bonded protons themselves. However, 1H NMR spectroscopy of rigid 

solids is complicated by the homonuclear proton-proton dipolar interaction [Mehring 83].  

Hydrogen bonds are known to play an important role in determining the properties of a 

range of materials [Brunet 97, Castellano 98].  

The hydrogen-bonding interaction play a role for the changes in glass transition 

temperatures and is a crucial precondition for H+ transport in our polymer [Wirasate 98]. 

To better investigate these interactions solid state 1H NMR measurements were carried 

out.  

The purpose of this 1H NMR study is to show that recently developed fast magic-angle 

spinning (MAS) and double-quantum (DQ) NMR methods outlined below can provide 

further information on the hydrogen bonding in our samples, which is both unique and 

complementary to that achievable by other approaches. 

 

 

7.1 Nuclear Spin Interactions in the Solid Phase 

 

7.1.1 Chemical Shielding 

The chemical shielding is a local property of each nucleus, and depends on the chemical 

environment of the individual nucleus. 

Specifically, the external magnetic field induces currents of the electrons in molecular 

orbitals. These induced currents create local magnetic fields that often vary across the 

entire molecular framework such that nuclei in distinct molecular environments usually 

experience unique local fields from this effect. 

Under sufficiently fast magic angle spinning, or in solution-state NMR, the directionally 

dependent character of the chemical shielding is removed, leaving the isotropic chemical 

shift, which is dispersed in a region of around 20 ppm. 
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7.1.2 J-Coupling (Scalar Coupling) 

The J-coupling or scalar coupling describes the interaction of nuclear spins through 

chemical bonds. This interaction is not very pronounced in solid state 1H NMR, because 

of the exceeding dipolar interactions. 

 

7.1.3 Dipolar Coupling 

Nuclear spins exhibit a dipole moment, which interacts with the dipole moment of other 

nuclei (dipolar coupling). The magnitude of the interaction is dependent on the spin 

species, the internuclear distance, and the orientation of the vector connecting the two 

nuclear spins with respect to the external magnetic field B (Figure 7.1).  

 

 

 

 

 

 

 

 

                              Figure 7.1 Dipolar coupling vectors. 

 

The maximum dipolar coupling is given by the dipolar coupling constant d, 

 

 

 

where r is the distance between the nuclei, and γ1 and γ2 are the gyromagnetic ratios of 

the nuclei, h is the Planck’s constant and µo is the clumsy factor (4πx10-7 Hm-1). In a 

strong magnetic field, the dipolar coupling depends on the orientation of the internuclear 

vector with the external magnetic field by 

                                                     

                                                         

Consequently, two nuclei with a dipolar coupling vector at an angle of θm=54.7° to a 

3
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4 r
hd o γγ
π
μ

=

D α 3cos2θ-1 

http://en.wikipedia.org/wiki/Dipole_moment
http://en.wikipedia.org/w/index.php?title=Dipolar_coupling&action=edit
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strong external magnetic field, which is the angle where D becomes zero, have zero 

dipolar coupling. θm is called the magic angle. One technique for removing dipolar 

couplings, at least to some extent, is magic angle spinning. The dipolar interactions of 1H 

in solid supramolecular systems may be as much as hundreds kHz. 

 

 

7.2 Modern Solid-State NMR spectroscopy 

 

7.2.1 1H NMR 

For the investigations of supramolecular systems solid-state 1H NMR spectroscopy 

exhibits attractive features. The subjected nucleus, 1H, can be observed directly with 

excellent sensitivity and resolution. The information of the proton environment is 

understood by the specific chemical shift values, which are a result of the electronic 

environment of the individual proton. 

Molecular mobility can also be monitored by measuring the strength of the 1H-1H dipolar 

interactions, which exist at full strength in rigid systems but is reduced in mobile systems 

as a consequence of molecular motion occurring on the timescale of 10-100 µs. To 

investigate 1H-1H dipolar couplings, one dimensional Double Quantum Filtered and two 

dimensional Double Quantum NMR spectroscopy will be applied. In these techniques 

dipolar double-quantum (DQ) coherences between pairs of protons are generated. By 

these methods it will be possible to differentiate signals coming from rigid and mobile 

molecules in the material. The so called Back-to-Back pulse sequence is used for the 

generation of double quantum coherences [Schnell 1998]. Observation of DQ signal 

implies the existence of a dipole-dipole coupling Dij, between the pair of nuclei on the 

timescale of the experiment (typically between 10-100 µs). Absence of a DQ signal 

indicates a lack of dipole-dipole coupling (less than 2 kHz) which can either be due to 

long 1H-1H distance or due to molecular motion on the timescale < 100 µs. 

To achieve spectral resolution in these strongly dipolar coupled 1H spectra, high speed 

specimen rotation will be applied (MAS) which will be around 30 kHz. 

A comparison of single pulse 1H MAS spectra to DQF 1H spectra allow us to distinguish 

mobile and rigid domains. Variable temperature 1H MAS spectra are used to characterize 
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the local proton mobility with the observed line narrowing, which may be compared to 

the conductivity measurements of the samples [Goward 2002]. 

 

7.2.2 Cross Polarization MAS NMR 

A fundamental RF pulse sequence and building-block in most solid-state NMR 

experiments is cross-polarization (CP) [Pines, 1973] (Figure 7.2). It can be used to 

enhance the signal of nuclei with a low gyromagnetic ratio (e.g. 13C, 15N) from a transfer 

of nuclei with a high gyromagnetic ratio (e.g. 1H), or as spectral editing method (e.g. 

directed 15N→13C CP in protein spectroscopy). 

In order to establish magnetization transfer, the RF pulses applied on the two frequency 

channels must fulfill the Hartmann–Hahn condition [Hartmann, 1962]. Under MAS, this 

condition defines a relationship between the voltage through the RF coil and the rate of 

sample rotation. Experimental optimization of such conditions is one of the routine tasks 

in performing a (solid-state) NMR experiment. 

CP is a basic building block of most pulse sequences in solid-state NMR spectroscopy. 

Given it's importance, a pulse sequence employing direct excitation of 1H spin 

polarization, followed by CP transfer to and signal detection of 13C, 15N or similar nuclei, 

is itself often referred to as CP experiment, or, in conjunction with MAS, as CP-MAS 

[Schaefer 1976]. It is the typical starting point of an investigation using solid-state NMR 

spectroscopy. 

 

 

 

 

 

 

 

 

 

 

                                     Figure 7.2 CP pulse sequence. 
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7.3 Results of NMR Spectroscopy 

 

7.3.1 Results of 1H-MAS and 1H-DQF NMR Spectroscopy 

The structures of the materials in the solid state can be significantly different from the 

structures in solution, and these differences have remarkable effects on the spectra of the 

materials [Brown 2001]. For example, hydrogen bonding and pi-pi stacking will cause 

one of these differences. For example, in the sample Poly(AcIm-6) there is a shift to high 

ppm values in solid state of 1 ppm for the peak appearing at around 9 ppm in solution 

state.  

When the 1H MAS NMR spectra of Poly(AcIm-2) and Poly(AcIm-6) are compared, 

substantial differences in the resolution of specific sites can be realized. From Figure 6.4 

and Figure 6.6, the spectra of these samples can be seen. The resolution increase in the 

sample of Poly(AcIm-6) compared to Poly(AcIm-2) sample, is mainly because of the 

differences in the Tg values of the polymer systems, which is around 60oC. The Tg is 

usually decreased by the increase of the side chain length, n. As a result of lower Tg of 

Poly(AcIm-6) the molecular mobility at room temperature is increased and this leads to 

better resolved resonances in both the backbone region and side chain region. 
1H MAS-NMR spectra give information about the different types of 1H sites in the 

samples. With this information in hand, one can understand many molecular properties of 

the system, for example, hydrogen-bonding arrangements. However, usually one-pulse 

experiments are not sufficient to gather information about dipolar coupling, especially in 

strongly coupled proton systems, because the detected signal has no information about 

the pair character of the dominant dipolar interaction. As a result, to improve the 

experimental aspect, we must also take into account two-spin correlations by using 

Double-Quantum Spectroscopy. With this method, it is rather easy to determine the 

interactions of protons in a pair wise manner. Additionally, by a comparison of 1H spectra 

with the double-quantum filtered BaBa spectra, the mobile and the rigid protons can be 

distinguished easily. 

The BaBa homonuclear DQ recoupling pulse sequence was applied for 1 rotor period, tR, 

(which corresponds to 33.6 µs of excitation and reconversion period) at 30 kHz to excite 

and reconvert the 1H-1H DQ coherences (DQC). Only protons that become involved in a 
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DQC during the excitation period and remain involved in DQC until the end of the 

reconversion period can give rise to a signal in DQF spectra. More explicitly, signals 

from mobile protons are suppressed because their dipolar coupling is not sufficiently 

strong in the time period necessary to excite DQC. The liquid NMR spectra of polymeric 

ionic liquids are shown for the assignment of the related H peaks (Figure 7.3, 7.4). 

When we compare the 1H MAS and 1H DQF spectra in Figures 7.5, it can easily be seen 

that there is nearly no change after the application of DQF. Only some very mobile 

backbone proton resonances disappeared. This result and the poor resolution of proton 

spectrum indicated the existing of a relatively rigid system at room temperature, 

appearing as very broad featureless peaks. When we moved to sample Poly(AcIm-6) 

which is shown in the Figure 7.5, there is one peak disappearing after the application of 

DQF around 5 ppm. This resonance is the –OH proton peak, and should be relatively 

mobile compared to other resonances. The other resonances again did not change as in 

Poly(AcIm-2) sample at room temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 Figure 7.3 1H-NMR spectra of  Poly(AcIm-2) in D2O. 
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 Figure 7.4 1H-NMR spectra of Poly(AcIm-6) in D2O. 

 

 

 

In Figure 7.5, different protons can be identified, and by the help of DQ filtered 

experiments mobile sites can be separated from the relatively rigid protons. In the one 

dimensional 1H DQ filtered MAS spectrum of Poly(AcIm-2) recorded at room 

temperature, all peaks observed in the 1H-MAS spectra are present, which means all 

protons have strong dipolar couplings on the timescale of one rotor period (66.6 μs, 

29762 kHz spinning frequency). Only peak around 1 ppm disappeared from the backbone 

region which was assigned to a mobile backbone species for Poly(AcIm-2). 
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Figure 7.5 1H MAS and DQF MAS NMR spectra of Poly (AcIm-2) and Poly (AcIm- 

                   6) at room temperature and at 30 kHz MAS speed. The DQF spectra were  

                   recorded using BaBa dipolar recoupling pulse sequence with 1 tR  

                   excitation-reconversion time. 

 

 
 
Although, the protons of the backbone of Poly(AcIm-6) are mobile, there is no change in 

this region. This might result from the overlapping of these protons with other -CH2 

protons from the side chains (Figure 7.5). The disappeared peak around 6 ppm is due to 

the O-H protons from the H2PO4
- species. In addition to this, a shoulder disappeared 

around 4 ppm. This can be assigned to residual water since the sample is very 

hygroscopic. This is expected because the water molecule is highly mobile (Figure 7.6). 

In both cases, despite the mobility increase because of increased ring dynamics which 

provides spectral resolution between the two aromatic 1H sites, the dipolar coupling is 

still sufficient to give signal. 
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7.3.2 1H-MAS Variable Temperature Studies and Correlation to Conductivity 

To investigate the effect of temperature has the current system and for having a deeper 

insight into the mobility of the proton species, variable temperature (VT) studies were 

carried out in the temperature range of 298K - 400K (In here the effect of frictional 

heating because of high spinning speeds around 30 kHz should also be considered, which 

normally corresponds to an up shift in temperature about ~20 degrees compared to the 

temperatures values given). From the variable temperature 1H-MAS experiment, the 

mobility increase can be monitored by the obvious line narrowing. The VT 1H NMR 

spectra of Poly(AcIm-2) and Poly(AcIm-6) are shown in Figures 7.6-7.7. As expected, a 

continuous narrowing of the resonance lines is observed as the temperature is increased. 

The final width of the peaks in sample Poly(AcIm-6) is less than the peaks of Poly(AcIm-

2), because of the Tg effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Variable temperature 1H MAS NMR spectra of Poly (AcIm-2). The spectra  

                   recorded at 30 kHz MAS frequency and at 700 MHz 1H Larmor frequency. 
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Figure 7.7 Variable temperature 1H MAS NMR spectra of Poly (AcIm-6). The spectra  

                   recorded at 30 kHz MAS frequency and at 700 MHz 1H Larmor frequency. 

 

The activation energy for the proton motion was determined from the variable 

temperature 1H MAS NMR spectra performed in the temperature range of 320-420 K. 

The line narrowing is a direct measure of proton mobility and by plotting linewidth 

against temperature one can obtain activation energy for that specific proton site in the 

fast exchange limit [Harris 83, Lee 07]. The change of linewidths with temperature is 

plotted in the proper way in Figure 7.8, to get the activation energy values 10 ppm (acidic 

–OH proton) and 8 ppm (ring –CH proton) resonances, respectively. These protons are 

from the positively charged ring which is attached to the H2PO4
- ion. The activation 

energy for the acidic –OH proton motion is smaller compared to the values reported for 

pure PVPA materials by Lee at. al. This represents the easiness of proton conduction in 

the current system. 
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Figure 7.8 Plots of 1/linewidths (1/FWHM), of the proton linewidths for two different  

                   proton sites (8 ppm and 10 ppm resonances) for Poly (AcIm-2) as a function  

                   of temperature. Experimental data were fitted to the Arrhenius equation. 

 

7. 3.3 2D 1H-1H Double Quantum MAS Results 

In order to determine the protons involved in the DQC, a 2D DQ spectrum is needed in 

which the 1H DQ dimension is correlated with the conventional 1H SQ dimension. The 

DQ frequency of a DQC is given by the sum of two 1H resonance frequencies involved. 

DQCs between similar spins give rise to the so called auto-peak located on the diagonal 

of the DQ spectra, while the DQCs between unlike spins give rise to pairs of cross-peaks 

symmetrically arranged on either side of the diagonal. The samples are examined at 

different temperatures and at different excitation times. In addition, one important point 

should be noted. An isolated 1H spin will not give a signal in 2D DQ NMR spectrum. The 

first point that must be clarified is the assignment of protons which are involved in DQC. 

The protons are assigned by the help of liquid NMR spectra as shown in previous Figures 

7.3 and 7.4. 

For Poly(AcIm-2) the proton signals of CH2, CH (A), O-CH, CH3 (B), N-CH (C) and N-

CH-N (D)  can be distinguished (Figure 7.9a). Three auto peaks (A-A, A-B, B-B) are 

observed. The auto-peak A-A appears, because of the coupling of two aliphatic protons 

between these protons. The other peaks B-B which occurs because of the coupling of ring 

protons. Moreover the cross-peak show the interaction between these distinct protons 

(aliphatic and ring). These peaks must appear in the double-quantum dimension at a value 
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which is the sum of the single-quantum dimension values. A-type at 1 ppm, B-type at 4 

ppm, C-type at 8.5 ppm and D-type at 10.5 ppm are the values in the single-quantum 

dimension. I is seen that there are three auto-peaks (A-A, B-B, D-D) and three cross-

peaks (A-C, B-C, B-D). The cross-peaks are at 9, 12.5, 14.5 ppm which are assigned to 

A-C, B-C, B-D type interactions and they are at exactly double values in the double-

quantum dimension.  

For Poly(AcIm-6) four proton signals are observed which are assigned to CH2 and CH 

(A), O-CH and CH3 (B), N-CH (C) and N-CH-N (D) (Figure 7.9b). In this case, three 

auto-peaks and three cross-peaks appear in the DQ spectrum. The signals of A-B-C- and 

D-types protons located at around 1, 4, 8.5 and 10.5 ppm respectively. The cross-peaks 

are assigned to a DQC between the protons on the chain and on the ring. Double-quantum 

dimension values for cross-peaks are 9, 12.5 and 14.5 ppm which prove the A-C, B-C 

and B-D types of interactions, respectively.  
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Figure 7.9 2D DQ 1H-MAS NMR spectra of (a) Poly (AcIm-2) and (b) Poly (AcIm-6) at  

                   room temperature and at 30 kHz MAS frequency. 

 

                                                                          

The signal intensity and the resolution get worse for both samples by increasing 

excitation time, from 1tR (~66 µs) to 4tR (~264 µs). By increasing the excitation time the 

interference occurred between the timescales of polymer motion and the excitation, so the 

correlation time of polymer sites became less than the excitation time. As a result of this 

interference the spectral resolution drops. 

 

 

 

 

 

(b) 
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7. 3.4 31P MAS NMR Results 

The annealed samples are investigated with 31P CPMAS NMR methods to get an idea 

about the chemical structure of phosphorous groups in the system. To manage this 

CPMAS experiments done at 310K with 1ms contact time with a spinning speed of 15 

kHz. The crosslinking ratio will be determined from the peak areas under phosphorous 

resonances corresponding to cross-linked and non-cross-linked P species. 

From Figure 7.10, three different systems of Poly(AcIm-n) are shown. It can be realized 

that there are two resonances in each of three spectra. The non-crosslinked P species give 

resonance at 0 ppm, and crosslinked P species give a resonance at -11 ppm. The amount 

of crosslinked phosphoric acid is determined by integration of the resonance at -11 ppm. 

These amounts are shown in the Figure 7.10. There might be some error in these values 

because of the usage of CPMAS technique instead of more quantitative one-pulse 

approach. However, the very poor signal-to-noise ratio of the samples forced us to 

perform cross-polarization experiments, in which much more scans is possible because of 

delay time advantages. These values may give a general idea of the crosslinking ratio in 

the samples. One should keep in mind that, the crosslinking ratio might be more than 

these ratios, because of the usage of CPMAS method. After the crosslinking, the amount 

of proton around phosphorous decrease from two to one, which will cause a less efficient 

polarization transfer, and because of these effect the peak intensity at -11 ppm might be 

less than it actually is. One remarkable observation is that, from n=2 sample to n=6 

sample, the ratio of crosslinking increased from %9 to %13. It is known that the side 

chain mobility increases with n resulting lower Tg in polymers. This might be reason of 

increase in crosslinking since the probability of meeting the groups causing condensation 

increases as well. 
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Figure 7.10 31P CPMAS spectra of Annealed Poly(AcIm-2), Poly(AcIm-4), and              

Poly(AcIm-6) recorded at 310 K with 1 ms contact time and at 15 kHz 

MAS spinning speed. 
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8. Conclusion 
 

The main focus of this thesis is to synthesize and characterize anhydrous proton-

conducting polymer electrolytes which composed of imidazolium moieties tethered to a 

polymer backbone and polymer electrolytes based on imidazolium ionenes for being used 

in fuel cells and lithium batteries. 

The R-R’-Imidazolium type of ionic liquids with different counter ions were synthesized 

as model compounds. The water content in these samples was determined by the Karl-

Fischer titration method. AcIm-n-X kinds of macromoners were synthesized as precursor, 

where X is Cl- or Br-. These monomers were used to synthesize the materials based on 

imidazolium salt containing acrylic polymers. Free-radical polymerization was carried 

out using Azo(isobutyroic acid amidine)dihydrochloride (AIBA) as initiator.  

Imidazolium salt containing acrylic polymers may present advanced properties for proton 

conduction. However, the condensation of H2PO4
- and H3PO4 moieties restricts the use of 

these electrolytes at high temperatures. The chemical structure of the electrolytes 

obtained by the described synthetic routes was investigated by NMR-spectroscopy. The 

blends of the materials have been prepared by doping poly(AcIm-n) and poly(AcIm-n-Li) 

with  various amounts of phosphoric acid (H3PO4)  and lithium 

trifluoromethansulfonimide (LiN(SO2CF3)2),   to obtain poly(AcIm-n) x H3PO4 and 

poly(AcIm-2-Li) x LiN(SO2CF3)2, where x is the number of moles of H3PO4 and 

LiN(SO2CF3)2 per polymer repeat unit.  

The thermal properties of the electrolytes were investigated by TG. It illustrates that both 

electrolytes and their blends with H3PO4 are thermally stable up to around 200 oC.  DSC 

data reveal that the Tg’s of the electrolytes decrease with increasing side chain length and 

blend ratio which results in the plasticization of the materials. The condensation of 

H2PO4
- moieties around 150 oC in the polymer electrolytes prevents the performance for 

high temperature applications above 200 °C. 

The liquid like nature of the materials above Tg was proved by Dynamic mechanical 

analysis (DMA) experiments. It can be also seen from the change in G’ and η that the 

materials start to crosslink around 150 oC which may improve the mechanical properties 

to be used as membrane materials in fuel cells. 
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Furthermore, the properties related to the application of materials as membrane in fuel 

cells were investigated. The proton conductivity of the samples was studied in the 

temperature regime from      -10 to 150 oC. Although, it was not examined above 150oC, 

it is known that condensation of the H2PO4
- and H3PO4 moieties lead to cross-linking of 

the electrolytes which affects the proton conductivity.  

The conductivities of poly(AcIm-n) x H3PO4 have been compared. The conductivity of 

the sample increases significantly with acid concentration reaching to about 10−2 S.cm−1 

at 120 ◦C for x=2. At the same temperature and the same acid concentration, the 

membrane composed of n=6 has the higher conductivity. As the chain length (n) 

increases Tg shifts to lower temperatures indicating an enhancement of the segmental 

motions. The proton conductivities of all electrolytes show VTF behavior with the glass 

transition temperature and blend amount of the amorphous materials being the dominant 

parameters. Accordingly, highest proton conductivities are observed for the structures 

with x=2. 

The Li-ion conductivity of poly(AcIm-2-Li) x LiN(SO2CF3)2 was studied. It was 

observed that the ionic conductivity increases with blends up to certain composition and 

then leveled off independently from blend content.  

Solid state 1H NMR measurements were carried out to obtain information about hydrogen 

bonding in solids. The hydrogen-bonding interactions play an important role in 

determining the properties of a range of materials particularly for the changes in glass 

transition temperatures and it is a crucial precondition for H+ transport in our membranes.  

Magic-angle spinning (MAS) and double-quantum (DQ) 1H NMR methods provide 

additional information on the hydrogen bonding. Comparison of 1H MAS NMR spectra 

of poly(AcIm-2) and poly(AcIm-6) demonstrates the significant differences in the 

resolution of specific sites which is mainly because of the differences in the Tg values of 

the polymer systems. The low Tg enhances molecular mobility and this leads to better 

resolved resonances in both the backbone region and side chain region. The mobile and 

immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR 

spectra. The peaks of the mobile protons which are from backbones and from H2PO4
- 

disappeared in 1H-DQF NMR spectra. The interaction of the protons which may 

contribute to the conductivity is observed from the 2D double quantum correlation 
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(DQC) spectra. The cross-linking of poly(AcIm-n) are confirmed by 31P CPMAS NMR 

spectra. The cross-linking ratio was determined from the peak areas under phosphorous 

resonances corresponding to cross-linked and non-cross-linked P species. 

The PFG-NMR diffusion measurements may be performed to obtain the proton self-

diffusion coefficients in order to understand proton diffusion behavior of these 

electrolytes. The development of the proton conducting polymers is still in the state of 

basic research rather than close to application. In order to use these electrolytes as a 

proton exchange membrane in fuel cells, the conductivity of the polymer should be 

improved since 10-2 S/cm is the minimum conductivity at room temperature that is 

required by the industry. Their thermal, mechanical and proton-conducting properties 

need to be improved for being used at higher temperatures. However, imidazolium based 

polymer-bound proton solvents seem still promising. The new ways of immobilizing 

these imidazolium salts as proton solvents remains challenging. 
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10. Experimental 

 
Chemicals 

 

All used chemicals were obtained from Aldrich, Fluka, Merck, Acros and Riedel de Haen 

with high purity. Acryloylchloride, N-Methylimidazole, 2-Bromethanol, 4-Chlorbutanol 

and 6-Chlorhexanol were distilled before use. Methylenechloride was dried over CaH2. 

Tetrahydrofuran was dried over sodium metal. Anhydrous phosphoric acid (99.7 %) in 

crystalline form was obtained from Aldrich. 

 

 

Instrumentation and Procedure 

 

Bruker 250 MHz spectrometer or Bruker AC 300 FT- spectrometer were used to 

performe Nuclear Magnetic Resonance (NMR) experiments. Small amounts (10 mg) of 

the purified samples were dissolved in suitable amounts (0.5-1.0 ml) of the solvent.  

 

TGA Thermal stabilities of polymers and polymer blends were investigated by TGA 

Mettler TG 50. The measurements were done with a heat rate of  10oC/min under N2. 

 

DSC thermograms of polymers and polymer blends were obtained using Mettler DSC TA 

3000 Scanning Calorimeters under dry nitrogen atmosphere. The samples were weighted 

(10-15 mg) and loaded into aluminum pans and cooled down to starting temperature. 

Then, temperature was increased to the desired temperature with a scan rate of 10oC/min. 

The second heating curves were evaluated for Tg investigations. Empty aluminum pans 

were used as a reference. 

 

 

Elemental analysis have been performed by Analytical Laboratory of the Prof. Dr. H. 

Malissa & G.Reuter GmbH /Lindlar. Samples were dried prior to analysis. 
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Impedance measurements were obtained using the dielectric spectrometery. The AC 

measurements were carried out with SI1260 Analyser from Novocontrol dielectric 

spectrometer within the frequency range of 10-2 Hz to 107 Hz and in the temperature 

regime from -30 to 150oC. The samples were placed between two Pt-coated steel plates 

and their conductivities were measured in the cooling cycle of 10oC intervals. The 

thickness of samples was determined with micrometer screw for films and with Teflon 

stripes, which have standard thickness, for viscous mareials. The temperature change was 

controlled with a Novocontrol cryosystem with a precision of 0,01oC. The   DC 

conductivities were obtained by linear fitting of the AC conductivities . 

 

Solid State NMR experiments were done by  Bruker Avance 500 and 700 spectrometers. 

Magic Angle Spinning (MAS) and Double Quantum (DQ) filtered experiments were 

done at different temperatures and frequencies.  

 

Dynamic mechanical studies  of Poly(AcIm-2) x H3PO4 and Poly(AcIm-6) x H3PO4 

were studied with parallel plate rheometer RMS-800 with a cooling rate 2K/min and 

frequency 10rad/sec. The samples were hot pressed above their Tg with the thickness 

∼1mm. 
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O
Br

O

O
Cl

O

Synthesis 

 

Same procedure was used for all of the following 3 products : A mixture of bromoalcohol 

and triethylamine was dissolved in methylen chloride. 2,6-di-tert.butyl-4-methylphenol 

was used as inhibitor. Then acryloly chloride was added slowly under dry N2 atmosphere 

at 0oC. The mixture was refluxed for 12 h. CH2Cl2 was then removed by rotavap. The 

remaining product was dissolved in diethylether and extracted  firstly with saturated 

NaHCO3 solution to neutralize the solution and then 3 times with water. Ether phase was 

collected and dried over MgSO4. Finally, the reaming organic solvent was removed by 

rotavap at 40oC to obtain orange liquid. 

 

2-bromoethyl acrylate 

 

 

 

 

30 g (240 mmol) bromoethanol 

27.14 g (300 mmol) acryloyl chloride 

30.36 g (300 mmol) triethylamine 

0.66 g (3 mmol) 2,6-di-tert.butyl-4-methylphenol 

Yield : 81 % (34.68 g) 
1H-NMR (CDCl3, 250 MHz) : δ = 6.12 (d of t, 3H, CH2=CH-), 4.43 (t, 2H,O-CH2-), 

3.51(t, -CH2-Br) ppm 

 

 

4-chlorobutyl acrylate 
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O
Cl

O

13.6 g (125 mmol) 4-chloro-1-butanol 

17.02 g (188 mmol) acryloyl chloride 

19.02 g (188 mmol) triethylamine 

0.5 g (2.3 mmol) 2,6-di-tert.butyl-4-methylphenol 

Yield : 71 % ( 14.43 g) 
1H-NMR (CDCl3, 250 MHz) : δ = 6.09 (d of t, 3H, CH2=CH-),  4.15 (t, 2H,O-CH2-), 3.54 

(t, -CH2-Cl), 1.80 (m, 4H, -CH2CH2-) ppm 

 

6-chlorohexyl acrylate 

 

 

 

 

40 g (293 mmol) 6-chlor-1-hexanol 

33.13 g (366 mmol) acryloylchloride 

37.03 g (366 mmol) triethylamine 

0.88 g (4 mmol) 2,6-di-tert.butyl-4-methylphenol 

Yield : 85 % (17.9 g) 
1H-NMR (CDCl3, 250 MHz) : δ = 6.08(d of t, 3H, CH2=CH-), 4.10 (t, 2H,O-CH2-), 3.48 

(t, -CH2-Cl), 1.74-1.39 (3 m, 8H, -(CH2)4-) ppm 

 

 

The obtained liquid acrylates were mixed with N-Methyl imidazole, and the mixture was 

stirred for 3 days at 45oC. The mixtures were precipitated in diethyl ether to obtained a 

yellow viscous pure products. 
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1-methyl 3-(2-acryloyloxy ethyl) imidazolium bromide 

 

Br

N N
O

O

-

+
 

 

 

20 g (112 mmol) 2-Bromo-ethyl-acryl ester 

9.2 g (112 mmol) N-Methylimidazole 

Yield : 72 % (20.91 g) 
1H-NMR (CD3CN, 250 MHz) : δ = 9.31 (s, 1H, Im-H), 7.59 (s, 1H, Im-H), 7.46 (s, 1H, 

Im-H), 6.18 (d of t, 3H, CH2=CH-), 4.56 (t, 2H,O-CH2-), 4.44 (t, -CH2-N), 3.89 (s, 3H, 

N-CH3) ppm 

 

1-methyl 3-(4-acryloyloxy butyl) imidazolium chloride 

 

 

N N
O

O

-Cl

+
 

 

 

14.43 g (88.8 mmol) 4-Chloro-butyl-acryl ester 

7.3 g (88.8 mmol) N-Methylimidazole 

Yield : 75 % ( 16.22 g) 
1H-NMR (Methanol- d4, 250 MHz) : δ = 7.64-7.57-7.56 (s, 3H, Im-H), 6.15 (d of t, 3H, 

CH2=CH-), 4.25 (t, 2H,O-CH2-), 4.18 (t, -CH2-N), 3.91 (s, 3H, N-CH3), 1.94-1.70 (m, 

4H, -(CH2)2- ) ppm 
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NNNN
l
 

1-methyl 3-(6-acryloyloxy hexyl) imidazolium chloride 

 

 

NN
O

O

-Cl

+
 

 

17.93 g ( 94.1 mmol) 6-Chlor-hexyl-acryl ester 

7.75 g (94 mmol) N-Methylimidazole 

Yield : 61 % (15.67 g) 
1H-NMR (CD2Cl2, 250 MHz) : δ = 10.14(s, 1H, Im-H), 7.49(s, 1H, Im-H), 7.39(s, 1H, 

Im-H)  6.1(d of t, 3H, CH2=CH-), 4.3 (t, 2H,O-CH2-), 4.09 (t, -CH2-N), 4.03 (s, 3H, N-

CH3), 1.88-1.37 (m, 8H, -(CH2)4- ) ppm 

 

 

N-N’-bis(imidazolyl) alkane 

 

 

 

 

The alkane linkers C2, C5 and C6 were introduced by the alkylation of imidazole with 

1,2-dibromoethane, 1,5-dibromopentane and 1,6-dibromohexane, respectively, and this 

process was successfully achieved by dropwise addition of the alkyl halides to the 

sodium salt of imidazole generated in situ from sodium and imidazole in refluxing 

tetrahydrofuran for 12 h. Mixture was then cooled to room temperature and filtered. After 

removal of THF by rotavap the obtained liquid was  dissolved in water and extracted with 

diethyl ether 3 times The crude product was obtained from aqeous solution after drying 

by  freeze-drier. 
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l=2 : N,N’-bis(imidazolyl) ethane  

10 g (147 mmol) imidazole 

13.81 g (73.5 mmol) 1,2-dibromoethane 

3.38 g (147 mmol) Na-metal 

Yield : 64 % (7,66 g) 

 

 

l=5 : N,N’-bis(imidazolyl) pentane  

15 g (220 mmol) imidazole 

25.3 g (110 mmol) 1,2-dibromopentane 

8.58 g (220 mmol) Na-metal 

Yield :  65 % (14.61 g) 
1H-NMR (D2O, 250 MHz) : δ = 7.45 (s, 2H, Im-H), 6.94 (s, 2H, Im-H), 6.85 (s, 2H, Im-

H), 3.78 (t, 4H, N-CH2), 1.55 (m, 4H, -CH2- ), 0.97 (m, 2H, -CH2- ) ppm 

 

 

l=6 : N,N’-bis(imidazolyl) hexane 

15 g (220 mmol) imidazole 

26.87 g ( 110 mmol) 1,6-dibromhexan 

5.07 g ( 220 mmol) Na-metal 
1H-NMR (D2O, 250 MHz) : δ = 7.48 (s, 2H, Im-H), 6.96 (s, 2H, Im-H), 6.89 (s, 2H, Im-

H), 3.81 (t, 4H, N-CH2), 1.53 (m, 2H, -CH2- ), 1.02 (m, 2H, -CH2- ) ppm 

Yield : 58 % (14 g ) 
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N *NNN
l
 

* m
 

- -X X n

 

++

ionenes 

 

 

 

 

 

Equimolar  mixture of N,N’-bis(imidazolyl) alkane and 1,m-diiodalkane were prepared. 

The mixture was heated at 80oC overnight under N2 atmosphere to accelerate the 

condensation reaction. The mixture was then cooled to room temperature. It was 

precipitated in acetone for m = 2. For m = 6, it was first precipitated in diethylether and 

then was washed several times with excess amount of acetone. The products were 

obtained in powder. 

 

 

 

 

l=5, m=2  

4.72 g (23.1 mmol) N,N’-bis(imidazolyl) pentane 

6.85 g ( 23.1 mmol) 1,2-diiodethane 

Yield : 42 % (4.91 g) 
1H-NMR (DMF-d6, 250 MHz) : δ = 8.51 (s, 2H, Im-H), 7.59 (s, 2H, Im-H), 7.42 (s, 2H, 

Im-H), 4.24 (t, 4H, N-CH2), 1.92 (m, 4H, -CH2- ), 1.32 (m, 4H, -CH2-) ppm 

 

l=5, m=6  

9 g (44.1 mmol) N,N’-bis(imidazolyl) pentane 

14.9 g (44.1 mmol) 1,6-diiodhexane 

Yield : 32 % (7.7 g) 
1H-NMR (DMF-d6, 250 MHz) : δ = 9.66 (s, 2H, Im-H), 8.07 (s, 2H, Im-H), 4.44 (m br, 

8H, N-CH2), 2.00 (m br, 8H, -CH2- ), 1.42 (s br, 6H, -CH2- ) ppm 
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N *NNN
l
 

* m
 

- -X X n

 

++

X -
N NO

O

+
n

l=6, m=6  

5 g (23 mmol) N,N’-bis(imidazolyl) hexane 

7.77 (23 mmol) 1,6-diiodhexane 

Yield : 30 % (3.83 g) 
1H-NMR (Metahnol-d4, 250 MHz) : δ = 9.24 (s, 2H, Im-H) , 7.72(s, 4H, Im-H) , 4.30 (t 

br, 8H, N-CH2), 1.97 (br, 8H, -CH2- ), 1.45 (br, 8H, -CH2- ) ppm 

 

 

Counter Ion-Exchange with H2PO4
- 

 

                                                                            

                                                                                    n : 2,4,6  

                                                                                    X : Br, Cl    

 

 

 

The monomers were dissolved in methylenchloride and stoichiometric  amount (1:1 mol 

ratio) of crystalline H3PO4 was added. The mixture was stirred overnight at RT. The 

desired compounds became insoluble in CH2Cl2. They were isolated from reaction 

medium and washed several times with excess amount of CH2Cl2. 

 

 

 

                                                                                      l : 5,6 

                                                                                      m : 2,6 

                                                                                      X- : I 

 

These ionenes and required amount of  H3PO4 were mixed in DMF. The mixture was 

stirred overnight at RT. DMF was removed by rotavap. The substances were dissolved in 

water and put in dializ to get rid of low molecular weight compounds. 
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Polymerizations 

 

Polymerization was initiated with Azo(isobutyroic acid amidine)dihydrochloride (AIBA) 

(1 mol %) in water at 70oC. After polymerization the water solution of the polymer was 

put in 2000 MWCO dializ membrane to remove oligomers and low molecular weight 

chains. The product was obtained after removing solvent by freeze-drier. 

 

 

 

 

 

 

  

 

N

N

O

O
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-
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N
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O
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+
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