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Zusammenfassung

Biologische Membranen sind Fettmolekül-Doppelschichten, die sich wie zweidimensionale
Flüssigkeiten verhalten. Die Energie einer solchen fluiden Oberfläche kann häufig mit
Hilfe eines Hamiltonians beschrieben werden, der invariant unter Reparametrisierungen
der Oberfläche ist und nur von ihrer Geometrie abhängt. Beiträge innerer Freiheitsgrade
und der Umgebung können in den Formalismus mit einbezogen werden.

Dieser Ansatz wird in der vorliegenden Arbeit dazu verwendet, die Mechanik fluider
Membranen und ähnlicher Oberflächen zu untersuchen. Spannungen und Drehmomente
in der Oberfläche lassen sich durch kovariante Tensoren ausdrücken. Diese können dann
z. B. dazu verwendet werden, die Gleichgewichtsposition der Kontaktlinie zu bestimmen,
an der sich zwei aneinander haftende Oberflächen voneinander trennen. Mit Ausnah-
me von Kapillarphänomenen ist die Oberflächenenergie nicht nur abhängig von Trans-
lationen der Kontaktlinie, sondern auch von Änderungen in der Steigung oder sogar
Krümmung. Die sich ergebenden Randbedingungen entsprechen den Gleichgewichtsbe-
dingungen an Kräfte und Drehmomente, falls sich die Kontaktlinie frei bewegen kann.
Wenn eine der Oberflächen starr ist, muss die Variation lokal dieser Fläche folgen. Span-
nungen und Drehmomente tragen dann zu einer einzigen Gleichgewichtsbedingung bei;
ihre Beiträge können nicht mehr einzeln identifiziert werden.

Um quantitative Aussagen über das Verhalten einer fluiden Oberfläche zu machen,
müssen ihre elastischen Eigenschaften bekannt sein. Der “Nanotrommel”-Versuchsauf-
bau ermöglicht es, Membraneigenschaften lokal zu untersuchen: Er besteht aus einer
porenüberspannenden Membran, die während des Experiments durch die Spitze eines
Rasterkraftmikroskops in die Pore gedrückt wird. Der lineare Verlauf der resultieren-
den Kraft-Abstands-Kurven kann mit Hilfe der in dieser Arbeit entwickelten Theorie
reproduziert werden, wenn der Einfluss von Adhäsion zwischen Spitze und Membran
vernachlässigt wird. Bezieht man diesen Effekt in die Rechnungen mit ein, ändert sich
das Resultat erheblich: Kraft-Abstands-Kurven sind nicht länger linear, Hysterese und
nichtverschwindende Trennkräfte treten auf. Die Voraussagen der Rechnungen könnten
in zukünftigen Experimenten dazu verwendet werden, Parameter wie die Biegesteifigkeit
der Membran mit einer Auflösung im Nanometerbereich zu bestimmen.

Wenn die Materialeigenschaften bekannt sind, können Probleme der Membranmechanik
genauer betrachtet werden. Oberflächenvermittelte Wechselwirkungen sind in diesem
Zusammenhang ein interessantes Beispiel. Mit Hilfe des oben erwähnten Spannungs-
tensors können analytische Ausdrücke für die krümmungsvermittelte Kraft zwischen
zwei Teilchen, die z. B. Proteine repräsentieren, hergeleitet werden. Zusätzlich wird das
Gleichgewicht der Kräfte und Drehmomente genutzt, um mehrere Bedingungen an die
Geometrie der Membran abzuleiten. Für den Fall zweier unendlich langer Zylinder auf
der Membran werden diese Bedingungen zusammen mit Profilberechnungen kombiniert,
um quantitative Aussagen über die Wechselwirkung zu treffen.

Theorie und Experiment stoßen an ihre Grenzen, wenn es darum geht, die Relevanz von
krümmungsvermittelten Wechselwirkungen in der biologischen Zelle korrekt zu beurtei-
len. In einem solchen Fall bieten Computersimulationen einen alternativen Ansatz: Die
hier präsentierten Simulationen sagen voraus, dass Proteine zusammenfinden und Mem-
branbläschen (Vesikel) bilden können, sobald jedes der Proteine eine Mindestkrümmung
in der Membran induziert. Der Radius der Vesikel hängt dabei stark von der lokal aufge-
prägten Krümmung ab. Das Resultat der Simulationen wird in dieser Arbeit durch ein
approximatives theoretisches Modell qualitativ bestätigt.





Summary

Biological membranes consist of a bilayer of lipid molecules which behaves like a two-
dimensional fluid. The energy associated with such a fluid surface is often completely
described by a reparametrization-invariant Hamiltonian which only depends on the sur-
face geometry. Internal degrees of freedom and sometimes even bulk contributions are
readily included.
Within this framework, the mechanics of fluid membranes and similar surfaces is studied.
One can write stresses and torques on the surface in terms of covariant tensors. These can
be used to determine the equilibrium position of the contact line between two adhering
surfaces or different domains on one surface in a completely systematic way. With the
exception of capillary phenomena, the surface energy is sensitive not only to boundary
translations but may also correspond to changes in slope or even curvature. The resulting
boundary conditions express the balance of stresses and torques if the contact line is free
to move. At a rigid substrate, however, the variation has to follow the local substrate
shape; stresses and torques enter a single balance equation and cannot be disentangled.
To make quantitative predictions about the behavior of a fluid surface, its elastic prop-
erties have to be known. The “nanodrum” setup offers a direct way to probe membrane
properties locally: it consists of a pore-spanning lipid bilayer membrane which is poked
with the tip of an atomic force microscope (AFM). The linear behavior of the resulting
force-distance curves is reproduced in the theory if one neglects the influence of adhesion
between AFM tip and membrane. Including it in the model via an adhesion balance
changes the situation significantly: force-distance curves cease to be linear, hysteresis
and nonzero detachment forces can show up. These rich characteristics may offer a pos-
sibility to uniquely deduce membrane parameters such as the bending rigidity on the
nano-scale in future experiments.
Once the material parameters are known, problems of membrane mechanics can be
addressed in full detail. One particularly interesting problem in this context involves
interface-mediated interactions. Analytical expressions for the curvature-mediated force
between two membrane-bound particles such as proteins can be obtained with the help
of the stress tensor. Additionally, torque and force balance yield several analytical
conditions on the membrane geometry. To see how these rather abstract analytical
expressions can be applied, the shape of the membrane is determined exactly for the
case of two infinitely long cylinders adhering to the membrane.

When asking for the relevance of curvature-mediated interactions in the biological cell,

experiment and theory both encounter difficulties. Computer simulations then offer an

alternative approach with their unique ability to identify and separate individual con-

tributions to the phenomenon or process of interest. The presented simulations predict

that once a minimal local bending is realized, the effect robustly drives protein cluster

formation and subsequent transformation into vesicles with radii that correlate with the

local curvature imprint. This is confirmed qualitatively by an approximate theoretical

model.
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Introduction

Lipid bilayer membranes constitute one of the most fundamental components
of all living cells. Apart from their obvious structural task in organizing dis-
tinct biochemical compartments, their contributions to essential functions such
as protein organization, sorting, or signaling play an important role in nature
[AJL+02, LBM+04].
Many of these tasks such as exo- or endocytosis [Mar01], the formation of vesi-
cles [Rob97, MG05, Ant06], or the interaction with the cytoskeleton [LH92] sig-
nificantly exceed mere passive separation or solubilization of proteins. Instead,
they rely heavily on mechanical membrane properties and can be studied using
the mathematical toolbox of theoretical physics. Various key questions are of an
essentially geometrical nature: what is the shape adopted by a membrane sub-
jected to some specified boundary conditions [Sei97]? How are forces and torques
transmitted through the membrane [CG02b, Guv04, LM06, Koz06]? Which in-
teractions does this imply [GBP93, KPDN95, WKH98, KNO98, DFG98, KRS99,
MM02, BBR02, BF03, Wei03, DOD06]?
To answer questions such as these, a differential geometric description of the mem-
brane has proven advantageous. On length scales much larger than its thickness
the membrane can be described as a two-dimensional fluid surface with an energy
that depends entirely on surface invariants (see Chap. 1). Consequently, stresses
and torques in the membrane are expressible in terms of the local surface geome-
try as well. It is possible to introduce the concept of a stress tensor – well known
from three-dimensional elasticity theory – to problems involving the mechanics of
membranes in particular and surfaces in general (see Chap. 2).
By resisting the temptation to use some specialized parametrization and rather
choose a covariant description, many problems lead to remarkably simple geometric
relations, which are not at all obvious or even recognizable in a parametrized lan-
guage. Examples include boundary conditions at triple-lines of contacting surfaces
(see Chap. 3) or interactions between membrane-bound particles (see Chap. 5).
Even if the surrounding space is included in the theoretical picture, the mechanical
surface response continues to be driven by its geometry. Hence, a geometric stress
tensor is no less useful. The task is rather to couple it to potential off-surfaces
stresses such as a pressure difference across the surface. There are a variety of
methods how this may be done and we will discuss some of these in Chaps. 2
and 5.
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Introduction

Knowing the connection between stresses and geometric surface properties, how-
ever, is not a substitute for solving the relevant field equation if one wants to
determine the actual shape of the membrane. Unfortunately, this equation is a
nonlinear partial differential equation of fourth order which typically has to be
solved numerically. In Chaps. 4 and 5 this will be done for problems obeying a
rotational or translational symmetry. For more complicated situations tailored
computer simulations offer an alternative approach.
Combining analytical theory, numerical calculations and computer simulations in-
deed seems to be the ideal way to study the mechanics of membranes theoretically.
Where one approach meets its limitations the other one can step into the breach
offering a more complete view of the relevant problems. Before discussing these,
however, let us start with an overview of the main characters. A detailed descrip-
tion will occur later in the text, especially in the first chapter.

2



Dramatis Personae

Dramatis Personae

The cell
left: Electron micrograph of a plasma cell, a type of white blood cell that se-
cretes antibodies. Only a single membrane (the plasma membrane) surrounds
the cell, but the interior contains many membrane-limited compartments, or
organelles (from [CM93] with courtesy of P. Cross); right: Schematic sketch of an
animal (eukaryotic) cell (from http://micro.magnet.fsu.edu/cells/animalcell.html).

The biological fluid membrane
left: Electron micrograph of a thin section through the membrane of a red
blood cell (from [LBM+04]); right: Sketch of the membrane. It consists of
a lipid bilayer to which different kinds of macromolecules (e. g. proteins) are
bound (from [GK96, Fig. 4.15 on p.99]; copyright, W. W. Norton and Co.).
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Model membranes (DPPC bilayer)
To model the membrane theoretically, different levels of resolution can be
chosen. In all-atom computer simulations (above) every atom is represented
by one bead. In coarse-grained simulations (middle) groups of atoms are
combined; their interactions can even be tuned such that the surrounding water
does not have to be simulated explicitly. Treating the membrane analytically
as a two-dimensional surface is possible on length scales much larger than the
membrane’s thickness (below).
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z

y

x

Proteins in membranes
Proteins can be included into the theoretical model on all levels of resolution.
For example, the BAR domain (above) can deform the lipid bilayer locally
(with courtesy of P. Blood). On larger length scales such an effect can be modeled
using hard spheres that adhere to the membrane (middle and below).
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1 The biological membrane – a fluid
surface

1.1 Biological membranes

Biological membranes consist of a bilayer of lipid molecules in which proteins
are embedded. At physiological conditions this bilayer behaves like a two-
dimensional fluid, with individual molecules able to diffuse rapidly in it.

Each cell is surrounded by a closed membrane, the plasma membrane, which phys-
ically separates the extracellular environment from the cell’s interior. Bacteria and
archae possess just this single membrane, whereas animal and plant cells also con-
tain internal membrane-limited subcompartments, the organelles. The nucleus,
for example, stores the genetic information, the mitochondria are the power plants
of the cell, and the endoplasmic reticulum is the factory where protein molecules
are synthesized [LBM+04, AJL+02].1

To cope with the different tasks in which membranes are involved as a crucial part,
a membrane’s molecular composition is highly inhomogeneous. Despite that they
all have a common basic structure: the lipid bilayer.

1.1.1 The lipid bilayer

Lipid molecules are the basic building blocks of the membrane. They are am-
phiphiles, that is they consist of two different parts: a hydrophilic (i. e., “water-
loving”) head and a hydrophobic (i. e., “water-fearing”) tail. The hydrophobic tail
is typically formed by two hydrocarbon chains originating from various fatty acids.
One of them is often unsaturated. This means that at least one double bond exists
between two of the carbon atoms (see Table 1.1). The fatty acids are attached
via ester or amide covalent bonds to a linker group like glycerol which also binds
to the hydrophilic head group. In phospho- or glycolipids, the most abundant
lipids in the cell, this head group consists of a simple phosphate or sugar group,
respectively, and another group such as choline (see Table 1.2).
In an aqueous environment the hydrophobic carbon tails of the lipid disturb the
hydrogen bonds that exist between the water molecules close to it. These can only

1 Cells that have a nucleus and other organelles are also called eukaryotic cells.

7



1 The biological membrane – a fluid surface

substance #C #db chemical structure

laurate 12 0 CH3−(CH2)10−COO−

myristate 14 0 CH3−(CH2)12−COO−

palmitate 16 0 CH3−(CH2)14−COO−

stearate 18 0 CH3−(CH2)16−COO−

arachidate 20 0 CH3−(CH2)18−COO−

oleate 18 1 CH3−(CH2)7−CH=CH−(CH2)7−COO−

linoleate 18 2 CH3−(CH2)4−(CH=CH−CH2)2−(CH2)6−COO−

γ-linolenate 18 3 CH3−(CH2)4−(CH=CH−CH2)3−(CH2)3−COO−

arachidonate 20 4 CH3−(CH2)4−(CH=CH−CH2)4−(CH2)2−COO−

Table 1.1: Common biological fatty acid anions [GKD+04, A3.8]. The number of
carbon atoms (#C) is even because biological fatty acids are synthesized by concate-
nation of C2 units. Note also that the fatty acid anions can be further divided into
saturated (no double bond (db)) and unsaturated (one or more double bonds) ions.

be maintained if the water sacrifices a part of its entropy. This phenomenon is
called the hydrophobic effect [Tan91] and is the main reason why the hydrophobic
part of an amphiphile tries to avoid water. The hydrophilic part, however, can
form hydrogen bonds with the water and therefore likes to stay in it.

The “schizophrenic” nature of the amphiphiles causes them to aggregate spon-
taneously above a certain critical concentration. At that concentration which is
called the critical micelle concentration (cmc) it becomes energetically more favor-
able for them to sacrifice some of their entropy and self-assemble into a condensed
structure, thereby shielding their hydrophobic parts from the water. The morphol-
ogy of the aggregate depends on the nature of the amphiphile, (i. e., the size of the
head group and the hydrophobic tail), but also on the solution conditions (i. e.,
salt concentration, pH or temperature) [Isr92]. Typical structures that result are
spherical or cylindrical micelles, bilayers and vesicles (see Fig. 1.1).

Most of the lipid molecules in cells form bilayers, a fact already discovered in 1925
[GG25]. The bilayer of a biological membrane is approximately 5 nm thick and
contains typically on the order of one hundred different lipids. The lipid fractions
vary between organisms, cells, different organelles within the cell, and even between
the two sides of the bilayer. Still, some common features can be identified that
are essential for biological function [LBM+04, AJL+02, GKD+04]:

• The hydrophobic core of the bilayer acts as a barrier to the passage of most
water-soluble molecules. In consequence, a small number of molecular chan-

8



1.1 Biological membranes

substance chemical structure type
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Table 1.2: Examples of membrane lipids. R1 and R2 correspond to hydrocarbon
chains of fatty acids (see Table 1.1) [GKD+04, A3.8f] (from [Mül04]).
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1 The biological membrane – a fluid surface

(a) (b) (c) (d)

Figure 1.1: Typical structures that result from self-assembly: (a) spherical micelle,
(b) cylindrical micelle, (c) flexible bilayer/vesicle, and (d) planar bilayer. The black
circles are the hydrophilic heads, the chains the hydrophobic tails of the amphiphiles.

nels and pumps can strictly regulate the exchange of chemicals between the
two sides of the membrane.2

• The cmc is very low (10−6-10−10 M for bilayer-forming lipids as opposed to
10−2-10−5 M for micelle-forming amphiphiles). The bilayer is therefore very
stable: even though the exterior aqueous environment can vary widely in
ionic strength and pH, the bilayer has the strength to retain its characteristic
architecture.

• The biological bilayer behaves as a two-dimensional fluid at physiological
temperatures. The lipids can diffuse freely within each leaflet of the bilayer.3

Below a critical transition temperature Tm the bilayer loses its fluidity and becomes
a gel-like solid. Mismatches between the cross-sectional areas of lipid head and
lipid tail group lead to tilted or interdigitated chains and rippled surfaces [LS95,
Chap. 5].
The value of Tm depends, for instance, on the degree of saturation of the fatty acid
chains in the bilayer. In unsaturated fatty acids the chains are kinked and cannot
pack closely. Lipids with unsaturated fatty acids thus form bilayers with a lower
transition temperature than lipids with saturated fatty acids. For example, a pure
DPPC (1,2-dipalmitoyl-phosphatidylcholine) bilayer has a transition temperature
of (41.3 ± 1.8) ◦C, whereas DOPC with one cis double bond in every chain (see
Fig. 1.2(a)) is fluid above (−18.3 ± 3.6) ◦C [KC98].4 The same rule holds for
synthetic membrane lipids. Under ambient conditions a DOTAP bilayer is already

2 An alternative way of material transport through the membrane will be discussed in the next
section and in Chap. 5.

3 A membrane lipid can diffuse the length of a typical bacterial cell (1µm) in only one second,
the length of a typical animal cell in about 20 seconds.

4 The double bond cannot rotate. If the groups that are connected to it are oriented in the same
direction the molecule is referred to as cis, while when they point in opposing directions it is
referred to as trans.
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Figure 1.2: Examples of lipids with different effect on the bilayer fluidity: DOPC
(a) and DOTAP (b) bilayers are fluid under ambient conditions, DODAB (c) forms a
gel-like bilayer. Cholesterol (d) tends to make fluid lipid bilayers less fluid.
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1 The biological membrane – a fluid surface

fluid whereas DODAB is still in the gel phase (see Fig. 1.2(b) and 1.2(c)). We will
come back to that point in Chap. 4 where these lipids will be used in an experiment
in which the elastic properties of bilayers are investigated.
The fluidity of the bilayer also depends on the length of the hydrocarbon tails it
contains. A shorter chain length reduces the tendency of the tails to interact with
each other, so that the bilayer remains fluid at lower temperatures.
Both effects, degree of saturation and chain length of the fatty acid tails, are
exploited in nature. Under thermal stress (arising from, say, an abnormal decrease
in temperature) many organisms such as bacteria or yeasts actively adjust the
fatty acid composition of their membrane to maintain its fluidity [TJI98].
Eukaryotic cell membranes additionally contain cholesterol for these purposes.
Cholesterol consists of a rigid and relatively planar steroid skeleton with a sin-
gle hydroxyl group as the hydrophilic part (see Fig. 1.2(d)). It cannot form a
bilayer unless it is mixed with other lipids. By decreasing the mobility of the
hydrocarbon chains it tends to make fluid lipid bilayers less fluid. At the high
concentration found in most eukaryotic plasma membranes, it also prevents the
hydrocarbon chains from coming together and crystallizing thereby inhibiting the
fluid-gel phase transition [LBM+04, AJL+02]. Ten years ago, it has been proposed
that both cholesterol and sphingolipids accumulate in the plasma membrane to
form tiny domains of a diameter of a few tens of a nanometer [SI97, BL97, BL98].
These “lipid rafts” are supposed to help organizing certain proteins which are
important for biological functions such as cell signaling.
Experiments with synthetic vesicles made from cholesterol, sphingomyelin and a
phospholipid like POPC have shown a variety of phases, phase transitions, and co-
existence regimes [DBV+01, VK05]. Typically, such a mixture can phase-separate
into micrometer-sized liquid ordered (Lo) domains which are rich in sphingomyelin
and cholesterol and liquid disordered (Ld) domains of similar size. Whether
rafts exist in living cells or not, however, remains the subject of lively debate
[Mun03, Nic05, Han06] as it is much harder to search for domains of nanometer
size, especially in vivo. In Chap. 4 an experimental setup will be presented that
reaches the necessary spatial resolution. It may thus offer a possibility to search
for lipid rafts in the near future.

1.1.2 Membrane proteins

Although the lipid bilayer provides the basic structure of the membrane, proteins
perform most of its biological functions. They serve as ion channels and specific
receptors, for example, or catalyze membrane-associated reactions, such as the
synthesis of adenosine 5’-triphosphate (ATP), the principal carrier of chemical
energy in cells.
Proteins are macromolecules that consist of amino acids joined together by pep-
tide bonds (see Fig. 1.3). One can distinguish four levels of organization in their
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1.1 Biological membranes

HO
O

O

HO

O

N

NH2 H

H2O

HO O

H2NOH
HO

O

O NH2

peptide
bond

(a) (b) (c)

Figure 1.3: (a) Amino acids can connect to each other via a peptide bond. Two
important secondary structures are (b) the α helix and (c) the β sheet.

structure. The linear sequence of amino acids is called the primary structure. It
is composed of 20 different types of amino acids and is encoded in the genome
of the cell. Individual amino acid residues on a protein may attract or repel one
another. Localized parts of the peptide chain can thus fold into three-dimensional
structures like α helices or β sheets (see again Fig. 1.3). These arrangements are
referred to as secondary structures. Their degree of hydrophobicity depends on
the character of the side chains of the amino acids involved. The tertiary structure
describes the full three-dimensional organization of the chain. The protein can,
however, be formed as a complex of more than one polypeptide chain. For instance,
hemoglobin, the oxygen carrier of the blood, consists of four subunits. The com-
plete structure is then designated as the quaternary structure [LBM+04, AJL+02].

Proteins can be bound to membranes in different ways: (i) integral membrane
proteins, also called transmembrane proteins, span the lipid bilayer. They contain
one or more hydrophobic domains that are inserted into the core of the bilayer
as well as hydrophilic domains that extend into the aqueous medium on both
sides. (ii) Lipid-anchored membrane proteins are bound covalently to one or more
lipid molecules. The hydrophobic tail of the attached lipid is embedded in one
leaflet of the membrane. The polypeptide chain itself does not enter the bilayer.
(iii) Peripheral membrane proteins do not interact with the fatty acid chains of
the bilayer. Instead they are only bound indirectly by interactions with integral
membrane proteins or directly by interactions with the lipid head groups. How
a protein associates with the membrane depends on its biological function. Only
transmembrane proteins can function on both sides of the bilayer or transport

13



1 The biological membrane – a fluid surface

molecules across it. By contrast, many proteins that function on only one side of
the bilayer are often lipid-anchored or peripheral proteins.
Because the bilayer is fluid, all types of proteins can move laterally in the membrane
and interact with one another. In Chap. 5 we will discuss membrane remodeling as
one example where proteins aggregate to act cooperatively. Such processes are, for
instance, important in endocytosis in which material is ingested by invagination
of the plasma membrane and subsequent internalization in a membrane-bound
vesicle.
However, living cells have found ways to immobilize specific membrane proteins. In
the previous section we have already discussed lipid rafts as one example. Beside
that, the interaction with the cytoskeleton restricts the mobility of proteins as
well. The cytoskeleton provides structural support for the eukaryotic cell. It
consists of a network of filaments build up from proteins such as actin or tubulin
and permits directed movements of organelles and the cell itself.5 Some proteins
in the plasma membrane can link permanently to the cytoskeleton leaving them
completely immobile in the membrane. Other proteins, though still mobile, are
slowed down in the presence of the cytoskeleton.
We will not go further into the biological details here. The interested reader is
referred once more to Refs. [LBM+04, AJL+02]. The rest of this introductory
chapter will instead present a physical description of the biological membrane
and similar fluid surfaces which will ultimately enable us to consider interesting
problems of fluid membrane or – more generally – fluid surface mechanics.

1.2 The energy associated with fluid surfaces

The energy associated with a fluid surface is often completely described by
a reparametrization-invariant Hamiltonian that only depends on the surface
geometry. Internal degrees of freedom and sometimes even bulk contributions
are readily included.

In order to choose the correct physical description of the membrane it first has to
be clear how much detail is needed to answer the questions of interest. To model
the exact conformation of a protein embedded in the membrane, for example,
computer simulations are the right tool to use [Lea01].
In this thesis, however, the membrane will be considered from a mesoscopic point
of view.6 This is applicable when the lateral extension and the size of all defor-
mations of interest are much larger than its width. The lipid bilayer can then be
modeled as a two-dimensional surface embedded in three-dimensional Euclidean

5 For active transport you of course additionally need some kind of engine and fuel. In the cell
these are provided by special motor proteins and ATP, respectively.

6 Only in Sec. 5.3.2 molecular dynamics simulations will be used to study the interactions of a
number of proteins bound to the membrane.
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1.2 The energy associated with fluid surfaces

Figure 1.4: A soap film spanning a tetrahedral frame (from [Mül04]).

space R
3. Proteins or other entities that can bind to the membrane (e. g. viruses)

are represented by solid particles that impose deformations in the surface.
To predict the behavior of the membrane under deformations such as these, one
has to know how its energy changes. Let us therefore study possible contributions
to the energy of a fluid surface and discuss their relevance for the case of the
membrane.

1.2.1 Surface tension and curvature energy

Surface tension

When surfaces occur in physical systems, the energy associated with them is often
completely described by a Hamiltonian that only depends on the surface geometry.
The easiest and the best known examples involve capillary phenomena [RW02,
dGBWQ03], in which the energy of a liquid-fluid interface is simply given by the
surface integral over a constant surface tension σ.7 The resulting Hamiltonian is
therefore:

H =

∫

Σ

dA σ , (1.1)

where Σ is the surface domain and dA the infinitesimal area element.
Hamiltonian (1.1) is not only relevant for interfaces between pure phases (such
as, for instance, water and water vapor) but also describes the behavior of soap

7 We will only consider interfaces in their ground states. Thermal fluctuations around these
states or dynamical phenomena will not be taken into account. This implies that we do not
need to worry about entropic contributions to the free energy (for a general discussion in the
case of capillary phenomena, see again Ref. [RW02]).

15



1 The biological membrane – a fluid surface

films (see Fig. 1.4) [Ise92]. Soap films consist of a 5 nm - 20µm thin layer of water
between two monolayers composed of amphiphilic soap ions (such as the fatty acid
anions, see Table 1.1). These ions can move laterally in the film exactly as the
lipids in the membrane.
The fluidity of the surface implies that it cannot resist shear stresses. Hence,
static shear is not a deformation which costs the surface any energy; in fact, it
cannot even be defined. As we will restrict our considerations to fluid surfaces this
property holds generally throughout this work.

Helfrich Hamiltonian

A bending deformation in the direction normal to the interface, however, can con-
tribute to the total energy of a fluid surface. In a harmonic expansion the energy
due to any deformation of the interface is proportional to the square of the de-
formation (remember Hooke’s law). In the particular case of bending, one has to
consider quadratic expressions of the curvature. At every point a surface has two
principal curvatures k1 and k2, which are the eigenvalues of the local curvature ten-
sor Kb

a. The corresponding eigenvectors define two orthogonal principal directions
(see App. A.1). One therefore has to include two independent terms in the expres-
sion for the energy that depend on a quadratic combination of the two curvatures
and are furthermore invariant scalars. One convenient choice is a combination of
the Gaussian curvature KG = k1k2 and the squared trace K2 = (k1 + k2)

2 of the
curvature tensor Kab. Including surface tension the complete Hamiltonian is then
according to Helfrich [Hel73]:

H =

∫

Σ

dA
[

σ +
κ

2
(K −K0)

2 + κ̄KG

]

. (1.2)

where κ and κ̄ are proportionality constants called bending rigidity and saddle-
splay modulus, respectively. The constant K0 is the spontaneous curvature. Its
value determines how much the surface prefers to be bent in its minimal energy
state. The term involving the Gaussian curvature can be written as the sum of
a topological constant and a line integral over the boundary of the surface (see
App. A.3). The implications of this turn out to be subtle and will be discussed in
more detail in Technical Point 2.3 on page 38.
A series of experimental and theoretical studies has shown that the energy as-
sociated with the membrane is mainly dominated by bending (see, for instance,
Refs. [BL75, FMM+89, DS95, LS95, Sei97, CDBN05]). The reason for this is that
it is the softest mode: characteristically, weak bending is a deformation which
costs significantly less energy than, for instance, stretching.
On length scales much larger than the bilayer thickness the Hamiltonian (1.2) is
suitable to describe a fluid membrane.8 For typical phospholipid membranes, κ

8 It should be mentioned that the Hamiltonian (1.2) is also valid for other interfaces such as
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1.2 The energy associated with fluid surfaces

is of the order of a few tens of kBT , where kBT is the thermal energy [SL95].
Furthermore, membranes exhibit tensions σ in a broad range from 0 up to about
10 mN/m [MH01]. At even higher values they rupture. The Gaussian bending
rigidity κ̄ is rather difficult to measure. Its value is usually negative and also
smaller than that of κ in the same system [GKD+04, A3.24].9

General curvature Hamiltonians

The fact that curvature (a “generalized strain”) enters quadratically in the Hamil-
tonian (1.2) classifies this form of the bending energy as “linear curvature elas-
ticity” (even though the resulting field equations that describe the shape of the
surface are highly nonlinear as we will see in Sec. 2.2.2). However, for sufficiently
strong bending higher than quadratic terms will generally contribute to the energy
density, giving rise to genuinely nonlinear curvature elasticity [GH96].

A general expression including all these terms is given by [Mül04]:

HΣ[X] =

∫

Σ

dA H(gab, Kab,∇aKbc, . . .) , a, b,∈ {1, 2} , (1.3)

where the Hamiltonian density H depends exclusively on surface scalars con-
structed using the metric gab, the extrinsic curvature tensor Kab, or its covariant
derivatives ∇aKbc, etc.

Note in particular that Hamiltonian (1.3) is invariant under surface reparametriza-
tions. In order to describe the surface in a parametrization-free way, a covariant
differential geometric language will be used. The notation is essentially standard
and is summarized briefly in Technical Point 1.1.

1.2.2 Internal degrees of freedom

So far the discussion was restricted to Hamiltonians which are exclusively con-
structed from the geometry of the underlying surface. However, the surface itself
may possess internal degrees of freedom which can couple to each other and, more
interestingly, also to the geometry. The simplest example would be a scalar field
φ on the membrane, which could describe a local variation in surface tension or
lipid composition. In that case the Hamiltonian

Hφ[X, φ] =

∫

Σ

dA

[
λφ
2

(∇aφ)(∇aφ) + V (φ) + βφKφ

]

(1.4)

those containing block copolymers.
9 In Sec. 3.5 we will discuss an experimental setup with which the difference of the saddle-splay

moduli of two different lipid domains on a vesicle can be measured.
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1 The biological membrane – a fluid surface

Technical Point 1.1: Differential geometry

This Technical Point presents the basic notions of the differential geometry of
two-dimensional surfaces. A comprehensive summary can be found in App. A.

A surface Σ is described locally by its po-
sition X(ξ1, ξ2) ∈ R

3, where the ξa (a ∈
{1, 2}) are a suitable set of local coordi-
nates on the surface. The tangent vec-
tors of Σ, ea = ∂X/∂ξa = ∂aX (a, b ∈
{1, 2}), form a local coordinate frame; to-
gether with the extrinsic unit normal vec-
tor, n = e1 × e2/|e1 × e2|, they define
two geometrical tensors on the surface:
the metric gab = ea · eb and the extrinsic
curvature Kab = ea · ∂bn.

Σ

e1

e2

n

X

x
y

z

The symbol ∇a is the metric-compatible covariant derivative. The trace of the
extrinsic curvature tensor will be denoted by K = Ka

a = Kabg
ab, which for a

sphere of radius r with outward pointing normal vector is positive and has the value
K = 2/r. The determinant KG = det(Kb

a) is the Gaussian curvature. It can be
written as half the Ricci scalar curvature R = gacgbdRabcd, the double-contraction
of the Riemann tensor. This link between intrinsic and extrinsic curvatures is
a consequence of the (doubly contracted) Gauss-Codazzi equation R = K2 −
KabK

ab (= 2KG). As usual, indices are lowered or raised with the metric or
its inverse, respectively, and a repeated index a (one up, one down) implies a
summation over a = 1, 2. More background on differential geometry can, for
instance, be found in Refs. [Car76, Spi76, Kre91].

has to be added to the geometric Hamiltonian (1.3) [CG04].10 The symbols λφ and
βφ denote coupling constants. The last term represents an interaction between
the membrane curvature K and the field φ, whereas V (φ) is a scalar potential
depending on the value of φ. This case will not be discussed further here.
Instead, let us look a little more closely at the case of an additional tangential
surface vector field ma (see Fig. 1.5). Such a field has been introduced to describe
the tilt degrees of freedom of the molecules within a lipid bilayer to accommodate
the fact that the average orientation m̂ of the lipids themselves need not coincide
with the local bilayer normal n (see, for instance, Refs. [HP88, ML91, ML93,
NP92, NP93, SSN96, HK00, MBS99, Fou99, May00, BKIM03, KZK04]).
How can such a tilt be excited? In Sec. 1.1.2 it was mentioned that proteins

10 As mentioned in Technical Point 1.1 the sum convention is used throughout this work: if an
index occurs twice in a product, once as super- and once as subscript, one has to sum over
this index from 1 to 2 even though no explicit summation sign is present.
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1.2 The energy associated with fluid surfaces

m = maea

m̂n

Figure 1.5: Lipid tilt. The unit vectors n and m̂ denote the local bilayer normal and
average orientation of the lipids themselves. The values for ma (a ∈ {1, 2}) can be
obtained by projecting m̂ onto the tangent plane of the bilayer.

can span the entire membrane. These transmembrane proteins are not necessarily
shaped like a straight cylinder but can also vary in thickness over the width of the
membrane looking, for instance, like a truncated cone. Such a membrane inclusion
distorts the lipid order close to it leading to a non-vanishing field ma.11

In the presence of a field ma many additional terms for the energy emerge (for a
systematic classification see Refs. [NP92, NP93]). However, the aim here is not
to treat the most general case. Instead, let us focus on a simple representative
example to illustrate how easily the present formalism generalizes to treat such
situations.
If one defines the properly symmetrized covariant tilt-strain tensors Mab and F ab

according to

Mab =
1

2

(
∇amb + ∇bma

)
, (1.5a)

F ab = ∇amb −∇bma , (1.5b)

one can construct (in the spirit of a harmonic theory) a Hamiltonian Hm from four
quadratic invariants:

Hm[X,ma] =

∫

Σ

dA
[1

2
λmM

2 + µmMabM
ab +

1

4
νmFabF

ab + V (m2)
]

, (1.6)

11 Note that membrane inclusions can also excite a change in membrane thickness if their hy-
drophobic domain is much larger or smaller than the hydrophobic core of the bilayer [Kil98].
This hydrophobic mismatch, however, will not be treated here.
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1 The biological membrane – a fluid surface

where M = gabM
ab = ∇am

a is the tilt divergence. The first two terms coincide
with the lowest order intrinsic terms identified by Nelson and Powers [NP92, NP93],
provided one restricts to unit vectors ma.12 These terms are multiplied by new
elastic constants λm and µm, playing the analogous role to Lamé-coefficients.13 If
m2 6= 1, a third term (also absent in usual elasticity theory [LL86]) occurs, the
quadratic scalar constructed from the antisymmetrized tilt gradient; its structure
is completely analogous to the Lagrangian in electromagnetism [LL00]. Finally, if
the magnitude of ma is not fixed, one may also add a potential V depending on
the square m2 = mam

a of the vector field ma. Without loss of generality one can
assume that V (0) = 0 because any nonvanishing constant is more appropriately
absorbed into the surface tension σ. If V (x) is minimal for x = 0, then ma ≡ 0 will
minimize the energy, but depending on physical conditions V may favor nonzero
values of |ma|. In this case the lipids can acquire a spontaneous tilt below the
main phase transition temperature of lipid bilayers (cf. Sec. 1.1.1).

1.2.3 Bulk energies

Surfaces do not live in vacuum. They are embedded in the surrounding space which
often provides for additional contributions to the total energy. In this section we
will discuss two examples, a global pressure difference and a gravitational field.

Global pressure difference

In an aqueous environment any open patch of membrane costs a large amount of
energy because at the edge the hydrophobic core of the bilayer is in direct contact
with the water. Therefore, free membrane patches usually do not exist in the cell.
They close to form vesicles (see Fig. 1.1(c)).
If the volume V is fixed to a constant V0, a term −P (V − V0) has to be added to
the energy functional H of the free surface:

HP = H − P (V − V0) , (1.7)

where the pressure difference P is the Lagrange multiplier for the enclosed volume.
A similar term may also be used to fix the pressure difference between the two

12 Using the commutation relations for covariant derivatives (A.19) and (A.20) it is easy to see
that (∇am

b)(∇bm
a) = (∇am

a)2 − 1
2Rm2. If m2 = 1, the Gauss-Bonnet-theorem renders the

last term a boundary contribution (see App. A.3), and it is then easy to see that the λm- and
µm-terms in Eqn. (1.6) are sufficient.

13 In order for the Hamiltonian density (1.6) to be positive definite in the strain gradient ∇amb,
it is necessary that µm > 0 and λm + µm > 0. The latter differs from the “usual” condition
λm + 2

3µm > 0 found in Ref. [LL86] because in the surface case one only has two-dimensional
tensors. The positivity of the antisymmetric term requires νm < 0 since the square of an
antisymmetric matrix has negative eigenvalues.
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1.2 The energy associated with fluid surfaces

sides of the surface:
HP = H − PV . (1.8)

Both ensembles (constant volume vs. constant pressure) yield the same ground
states for the shape of the surface. Questions of stability depend on which of the
two variables is fixed: a surface shape found to be stable under constant V is not
necessarily stable under constant P . In Technical Point 2.5 on page 44 we will
discuss this point for one example where the surface is a closed soap film (i. e., a
soap bubble).
With the help of Gauss’ Theorem the volume V can be written as an integral over
the enclosing surface ∂V :

V =

∫

V

dV ′ ∇ ·X
3

=
1

3

∫

∂V

dA n ·X , (1.9)

where n is the unit vector normal to the surface and X the position of the surface
in R

3 as before. This allows us to express Hamiltonian (1.8) as a surface integral:

HP = H − 1

3
P

∫

Σ

dA n ·X . (1.10)

Gravity

Another energy contribution from the bulk may stem from gravity. On the size
of a typical cell membrane (. 1µm) the gravitational field can be neglected. For
fluid surfaces on larger length scales, however, it becomes relevant as we will see
in the following chapters.
As an example consider a liquid-fluid interface Σ in a homogeneous (downwards
pointing) gravitational field of acceleration g (see Fig. 1.6). Gravity will make sure
that in equilibrium the heavier of the two fluid phases will be below the lighter one.
Furthermore, any deformation of the interface will increase the potential energy
of the system, e. g. by lifting or lowering the heavier phase. This total potential
energy can be written as

Epot = g

∫

all fluid

dV ρ(X)h(X) , (1.11)

where ρ(X) is the local density and h(X) is the height above some arbitrary
horizontal reference plane which fixes the zero-point of the potential energy.
In the following let us assume that both phases are incompressible. Hence, the
density in each phase will not depend on the position. Up to a constant one
may thus equivalently integrate the excess density ρ of the heavier phase over the
volume Vhp occupied by the heavier phase:

Epot = ρg

∫

Vhp

dV h(X) . (1.12)
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X

X‖

n z
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g

Figure 1.6: Liquid-fluid interface in a homogeneous gravitational field.

The volume integral can then be split into an area integral over the reference plane
times a height integral perpendicular to it; the latter can be done explicitly:

Epot = ρg

∫

dA‖

∫ h(X‖)

0

dz z =
1

2
ρg

∫

dA‖ h(X‖)
2 , (1.13)

where h(X‖) is now written as a function of the coordinates X‖ of the reference
plane.14 This energy depends of course on the embedding of the interface into
exterior space which is indeed a physical requirement. However, the way it is
written it also depends on the parametrization of that surface, and this is something
one would like to avoid if possible.
In order to achieve that, any reference to some arbitrary base plane has to be
eliminated. This could be done if one was able to rewrite the integrand in the
volume integral (1.12) as a pure divergence. Using Gauss’ Theorem again it would
then be possible to express it as a surface integral over the actual surface of the
heavier phase rather than some arbitrary reference plane.
Indeed, if z is the upward direction, then

h = X · z =
1

2
∇ ·

(
X2z

)
, (1.14)

and thus the potential energy can also be written as

Epot =
1

2
ρg

∫

Vhp

dV ∇ · (X2z) =
1

2
ρg

∫

∂Vhp

dA (n · z)X2 , (1.15)

14 The surface parametrization that is chosen here is also called Monge parametrization. It is
applicable as long as the surface has no overhangs (see App. A.4.1).
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where the surface integral now runs over the complete surface of the lower phase.
This expression is essentially parametrization-free; in particular, it does no longer
make reference to some arbitrary base plane. Notice, however, that the vertical
sides of the fluid volume do not contribute to this integral (since there z ⊥ n)
while the lower (horizontal) surface gives a contribution which does not change if
the upper free surface is modified. Hence, the only nontrivial contribution to the
energy stems from the upper surface integral over the fluid-liquid interface Σ in
Eqn. (1.15).
To obtain the full Hamiltonian HG, the potential energy has to be added to all
other terms that contribute to the surface energy. In the case of a liquid-fluid
interface a tension will enter.15 Additionally, one has to take into account that the
volume of the liquid is constant. One thus obtains the Hamiltonian:

HG =

∫

Σ

dA σ − P (V − V0) + Epot . (1.16)

Gravity will serve as an interesting and instructive but still manageable example
for how non-constant bulk stresses act on surfaces. We therefore include it in our
discussion, even though it is seldomly important for the length scales prevailing at
biological membranes.
However, the main focus in this work will be on the fluid membrane. As we now
know the energies that determine its physics, questions of membrane mechanics
can be addressed, for instance, by examining the effects of forces and torques on
its shape.

15 In general of course, Hamiltonian (1.3) and possibly terms that reflect internal degrees of
freedom have to be inserted.
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2 Surface Mechanics

In Sec. 1.1 we have seen that membranes in cells are not isolated free objects. They
experience a variety of external forces and torques. For example, proteins adhere to
them and impose deformations, actin filaments of the cytoskeleton push and pull at
them, pressure differences between the inner and outer sides may even cause their
rupture. Furthermore, lipid rafts have a higher rigidity than their surroundings, or
certain mechanosensitive membrane channels open and close gated by the tension
of the membrane.
All these examples show that the mechanical properties of membranes are vital
for the functioning of biological cells. A first step to understand these properties
is to determine what shape the membrane adopts if it is subjected to some specific
boundary conditions. Given the shape, forces and torques can be determined
which are imprinted in the geometry of the membrane.

2.1 Stresses and torques in fluid surfaces

The equilibrium shape of a surface is governed by a nonlinear partial dif-
ferential equation, the “shape equation”. Stresses and torques in the surface
are fully encoded in its geometry and described by divergence-free tensors.

In the following, the basic equations which govern the behavior of the membrane
are derived. To keep the approach sufficiently general, we first consider the generic
case of a surface Σ whose energetics can be described by the reparametrization
invariant Hamiltonian (1.3)

HΣ[X] =

∫

Σ

dA H(gab, Kab,∇aKbc, . . .) . (2.1)

2.1.1 First variation and Euler-Lagrange equations

To determine the equilibrium (i. e., energy minimizing) shape of the surface, the
functional (2.1) has to be minimized with respect to deformations of Σ. These
deformations are described by a change in the embedding functionsX →X+δX.
The response of the Hamiltonian can be written as [CG02b, Mül04]:

δHΣ =

∫

Σ

dA E(H)n · δX +

∫

Σ

dA ∇aQ
a . (2.2)
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2 Surface Mechanics

The bulk part of this variation is a surface integral over the Euler-Lagrange deriva-
tive E(H) times the normal projection of the surface variation δX. Its vanishing
determines the equilibrium shape of the interface. Hence, E = 0 is also called
the “shape equation”. The second term of the variation is a surface integral over
a divergence and can thus be recast as a boundary integral using the divergence
theorem [Fra03]. It originates from tangential variations1 as well as the derivatives
of normal variations.
The straightforward way to determine E and Qa explicitly is to track the course of
the deformation on X through gab,

√
g, Kab, and any appearing covariant deriva-

tives. This turns out to be rather tedious as gab, Kab, . . . indirectly depend on X
via the structural relationships (see App. A.1)

gab = ea · eb and (2.3a)

Kab = ea · ∂bn = ea · ∇bn , (2.3b)

with

ea = ∂X/∂ξa = ∂aX = ∇aX , (2.4a)

ea · n = 0 , (2.4b)

n2 = 1 . (2.4c)

Alternatively, one can treat gab, Kab, ea and n as independent variables, enforcing
the structural relations (2.3) and (2.4) using Lagrange multiplier functions as was
first pointed out by Guven [Guv04]. One thus introduces the new functional
Hc[gab, Kab, . . . ,X,ea,n, λ

ab,Λab,fa, λa⊥, λn] given by

Hc = H[gab, Kab,∇aKbc, . . .] +

∫

Σ

dA [λab(gab − ea · eb) + Λab(Kab − ea · ∇bn)]

+

∫

Σ

dA [fa · (ea −∇aX) + λa⊥(ea · n) + λn(n
2 − 1)] . (2.5)

The original Hamiltonian H is now treated as a function of the independent vari-
ables gab, Kab and their covariant derivatives; λab, Λab, fa, λa⊥ and λn are Lagrange
multiplier functions fixing the constraints (2.3) and (2.4). The introduction of
auxiliary variables greatly simplifies the variational problem, because now we do
not have to track explicitly how the deformation δX propagates through to gab
and Kab. As we will see in the following, this approach also provides a very simple
and direct derivation of the shape equation in which the multiplier fa, which pins
the tangent vectors to the surface, can be identified as the surface stress tensor.

1 Away from the boundary, a tangential variation can be identified with a reparametrization of
the surface. It always results in a pure divergence which is why it does not enter the shape
equation [CG02b].
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2.1 Stresses and torques in fluid surfaces

The Euler-Lagrange equations for X, ea, n, gab, and Kab, respectively, are given
by

∇af
a = 0 , (2.6a)

fa = (ΛacKb
c + 2λab)eb − λa⊥n , (2.6b)

0 = (∇bΛ
ab + λa⊥)ea + (2λn − ΛabKab)n , (2.6c)

λab = 1
2
T ab , (2.6d)

Λab = −Hab . (2.6e)

Note that the Weingarten equations (A.39) ∇an = Kb
aeb have been used in

Eqn. (2.6b), the Gauss equations (A.41) ∇aeb = −Kabn in Eqn. (2.6c). We have
also defined

Hab :=
δH
δKab

and (2.7a)

T ab := − 2√
g

δ(
√
gH)

δgab
. (2.7b)

The manifestly symmetric tensor T ab is the intrinsic stress tensor associated with
the metric gab. If H does not depend on derivatives of Kab, the functional deriva-
tives in (2.7) reduce to ordinary ones.
Equation (2.6a) reveals the existence of a conservation law for the multiplier fa.
Using the other equations (2.6c), (2.6d), and (2.6e), it is straightforward to elim-
inate the Lagrange multipliers on the right hand side of Eqn. (2.6b) to obtain
an explicit expression for fa in terms of the original geometrical variables. From
Eqn. (2.6c) we find λa⊥ = −∇bΛ

ab because ea and n are linearly independent; the
Eqns. (2.6d) and (2.6e) determine λab and Λab. Thus Eqn. (2.6b) can be recast as

fa = (T ab −HacKb
c)eb − (∇bHab)n . (2.8)

Once the Hamiltonian density has been specified, Eqn. (2.8) determines the con-
served multiplier fa completely in terms of the geometry (see App. B.2 where
several examples are treated).
The Hamiltonian (2.5) involves covariant derivatives of X, n, and possibly Kab.
To isolate the Euler-Lagrange equations (2.6), these derivatives have to be removed
via integration by parts. The resulting total derivatives must not be neglected,
however, as they contribute to the boundary integral of the variation (2.2). An
additional term due to the variation with respect to gab may appear as well because
∇aKbc depends on the metric indirectly via the Christoffel symbols.2,3

2 Note that this is not true for ∇aX and ∇an as both can be written as partial derivatives.
3 For instance, the covariant derivative of a scalar φ is given by ∇aφ = ∂aφ while for the
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2 Surface Mechanics

Collecting all terms together one obtains an expression for the boundary part of
the variation (2.2):

Qa = −fa · δX + Habeb · δn + Gabcδgbc + KabcδKbc . (2.9)

This equation defines the tensors Gabc and Kabc as the boundary contributions
belonging to the variation with respect to the metric and the extrinsic curvature
tensor, respectively. If H is just a function of gab and Kab, Gabc and Kabc are equal
to zero. If only first derivatives of Kab appear in H, these tensors will be functions
and can be written as (see App. B.2.2)

Kabc =
∂H

∂(∇aKbc)
and (2.10a)

Gabc = −
(
KacdKb

d + KcadKb
d −KcbdKa

d

)
. (2.10b)

In general, if derivatives of order higher than first occur in the Hamiltonian, Gabc
and Kabc will be differential operators acting on gab and Kab respectively.
Now let us suppose that δX = δa ∈ R

3 is just an arbitrary constant transla-
tion that of course leaves the Hamiltonian invariant, even if the surface is not in
equilibrium. In this case, the first variation (2.2) can be written as4

δHΣ =

∫

Σ

dA E(H)n · δa−
∫

Σ

dA ∇a(f
a · δa)

= δa ·
∫

Σ

dA
[
E(H)n−∇af

a
] !

= 0 . (2.11)

The integral must be equal to zero because δa can be arbitrarily chosen. Moreover,
the integrand vanishes pointwise because Σ may be arbitrarily chosen as well.
Thus,

∇af
a = E(H)n . (2.12)

If the surface is a true equilibrium surface, which implies that it is stationary with
respect to arbitrary variations, the shape equation E = 0 also holds and we recover
the conservation law (2.6a) for fa.5

Finally, Eqn. (2.8) permits us to write E(H) completely in terms of the surface
geometry: projecting Eqn. (2.12) onto the surface normal n and using the Gauss
equations (A.41) once more, we obtain the remarkably succinct result

n · ∇af
a = E(H) = −KabT

ab + (KacK
c
b −∇a∇b)Hab . (2.13)

contravariant tensor field Kbc one has ∇aKbc = ∂aKbc − Γ d
ab Kdc − Γ d

ac Kbd, where Γ c
ab is

the Christoffel symbol of the second kind, defined by Γ c
ab = 1

2g
cd(∂agbd + ∂bgda − ∂dgab) (see

page 168 in App. A.1).
4 The variations δn, δgab, and δKab vanish in this case.
5 For unconstrained surfaces E(H) = 0 is indeed the shape equation. However, further con-

straints such as a global pressure difference imply additional terms as we will see in Sec. 2.3.
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2.1 Stresses and torques in fluid surfaces

Technical Point 2.1: The stress tensor in 2D and 3D

x

y

z

f

σxx
σxy

σxz

σyy
σyx

σyz

σzx

σzy

σzz
∆V

In classical elasticity theory the divergence of
the stress tensor σ at any point in a strained
material equals the external force density if
the whole body is in equilibrium [LL86]. Or
equivalently, the stress tensor contracted with
the normal vector of a local fictitious area ele-
ment yields the force per unit area transmit-
ted through this area element. For a small
cubic part ∆V of an arbitrarily shaped body
in Euclidean space R

3 the components of the
total external force can thus be written as
(i ∈ {x, y, z})

F∆V
i =

z∑

j=x

∫

∆V

dV ∂jσij =
z∑

j=x

∮

∂∆V

dAj σij ,

where, for example σxy is the force in x-direction acting on the unit area perpen-
dicular to the y axis (see sketch). The divergence theorem was used in the second
step and ∂j is the partial derivative with respect to j.
Comparing this with Eqn. (2.14) we see that fa is indeed the surface analog of
the stress tensor: its divergence integrated over the surface yields a force. In fact,
analogous to the 3D case, this integral can be rewritten as a boundary integral
over the contraction of fa with the normal vector of the local line element (see
Eqns. (2.15) and (2.16)).

2.1.2 Surface stress and surface torque tensor

Identification of the stress tensor

A closer inspection of the translational variation (2.11) reveals that the conserva-
tion law (2.6a) for the vector fa is simply a consequence of Noether’s theorem: a
continuous symmetry (= translational invariance) implies an associated conserved
current (= fa) on shell (i. e., in equilibrium). To identify this current, consider
the variation (2.11) for E(H) = 0:

δHΣ = −δa ·
∫

Σ

dA ∇af
a . (2.14)

The change in energy is given by the negative product of an infinitesimal trans-
lation times an integral. Thus, the integral is a force. From this follows that the
divergence of fa must be a force density. The vector fa encodes the stresses in the
surface. If we compare it with the stress tensor σ of a body in three-dimensional
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Σ

l

lΣ

lΣ

lΣ

∂Σout

∂Σ1
∂Σ3

∂Σ2

Σ1

Σ3

Σ2

Figure 2.1: Surface patch Σ with 3 disjoint boundary components ∂Σi and an outer
limiting boundary ∂Σout.

Euclidean space, it becomes obvious that fa must be the surface stress tensor (see
Technical Point 2.1).
This identification is correct for a surface which is free to equilibrate in every point.
But does fa still encode all of the surface stresses if external forces are acting on the
surface? To answer that question we have to discuss a more complicated situation:
consider a region of surface bounded by an outer limiting curve ∂Σout and suppose
that the bulk of this surface is in equilibrium with N particles that are attached to
it (see Fig. 2.1). We now choose a curve around each of the particles, labeling these
curves ∂Σi, i = 1, . . . , N . The outer curve ∂Σout together with all ∂Σi encloses the
surface patch Σ. Considering this patch first allows us to use variation (2.2) to
identify the stress tensor as no particles are attached to Σ and every point on it is
free to equilibrate.
If one of the boundaries ∂Σi is translated infinitesimally by δa, the boundary
variation of the Hamiltonian (2.1) is equal to

δH
(i)
Σ

(2.2)
= −δa ·

∮

∂Σi

ds lΣa f
a = −δa · F (i)

Σ,ext , (2.15)

where the divergence theorem was used to convert the surface integral into a
boundary integral. The vector lΣ = lΣa e

a is the unit vector which is normal to ∂Σi

and points out of the surface Σ; by construction it is tangential to Σ (see Fig. 2.1
and App. A.2). The variable s measures the arc length along ∂Σi.

In Eqn. (2.15), the boundary integral is identified as the external force F
(i)
Σ,ext acting

on Σ via its boundary ∂Σi. The external force F
(i)
ext on the surface patch Σi is then
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2.1 Stresses and torques in fluid surfaces

simply given by −F (i)
Σ,ext due to force balance. Notice that this argument does not

require us to assume that the Euler-Lagrange equation is satisfied on Σi. Thus,
even if external forces are acting, the conserved current fa correctly encodes the
stresses in the surface at all points not externally acted upon.
The conservation law (2.6a) for fa in fact allows us to deform the contour of

integration ∂Σi to our advantage when asking for the external force F
(i)
ext. As

long as we do not cross any further sources of stress, the value of the integral in
Eqn. (2.15) will remain the same. In Chap. 5 this fact will be exploited in the
context of interface-mediated interactions.
To simplify notation, we will restrict our considerations to the patch ∂Σ1 without
loss of generality and write F ext := F

(1)
ext, with

F ext =

∮

∂Σ1

ds laf
a , (2.16)

where l = lae
a = −lΣ.

It proves instructive to look at the tangential and normal projection of the stress
tensor by defining the tensors fab and fa such that [CG02b, Guv04]

fa = fabeb + fan . (2.17)

Using the equations of Gauss (A.41) and Weingarten (A.39) again, Eqn. (2.12)
can then be cast in the form

∇af
a = Kabf

ab + E , (2.18a)

∇af
ab = −Kb

af
a . (2.18b)

Tangential stress acts as a source of normal stress – and vice versa. Both conditions
hold irrespective of whether the Euler-Lagrange derivative E actually vanishes. In
fact, Eqn. (2.18a) shows that the shape equation E = 0 is equivalent to ∇af

a =
Kabf

ab, while Eqn. (2.18b) merely provides consistency conditions on the stress
components that reflect the reparametrization invariance of the Hamiltonian. In
Table 2.1 the stress tensor and the Euler-Lagrange derivative for several simple
Hamiltonians are summarized (for the calculations see App. B.2).
Analogous to translational invariance, the rotational invariance of H implies the
existence of another conserved tensor ma which, as will be demonstrated in the
next section, can be identified as the torque tensor.

Identification of the torque tensor

Once again consider the surface in Fig. 2.1: under a constant infinitesimal rotation
δβ of one of the boundaries ∂Σi, the position and normal vectors change according
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H E fab fa

1 K −gab 0

R 0 0 0

Kn
(

1
n
K2 −KabK

ab − ∆
)
nKn−1 (nKab −Kgab)Kn−1 −n∇aKn−1

K2 K(K2 − 2KabK
ab) − 2∆K (2Kab −Kgab)K −2∇aK

KabK
ab ” ” ”

1
2
(∇K)2 ≡ 1

2
·

(∇cK)(∇cK)
(∆ +K2 −R)∆K −Kab·
[
(∇aK)(∇bK) − 1

2
gab(∇K)2

]
(∇aK)(∇bK) − 1

2
gab

·(∇K)2 −Kab∆K
∇a∆K

Table 2.1: Euler-Lagrange derivative E(H) = −Kabf
ab + ∇af

a and the components
of the stress tensor fa = fabeb + fan for several simple scalar surface Hamiltonian
densities H. Notice that K2 and KabKab yield identical E and fa (see App. B.2.1).

to δX = δβ ×X and δn = δβ × n. In this case, the boundary variation of the
Hamiltonian (2.1) is given by

δH
(i)
Σ

(2.2)
= −δβ ·

∮

∂Σi

ds lΣa
[
X × fa + Habeb × n

]

= −δβ ·
∮

∂Σi

ds lΣam
a = −δβ ·M (i)

Σ,ext , (2.19)

where the surface integral was converted into a boundary integral on the first line.
The vector lΣ = lΣa e

a is defined as above and s again measures the arc length along
∂Σi.
In Eqn. (2.19), the boundary integral is nothing but the external torque M

(i)
Σ,ext

acting on Σ via its boundary ∂Σi: the corresponding change in energy is given by
(minus) the scalar product ofM

(i)
Σ,ext with the infinitesimal rotation angle δβ. The

external torqueM
(i)
ext on the surface patch Σi is then simply given by −M (i)

Σ,ext due
to torque balance. Again, this argument does not require us to assume that the
Euler-Lagrange equation is satisfied on Σi.
In total analogy to the force, we will consider patch ∂Σ1 without loss of generality
and write M ext := M

(1)
ext, with

M ext =

∮

∂Σ1

ds lam
a , (2.20)
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2.2 The fluid membrane

where l = −lΣ again (see Fig. 2.1). The surface tensor

ma = X × fa + Habeb × n (2.21)

is the covariantly conserved torque tensor. It consists of two parts: a contribution
due to the couple of the stress tensor fa about the origin as well as an intrinsic
contribution proportional to Hab which originates only from curvature terms. The
value of the former does depend on the choice of origin while the latter is indepen-
dent of this choice. The divergence ofma, is indeed zero in mechanical equilibrium
as required by Noether’s theorem:

∇am
a (2.4a,A.39,A.41)

= ea × fa +X × (∇af
a) + (∇aHab) eb × n+ Habeb ×Kc

aec
(2.6a,2.8)

= (T ab −HacKb
c) ea × eb − (∇bHab) ea × n+ (∇aHab) eb × n

+ HabKc
a eb × ec

= 0 , (2.22)

where we have exploited the symmetry of T ab and Hab.
The occurrence of curvature terms in the Hamiltonian is ultimately due to the
fact that the physical surface is not infinitely thin but has an inhomogeneous force
distribution along its transverse direction [LM06]. If one captures this internal
structure in the strictly two-dimensional Hamiltonian (2.1), the curvature terms
give rise to an intrinsic torque density and a non-vanishing normal component of
the stress tensor.
Note that the torque tensor, like the stress tensor, depends only on geometric
properties of the surface (modulo a contribution that is due to a shift of the
origin). It is thus always possible in principle to determine the forces and torques
operating on a patch of surface from a knowledge of the shape of the surface alone.
The snag is to determine the correct shape.

2.2 The fluid membrane

The stress tensor of a Helfrich membrane depends on local curvatures and
gradients of curvature. It has a nonvanishing normal component and does
not contain the saddle-splay modulus κ̄. A tilt degree of freedom adds further
tangential terms to the stress tensor.

Our treatment so far has been entirely general: the only properties of the Hamilto-
nian we have used are reparametrization, translational, and rotational invariance.
In the following, we will specialize the expressions for stress tensor, torque tensor
and shape equation to Hamiltonians which are relevant for describing the mechan-
ics of fluid membranes.
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2.2.1 Surface tension

It is instructive to have a look at the simplest case of surface tension first before
considering the entire Helfrich Hamiltonian (1.2). For the constant Hamiltonian
density

Hcapillary = σ (2.23)

we get: Hab (2.7a)
= δH/δKab = 0 and T ab

(2.7b)
= −2σ(

√
g)−1δ

√
g/δgab

(B.4)
= −σgab.

Thus, the stress tensor is given by

fa
(2.8)
= −σea . (2.24)

The force transmitted across a fictitious line element is normal to this line, inde-
pendent of its direction, tangential to the surface, and equal in magnitude to the
value of the surface tension. This simple case has guided our intuition of how to
think about tensions and stresses in surfaces, but it is far too special: in general,
surface stresses are not shear-free nor isotropic nor tangential nor constant as we
will see in the following example.
Inserting expression (2.24) for fa into Eqn. (2.21), one obtains for the torque
tensor

ma (2.21)
= −σ

(
X × ea

)
. (2.25)

The intrinsic torque vanishes; the torque on a surface patch Σ1 is given by

M ext = −σ
∮

∂Σ1

ds
(
X × l

)
. (2.26)

It is simple to interpret this expression: the tangential stress −σl provides a torque
per unit length at every point of the contour ∂Σ1. The line integral along ∂Σ1

yields the total external torque on the surface patch.
From Eqns. (2.18a) and (2.24), one obtains for the shape equation:

K = 0 . (2.27)

Thus, surfaces that extremize their area have vanishing mean curvature K. Such
surfaces are also called minimal surfaces. One simple example is the catenoid
(see Technical Point 2.2). In fact, it is the only surface of revolution which solves
Eqn. (2.27) besides the plane [Kre91].

2.2.2 The Helfrich membrane

The energetics of a fluid membrane without internal degrees of freedom can be
described by the Hamiltonian density

H = Hcapillary + Hbend , (2.28)
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2.2 The fluid membrane

Technical Point 2.2: The catenoid - a surface of zero mean curvature

A soap film which is suspended between two parallel coax-
ial circular rings of equal radius a can be described by the
function [dGBWQ03]

ρ(h) = b cosh
h− c

b
,

where ρ is the radial distance from the symmetry axis and h
is its height (see sketch down right).§ The parameter b is the
radius at the waist of the film whereas c determines its shift
along the h axis. A surface from this two-parameter family of
surfaces is called a catenoid.

Soap film spanning two

rings.

(Mathematikum Gießen/
photo: Rolf K. Wegst)

If the two rings are a distance d apart, the boundary value
problem to solve is

a = b cosh
d

2b
.

For d ≤ dcrit ≃ 1.325a two solutions exist, one with a mini-
mum, the other with a maximum surface area. If d/a > 1.055,
the surface becomes metastable as its area is now larger than
the combined area of two soap films which separately cover
the two rings [Ise92][Arf85, Example 17.2.2]. As soon as d
exceeds dcrit a connecting solution no longer exists—the soap
film collapses.

h

ρ(h)b

c

§ This is only true in equilibrium. In the photo (top right) dynamical effects play a role as well.

where

Hbend =
1

2
κ(K −K0)

2 +
1

2
κ̄R . (2.29)

Compared to Sec. 1.2.1 we have rewritten the Gaussian curvature in terms of the

Ricci scalar R (A.51c)
= 2KG. This allows us to apply expression (B.9) for the stress

tensor of the general curvature Hamiltonian density H(K,R) to the special case
of the Helfrich membrane (see App. B.2.1). Inserting (2.28) yields6

fa =
{

κ(K −K0)
[

Kab − 1

2
(K −K0)g

ab
]

− σgab
}

eb − κ(∇aK)n . (2.30)

In contrast to the capillary case, the surface stress tensor is not isotropic nor
tangential nor constant. The local curvatures contribute additional tangential

6 One can also read off the relevant expressions from Table 2.1.
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stresses, while the gradient of the curvature creates a new normal stress; the saddle-
splay modulus κ̄, however, does not enter fa.

To determine the external force on the membrane patch Σ1, we first simplify the
contraction of fa and l:

laf
a (A.56a)

=
{

κ(K −K0)
[

(K⊥l
b +K⊥‖t

b) − 1

2
(K −K0)l

b
]

− σlb
}

eb − κ(∇⊥K)n

=
{

κ(K −K0)
[

K⊥ − 1

2
(K −K0)

]

− σ
}

l + κK⊥‖(K −K0) t

− κ(∇⊥K)n . (2.31)

In expression (2.31) the unit tangent vector t = taea = n×l is introduced: it points
along the integration contour ∂Σ1 and is perpendicular to l and n. The symbol
∇⊥ = la∇a denotes the directional derivative along the vector l. The projections
of the extrinsic curvature onto the orthonormal basis of tangent vectors {l, t}
are given by K⊥ = lalbKab, K‖ = tatbKab, and K⊥‖ = latbKab (see also App. A.2).
Since the trace K of the extrinsic curvature tensor can be written as K = K⊥+K‖,
expression (2.31) can be further simplified and inserted into Eqn. (2.16) afterwards
to calculate the external force on Σ1

F ext =

∮

∂Σ1

ds
{[κ

2

[
K2

⊥ − (K‖ −K0)
2
]
− σ

]

l + κK⊥‖(K −K0) t− κ(∇⊥K)n
}

.

(2.32)
Knowing the stress tensor, the well-known shape equation of the Helfrich Hamil-
tonian can be easily obtained from Eqn. (2.18a) (see, for instance, Refs. [ZcH89,
Sei97, CG02b]):

−∆K +
1

2
(K −K0)

[
(K −K0)K − 2KabK

ab
]
+ λ−2K = 0 , (2.33)

where we introduced the characteristic length

λ :=

√
κ

σ
, (2.34)

separating short length scales over which bending energy dominates from the large
ones over which tension does.

Remarks:

• Eqn. (2.33) has to be solved to determine the shape of a membrane under
certain boundary conditions. Unfortunately, this equation is a partial non-
linear differential equation of fourth order in the embedding functions X; as
such, it can only be solved analytically in exceptional cases.
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2.2 The fluid membrane

• In Chaps. 4 and 5 we will focus on an up-down symmetric fluid membrane for
which the spontaneous curvature K0 vanishes7 and solve the shape equation
numerically for special cases (see also App. C) .

• Instead of trying to solve the shape equation one may also exploit that forces
and torques can be expressed in terms of the local surface geometry. In
Chap. 5 we will see that this fact enables one to gain a host of exact nonlinear
results, e. g. the sign of the force between two membrane-bound particles.

• The Helfrich Hamiltonian density (2.28) involves the Gaussian curvature
KG. However, this term neither contributes to the stress tensor nor to the
shape equation. To see whether it is relevant for torques, let us determine
the torque tensor ma of the fluid membrane and subsequently calculate the
external torque M ext on the membrane patch Σ1.

The derivative of the density (2.28) with respect to Kab is (see also Table B.1)

Hab = κ(K −K0) g
ab + κ̄(Kgab −Kab) . (2.35)

Thus, the intrinsic torque does not vanish and, using the expression for fa from
Eqn. (2.30) again, the torque tensor can be written as

ma (2.21)
= X × fa +

[

κ(K −K0) g
ab + κ̄(Kgab −Kab)

](
eb × n

)
. (2.36)

Inserting this result into Eqn. (2.20) yields the external torque

M ext =

∮

∂Σ1

ds
{[κ

2

[
K2

⊥ − (K‖ −K0)
2
]
− σ

](
X × l

)

+κK⊥‖(K −K0)
(
X × t

)
− κ(∇⊥K)

(
X × n

)

−κ(K −K0)t
}

, (2.37)

on the membrane patch Σ1. The intrinsic part of the torque tensor adds a con-
tribution to the integrand in Eqn. (2.37), which is proportional to the curvature
(K −K0) and tangential to the contour of integration. If K is constant on ∂Σ1,
the intrinsic part of the torque tensor does not contribute to M ext at all. This is
because the integral of t = ∇‖X vanishes along any closed contour.
Remarkably, the term M κ̄

ext =
∫

∂Σ1
ds lam

a
κ̄ originating from the Gaussian curva-

ture vanishes (see Technical Point 2.3 for the details). This implies that torques
on membrane patches do not depend on the last term of the Hamiltonian den-
sity (2.28) involving the Gaussian curvature KG. As shape and stresses are also
independent of the term, we can neglect it in the following except for Chap. 3:
there, local conditions at the boundary will be discussed in which that term may
become important (see Sec. 3.5).

7 Stress tensor, torque tensor, and shape equation for the up-down symmetric membrane can be
obtained by simply inserting K0 = 0 into the corresponding expressions from this section.
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Technical Point 2.3: Contribution of the Gaussian curvature

By virtue of the Gauss-Bonnet theorem the surface integral of the last term of
Hamiltonian density (2.29) can be written as a sum of a topological constant and
a line integral over the geodesic curvature at the boundary of the membrane (see
App. A.3). It does not contribute to the membrane stress tensor (2.30) and does
not enter the shape equation (2.33). In spite of that, it gives a contribution ma

κ̄

to the torque tensor (2.36).
In Sec. 3.5 we will discuss an example where this term becomes important. Its
contribution M κ̄

ext to the external torque, however, vanishes. The reason is that
its integrand can be written as a derivative with respect to the arc length s:

lam
a
κ̄

(2.36)
= la

[

κ̄(Kgab −Kab)
](
eb × n

) (A.57a)
= −κ̄(K‖t+K⊥‖l)

(A.57b)
= −κ̄∇‖n ,

where K = K⊥ + K‖ was used and the symbol ∇‖ = ta∇a denotes the direc-
tional derivative along t, i. e. the derivative with respect to the arc length s (see
App. A.2). Integrating ∇‖n over the closed contour ∂Σ1 yields zero and thus
M κ̄

ext = 0, even if an external torque is acting.

2.2.3 Lipid tilt

To take an additional tilt degree of freedom into account, we add the Hamiltonian
density

Hm =
1

2
λmM

2 + µmMabM
ab +

1

4
νmFabF

ab + V (m2) (2.38)

to the density (2.28) of the Helfrich Hamiltonian (see Sec. 1.2.2). Now, H addition-
ally depends on ma and ∇am

b. A close inspection of the calculations in Sec. 2.1.1
reveals that the tilt degree of freedom adds further terms to the stress tensor and
the Euler-Lagrange equation (see below). The structure of the equations, however,
stays the same.

As the choice for Hm is purely intrinsic, Eqn. (2.8) shows that the corresponding
material stress fam is also purely intrinsic, therefore tangential, and given by fam =
T abm eb, where T abm = −2

√
g−1δ(

√
gHm)/δgab is the metric material stress. The

surface tensors Hab and Kabc remain unchanged; yet, Gabc collects a contribution
as ∇am

b depends on the metric via the Christoffel symbol (see Table B.1 and
calculations in App. B.2.3).
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2.2 The fluid membrane

Performing the functional variation (see again App. B.2.3) we find that

T abm =
1

2

[

λm

(
M2 + 2mc∇cM

)
+ νm

(
εcd∇cmd

)2
]

gab

+µm

[

−McdM
cdgab + 2MMab + 2mc∇cM

ab

− (∇cm
a)(∇cmb) + (∇amc)(∇bmc)

]

−V (m2)gab − 2V ′(m2)mamb , (2.39)

where εab = n ·(ea×eb) is the antisymmetric epsilon-tensor (see App. A.1). Notice
that the metric stress tensor is quadratic in the tilt-strain, not linear. Unlike the
stress tensor in elasticity theory, this tensor is not obtained as the derivative of
the energy with respect to the strain but rather with respect to the metric, which
leaves it quadratic in the strain. The formal analogy alluded to in Sec. 1.2.2 is
therefore not complete.
External force and torque on a membrane patch Σ1 follow directly

Fm, ext =

∮

∂Σ1

ds laT
ab
m eb and (2.40a)

Mm, ext =

∮

∂Σ1

ds laT
ab
m (X × eb) , (2.40b)

where T abm is given by Eqn. (2.39). Note that the additional contribution to the
torque is purely extrinsic.
Adding the material stress T abm to the tangential geometric stress fab, we find with
the help of Eqns. (2.18) the equilibrium conditions

0 = KabT
ab
m + E , (2.41a)

∇aT
ab
m = 0 . (2.41b)

The first of these equations shows how the material degrees of freedom “add” to the
geometric Euler-Lagrange derivative E ; this is the modified shape equation. The
second equation – which before provided consistency conditions on the geometrical
stresses – tells us that the material stress tensor is conserved. The equilibrium
of the material degrees of freedom involves the vanishing of the Euler-Lagrange
derivative with respect to the field ma, which is given by

Em a =
δHm

δma
= −λm∇a∇bm

b− (µm + νm)∇b∇am
b− (µm − νm)∆ma + 2V ′(m2)ma .

(2.42)
In general, the equilibrium condition Em a ≡ 0 implies Eqn. (2.41b). For a single
vector field ma the converse also holds so that Eqn. (2.41b) may be used in place
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2 Surface Mechanics

Technical Point 2.4: Axisymmetric solution of the tilt shape equation

For flat membranes, the Euler-Lagrange equation (2.42) reduces to

(λm + µm)∇∇ ·m+ µm∇
2m− 2V ′m = 0 , (2.I)

where m is the 2D tilt vector in the membrane plane. The symbol ∇ denotes the
two-dimensional nabla operator in the plane. Focusing on a cylindrically symmet-
ric membrane inclusion which excites the tilt, the situation acquires axisymmetry.
For small values of tilt, we can expand the potential as

V (m2) =
1

2
tm2 +

1

4
um4 + · · · (2.II)

In the untilted phase we can terminate this expression after the first term (since
then t > 0).
If we now write m(ρ) = m(ρ)eρ and restrict to the untilted membrane phase,
Eqn. (2.I) reduces to a simple Bessel equation (see Technical Point 4.1 on page 85)

x2m′′ + xm′ − (x2 + 1)m = 0 ,

where x = ρ/ℓm, ℓm is the length defined in Eqn. (2.45), and the prime denotes a
derivative with respect to x. The solution is

m(ρ) = m0
K1(ρ/ℓm)

K1(ρ0/ℓm)
, (2.III)

where ρ0 is the radius of the inclusion, m0 the value of the tilt at this point, and
Kn a modified Bessel function of the second kind (see again Technical Point 4.1)
[AS70]. Thus, the tilt decays essentially exponentially with a decay length of ℓm.

of the equilibrium condition.8

Lipid tilt order, described by the Hamiltonian density (2.38), influences the shape
of the membrane, even though Hm does not contain an explicit coupling of ma

to the extrinsic curvature. Solving the coupled system of differential equations
(2.41) poses a formidable task, clearly exceeding the already substantial one for
the undecorated shape equation alone. If we assume for a moment that the energy
density stems exclusively from lipid tilt (as described by Hm), the membrane itself
remains flat and the tilt shape equation can be solved analytically for special

8 The converse is not always true. Had we considered two vector fields instead of one, ma
1 and

ma
2 say, the corresponding Euler-Lagrange equations Em1 a ≡ 0, and Em2 a ≡ 0 would not follow

from the conservation law. The two sets of Euler-Lagrange equations are required to determine
the equilibrium. The conservation law alone is not enough.
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2.2 The fluid membrane

cases (see Technical Point 2.4). This is not a self-consistent approximation, but
should give a good description in the limit in which the tilt moduli λm and µm are
significantly “softer” than the bending modulus.
In equilibrium, we not only have Em a ≡ 0, but also ∇aEm a = 0. Using the
commutation relations for covariant derivatives (A.19, A.20) and exploiting that

for 2D surfaces the Riemann tensor is given by Rabcd
(A.51a)

= 1
2
R(gacgbd−gadgbc) it is

then easy to see that the tilt also satisfies the following equation on the surface:9

(λm + 2µm)∆M + µm∇a(Rma) − 2
[
2V ′′m2 + V ′M

]
= 0 . (2.43)

Notice that νm has dropped out of this equation, which follows from the fact that
F ab is invariant under U(1) gauge transformations.10 If we again restrict to a
flat membrane in the untilted phase, R ≡ 0 and V (m2) = 1

2
tm2 (see Technical

Point 2.4); Eqn. (2.43) simplifies to a Helmholtz equation for the tilt divergence:11

[
(λm + 2µm)∆ − t

]
M = 0 , (2.44)

showing that in lowest order any nonzero M is essentially exponentially damped
with a decay length of ℓm (see again Technical Point 2.4), where

ℓm =

√

λm + 2µm

t
. (2.45)

This result is confirmed qualitatively by coarse-grained computer simulations [Ill07]
(see Fig. 2.2 for a typical snapshot of the simulation).
Note that even though the system of Euler-Lagrange equations (2.41) is quite
formidable, it still enjoys one nice nontrivial property: the material equation
(2.41b) is purely intrinsic. This is the case because the material stress is tangen-
tial, which itself derives from the fact that the material Hamiltonian is intrinsic. If
we were to add a coupling between tilt and extrinsic curvature, such as the chiral
term εacK

c
bm

amb, this decoupling would no longer hold.

9 This is very dry stuff, I know. As a reward for those that fought their way up to this point
without falling asleep: the first five readers that discover this footnote are very welcome to
pick up a bottle of champagne from the author.

10 The Euler-Lagrange derivative of the F ab contribution in Eqn. (2.38) is easily seen to be Eν a =
∇bFab. Furthermore, due to its asymmetry F ab is invariant under gauge transformationsma →
ma +∇aΛ with some arbitrary gauge function Λ. Performing an infinitesimal transformation,
we get

δΛ
1

4

∫

dAFabF
ab = −

∫

dA (∇aEν a)Λ .

Since Λ was arbitrary, ∇aEν a must vanish identically. In the corresponding electrodynamic
situation Eν a is proportional to the 4-current [LL00]; there, the same gauge invariance is
responsible for charge conservation.

11 If t < 0 gets us into the tilted phase, the expansion (2.II) has to be taken one order higher,
leaving instead a nonlinear Ginzburg-Landau equation to be solved.
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2 Surface Mechanics

Figure 2.2: Computer simulation of a cylindrically symmetric inclusion in a membrane
(snapshot). The inclusion excites a lipid tilt whose time average is found to decay
roughly exponentially for increasing lateral distance from the inclusion center [Ill07].
The membrane is modeled in a similar manner to that described in Technical Point 5.8
on page 156, differing only in the number of tail beads.

2.3 Stresses from the surrounding space

The surroundings of a surface often provide additional sources of stress. In
the case of a global pressure difference the bulk stress can be rewritten as an
effective surface stress. For a locally varying stress field, however, this is
generally not possible.

In this section we will see that the conservation law for fa ceases to hold in its
simple version (2.6a) if the surrounding space is taken into account. Rather than
having a divergence-free stress tensor with a few localized sources of stress (such
as the Maxwell stress of the electrostatic field in the presence of point charges),
one now has a continuous source of stress. However, even in complicated examples
the mechanical surface response continues to be driven by its geometry and thus a
geometric stress tensor is still useful. The task is rather to couple it to off-surface
stresses. In the following, we will discuss how this can be done for the two examples
from Sec. 1.2.3.

2.3.1 Global pressure difference

Let us first look again at a surface with a global pressure difference between its two
sides. In this case a term −PV has to be included in the free energy functional
(see Sec. 1.2.3). If we use the auxiliary variables approach from Sec. 2.1.1 [Mül04],
the new functional is given by

Hc,P = H̃c − PV
(1.9)
= H̃c −

1

3
P

∫

dA n ·X . (2.46)

Note that the original Lagrange multiplier functions fa, . . . of Hc from Eqn. (2.5)
have to be replaced by f̃

a
, . . . in H̃c because the additional term in the functional
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2.3 Stresses from the surrounding space

also induces changes in the other multipliers: looking at the Euler-Lagrange equa-
tions (2.6), we observe that Eqns. (2.6b) for ea and (2.6e) for Kab are as before;
the others, however, change slightly:

∇af̃
a

=
1

3
P n , (2.47a)

f̃
a

= (Λ̃acKb
c + 2λ̃ab)eb − λ̃a⊥n , (2.47b)

0 =
(

∇bΛ̃
ab + λ̃a⊥ − 1

3
P X · ea

)

ea

+
(

2λ̃n − Λ̃abKab −
1

3
P X · n

)

n , (2.47c)

λ̃ab =
1

2
T ab +

1

6
P (X · n)gab , (2.47d)

Λ̃ab = Λab = −Hab , (2.47e)

where T ab and Hab remain defined as in Eqns. (2.7). The Lagrange multiplier
function Λ̃ab is the only one that is equal to its counterpart Λab. In Eqn. (2.47d)
we inserted the derivative of

√
g with respect to the metric (see Eqn. (B.4)); in

Eqn. (2.47c) we made use of completeness X = (X · ea)ea + (X · n)n.
Combining Eqns. (2.47) in the same way as Eqns. (2.6) above results in the fol-
lowing expression for the multiplier f̃

a
:

f̃
a

=
[

T ab −HacKb
c +

1

3
P (X · n)gab

]

eb −
[

∇bHab +
1

3
P (X · ea)

]

n

= fa − 2

3
PJa , (2.48)

where fa is the original stress tensor (2.8) and where we have introduced the Jemal
tensor

Ja =
1

2
[(X · ea)n− (X · n)ea] =

1

2
X × (n× ea) . (2.49)

Its distinctive property is that its divergence equals the normal vector [Guv06]

n = ∇aJ
a . (2.50)

Applying this identity allows Eqn. (2.47a) to be rewritten as

∇af
a = P n . (2.51)

Thus, pressure acts as a source of (continuous) normal stress which has to be
balanced by geometrical stresses.12 A comparison with Eqn. (2.12) reveals that

12 Note that the tensor Qa, which collects all terms of the boundary part of the variation (see
Eqn. (2.9)), obtains an additional term as well. Using the Jemal tensor this term can be
written as 2

3PJ
a · δX. A closed free surface, however, does not have a boundary; thus, all

boundary terms can be discarded in this case.
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Technical Point 2.5: The sphere - a surface of constant mean curvature

The sphere is a surface of constant mean curva-
ture. Specializing Eqn. (2.52) to this case yields
the well-known expression for the Laplace pres-
sure of a spherical bubble of radius a

P =
2σ

a
. (2.IV)

Consider the bubble in the constant volume and the constant pressure ensemble,
respectively (see Sec. 1.2.3): if the volume V0 is fixed, the Lagrange multiplier
P adjusts to P = 2σ[3V0/(4π)]−3; the bubble is stable. In the constant pressure
ensemble this is not the case: to balance a small decrease of the radius due to a
fluctuation, the pressure has to increase according to Eqn. (2.IV). Because it is
constant, however, surface tension will contract the bubble; it thus is unstable.
This simple example already shows that questions of stability depend on the en-
semble even though the equilibrium shapes are the same.

the shape equation is now given by E = P . For a soap film, with surface tension
σ, this, for instance, reduces to the well-known Young-Laplace law [LL87]:

σK = P . (2.52)

Surfaces that solve this equation are called “constant mean curvature surfaces”.
A simple example is the sphere (see Technical Point 2.5). It is the only closed
surface of genus 0 in R

3 which has a constant mean curvature.13

The geometric stress tensor fa is no longer divergence-free. But one can define a
new effective stress tensor f̆

a
which is divergence-free by including the right hand

side of Eqn. (2.51) in fa [Guv06]. Using the Jemal tensor (2.49) again, we obtain

f̆
a

:= fa − PJa . (2.53)

The external force on a surface patch Σ1 is now given by

F ext =

∫

Σ1

dA ∇af̆
a

=

∮

∂Σ1

ds laf̆
a
. (2.54)

The effective stress tensor f̆
a

possesses a surprising feature which needs some
further explanation: it is not translationally invariant. Due to the explicit X

13 Another closed constant mean curvature surface in R
3 is the Wente-torus which, however,

self-intersects and has genus 1 [Wen86]. If the constraint on closure is relaxed, many other
examples can be found such as the nodoid [LFL01] or the unduloid [Del41].

44



2.3 Stresses from the surrounding space

dependence of Ja, a constant translationX →X + a will add a term proportional
to Ja0 = a× (n× ea) to f̆

a
. However, a change of origin should have no physical

significance on the external force, i. e., the value of the integral in Eqn. (2.54) must
not change in this case. Indeed, the divergence of Ja0 vanishes in every point; the
null stress Ja0 does not contribute to the force [Guv06].

The value of the effective stress tensor f̆
a

at a point, however, is not fixed. The
reason for this lies in the inherent ambiguity in the definition of any divergence-
free effective stress; one can always add a null stress fa0 for which ∇af

a
0 = 0.

Nevertheless, f̆
a

is useful especially if one is interested in forces as we will see in
Chap. 5.

Due to the global pressure difference P , the divergence of the geometric torque
tensor ma picks up an additional term as well [CG02b]:

∇am
a (2.22, 2.51)

= PX × n . (2.55)

Analogous to Eqn. (2.53) one can define a divergence-free torque tensor

m̆a := ma − 2

3
PX × Ja = X × f̃a + Habeb × n , (2.56)

which can be used to express the external torque on the surface patch Σ1 as a line
integral over its boundary ∂Σ1

M ext =

∮

∂Σ1

ds lam̆
a . (2.57)

Again, an effective tensor such as m̆a is only defined up to null stresses. In the
calculation of the external torque, however, these stresses do not contribute.

2.3.2 Gravity

What happens with stress and torque tensor if the source of stress is not constant
but varies spatially? To study an illustrative example, let us focus on an interface
in a gravitational field as introduced in Sec. 1.2.3. Using the framework of auxiliary
variables again one can define the functional (compare Eqns. (2.5) and (2.46))

Hc,G = Hc,P + Epot = H̃c −
1

3
P

∫

dA (n ·X) +
1

2
gρ

∫

dA (n · z)X2 . (2.58)

As in the previous section, the additional term in the functional induces changes
in the multipliers. The Euler-Lagrange equations for X, ea, n, gab and Kab are
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now given by

∇af̃
a

=
1

3
P n− ρg(n · z)X , (2.59a)

f̃
a

= (Λ̃acK b
c + 2λ̃ab)eb − λ̃a⊥n , (2.59b)

0 =
[

∇bΛ̃
ab + λ̃a⊥ − 1

3
P X · ea +

1

2
ρgX2(z · ea)

]

ea

+
[

2λ̃n − Λ̃abKab −
1

3
P X · n+

1

2
ρgX2(z · n)

]

n , (2.59c)

λ̃ab =
1

2
T ab +

1

6
P (X · n)gab − 1

4
ρg(n · z)X2gab , (2.59d)

Λ̃ab = Λab = −Hab , (2.59e)

where Eqn. (B.4) and completeness were used again. Combining these equations
we obtain the expression

f̃
a

= fa − 1

2
ρgX2

[

(z · n)ea − (z · ea)n
]

− 2

3
PJa , (2.60)

for the multiplier f̃
a
. Together with Eqn. (2.59a) this yields the divergence of the

geometric stress tensor fa

∇af
a = ρg(X · ea)

[

(z · n)ea − (z · ea)n
]

− ρg(n · z)X + P n

= −ρg
[

(X · n)(z · n) + (X · ea)(z · ea)
]

n+ P n

= [P − ρg(X · z)]n , (2.61)

where completeness was exploited twice.

With gravity included, one thus obtains

∇af
a = (P − ρgh)n , (2.62)

where h = X · z is the height above the reference plane at which the potential
energy is fixed to zero (see Sec. 1.2.3). The shape equation E = P − ρgh seems to
depend on the gauge. We have, however, not yet determined the pressure P .

For this let us assume that the variation is localized so that the interface is asymp-
totically flat (see Fig. 2.3). When the surface is varied one either has to keep the
volume constant or has to add (or extract) material depending on the ensemble.
In the latter case one can think of a reservoir at constant pressure which provides
the material. If it lies at the height of the reference plane, the added or extracted
material has no potential energy. However, the reservoir has to work against the
hydrostatic pressure ρgh0, where h0 is the distance between the reference and the
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X

n z

reservoir

P

h

h0

g

Figure 2.3: Interface in a homogeneous gravitational field. In the constant pressure
ensemble a reservoir has to provide material when the surface is varied.

asymptotic plane (see again Fig. 2.3).14 Thus, P = ρgh0, and Eqn. (2.62) reads15

∇af
a = −ρg(h− h0)n . (2.63)

If the volume is kept constant, P can be obtained with the following argument:
no forces act at the asymptotic plane far from the deformation. The divergence of
the stress tensor thus has to be zero there. Inserting this into Eqn. (2.62) yields
P = ρgh0 again which reproduces the result from before.
Eqn. (2.63) does not depend on the gauge but only on differences between the
height of the interface and the height of the asymptotic plane. In the following, h0

will be set to zero, i. e., the asymptotic plane is equivalent to the reference plane.
If we specialize to a liquid-fluid interface where tension is the only surface energy
contribution, Eqn. (2.63) reads:

σK = −ρgh . (2.64)

The curvature K is a linear function of the height. The corresponding propor-
tionality constant has the dimension length

−2. Using it one can construct a
characteristic length scale of the system

ℓ =

√
σ

ρg
, (2.65)

14 In principle, we can place the reservoir at any other height as well. The provided material then
enters the system with a nonvanishing potential energy. Its effect on the change of the total
energy, however, is canceled as the hydrostatic pressure against which it has to work changes
accordingly. To disentangle both effects, we put the reservoir at the height of the reference
plane.

15 Note that P is not a global pressure difference now but fixed by the choice of the reference
plane.
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which is also called the capillary length.16 For liquid-fluid interfaces, gravity is
only relevant on length scales much larger than ℓ [Mül04].
Returning to the case of the general surface Hamiltonian (2.1) one can ask whether
the right hand side of Eqn. (2.63) can be cast as a divergence. Unfortunately, this
is not possible. Thus, one cannot rewrite fa as an effective surface stress tensor
in analogy to the pressure case. Consequently, forces acting on the surface are
no longer pure boundary integrals: under a constant translation δX = δa the
variation δHG of the Hamiltonian (1.16) is directly connected to the external force
F ext that acts on a surface patch Σ1

δHG = −δa · F ext = −δa ·
[ ∫

Σ1

dA
(
∇af

a + ρghn
)]

= −δa ·
[ ∮

∂Σ1

ds laf
a + ρ g

∫

Σ1

dA hn
]

. (2.66)

Compared to the expressions (2.16) and (2.54) from the previous sections the force
is now not only given by a boundary integral alone but comprises an additional
area integral over the stresses from gravity.17

This prevents us from deforming the contour of integration without changing the
value of the force. One may, however, analyze both terms of the force separately.
In Chap. 5 we will come back to this point.

16 For instance, an air-water interface under ambient conditions has ℓ ≃ 2.6mm.
17 An analogous statement is true for the external torque as the divergence of the torque tensor

is now given by
∇am

a = −ρgh(X × n) .
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3 Boundary conditions at contact
lines

In the two previous chapters we have seen that the energetics of a fluid surface is
often completely described by a Hamiltonian that depends only on its geometry.
External forces and torques are imprinted in the shape of the surface and can be
written in terms of integrals over geometric stress and torque tensors.
One possible source of these stresses is the surrounding space. However, this is not
the full picture: the surface may be in contact with a solid substrate or another
fluid surface, it may even consist of different domains. This gives rise to additional
external torques and stresses which are transmitted along the line of contact.
In equilibrium, the location of that contact line adjusts locally in order to minimize
the overall energy. This implies boundary conditions which depend on the char-
acteristic surface deformation energies. In this chapter the geometrical framework
introduced so far will be used to derive these conditions in a completely systematic
and parametrization-free way, generalizing and strongly simplifying the analysis
previously given in Ref. [CG02a]. Adhesion to a rigid substrate, adhesion be-
tween two fluid surfaces, and a surface consisting of two different domains will be
treated. To illustrate the general results, several examples will be presented which
involve both curvature and curvature gradients. Some of these have previously
been studied using different techniques, others are new.

3.1 The Young-Dupré equation

The boundary condition at the three-phase line between a liquid drop and a
solid to which it adheres is given by the Young-Dupré equation. It expresses
a tangential force balance.

Water droplets or lipid membrane vesicles may rest on a substrate, and this gen-
erally influences their shape quite strongly. For instance, water droplets on hy-
drophilic surfaces (e. g. clean glass) resemble flat contact lenses, while on very
hydrophobic surfaces (e. g. teflon R©) they are almost completely spherical (see
Fig. 3.1). When gravity can be neglected,1 the shape equation (2.52) dictates a
constant mean curvature surface in both cases (in fact, a spherical cap, compare

1 This is true for droplets small compared to the capillary length (see previous section).
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(a)

ϑ

w

σ
σsg σsl

(b)

Figure 3.1: (a) picture of a drop of water adhering to a solid hydrophobic substrate
(impregnated wood) (from BASF Aktiengesellschaft) and (b) schematic sketch of the ge-
ometry. The drop is not completely spherical. Its size must therefore be larger than
the capillary length ℓ which is approximately 2.6 mm for an air-water interface.

Technical Point 2.5), but the contact angle ϑ at the three-phase line where water
and substrate meet is different for the two different substrates.

In most cases the spatial extension of the surface being studied exceeds the range of
the interaction between it and the substrate by a large amount. For instance, van
der Waals forces, hydrophobic interactions, or (screened) electrostatic forces typ-
ically extend over several nanometers, while the extensions of vesicles or droplets
can be microns or even millimeters. Under these conditions the interaction is well
approximated by a contact energy, i. e., an energy per unit area, w, liberated when
the surface makes contact with the substrate. It is this adhesion energy, together
with the energy parameters characterizing the contacting surfaces, which deter-
mine the boundary conditions holding at the contact line. In the case of capillary
phenomena, for example, the ratio between adhesion energy w and surface tension
σ determines the contact angle ϑ between liquid and substrate (see Fig. 3.1(b)):
by requiring that the tangential projections of the three tension σ, σsg, and σsl

balance,2 and after using the obvious energetic relation w = σ + σsg − σsl, one

2 The symbol σsg denotes the tension of the solid-gas interface and the symbol σsl the tension
of the solid-liquid interface.
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arrives at the well-known Young-Dupré equation [RW02, dGBWQ03]3

w = σ (1 + cosϑ) . (3.1)

This “standard” derivation of the equation involves a balance of tangential forces
at the contact line. Yet, despite its very intuitive nature, the requirement of
surface stress balance does not yield the correct condition for more complicated
surface Hamiltonians, even if the concept of surface stress is generalized along
the lines discussed in Chap. 2. Higher order Hamiltonians give rise to additional
energy contributions when the contact line is varied. These contributions can be
accounted for in a systematic and parametrization-free way, and without assuming
any additional symmetries (such as axisymmetry or translational symmetry along
the contact line) as we will see in the following.

3.2 Geometry and energy

Surface properties such as the curvature can be written in terms of an or-
thonormal vector basis adapted to the line of contact. The energy of the
system is given by the sum over the reparametrization invariant surface
Hamiltonian and an adhesion or line energy.

By “contact line” C we will either denote the curve along which the surface detaches
from the substrate or the separating boundary between two surface domains. Its
local direction is given by the tangent vector t = taea , which is tangential to C and
all existing surfaces: the surface Σ itself and, if Σ is adhering to a substrate, the
substrate surface Σ (see Fig. 3.2). Here and in what follows (with the exception
of Sec. 3.4.2) we will underline quantities referring to the substrate.
Perpendicular to C we can define local normal vectors which are either tangential
to Σ or Σ, namely l = laea and l = laea, respectively (see again Fig. 3.2 and
App. A.2). Also, we will have two surface normals n and n. If the surface contacts
the substrate smoothly at a contact angle of 180◦, we will have ea = ea, n = n,
and l = l there; however, their derivatives perpendicular to the contact line need
not coincide, since the curvatures of surface and substrate generally need not be
identical. In fact, the values of perpendicular and parallel components of these
curvatures (and possibly their higher derivatives) will be among the primary focus
of this chapter. As before, they will be denoted by K⊥ = lalbKab, K‖ = tatbKab,
and K‖⊥ = K⊥‖ = latbKab (see Eqns. (A.52)). We analogously define K⊥, K ||,
and K⊥||.

3 Notice that in the literature on “wetting” the tendency of a liquid to wet a substrate is usually
not characterized by the adhesion energy w but rather by the spreading parameter S = w−2σ,
which measures the difference in surface energy between the dry and the wet substrate. In
terms of S the Young-Dupré equation reads S/σ = cosϑ− 1.
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z

π−ϑ

Σ

Σ

C
−l

−l

t

s

Figure 3.2: Illustration of the geometry of surface adhesion. Perpendicular to the
contact line C two vectors exist, l and l, which are tangential to surface Σ and substrate
Σ, respectively.

We will exclusively study surfaces whose surface energy H is given by the inte-
gral (1.3)4

H =

∫

Σ

dA H(gab, Kab,∇aKbc, . . .) . (3.2)

The integral extends over the entire surface Σ. If the surface adheres to a substrate,
we will assume an additional adhesion energy density

Hadhesion = −w(ξ1, ξ2) ≤ 0 , (3.3)

for those parts of the surface which are in contact with it. Note that w may in
general be a function of position.

We will not only study adhesion but also closed surfaces consisting of two different
domains such as a two-component membrane vesicle: if the two components do
not like to mix but rather form separate domains, a line tension γ arises which
tries to minimize the length of the contact line between the domains. To account
for that tension, a line energy will replace the adhesion energy in the Hamiltonian.
It is given by

Hline = γ

∮

C
ds . (3.4)

4 A generalization to surfaces with internal degrees of freedom is straightforward but will not
be done here.
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3.3 Determining the boundary conditions

3.3 Determining the boundary conditions

The form of the energy density restricts which surface property changes dis-
continuously across the contact line. The corresponding boundary conditions
are determined by setting the energy change upon variation of the contact
line to zero.

As we will see, adhesion balance between surface and substrate and line tension be-
tween different surface domains, respectively, will result in a discontinuous change
of some surface property across the contact line. However, since the energy density
needs to remain integrable, not all quantities can be discontinuous.

3.3.1 Continuity considerations

Capillary surfaces

Obviously, the shape itself has to be continuous. Yet, already its first derivative
may display a jump, as it does in the case of capillary adhesion. The energy density
is given by Eqn. (2.23)

Hcapillary = σ , (3.5)

and a kink in the surface at the contact line, i. e. a finite contact angle, is not
associated with an extra energy.

Curvature elastic surfaces

For curvature elastic surfaces the situation is different. There, the energy density
of the surface is given by Eqn. (2.29):

Hbend =
1

2
κ(K −K0)

2 +
1

2
κ̄R . (3.6)

where κ and κ̄ as before are the bending modulus and the saddle-splay modulus,
respectively, and K0 describes a spontaneous curvature of the elastic surface. A
kink in the surface at the contact line implies a δ-singularity in the curvature,
whose square is non-integrable. Hence, the surface needs to be differentiable across
the contact line, and the distinction between surface- and substrate tangents and
normals drawn in Sec. 3.2 becomes unnecessary. Moreover, a quick glance at
Eqns. (A.52b, A.52c) shows that both K|| and the off-diagonal curvature K⊥|| are
expressible as a tangential derivative along the curve C of a quantity continuous
across C, hence both these curvatures will also be continuous. It is only the
perpendicular curvature component K⊥ which might possess a discontinuity, and
indeed we will see that it does.

53



3 Boundary conditions at contact lines

Technical Point 3.1: Decomposing ∇⊥K|| and ∇⊥K⊥||

Projecting the contracted Codazzi-Mainardi equation (A.46) onto la yields:

∇b(laK
ab) −Kab(∇bla) = ∇⊥(K⊥ +K‖) . (3.I)

The first term of this equation can be rewritten as

∇b(laK
ab)

(A.56a)
= ∇b(K⊥l

b +K⊥‖t
b)

= K⊥(∇bl
b) +K⊥‖(∇bt

b) + ∇⊥K⊥ + ∇‖K⊥‖
(A.58b, A.58d)

= K⊥t · ∇‖l +K⊥‖l · ∇⊥t+ ∇⊥K⊥ + ∇‖K⊥‖ ,

where we used t ·∇‖t = l ·∇⊥l = 0 in the last step. The second term in Eqn. (3.I)
can be simplified to

−Kab(∇bla)
(A.58b)

= −Kabea(lb∇⊥l + tb∇‖l)
(A.56)
= −K⊥‖t · ∇⊥l−K‖t · ∇‖l .

Collecting everything together and rewriting −t · ∇⊥l = l · ∇⊥t we obtain
Eqn. (3.8). Analogously, ∇⊥K⊥|| can be written as

∇⊥K⊥|| = ∇||K⊥ + (K⊥ −K||)l · ∇⊥t− 2K⊥‖t · ∇||l . (3.II)

Gradients of curvature

Finally, higher order derivatives might occur in surface Hamiltonians (compare
Sec. 1.2.1). Take, for instance, the curvature-gradient term of the form

H∇ =
1

2
κ∇(∇aK)(∇aK) ≡ 1

2
κ∇(∇K)2 , (3.7)

which in a generalized higher-curvature Hamiltonian prevents the occurrence of
infinitely sharp curvature changes [GH96]. In this case it is obvious that all cur-
vature components have to be continuous across the contact line, since otherwise
again a squared δ-singularity results. Moreover, most of the first order directional
derivatives are automatically continuous: the parallel ones, ∇||, again differentiate
quantities along C which are continuous across C and thus are themselves continu-
ous. For the perpendicular ones it turns out that ∇⊥K|| and ∇⊥K⊥|| are continu-
ous, while ∇⊥K⊥ is not. This is intuitively reasonable, since every term involving
a “||” features at least one less derivative across the contact line and thus cannot
jump. A rigorous proof is however a bit more involved. One may, for instance,
proceed like this: start with the contracted Codazzi-Mainardi equation (A.46)
∇bK

ab−∇aK = 0 and project onto la. By decomposing the resulting identity into
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3.3 Determining the boundary conditions

the local (l, t) frame, it can be cast in the form (see Technical Point 3.1)

∇⊥K|| = ∇||K⊥|| + (K⊥ −K||)t · ∇||l + 2K⊥||l · ∇⊥t . (3.8)

Since every term on the right hand side is continuous across C (recall that deriva-
tives of tangent vectors are essentially curvatures), ∇⊥K|| must be continuous as
well. By projecting the contracted Codazzi-Mainardi equation on ta instead, one
can show that ∇⊥K⊥|| is also continuous (see again Technical Point 3.1).5

3.3.2 Contact line variation

For an adhering surface the total energy is stationary with respect to variations
of the contact line along the substrate. Such a variation contributes twofold to
the Hamiltonian: assume that locally the contact line is moved such that a bit of
surface unbinds from the substrate. This removes its corresponding binding energy,
as well as any elastic energy associated with the constraint of conforming to the
substrate, and thus gives rise to an energy change δHbound. On the other hand,
the unbound part of the surface acquires at the contact line a new boundary strip
which implies also a change δHfree in its elastic energy. The boundary condition
at the contact line then follows from the stationarity condition

δHcl = δHbound + δHfree = 0 . (3.9)

In the case of adhesion to a rigid substrate the bound contribution involves the
variation along a surface of known shape. The corresponding term is thus con-
ceptually very different from a deformable substrate or even the free variation,
because in both these cases the local shape of the surface is not known. Below we
will see how these differences manifest themselves when computing the boundary
terms.
For a surface consisting of two domains the variation of the contact line changes the
elastic energy of each domain, giving rise to an energy change δHfree. Additionally,
the line energy (3.4) contributes: it is proportional to the length of the contact
line C. Deforming C implies that its length and thus the energy change. In total,
we have

δHcl = δHline + δHfree = 0 . (3.10)

The bound variation

For definiteness, let the normal l to the contact line C be directed towards the
adhering portion of the surface (see Fig. 3.2 on page 52). A local infinitesimal

5 Note that continuity of ∇⊥K|| and ∇⊥K⊥|| only holds for Hamiltonians involving gradients of
curvature. For curvature elastic surfaces, K⊥ is discontinuous and, consequently, ∇⊥K|| and
∇⊥K⊥|| as well due to Eqns. (3.8) and (3.II).
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3 Boundary conditions at contact lines

normal displacement εl of the contact line along a rigid substrate thus implies the
following obvious change in the bound part of the surface:

δHbound = −
∫

C
ds
(
H− w

)
ε(s) . (3.11)

The underlining of H should again indicate that it is evaluated with geometric
surface scalars (such as curvatures) pertaining to the substrate. If the substrate is
flexible, the w term remains, but the change in elastic energy will instead be taken
care of by an additional free boundary variation.

The free variation

The change in energy due to the addition or removal of unbound parts to the
boundaries of the surface is identical to the boundary terms in the variation of
the free surface. In Sec. 2.1.1 we have seen that for Hamiltonians up to curvature
order these terms are given by6,7

δHfree = −
∫

C
ds la

[

fa · δX + Habn · δeb
]

. (3.12)

where fa is the surface stress tensor, given by Eqn. (2.8) and Hab = δH/δKab as
before. Finally, δX and δeb denote the change of contact line position and the
associated change in the slope of the tangent vectors, respectively. Notice that the
second term in Eqn. (3.12) is only relevant if Hab 6= 0.

Variation of the line energy

The variation of the line energy is given by [CGS02]

δHline = γ

∮

C
δds = −γ

∮

C
ds (∇‖t) · δX = γ

∮

C
ds (Kg l +K‖n) · δX , (3.13)

where Kg = −l · ∇||t is the geodesic curvature of the contact line (see Eqn. (A.55)
on page 175). The length change δds of the line element contains a part which is
tangential and a part which is normal to the surface. The corresponding prefactors
can be understood by looking at a purely tangential and a purely normal variation
of a circular arc of length L and radius R (see Fig. 3.3). Its length changes
according to δL = L

R
δR. The radius is given by the inverse of the corresponding

curvature, i. e., 1/Kg for the tangential variation and 1/K‖ for the normal one.
Furthermore, δR equals l · δX in the former case and n · δX in the latter. If
we generalize this result to an infinitesimal element of an arbitrary curve (where
L = ds), we exactly obtain the components of the integrand on the right hand
side of Eqn. (3.13).

6 For general curvature Hamiltonians Kabc and Gabc are zero (see App. B.2.1).
7 Equation (3.12) is written slightly differently in Sec. 2.1.1. That the two forms are identical

may be seen from the fact that since eb · n = 0, we have eb · δn = −n · δeb.
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l

δX

L
L+ δL

R

(a) R = 1/Kg, δR = l · δX

n

δX

L
L+ δL

R

(b) R = 1/K‖, δR = n · δX

Figure 3.3: Length change δL of a circular arc due to a variation which is (a) tangential
and (b) normal to the surface. In both cases the change is given by δL = L

R
δR.

3.4 Specific examples I – Fluid surface adhesion

The boundary conditions describing adhesion between two fluid surfaces ex-
press the balance of stresses and torques. At a rigid substrate, however, this
simple identification will generally fail. Stresses and torques enter a single
balance condition and cannot be disentangled.

In this and the following section the above formalism will be illustrated by applying
it to several important situations and surface Hamiltonians. In Sec. 3.4.1 we
first treat the problem of adhesion to a rigid substrate. We will see how known
results (the Young-Dupré equation and the contact curvature condition for Helfrich
membranes) follow with remarkable ease and can be extended just as quickly to
new Hamiltonians. In Sec. 3.4.2 we look at the boundary conditions involving
adhesion to deformable substrates. Specifically, we first look at the triple line
between three tension surfaces, and then study the adhesion of two vesicles. The
final Sec. 3.5 will treat a vesicle with two different domains and determine the
conditions at the boundary between these.

A central ingredient in all this will be the knowledge of the tensors Hab, T ab, Kabc,
and Gabc defined in Sec. 2.1.1 and determined for specific examples in App. B (see
Table B.1).

3.4.1 Adhesion to a rigid substrate

Since the variation of the contact line has to proceed along the substrate, we must
have

δX = ε l . (3.14)

57



3 Boundary conditions at contact lines

No component in the t direction is necessary, since for fluid surfaces this amounts
to a reparametrization of C.8 Notice that (3.14) is nothing but the Lie derivative
of X along the substrate, since LεlX = εla∇aX = εlaea = ε l (see also page 169
in App. A.1). This property holds generally, and we will make use of it later.

The normal component of the change in the surface tangent vectors eb only con-
tributes to the variation if Hab 6= 0, i. e., if curvature terms enter the Hamiltonian.
We will assume that they do it in such a way that differentiability of the surfaces is
implied (see Sec. 3.3.1), so that no distinction needs to be drawn between normal
and tangent vectors of substrate and adhering surface. We then find

n · δeb = n · ∇bδX = εlcn · ∇bec = −εlcKbc , (3.15)

where in the last step the equations of Weingarten (A.39) have been used; this
is again the Lie derivative along the substrate.9 Notice that there still remains
a distinction between curvatures of substrate and surface; hence, the derivative
of the tangent vectors resulting from a variation along the substrate yields the
substrate curvature and not the free surface curvature.

Capillary surfaces

In this case the energy density is given by Eqn. (3.5), and as we have seen in
Sec. 3.3.1, we will expect a discontinuity in the slope at C. The bound variation is

δHbound = −
∫

C
ds (σ − w)ε(s) . (3.16)

For this Hamiltonian we have Hab = 0 and fa = −σea (see Sec. 2.2), and therefore

laf
a · δX = −σlaea · εl = −σεl · l = −σε cos(π − ϑ) , (3.17)

where ϑ is the angle between capillary surface and substrate – in other words, the
contact angle (see Fig. 3.2). Equation (3.9) thus specializes to

δHcl = −
∫

C
ds
[
σ − w + σ cosϑ

]
ε(s) . (3.18)

Since ε(s) is arbitrary, the term in square brackets must vanish – which gives the
Young-Dupré equation (3.1).

8 The corresponding variation does indeed not change the energy as one can also check by
repeating the calculations of this section with δX = ε‖t.

9 This is most easily seen in the following way: n ·δeb = −eb ·δn = −eb ·Lεln = −eb ·εlc∇cn =
−eb · εlcKa

cea = −εlcgabK
a
c = −εlcKbc, which is exactly the right hand side of Eqn. (3.15).
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Helfrich Hamiltonian

Let us now look at the energy density (3.6) which, as we have seen in the previous
chapters, describes the continuum behavior of (tensionless) fluid lipid bilayers.
Since K appears quadratic, the surface will now be differentiable across the contact
line, as pointed out in Sec. 3.3.1.
We have seen in Sec. 2.2.2 that the intrinsic contribution 1

2
κ̄R = κ̄KG does not

influence the shape of the membrane. It may, however, contribute to the boundary
condition at the contact line depending on the case one considers. In Sec. 3.5 we
will indeed discuss a case where it does.
Yet, for surface adhesion a simple argument shows that the intrinsic contribution
will not matter for the boundary conditions. Since the contact line is varied locally,
we can focus our attention on a membrane strip of finite width and fixed edges,
covering the contact line. Due to the Gauss-Bonnet theorem (see App. A.3) the
contribution of KG to the energy will not change upon variation of the contact line
(which lies in the middle of the strip) and must therefore not enter any condition
resulting from it. For readers not convinced by this quick argument, the following
derivation shows explicitly (but less elegantly) that the κ̄-contributions indeed
drop out.
Let us begin with the stress tensor. From Eqn. (2.31) we find (with σ = 0)

laf
a · l = −1

2
κ(K −K0)

2 + κ(K −K0)K⊥ , (3.19a)

=
1

2
κ
[
K2

⊥ − (K‖ −K0)
2
]
. (3.19b)

Notice again that this expression is independent of κ̄: the Gaussian contribution
in the Helfrich Hamiltonian does not create membrane stresses. Next, we look at
the dependence of H on the extrinsic curvature. From Table B.1/Eqn. (2.35) we
get

Hab = κ(K −K0)g
ab + κ̄(Kgab −Kab) . (3.20)

Here the κ̄-contribution does not cancel right away. With the help of Eqns. (3.15)
and (3.20) we can further calculate

laHabn · δeb =
{

− κ(K −K0)K⊥ − κ̄
(
K||K⊥ −K⊥||K⊥||

)}

ε

= −
{

κ(K −K0)K⊥ +
1

2
κ̄R
}

ε . (3.21)

The final step follows from the continuity conditions K || = K|| and K⊥|| = K⊥||
from Sec. 3.3.1 and the representation (A.51c) of the Ricci scalar curvature as the
Gaussian curvature determinant 1

2
R = KG = K⊥K || −K2

⊥||.
Inserting Eqns. (3.19a) and (3.21) into the general expression for the free variation,
Eqn. (3.12), and adding the bound variation (3.11), we arrive at the total energy
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change upon contact line variation

δHcl = −
∫

C
ds

{
1

2
κ(K −K0)

2 +
1

2
κ̄R− w

−1

2
κ(K −K0)

2 + κ(K −K0)K⊥

−κ(K −K0)K⊥ − 1

2
κ̄R
}

ε(s) (3.22a)

= −
∫

C
ds

{
1

2
κ(K⊥ −K⊥)2 − w

}

ε(s) , (3.22b)

where in the second step we again made use of the continuity condition K|| =
K ||. Notice that the κ̄-dependence has finally canceled out completely, as we
have argued above. Equation (3.22b) implies a discontinuity in the perpendicular
curvature K⊥ as the appropriate adhesion boundary condition:

K⊥ −K⊥ =

√

2w

κ
. (3.23)

The correct sign after taking the square root follows from the fact that the detach-
ing surface must not penetrate the substrate; unfortunately this depends on one’s
specific choice of the orientation of the surface normal vectors.

Quite remarkably, this boundary condition depends neither on the spontaneous
curvature K0 (the contribution to the Hamiltonian linear in K does not enter), nor
on the local parallel curvature K||. It would also remain unaffected if the bilayer
were under a finite tension σ. Formally, it is easily seen to cancel; physically,
the reason is that the jump we would expect from the Young-Dupré equation
(3.1) cannot materialize since the curvature terms in the energy density enforce
differentiability of the profile at C.

Equation (3.23) coincides with the result given previously in Ref. [CG02a]. Its
axisymmetric version was first quoted in Ref. [SL90], and its specialization to a
straight contact line can be found in Ref. [LL86, Sec. 12, problem 6]. We want to
stress that the Habn·δeb term in Eqn. (3.12), which is responsible for the third line
in Eqn. (3.22a), was crucial in obtaining equation (3.23). Leaving it out – i. e., only
treating the problem as a stress balance – will not result in the correct boundary
condition, as first pointed out in Ref. [Mül04]. The only exception (treated via
stress-balance in Refs. [CG02a, Fou07]) is the special case of a flat substrate, in
which case δeb ≡ 0 and the missing contribution vanishes anyway. The deeper
reason for the apparent failure of a stress-based approach is the interdependence
of the variations δX and δeb, as enforced by the rigid substrate. This point will
become more clear once we have studied deformable substrates in Sec. 3.4.2.
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General curvature Hamiltonians

It is not difficult to extend the above analysis to the entire class of Hamiltonians
which depend on intrinsic and extrinsic surface curvatures. Since (i) for two-
dimensional surfaces the Ricci scalar R uniquely determines the Riemann tensor
via Rabcd = 1

2
R(gacgbd−gadgbc), and since (ii) the doubly contracted Gauss-Codazzi

equation R = K2 −KabK
ab permits the replacement of products of the extrinsic

curvature tensor Kab with powers of the extrinsic curvature scalar K and the
Ricci scalar R, we can without loss of generality assume that any such curvature
Hamiltonian has been brought into the form

H = H(K,R) . (3.24)

According to Eqns. (B.8) the two tensors T ab and Hab are given by

T ab = −Hgab + 2
∂H
∂K

Kab + 2
∂H
∂RRgab , (3.25a)

Hab =
∂H
∂K

gab + 2
∂H
∂R(Kgab −Kab) . (3.25b)

Before we proceed, let us look once more at the continuity requirements spelled
out in Sec. 3.3.1. The question to be answered is whether or not the general
Hamiltonian H enforces differentiability. If it does not involve the curvature at
all, it is of the form (3.5) and will permit kinks. This case has been treated on
page 58. However, differentiability is not automatically guaranteed once curvature
appears. In particular, kinks are possible if H is linear in K or R, since both
curvatures involve the component K⊥ across the boundary only linearly. The
resulting δ-singularity is hence integrable and adds a finite extra contribution to
the energy (and its variation) which we would need to consider separately. While
such a situation can also be treated within the general framework presented in this
chapter, the details are surprisingly tricky. Since it is better not to obfuscate the
overall picture by devoting a disproportionate amount of space to these singular
cases, we will from now on assume that differentiability holds. The reader should
notice that this will be the case once a nonzero bending modulus κ is present.
Indeed, for dimensional consistency it is implausible to assume that a term linear
in R will occur without its “partner” quadratic in K. However, a Hamiltonian of
the form σ + βK is not irrelevant and occurs, for instance, if one asks what are
the shapes of vesicles of given area and area difference (between outer and inner
monolayer) which have maximal volume, as Svetina and Žekš have done [SŽ89].
The treatment of the adhesion balance for this case can be found in Ref. [CG02a].

Assuming differentiability from now on, we can combine the expressions (3.25) for
the tensors T ab and Hab with the boundary variations in Eqns. (3.14, 3.15) and
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from this readily find

laf
a · δX = −

[

H− ∂H
∂K

K⊥ − ∂H
∂RR

]

ε , (3.26a)

laHabn · δeb = −
[∂H
∂K

K⊥ +
∂H
∂RR

]

ε . (3.26b)

The total contact line variation is therefore given by

δHcl = −
∫

C
ds

{

H− w

−H +
∂H
∂K

K⊥ +
∂H
∂RR

−∂H
∂K

K⊥ − ∂H
∂RR

}

ε(s) . (3.27)

The requirement δHcl = 0 now gives rise to the remarkably succinct boundary
condition

(H−H) − ∂H
∂K

(K⊥ −K⊥) − ∂H
∂R(R−R) = w . (3.28)

This equation generalizes the contact curvature condition (3.23) to arbitrary Ham-
iltonians of curvature order. Notice that despite its rather “systematic” appear-
ance, this general condition is not symmetric between surface and substrate, i. e.,
it does not remain invariant when replacing underlined and not-underlined quanti-
ties – unlike the special case of the contact curvature condition (3.23) for Helfrich
membranes. Also, the parallel curvature K|| will generally enter the boundary
condition, exposing the cancellation in the case of the Helfrich Hamiltonian as
“accidental”.
We can readily see how Eqn. (3.28) reduces to the special cases we have treated
above: for H = 1

2
κK2 we have ∂H/∂K = κK and ∂H/∂R = 0, such that the left

hand side of Eqn. (3.28) becomes 1
2
κ(K2−K2)−κK(K⊥−K⊥) = 1

2
κ(K⊥−K⊥)2,

which leads to the contact curvature condition (3.23). For a contribution 1
2
κ̄R

in a Hamiltonian which enforces differentiability by the presence of other terms
we have ∂(1

2
κ̄R)/∂K = 0 and ∂(1

2
κ̄R)/∂R = 1

2
κ̄, such that it cancels in the left

hand side of Eqn. (3.28). We thereby see once more that the Gaussian curvature
term in the Helfrich Hamiltonian (and thus the saddle splay modulus κ̄) does not
contribute to the boundary condition for the case of surface adhesion.
Let us conclude this section by casting a quick glance onto one more interesting
special case, namely the Hamiltonian

H =
1

2
κ̄2R2 . (3.29)

This quartic expression, which also enters the theory developed in Ref. [GH96],
is the lowest order intrinsic curvature Hamiltonian one can write down for two-
dimensional surfaces. Since ∂H/∂K = 0 and ∂H/∂R = κ̄2R, we arrive at the
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3.4 Specific examples I – Fluid surface adhesion

(purely intrinsic) boundary condition

R−R =

√
2w

κ̄2

, (3.30)

whose similarity with the usual contact curvature condition (3.23) is quite striking.

The general quartic Hamiltonian

The Helfrich Hamiltonian terminates the expansion of the surface energy at the
dimensional order length

−2. For up-down symmetric membranes the next order
is the quartic one, length

−4, and it adds four more terms to the energy density
[CGS03]

H4 =
1

4
κ4K

4 + κ×K
2R +

1

2
κ̄2R2 +

1

2
κ∇(∇K)2 . (3.31)

While all four moduli have the same units – energy × length
4 – they are not of

the same order in surface derivatives. The first three terms are scalar functions of
the surface curvatures, i. e., special cases of the Hamiltonian density (3.24), but the
fourth term involves the derivative of the curvature and is therefore of third order
in surface derivatives. This has significant implications for the boundary conditions
holding at quartic order: while one might initially surmise that all quartic moduli
(and possibly also the quadratic ones) enter in a presumably lengthy equation, the
continuity considerations from Sec. 3.3.1 imply that all curvatures are continuous
across the contact line due to the occurrence of the gradient-K-term in (3.31). In
consequence, none of the undifferentiated curvature terms influences the boundary
condition, which is exclusively determined by the gradient term.
We have thus seen that it suffices in quartic order to study the implications of
curvature gradients alone, i. e. the Hamiltonian (3.7). From Tables 2.1 and B.1 we
can derive that in this case

laf
a · l = κ∇

[

(∇⊥K)2 − 1

2
(∇K)2 −K⊥∆K

]

, (3.32a)

Hab = −κ∇(∆K)gab . (3.32b)

However, simplemindedly inserting these expressions into the formulas we have
used so far in this chapter does not give the correct result. This is because vari-
ation (3.12) is only valid for Hamiltonians up to curvature order. In Chap. 2 we
have seen that gradients of curvature in the Hamiltonian imply that the variations
with respect to δKab and δgab do not vanish at the boundary, i. e., Gabc and Kabc

are finite (see Eqn. (2.9) together with (2.2)). These terms result from an inte-
gration by parts which removes the covariant derivatives acting on δKab and δgab
in the variation of the Hamiltonian (see App. B.2.2). They have to be added to
Eqn. (3.12).
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3 Boundary conditions at contact lines

From Table B.1 we obtain

Gabcδgbc + KabcδKbc = κ∇(∇aK)(−Kbcδgbc + gbcδKbc)

= κ∇(∇aK)(Kbcδg
bc + gbcδKbc) , (3.33)

where we used Eqn. (B.I) in the second step to rewrite δgab in terms of the variation
of the inverse metric. The two tensor variations can then be combined nicely into
a single scalar one, since they occur in the combination Kabδg

ab + gabδKab = δK.
We end up with the additional boundary contribution

δHfree,∇ = κ∇

∫

C
ds la(∇aK)δK . (3.34)

This is of course exactly the boundary term one would expect for the variation
of a Hamiltonian density whose functional form is the square of the gradient of a
scalar, so everything is consistent.
To evaluate the right hand side of Eqn. (3.34), note that the variation is once more
given by the Lie-derivative along the substrate. Since K is a scalar, we obtain the
simple expression

δK = LεlK
(A.21)
= εla∇aK = ε∇⊥K . (3.35)

Together with Eqns. (3.32) we then obtain the total contact line variation as

δHcl = −
∫

C
ds

{
1

2
κ∇(∇K)2 − w

+κ∇

[

(∇⊥K)2 − 1

2
(∇K)2 −K⊥∆K

]

+κ∇(∆K)K⊥

−κ∇(∇⊥K)(∇⊥K)

}

ε(s) (3.36a)

= −
∫

C
ds

{
1

2
κ∇(∇⊥K⊥ −∇⊥K⊥)2 − w

}

ε(s) , (3.36b)

where in the last step we used the continuity of curvatures and their ∇||-derivatives
as discussed in Sec. 3.3.1, as well as the decomposition (∇K)2 = (∇⊥K)2+(∇||K)2.
The boundary condition following from this specifies a jump in the perpendicular
derivative of the perpendicular curvature

∇⊥
(
K⊥ −K⊥

)
=

√
2w

κ∇
. (3.37)

As remarked above, this constitutes the appropriate boundary condition for a
curvature elastic theory including all terms up to quartic order. Its similarity with
Eqns. (3.23) and (3.30) is again very striking, and one might surmise a pattern
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Figure 3.4: Illustration of the geometry at the contact line between two adhering
vesicles.

that would be followed by even higher derivative theories. Notice, however, that
the terms entering the derivation of Eqns. (3.37) are quite different and that the
additional term stemming from Eqn. (3.34), which is absent in the simple curvature
square case, is essential.

3.4.2 Adhesion to deformable surfaces

Compared to the previous section, there are two key differences if the substrate
is not rigid. First, the absence of a known substrate shape along which a certain
amount of deformation energy is to be paid removes the term involving H in the
bound variation (3.11). Second, for the same reason the contact line variation is no
longer restricted to proceed along a substrate and will thus be of the more general
form

δX = ε⊥l + εnn . (3.38)

The corresponding tangent vector variation, which occurs if Hab 6= 0, then leaves
a term

n · δeb = n · ∇b(ε⊥l + εnn) = −Kbcl
cε⊥ + ∇bεn . (3.39)

Note that Kbc plays a different role here than previously. It no longer describes the
curvature of the evidently nonexistent substrate. Rather, the tangential variation
may proceed locally along a fictitious surface which is tangential to the other
three surfaces that meet at the contact line. Encoding higher order derivative
information necessary here, Kbc describes the curvature of that fictitious surface,
and K⊥ is the component perpendicular to C (see Fig. 3.4). This surface is of
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3 Boundary conditions at contact lines

course not unique, and thus K⊥ is arbitrary – just as the two variations ε⊥ and
εn themselves are.

Three phase capillary equilibrium

The simplest example of a three phase line between deformable surfaces occurs
when three capillary interfaces meet, for instance, at the three-phase-line between
three mutually immiscible fluids 1, 2, and 3, having mutual surface tensions σ12,
σ23 and σ31. In this case no adhesion energy is involved (or, alternatively, it may be
considered as part of the surface tension). The contact line variation thus consists
of three identical boundary variations

δHcl = −
∫

ds
{

l12a f
12a + l23a f

23a + l31a f
31a
}

· δX

=

∫

ds
{

σ12l12 + σ23l23 + σ31l31
}

· δX , (3.40)

from which we immediately find the boundary condition

σ12 + σ23 + σ31 = 0 . (3.41)

This expresses nothing but the force balance between the three directional line
tensions σ12 = σ12l12 etc. and is known as the Neumann triangle [RW02]. The
vector equation (3.41) corresponds to two scalar equations (since there is no com-
ponent along t). These are sufficient to determine the three contact angles between
the three phases (because their sum equals 360◦). Notice that this conversely im-
plies that by measuring these angles one can only determine the ratios between
the three tensions, not absolute values. How all this information is conveniently
extracted is discussed in detail in Ref. [RW02, Chap. 8].

Adhesion of two vesicles

For the case of two adhering vesicles we assume that vesicle 1 has bending modulus
κ1 and tension σ1, while vesicle 2 has corresponding values κ2 and σ2. If the two
bilayers can slide past each other in the region where they adhere, their joint
bending modulus is given by κ12 = κ1 + κ2, because the energies required to bend
either one just add; the same applies to the tension: σ12 = σ1 + σ2. We will for
simplicity look at the case where the spontaneous curvature is zero. Note that a
term proportional to the Gaussian curvature can be neglected if κ̄12 = κ̄1+κ̄2. The
easiest way to see this is to consider the two vesicles separately: integration of KG

over the closed surface of each vesicle yields a constant due to the Gauss-Bonnet
theorem (see App. A.3). Thus, the energy does not change no matter how much
the vesicles touch each other. Furthermore, one has two additional terms in the
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3.4 Specific examples I – Fluid surface adhesion

energy that fix the volume of each of the vesicles (see Secs. 1.2.3 and 2.3.1). These
will contribute terms to the variation which are proportional to the Jemal tensor
(compare footnote 12 on page 43). In total, however, all terms will cancel as well
because laJ

a is continuous across the contact line.
The contact line variation contains one adhesion term and three free boundary
variations. Using the decomposition of δX and δeb as given in Eqns. (3.38) and
(3.39), respectively, we find the total energy change to be10,11

δHcl = −
∫

ds

{[

− w − 1

2
(κ1 + κ2)(K

12
⊥ )2

+
1

2
κ1(K

1
⊥)2 +

1

2
κ2(K

2
⊥)2
]

ε⊥

−
[

κ1∇⊥K
1 + κ2∇⊥K

2 − (κ1 + κ2)∇⊥K
12
]

εn

−
[

κ1K
1
⊥ + κ2K

2
⊥ − (κ1 + κ2)K

12
⊥

]

K⊥ε⊥

+
[

κ1K
1
⊥ + κ2K

2
⊥ − (κ1 + κ2)K

12
⊥

]

∇⊥εn

}

. (3.42)

All corresponding K|| contributions cancel, since K|| is again continuous across C;
the same happens to the tensions. The derivative ∇⊥K‖, however, involves a term
proportional to K⊥ and does not cancel a priori (see Eqn. (3.8)).
The four terms belonging to the independent variations ε⊥, εn, K⊥ε⊥, and ∇⊥εn
must vanish individually. Notice that the last two have identical prefactors; in fact,
using Eqn. (3.39) as well as the obvious identities ε⊥ = l · δX and εn = n · δX,
we can rewrite the total variation (3.42) in the more transparent form12

δHcl = −
∫

ds

{[

− w − 1

2
(κ1 + κ2)(K

12
⊥ )2

+
1

2
κ1(K

1
⊥)2 +

1

2
κ2(K

2
⊥)2
]

l · δX

−
[

κ1∇⊥K
1 + κ2∇⊥K

2 − (κ1 + κ2)∇⊥K
12
]

n · δX

−
[

κ1K
1
⊥ + κ2K

2
⊥ − (κ1 + κ2)K

12
⊥

]

l · δn
}

. (3.43)

This identifies clearly the three independent variations which matter: one tangen-
tial and one perpendicular translation, described by l ·δX and n ·δX, respectively,

10 To avoid confusion, note that we directly insert Eqn. (3.19b) for laf
a · l here in contrast to

Eqn. (3.22a) where Eqn. (3.19a) was used.
11 The curvatures of the bound part and the two free parts are all defined with respect to the

same vectors n, l, and t. The relative minus sign in the variation follows from this definition.
12 Notice once more that since n ·eb = n · l = 0, we have lbn · δeb = n · δ(lbeb) = n · δl = −l · δn.
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3 Boundary conditions at contact lines

and one rotation around the local contact line, specified by the variation l · δn.
The corresponding three boundary conditions are then given by

κ1(K
1
⊥)2 + κ2(K

2
⊥)2 − (κ1 + κ2)(K

12
⊥ )2 = 2w , (3.44a)

∇⊥

(

κ1K
1
⊥ + κ2K

2
⊥ − (κ1 + κ2)K

12
⊥

)

= 0 , (3.44b)

κ1K
1
⊥ + κ2K

2
⊥ − (κ1 + κ2)K

12
⊥ = 0 , (3.44c)

where Eqn. (3.44b) has already been simplified by rewriting ∇⊥K‖ with the help
of Eqn. (3.8) and subsequently inserting the third condition (3.44c).
Our identification of the independent variations permits an easy interpretation of
these three conditions: the first two equations are an expression of a local stress
balance (namely, of tangential and perpendicular forces). The third condition
expresses the balance of torques around the contact line, a hypothesis confirmed
by the general form of the membrane torque tensor (2.21).
Contrary to the case of vesicle adhesion to a rigid substrate, Eqn. (3.23), these
conditions also contain one involving the derivative of curvatures, namely (3.44b).
Its origin is the perpendicular variation n · δX, forbidden if the substrate cannot
move. Since this term multiplies the normal component of the stress tensor, which
(as Eqn. (2.8) informs us) always contains one more derivative than the tangential
one, this brings about the higher derivative condition.
Not surprisingly, the boundary conditions (3.44) look distinctly different from the
contact curvature condition which holds for the adhesion of a single Helfrich mem-
brane to a rigid substrate, Eqn. (3.23). However, it is possible to rewrite them in
such a way that the relation becomes more visible. The tangential stress balance
(3.44a) and the torque balance (3.44c) can be combined to yield the symmetric
equations

(

1 +
κ1

κ2

)(

K1
⊥ −K12

⊥

)2

=
2w

κ1

, (3.45a)

(

1 +
κ2

κ1

)(

K2
⊥ −K12

⊥

)2

=
2w

κ2

. (3.45b)

From Eqn. (3.44c) it follows that one of the Ki
⊥ is bigger and the other one smaller

than K12
⊥ . Hence, when taking the square root in Eqns. (3.45), exactly one of the

two will necessitate a minus sign.
Let us look at two special cases of these boundary conditions which turn out to
be quite instructive. First, if κ2 → ∞, the second vesicle approaches the limit of a
rigid substrate. In this case Eqn. (3.45b) shows that K12

⊥ = K2
⊥ and Eqn. (3.45a)

reduces to the old contact-curvature-condition we have just derived for rigid sub-
strates, Eqn. (3.23). The curvature of this effective substrate is determined from
∇⊥(K2

⊥ −K12
⊥ ) = 0. This latter condition shows that the “substrate”-curvature is

even differentiable across C – or, in other words, the “substrate” shape is a three
times continuously differentiable function.
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3.4 Specific examples I – Fluid surface adhesion

And second, if the two membranes have identical bending moduli κ1 = κ2 = κ, a
“symmetrized” contact curvature condition ensues which reads

(

K1
⊥ −K12

⊥

)2

=
(

K2
⊥ −K12

⊥

)2

=
w

κ
. (3.46)

It tells us that the (squared) curvature jump 2w/κ demanded by the rigid substrate
version (3.23) is shared in equal parts between the two membranes, while the final
condition of perpendicular force balance becomes ∇⊥(K1

⊥ +K2
⊥ − 2K12

⊥ ) = 0. The
specialization of Eqn. (3.46) to the adhesion between two vesicles of equal bending
modulus in an axisymmetric configuration has previously been derived by Derganc
et al. [DBSŽ03].
The balance of stresses and torques has emerged with remarkable directness as
the necessary equilibrium condition for the case of adhering vesicles. Why is this
so different from the contact curvature condition at a rigid substrate, where a
simple stress balance fails? Looking at Eqn. (3.22a), we see indeed stress and
torque contributions entering. Or even more generally, the term involving Habn ·
δeb in Eqn. (3.12) is the origin for the intrinsic torque since it is sensitive to
local rotations of the surface normal (see Eqn. (2.21)). Yet, for the case of rigid
substrates rotations are entirely “enslaved” to translations since the rotation of
the tangent vectors must follow the local substrate curvature – see Eqn. (3.15).
Consequently, stresses and torques enter a single balance condition and cannot
be disentangled. How their contributions conspire to create a single combined
equilibrium is probably most easily traced back on the detour via the two-vesicle-
case: as we have seen above, tangential stress and torque balance together are
responsible for the symmetrized equations (3.45), whose rigid substrate limit κ2 →
∞ then yields the entangled balance condition (3.23).
To summarize, let us close this section with a few

Remarks:

• Integrability of the surface energy density H enforces continuity of certain
geometric variables across the contact line.

• The highest derivative in H dictates which geometric variables may change
discontinuously across C in response to adhesion. Hence, for the Helfrich
Hamiltonian the tension σ does not enter the boundary condition even if it
enters H; likewise, neither the tension σ nor the bending modulus κ enter
the boundary condition if also a gradient-curvature-squared term is present
in H.13

• Higher order derivatives in H create boundary terms in the variation which
pick up surface variations that are one order lower. If the curvature enters

13 In the next section we will discuss a case where this is not true because the material parameters
change across the contact line.
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H, then a change in slope is noticed, if a gradient in curvature enters H,
then changes in curvature are noticed. For this reason the capillary Hamil-
tonian is the only one which only picks up translations, such that the energy
minimization can be reinterpreted as a force balance. In all other cases
higher derivative deformations (such as torques or even more complicated
constructs) contribute to the boundary variation.

• More formally, the presence of a rigid substrate enslaves all higher order
variations (such as rotations or curvature changes) to the contact line trans-
lation, and thus mixes their corresponding generalized stress contributions
(such as torques) into a single balance equation. Under these conditions a
simple stress balance must fail.

• The boundary conditions studied in this section are local in nature and de-
pend only on the highest derivative term in the Hamiltonian. Yet, lower order
terms may affect the surface shape in the proximity of the contact line, more
precisely, on length scales where these terms dominate the energy density, as
previously pointed out by Seifert and Lipowsky [SL90]. For instance, Helfrich
membranes under tension exhibit the characteristic length scale λ =

√

κ/σ
as introduced in Sec. 2.2.2. It signifies the crossover between small-scale
bending-domination and the large-scale tension-regime. Hence, adhesion of
a vesicle large compared to λ may be characterized on scales larger than λ by
an effective contact angle determined from the Young-Dupré equation (3.1),
even though upon closer inspection the membrane really adheres smoothly,
obeying the contact curvature condition (3.23). Likewise, a quartic term
such as the one from the Hamiltonian (3.7) is only expected to influence the
neighborhood of the contact line within a proximity region ℓ∇ =

√

|κ∇|/κ.

• Notice that the previous remark demands a subtle consistency check: for
the presented framework to be applicable, the proximity length associated
with the highest order term dictating the nature of the boundary condition
must still be larger than the length scale characterizing the finite range of
the adhesion potential between the surfaces, which we have from the outset
assumed to be zero. In other words, the notion of a contact interaction would
be inconsistent if it implies shape features on scales smaller than the actual
potential range.

• Generalizations to surfaces hosting additional scalar or vector fields (such as
composition or tilt order discussed in Sec. 1.2.2) are straightforward since
these are readily incorporated into the present framework (see App. B.2.3
for the relevant expressions for the tensors Hab etc.). Instead of considering
these cases though we will leave adhesion for now and study surfaces with
different domains.
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Figure 3.5: (a) Fluorescence image of a phase separated giant unilamelar vesicle
(GUV) produced by electroformation from a mixture of 30% DOPC, 50% (brain) sph-
ingomyelin and 20% cholesterol (green: Ld domain; red: Lo domain which is enriched
in sphingomyelin and cholesterol (see Sec. 1.1.1)). The scale bar represents 2µm (with

courtesy of C. Storm and S. Semrau) [SIH+06]. (b) Geometry of an axisymmetric vesicle
with two domains.

3.5 Specific examples II – Domains on a vesicle

The boundary conditions at the contact line between two domains on a mem-
brane vesicle entail a subtle balance between curvatures and tensions. Re-
markably, the Gaussian curvature contribution to the Hamiltonian cannot be
neglected as before as the conditions now include the change of the saddle-
splay moduli across the line of contact.

As a final example, let us consider a closed membrane vesicle consisting of two
different domains such as, for instance, a liquid ordered (Lo) and a liquid disordered
(Ld) domain [BHW03, SIH+06] (see Sec. 1.1.1 and Fig 3.5). We assume that the
elastic energy density of domain i ∈ (1, 2) is given by the Helfrich Hamiltonian (1.2)

Hi
capillary + Hi

bend = σi +
κi
2

(K −Ki
0)

2 +
κ̄i
2
R , (3.47)

where the elastic moduli σi, κi, κ̄i, and the spontaneous curvatures Ki
0 are different

for the two domains.
Additional energy contributions stem from the line energy (3.4) and a term −PV
due to the fixed volume of the closed vesicle (see Secs. 1.2.3 and 2.3.1). In total,
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we arrive at the Hamiltonian [JL96]14

H =
∑

i

∫

Σi

dA (Hi
capillary + Hi

bend) +Hline − PV , (3.48)

where Σi denotes the surface of domain i.
Exactly as in the case of adhesion to a deformable surface the contact line variation
is not restricted to proceed along a substrate and will thus be of the form (3.38).
Consequently, the variation of the tangent vectors is given by Eqn. (3.39).
The tensor Hab for the Helfrich membrane can be read off from Eqn. (3.20). We
decompose its contribution to the variation in the following way

laHabn · δeb = −laHabeb · δn = −
[
κ(K −K0) + κ̄K‖

]
l · δn

+ κ̄K⊥‖
[
K⊥‖ l · δX −∇‖(n · δX)

]
, (3.49)

where we rewrote t · δn = −tan · δeb
(3.39)
= K⊥‖ε⊥−∇‖εn. Inserting this expression

together with the variation (3.13) of the line energy and decomposing laf
a in the

(l,n) frame finally yields15

δHcl = −
∮

ds

{[κ1

2

[
(K1

⊥)2 − (K‖ −K1
0)2
]
− κ2

2

[
(K2

⊥)2 − (K‖ −K2
0)2
]

+ (κ̄1 − κ̄2)(K⊥‖)
2 − σ1 + σ2 − γKg

]

l · δX

−
[

κ1(∇⊥K
1) − κ2(∇⊥K

2) − (κ̄1 − κ̄2)(∇‖K⊥‖) + γK‖

]

n · δX

−
[

κ1(K
1 −K1

0) + κ̄1K‖ − κ2(K
2 −K2

0) − κ̄2K‖

]

l · δn
}

(3.50)

for the variation of the contact line. In Eqn. (3.50), we performed an integration
by parts on the term involving ∇‖(n · δX) and inserted K1

⊥‖ = K2
⊥‖ = K⊥‖ = K⊥‖

and K1
‖ = K2

‖ = K‖.

Remarks:

• Again, the three independent variations are one tangential and one perpen-
dicular translation, described by l · δX and n · δX, respectively, and one
rotation around the local contact line, l · δn. The other possible rotation,
t · δn, which tilts the contact line about the outward pointing normal vector
l is not independent as it can be rewritten in terms of the two translations.

14 The same situation has been studied in Ref. [Bou99] with a Hamiltonian which also accounts
for internal parameters such as chemical composition.

15 Note that, analogous to the previous example, the constant volume term −PV does not
contribute to the variation of the contact line.
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• The resulting boundary conditions are parametrization-free and do not de-
pend on symmetries. They entail a subtle balance between curvatures and
tensions of the contact line and the surrounding two domains.

• We have finally found a case where the Gaussian term in the Helfrich Hamil-
tonian is relevant and contributes to the boundary conditions. Recent ex-
periments exploit that fact in order to find out more about the saddle-splay
modulus of lipid bilayer phases [SIH+06]. Note, however, that only the differ-
ence κ̄1− κ̄2 can be determined because the κ̄i enter the boundary conditions
only in this combination. This is different to the bending rigidities which
also appear separately.

• The conditions are a generalization of the results from Ref. [CGS02] where
one domain with a free edge was considered (see also [TOY03]). Setting the
contributions of one domain in Eqn. (3.50) to zero (for instance, of domain
2, i. e., σ2 = κ2 = κ̄2 = 0) one recovers Eqns. (58)–(60) from Ref. [CGS02].
For axisymmetric two-domain vesicles the conditions have been derived pre-
viously in [JL96]. To understand their implications, let us consider the three
conditions one by one, starting with the last one.

If we rewrite the trace of the extrinsic curvature as Ki = Ki
⊥ +K‖ we obtain

κ1K
1
⊥ − κ2K

2
⊥ = −(∆κ+ ∆κ̄)K‖ + ∆Kκ

0 . (3.51)

where we defined ∆κ := κ1 − κ2, ∆κ̄ := κ̄1 − κ̄2, and ∆Kκ
0 := κ1K

1
0 − κ2K

2
0 . This

condition generalizes Eqn. (52) from Ref. [Fou07] with ∆Kκ
0 = 0. It states how

perpendicular, parallel, and spontaneous curvatures of the two domains are related
to each other at the contact line. Assume, for instance, that the bending rigidities
and the saddle-splay moduli of both domains are the same. From Eqn. (3.51) then
follows that the difference K1

⊥ − K2
⊥ of the perpendicular curvatures is equal to

the difference K1
0 −K2

0 of the spontaneous curvatures. On the other hand, if all
curvatures and bending rigidities are known, the difference ∆κ̄ of the saddle-splay
moduli can be determined directly from the condition.

To obtain the axisymmetric version of Eqn. (3.51), we change to angle-arc length
parametrization (see Fig. 3.5(b) and App. A.4.2): the angle ψ(s′) between the
horizontal axis and the tangent to the profile completely describes the vesicle shape
as a function of arc length s′. The curvatures are then given byK‖ = sinψ(s′)/ρ(s′)

and K⊥ = ψ̇(s′), where the dot denotes a derivative with respect to s′ (see also
Eqns. (A.77)).16

16 The signs of the curvature expressions given here are different compared to Chap. 4 and
App. A.4.2 because there, the normal vector n and the tangent vector l, respectively are
pointing in the opposite direction (compare Figs. 3.5(b) and A.9).
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3 Boundary conditions at contact lines

Let s′ = S be the arc length at the contact line and ρ(S) = R its radius. For an
axisymmetric vesicle boundary condition (3.51) is then given by

κ1 ψ̇(S + ǫ) − κ2 ψ̇(S − ǫ) = −(∆κ+ ∆κ̄)
sinψ(S)

R
+ ∆Kκ

0 , (ǫ > 0) (3.52)

which is exactly Eqn. (A22) from Ref. [JL96] (see also [SIH+06, Eqn. (6)]17).
The tangential variation along the vector l yields another boundary condition.
From Eqn. (3.50) we obtain

κ1

2
(K1

⊥)2 − κ2

2
(K2

⊥)2 =
κ1

2
(K‖ −K1

0)2 − κ2

2
(K‖ −K2

0)2 − ∆κ̄(K⊥‖)
2 + ∆σ + γKg ,

(3.53)
where we defined ∆σ := σ1 − σ2. Surface tension enters the boundary condition
even though the membrane has no kinks since the Helfrich Hamiltonian dictates
the behavior of each domain. The corresponding term in Eqn. (3.53) is due to the
fact that the surface tension now changes across the contact line in contrast to the
previous section.
For an axisymmetric vesicle, the curvature K⊥‖ vanishes. The geodesic curvature
of the contact line is given by Kg = − cosψ(S)/R (see Eqn. (A.78); for the sign,
see footnote 16). Thus,

κ1

2

[
ψ̇(S + ǫ)

]2 − κ2

2

[
ψ̇(S − ǫ)

]2
=
κ1

2

(
sinψ(S)

R
−K1

0

)2

− κ2

2

(
sinψ(S)

R
−K2

0

)2

+ ∆σ − γ
cosψ(S)

R
. (3.54)

A quick glance into Ref. [JL96, Eqn. (A17)] helps to interpret this boundary
condition: in fact, it states that the Hamiltonian function H , which is conserved
in each domain, does not change across the contact line.18 We will come back to
that point on page 88 in the next chapter where the Hamiltonian function for a
similar problem will be discussed.
Finally, the variation along n yields a condition involving the perpendicular deriva-
tives of the two mean curvatures

κ1(∇⊥K
1) − κ2(∇⊥K

2) = ∆κ̄ (∇‖K⊥‖) − γK‖ . (3.55)

For an axisymmetric surface, K⊥‖ vanishes and the derivative ∇⊥K
i
‖ can be ex-

pressed in terms of curvatures with the help of Eqns. (3.8) and (A.55):

∇⊥K
i
‖ = (Ki

⊥ −K‖)Kg . (3.56)

17 Note that the numbering of the domains in [SIH+06] is exactly opposite to the definition of
this work.

18 The Hamiltonian function H must not be mistaken for the Hamiltonian H or the Hamiltonian
density H.
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The boundary condition turns into

κ1(∇⊥K
1
⊥) − κ2(∇⊥K

2
⊥) = −κ1(K

1
⊥ −K||)Kg + κ2(K

2
⊥ −K||)Kg − γK‖

=
[
(2∆κ+ ∆κ̄)Kg − γ

]
K‖ −Kg∆K

κ
0 , (3.57)

where we inserted Eqn. (3.51) in the second step. The geodesic curvature enters the
second term on the right-hand side of the equation if the spontaneous curvatures
of the domains do not vanish and ∆Kκ

0 6= 0. It additionally occurs in combination
with the line tension γ. However, its prefactor contributes a nontrivial sign which
decides whether Kg opposes or increases the effect of γ.
In angle-arc length parametrization we finally obtain the equation19

κ1

[
ψ̈(S+ǫ)

]
−κ2

[
ψ̈(S−ǫ)

]
=
[

(2∆κ+∆κ̄)
cosψ(S)

R
+γ
]sinψ(S)

R
− cosψ(S)

R
∆Kκ

0 ,

(3.58)
which is given explicitly in [SIH+06, Eqn. (6)] (see also [JL96] again).
Imagine we had only considered the boundary conditions in angle-arc length pa-
rametrization. It would not have been straightforward at all to identify contribu-
tions such as the geodesic curvature Kg. The disadvantage of a parametrization-
dependent compared to a covariant approach is immediately apparent.
In this chapter we have seen how boundary conditions can be extracted from a
systematic boundary variation in a completely parametrization independent way.
However, knowing the boundary conditions does not mean that one also knows the
position of the contact line. Rather, the latter has to be determined simultaneously
with the surface shape. In general this task is difficult, as we will see for one specific
example in the next chapter.

19 Note that ∇⊥ = −d/ds′, which generates an additional minus sign in the condition.
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4 How to determine elastic
properties of a membrane on the
nano-scale

In the previous chapters we have developed a mathematical toolbox for describing
the mechanical properties of fluid surfaces in general and lipid bilayer membranes
in particular. To predict the behavior of a membrane in “real” life, however,
quantitative knowledge of its material parameters – most notably the bending
modulus κ – is necessary.

4.1 Experiments

Measurements with an atomic force microscope (AFM) offer a direct way
to probe elastic properties of lipid bilayer membranes locally; provided the
underlying stress-strain relation is known, material parameters such as the
bending rigidity may be deduced.

Several methods for the experimental determination of κ have been proposed,
such as monitoring the spectrum of thermal undulations via light microscopy
[BL75, FMM+89], analyzing the relative area change of vesicles under micropipette
aspiration [ER90, ROM+00], or measuring the force required to pull thin membrane
tubes, so-called “tethers” [DS95, HSDS96, DS99, MSdM02, CDBN05]. With the
possible exception of the tether experiments, these techniques are global in nature,
i. e., they supply information averaged over millions of lipids, if not over entire
vesicles or cells. Yet, in a biological context this may be insufficient [HW04]. In
Sec. 1.1.1 we have, for instance, seen that membrane properties such as lipid com-
position or bilayer phase (and thus mechanical rigidity) may potentially vary on
submicroscopic length scales. This raft hypothesis still remains disputed precisely
because the existence of such small domains is extremely hard to show.

In the following we will discuss an atomic force microscope experiment which may
offer the possibility to check this hypothesis in the near future as it can probe the
elastic properties of a membrane with the necessary spatial resolution.

77



4 How to determine elastic properties of a membrane on the nano-scale
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Figure 4.1: Simplified scheme of an atomic force microscope (AFM) [Ste06a].

4.1.1 Atomic force microscopy

The atomic force microscope (AFM) is a versatile tool to obtain topographic and
mechanical information of small samples [JNOF00, BCK05, AF05]. In an AFM
measurement the sample is scanned by a tiny tip which is mounted at the end of
a cantilever spring (see Fig. 4.1). The relative motion between tip and sample is
controlled by a piezoelectric actuator. During the scan the force between tip and
sample changes and causes the spring to bend. To detect its deflection a laser beam
is focused on the back of the cantilever: a small movement of the tip changes the
position of the reflected light in a split photo detector, hence giving information
about the position of the tip.

One important mode of operation is the contact mode. This mode is comparable
to the functional principle of a gramophone: the tip is in gentle touch with the
sample exerting a constant vertical force during the horizontal scan. Its position
changes due to the interactions with the surface yielding a topographic image of
the sample.

The AFM can also be used for force spectroscopy: in the measurement the tip
is moved towards the sample in normal direction. The position of the tip and
the deflection of the cantilever are recorded and can be converted to force-versus-
distance curves, or briefly, force-distance curves. These curves contain information
about the mechanical properties of the sample; one may thus try to extract local
material parameters from them.
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Figure 4.2: (a) Scanning electron micrograph of highly ordered gold-coated porous
alumina (reprinted from [SMD+06] with permission of authors and the Biophysical Journal).
(b) In the experiment a lipid bilayer was suspended over the pores and subsequently
probed with the AFM [SMD+06].

Indeed, the AFM has been used to probe cell elastic properties (such as, for in-
stance, their Young modulus) [Rad02, Kos04]. Yet, obtaining truly local informa-
tion still poses a formidable challenge. Apart from several complications associated
with the inhomogeneous cell surface and intra-cellular structures beneath the lipid
bilayer, one particularly notable difficulty emerges: the boundary conditions of
the cell membrane away from the spot where the AFM tip indents are not known.
This precludes a quantitative interpretation of the measured force, i. e. a clean
way to translate this force into local material properties.

Appropriate model systems with defined geometry and membrane composition are
thus required. One possible realization which complies with these requirements is
the “nanodrum” setup.

4.1.2 Measurements on the nanodrum

The nanodrum setup consists of a lipid bilayer membrane which is spread over
an adhesive substrate featuring circular pores of well-defined radius [SMD+06,
Ste06a]. The boundary conditions at the rim of the drum are known. Centrally
indenting it with the AFM tip yields force-distance curves for a system with pre-
cisely defined geometry.

The first measurements using the nanodrum setup were done on fluid DOTAP
and gel-like DODAB membranes (see Figs. 1.2(b) and 1.2(c) in Sec. 1.1.1). As a
substrate planar gold-coated alumina was used onto which a 3-mercaptopropionic
acid (MPA) monolayer was chemisorbed. The negatively charged MPA monolayer
ensured that the positively charged membrane could spread evenly on the substrate
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Figure 4.3: Force-distance curve of a pore-spanning fluid DOTAP bilayer on a pore
with Rpore = 90 nm (with courtesy of Andreas Janshoff and Siegfried Steltenkamp).

(see Fig. 4.2). The radius of the drum was either 33.5 nm or 90 nm.1

Fig. 4.3 shows a typical force-distance curve for which a DOTAP membrane was
suspended over a pore of radius Rpore = 90 nm and subsequently probed with an
AFM tip (see Fig. 4.4(a) for a picture of the tip). Remarkably, the curve is linear
even for significant indentations,2 a finding in agreement with the initial regime
of membrane tether pulling [PHG02, DJP02]. In the following we will develop a
theoretical model that reproduces this behavior qualitatively and quantitatively.
Yet, we will see that the linearity of the curve makes a unique extraction of the
two main mechanical properties, tension and bending modulus, difficult.

To overcome this impasse, the theoretical basis for a slight extension of the nan-
odrum experiment will also be developed here. It will be shown that an additional
adhesion between the AFM tip and the pore-spanning membrane will change the
situation very significantly. Force-distance curves cease to be linear, hysteresis,
nonzero detachment forces and membrane overhangs can show up, and various
new stable and unstable equilibrium branches emerge.

1 More experimental details can be found in [SMD+06] and [Ste06a].
2 The plateau for high forces is due to the fact that the tip broadens away from its apex. It

simply gets stuck if the indentation becomes too large.
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50 nm

(a) (b)

Figure 4.4: (a) Transmission electron microscopy image of an AFM tip after usage
(reprinted from [SMD+06] with permission of authors and the Biophysical Journal). (b) Theoretical
model of the tip.

4.2 Theoretical model of the nanodrum

To model the nanodrum experiment, a static axisymmetric system is con-
sidered in which the parabolic AFM tip indents the pore-spanning membrane
in the middle of the circular pore. The membrane is modeled as a Helfrich
membrane with no spontaneous curvature. The adhesion between tip and
membrane is also taken into account.

As (i) the pore radius as well as (ii) length scales of interest such as local radii
of curvature are typically much larger than the thickness of the bilayer (which is
approx. 5 nm, see Sec. 1.1.1), we can model the membrane as a two-dimensional
surface (see Sec. 1.2). This allows us to grab some tools from our box and apply
them to the nanodrum.

4.2.1 Geometry

In our modeling we consider a flat solid substrate with one circular pore of radius
Rpore. The lipid bilayer membrane is adsorbed evenly onto the substrate and spans
the pore. We assume that the AFM tip has a parabolic shape with curvature radius
Rtip at its apex. Furthermore, we restrict ourselves to the static axisymmetric
situation in which the tip pokes the free-standing membrane exactly in the middle
of the pore (see Fig. 4.5). It is then sufficient to consider a cross section of the
setup. The point at which the membrane detaches from the tip will be denoted as
the “contact point”.
For a certain downward force F > 0 the membrane is indented to a corresponding
depth h0 > 0 which is measured from the plane of the substrate to the depth of the
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Figure 4.5: Illustration of the geometry. A parabolic tip with curvature radius Rtip

indents a pore-spanning membrane with a force F to a certain depth h0. The radius
of the pore is Rpore. The membrane detaches from the tip at a radial distance ρ = c.
The two possible parametrizations h(ρ) and ψ(s) are explained in the beginning of
Chap. 4.3 and in App. A.4. Note also the direction of the normal vector n which
points inside the tip.

apex of the tip. Note that it is also possible to pull the membrane up with a force
F < 0 in the opposite direction if attractive interactions attach the membrane to
the tip.

4.2.2 Energy considerations

The total energy of the pore-tip system comprises different contributions: first, the
membrane is under a lateral tension σ. To pull excess area into the pore, work has
to be done against the adhesion between membrane and flat substrate.3 It is given
by σ times the excess area [DL91]. Second, a curvature energy is associated with
the membrane. Summing up both contributions and assuming that the bilayer has
no spontaneous curvature (which is true for the membranes used in the experiment)
we arrive at the Helfrich Hamiltonian for an up-down symmetric membrane (see
Eqn. (1.2) with K0 = 0)

Helast =

∫

Σ

dA
(
σ +

κ

2
K2 + κ̄KG

)
, (4.1)

3 The part of the system outside the pore just acts like a reservoir fixing the lateral tension. Its
energetics do not have to be considered explicitly.
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where Σ denotes the surface of the membrane part which spans the pore. The
Gaussian curvature term in Helast can be safely discarded in the following as it
yields zero in our specific problem (compare Technical Point 2.3).4

Apart from tension and bending, an adhesion between tip and membrane may con-
tribute to the total energy. Just as in Chap. 3 we will assume that it is proportional
to the contact area Acontact between tip and membrane with a proportionality con-
stant w, the adhesion energy per area.
If the indentation h0 is given and one wants to determine the force F , the total
energy can thus be written as

Eh0

total =

∫

Σ

dA
(
σ +

κ

2
K2
)
− wAcontact . (4.2)

Under certain circumstances, however, it is more convenient to consider the prob-
lem for a given force F . Both ensembles (“constant indentation” vs. “constant
force”) are connected via a Legendre transformation [SSS03, SSS04], EF

total =
Eh0

total − Fh0. While the ground states one obtains for the two ensembles will
be the same, questions of stability depend on the ensemble: a profile found to be
stable under constant height conditions is not necessarily stable under constant
force conditions.5

The route we want to follow here in order to find force-distance curves is to deter-
mine the equilibrium shapes of the non-bound section of the membrane by solving
the shape equation (2.33) for K0 = 0.6 It is given by:

−∆K +
1

2
K(K2 − 2KabK

ab) + λ−2K = 0 , (4.3)

where λ :=
√

κ/σ is the characteristic length introduced in Eqn. (2.34). Notice
that the contact point c is not known a priori but has to be determined via an
adhesion balance, a “moving boundary problem” exactly as in Chap. 3.
In the next section we will show how one can set up the appropriate mathematical
formulation of the problem to get membrane profiles and force-distance curves.

4 The Gauss-Bonnet theorem states that:
∫

Σ

dA KG = 2π −
∫

∂Σ

ds Kg ,

for a simply connected surface (see Eqn. (A.59) in App. A.3). In our case the boundary ∂Σ
of the surface Σ is a circle of radius Rpore. Its geodesic curvature Kg is equal to R−1

pore, such
that the second integral yields 2π. Thus, the integral over the Gaussian curvature KG is zero
as long as no topological changes occur.

5 In Sec. 1.2.3 we have already encountered a similar case: a closed surface which is stable under
constant volume is not necessarily stable under constant pressure conditions and vice versa
(see also Technical Point 2.5 in which the closed spherical soap bubble is discussed).

6 The profile of the bound part is equivalent to the (known) shape of the tip.
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We can thereby resort to established techniques which have previously been used
successfully to study vesicle shapes [SŽ89, MFR+91, SBL91, JS94, JL96, Sei97],
vesicle adhesion [SL90, Sei95], colloidal wrapping [DB03, Des04a, Des04b] or tether
pulling [PHG02, DJP02, SSS03, SSS04, KCD+05].

4.3 Solving the shape equation

The shape equation can be solved either in small gradient approximation
using Monge gauge or in a Hamiltonian formulation using the angle-arc
length parametrization. In the former case one considers the problem in the
constant indentation ensemble, in the latter case one prescribes the force.

To describe the shape of the membrane, we use two different kinds of parametriza-
tion (see Fig. 4.5 and App. A.4): for the linear approximation it is sufficient to
use the Monge parametrization (Monge gauge) where the position of the mem-
brane is given by a height h(ρ) above (or below) the underlying reference plane.
The disadvantage of this parametrization is that it does not allow for overhangs.
Since these may be present in the full nonlinear problem, we will use the angle-arc
length parametrization in the exact calculations: the angle ψ(s) with respect to
the horizontal substrate as a function of arc length s fully describes the shape.

4.3.1 Linear approximation

The profile of the bound membrane is equivalent to the shape of the tip and thus
given by

h(ρ) = −h0 +
ρ2

2Rtip

, for ρ ≤ c . (4.4)

To get the profile of the free membrane, one has to solve the shape equation (4.3).
As was argued in Sec. 2.2.2 it is impossible to do this analytically in most cases.
One may, however, consider configurations where the membrane is indented only
a little and gradients are small. In that case the energy functional and the shape
equation can be linearized as we will see now.
In the constant indentation ensemble the energy of the free part is given by

E =

∫

Σfree

dA‖

√

1 + (∇2h)2

{
κ

2

[

∇ · ∇h
√

1 + (∇2h)2

]2

+ σ

}

, (4.5)

where we used Eqns. (A.64) and (A.68) from App. A.4.1. The symbol dA‖ is
the area element on the flat reference plane, Σfree is the projected surface of the
free pore-spanning membrane, and ∇ the two-dimensional nabla operator in the
reference plane.
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4.3 Solving the shape equation

Technical Point 4.1: Modified Bessel functions

The second order linear differential equa-
tion

ρ2 h′′(ρ) + ρ h′(ρ) − (ρ2 + n2)h(ρ) = 0

has two linearly independent solutions:
the modified Bessel functions of first and
second kind, In(ρ) and Kn(ρ), respec-
tively. A comprehensive compilation of
the main properties of these functions can
be found in Ref. [AS70].

I1

I0K1

K0

3210

2

1

0
ρ

In this work we explicitly need the first derivatives with respect to ρ:

I′0(ρ) = I1(ρ) ,

I′1(ρ) = I0(ρ) −
1

ρ
I1(ρ) ,

K′
0(ρ) = −K1(ρ) , (4.I)

K′
1(ρ) = −K0(ρ) −

1

ρ
K1(ρ) , (4.II)

and the behavior for ρ→ ∞

In(ρ) =
e ρ√
2πρ

(

1 − 4n2 + 3

8ρ
+ . . .

)

, Kn(ρ) =

√
π

2ρ
e−ρ
(

1 +
4n2 − 1

8ρ
+ . . .

)

.

(4.III)

Expanding the terms in the integrand up to lowest order in ∇h gives the small
gradient expansion of the energy

E =

∫

Σfree

dA‖

[κ

2
(∇2h)2 +

σ

2
(∇h)2

]

, (4.6)

where we have discarded a constant surface integral over Σfree.
The appropriate shape equation can be derived by setting the first variation of
energy (4.6) to zero, yielding7

∇
2
(
∇

2 − λ−2
)
h = 0 . (4.7)

The solution to Eqn. (4.7) is a linear combination of the eigenfunctions of the
Laplacian corresponding to the eigenvalues 0 and λ−2. For axial symmetry it

7 Note that one may alternatively obtain this equation from the shape equation (4.3) directly by
neglecting terms of higher than linear curvature order in Eqn. (4.3) and subsequently inserting
the small gradient expression (A.72) for K.
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is given by h(ρ) = h1 + h2 ln (ρ/λ) + h3 I0(ρ/λ) + h4 K0(ρ/λ), where I0 and K0

are modified Bessel functions of the first and the second kind, respectively (see
Technical Point 4.1).
The constants h1, . . . , h4 are determined from the appropriate boundary conditions
(see App. C.2):

h(Rpore) = 0 , h(c) = −h0 +
c2

2Rtip

, (4.8a)

h′(Rpore) = 0 , h′(c) =
c

Rtip

, (4.8b)

and h′′(c) =
1

Rtip

−
√

2w

κ
, (4.8c)

where a dash denotes a derivative with respect to ρ. Eqns. (4.8a) follow sim-
ply from the requirement of continuity at the pore rim and the point where the
membrane leaves the tip. Asking for a membrane that has no kinks and thus no
diverging bending energy gives Eqns. (4.8b). Even though the differential equa-
tion is of fourth order, five conditions are required due to its moving boundary
nature, i. e., c is to be determined from an adhesion balance. In Sec. 3.4.1 we have
derived the appropriate covariant expression (3.23).8 In the small gradient expan-
sion the contact curvatures are given by K⊥ ≈ −1/Rtip and K⊥ ≈ −h′′(c) (see
Eqn. (A.81a)). Inserting these curvatures into Eqn. (3.23) yields condition (4.8c).
The solution of the boundary value problem (4.7,4.8) can be used in two ways to
calculate the force for a prescribed indentation: first, one can insert the profile of
the free membrane together with the shape (4.4) of the bound part back into (the
linearized version of) the functional (4.2) to obtain the energy of the equilibrium
solution. This energy will then parametrically depend on the indentation h0. Its
derivative with respect to h0 yields the force F . Second, one can also consider
stresses: in Sec. 2.1.2 we have seen that the external force on a surface patch is
given by the integral of the flux of surface stress through a closed contour around
the patch.
The second approach is used here; it has the advantage that the final expression
for the force can be written in the closed form (see Technical Point 4.2):

F = 2πRpore × κ
∂K

∂ρ

∣
∣
∣
ρ=Rpore

. (4.9)

This equation is exact for all indentations as its derivation does not rely on any
approximations (such as a small gradient expansion). Inserting the solution h(ρ)
of the boundary value problem (4.7,4.8) into (4.9) yields the value of the force,

8 Observe that this derivation assumes differentiability of the energy as a function of contact
point position. We will come back to that point in Sec. 4.4.2.
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4.3 Solving the shape equation

Technical Point 4.2: Calculation of the force via the stress tensor

If the shape of the free membrane is known, the stress tensor fa can be evaluated
at every point of the surface Σfree. The integral of its flux through an arbitrary
contour C which encloses the tip gives the force. From Eqn. (2.32) one obtains
with K0 = K⊥‖ = 0:

F = −z ·
∮

C
ds
{[κ

2
(K2

⊥ −K2
‖) − σ

]

l− κ(∇⊥K)n
}

, (4.IV)

where z is the upward pointing unit normal vector (see Fig. 4.5 on page 82). The
unit vectors l and n, the curvatures K⊥ and K‖, and the directional derivative
∇⊥ are defined as before (see App. A.2 and previous chapters).
Expression (4.IV) can be translated into Monge gauge. If we exploit axial symme-
try and integrate around a circle of radius ρ = Rint, we obtain, with the help of
Eqns. (A.79)–(A.81),

F = −2πRint

{
[κ

2

(h′′(ρ)2

g3
⊥

− h′(ρ)2

ρ2g⊥

)

− σ
]h′(ρ)√

g⊥
+ κ
(h′′(ρ)
√
g⊥

3 +
h′(ρ)

ρ
√
g⊥

)′ 1

g⊥

}∣
∣
∣
∣
∣
ρ=Rint

,

(4.V)
where g⊥ = 1 + h′(ρ)2. If in particular we choose to evaluate the force at Rint =
Rpore, h

′(Rint) = 0, and the expression (4.V) simplifies considerably to Eqn. (4.9).

however, only in the linear regime because h(ρ) is the small gradient solution of
the shape equation.

A warning is due here: expression (4.9) is evaluated at the rim of the pore where
the profile is flat even for high indentations. One might thus wonder whether
inserting the small gradient solution would actually lead to an exact result. This,
however, is not the case because the membrane shape at the rim predicted by the
linear calculation is not identical to the prediction from the full nonlinear theory—
except for its flatness, which is enforced by the boundary conditions. There is no
magical way to avoid solving the nonlinear shape equation if one wants the exact
answer.

4.3.2 Complete nonlinear formulation

Let us now shift to the angle-arc length parametrization and consider the full
nonlinear problem. In principle, the constant height ensemble could be used here
as well. It is, however, technically much easier to fix F instead in order to reduce
the number of boundary conditions one has to fulfill at the rim of the pore (see
below and Technical Point 4.3).
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4 How to determine elastic properties of a membrane on the nano-scale

In this paragraph all variables with a tilde are scaled with πκ, i. e.: Ẽ := E/(πκ),
F̃ := F/(πκ), etc. The energy functional of the free membrane can then be written
as [SBL91, JS94, JL96, Sei97, SSS03, DB03, Des04a] (see also App. A.4.2):

Ẽ =

∫ s̄

s

ds L̃ =

∫ s̄

s

ds
{

ρ
(

ψ̇ +
sinψ

ρ

)2

+
2ρ

λ2

+λρ(ρ̇− cosψ) + λz(ż − sinψ) − F̃ ż
}

, (4.10)

where s is the arc length at the contact point c and s̄ the arc length at Rpore. The
dot denotes the derivative with respect to s. The Lagrange multiplier functions λρ
and λz ensure that the geometric conditions ρ̇ = cosψ and ż = sinψ are fulfilled
everywhere (compare Eqns. (A.76)).
In order to make the numerical integration easier let us rewrite the problem in a
Hamiltonian formulation [SBL91, JS94, JL96, SSS03, DB03, Des04a]: the conju-
gate momenta are

pψ =
∂L̃

∂ψ̇
= 2ρ

[

ψ̇ +
sin(ψ)

ρ

]

, (4.11a)

pρ =
∂L̃

∂ρ̇
= λρ , (4.11b)

pz =
∂L̃

∂ż
= λz − F̃ . (4.11c)

The (scaled) Hamiltonian function is then given by

H̃ = ψ̇pψ + ρ̇pρ + żpz − L̃

=
p2
ψ

4ρ
− pψ sinψ

ρ
− 2ρ

λ2
+ pρ cosψ + (pz + F̃ ) sinψ . (4.12)

Remarks:

• The Hamiltonian function H̃ is not explicitly dependent on s and is thus a
conserved quantity.

• In fact it is zero. The reason for this is that the total arc length is not a con-
served quantity, which it would be if we used a fixed interval of integration.
Relaxing this unphysical constraint requires the Hamiltonian function H̃ to
vanish [JS94, CVG07]. This is one of the boundary conditions we will use in
the following.

• According to Eqn. (3.54) the Hamiltonian function does not change its value
across the separating boundary between two membrane domains on a vesicle.
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4.3 Solving the shape equation

The previous remark thus implies that H̃ has to be zero at every point of
the surface of the vesicle in Sec. 3.5. In analogy to the calculations presented
in this chapter this fact yields one of the boundary conditions needed to
calculate the shape of a two-domain vesicle in a Hamiltonian formulation
(see, for instance, Ref. [JL96]).

• Instead of one fourth order one now has six first order ordinary differential
equations, the Hamilton equations.9

These are given by

ψ̇ =
∂H̃

∂pψ
=

pψ
2ρ

− sinψ

ρ
(4.13a)

ρ̇ =
∂H̃

∂pρ
= cosψ (4.13b)

ż =
∂H̃

∂pz
= sinψ (4.13c)

ṗψ =−∂H̃
∂ψ

=
[pψ
ρ

− (pz + F̃ )
]

cosψ + pρ sinψ (4.13d)

ṗρ =−∂H̃
∂ρ

=
pψ
ρ

(pψ
4ρ

− sinψ

ρ

)

+
2

λ2
(4.13e)

ṗz =−∂H̃
∂z

= 0 . (4.13f)

According to the last equation, pz has to be constant along the profile. Its value
can be found by considering the integral over the flux of surface stress again which
has to equal the applied force.
In angle-arc length parametrization, the curvatures are given by: K⊥ = −ψ̇,
K‖ = − sin (ψ)/ρ, and K = −pψ/(2ρ) (see App. A.4.2). Eqn. (4.IV) can then be
written as

F = −2πRint
κ

2

{[(

ψ̇2 − sin2 ψ

ρ2

)

− 2

λ2

]

sinψ+
1

ρ

(

ṗψ−
pψ
ρ
ρ̇
)

cosψ
}∣
∣
∣
ρ=Rint

, (4.14)

where we exploited axial symmetry again by integrating around a circle of radius
ρ = Rint and inserting Eqns. (A.79). The integrand can be evaluated further by
inserting the Hamilton equations (4.13) and making use of the fact that the Hamil-
tonian function (4.12) is zero. One obtains F̃ = pz + F̃ ; hence, the momentum pz
conjugate to z has to vanish identically. This implies that the Lagrange multiplier

9 One might naively expect to obtain four first order ordinary differential equations from one
fourth order one. However, two additional geometrical equations are necessary to connect the
angle ψ(s) to ρ and z.
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4 How to determine elastic properties of a membrane on the nano-scale

Technical Point 4.3: Numerical profile calculations

The Hamilton equations (4.13) were solved by using a shooting method [PTVF92]:
for a trial contact point c Eqns. (4.13) were integrated with a fourth-order Runge-
Kutta method. The value of c determined the contact angle α and with it ψ,
ρ, pψ, and pρ at s = s via the boundary conditions (4.15). The integration was
stopped as soon as ρ was equal or greater than Rpore. To reach Rpore, exactly one
extra integration with the correct stepsize backwards was performed. Finally, the
value(s) of c for which ψ = 0 at Rpore were identified for fixed parameters F , σ, w,
etc.
If the calculation had been done in the constant height ensemble, one would addi-
tionally have to check whether the correct indentation h0 was reached at ρ = Rpore

after shooting. In the constant force ensemble this complication of meeting a sec-
ond condition is avoided which is why it was used for the nonlinear calculations.

function λz is equal to F̃ (see Eqn. (4.11c)). This seemingly surprising result is
no coincidence at all. In fact, in Ref. [CVG07] it was shown that the Lagrange
multiplier functions which fix these geometrical constraints are closely related to
the external forces via the conservation of stresses.
Equations (4.13) can be solved numerically (see Technical Point 4.3) subject to
the boundary conditions:

ψ(s̄) = 0 , ψ(s) = α , (4.15a)

ψ̇(s) =
(cosα)3

Rtip

−
√

2w

κ
, (4.15b)

and H̃ = 0 , (4.15c)

where contact point c and contact angle α are connected via c = Rtip tanα.
Eqns. (4.15a) follow from the requirement that the membrane must not have kinks;
Eqn. (4.15b) is again due to the adhesion balance.10 The reason for the vanishing
Hamiltonian was given in the second Remark on page 88.
The solution to (4.13, 4.15) gives the indentation h0 for some prescribed force F̃ .

10 In the force ensemble an extra term F̃ δh has to be added to the variation of the bound
membrane. A term that is equal and opposite, however, enters the variation of the free
membrane via the Hamiltonian (4.12). In total, both terms cancel and one again obtains the
same condition (3.23) (Eqn. (4.15b) in angle-arc length parametrization).
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4.4 Results

The linear behavior of the measurements is reproduced if one neglects the
influence of adhesion between tip and membrane. Including it via an adhe-
sion balance changes the situation significantly: force-distance curves cease
to be linear, hysteresis and nonzero detachment forces can show up.

This section will summarize the characteristic features of the solution to the bound-
ary value problems (4.7, 4.8) and (4.13, 4.15). In addition, the theory will be
compared to the experimental results from Sec. 4.1.2.
We will introduce some additional variable rescaling in order to make generaliza-
tions of the results easier: lengths will be scaled with Rtip. We also define

σ̃ :=
σR2

tip

κ
, w̃ :=

2wR2
tip

κ
and f̃ :=

FRtip

πκ
. (4.16)

In a typical experiment the radius of curvature of the tip is of the order of ten
nanometer (5–40 nm) and pore radii may in principal lie between 30 and 200
nm [Ste06b]. As already mentioned in Sec. 1.2.1, the bending rigidity of a fluid
membrane is of the order of a few tens of kBT [SL95]. If we use Helfrich theory
to describe membranes in the gel phase (which is only a crude approximation as
in-plane shear stresses play a role in this case), their bending rigidity turns out to
be about ten times higher than the one of the fluid phase [LLW01]. One expects
a maximum surface tension of the order of a few mN/m, which is approximately
the rupture tension for a fluid phospholipid bilayer [EHLR03]. A maximum value
of the adhesion can be found by assuming that a few kBT per lipid is stored if
membrane and tip are in contact. One arrives at wmax ≈ 10 mJ/m2. For the
continuum theory to be valid Eqns. (4.8c, 4.15b) imply that

√

2wmax/κ . 1/d,
where d ≈ 5 nm is the bilayer thickness. This estimate yields approx. the same
maximum value for wmax as before since κ is at most 100 kBT .
Thus, σ̃ and w̃ can in principal vary between 0 and 103. Realistically, if we set
Rtip = 10 nm and consider a typical fluid phospholipid bilayer with κ ≃ 20 kBT ,
σ̃ and w̃ are of the order of 1. Furthermore, we will focus on a pore radius of
R̃pore = 3 in the following.
Let us first discuss the case where there is no adhesion between tip and mem-
brane (w̃ = 0) and see how the theoretical force-distance curves compare to the
measurements from Sec. 4.1.2.

4.4.1 No adhesion between tip and membrane

In Fig. 4.6 the shapes of the membrane for different values of indentation are
presented in scaled units. The linear calculations are dotted whereas the exact
result is plotted with solid lines. For small indentations the two solutions overlap;
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4 How to determine elastic properties of a membrane on the nano-scale

Figure 4.6: Membrane profiles for different indentations h̃0, all for σ̃ = 1 and w̃ = 0
(solid lines: nonlinear calculations, dashed lines: linear approximation, grey shades:
AFM tips). The corresponding forces f̃(h̃0) for the three different indentations are
(nonlinear calculations): f̃(0.3) = 0.81, f̃(1) = 2.45, f̃(2) = 4.27.

for increasing h̃0, however, the deviations become larger just as one expects for a
small gradient approximation (see also Ref. [Des04a] for another example). While
the differences are noticeable, they appear fairly benign, such that one would
maybe not expect big changes in the force-distance behavior. We will soon find
out that these hopes will not be fulfilled.

A deeper indentation also means that the tip has to exert a higher force. In Figs. 4.7
and 4.8 log-log plots of force-distance curves for different values of σ̃ are shown.
The dashed line marks the maximum indentation h̃0,max = R̃2

pore/2 which is allowed
by the geometry of tip and pore. In the limit of high forces all curves converge
and approach h̃0,max; for small forces the curves are linear in f̃ . The theoretical
curves thus exhibit a functional form which qualitatively matches the behavior of
the measured force-distance curves (see Sec. 4.1.2 and Refs. [SMD+06, Ste06a]).

To quantify the indentation response, let us define the (scaled) apparent spring
constant K̃ of the nanodrum-AFM system via

K̃ =
∂f̃

∂h̃0

∣
∣
∣
∣
∣
w̃,σ̃

. (4.17)
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Figure 4.7: Force-distance curves for w̃ = 0 and σ̃ = 1
16
, 1

4
, 1, 4, 16 and 64 (σ increas-

ing from left to right). The curve for σ̃ = 0 is dashed-dotted. The inset shows the
corresponding scaled apparent spring constant K̃ (see Eqn. (4.17)) in the small force
limit, illustrating its two different regimes of small and large tension with a crossover
around σ̃ ≃ 1.

A linear force-distance curve has a constant K̃ and thus follows an apparent
Hookean behavior f̃ = K̃h̃0. In unscaled units, the spring constant is given by
K = ∂F/∂h0 = K̃πκ/R2

tip. For typical values Rtip = 10 nm and κ = 20 kBT this

implies K = K̃ × 2.6 mN/m.
The smaller σ̃, the less force has to be applied to reach the same indentation (see
Fig. 4.7). For decreasing σ̃ the force-distance curves converge to the limiting curve
of the pure bending case, for which σ̃ = 0; this is plotted dashed-dotted in Fig. 4.7.
In the opposite pure tension limit (κ→ 0 or σ̃ → ∞) the curves become essentially
linear in σ̃, as can be seen clearly after scaling out the tension (see Fig. 4.8). It
is possible to calculate this second limiting curve in the linear approximation (see
Technical Point 4.4). The final result for the indentation depth is:

h̃σ̃→∞
0 =

f̃/σ̃

4

[

1 − ln

(
f̃/σ̃

2R̃2
pore

)]

, (4.18)
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Figure 4.8: Scaled force-distance curves for w̃ = 0 and σ̃ = 1
16
, 1

4
, 1, 4, 16 and 64 (σ

increasing from right to left). The solution for σ̃ → ∞ in the linear approximation is
dashed-dotted. Nonlinear results are plotted with solid lines, the linear approximation
is dotted.

which is plotted dashed-dotted in Fig. 4.8. At any given penetration the force is
now strictly proportional to the tension. Notice also the remarkably weak (loga-
rithmic) dependency of penetration on pore size.
All force-distance curves presented in this section exhibit a linear behavior for
small forces. In this limit the scaled spring constant for the systems just discussed
is well described by the empirical relation K̃ ≃ 1.76+ σ̃0.89 (see inset in Fig. 4.7).11

Combining this with our observation that for typical system parameters K =
K̃ × 2.6 mN/m, it turns out that our theory predicts a nanodrum’s stiffness which
can be very well matched by available (soft) AFM cantilevers.
To see how the theoretical results compare to the experiment quantitatively, let
us come back to the example given in Fig. 4.3. Fig. 4.9 shows the measured force-
distance curve again (solid grey line). As mentioned in Sec. 4.1.2, a fluid DOTAP
membrane was suspended over a pore of radius Rpore = 90 nm and subsequently
probed with a tip of radius Rtip = 20 nm [SMD+06, Ste06a]. The apparent spring

11 Note that this relation is only correct for the set of parameters chosen in this section.
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Technical Point 4.4: Force-distance curve in the pure tension limit

In the pure tension limit the linearized Euler-Lagrange equation (4.7) reduces to
the Laplace equation, ∆h = 0, which is solved by h(ρ) = d1 + d2 ln(ρ/Rpore) in
the present axial symmetry. The constants d1 and d2 can be determined with the
help of the two boundary conditions h(Rpore) = 0 and h(c) = −h0 + c2/2Rtip.

One obtains h(ρ; c) = (−h0 + c2

2Rtip
) ln (ρ/Rpore)

ln (c/Rpore)
. The contact point c can now be

determined by an energy minimization. With E(c) = σ
2

∫

Σ
dA [∂ρh(ρ; c)]

2, we get

E(c) =
σ

2







∫ c

0

dρ 2πρ

(
ρ

Rtip

)2

+

∫ Rpore

c

dρ 2πρ

[(

−h0 +
c2

2Rtip

)
1

ρ ln ( c
Rpore

)

]2






=
σπ

4R2
tip

c4

[

1 −
(

1 − 2Rtiph0

c2

)2
1

ln ( c
Rpore

)

]

.

Energy minimization, ∂cE(c) = 0, leads to

c3

ln2 ( c
Rpore

)

[

1 − 2Rtiph0

c2
− 2 ln

(
c

Rpore

)]2

= 0 .

For c 6= 0 this equation can be written as W−1(h) = ln(c2/[eR2
pore]), where W−1

is branch −1 of the Lambert-W-function [CGH+96] and h = −2Rtiph0/(eR
2
pore).

Thus,
c = Rpore exp {[1 + W−1(h)]/2}

and the force is given by

F =

∮

C
ds σ (l · z) (A.79a)≈ σ2πRporeh

′(Rpore) = − 4πσh0

W−1(h)
.

This expression can finally be inverted yielding Eqn. (4.18) after scaling.

constant is found to be 3.9 mN/m. To fit the data, the values of σ and κ have
been optimized.

The linear approximation (asymptotically) matches the curve down to an inden-
tation depth of about 40 nm as one can see in Fig. 4.9 (dashed line). For larger in-
dentations the small gradient assumption breaks down. The nonlinear calculation
(solid black line) describes the data correctly down to a much deeper penetration
depth of 150 nm but deviates for larger values. This deviation is most likely not a
failure of the elastic model but a consequence of our simplified assumptions for the
tip geometry. As shown in Fig. 4.4 on page 81 the tip is parabolic at its apex, but
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Figure 4.9: Comparison between experiment (solid grey line; from Fig. 4.3) and
theory (dashed line: linear approximation; solid black line: nonlinear calculations).
The theoretical curves are obtained with the following parameters: Rpore = 90 nm,
Rtip = 20 nm, κ = 10−19 J ≈ 24 kBT , σ = 1.1 mN/m.

further up it narrows quicker and assumes a more cylindrical shape. It therefore
can penetrate the pore much deeper than one would expect if the parabolic shape
were correct for the entire tip.
Apart from this difficulty, theory and experiment are in good agreement. There
is, however, a catch. Since we cannot trust the force-distance behavior close to
the depth-saturation (due to its displeasingly strong dependence on the actual
tip shape), the remaining interpretable part of the force-distance curve is linear,
and its slope is the only parameter that can be extracted from the data.12 For the
theoretical calculation one needs two parameters, σ and κ. Fitting both to a line is
not possible. One possibility to overcome this obstacle is to estimate κ from other
measurements to be about 10−19 J. The surface tension σ can then be adjusted to
1.1 mN/m to match the data—which, reassuringly, is a very realistic value.
Alternatively, one may proceed in a manner which was already adumbrated in
Sec. 4.1.2. In the experiment a small snap-off peak could be observed upon retrac-
tion of the AFM tip which was due to the attraction between tip and membrane.

12 The axis intercept is needed to gauge the distance between AFM tip and substrate in the
experiment and can therefore not be extracted as a second parameter.
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Although this can be neglected in the interpretation of all existing measurements
one may think of deliberately increasing the adhesion between membrane and tip
in a follow-up experiment by chemically functionalizing the tip. Whether with this
additional tuning parameter one may get further information on the values of the
material parameters in question will be the subject of the rest of this chapter.

4.4.2 Including adhesion between tip and membrane

In the following, we will also allow for adhesion between tip and membrane, i. e.
w̃ is not necessarily equal to zero. This will change the qualitative behavior of the
force-distance curves dramatically: for fixed σ̃ and w̃ different solution branches
can be found. A hysteresis may occur as well. Additionally, stable membrane
profiles exist even if the tip is pulled upwards. It is therefore possible to calculate
the maximum pulling force that can be applied before the tip detaches from the
membrane and relate it to the value of the adhesion between tip and membrane.

Weak adhesion energy

In this section, we will first investigate the case of weak adhesion, w̃ ≤ 5. The
scaled surface tension σ̃ will be fixed to 1. It turns out that once the tip is
adhesive, overhang profiles may occur, i. e., shapes where at some point |ψ(s)| >
90◦ (compare Fig. A.8). We will first ignore these solution branches and come back
to them later.
Fig. 4.10 illustrates force-distance curves for w̃ = 0, 1, . . . , 5. Compared to the non-
adhesive case, for which an essentially linear behavior levels off towards maximum
penetration, adhesive tips behave quite differently. Already for w̃ = 1 an initial
Hookean response at small forces is soon followed by a regime in which the system
displays a much greater sensitivity towards an externally applied stress, i. e., where
the scaled spring constant K̃ drops at intermediate penetrations. Physically this of
course originates from the fact that adhesion helps to achieve higher penetrations,
because the tip is pulled towards the membrane, but notice that this does not lead
to a uniform reduction of K̃: softening only sets in beyond a certain indentation.
Shortly beyond w̃ = 1 a point is reached where the force-distance curve displays a
vertical slope at which the apparent spring constant K̃ vanishes. For even larger
values of adhesion a hysteresis loop opens, featuring a locally unstable region with
K̃ < 0. This is the case for w̃ = 2, and the region around the instability is
magnified in the inset of Fig. 4.10. Notice that the dotted branch corresponding
to K̃ < 0 still belongs to solutions for which the functional (4.2) is stationary, yet
the energy plotted against penetration h̃0 (or, alternatively, contact angle α) has a
local maximum, confirming that these solutions are unstable against contact point
variations. The two dashed branches in the inset of Fig. 4.10 have a positive K̃
and correspond to local minima in the energy, however, they are globally unstable
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Figure 4.10: Force-distance curves for σ̃ = 1 and w̃ = 0, 1, 2, 3, 4, 5 (from right to
left). The region of hysteresis in the curve for w̃ = 2 is magnified in the inset. In this
case the energy barrier at f̃ = 0.414 is approx. 1κ. Overhang branches are omitted.

against the alternative minimum of larger or smaller h̃0. The true global minimum
is indicated by the bold solid curve, which exhibits a discontinuity at f̃ = 0.414.

Depending on the current scanning direction this hysteretic force-distance curve
manifests itself in a snap-on or snap-off event. Notice, however, that the membrane
does not stay flat up to a critical buckling force at which it suddenly yields; rather,
the system starts off with a linear stress-strain relation and only later undergoes
an adhesion-driven discontinuity. Appreciating this point is quite important for
the interpretation of measured force-distance curves: upon approach of tip and
membrane the snap-on will occur neither at zero force nor at zero penetration.
Furthermore, one should not forget that hysteresis is ultimately a consequence of
the energy barrier which goes along with such discontinuities. For macroscopic sys-
tems this barrier is typically so big that the transition actually happens at either
of the two end-points of the S-shaped hysteresis curve, where the barrier van-
ishes (the spinodal points). However, for nano-systems barriers are much smaller,
comparable to thermal energy kBT , such that thermal fluctuations can assist the
barrier-crossing event. In the present case the barrier at the equilibrium transition
point is about 1κ, i. e., about 20 kBT for typical bilayers. However, already at
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f̃ = 0.5 its magnitude has decreased by about 20%. This shows that we have to
expect a narrowing-down of the hysteresis amplitude compared to a macroscopic
system.

Upon increasing the adhesion w̃ even further, one will reach a critical value w̃0 at
which the “back-bending branch” of the force-distance curve touches the vertical
line f̃ = 0. At this point the tip is being pulled into the pore even if there is no
force at all. Conversely, neglecting barrier complications, this also implies that at
the critical adhesion energy w̃ = w̃0 an infinitesimal pulling force will suffice to
unbind tip and membrane, even though the adhesion between tip and membrane
is greater than zero. It is very important to keep this fact in mind if one wants to
use AFM measurements for the determination of adhesion energies.

For w̃ > w̃0 one obtains stable solutions even when pulling the tip upwards (where
f̃ < 0).13 The maximum possible force before detachment, f̃det, again corresponds
to the leftmost point of the back-bend, and it increases with increasing w̃; we
will come back to this later. Notice that detachment always happens for values
of h̃0 which are positive, i. e., when the AFM tip is still below the substrate level.
Contrary to what one might have expected, pulling will in this case not draw the
membrane upwards into a tubular lipid bilayer structure (a tether), which at some
specific elongation will fall off from the tip and snap back. Rather, the strong
adhesion pulls the tip far into the pore, and while pulling on it indeed lifts it up,
unbinding still happens below pore rim level.

Strong adhesion energy

At even larger adhesion energy entirely new stationary solution branches emerge,
as Fig. 4.11 illustrates for w̃ ∈ {5, 10, 15} and σ̃ = 1. We first recognize the well-
known hysteretic branch, already seen in Fig. 4.10, which for increasing w̃ extends
to much larger negative forces, even though the snap-off height h̃0 only changes
marginally. The shapes of two typical profiles are illustrated in the insets c and d.
Notice that this branch is always connected to the origin, but for larger values of
w̃ it starts off into the third quadrant (negative values for f̃ and h̃0). At first sight
it seems that we finally get solutions which correspond to a pulled-up membrane;
however, this region close to the origin corresponds to a maximum and is thus
unstable.

Overhang branches Contrary to the hysteretic branches, the new branches
depicted in Fig. 4.11 do not connect to the origin. This classifies them as a
genuinely nonlinear phenomenon, since they cannot be obtained as a small per-
turbation around the state f̃ = h̃0 = 0. In the first quadrant (f̃ , h̃0 > 0) they all

13 Strictly speaking all of these solutions are metastable with respect to detachment of the tip
from the membrane.
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Figure 4.11: Force-distance curves for σ̃ = 1 and w̃ = 5 (solid), 10 (dashed) and
15 (dotted). A thinner line style is used for those parts of the curves where the
corresponding profiles exhibit overhangs. In the insets a–d profiles for different values
of (f̃ , h̃0) are depicted (scaling is h̃ : ρ̃ = 5 : 3). In the inset on the lower left corner
the “branch splitting” is shown as discussed in the text (w̃ = 15.0 (dotted line) and
15.5 (solid line)).

correspond to profiles which show overhangs (see inset a and b). These branches
had been omitted in Fig. 4.10, since for weak adhesion they always correspond
to maxima and are thus irrelevant. This changes for stronger adhesion, though,
where they become stable in certain regions (for instance, inset b is locally stable).
The details by which this happens are complicated and will be discussed in more
detail below.

Following the new branches to negative forces we see that the one for w̃ = 15
loses its overhang around f̃ ≈ −6. That this can happen continuously is not
surprising, since within angle-arc-length parametrization there is nothing special
about the point where |ψ| = 90◦ (only the shooting method might use occurrences
of |ψ| > 90◦ as a potential termination criterion for integration (see Technical
Point 4.3)).
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Branch splitting We also see that (for sufficiently large w̃) there is a point
where the hysteresis branch intersects the new nonlinear branch. There the values
of f̃ and h̃0 coincide for both branches, but the detachment angle α and the total
energy of the profile are generally different. However, the difference in energy at the
intersection decreases with increasing w̃, and around w̃ = 15.3 it finally vanishes.
At this degenerate point a branch splitting occurs, where the connectivity of the
two branches re-bridges, as illustrated in the lower left inset in Fig. 4.11. Rather
than connecting to the origin, the wide loop of the original hysteresis branch
now joins into the overhang branch of the first quadrant, while the part that was
connected to the origin now joins into the overhang branch in the third quadrant.

Cusps Figure 4.12 shows the force-distance curve branches for the even larger
adhesion energy w̃ = 20. This depicts a situation well after the branch-splitting, so
we recognize the old hysteretic branch connecting with overhangs, and the branch
connecting to the origin extending exclusively in the third quadrant. In contrast to
Fig. 4.11, the line styles in Fig. 4.12 are chosen to illustrate local minima (solid) or
maxima (dotted). What immediately strikes one as surprising is that the profiles
at f̃ = −4 belonging to the insets f and h both correspond to maxima, even though
they sit on both sides of a back-bending branch, close to its end (compare this to
the “usual” scenario at (f̃ ≈ −49, h̃0 ≈ 3.6). Moreover, the solution belonging to
inset f turns into a local minimum for slightly more negative forces, without any
noticeable features of the branch. How can this happen?

The explanation is illustrated in the lower left inset in Fig. 4.12, which shows the
total energy as a function of detachment angle α. Recall that extrema in this
plot correspond to stationary solutions. As can be seen, the energy is multivalued,
meaning that there exists more than one solution at a given detachment angle
(these would then also differ in their value of their penetration h̃0). But more
excitingly, this graph exhibits a boundary extremum at a lowest possible nonzero
value of α in the form of a cusp. This is how one can have two successive maxima
on a curve without an intervening minimum—the minimum is simply not differ-
entiable. Hence, there is a third solution branch, corresponding to the cusp, at
which the contact curvature condition from Eqn. (4.15b) is not satisfied, because
this condition is blind to the possibility of having non-differentiable extrema. Plot-
ting this cusp branch also into Fig. 4.12, we finally understand how the switching
of a maximum into a minimum happens: it occurs at the point of intersection
with the cusp branch. As the lower left inset in Fig. 4.12 illustrates, the maximum
belonging to the solution f joins the cusp-minimum (belonging to solution g) in
a boundary flat point, roughly at force f̃ = −4.8. For more negative forces this
flat point turns up, leaving a boundary cusp maximum and a new differentiable
minimum. Notice that a similar exchange happens once more at (f̃ ≈ −26.4,
h̃0 ≈ 1.6). Incidentally, since at the cusp the contact curvature condition is not
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Figure 4.12: Force-distance curves for σ̃ = 1 and w̃ = 20 (including cusp branch).
Solid lines correspond to local minima, dotted lines to local maxima. A thinner line
style is used for those parts of the curves where the corresponding profiles exhibit
overhangs. In the insets e–h profiles for different values of (f̃ , h̃0) are depicted (scaling
is h̃ : ρ̃ = 5 : 3). In the inset on the left lower corner the total energy Ẽ is plotted as a
function of detachment angle α for different forces f̃ (see text for further explanation).

satisfied, and since this is the only point where the adhesion energy w̃ enters, the
location and form of the cusp branch is independent of the value of w̃.
The existence of the cusp branch poses the question whether the solutions corre-
sponding to it are physically relevant (at least the ones which are minima). It is
not so much the lack of differentiability at a cusp minimum which causes concern,
but rather the fact that it is located at a boundary. Take for instance the Ẽ(α)
curve in the lower left inset of Fig. 4.12 corresponding to f̃ = −4. Now consider a
(nonequilibrium) solution which sits on the upper branch, somewhere between the
solutions g and h. To lower the energy, this solution will reduce the detachment
angle α, thereby approaching the minimum at g. But once g has been reached, no
further reduction in α seems possible, since for smaller values no equilibrium so-
lution exists. The crucial point is that our present theory is insufficient to answer
what else would be going on for smaller α. It could, for instance, be that there
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Figure 4.13: Scaled detachment force f̃det as a function of scaled adhesion energy w̃
for four values of the scaled tension, σ̃ = 1
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are indeed solutions, but they are not time-independent. This might be analogous
to the well-known situation of a soap film spanned in the form of a catenoidal
minimal surface between two coaxial circular rings of equal radius d (see Technical
Point 2.2 on page 35). For a ring separation exceeding 1.325 d no more stationary
solution exists, even though the limiting profile is in no way singular. However,
when slowly pulling the two rings beyond this critical separation, the soap film
does not suddenly rupture. Rather, it becomes dynamically unstable and begins
to collapse. In the case we are studying here, the system drives itself to the sin-
gular boundary point, and without a truly dynamical treatment it is not possible
to conclude whether it would remain there or start to dynamically approach a
different solution. For this reason we do not want to overrate the significance
of the cusp branch; yet, its existence is still important in order to explain the
behavior of the other “regular” branches, for instance their metamorphosis from
maximum-branches into minimum-branches or vice versa.

Detachment forces A measurable quantity in the experiment is the detach-
ment force between tip and membrane, which is the maximum pulling force f̃det

that can be applied before the tip detaches from the membrane. In Fig. 4.13
this force is plotted as a function of adhesion energy w̃ for different values of
the scaled tension σ̃. Starting from a certain threshold adhesion w̃thr(σ̃), below
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4 How to determine elastic properties of a membrane on the nano-scale

which no hysteresis occurs, f̃det decreases with increasing w̃ and exhibits a linear
behavior for higher adhesions. Increasing σ̃ also increases the threshold adhe-
sion (e. g. w̃thr(1/16) = 0.22 compared to w̃thr(1) = 1.25). In the large-w̃-limit
f̃det/w̃ = Fdet/2πRw finally approaches a limit which is independent of κ and σ
and only depends on the geometry. The elasticity of the membrane no longer in-
fluences the measurement of the adhesion energy – not because the membrane is
not deformed, but rather because its deformation energy is subdominant to adhe-
sion. But for more realistic smaller values of w̃ this decoupling does not happen,
and adhesion energies can only be inferred from the detachment force when a full
profile calculation is performed.
At higher values of σ̃ also other qualitative features (such as additional instabilities)
occur. However, these ramifications will not be discussed in the present work.

Tethers Characteristically, the detachment happens at deep indentations (h̃0

close to the maximum indentation possible). Long pulled-out membrane tubes
(tethers), as they have been studied in the literature [PHG02, DJP02, KCD+05],
are not observed. Even though in our calculations we find profiles with h̃0 <
0, these solutions either correspond to energetic maxima, or they are only local
minima – with the global minimum at h̃0 > 0 corresponding to a significantly lower
energy. This is a consequence of the adhesion balance present in our situation:
upon pulling upwards, it is more favorable for the tip either to be “sucked in”
completely or to detach from the membrane, rather than forming a long tether.
As Fig. 4.12 shows, there is a very small “window of opportunity” at f̃ ≈ −5
where (locally) stable solutions pulled above the surface exist. Yet, their profiles
look essentially like the ones of inset f or g and show no resemblance to real long
tethers. Upon increasing the force they become unstable, such that the tip either
falls off the membrane, or is drawn below the membrane plane (notice that there
exist two minima at f̃ slightly smaller than −5, but both at positive indentation).
This analysis shows that it appears impossible to pull tethers using a probe with
a certain binding energy, despite existing experiments in which tethers of microm-
eter size were generated [DS95, DS99, MSdM02, KCD+05]. Consequently, the
assumption of an adhesion balance does not seem to be correct in these cases.
Indeed, in these studies the experimental setup was different (membrane-covered
micron-sized beads [DS95, DS99, KCD+05] and AFM tips covered by lipid mul-
tilayers [MSdM02]). In the present situation tethers are also observed [SMD+06],
but these events are not very reproducible, and based on the above calculations we
would tentatively attribute them to a pinning of the membrane at some irregularity
of the tip.
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4.5 What can be learnt in future experiments?

The values of σ and κ can be obtained by repeating the nanodrum experiment
with the same membrane for different pore radii Rpore. For the same purpose,
the adhesion between tip and membrane can be increased to exploit the rich
scenario discussed in the previous section.

In the previous sections we have discussed the indentation of a pore-spanning
bilayer by an AFM tip. We have seen that the force-distance curves show a linear
behavior for small forces in a broad parameter range if the adhesion between tip
and membrane vanishes. This result is in agreement with recent experiments (see
Sec. 4.1.2 and Fig. 4.9). However, such a linear behavior is unfortunately too
featureless to reveal the values of both elastic parameters, σ and κ.

One way out of this apparent cul-de-sac would be to repeat the experiment for
different pore radii Rpore while keeping all other parameters fixed. Since σ and κ
are the same for all pore sizes in that case, it should be possible to extract their
value from the spring constants K of the measured force-distance curves.

The elastic parameters can also be obtained by considering systems where the
adhesion w between tip and membrane has been increased experimentally. As we
have seen, the curves change their behavior dramatically for w 6= 0. It should thus
be possible to fit two parameters to the resulting curves which would yield a local
κ and σ in one fell swoop whereas w can simultaneously be determined from the
snap-on of the tip upon approach to the bilayer. The experimentalist, however,
has to make sure in that case that the line of contact between tip and membrane
is really due to a force balance as described in this chapter and not due to other
effects such as pinning of the membrane to single spots on the tip. In practice,
this is rather difficult and will be a challenge for future experiments.

One also has to keep in mind that the assumption of a perfect parabolic tip is
quite simplistic compared to the experimental situation. It is probably valid in
the vicinity of the apex but generally fails further up. Since the force-distance
behavior close to the depth-saturation depends strongly on the actual tip shape,
one can only use that part of the force-distance curve for data interpretation where
the indentation is still small. To predict the whole behavior, the exact indenter
shape has to be known: as long as the situation stays axisymmetric one may,
in principle, redo the calculations of this chapter with the new shape. This is,
however, rather tedious and therefore inexpedient in practice.

Our theoretical approach does not account for hydrodynamic effects although the
whole experimental setup is in water and the AFM tip is moved with a certain
velocity. First measurements have shown, however, that it is possible to increase
the velocity of the tip up to 60µms−1 without altering the force-distance curves
dramatically [SMD+06]. One can understand this result with the help of the
following simple estimate: assume that the tip is a sphere of radius Rtip moving
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4 How to determine elastic properties of a membrane on the nano-scale

with the velocity v in water. When indenting the membrane to a distance d it
will also have to overcome a dissipative hydrodynamic force Fdiss in addition to
the elastic resistance of the membrane. The energy dissipated in this process,
Ediss = Fdissd = 6πηRtipvd, is of the order of the thermal energy if typical values
are inserted (η = 10−3Pa s, Rtip = 10 nm, v = 60µms−1, d = 100 nm). This is
substantially smaller than the corresponding elastic energy Eelast. Complications
arising from a correct hydrodynamical treatment were thus omitted here.
Including adhesion, the velocity of the measurement should nevertheless be as slow
as possible to ensure that the line of contact equilibrates due to the force balance.
If this is guaranteed, one can also check whether the predicted linear behavior
between detachment force and adhesion is actually valid.
This chapter has presented a new setup with which elastic parameters of a mem-
brane can be obtained on the nano-scale. Once these parameters are known,
problems of membrane mechanics can be addressed quantitatively. One particu-
larly interesting problem in this context involves interface-mediated interactions,
which will be discussed in the final part of this thesis.
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between particles

Particles bound to an interface may interact via the changes they impose on the
surface geometry or on internal degrees of freedom such as a lipid tilt. The induced
forces and torques are called interface-mediated interactions.

These indirect interactions play an important role in technological processes such
as ore flotation or foam stabilization [RSS89, NS03]. Other research suggests that
such forces can induce the self-assembly of small-scale structures which could offer,
for instance, new ways of manufacturing components of micro-electromechanical
systems [VM04].

In nature, interface-mediated interactions are a possible candidate to explain mem-
brane remodeling in the biological cell (see Chap. 1): curvature-mediated attrac-
tive interactions could aid cooperation of proteins in the membrane and comple-
ment the effects of direct van der Waals’ or electrostatic attractions [BV06, Ant06,
Koz07]. Whereas it is difficult to isolate the different contributions experimentally,
theory provides a possibility to do so.

Unfortunately, theoretical considerations of such interactions are mathematically
involved because the membrane shape equation is a nonlinear differential equation
as seen in Chap. 2. Most present calculations therefore yield approximate results
for the forces. Even the sign of the interaction is not obvious.

Nevertheless, substantial progress can still be made if the problem is tackled with
all possible means: following the techniques developed in Chap. 2, forces and
torques on the particles can be directly related to the local membrane geometry via
stress and torque tensors. A host of valuable exact nonlinear results for symmetric
two-particle configurations can be established. Additionally, the nonlinear shape
equation can be solved in terms of elliptic functions for the easiest case of two
cylinders on a membrane.

If more than two particles adhere to the membrane, multi-body forces become
important: the interaction energy is generally not expressible as a sum over pair
potentials. The superposition principle does not hold due to the nonlinearity of the
theory. To include multi-body forces as well, coarse-grained computer simulations
are presented and compared to the results of a cell model, similar in spirit to that
used in Poisson-Boltzmann theory.
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∂Σout

Σ1

Σ2Σ3

Figure 5.1: Interface-mediated interactions. Forces as well as torques act on each
particle due to the distortions of the interface shape caused by the other particles.

5.1 Forces and torques on particles adhering to an

up-down symmetric membrane

Analytical expressions for the membrane-mediated force between two parti-
cles can be obtained with the help of the stress tensor. Additionally, torque
and force balance yield several analytical conditions on the membrane geom-
etry.

Let us again consider the membrane from a mesoscopic point of view. In the
following we will assume that solid particles are bound to it. These can either
represent proteins or other objects like viruses.

5.1.1 Balance of forces and torques

Consider a multiparticle configuration such as the one depicted in Fig. 5.1: forces
as well as torques act on each of the particles due to the distortions of the shape
caused by the other particles. Such a situation can thus only be stationary if the
particle positions and orientations are constrained by external forces and torques,
respectively. As we have seen in Chap. 2, these forces and torques are determined
completely by the surface geometry.1 The external force acting on the particle that
adheres to the surface patch Σ1, for instance, is equal to the external force F ext

acting on the whole patch as given by Eqn. (2.16); this is because the stress tensor
is divergence-free on any part of the surface not acted upon externally. The force
F (i) we will consider in the following is the force on the particle i mediated by the
interface counteracting the corresponding external force; the former is evidently

1 Note that we neglect bulk stresses at first.
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5.1 Forces and torques on particles

equal to minus the latter (for i = 1 one thus has F (1) = −F ext). Similar arguments
apply to the torque M (i) on the ith particle.
The total force and the total torque on the system must vanish if the multiparticle
configuration is in mechanical equilibrium:

N∑

i=1

F (i) = F out and
N∑

i=1

M (i) = M out , (5.1)

where F out is the force and M out the torque on the outer boundary ∂Σout (see
again Fig. 5.1). The number N of particles will be finite except for Sec. 5.3 where
the phase behavior of an infinite amount of particles will be studied.
As in the previous chapter, we will mainly consider an up-down symmetric fluid
membrane with nonvanishing surface tension σ characterized by the Hamiltonian
density

H = σ +
1

2
κK2 , (5.2)

where the Gaussian curvature term is discarded directly as it plays no role in the
following (see Technical Point 2.3 on page 38 for a discussion). The ground state
of the membrane in the absence of particles is an infinite flat plane with zero
curvature. In this case the energy is proportional to the area and thus infinite.
This constant energy will play no role in the following. The energy is recalibrated
to set it to zero.
Particles that are bound to the membrane typically deform its shape and increase
its energy. These energy changes, however, must be finite whenever the forces
and torques applied to fix the particle configuration are finite.2 This implies that
the interface becomes asymptotically flat remote from the particles, even if σ is
infinitesimally small (see Technical Point 5.1).
It is useful to decompose forces and torques into a horizontal part parallel to the
asymptotic plane and a vertical part orthogonal to it. When the surface tension
vanishes, Kim et al. have shown that the vertical force and the horizontal torque
on the outer boundary at infinity must vanish in equilibrium [KNO98]. Their
discussion can be extended to treat situations in which σ 6= 0. The change is,
however, nontrivial as we will see in the next section.

5.1.2 Forces and torques on the outer boundary

Since the membrane becomes asymptotically flat if σ 6= 0, we can use linearized
Monge gauge to describe its behavior remote from the particles (see Technical
Point 5.1 and App. A.4.1). For the following assume that the outer boundary

2 This holds for a finite number of particles. If infinitely many particles adhere to the membrane
and deform its shape, the energy change can be infinite. However, one then requires the change
per particle to be finite.
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Technical Point 5.1: Asymptotic behavior of the membrane

Consider an up-down symmetric fluid membrane with a finite number of finite-
sized particles bound to it. What is the asymptotic behavior of surface properties
such as the curvature K and its derivatives far away from the particles?
To answer this question, let us adapt a line of argument originally introduced in
[KNO98] for the case of vanishing surface tension. The excess membrane energy
E induced by the particles is finite. From this requirement it immediately follows
that K has to be square integrable and thus vanishes far away from the particles;
the membrane becomes asymptotically flat.
This fact allows us to use linearized Monge gauge to describe its behavior remote
from the particles (see App. A.4.1): in contrast to the previous chapter where
we considered an axisymmetric situation, the height h(ρ, ϕ) above the asymptotic
plane does generally not only depend on the radial distance ρ but also on the
azimuthal angle ϕ. We choose to place the origin somewhere in the middle of the
surface region to which the particles adhere. For large ρ, the curvature K is then

equal to the negative (base plane) Laplacian of h, K
(A.72)
= −∇

2h.
The energy can be written as E = Eσ + Eκ, where Eσ = (σ/2)

∫
dϕ dρ ρ (∇h)2

and Eκ = (κ/2)
∫

dϕ dρ ρ (∇2h)2 are both positive and thus finite (compare
Eqn. (4.6)). The corresponding membrane shape equation, expressed in terms

of K, is given by ∇
2K

(4.7,A.72)
= λ−2K which has the general solution [WKH98]

K(ρ, ϕ) = a0 K0(ρ/λ) +
∞∑

n=1

(an cosnϕ+ bn sinnϕ) Kn(ρ/λ)

+
∞∑

n=1

(cn cosnϕ+ dn sinnϕ) In(ρ/λ) , (5.I)

where Kn and In are modified Bessel functions of the first and second kind, respec-
tively (see Technical Point 4.1 on page 85 and Ref. [AS70]). The functions In tend
to infinity as ρ → ∞ (see (4.III) in Technical Point 4.1). Thus, cn and dn must
vanish. The asymptotic expansion of Kn for large ρ is also given in (4.III) and
shows that the functions Kn(ρ) decay essentially exponentially for increasing ρ.

lies at a certain radial distance ρ = R away from the surface region to which the
particles adhere.
The force F out on the outer boundary is a line integral over the appropriate projec-
tion of the stress tensor, −

∫

∂Σout
ds laf

a. Its integrand laf
a depends on derivatives

and powers of K plus a surface tension term (see Eqn. (2.31) with K0 = 0). For
R → ∞ the contribution to the force due to curvature vanishes.3 The only sur-

3 All curvature terms in the integrand decay essentially exponentially for increasing R as σ 6= 0

110



5.1 Forces and torques on particles

viving contribution at infinity is a horizontal pulling force proportional to σ.

What about M out? A vertical torque cannot be compensated by the outer bound-
ary at infinity. The physical explanation for this is that the surface does not resist
shear forces. One now might naively expect that for R → ∞ a horizontal torque
vanishes as well: the membrane becomes asymptotically flat at infinity and the
corresponding force has no vertical component. It appears to be self-evident that
the line integral −

∫

∂Σout
ds lam

a vanishes.

A closer inspection of the integral shows, however, that it does not necessarily
always vanish: while the vertical force component converges to zero, the length R
of the corresponding lever arm goes to infinity simultaneously. Additionally, one
integrates along a contour whose length depends linearly on R. These two effects
permit a finite value to remain.

Up to terms of O(1/R) or higher order the torque at ρ = R is given by

M out = σ

∮

∂Σout

ds
(
X × l

)
= σ

∫ 2π

0

dϕ R [Rρ+ h(R,ϕ)z] × l

= σ

∫ 2π

0

dϕ R
{
− h(R,ϕ)lϕρ+ [h(R,ϕ)lρ −Rlz]ϕ+Rlϕz

}
, (5.3)

where l = lρρ + lϕϕ + lzz in cylindrical coordinates with basis vectors {ρ,ϕ,z}.
The unit vectors ρ and ϕ lie on the reference plane whereas z is normal to it.
The moving trihedron of the boundary curve consists of the vectors l, t, and n
which are perpendicular to each other (see also App. A.2). In particular, l may be
expanded in terms of the height function h and its derivatives:

l =
ρ− 1

qR

[
(∂ϕh)(∂ρh)

]∣
∣
ρ=R
ϕ+ 1

q
(∂ρh)

∣
∣
ρ=R
z

√

1 +
{

1
qR

[
(∂ϕh)(∂ρh)

]∣
∣
ρ=R

}2

+
{

1
q
(∂ρh)|ρ=R

}2
, (5.4)

where q := 1 +
[

(∂ϕh)|ρ=R
R

]2

.

The height function h(ρ, ϕ) satisfies the linearized shape equation ∇
2(∇2h) =

λ−2
∇

2h (see Eqn. (4.7)). The solution of this equation consistent with a finite

(see Eqn. (5.I) in Technical Point 5.1 where cn and dn are zero). Integrating these terms along
a contour whose length depends linearly on R yields zero for R→ ∞.
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value for Eσ is [WKH98]4

h(ρ, ϕ) = C0 + A0 K0(ρ/λ)

+
∞∑

n=1

(An cosnϕ+Bn sinnϕ) Kn(ρ/λ)

+
∞∑

n=1

(Cn cosnϕ+Dn sinnϕ) ρ−n . (5.5)

Inserting Eqn. (5.4) and (5.5) into the equation of the torque (5.3) one obtains

M out = σ

∫ 2π

0

dϕ R
[2(C1 cosϕ+D1 sinϕ)

R
ϕ+ O

( 1

R2

)]

. (5.6)

The unit vector ϕ still depends on the coordinate ϕ. To evaluate the integral
over ϕ in (5.6), we rewrite ϕ as ϕ = − sinϕx + cosϕy, where x and y are the
Cartesian coordinates parallel to the asymptotic plane and ϕ is measured from the
x axis. We finally obtain for R → ∞:

M out = 2πσ(−D1x+ C1y) . (5.7)

Hence, the horizontal torque at infinity is in general not equal to zero even though
the vertical force is. Its contributions stem from those terms of the height func-
tion (5.5) which are proportional to ρ−1 and decay slowest for increasing distance
from the particles. Conversely, the existence of an external torque forces the sur-
face to display a very slow 1/ρ decay.
In antisymmetric configurations, such as the ones that we will consider in the
following, it is this horizontal contribution on the outer boundary that makes it
possible to balance an external torque.
Knowing what happens at the outer boundary, we can now derive analytical expres-
sions for the force between two particles in a symmetrical configuration, thereby
extending the results of Ref. [Mül04]. Furthermore, the complete set of equations
describing force and total torque balance (see Eqns. (5.1)) will be derived.

5.1.3 Two-particle configurations with symmetry

Consider a symmetrical configuration of two identical particles bound to an asymp-
totically flat surface as sketched schematically in Fig. 5.2. We label by {x,y,z}
the Cartesian orthonormal basis vectors of three-dimensional space R

3 aligned with
the asymptotic plane. The vectors x and y lie parallel to this plane whereas z is
its upward pointing unit normal.

4 Note that we now consider a membrane which is not axisymmetric in general. The height
function is therefore a series expansion and does not consist of only four terms as in Chap. 4.
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Figure 5.2: Two identical particles bound to an interface. As described in the text,
it is possible to deform the contour of integration in order to exploit the available
symmetries (see also Ref. [Mül04]).

We will discuss two possible symmetries: mirror symmetry in the (y, z) plane (the
symmetric case) or a twofold rotational symmetry with respect to the y axis (the
antisymmetric case). The line joining corresponding points on the particles lies
parallel to the (x, z) plane. We place the origin of the coordinate system in the
middle between the two particles on the intersection line of the asymptotic and
symmetry plane (symmetric case) or the line of symmetry (antisymmetric case),
respectively.
In the previous section we have seen that external horizontal torques can be bal-
anced by the outer boundary. This is necessary for a stable configuration: we
consider configurations where the separation between the particles is fixed by hor-
izontal constraining forces. In the antisymmetric case, the two particles do not
generally lie on the same line of action. Thus the forces will apply a horizontal
torque My to the surface which has to be balanced by the outer boundary. In
the following, we will consider situations in which this torque is the only external
torque on the entire surface.
This restriction does not exclude external vertical torques M (i) on the individual
particles ; the symmetry will not be broken as long as all these torques cancel.
Think, for instance, of a symmetric configuration consisting of two spheres on a
soap film with a saddle-shaped (quadrupolar) line of contact [SDJ00, FG02]. A
vertical torque Mz on one of the particles is consistent with the symmetry so long
as a torque −Mz is applied to its partner. Such possibilities may, in principle,
be accommodated within the formalism. Here, however, we will only consider
situations in which the particle orientations have equilibrated and these torques
vanish.
Before considering torques more closely, let us first derive analytical expressions
for the pair force.
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Figure 5.3: Illustration of the geometry of a symmetric (solid line) and an antisym-
metric (dotted) two-particle attachment.

5.1.4 Analytical force expressions

As explained in Chap. 2 and Sec. 5.1.1, the force on the left particle can be ob-
tained by integrating the proper projection of the stress tensor along a contour
surrounding the particle (see Fig. 5.2). Since the stress tensor is divergence-free
on any part of the surface not acted upon externally, the contour of integration
can be deformed to exploit the available symmetry: as it is sketched in Fig. 5.2,
it can be pulled open to infinity such that the surface is finally flat at branches 2,
3, and 4 and the stress tensor thus very simple. The contribution from branch 2
will cancel that from 4; the only difficult term stems from branch 1. The force on
the particle is thus given by

F = −
(∫

1

+

∫

3

)

ds laf
a . (5.8)

Helfrich membrane

For the up-down symmetric Helfrich membrane, the force can be obtained by
inserting the corresponding stress tensor (2.30) into Eqn. (5.8) and setting K0 to
zero. The resulting expression

F = −
∫

1

ds
{κ

2
(K2

⊥ −K2
‖ − σ)l + κK⊥‖K t− κ(∇⊥K)n

}

+ σ

∫

3

ds l . (5.9)

can be simplified further due to the symmetry: both mirror and twofold axial
symmetry of branch 1 imply that the term proportional to t vanishes. In the first
case this follows from the fact that branch 1 becomes a line of curvature, i. e., a
curve that follows a principal direction at every point (see page 172 in App. A.1);
hence, the curvature tensor is diagonal in (l, t) coordinates and thus K⊥‖ vanishes.
In the second case twofold axial symmetry forces both K‖ as well as K⊥ to be
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zero, since branch 1 becomes a straight line and the profile is antisymmetric. In
consequence, K = K⊥ + K‖ = 0. Thus, the force on that branch can be written
as:

F 1 = −
∫

1

ds
{κ

2
(K2

⊥ −K2
‖ − σ)l− κ(∇⊥K)n

}

. (5.10)

This equation was one of the central results of Ref. [Mül04]. As was shown there,
it can be simplified further if one looks separately at the two different possible
symmetries (see Fig. 5.3).

Symmetric case The tangent and normal vectors on branch 1 lie in the (y, z)
plane, hence l = x. The derivative of K in the direction of l along branch 1, ∇⊥K,
is zero due to mirror symmetry. On branch 3, the surface is flat and thus the stress
tensor is equal to −σea. With this information we can calculate the total force
F 1 + F 3 = Fsymx on the particle:

Fsym = σ∆L− 1

2
κ

∫

1

ds
(
K2

⊥ −K2
‖
)
, (5.11)

where ∆L is the excess length of branch 1 compared to branch 3.

Thus, the force can be attractive or repulsive, depending on the values of the
perpendicular and parallel curvatures at the mid-line. If we restrict ourselves to
the case of two parallel cylinders adhering to the same side of the membrane,
however, the overall sign becomes obvious as long as the particles are long enough
such that end effects can be neglected: the contribution K2

‖ then vanishes because
branch 1 becomes a line. For the same reason ∆L = 0. This leads to the formula

Fsym,cyl/L = −1

2
κK2

⊥ , (5.12)

where L is the length of one cylinder. Thus, the two cylinders repel each other.

The derived force expressions can very naturally be generalized to Hamiltonians
of higher order in curvature. For example, sticking with an up-down symmetric
fluid membrane, the next curvature order would be quartic (see page 63). If added
to Hamiltonian (5.2), additional contributions to the force arise which are given
in Technical Point 5.2 for the case of the two cylinders.

Antisymmetric case Here branch 1 is a twofold symmetry axis and, as we have
seen above, K‖ = K⊥ = 0. We fix the horizontal separation of the particles and
allow other degrees of freedom, such as height or tilt, to equilibrate (see Sec. 5.1.3).
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5 Membrane-mediated interactions between particles

Technical Point 5.2: Fsym,cyl/L including the quartic Hamiltonian (1)

The quartic Hamiltonian density (3.31) (see page 63) gives rise to three more
scalars which are quartic in the curvature: K4, K2R, and R2. For cylinders,
R = 0, which just leaves H′

4 = (1/4)κ4K
4 as the only nonvanishing term. Using

the general expression of the stress tensor for the scalar Kn as calculated in the
Appendix (see Eqn. (B.12)) and going through the calculation from Sec. 5.1.4 we
find Fsym,cyl/L = −3

4
κ4K

4
⊥ for the two parallel cylinders in symmetric configura-

tion. This term increases the repulsion between the cylinders found on the linear
elastic level (see Eqn. (5.12)), provided κ4 > 0, i. e., provided the additional term
further stiffens the membrane.
Assuming that H′

4 perturbs the usual bending Hamiltonian 1
2
κK2, we can use the

two moduli to define a characteristic length scale ℓ4 :=
√

|κ4|/κ. The overall force
up to quartic order in the curvature can then be written as

Fsym,cyl/L = −1

2
κK2

⊥

[

1 ± 3

2
(ℓ4K⊥)2

]

, (5.II)

where the positive sign corresponds to stiffening. Notice that the correction term
becomes only noticeable once the curvature radius of the membrane is no longer
large compared to the length scale ℓ4. It appears natural that ℓ4 is related to the
membrane thickness, which for phospholipid bilayers is about 5 nm (see Sec. 1.1.1).
Assuming a (quadratic order) bending stiffness of κ ≃ 20 kBT , we thus expect
values for the modulus κ4 on the order of 103 kBT nm2.
The complete Hamiltonian density (3.31) is of order length

−4 and contains also
the term H∇ = 1

2
κ∇(∇aK)(∇aK), which depends on derivatives of the surface

curvature. Using the expression for the stress tensor derived in the Appendix (see
Eqn. (B.25)) and again going through the calculation in Sec. 5.1.4, we find

F∇
sym,cyl/L =

1

4
κ∇∇2

⊥K
2
⊥ =

1

4
κ∇

d2

ds2
K2

⊥ (5.III)

as the additional contribution to the force due to H∇. It depends on very subtle
details of the membrane shape: the curvature is (roughly) a second derivative of
the membrane position, and this we need to square and differentiate two more
times. Unfortunately, the sign of the force contribution is not obvious here, as the
second derivative of K2

⊥ with respect to s may be either positive or negative. If
the quartic Hamiltonian density is treated as a perturbation, however, one can say
a bit more about the sign as we will see in Technical Point 5.7 on page 143.
Finally, we can again consider the characteristic length scale here, ℓ∇ =

√

|κ∇|/κ
(compare page 70). The importance of a perturbation H∇ of the usual bending
Hamiltonian depends on whether or not the curvature changes significantly on
length scales comparable to ℓ∇.
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The force on the particle is thus parallel to x, F antisym = Fantisymx, and given by

Fantisym = κ

∫

1

ds [λ−2(x · l− 1) + (∇⊥K)(x · n)]

= κ

∫

1

ds [λ−2(cosψ(s) − 1) − sinψ(s)(∇⊥K)] , (5.13)

where ψ is the angle between x and l (or z and n, respectively, see also Fig. 5.3
and Eqns. (A.74)). Again, the sign of the force is not obvious. For the case of
two parallel cylinders adhering to opposite sides of the interface, however, ∇⊥K‖
vanishes at the midpoint. The angle ψ = ψmid is constant along branch 1 and
Eqn. (5.13) reduces to (see [Mül04])

Fantisym,cyl/L = ±
√

σ2 + (κ∇⊥K⊥)2 − σ , (5.14)

where the positive sign is valid for 0◦ < ψmid < 90◦ and the negative sign for
90◦ < ψmid < 180◦. In Sec. 5.2 we will see that the latter case is not relevant if the
separation between the centers of the two cylinders is larger than their diameter.
We will therefore focus on the case 0◦ < ψmid < 90◦ in the following, for which the
cylinders attract.
In Sec. 5.2, the two cylinder problem will be solved in the nonlinear regime for both
symmetries. Before, we will take a short look at how internal degrees of freedom,
such as a lipid tilt, and bulk stresses can be incorporated into the formalism.

Tilt degree of freedom

In Sec. 1.2.2 we introduced a tangential vector field ma on the membrane, thereby
modeling the degrees of freedom associated with the tilt of the lipids. The minimal
intrinsic Hamiltonian density Eqn. (1.6) already gives rise to a quite formidable
additional metric stress, Eqn. (2.39). Yet, for sufficiently symmetric situations the
expression for the force simplifies quite dramatically as we will now see.
Let us consider two conical membrane inclusions which are inserted with the same
orientation into a membrane at some fixed distance apart. Each inclusion will, due
to its up-down-asymmetry, act as a local source of tilt. Provided the membrane is
not in a spontaneously tilted phase, this tilt will decay with some characteristic
decay length as described in Sec. 2.2.3 (in particular in Technical Point 2.4 on
page 40). A typical situation may then look like the one depicted in Fig. 5.4.
What can we say about the forces between the two inclusions mediated by the tilt
field?
Following the same reasoning as for the geometrical forces discussed above, and
assuming that the tilt vanishes on branch 3 so that this contribution vanishes, we
find using Eqn. (2.40a)

Fm = −
∫

1

ds laT
ab
m eb , (5.15)
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Figure 5.4: Two conical inclusions act as sources of a local membrane tilt (inset).
The tilt-field-lines are illustrated qualitatively in this symmetric situation.

where T abm is given by Eqn. (2.39). To simplify this expression, we examine the
symmetry. For this it is very helpful to again expand vectors and tensors on
branch 1 in local (l, t)-coordinates, just as we did in the geometrical case above.
Mirror symmetry then means that m‖ = tam

a is an even function along the direc-
tion perpendicular to branch 1, whereas m⊥ = lam

a is an odd function and thus
zero everywhere on that branch. It follows that both ∇⊥m‖ and ∇‖m⊥ vanish
everywhere on branch 1. Thus we have

M
1
= (∇⊥m⊥) + (∇‖m‖) , (5.16a)

MabM
ab 1

= (∇⊥m⊥)2 + (∇‖m‖)
2 , (5.16b)

εab∇amb
1
= ∇⊥m‖ −∇‖m⊥ = 0 , (5.16c)

where the “1” above the equation signs reminds us that this only holds on branch
1. We next need to look at the contractions of the individual terms in the metric
material stress with laeb. We find:

la(∇cm
a)(∇cmb)eb

1
= (∇⊥m⊥)2l , (5.17a)

la(∇amc)(∇bmc)eb
1
= (∇⊥m⊥)2l , (5.17b)

laMMabeb
1
= M(∇⊥m⊥) l . (5.17c)

The two terms involving the derivatives mc∇c can be rewritten by extracting a
complete derivative:

lam
c(∇cM)gabeb

1
= lm‖∇‖M

1
= l

[
∇‖(m‖M) − (∇‖m‖)M

]
. (5.18a)
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The total derivative will yield a boundary term once integrated along branch 1,
and since we assume that we are not in a spontaneously tilted phase, |ma| will go
to zero at infinity and thus the boundary term vanishes. With the same argument
we find

lam
c(∇cM

ab)eb
1
= l

[
∇‖(m‖(∇⊥m⊥)) − (∇‖m‖)(∇⊥m⊥)

]
. (5.18b)

Again, the total derivative integrates to zero. Finally, the potential terms simplify
to

laV (m2)gabeb
1
= V (m2) l , (5.19a)

laV
′(m2)mambeb

1
= 0 . (5.19b)

Collecting all results, we arrive at the remarkably simple exact force expression
Fm = Fmx, with

Fm = −
(

1
2
λm + µm

)
∫

1

ds
[

(∇⊥m⊥)2 − (∇‖m‖)
2
]

+

∫

1

ds V (m2) . (5.20)

There are two contributions to the force, one stemming from gradients of the tilt,
the other from the tilt potential V . Remarkably, the tilt gradient contribution from
each of the first two quadratic invariants has the same structural form, thus the
Lamé coefficients λm and µm occur only as a combination in front of the integral.
The modulus νm has dropped out since the corresponding stress vanishes on the
mid-curve (see Eqn. (5.16c)).
The structural similarity of Eqn. (5.20) to curvature-mediated forces – Eqn. (5.11)
– is very striking. Since 1

2
λm+µm > 0 (see footnote 13 on page 20), the first integral

states that perpendicular gradients of the perpendicular tilt lead to repulsion, while
parallel gradients of the parallel tilt imply attractions – the same “⊥2 −‖2 ” motif
as found in Eqn. (5.11). Since in the untilted phase V (m2) ≥ 0, the last term of
Eqn. (5.20) shows that the integrated excess potential drives attraction, just as
the excess length (something like an integrated “surface tilt”) drives attraction in
Eqn. (5.11). Unfortunately, the overall sign of the force is not obvious. Looking
at the field lines in Fig. 5.4, the visual analogy with electrostatic interactions
between like charged particles would suggest a repulsion, but the above analysis
advises caution (in Technical Point 5.3 it is shown that this naive guess is at least
borne out on the linearized level). Moreover, we should not forget that tilt does
couple to geometry (namely, via the covariant derivative) and that the membrane
need not be flat; hence, the contribution due to tension and bending given by
Eqn. (5.11) must be added, the sign of which is equally unclear.
So far we have neglected stresses from the bulk. If the space surrounding the mem-
brane provides additional continuous sources of stress, fa is no longer divergence-
free (see Sec. 2.3). It may appear at first glance that the presented approach fails.
This is, however, not true in all cases as we will see in the next example where a
constant pressure difference will be discussed.
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Technical Point 5.3: Tilt-mediated force between two inclusions

Obtaining the exact tilt field for two inclusions is very difficult, since satisfying the
boundary conditions is troublesome. However, if we use the Nicolson approxima-
tion [Nic49] and assume that the total tilt distribution is given by the superposition
of two solutions of the kind (2.III), things become manageable. The tilt-mediated
force between two symmetric inclusions is then obtained by inserting the appropri-
ate values and derivatives of the tilt field m(x, y) on the mid-line into Eqn. (5.20).
After some straightforward calculations we get the force§

Fm = 4tℓmm
∗2
0

∫ ∞

d∗
dξ

1

ξ
√

ξ2 − d∗2

[

(ξ2 − 2d∗2) K0(ξ) K2(ξ) + (ξ2 − d∗2) K2
1(ξ)

]

= −2πtℓmm
∗2
0 K1(d/ℓm) . (5.IV)

where m∗
0 = m0/K1(r0/ℓm), d∗ = d/2ℓm, and d is the separation between the in-

clusions. As we see, the force is repulsive and decays essentially exponentially with
distance over the decay length ℓm =

√

(λm + 2µm)/t (see Eqn. (2.45)). Integrating
it, we get the repulsive interaction potential

Um(d) = 2πtℓ2mm
∗2
0 K0(d/ℓm) .

Let us try to make a very rough estimate of how big such a force might be. For this
we need to obtain some plausible values for the numbers entering into Eqn. (5.IV).
For t we use the equipartition theorem and argue that 1

2
t〈m2〉a = 1

2
kBT , where a

is the area per lipid and kBT the thermal energy. Assuming that the root-mean-
square fluctuations of m are 10◦ and using the typical value a ≃ 0.75 nm2, we get
t ≃ 40 kBT/nm2. Assuming further a rather conservative tilt decay length of the
order of the bilayer thickness, i. e. ℓm ≃ 5 nm, that the inclusion has a radius of
r0 ≃ 3 nm and imposes there a local tilt of m ≃ 0.2, we find that two inclusions
at a distance of 10 nm feel a significant force of about 17 pN. At a distance of
d ≈ 22 nm their mutual potential energy is 1 kBT compared to the separated state.
Notice that this is much larger than the Debye length in physiological solution,
which is typically only 1 nm. Hence, tilt-mediated forces can compete with more
conventional forces, such as (screened) electrostatic interactions. It should be kept
in mind, however, that if we permit the membrane to bend, some of the tilt strain
can be relaxed, thereby lowering the energy.

§ Obtaining the integral is straightforward, solving it is not. The large-d-asymptotics of the
integral and the right hand side of Eqn. (5.IV) are the same. However, Eqn. (5.IV) indeed holds
for all distances d, a fact that unfortunately could only be verified numerically.
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l

n t

Cs

Amid

Figure 5.5: Deformation of a closed surface due to two particles bound to it.

Global pressure difference

If the pressure is different between its two sides, the membrane will not be asymp-
totically flat but will close and form a vesicle (see Sec. 1.2.3). Consider as an
example a closed surface Σ with two particles bound to it in a symmetric configu-
ration (see Fig. 5.5). As before the interface-mediated force on one of the particles
is given by the negative value of the external force F ext acting on the patch of
surface the particle adheres to. In Sec. 2.3.1 we have seen that F ext can be written
in terms of an effective surface stress tensor f̆

a
. This tensor combines geometric

and bulk stresses and is divergence-free. It allows us to adapt our original idea
and choose the planar mid-line Cs as contour of integration (see again Fig. 5.5).
Following Eqn. (2.54), the force F P on the rear particle is thus given by

F P = −
∮

Cs

ds laf̆
a (2.53)

= −
∮

Cs

ds
{

laf
a − 1

2
P
[

(X · l)
︸ ︷︷ ︸

=const

n− (X · n)l
]}

= −
∮

Cs

ds laf
a − PAmid x , (5.21)

where l ≡ x is constant along the contour. In Eqn. (5.21) we made use of the
fact that the integral over the normal vector n yields zero because Cs is closed.
Furthermore, we defined

Amid =
1

2

∮

Cs

dsX · n (5.22)

as the planar area enclosed by the contour Cs.
Eqn. (5.21) is a covariant and exact expression for the interface-mediated force
between two particles in a symmetric configuration. Compared to the case of a
flat surface (where P = 0) an additional term proportional to the mid-plane area
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enters the scene. The whole equation can be understood as a force balance on the
cross section of the closed surface Σ [dGBWQ03] where in equilibrium the surface
forces and the integrated pressure have to cancel the external force acting on the
surface patch.5

We would get the same result for the force if we had not used the effective stress ten-
sor but integrated (∇af

a−E n) directly (where E = P in this case, see Eqns. (2.12)
and (2.51)). Whereas this seems to be a bit more complicated here, it is sometimes
the only way to obtain the force one is searching for as we have seen in Sec. 2.3.2
for the case of gravity.
Let us specialize Eqn. (5.21) to an up-down symmetric fluid bilayer membrane,
characterized by the Hamiltonian density (5.2). One obtains F P = FP x with

FP = −
∮

Cs

ds
[1

2
κ(K2

⊥ −K2
‖) − σ

]

− PAmid , (5.23)

Setting κ to zero corresponds to the case of a soap film. The result then simplifies
further to

FP = (σLc − PAmid) = σ (Lc −KAmid) , (5.24)

where Lc =
∮

Cs
ds is the length of the contour Cs. In the second step the Young-

Laplace law (2.52) was inserted.
The solution to the isoperimetric problem helps to find an inequality between Lc

and Amid: if one searches for the closed plane curve which has the smallest length

when enclosing a given area, one arrives at the circle. Thus, Amid ≤ L2
c

4π
and we get

a lower bound for the force:

FP ≥ σ Lc

(

1 − KLc

4π

)

. (5.25)

If the particles deform the closed surface only slightly, one may think of expanding
the contour Cs around a circle to get an approximate expression for the force. It
is, however, not clear how the constraint on the volume can be incorporated since
this requires knowledge of the whole three-dimensional shape of the surface. To
implement this constraint and obtain more information about the force, numerical
calculations in the spirit of Ref. [DFG98] may be helpful but will not be done
here. Instead let us check how much more can be said about interface-mediated
interactions using the analytical tools developed in Chap. 2.
Up to this point we have only analyzed forces. However, interface-mediated inter-
actions may also induce torques on the particles. In the following we will include

5 One can perform a simple consistency check of Eqn. (5.21) by imagining that the surface
was a spherical soap bubble of radius a with no particles adhering to it (compare Technical

Point 2.5 on page 44). In this case fa (2.24)
= −σea. The external force is equal to zero. Thus,

0 = (2πaσ − Pπa2)x which indeed yields expression (2.IV) for the Laplace pressure of a
spherical bubble.
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these in our considerations and focus again on two-particle configurations on an
asymptotically flat Helfrich membrane with symmetry and no bulk stresses.

5.1.5 Equilibrium conditions from torque balance

Analogous to the force, the torque on the left particle in Fig. 5.2 on page 113 can
be obtained by integrating the appropriate projection of the torque tensor along
a contour surrounding the particle

M = −
∮

1−4

ds lam
a . (5.26)

We choose the same contour of integration as before (see again Fig. 5.2)

Using the balance of torques, Eqn. (5.1), together with the assumptions made
about the external torques in Sec. 5.1.3 we conclude that

M = Xp × F = My , (5.27)

where F = Fx is, as before, the force on the left particle and Xp is the position
vector pointing from the fulcrum (i. e. the point about which the torque is acting)
to the point where the force F is applied. We evaluate the torque about the origin
in the Euclidean coordinate system {x,y,z}. The torque on the outer boundary
enclosing the particles is then given by M out = 2M in the antisymmetric case; it
vanishes in the symmetric case.

The condition (5.27), together with the explicit expression for torque M and
force F derived previously, permit one to establish nonlinear relationships between
geometrical quantities such as particle penetration or height differences for a given
model.

General expressions for two finite-sized particles

For a fluid membrane, the torque M on a particle can be obtained by inserting
the corresponding torque tensor (2.36) into Eqn. (5.26) and setting K0 to zero. As
it evidently has to cancel the external torque on the particle, it can also be read
off directly from the right hand side of Eqn. (2.37) with the replacement of ∂Σ1

by the contour 1 − 4 and an additional minus sign at the front.

The resulting expression can be simplified further if one takes into account that
the surface is asymptotically flat and possesses a certain symmetry. For finite-sized
particles it is shown in Sec. 5.1.2 that the curvature terms of the torque tensor do
not contribute to the torque on the membrane at infinity; the only term in the
expression for the torque due to bending stems from branch 1. Furthermore, the
term proportional to (X × t) vanishes for the two symmetries because K⊥‖K = 0
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on branch 1 (see Sec. 5.1.4). The torque M on the left particle is thus given by

M = σ

∮

1−4

ds (X × l) − κ

∫

1

ds
[1

2
(K2

⊥ −K2
‖)(X × l) − (∇⊥K)(X × n) −Kt

]

= σ

∮

2−4

ds (X × l) − κ

∫

1

ds
[

X × f −Kt
]

, (5.28)

where f = [1
2
(K2

⊥ −K2
‖) − λ−2] l− (∇⊥K)n.

The term due to surface tension along branches 2–4 does not vanish necessarily.
As we have seen in Sec. 5.1.2 a non-vanishing horizontal torque can remain at
infinity if the surface displays a very slow 1/|X| decay, i. e., if either of the cor-
responding constants C1 and D1 in the height function (5.5) does not vanish. A
closer inspection of the line integral along branches 2–4 reveals that the term with
coefficient C1 contributes to a torque about the y axis whereas the one including
D1 does so about x (cf. calculation in Sec. 5.1.2 for M out). The latter coefficient
has to be equal to zero as we require the x component of the torque M out at the
complete outer boundary to vanish (see Sec. 5.1.3).
Bearing these considerations in mind, one obtains the following important relations
by combining Eqns. (5.27) and (5.28).

x ·M = −κ
∫

1

ds
[

X · (f × x)
]

= 0 , (5.29)

y ·M = σ

∮

2−4

dsX · (l× y) (5.30)

−κ
∫

1

ds
[

X · (f × y) −K(y · t)
]

= F (z ·Xp) ,

z ·M = −κ
∫

1

ds
[

X · (f × z) −K(z · t)
]

= 0 , (5.31)

where F = −κ
∫

1
ds (f ·x)−σ

∫

3
ds (see Eqn. (5.9)). These expressions place strong

constraints on the geometry of the membrane. They can be simplified further for
the two different symmetries.

Symmetric case In the symmetric case, the derivative of K in the direction of l
along branch 1, ∇⊥K, is zero. The curvature tensor is diagonal in (l, t) coordinates
and thus K⊥‖ vanishes. This implies that K‖t is equal to ∇‖n [cf. Eqn. (A.57b)],
and

∫

1
dsK‖t = n|y=∞ − n|y=−∞ = 0.

Furthermore, branches 2–4 do not provide a torque: the term in the height func-
tion (5.5) that could give rise to a torque about the y axis is forbidden by the
symmetry, i. e. its constant coefficient C1 = 0. Thus,

σ

∮

2−4

ds (X × l) = 0 , (5.32)
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and Eqn (5.28) simplifies to the expression

M sym = −κ

∫

1

ds
[(1

2
(K2

⊥ −K2
‖) − λ−2

)

(X × x) −K⊥t
]

, (5.33)

which depends only on geometrical properties of the membrane at the symme-
try plane. The force acting at each point along the mid-line is horizontal and
Eqn. (5.29) is fulfilled identically. The two relations (5.30) and (5.31) turn into

−κ

∫

1

ds
[

fsym(z ·X) −K⊥(y · t)
]

= Fsym(z ·Xp) , (5.34)

κ

∫

1

ds
[

fsym(y ·X) +K⊥(z · t)
]

= 0 , (5.35)

where Fsym is given by Eqn. (5.11) and fsym = [1
2
(K2

⊥ −K2
‖) − λ−2].

Antisymmetric case In the antisymmetric case branch 1 is a straight line and
K⊥ = K‖ = 0. The torque is now given by

M antisym = σ

∮

1−4

ds (X × l) + κ

∫

1

ds
[

(∇⊥K)(X × n)
]

. (5.36)

In contrast to the symmetric case, the torque does not possess an internal part
because the curvature K vanishes everywhere along the contour. The force acting
at each point along the mid-line is perpendicular to the y axis. As the origin lies
on this line the only components of the torque transmitted through branch 1 which
are potentially non-vanishing are the x and the z component. We have chosen,
however, to set these components to zero (see Sec. 5.1.3 and Eqns. (5.29,5.31)).
Thus, the contribution from branch 1 vanishes

σ

∫

1

ds (X × l) + κ

∫

1

ds
[

(∇⊥K)(X × n)
]

= 0 , (5.37)

and the torque can be written as an integral along the boundaries 2-4

M antisym = σ

∫

2−4

ds (X × l) = Fantisym(z ·Xp)y , (5.38)

where Fantisym is given by Eqn. (5.13).
This equation implies a strong constraint on the asymptotics of the membrane.
Far from the particles the term of leading order in the height function (5.5) has to
be proportional to |X|−1. Otherwise, the external torque would not be balanced.
The coefficient C1 has to be finite, its value fixed by the external force responsible
for the torque.
If the height function of the membrane is known, M antisym can be easily calculated
and vice versa: in Sec. 5.1.2 we have derived expression (5.7) for M out in terms
of the coefficients of the height function (5.5). From this expression we obtain
M antisym = (1/2)M out = πσC1y.
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Figure 5.6: Two parallel cylinders on a fluid membrane (symmetric and antisymmet-
ric cases). The profiles are determined as explained in Sec. 5.2 using the following
parameters: αc = αi + αo = 240◦, d = 4, R = 1, and λ = 1. The point about which
the torques are evaluated is marked with ◦.

Two infinitely long cylinders

The situation changes if we again consider two infinitely long cylinders of radius
R parallel to the y axis that are separated by a distance d (see Fig. 5.6). The size
of the particles is no longer finite. Thus, it is necessary to exercise a little care
when carrying over expressions derived for finite-sized particles.

Symmetric case The symmetric case corresponds to two cylinders adhering to
one side of the membrane. The curvature parallel to branch 1, K‖, vanishes as
branch 1 degenerates into a line. The contributions from branch 2 and 4 cancel.
No torque is exerted from branch 3: in contrast to the configurations with two
finite-sized particles, the shape equation does not admit a term proportional to
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|X|−1 in the height function (see Sec. 5.2).
The torque per length L of the cylinder with respect to the origin of the Euclidean
coordinate system {x,y,z} is thus given by

Msym,cyl/L =
(κ

2
K2

⊥ − σ
)
· h0 + κK⊥ , (5.39)

where the length h0 is the distance between the origin and the mid-point of the
profile (see Fig. 5.6). It is positive if this point lies below the origin.
Let hc := −(z ·Xp) be the distance between the center of the cylinder and the
asymptotic plane (see again Fig. 5.6). It is positive if the two cylinders are located
below the asymptotic plane.
Torque balance establishes a relationship between h0 and hc, involving only the

geometry on the midline, Msym,cyl given by Eqn (5.39): Msym,cyl
(5.34)
= −hc Fsym,cyl

where Fsym,cyl/L
(5.12)
= −κ

2
K2

⊥ implies

h0 =
κK⊥ − κ

2
K2

⊥hc

σ − κ
2
K2

⊥
=
λ2K⊥ − λ2

2
K2

⊥hc

1 − λ2

2
K2

⊥
. (5.40)

Eqn. (5.40) remains valid if the interface is a soap film. The bending rigidity κ then
equals zero and we immediately obtain the result that h0 = 0. This is confirmed
by the observation that the interface is flat everywhere and the forces on the left
and right cylinder vanish [Mül04].
If we parametrize the profile as a height h(x) above the asymptotic reference
plane, the curvature K⊥ at branch 1 is exactly equal to −h′′(0) in the symmetric
geometry, where dashes denote derivatives with respect to x. In Ref. [Wei03] the
height function h(x) was determined at the linearized level in the small gradient
regime. Inserting it into Eqn. (5.40) validates this relation within the accuracy of
the linear approximation (see Technical Point 5.4).

Antisymmetric case In the antisymmetric case the two cylinders adhere to
opposite sides of the membrane. The torque on the left cylinder is determined
as follows: at branch 1, the line integral is zero (compare Eqn. (5.37)). The
contributions from branches 2 and 4 cancel as before. Thus, the torque at branch
3 should not vanish if the horizontal torque due the force F is to be balanced.
However, the vertical force decreases faster than 1/x as x→ ±∞ and thus cannot
provide such a torque (cf. previous paragraph and Sec. 5.2). How can torques
balance under these circumstances?
The solution to this apparent contradiction is the following: the asymptotic plane
for positive values of x does not necessarily coincide with the one for negative
values. This is because the corresponding sections of the profile are disconnected.
It becomes possible for the membrane to shift vertically with an offset hoff at the
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Technical Point 5.4: Calculation of h0 on the linearized level

To show that Eqn. (5.40) is consistent with the results of Ref. [Wei03], we calculate
h(0) = −h0 and compare it with the right hand side of Eqn. (5.40).
Due to the symmetry it is sufficient to consider only the left cylinder. Its axis is lo-
cated at x = −d/2 (see Fig. 5.6). For −d/2−δo ≤ x ≤ −d/2+δi, cylinder and mem-
brane are in contact. In small gradient approximation the shape of the outer mem-
brane segment (x ≤ d/2−δo) is given by [Wei03]: hout(x) = B exp (−|x+ d/2|/λ),
where B = −δoλ/R to first order in δo (strictly speaking, the expansion is in δo/λ
here and below). The membrane segment adhering to the left cylinder has the cir-

cular profile: hcyl(x) = −
[

hc +
√

R2 − (x+ d/2)2
]

, where hc is defined in Fig. 5.6.

The profile has to be continuous at x = −d/2 − δo. This condition yields

hc = −
√

R2 − δ2
o+

δoλ

R
exp (−δo

λ
) = −R+

λ

R
δo+O(δ2

o) = −R+
λ coth d

2λ

R
δi+O(δ2

i ) .

(5.V)
In the last step we exploited the fact that δo = coth ( d

2λ
) δi to first order [Wei03].

The profile of the membrane between the cylinders in the symmetric case is given
by [Wei03]: hin(x) = C +D cosh (x/λ), where C and D are constants that can be
determined from the conditions of continuous profile and slope at x = −d/2 + δi.
The latter condition yields

D =
λ δi

√

R2 − δ2
i

· 1

sinh (
− d

2
+δi
λ

)
= − λδi

R sinh ( d
2λ

)
+ O(δ2

i ) , the former (5.VI)

C = −
(

hc +
√

R2 − δ2
i

)

−D cosh
(−d

2
+ δi

λ

)
(5.V,5.VI)

= O(δ2
i ) .

To first order the depth h0 at the mid-line of the profile† is thus given by

h0 = −hin(0) = −(C +D) =
λδi

R sinh ( d
2λ

)
+ O(δ2

i ) .

It can also be obtained from Eqn. (5.40). Using K⊥ = −h′′in(0) = −D/λ2 yields

h0 = −D + D2

2λ2hc

1 − D2

2λ2

=
λδi

R sinh ( d
2λ

)
+ O(δ2

i ) . (5.VII)

The two results coincide at first order which confirms the validity of Eqn. (5.40)
within this approximation.

† Note that h0 is defined differently in Ref. [Wei03]; there it is given by −(hc +R).
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5.2 Two cylinders on a fluid membrane – exact solution

origin with respect to the asymptotic plane(s) (see Fig. 5.6). The torque is then
simply given by

Mantisym,cyl/L = −hoff

2
σ . (5.41)

This offset may be related to hc as follows. One has Mantisym,cyl
(5.38)
= −(hc −

hoff

2
)Fantisym,cyl where Fantisym,cyl/L

(5.14)
=
√

σ2 + (κ∇⊥K⊥)2−σ for 0◦ < ψmid < 90◦.
One obtains

hoff

2hc

= 1 − 1
√

1 + λ4(∇⊥K⊥)2
, (5.42)

where hc is now measured from the left asymptotic plane to the center of the
cylinder (see again Fig. 5.6).
Expanding the inverse square root in Eqn. (5.42) up to zeroth and second order,
respectively, yields a lower and an upper bound on the ratio of hoff to hc:

0 ≤ hoff

hc

≤ λ4(∇⊥K⊥)2 . (5.43)

Obviously, the offset hoff and hc have the same sign. If hc > 0, the left asymptotic
plane lies above the right one as depicted in Fig. 5.6; for hc < 0 the situation is
reversed.
By setting κ = 0, we can again provide a check for consistency. The offset is zero
as in the symmetric case. This is in agreement with the result from Ref. [Mül04]
that the interface is flat and no force acts on the cylinders.
In Ref. [Wei03] the offset is set to zero in the ansatz for the height function. On first
inspection, this may appear to be an error. However, it turns out to be consistent
if Equation (5.42) is written in the small gradient regime: the first non-vanishing
term is of second order in the smallness parameter. As the height function of
[Wei03] is itself correct only to first order, the two results agree at the level of the
approximation.

5.2 Two cylinders on a fluid membrane – exact

solution

The nonlinear membrane shape equation can be solved exactly for the case
of two cylindrical particles (“1D problem”). Two cylinders in a symmetric
configuration repel—in contrast to two cylinders floating on water, despite
an identical shape equation.

In the previous section several analytical conditions were derived which link differ-
ent geometric properties of the interfacial profile to each other. For the antisym-
metric case we saw that the external torque is compensated either by a vertical
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5 Membrane-mediated interactions between particles

force component (if the particles are finite) or by an offset (if the particles are
infinitely long cylinders). In this section the value of the developed framework will
be demonstrated by showing how it can be applied to determine the exact shape
of the membrane with two adhering cylinders.

5.2.1 Determining the profile

Shape equation

If two parallel cylinders adhere to the membrane, the profile can be decomposed
into the following parts: two bound sections in which the cylinder and membrane
are in contact, an inner section between the cylinders, and two outer sections that
become flat for x→ ±∞ (see Fig. 5.6). The shape of the bound parts is determined
by the geometry of the attached particle, i. e. a circular arc; the profiles of the free
membrane sections are determined by solving the nonlinear shape equation (4.3)
in one dimension. The equation itself is easily solved in terms of elliptic functions
(see below and App. C.1); the subtlety, as we will see, is in the implementation of
the boundary conditions.
We will use the “angle-arc length” parametrization to describe the profile (see
App. A.4.2 and Fig. 5.6). The angle ψ(s) between the x axis and the tangent to
the profile is connected to the curvature K via the relationship K = −ψ̇, where
the dot denotes a derivative with respect to s. In contrast to Chap. 4, where an ax-
isymmetric situation was considered, the profile now obeys translational symmetry
along the y axis.
The nonlinear shape equation that determines the profile of the free membrane
can be obtained by rewriting Eqn. (4.3) in 1D (see also [Sei97, ACCG02]):

2K̈ +K3 − 2λ−2K = 0 . (5.44)

It possesses the first integral

K̇2 +
1

4
K4 − λ−2K2 = E , (5.45)

where E is a constant of integration.
It is straightforward to integrate Eqn. (5.45) after a separation of variables to
determine s as a function of K which can be inverted to express K as a function
of s. An additional integration yields the shape of the membrane, ψ(s). One can
do better, however, by taking advantage of the fact that the force Fmem per length
L of the cylinder at every point of the membrane is not only constant but also
horizontal on each membrane section. Thus,

Fmem/L = −lafa = −
(1

2
κK2 − σ

)

l + κK̇ n = fmemx . (5.46)
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Figure 5.7: Analogy between (a) planar pendulum, (b) fluid meniscus, and (c) an
elastic rod (Euler elasticum).

Technical Point 5.5: Shape of a fluid meniscus under gravity

The shape of the interface between two incompressible fluids under gravity (with
density difference ρ > 0 and gravitational acceleration g) is determined by the
Young-Laplace law (2.52) which states that the hydrostatic pressure P = −ρgh
equals the interfacial tension σ times the curvature K (see Eqn. (2.64)):

ψ̇ = h/ℓ2 , (5.VIII)

where ℓ =
√

σ/(ρg) is the capillary length (see Eqn. (2.65)). By differentiating

Eqn. (5.VIII) and equating it with ḣ = sinψ we obtain Eqn. (5.48) where λ = ℓ
and η = 1.

For the following let us define the scaled force

η =
fmem

σ
= const. (5.47)

Projecting Eqn. (5.46) onto n then yields

λ2ψ̈ − η sinψ = 0 . (5.48)

where we have used K = −ψ̇ and x · n = − sinψ (see also Eqns. (A.74)).
Eqn. (5.48) appears in a number of other physical applications which include the
motion of a simple pendulum [LL76], the shape of a fluid meniscus under gravity
(see Technical Point 5.5) or the behavior of elastic rods (Euler elastica) [NG99]
(see Fig. 5.7).6

6 A similar analogy can be found in 3D: if we allow the elastic rod to bend out of the plane,
its shape is described by the same Euler-Lagrange equations as the motions of a spinning top
[NG99], as was first pointed out by Kirchhoff more than a century ago [Kir59].
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5 Membrane-mediated interactions between particles

Despite appearances, it is completely equivalent to Eqn. (5.45): both are of the
same order in derivatives of ψ; furthermore, as we will show, the constant of inte-
gration E can be written in terms of the scaled force η and vice versa. Eqn. (5.48),
however, has the advantage that it possesses an obvious first integral with an in-
tegration constant that can be deduced from Eqn. (5.46): the projection of the
latter onto l yields, with x · l = cosψ,

λ2

2
ψ̇2 + η cosψ = 1 . (5.49)

Eqn. (5.49) can be interpreted as an energy balance of a fictitious particle moving
in the potential V (ψ) = η cosψ, with displacement variable ψ, mass λ2 and energy
1. The details of the “motion” depend on the value of η (see below and Fig. 5.8).
From Eqn. (5.49) follows

K = ±λ−1
√

2(1 − η cosψ) . (5.50)

It is simple to check that K satisfies the shape equation (5.44). The constants η
and E are not independent; the relation between them, η = ±

√
Eλ4 + 1, is found

by substituting K into Eqn. (5.45).
Another interesting observation can be made if the problem is rewritten in a
Hamiltonian formulation in analogy to Sec. 4.3.2. The (scaled) Lagrange func-
tion L̃ = L /σ is now given by

L̃ =

(
λ2

2
ψ̇2 + 1

)

+ λx(ẋ− cosψ) + λz(ż − cosψ) , (5.51)

where the Lagrange multiplier functions λx and λz ensure that the angle ψ is
anchored to the geometry (compare Eqns. (A.76)). The scaled Hamiltonian can
be obtained as usual:

H̃ = ψ̇
∂L̃

∂ψ̇
+ ẋ

∂L̃

∂ẋ
+ ż

∂L̃

∂ż
− L̃ =

(
λ2

2
ψ̇2 − 1

)

+ λx cosψ + λz sinψ . (5.52)

The Hamilton equations for px = ∂L̃ /∂ẋ = λx and pz = ∂L̃ /∂ż = λz directly tell
us that both Lagrange multiplier functions have to be constant. Furthermore, we
know that H̃ vanishes in every point because the arc length is not fixed (compare
Sec. 4.3.2). From this follows:

λ2

2
ψ̇2 + λx cosψ + λz sinψ = 1 . (5.53)

If we compare this equation with Eqn. (5.49), we notice two things: (i) the values
of the Lagrange multiplier functions are given by λx = η and λz = 0. They are
closely related to the external force (see also Chap. 4). (ii) The derivation reveals
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Figure 5.8: Above: Fictitious particle moving in the potential V (ψ) = η cosψ (a)
outer section (b) inner section - symmetric case (c) inner section - antisymmetric
case; below: corresponding solutions (5.54,5.57,5.60) of Eqn. (5.49). For the explicit
calculations, see App. C.1.

where the constant of integration in the first integral of the shape equation comes
from: it is ultimately due to the fact that the arc length of the membrane is not
a conserved quantity.
In the following, the solutions of Eqn. (5.49) for the free sections of the profile will
be presented. The explicit calculations can be found in App. C.1. The cylinders
are separated by a distance d. Due to the symmetry it is sufficient to consider
only the left half of the membrane (where x < 0, see Fig. 5.6). The outer sections
are qualitatively identical for the two symmetries whereas the inner sections differ.
Eqn. (5.49) is a first order differential equation involving one unknown constant
η. Thus two boundary conditions are required for each section.

Outer section

The boundary conditions for the outer section are the following: the free profile
leaves the cylinder at a fixed contact angle ψ(0) = αo. We assume without loss of
generality that αo > 0 and ψ̇ ≤ 0.7 At infinity, both ψ and ψ̇ vanish. If we insert

7 The other solution with αo < 0 and ψ̇ ≥ 0 can be simply obtained by a reflection on the (x, y)
plane.
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these two conditions into Eqn. (5.49), we obtain η = 1 on this section, i. e., the force
is just a surface tension pulling at infinity. This implies that E = 0 everywhere
along the profile. The corresponding potential V (ψ) is plotted in Fig. 5.8(a): the
solution with ψ(0) = αo decreases monotonically to ψ = 0 (where V = 1) as
s→ ∞.

The corresponding shape equation can be solved in terms of elementary functions
(see App. C.1.1). One obtains

ψout(s̃) = 4 arctan
[

tan
(αo

4

)

e−s̃
]

, (5.54)

where s̃ := s/λ. Incidentally, the function (5.54) also describes the shape of
a straight fluid meniscus that approaches a solid surface at the angle αo (see
Technical Point 5.5 and Fig. 5.7(b)).

The function (5.54) decays exponentially with increasing arc length. Thus, in
contrast to the case of finite-sized particles, the horizontal torque due to a vertical
force component, |M | ≈ σ|x| sinψout ≈ σ|x|ψout vanishes at infinity (see Technical
Point 5.1 and Sec. 5.1.5).

Inner section

We first establish the connection between the total arc length of the inner profile,
2smid, and the contact angle between the cylinder and the inner membrane, αi. If
arc length is measured from the mid-line, we have

d̃

2
− R̃ sinαi =

∫ s̃mid

0

ds̃ cosψ(s̃) , (5.55)

where all lengths, as before, are scaled with λ. This condition determines the value
of s̃mid implicitly in terms of αi. Although its right-hand side can be written in
terms of standard functions (see App. C), it can only be solved numerically.

We again consider only positive values of ψ. The solution for negative angles is
obtained by reversing the sign of the functions (5.57) and (5.60) which corresponds
to a reflection of the profile in the (x, y) plane. Note also that K = +ψ̇ for all
shapes of the inner section due to the chosen orientation of the arc length.

Symmetric case In the symmetric case, ψ(0) is equal to zero. From Eqn. (5.49)
we thus obtain

η = 1 − λ2

2
K2

⊥ ≤ 1 . (5.56)

For η = 1, the cylinders are infinitely far apart and do not interact. If we omit this
trivial case, the following solutions for different values of η are obtained [NG99,
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Kul04] (see App. C.1.2 and Fig. 5.8(b)):8

ψin
sym(s̃) =







π + 2 am
r
s̃
√

η
m
−KJmK,m

z
, 0 < η < 1√

2s̃ , η = 0

2 am
r
s̃
√

|η|
m
,m

z
, −1 < η < 0

4 arctan
[

tanh ( s̃
2
)
]

, η = −1

arccos
(

1 − 2
m

sn2
r
s̃
√

|η|,m−1
z)

, η < −1

, (5.57)

where amJs,mK is the Jacobi amplitude with parameter m and snJs,mK its sine,
sin (amJs,mK). The symbol KJmK denotes the complete elliptic integral of the
first kind [AS70] (see also Table C.1 on page 200). The parameter m is given by

m := 2|η|
1+|η| ∈ [0, 2[.

Antisymmetric case If the two cylinders adhere antisymmetrically, ψ̇ must
vanish at the mid-line. Thus,

cosψmid
(5.49)
=

1

η
, (5.58)

where ψmid = ψ(0) is the angle at the mid-line. The case where ψmid equals zero
or 180◦ corresponds again to the trivial solution with the two cylinders infinitely
far apart. No solution exists for ψmid = 90◦ as the scaled force η has to remain
finite in an equilibrium situation. If 0◦ < ψmid < 90◦,

η
(5.46)
= +

√

1 + λ4K̇2
⊥ > 1 , (5.59)

and, for − 1√
η
KJm−1K ≤ s̃ ≤ 1√

η
KJm−1K [NG99, Kul04] (see App. C.1.2 and

Fig. 5.8(c))

ψin
antisym(s̃) = arccos

( 2

m
sn2

r
s̃
√
η −KJm−1K,m−1

z
− 1
)

. (5.60a)

If ψmid is greater than 90◦ and lower than 180◦ [NG99] (see again App. C.1.2 and
Fig. 5.8(c)),

ψin
antisym(s̃) = arccos

(

1 − 2

m
sn2

r
s̃
√

|η| − KJm−1K,m−1
z)

, (5.60b)

for − 1√
|η|
KJm−1K ≤ s̃ ≤ 1√

|η|
KJm−1K, where

η
(5.46)
= −

√

1 + λ4K̇2
⊥ < 1 . (5.61)

The parameter m is defined as above and varies now between 1 and 2.

8 The expression for η < 1 in Eqn. (5.57) is valid for 0 ≤ s̃ ≤ 2√
|η|

KJm−1K.
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Boundary conditions at the cylinders

To obtain the profile of the membrane for given separation d̃ and cylinder radius
R̃, one has to determine the values of the scaled force η and the contact angles αo

and αi. The value of η for any given αi is determined implicitly by the requirement
that

ψ(s̃mid) = αi , (5.62)

where s̃mid is itself implicitly given by Condition (5.55); the values of αi and αo de-
pend on the boundary conditions at the cylinder. We will discuss two possibilities
here: we either fix the area of contact between the cylinders and the membrane,
or consider attachment due to a finite adhesion energy w per area between the
membrane and the cylinders similar to the problems discussed in the two previous
chapters.

Fixed area of contact Suppose that the area of contact is fixed to

αc = αo + αi = const. (5.63)

Torque balance will fix the individual values of αo and αi.
The torque about the cylinder axis has to vanish in equilibrium. This is the case
if the total energy Etot(αi) of the system exhibits a local extremum (see Technical
Point 5.6).
The corresponding torque balance can be written as

0 = K̃i − K̃o − R̃(η cosαi − cosαo)
(5.50)
= K̃i − K̃o +

R̃

2
(K̃i

2 − K̃o
2
) , (5.64)

where K̃i := λKi and K̃o := λKo. Eqn. (5.64) has two solutions: K̃i = K̃o and
K̃i = −K̃o − 2/R̃. The latter implies that either K̃i or K̃o is smaller than −1/R̃.
Since the cylinder has a curvature of −1/R̃ in scaled units and membrane and
cylinder must not intersect, the second solution can be ruled out. Hence, the two
contact curvatures must coincide:

K̃i = K̃o
(C.9)
= 2 sin (αo/2) , (5.65)

and

η cosαi
(5.64)
= cosαo . (5.66)

The values of η, αi, αo, and s̃mid for given separation and cylinder radius can be
determined numerically by solving the conditions (5.55), (5.62), (5.63), and (5.65)
simultaneously. As an example, the two profiles for d̃ = 4, R̃ = 1, and αc = 240◦

are plotted in Fig. 5.6.
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Technical Point 5.6: Energy minimum implies torque balance

The total energy Etot of the system is given by:

Etot/(2κ) =

∫ smid

0

ds
{1

2
K in(s)2 + λ−2[1 − cosψin(s)]

}

+

∫ ∞

0

ds
{1

2
Kout(s)2

+λ−2[1 − cosψout(s)]
}

− λ−2R
(
sinαi + sinαo

)
,

where the terms due to surface tension give the excess energy in comparison to
the planar state without cylinders (in other words we have subtracted an infinite
constant contribution from the energy). Using Eqn. (5.50) for the curvature K we
can rewrite:

λ−2[1 − cosψin(s)] = λ−2[1 − η cosψin(s) + (η − 1) cosψin(s)]

=
1

2
K in(s)2 + λ−2(η − 1) cosψin(s) ,

and, since η = 1 on the outer section, λ−2[1 − cosψout(s)] = 1
2
Kout(s)2. Inserting

this into the energy yields

Etot/(2κ) =

∫ smid

0

ds
{

K in(s)2 + λ−2(η − 1) cosψin(s)
}

+

∫ ∞

0

ds Kout(s)2

−λ−2R
(
sinαi + sinαo

)

(5.55)
=

∫ αi

0

K in(ψ)dψ +

∫ αc−αi

0

Kout(ψ)dψ + λ−2(η − 1)
(d

2
−R sinαi

)

−λ−2R
[
sinαi + sin (αc − αi)

]
.

If we now set the derivative with respect to αi at constant d and αc to zero, we
obtain the torque balance (5.64):

0
!
=

1

2κ

∂Etot

∂αi

∣
∣
∣
d,αc

= Ki −Ko − λ−2R (η cosαi − cosαo) .

Thus, the torque on the cylinder is balanced if the total energy exhibits a local
extremum and vice versa.

Adhesion balance If the cylinders attach to the membrane due to a finite
adhesion energy w, the contact curvature condition (3.23) holds:

K̃i = K̃o = −1/R̃ +
√
w̃ , (5.67)

where w̃ := 2wλ2

κ
. The curvatures are equal as before and torque balance (5.64) is

fulfilled automatically. The contact angle αo can be determined from Eqn. (5.65).
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Finally, η, αi, and s̃mid can be calculated using Eqns. (5.55), (5.62), and (5.67).
The adhesion energy w̃ and the wrapping angle αc are conjugate variables. Setting
one of them to a constant value implies that the other will adjust in equilibrium.
Questions of stability depend on which of the two variables is fixed: a profile found
to be stable under constant αc is not necessarily stable under the constant w̃.9 To
avoid problems of this kind, we will focus on the constant wrapping angle scenario
in the following.
Note that the boundary condition (5.65) does not always fix a unique profile. The
total energy Etot(αi) of the system may possess more than one minimum; thus
profiles which are stable locally may exist.10 In the next paragraph we will see
that this is indeed the case for certain ranges of values of d̃, R̃, and αc.

5.2.2 Conditions from torque balance

Now that we possess the complete profile we can go back to Eqns. (5.40) and (5.42)
and study the behavior of h̃0 := h0/λ and h̃off := hoff/λ as a function of distance
d̃ for different values of R̃ and αc.

Symmetric case In the symmetric case, K̃⊥ =
√

2(1 − η) and Eqn. (5.40) can
be written as

h̃0 = η−1[
√

2(1 − η) − (1 − η)h̃c] , (5.68)

where

h̃c
(C.12)
= 2 sin (αo/2) − R̃ cosαo . (5.69)

The height h̃0 can be determined as a function of separation d̃ for fixed cylinder
radius R̃ and different wrapping angles αc. If the value of αc is small, the solution
coincides with the result of the small gradient approximation (5.VII), as expected.
The value of h̃0 falls off exponentially with the decay length ℓ := 2λ for increasing
separation d̃.
For higher angles αc, however, the behavior changes at small values of d̃ due to
the breakdown of the small gradient approximation (see Fig. 5.9 for R̃ = 1): the
energy Etot(αi) exhibits two minima instead of one.11 These minima correspond
to distinct stable profiles with different αi and h̃0. If αc = 180◦, they possess the
same energy. If αc < 180◦, the global minimum is located at the smaller value of
αi and the corresponding h̃0 is always positive, i. e. the mid-point lies below the
reference plane (see again Fig. 5.9). For larger contact angles αc this behavior is

9 We have met the same motif already twice: in Sec. 1.2.3 where volume and pressure were
conjugate variables and in Chap. 4 where force and indentation ensemble were considered.

10 Solutions with one or even more loops between the cylinders, however, have a much higher
energy than the cases shown in Fig. 5.8 and will therefore be discarded.

11 The intermediate maximum is not considered in the following as it does not correspond to a
stable profile.
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Figure 5.9: The height h̃0 at the mid-line as a function of separation d̃ for R̃ = 1 and
αc = 170◦ (long dashes), 180◦ (bold solid line), and 190◦ (short dashes). At d̃ = 2 the
two cylinders are in contact with each other and cannot approach closer. For d̃ . 3
two locally stable solutions can be found which correspond to different angles αi. In
the insets a and b the two solutions for d̃ = 2.4 and αc = 170◦ are plotted where
αi = 50.9◦ (a) and 122.2◦ (b), respectively. Profile a corresponds to the global energy
minimum here.

reversed: the higher value of αi and the lower value of h̃0 correspond to the global
energy minimum. The mid-point may now even lie above the reference plane.

In Fig. 5.10 the tilt angle αt := αc

2
− αi is plotted as a function of distance d̃ for

R̃ = 1. It decays exponentially with length λ at large separations. If αc < 180◦

the tilt angle of the global energy minimum is always positive which corresponds
to profiles such as the one plotted in Fig. 5.9, a. If αc > 180◦, the tilt angle of
the global energy minimum is negative. For αc = 180◦ and for all d̃ & 3, αt is
equal to zero; at d̃ ≈ 3 the function bifurcates into two branches of equal energy.
A closer inspection of Eqn. (5.66) explains these findings: either αi is exactly 90◦

and thus αt = 0, or η = −1. At the bifurcation point both conditions hold. For
d̃ . 3 the profiles with η = −1 are local minima of same energy12 whereas αt = 0

12 That both minima have the same energy can, for instance, be explained like this: imagine you
bring together both cylinders from infinity to a distance d̃ . 3 in infinitesimal steps. At every
step a certain force has to be applied which is always the same for both solutions (see also
Sec. 5.2.3). Thus, the energy (= force integrated over the distance) stays the same as well no
matter how close the cylinders are brought together.
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Figure 5.10: The tilt angle αt (symmetric case) as a function of separation d̃ for
R̃ = 1 and αc = 10◦ (short dashes), 45◦ (dashed-dotted line), 90◦ (long dashes), 180◦

(bold solid line), and 240◦ (dotted line).

corresponds to the intermediate maximum we do not discuss further here.

Antisymmetric case If the two cylinders are closer than 2R̃, one must check
whether the particles overlap or not. To avoid complications of this kind, we will
only consider separations of d̃ ≥ 2R̃. In contrast to the symmetric case, one then
finds a single solution for given d̃, R̃, and αc where η is always greater than 1.

From Eqns. (5.42) and (5.59) one obtains

h̃off

2h̃c

= 1 − 1

η
, (5.70)

where h̃c is given by Eqn. (5.69).

In Fig. 5.11 h̃off is plotted as a function of distance d̃. For small contact angles,
h̃off is negative which implies that the asymptotic plane on the left lies below the
one on the right and below the center of the left cylinder. For intermediate values
of αc (such as 90◦ if R̃ = 1) h̃off can be either positive or negative depending on
the separation of the cylinders (see again Fig. 5.11). If αc is further increased, h̃off

is positive for all separations and the profiles resemble the one which is plotted in
the lower part of Fig. 5.6.

The tilt angle αt is always equal to zero for αc = 180◦. The solution η = −1 which
also solves Eqn. (5.66) is now forbidden due to the symmetry. For αc > 180◦

140



5.2 Two cylinders on a fluid membrane – exact solution

0.5

1

1.5

2

2.5

3 4 5 6 7 8
d̃

h̃off

-

-

-0.01

0.02

0.03

3 4 5 6 7 8
d̃

h̃off

Figure 5.11: The offset h̃off as a function of separation d̃ for R̃ = 1 and different
contact angles. The line styles are chosen as in Fig. 5.10.

the tilt angle is positive; for αc < 180◦ it is negative. In both cases it decays
exponentially with length λ.

5.2.3 Forces between the cylinders

Using the stress tensor, the force on the left cylinder is given by

Fcyl/L
(5.46)
= fmem − σ = σ(η − 1) . (5.71)

One only has to determine the value of η; the total force follows directly.
In Figs. 5.12 and 5.13 the absolute value of the scaled force, |η − 1|, is plotted for
the symmetric and antisymmetric cases. At large separations it decays exponen-
tially as predicted by the linearized theory [Wei03]. The underlying small gradient
approximation, however, breaks down if the curvatures along the profile become
too high, i. e. for large contact area and small separation. In Fig. 5.14 the exact
solutions are compared with the small gradient approximation for the symmetric
geometry by plotting |η − 1| as a function of αc for d̃ = 3 and R̃ = 1. The ap-
proximate solution increasingly underestimates the force as the contact angle is
increased.
As soon as the small gradient approximation breaks down, different features ap-
pear: in the antisymmetric case, |η − 1| increases faster for decreasing separation
than a small gradient approximation would anticipate. In the symmetric case,
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Figure 5.12: Absolute value of the scaled force |η − 1| as a function of separation
d̃ for R̃ = 1 and different contact angles (symmetric case). The line styles are again
chosen as in Fig. 5.10.
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Figure 5.13: Scaled force η− 1 as a function of separation d̃ for R̃ = 1 and different
contact angles (antisymmetric case). The line styles are chosen as in Fig. 5.10.
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5.2 Two cylinders on a fluid membrane – exact solution

Technical Point 5.7: Fsym,cyl/L including the quartic Hamiltonian (2)

If a term H∇ is added to the Helfrich Hamiltonian, a contribution to the force (5.71)
results which is given in Eqn. (5.III) for the symmetric case. Assume that H∇ is
just a small perturbation so that we can insert the solution of the shape equation
of the unperturbed Helfrich Hamiltonian into Eqn. (5.III). From Eqn. (5.50) we
obtain‡

d2

ds2
K2
∣
∣
∣
s=0

=
2

λ2
η
(
ψ̈ sinψ + ψ̇2 cosψ

)
∣
∣
∣
s=0

=
2

λ2
ηK2

⊥ . (5.IX)

Thus, the force (5.III) can be written as:

F∇
sym,cyl/L ≈ 1

4
κ∇

2

λ2
ηK2

⊥ =
1

2
κ∇

(

λ−2 − 1

2
K2

⊥

)

K2
⊥ .

The sign of the force F∇
sym,cyl/L depends on the signs of κ∇ and η. For instance,

at large distances d where η > 0 the term decreases the repulsion between the
two cylinders for positive κ∇ and increases it if κ∇ is negative. The overall force
including all terms of quartic order is given by the sum of the right hand sides of
Eqns. (5.II) and (5.III):

Fsym,cyl/(σL) ≈ −1

2
(λK⊥)2

{

1 ± 3

2
(ℓ4K⊥)2 ±

(
ℓ∇
λ

)2
[1

2
(λK⊥)2 − 1

]}

,

where the signs depend on whether the proportionality constants κ4 and κ∇ are
positive or negative (see Technical Point 5.2). The correction term due to H∇
only becomes noticeable once the characteristic length scale λ is no longer large
compared to the length scale ℓ∇ =

√

|κ∇|/κ. In that case, however, the assumption
that we can use the profile of the unperturbed Helfrich Hamiltonian is questionable.
To be on the safe side, the quartic order shape equation would have to be solved
numerically.

‡ Eqn. (5.IX) is intuitively understandable if one has a look at the corresponding shapes in
Fig. 5.8(b): if η > 0, K⊥ at the mid-line is the minimum curvature of all curvatures of the inner
section; for η < 0, K⊥ is the maximum.

two solutions can be found (cf. previous paragraph). The global energy minimum
typically corresponds to the solution with the smaller absolute value of the force.
Remarkably, the force is constant [Fcyl/(Lσ) = −2] for αc = 180◦ and d̃ . 3.

How big are these membrane-mediated forces for real particles? As an example,
let us look at a cylindrical nanoparticle of radius R ≃ 50 nm adsorbed onto a
fluid membrane with a bending stiffness of κ ≃ 20 kBT . Using a typical value for
membranes of λ ≈ 50 nm, we obtain R̃ = 1. Furthermore, if we assume that two
particles are separated by a distance d of 200 nm, η is of the order of 10−2 . . . 1
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Figure 5.14: |η − 1| as a function of αc for d̃ = 3 and R̃ = 1 in the symmetric case.
The small gradient approximation is plotted with a dashed line, the numerically exact
solution with a solid line.

for wrapping angles αc greater than 45◦ (see Figs. 5.12 and 5.13). Thus, the force
Fcyl can reach up to 3 pN for a particle of length L = 100 nm, which shows rather
vividly that membrane-mediated forces can be very significant in the nanoworld.
Estimates for smaller particles such as proteins or actin filaments (whereR ≃ 5 nm)
lead to similar results.

5.2.4 Two sewing needles on water – a brief interlude

For one-dimensional problems the shape of the interface between two incompress-
ible fluids under gravity is also described by the membrane shape equation (5.48)
(see Technical Point 5.5 on page 131). It therefore proves worthwhile to investigate
the interface-mediated force between two cylinders floating on such a fluid-liquid
interface and compare it to the results we have derived for the membrane.
To this end, let us specialize to surfaces where surface tension is the only surface
energy contribution and consider at first two particles of arbitrary shape and orien-
tation adhering to the interface, e. g. two needles floating on an air-water interface
(see Fig. 5.15) [GS71] or two cheerios on the milk surface of your breakfast bowl
[VM05].
The force is now not only given by a boundary integral alone but contains an ad-
ditional area integral over the stresses from gravity as we have seen in Sec. 2.3.2.
This prevents us from following the approach exploited in Sec. 5.1 where the con-
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(a) (b)

(c) (d)

Figure 5.15: Attraction of two sewing needles floating on water (see also [GS71]).
The whole process proceeds on a timescale of a few seconds, becoming increasingly
faster from (a) to (d) (from [Mül04]).

tour of integration could be deformed without changing the value of the force. One
may, however, analyze both terms of the force separately: according to Eqn. (2.66)
the force on one of the particles is given by

F = −F ext = σ

∮

∂Σc

ds l − ρ g

∫

Σc

dA hn , (5.72)

where Σc is the contact surface between particle and water or milk, respectively.
This expression quite vividly illustrates the two different contributions to the force:

1. The first term is only proportional to the surface tension. It adds up all the
contributions which originate from the surface locally pulling in l direction
outward with a strength σ per unit length.

2. The second term is proportional to the gravitational acceleration g and inte-
grates over the patch covered by the particle. Since ρgh is the excess pressure
across the surface, it describes the buoyancy force due to the Young-Laplace
pressure across the patch.
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Figure 5.16: Illustration that for two floating cylinders (symmetric case) the two
different forces acting on one of them have an unbalanced horizontal component,
leading to an attraction between the two particles.

In Fig. 5.16 these two components of the force on the left particle are depicted
for the case of two cylinders in a symmetric configuration. Since the cylinder is
adhering asymmetrically to the water (due to the presence of the second cylinder),
the horizontal contribution of both forces does not vanish. In fact, one can see that
a net force in the direction of x remains (see again Fig. 5.16): the horizontal force
contributions originating from the Laplace pressure below the dotted line cancel
each other but are not balanced above this line. Additionally, surface tension pulls
to the right as well because the outward pointing vector l at the right line of contact
between substrate, water, and air has a larger component in the x direction than
the one at the left has in the direction of −x. Thus, the cylinders attract in this
situation (see again Fig. 5.15). In contrast to that, two membrane-bound cylinders
repel. This is quite surprising at first sight since the surface shapes for both cases
are solutions of the same shape equation. However, the surface energies not only
determine the shape but also the stress tensor which is different even though the
shapes are the same. Consequently, the forces are different and even differ in their
sign.

In this section we have seen that the simple two-cylinder problem already displays
remarkably subtle behavior. For two spheres on the membrane (2D problem) the
situation becomes even more complicated: the shape equation cannot be solved
in terms of known functions any more. Even the sign is difficult to determine
analytically. Although linear calculations predict a repulsion for the symmetric
configuration [GBP93, WKH98, KNO98, BF03], the nonlinear expression (5.11)
for the force Fsym does not rule out that the interaction between the particles is
attractive for higher deformations. Furthermore, two particles are very often not
isolated on the membrane in vivo but surrounded by many others. Multi-body
effects will thus play a role as well: since the field equations are nonlinear, the
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(a) (b) (c) (d)

Figure 5.17: Approximation steps that lead to the cell model. The full solution (a)
is partitioned into Wigner-Seitz cells (b), which are conveniently symmetrized (c).
Subsequently just one cell is considered (d) [DH01].

interactions between more than two particles are not simply expressible as a sum
of pair interactions.
In the following section tailored computer simulations will be presented that offer
an alternative approach if one wants to consider more complicated situations than
the humble 1D two-particle problem. Before studying the results of these simula-
tions, however, we will discuss how the ground-state multi-body problem can be
treated in an approximate way.

5.3 The multi-body problem

The phase behavior of an infinite number of membrane-curving spheres is
analyzed using a cell model. If the spheres adhere to alternating sides, a
phase separation can be found at high particle densities. Spheres at lower
densities adhering to the same side of the membrane can aggregate if they
also vesiculate subsequently. This agrees with results from computer simu-
lations.

Multi-body effects become particularly important if one considers 2D bulk phases
like a system consisting of many particles that adhere to the same side of the mem-
brane and repel each other. To determine state variables like the lateral particle
pressure, one may think about using a cell model like it is used, for instance, in
nonlinear Poisson-Boltzmann theory [DH01].

5.3.1 Cell model

Approximations

In fact, the situations are quite similar: consider an overall neutral 3D system of
like charged colloids together with the appropriate number of oppositely charged
counterions. In Poisson-Boltzmann theory these counterions are replaced by a
charge density, which is treated in a mean field way. The colloids will typically
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organize such as to keep themselves mutually apart. One can then partition the
volume into Wigner-Seitz cells, each containing one colloid. Every cell has essen-
tially the same volume and is charge neutral by construction, which means that
different cells do not significantly interact with each other. The cell model then
considers just one cell, symmetrizes it, and calculates its free energy in dependence
of the cell volume by solving the Poisson-Boltzmann equation (see Fig. 5.17). The
remaining effect of all other colloids is to determine the volume of the cell. If one
wants to know the pressure in the system, one has to differentiate the free energy
of one cell with respect to the cell’s volume. This pressure is proportional to the
ion density at the cell boundary, a result which is exact and, incidentally, does not
rely on the approximations of Poisson-Boltzmann theory [DH01].
In analogy to the 3D case, one can also partition the interface of a 2D bulk system
of particles bound to a membrane into two-dimensional cells. Instead of solving
the Poisson-Boltzmann equation, one now has to find a solution for the membrane
shape equation.13 Due to its nonlinearity, one cannot get analytical results in gen-
eral as we have seen in this work. For an axisymmetric cell, however, a numerical
solution can be found relatively easily. Moreover, it is possible to discuss stresses
again and relate geometrical properties at the boundary to the lateral pressure of
the system.

Lateral pressure

Consider one spherical particle of radius a in an axisymmetric cell of radius Rcell

(see Fig. 5.18). The membrane wraps the particle up to a contact angle αc which
will be fixed in the following. Two configurations of the whole bulk system are of
interest here: all colloids are either on the same side of the membrane (“symmetric”
case) or on alternating sides (“antisymmetric” case). In each case different choices
of boundary conditions at the cell boundary are possible (see again Fig. 5.18): (i)
in the symmetric case the profile must be flat at the cell boundary if one asks for
a homogeneous system which is infinite (i. e., flat on a large scale). However, since
the symmetry between the two sides of the membrane is explicitly broken, one
might alternatively also consider states where colloids populate a membrane dis-
playing large-scale curvature—a finite colloid-studded membrane bud. The angle
at Rcell, ψcell, can then be obtained by searching for the profile that minimizes the
(free) energy E of the system. (ii) In the antisymmetric case the system will al-
ways be flat on a large scale. The two-particle analog suggests that the curvatures
K⊥ and K‖, and therefore K, all must be equal to zero at the straight boundaries
between the Wigner-Seitz cells (see page 115). However, in an axisymmetric cell
K‖ = − sinψcell/Rcell does not vanish in general. One thus has to choose whether

13 Note that this method has been used before to describe inclusion-containing and two-
component membranes, respectively (see, for instance, Refs. [AEBD+96, NGA98, GG01,
FIM06]).
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Figure 5.18: (a) Geometry of the axisymmetric cell. (b) Configurations of the
bulk system (simplified 1D illustration): asymptotically flat symmetric case (above),
membrane bud with curvature radius R (middle), asymptotically flat antisymmetric
case (below). The cell size is indicated with a dotted rectangle for each case.

K⊥ or K = K⊥ + K‖ is set to zero at the cell boundary. This choice is part of
the approximations of the cell model (a price we pay for axisymmetry) and yields
different results as we will see below.

The membrane profile and the energy E of one cell will in general depend on the
(projected) area of the cell, Acell = πR2

cell. A derivative of E with respect to Acell

gives the lateral pressure of the system in analogy to the 3D case:

Π = − ∂E

∂Acell

= − 1

2πRcell

∂E

∂Rcell

. (5.73)

This pressure can be related to the geometry of the membrane. Recall that a
change in energy due to the variation of a boundary is given by Eqn. (3.12):

δE = −
∮

C
ds la

[

fa · δX −Habeb · δn
]

, (5.74)

where laHabeb = κKl for a membrane (compare Eqn. (2.35)) and we have written
n · δeb = −eb · δn again. To determine the pressure, one has to calculate how
the energy changes due to the variation δX = ρ δRcell where δn = −l δψcell (see
again Fig. 5.18). Exploiting axial symmetry and integrating along a circle of radius

149



5 Membrane-mediated interactions between particles

ρ = Rcell, one obtains

δE = −2πRcell

[

laf
a · ρ+ κK

∂ψcell

∂Rcell

]

ρ=Rcell

δRcell . (5.75)

If this relation is combined with Eqn. (5.73), an expression for the lateral pressure
in terms of the geometry at the boundary results:

Π =

[

laf
a · ρ+ κK

∂ψcell

∂Rcell

]

ρ=Rcell

. (5.76)

The pressure is given as the projection of the stress tensor plus a term due to the
intrinsic torque. This is strongly reminiscent of the discussion from Sec. 3.4 where
both terms entered the balance equation at the contact line between a fluid surface
and a rigid substrate. In both cases the variation is fixed: by the substrate in the
case of fluid surface adhesion, by the definition of the lateral pressure in the case
of the cell.
Let us for simplicity consider the case σ = 0 in the following. The Hamiltonian is
then given by curvature alone,

H =
1

2
κK2 , (5.77)

and we can study Eqn. (5.76) for the different configurations which were introduced
in the beginning of this section. Let us start with the symmetric case again: if one
allows the membrane to form a bud (see Fig. 5.18(b)) and searches for the profile
that minimizes the energy E of the cell, one will always arrive at the catenoid
which has zero mean curvature everywhere and thus zero energy (see Technical
Point 2.2 on page 35). This implies that the pressure will vanish as well. We will
come back to that point in the next paragraph. If one wants the profile to be flat
on a large scale, it has to be flat at the cell boundary. The angle ψcell is always
zero; thus, ∂ψcell/∂Rcell vanishes and the pressure is given by

Πsym =
κ

2
K2

⊥ . (5.78)

It is always positive and proportional to the squared perpendicular curvature at
the boundary of the cell. Eqn. (5.78) resembles expression (5.12) for the force of
the symmetric two-cylinder case. Note, however, that an additional surface tension
σ in the Hamiltonian density (5.77) would enter Πsym whereas such a term does
not change the functional form of the repulsive force between two cylinders on the
same side of a membrane.14

14 One might expect that an additional surface tension will decrease the pressure. However, K⊥

will change as well if σ is increased. The overall effect is not obvious at all.
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In the antisymmetric case we have seen that either K or K⊥ may be chosen to be
zero at the cell boundary. The former case corresponds to a catenoid, implying
zero lateral pressure, whereas in the latter one finds the expression:

Πantisym =
[

−κ
2
K2

‖(l · ρ) − κ(∇⊥K)(n · ρ)
]

+ κK
∂ψcell

∂Rcell

(5.79)

for the lateral pressure of the system. In contrast to the symmetric case, Πantisym

does not only depend on the profile at a given cell radius Rcell but also on a
derivative with respect to Rcell. The sign of Πantisym is not fixed but may change
depending on the parameters.
To obtain numbers for Πsym and Πantisym, the shape equation has to be solved
numerically.

Numerical solutions

Fortunately, in Chap. 4 we considered a similar situation, a parabolic tip adher-
ing to a membrane in an axisymmetric configuration. One can indeed use the
same method as in Sec. 4.3.2 to solve the cell model. Rewriting the problem in
a Hamiltonian formulation, one obtains the Hamilton equations (4.13) with two
small differences: the force F as well as the surface tension σ are now equal to
zero.
We assume that the angle at the contact point, where the membrane detaches
from the particle, is fixed to αc. The contact point c is then given by c = a sinαc.
Furthermore, either the angle ψcell (symmetric case) or the curvature K⊥ (anti-
symmetric case) are set to zero at the cell boundary. Finally, the Hamiltonian
function H is conserved and vanishes exactly as in Sec. 4.3.2.
Solving the Hamilton equations subject to these boundary conditions with a shoot-
ing method analogous to the one explained in Technical Point 4.3 yields profiles
for given cell radius Rcell. The energy follows by numerically integrating the en-
ergy density (5.77) over the surface of the membrane. Its negative derivative with
respect to the cell area then yields the lateral pressure (see Eqn. (5.73)). Alterna-
tively, one can use Eqns. (5.78) and (5.79) to calculate Π.15

We will not discuss the numerical calculations in full detail here but will instead
focus on a wrapping angle αc of 120◦ which is high enough for nonlinear effects to
appear in the solution.

Symmetric case Fig. 5.19 shows the scaled energy Ẽ := E/κ of the cell as a
function of the scaled cell area Ãcell := Acell/a

2 in the symmetric case. The energy
increases for decreasing cell size until the point is reached at which the system is

15 Comparing the results of both methods is in fact a nice consistency check for the numerical
calculations.
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Figure 5.19: Scaled energy and lateral pressure (inset) of the cell as a function of
scaled cell area for αc = 120◦ in the symmetric case. The dashed line denotes the
cell area at which the system is densely packed (Ãcell = π) and the particles cannot
approach closer.

densely packed and the particles cannot approach closer. In the symmetric case
this happens at R̃cell = 1 where R̃cell := Rcell/a.
The corresponding scaled pressure Π̃sym := Πsyma

2/κ is plotted in the inset of
Fig. 5.19. It is positive and is a monotonically falling function of Ãcell. Conse-
quently, the cell model predicts that the colloids repel each other at all distances
if the angle at the boundary is fixed to zero.
However, we did not yet take into account that parts of the system may bulge to
evade the pressure and form buds, even if the system is flat at infinity. Such a
bud will change the total energy: inside the bud the cell model predicts that the
membrane in each cell will be a catenoid of zero energy (see above). With every
particle in the bud one thus gains an energy of Ẽ(Ãcell) compared to the flat state.
On the other hand, a neck of energy Ẽneck will form which connects the bud to the
rest of the membrane. One arrives at

Ẽbud = Ẽneck −NbudẼ(Ãcell) (5.80)

for the energy change due to the creation of one bud containing Nbud particles. If
one assumes that the neck of the bud is a catenoid as well, the system will gain
energy with every additional particle joining the bud. A small additional pair
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attraction, e. g. due to fluctuation-induced Casimir forces, suffices for the number
Nbud to increase over time. At some particle number the bud will pinch off and
form a vesicle. When this happens cannot be predicted quantitatively within our
simple model as it does not determine how much area in the bud will be occupied
per cell.

Antisymmetric case If the colloids adhere to alternating sides of the mem-
brane, the system has to stay flat. It can, however, pack denser than in the
symmetric case because nearest neighbors do not lie in the same plane. For the
axisymmetric cell the highest density is reached at Ãcell = 2.12 < π. For smaller
cell areas no stable solution can be found.16

In the upper part of Fig. 5.20 the scaled energy is plotted. It exhibits a maximum
at Ãcell ≈ 3.43 which corresponds to a cell radius R̃cell of 1.045. Around this
maximum the energy is concave. Its second derivative with respect to the cell area
is negative:

∂2Ẽ

∂Ã2
cell

= − ∂Π̃

∂Ãcell

< 0 . (5.81)

Such a behavior is unphysical since it implies that a reduction of the cell area will
lead to a reduction of the pressure (see also lower part of Fig. 5.20). The system
would be mechanically unstable and collapse. The reason for this peculiarity is
that we implicitly assumed that the system consists of exactly one homogeneous
phase. This is not correct for high particle densities. Between a cell area of Ãαcell
and Ãβcell the system will phase separate into a densely packed phase α and a less
denser phase β which are in coexistence with each other (see again Fig. 5.20). This
behavior resembles that of well-known systems such as a van der Waals gas below
the critical temperature T < Tc [Cal85].

Phase separation and Maxwell construction

In the coexistence region the system will always gain free energy by phase sepa-
rating into the two phases. Their relative weight is given by the lever rule [Cal85].
The corresponding values of Ãαcell and Ãβcell can be obtained by changing from the
free energy E to the Gibbs free energy G with a Legendre transform:

G̃(Π̃) = min
Ãcell

{

Ẽ(Ãcell) + Π̃Ãcell

}

, (5.82)

where G̃ is scaled with κ exactly as Ẽ. The Gibbs free energy depends on the
pressure. If one plots Ẽ + Π̃Ãcell for a fixed Π̃ as a function of Ãcell, the global

16 Note, however, that one must be careful when interpreting results of the model for these high
densities since an axisymmetric cell is a rather crude approximation of the real configuration
if the colloids are very close to each other.
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Figure 5.20: Scaled energy (above) and lateral pressure (below) of the cell as a
function of scaled cell area for αc = 120◦ in the antisymmetric case (solid lines). In
the inset above, Ẽ+Π̃αβÃcell is plotted as a function of Ãcell. The dashed lines denote

the coexistence region, i. e., the cell areas Ãαcell = 2.3 and Ãβcell = 12.9 between which
the system phase separates into a dense and a dilute phase, as explained in the text.
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minimum is located at the cell area which corresponds to Π̃. At some particular
pressure Π̃αβ two minima of equal height can be found (see inset in the upper part
of Fig. 5.20). At this pressure the system phase separates into the two homogeneous
phases α and β corresponding to the two minima. Thus,

G̃α(Π̃αβ) = G̃β(Π̃αβ) , (5.83)

where Π̃αβ does not depend on Ãcell. In other words, the pressure is constant in
the coexistence region and the free energy is a linear function of Ãcell (see dotted
lines in the upper part of Fig. 5.20). The derivative ∂G̃/∂Π̃ is equal to the cell
area and displays a jump at Π̃αβ. This implies that the phase transition is of first
order.
For the given configuration Eqn. (5.83) holds if Π̃αβ = 0.022. From Fig. 5.20 one
can now read off the values of the cell areas of the two different phases: Ãαcell = 2.3
and Ãβcell = 12.9. The former corresponds to a cell radius of R̃α

cell = 0.86, the latter

to R̃β
cell = 2.03.

The free energy difference between the phases α and β can be obtained from
Eqn. (5.83) as well:

∆Ẽαβ := Ẽα − Ẽβ = Π̃αβ(Ã
β
cell − Ãαcell) . (5.84)

If one uses the original (unphysical) pressure function, ∆Ẽαβ can also be written
as

∆Ẽαβ =

∫ Ãβ
cell

Ãα
cell

dÃcell Π̃ . (5.85)

The equivalence of Eqn. (5.84) and (5.85) implies that the shaded areas in the
lower part of Fig. 5.20 are equal. This is also known as the Maxwell construction
and provides an alternative way to obtain Π̃αβ.
To conclude, we have used a cell model to study multi-body interactions between
membrane-bound spherical particles. For high densities a phase separation could
be found in the antisymmetric case if K⊥ is set to zero at the cell boundary. In
the symmetric case the formation of buds was predicted. Further studies with this
model could include tension as well and investigate how a change of the contact
angle influences the system. In the following we will see how the presented calcula-
tions compare to numerical computer simulations. In particular, we have to check
whether the approximations of the cell model are still valid in these simulations.

5.3.2 Coarse-grained computer simulations

Modeling membrane-mediated interactions

In molecular dynamics (MD) computer simulations Newton’s equations of motion
are integrated numerically in discrete time steps to determine how a many-particle
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Technical Point 5.8: Coarse-grained membrane model

In the simulations, σb and ǫ are used as units of
length and energy, respectively. Individual lipids
are represented by one head bead and two tail
beads. Their size is fixed via a Weeks-Chandler-
Andersen (WCA) potential (see Eqn. (5.X) be-
low). The three beads are linked by two finite
extensible nonlinear elastic (FENE) bonds with
kFENE = 30ǫ/σ2

b (see Eqn. (5.XI)).

Between the head bead and the second tail-bead acts a harmonic spring with rest
length r0 = 4σb and stiffness kbend = 10ǫ/σ2

b . All tail beads attract according to
Ucos(r) from Eqn. (5.XII) to mimic the hydrophobic effect and compensate the
absence of explicit solvent molecules [CKD05, CD05]. The size b of the head bead
can be tuned resulting in different self-assembled phases [CD06]. To ensure that
a bilayer of appropriate thickness forms, b is set to 0.95σb where σb ≈ 1 nm.
The physical properties of the bilayer, e. g. its fluidity, can be widely tuned via the

b

b

potential width wc (see phase
diagram on the left (compare

[CKD05]) for which the lateral
tension is set to zero. The sym-
bols denote the different phases
•: fluid , ×: gel, and +: unsta-
ble). In the simulations of this
section wc/σb = 1.6 and kBT/ǫ =
1.1 which corresponds to κ ≈
12 kBT . All simulations were
performed using the ESPResSo
package [LAMH06, WWWa].

UWCA(r) = 4ǫ

[(
b

r

)12

−
(
b

r

)6

+
1

4

]

, 0 < r < rc = 21/6b , (5.X)

UFENE(r) = −1

2
kFENE r

2
∞ ln

(

1 − r2

r2
∞

)

, 0 < r < r∞ = 1.5σb , (5.XI)

Ucos(r) =

{ −ǫ+ UWCA(r) , r < rc = 21/6σb
−ǫ cos2 π(r−rc)

2wc
, rc ≤ r ≤ rc + wc

. (5.XII)

system evolves in time [AT86, FS02]. A meaningful simulation of a membrane with
tens of adhering proteins or viruses calls for model membranes extending in ex-
cess of 100 nm and simulation times of the order of milliseconds, which were until
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(a) (b)

Figure 5.21: Curvature-inducing solid particles. (a) Caps (b) Capsid. Only the light
blue colored areas are attracted to the lipid head groups.

recently out of reach for conventional atomistic and many coarse-grained simu-
lations. These problems are overcome with a recently developed coarse-grained
model (see Technical Point 5.8 and Refs. [CKD05, CD05]) which achieves efficient
simulation owing to the elimination of explicit solvent molecules.
The simulations discussed in this section use this model. They are performed
at constant temperature and zero lateral pressure with periodic boundary condi-
tions.17 The simplified curvature-inducing particles are curved troughs, caps, or
capsids (see Fig. 5.21 and inset of Fig. 5.22). They are created from beads of the
same size b = σb which are held together either by tight harmonic springs (troughs
and caps) or FENE bonds and additional filler particles (spheres). The adhering
beads interact with the lipid head beads attractively via a Lennard Jones potential
(α = 2 (troughs and caps), α = 1 (capsids))

ULJ = 4αǫ

[(
b

r

)12

−
(
b

r

)6
]

, 0 < r < rc = 2.5σb , (5.86)

thus curving the membrane locally, whereas the nonadhering beads interact purely
repulsively with a WCA potential (see Eqn. (5.X)). None of the beads of a solid
particle attract other troughs, caps, or capsids.

Comparison to continuum theory

Like all coarse-grained approaches, the model eliminates atomistic detail and thus
cannot be used to explore phenomena dependent on such detail. But on length
scales of tens to hundreds of nanometers, relevant to the study of membrane-
mediated interactions, it faithfully reproduces all key properties of self-assembling
fluid bilayers, in particular the bending elasticity [CKD05]. In fact, Helfrich theory
describes the behavior of the membrane surprisingly well. In a recent study no
deviations from simple quadratic continuum theory could be found up to radii of
curvature comparable to the bilayer thickness [HD06].

17 For detailed information see the Supplementary Information of Ref. [RIH+07]
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Figure 5.22: Calculation of the force between two cylinders on a membrane – com-
parison of the directly measured constraining force ( ) vs. the force from a curvature
analysis ( ). In the inset a snapshot of the simulation is shown (troughs: red; hy-
drophilic head beads: blue; hydrophobic tail beads: yellow) (with courtesy of B. Reynwar).

To check whether the theory developed in this chapter can be applied to simula-
tions of membrane-mediated interactions, two adhesive troughs of curvature radius
3σb are placed on a membrane in a symmetric configuration (see Fig. 5.22). These
troughs model cylinders for which a (ground state) repulsive force is predicted
analytically at all distances (see previous sections). Fixing the separation between
the troughs, a curvature-mediated repulsion can indeed be measured. Two ways
of obtaining the force are used: (i) a circle is fitted to the membrane region close
to the mid-line between the two particles, giving K⊥, which can then be inserted
into the analytical force expression (5.12). (ii) The constraining force is measured
that has to be applied during the simulation to keep the centers of mass of the
two particles at the same horizontal distance. When comparing the results of both
methods, one should be aware of the fact that finite size effects are neglected in
method (i), i. e., the curvature of the membrane at the boundaries of the simula-
tion box which leads to an additional (small) contribution to the force is not taken
into account. Despite this, the results agree qualitatively (see Fig. 5.22). The force
measured in the simulation is thus most likely curvature-mediated. Therefore, we
can use the model to study these interactions for a multi-body configuration.
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(a)

(b)

(c)

(d)

(e) (f)

Figure 5.23: Vesiculation driven by 36 large caps on a membrane (series of simulation
snapshots) [RIH+07]. The times are: (a) 0 τ (b) 20, 000 τ (c) 40, 000 τ (d)
50, 000 τ (e) 60, 000 τ (f) 70, 000 τ .

Multibody interactions

Proteins To model curvature-inducing proteins, different cap sizes are used in
the simulations, corresponding to 10% (small caps), 16 % (large caps), and 34 %
(extra large caps) of a sphere of radius 5.5σb. The size and degree of deflection
of the two former are comparable to real proteins such as the BAR domain (see
upper Fig. on page 5) [BV06].
Placing 36 small caps onto a tensionless square membrane with a side length of
approximately 160 nm (46, 080 lipids), one observes only weak clustering for the
entire 70, 000 τ simulation time, where τ ≈ 15 ns based on lipid self-diffusion. Any
mediated interaction is small compared to the thermal energy. In stark contrast,
the large caps behave qualitatively differently (see Fig. 5.23 and Supplementary
Video 1 at [WWWb]). After initial weak clustering, a sudden transition happens at
approximately 40, 000 τ : most caps have by now aggregated into a single, almost
flat cluster, which rapidly vesiculates within the subsequent 30, 000 τ ≈ 0.5 ms.
Notice that throughout this process individual caps neither touch nor order in a
crystalline-like fashion. For extra large caps one observes that aggregation happens
quicker, the aggregates are denser, and the vesicle sizes are smaller because fewer
proteins suffice to create them (see Supplementary Video 2 at [WWWb]). Notice
that in cellular organelles this mechanism additionally has to compete against a
residual bilayer tension that suppresses vesicle formation beyond a critical size.
The vesiculation pathway observed in the simulations differs fundamentally from
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scaffolding [MG05, ZK06] schemes, such as clathrin-dependent endocytosis, that
require proteins to contact directly and specifically. Evidently, curvature-mediated
interactions alone can induce aggregation and vesiculation (see also the Supple-
mentary Information of Ref. [RIH+07] for a detailed discussion of the energetics).
This effect has not been seen in approximate linearized continuum theories for
isotropic benders, possibly because the induced deformations are too strong to per-
mit linearization—an approximation to which the sign of an interaction is known
to be sensitive [GH99]. Conversely, while the observed attraction weakens and
ultimately vanishes at diminishing curvature imprint, a crossover into the linearly
predicted repulsive behavior could not be identified with statistical significance for
the caps. Yet, in this limit other contributions to mediated interactions (such as
fluctuation [GBP93], depletion, or tilt-mediated (see Sec. 5.1.4) forces) compete
with the diminishing ground state curvature term, for which, furthermore, only
the large-separation behaviour is known. It is thus not clear which force law one
should expect for small deformations.

Viral capsids Let us finally look at spherical particles with a radius comparable
to the cap-radius, attracting the membrane with 75% of their surface. Unlike
model proteins, these objects may represent viral capsids or nanoparticles. Viral
capsids are typically an order of magnitude larger than the particles used in the
simulation but modeling them at a realistic scale becomes infeasible even for the
type of coarse-grained model simulation presented here. However, due to the scale
invariance of the Helfrich Hamiltonian the fundamental physics is not expected to
change (except that the necessary adhesion energy would become smaller).

Within the first 2000 τ of placing 16 such capsids onto a tensionless square mem-
brane of initial side-length 160σb, the membrane contracts to ≈ 140σb as it coats
the attractive part of the colloidal spheres (Fig. 5.24(a) to Fig. 5.24(b)). After
the initial contraction, clustering sets in, always starting by the formation of pairs
(Fig. 5.24(c)), and followed by subsequent tight vesiculation (Fig. 5.24(d)–5.24(f)
and Supplementary Video 3 at [WWWb]). The resulting multi-capsid structures
closely resemble morphologies encountered in the cooperative budding of late do-
main mutated Mason-Pfizer monkey viruses (MPMV) [GBM+03], which also lack
individual budding activity (Fig. 5.24(g)).

To quantify the pair attraction, two capsids are placed on a membrane analogous to
the troughs in Fig. 5.22. For separations smaller than 16σb a significant attraction
exists which is strongest around a separation of 12σb (for very short distances
capsids repel due to direct contact). Because of system size requirements and slow
thermal shape fluctuations the large distance asymptotics even for such strong
deformers remains difficult to determine, but recent simulations show a crossover
into the repulsive regime [Rey07].

For small separations the capsids tilt towards each other similar to the troughs.
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(a)

(b) (c)

(d)

(e) (f) (g)

Figure 5.24: Attraction and cooperative budding of 16 capsids on a membrane (series
of simulation snapshots) [RIH+07]. The times are: (a) 0 τ (b) 1, 000 τ (c) 7, 000 τ
(d) 16, 000 τ (e) 18, 000 τ (f) 23, 500 τ . (g) Electron micrograph of late domain
mutated MPMV virions. Scale bar in (g): 500nm (reprinted from Ref. [GBM+03] with

permission of authors and publisher; copyright 2003, The American Society for Microbiology).

From Eqn. (5.11) we know that for vanishing surface tension σ = 0 the net force
between the two particles results from a competition between the force associ-
ated with the curvature K⊥ along the direction joining the particles (which drives
repulsion) and the force associated with the curvature K‖ perpendicular to it
(which drives attraction). Taken together this information points towards a pos-
sible mechanism for capsid attraction: as the spherical particles approach each
other they flatten the former curvature by tilting, thus enabling the attractive
forces associated with the second curvature direction to take over. This effect may
be supplemented by a slight peeling of the membrane from the front and back of
the capsids which could be observed in the simulations. Although it is difficult
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to predict the outcome of this subtle balance analytically, the simulations clearly
show that a sufficiently large curvature imprint will result in an overall attraction
between membrane-adsorbed particles. The universal nature of this effect renders
it extremely robust, and suggests that cells take advantage of it. In fact, cellu-
lar membrane control might even require measures to prevent such omnipresent
aggregation.

Comparison between cell model and simulations

How do the cell model and the simulations compare? The parameters chosen for
the sphere in the cell coincide with those of the capsid in the previous section:
a contact angle αc of 120◦ implies that the membrane covers 75% of the surface
of the spherical particle. Asking for a cell radius R̃cell which corresponds to the
configuration of the simulations one obtains a value between 3 and 4, which is in
the range of cell radii discussed in Sec. 5.3.1. Furthermore, the model membrane
in the simulations can be described by the pure bending Hamiltonian (5.77).18

Comparing the results from the cell model and the simulations we see that they
agree qualitatively. In the simulations the membrane bulges, forms buds and vesic-
ulates as anticipated by the calculations of the cell model. However, a quantitative
comparison is nontrivial as the approximations made in the cell model are too
crude. Whether or not the cell model can be refined in such a way that it predicts
results of the simulations such as the number of particles per bud remains to be
seen and is an interesting question for future investigations.

18 In fact, in the simulations the lateral pressure is fixed which implies that a very small surface
tension can remain as the membrane is curved at the boundaries of the box.
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The mechanics of fluid membranes and similar surfaces were studied using a com-
bination of analytical theory, numerical calculations, and computer simulations.
These techniques proved complementary to one another yielding results which
would probably have been overlooked if just one approach was chosen. For exam-
ple, in the context of interface-mediated interactions between two particles, several
analytical conditions on the interface geometry could be derived within the geo-
metrical framework introduced in Chap. 2. For the simple 1D problem this tool
was complemented with profile calculations to extract numbers for the strength of
interaction. To analyze more complicated configurations quantitatively, tailored
computer simulations were presented and compared to the predictions of a cell
model.
When asking whether these theoretical studies are relevant for the biological mem-
brane, one always has to be aware that simplifications and approximations are
involved which have to be checked carefully. Membrane-mediated interactions, for
example, will certainly be influenced by other components of the cell, such as the
cytoskeleton, especially if the length scales of interest are larger than the cytoskele-
tal mesh size; in the other limit, a continuum description of the membrane will
certainly fail at length scales smaller than the bilayer thickness.
Yet, the hope is that investigations of simpler systems may further the understand-
ing of the fundamental mechanisms underlying biological function, an idea which
is quite familiar to the physicist. Using synthetic soft materials in a well-defined
setup indeed paves the way for quantitative predictions as we have seen for the
nanodrum in Chap. 4. To check predictions such as these and apply the resulting
insights to nature, biologists and physicists must join forces and share their ex-
pertise. The author hopes that the results obtained and the techniques discussed
in this thesis will be helpful; maybe they add a few tesserae to the final picture
which will contain an explanation of how the biological cell functions.
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A Classical differential geometry of
two-dimensional surfaces

A.1 Basic definitions

This section gives an overview of the basic notions of differential geometry for
two-dimensional surfaces. It follows mainly Ref. [Kre91] in its discussion and is an
extension of App. B from Ref. [Mül04]. For more information on the differential
geometry of two-dimensional surfaces see also Refs. [Car76], [Spi76], and [NPW04,
Chap. 7].

Definition of a surface

Let us consider the vector function X(ξ1, ξ2) ∈ R
3 with

X : R
2 ⊃ Ξ ∋ (ξ1, ξ2) 7→X(ξ1, ξ2) ∈ U ⊂ R

3 , (A.1)

where Ξ is an open subset of R
2. LetX(ξ1, ξ2) be of class r ≥ 1 in Ξ, which means

that one of its component functions Xi (i ∈ {x, y, z}) is of class r and the other

ones are at least of this class.1 Let furthermore the Jacobian matrix ∂(Xx,Xy ,Xz)

∂(ξ1,ξ2)
be

of rank 2 in Ξ which implies that the vectors

ea :=
∂X

∂ξa
= ∂aX , a ∈ {1, 2} , (A.2)

are linearly independent. The mapping (A.1) then defines a smooth two-dimension-
al surface patch U embedded in three-dimensional Euclidean space R

3 with coor-
dinates ξ1 and ξ2 (see Fig. A.1). A union Σ of surface patches is called a surface
if two arbitrary patches U and U ′ of Σ can be joined by finitely many patches
U = U1, U2, . . . , Un−1, Un = U ′ in such a way that the intersection of two subse-
quent patches is again a surface patch. This implies that for Uj ∩ Uk 6= ∅ (j, k ∈
{1, . . . , n}) a mapping of class r between the two planar images of the intersection
exists, i. e., a transformation between the coordinates corresponding to Uj and Uk
[Kre91, p. 76]. To simplify the following, let us restrict ourselves to a surface that
can be covered by one patch U only.

1 A function of one or several variables is called a function of class r if it possesses continuous
partial derivatives up to order r.
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Figure A.1: Parametrization of a surface

The vectors ea, defined in Eqn. (A.2), are the tangent vectors of the surface. They
are not normalized in general. Together with the unit normal

n :=
e1 × e2

|e1 × e2|
, (A.3)

they form a local basis (local frame) in R
3 (see Fig. A.2):

ea · n = 0 , and n · n = 1. (A.4)

The metric tensor (first fundamental form)

With the tangent vectors ea, one can define the metric tensor (also called the first
fundamental form)

gab := ea · eb . (A.5)

This covariant second rank tensor is symmetric (gab = gba) and positive definite
[Kre91, p. 86]. It helps to determine the infinitesimal Euclidean distance in terms
of the coordinate differentials [Kre91, p. 82]

ds2 = [X(ξ1 + dξ1, ξ2 + dξ2) −X(ξ1, ξ2)]2 = (e1 dξ1 + e2 dξ2)2

= (ea dξa)2 = (ea · eb) dξa dξb

= gab dξa dξb , (A.6)
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Figure A.2: Local frame on the surface

where the sum convention is used in the last two lines (see footnote 10 on page 18).
The contravariant dual tensor of the metric may be defined via

gac g
cb := δba :=

{

1, if a = b

0, if a 6= b
, (A.7)

where δba is the Kronecker symbol. The metric and its inverse can be used to raise
and lower indices in tensor equations. Consider, for instance, the second rank
tensor tab:

Raising: tac g
cb = t b

a , and lowering: t c
a gcb = tab . (A.8)

The determinant of the metric2

g := det g = det (gab) = g11g22 − g12g21 (A.9)

can be exploited to calculate the infinitesimal area element dA: let γ be the angle
between e1 and e2 (see Fig. A.2). Then

|e1 × e2|2 = |e1|2|e2|2 sin2 γ = g11g22(1 − cos2 γ) = g11g22 − (e1 · e2)
2

= g11g22 − g12g12 = g , (A.10)

and thus
dA = |e1 × e2| dξ1 dξ2 =

√
g d2ξ . (A.11)

The epsilon-tensor

The epsilon-tensor
εab := n · (ea × eb) . (A.12)

2 Note that g is the matrix consisting of the metric tensor components gab.
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is antisymmetric in its two indices εab = −εba. It can also be written as εab =
√
g ǫab

with ǫ12 = −ǫ21 = 1 and ǫ11 = ǫ22 = 0. This implies εab =
√
g−1ǫab. The metric

and the epsilon tensor are connected via

εabεcd = gacgbd − gadgbc , (A.13)

which can be checked by straightforward calculation using all existing symmetries.
Eqn. (A.13) can be contracted twice

εacε
c
b = gab and εab ε

ab = gab g
ab = 2 . (A.14)

The covariant derivative

The partial derivative ∂a of a tensor is generally not a tensor itself. One therefore
defines the covariant derivative ∇a on a tensor ta1a2...an

b1b2...bm
by incorporating all terms

which spoil the transformation law directly into the new derivative:

∇ct
a1a2...an
b1b2...bm

= ∂ct
a1a2...an
b1b2...bm

+ td a2...an
b1b2...bm

Γ a1

dc + ta1d...an
b1b2...bm

Γ a2

dc + . . .+ ta1a2...d
b1b2...bm

Γ an
dc

− ta1a2...an
d b2...bm

Γ d
b1c

− ta1a2...an
b1d...bm

Γ d
b2c

− . . .− ta1a2...an
b1b2...d

Γ d
bmc , (A.15)

where the Γ c
ab are the Christoffel symbols of the second kind with

Γ c
ab = (∂aeb) · ec =

1

2
gcd(∂agbd + ∂bgda − ∂dgab) , (A.16)

and ∇a acting on a tensor again yields a tensor. For the covariant differentiation
of sums and products of tensors the usual rules of differential calculus hold. This
includes, for instance, integration by parts. The metric-compatible Laplacian ∆
can be defined as ∆ := ∇a∇a.
Note in particular that

∇an = ∂an , and (A.17a)

∇aeb = ∂aeb − Γ c
ab ec . (A.17b)

We also have the so-called Lemma of Ricci

∇agbc = ∇ag
bc = ∇ag = 0 . (A.18)

It implies that raising and lowering of indices commutes with the process of co-
variant differentiation.
However, covariant derivatives do not commute with each other. For a contravari-
ant vector tc, one obtains, for instance,

[∇a,∇b] t
c = (∇a∇b −∇b∇a)t

c = R c
ab dt

d , (A.19)

where R c
ab d is the Riemann curvature tensor (compare Eqn. (A.45) on page 173).

For contravariant tensors of rank 2 a second Riemann tensor arises:

[∇a,∇b] t
cd = R c

ab et
ed +R d

ab et
ce . (A.20)
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Lie derivative

The Lie derivative describes how a tensor changes along some given “direction”
on the surface, specified by a vector field Y = Y aea [Fra03]. Contrary to the
covariant derivative it does not change the order of the tensor it differentiates.
If the tensor is a scalar function φ on the surface, its Lie derivative is just the
directional derivative along Y :

LY φ = Y a ∂aφ = Y a∇aφ . (A.21)

For tensors of higher order such as a vector field V = V aea one can define the Lie
derivative with the help of the local flow Φt generated by Y .3 Since Φt(P ) shifts
the point P for a “time” t along the flow, its differential can be used to compare
vectors at different points with each other. Consider the two following vectors:
V P , the representative of the vector field V at the point P , and (Φ−t)∗V Φt(P ), the
representative of the vector field V at the point Φt(P ) pushed backward to the
point P by means of the differential (Φ−t)∗.
The difference between the two can be used to define the Lie derivative of V with
respect to Y at the point P :

(LYV )P = lim
t→0

(Φ−t)∗V Φt(P ) − V P

t
. (A.22)

In local coordinates this can be written as [Fra03]

(LYV )a = Y c ∂cV
a − V c ∂cY

a . (A.23)

In general, the Lie derivative of a tensor ta1a2...an
b1b2...bm

with respect to Y is given by

(LY t)
a1a2...an
b1b2...bm

= Y c ∂ct
a1a2...an
b1b2...bm

− tc a2...an
b1b2...bm

∂cY
a1 − ta1c...an

b1b2...bm
∂cY

a2 − . . .− ta1a2...c
b1b2...bm

∂cY
an

+ ta1a2...an
c b2...bm

∂b1Y
c + ta1a2...an

b1c...bm
∂b2Y

c + . . .+ ta1a2...an
b1b2...c

∂bmY
c , (A.24)

in local coordinates. The partial derivatives can be replaced by covariant ones as
one can check by straightforward calculation. This observation confirms that the
Lie derivative does indeed produce a tensor.

Curvature in one dimension

Consider a curve C in R
2. Its curvature k at a given point has a magnitude equal to

the reciprocal of the radius of an osculating circle, a circle that “kisses” or closely
touches the curve at the given point having the same tangent (see Fig. A.3). To
describe the curvature properties of a (non-planar) surface embedded in R

3, a
tensor is needed, the extrinsic curvature tensor Kab.

3 The flow Φt is the solution of the differential equation (d/dt)Φt(P ) = Y P which states that
the tangent vector to the flow at the point P on the surface always coincides with the vector
Y P at that point (see, for instance, Ref. [Fra03, Sec. 1.4a]).
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Figure A.3: Curvature in one dimension (“Piled Higher and Deeper” by Jorge Cam;

http://www.phdcomics.com). The author finished this thesis after three years. For-
tunately, this was early enough to avoid serious backaches.

The extrinsic curvature tensor (second fundamental form)

Two surfaces may have the same metric tensor gab but different curvature proper-
ties in R

3. In order to describe such properties let us consider a surface Σ of class4

r ≥ 2 and a curve C of the same class on Σ with the parametrizationX(ξ1(s), ξ2(s))
on Σ, where s is the arc length of the curve (see Fig. A.4).
At every point of the curve where its curvature k > 0, one may define a moving
trihedron {t,p, b} where t = Ẋ is the unit tangent vector, p = ṫ/|ṫ| = ṫ/k is
the unit principal normal vector, and b = t× p is the unit binormal vector of the
curve.5 Furthermore, let η be the angle between the unit normal vector n of the
surface and the unit principal normal vector p of the curve with cos η = p ·n (see
again Fig. A.4).
The curvature k of the curve can then be decomposed into a part which is due to
the fact that the surface is curved in R

3 and a part due to the fact that the curve
itself is curved. The former will be called the normal curvature Kn, the latter the
geodesic curvature Kg. One defines:

Kn := −ṫ · n = −k (p · n) = −k cos η , and (A.25)

Kg := t · (ṫ× n) = k t · (p× n) = k sin η sign (n · b) . (A.26)

Here, we are interested in the curvature properties of the surface. Therefore, the

4 This means that its parametrization X(ξ1, ξ2) is of class r ≥ 2.
5 The dot denotes the derivative with respect to the arc length s.
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b
p

n

t
C

s η

Σ

P

Figure A.4: Curve C on a surface. Notice that the unit principal normal vector p of
the curve and the unit normal vector n of the surface do not coincide but form the
angle η.

normal curvature Kn is the relevant quantity that has to be studied a bit further.6

The vector ṫ may be written as

ṫ = Ẍ =
d

ds
(eaξ̇

a) = (∂bea) ξ̇
aξ̇b + eaξ̈

a . (A.27)

Thus, Eqn. (A.25) turns into

Kn = −k cos η = (−n · ∂aeb) ξ̇aξ̇b , (A.28)

where it has been exploited that ∂aeb = ∂bea. The expression in brackets is the
extrinsic curvature tensor or second fundamental form

Kab := −n · ∂aeb = ea · ∂bn . (A.29)

It is a symmetric covariant second rank tensor such as the metric. The second
relation in Eqn. (A.29) follows if one differentiates the first equation of (A.4) with
respect to ξa.
The extrinsic curvature can be written covariantly by inserting Eqn. (A.17b) into
Eqn. (A.29):

Kab := −n · ∇aeb . (A.30)

This is possible because ∂aeb differs from ∇aeb only by terms proportional to the
tangent vectors ec, which vanish when multiplied by n (see Eqn. (A.17b)).

6 The minus sign in the definition of Kn, Eqn. (A.25), is unfortunately a matter of convention
and is here chosen in accordance to the literature where the surface stress tensor for fluid
membranes has been introduced [CG02b, Guv04]. A sphere with outward pointing unit normal
has a positive normal curvature then. Note that this differs from Ref. [Kre91].

171



A Classical differential geometry of two-dimensional surfaces

One can easily see from Eqn. (A.29) that Kab has got something to do with cur-
vature: at every point of the surface it measures the change of the normal vector
in R

3 for an infinitesimal displacement in the direction of a coordinate curve.
To learn more about the normal curvature, let us consider a reparametrization of
the curve C with the new parameter t. One gets

ξ̇a =
dξa

dt

dt

ds
=
ξa′

s′
, (A.31)

where ′ denotes the derivative with respect to t. Equation (A.28) thus takes the
form

Kn = Kab ξ̇aξ̇b =
Kab ξ

a′ξb
′

(s′)2

(A.6)
=

Kab ξ
a′ξb

′

gab ξa
′ξb′

=
Kab dξa dξb

gab dξa dξb
. (A.32)

For a fixed point P , Kab and gab are fixed as well. The value of Kn then only
depends on the direction of the tangent vector t of the curve. One may search for
extremal values of Kn at P by rewriting Eqn. (A.32):

(Kab −Kngab) ξ̇
aξ̇b = 0 . (A.33)

A differentiation with respect to ξ̇c yields the result

(Kac −Kngac) ξ̇
a = 0 , (A.34)

because dKn = 0 is necessary for Kn to be extremal. Through the raising of one
index, Eqn. (A.34) becomes an eigenvalue problem for Kb

a. Its eigenvectors are
the tangent directions along which the normal curvature is extremal. They are
called principal directions and are orthogonal to each other [Kre91, p. 129]. The
eigenvalues will be called the principal curvatures k1 and k2 of the surface in point
P . All other values of Kn in P in any direction can be calculated via Euler’s
theorem [Kre91, p. 132]. If the curve follows a principal direction at every point,
it is also called a line of curvature.
It is useful to define the following two notions: the trace of the extrinsic curvature
tensor

K := Tr (Kb
a) = gabKab = k1 + k2 , (A.35)

and the Gaussian curvature

KG := det (Kb
a) = k1k2 . (A.36)

The quantities |K| and KG are invariant under surface reparametrizations because
they only involve the eigenvalues of the extrinsic curvature tensor. Note that one
can rewrite KG

KG = det (Kb
a) = det (Kacg

cb) = det (Kac) det (gcb) =
K11K22 −K12K21

g
. (A.37)
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The equations of Gauss and Weingarten

With the help of the extrinsic curvature it is also possible to find relations for the
partial derivatives of the local frame vectors: the normal vector n is a unit vector
(see Eqn. (A.4)) and therefore

n · ∂an = 0 . (A.38)

Thus, ∂an is a linear combination of the tangent vectors ea. We know that (∂an) ·
eb = Kab (see Eqn. (A.29)). Together with Eqns. (A.17a) and (A.38) this yields
the Weingarten equations

∂an = ∇an = Kb
aeb . (A.39)

For the tangent vector ea a decomposition yields

∂aeb = (n · ∂aeb)n+ (ec · ∂aeb)ec
(A.29,A.16)

= −Kabn+ Γ c
ab ec . (A.40)

These are the Gauss equations, which can be rewritten covariantly:

∇aeb
(A.17b)

= −Kabn . (A.41)

Intrinsic curvature and integrability conditions

Do the partial differential Eqns. (A.39) and (A.41) have solutions for any chosen
gab and Kab? The answer is no; certain integrability conditions have to be satisfied.
We require the embedding functions X to be of class r ≥ 3 and

∂a∂bec = ∂b∂aec . (A.42)

From this follows [Kre91, p. 142 et seq.]

Ra
bcd = KbdK

a
c −KbcK

a
d , and (A.43)

∇aKbc = ∇bKac , (A.44)

where
Ra

bcd := ∂cΓ
a

bd − ∂dΓ
a

bc + Γ e
bd Γ a

ec − Γ e
bc Γ a

ed , (A.45)

is called the mixed Riemann curvature tensor. It is intrinsic because it does not
depend on the normal vector n. Expression (A.43) is also referred to as the
equation of Gauss-Codazzi, whereas Eqn. (A.44) is called the equation of Mainardi-
Codazzi. The latter can be contracted once

∇aK = ∇bKab . (A.46)

The Ricci tensor is defined as the contraction of the Riemann tensor with respect
to its first and third index:

Rab := Rc
acb . (A.47)
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A further contraction of the Ricci tensor yields the intrinsic scalar curvature of
the surface (Ricci scalar)

R := gabRab . (A.48)

From Eqn. (A.43) one then obtains

Rab = KKab −KacK
c
b , and (A.49)

R = K2 −KabKab . (A.50)

Combining Eqn. (A.37) with the completely covariant form of Eqn. (A.43), one
gets after a few calculations:

Rabcd = KG(gacgbd − gadgbc)
(A.13)
= KG εabεcd , (A.51a)

Rab = KG gab , and (A.51b)

R = 2KG . (A.51c)

These equations confirm Gauss’ Theorema Egregium, which states that the Gaus-
sian curvature, even though originally defined in an extrinsic way, in fact only
depends on the first fundamental form [Kre91, p. 145] and is thus an intrinsic
surface property.

A.2 Geometry at a curve on the surface

Consider a curve C on the surface such as on page 170 of the previous section.
At every point of the curve its unit tangent vector t = taea, the surface normal
n, and the vector l = t × n define a moving trihedron in Euclidean space (see
Fig. A.5). In contrast to the binormal vector b and the principal normal vector p
(see Fig. A.4), the unit vector l = laea is tangential to the surface. This allows
us to express surface properties in terms of the orthonormal vector basis {l, t}
adapted to the curve C. For instance, the projections of the extrinsic curvature
tensor Kab onto {l, t} are given by

K⊥ = lalbKab = −n · ∇⊥l , (A.52a)

K|| = tatbKab = −n · ∇||t , and (A.52b)

K⊥|| = K||⊥ = latbKab = −n · ∇⊥t = −n · ∇||l , (A.52c)

where the two directional surface derivatives perpendicular and parallel to C are
introduced:

∇⊥ = la∇a and ∇|| = ta∇a . (A.53)

The trace K of the extrinsic curvature tensor is then simply given by

K = K⊥ +K‖ . (A.54)
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1
K‖

1
K⊥

l

n

t
C

s

Figure A.5: Geometry at a curve C on a surface. Note that K⊥‖ vanishes in the
depicted situation.

The geodesic curvature of the curve C follows from Eqn. (A.26)

Kg = (n× t) · ṫ = −l · ∇||t = t · ∇||l . (A.55)

Using the completeness of the tangent basis, gbc = δbc = lcl
b + tct

b, the projections

laK
ab = la(lcl

b + tct
b)Kac = K⊥l

b +K⊥‖t
b , and (A.56a)

taK
ab = ta(lcl

b + tct
b)Kac = K⊥‖l

b +K‖t
b , (A.56b)

are obtained.
Together with the Weingarten equations (A.39) one can then calculate the change
of the surface normal n along l and t

∇⊥n = laK
abeb = K⊥l +K⊥‖t , and (A.57a)

∇‖n = taK
abeb = K⊥‖l +K‖t . (A.57b)

Finally, the covariant derivatives of the vector components la and ta are given by

∇alb = ∇a(l · eb) = l · (∇aeb) + eb · (∇al)
(A.41)
= eb · (∇al) (A.58a)

= eb · (la∇⊥l + ta∇‖l) , and (A.58b)

∇atb = ∇a(t · eb) = t · (∇aeb) + eb · (∇at)
(A.41)
= eb · (∇at) (A.58c)

= eb · (la∇⊥t+ ta∇‖t) . (A.58d)
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A.3 Gauss-Bonnet theorem

The Gauss-Bonnet theorem for simply connected surfaces

The Gauss-Bonnet theorem states the following [Kre91, p. 169]: Let Σ0 be a simply
connected surface patch of class rΣ0

≥ 3 with simple closed boundary ∂Σ0 of class
r∂Σ0

≥ 3. Furthermore, letX(ξ1(s), ξ2(s)) be the parametrization of the boundary
curve, where s is the arc length. Then

∫

∂Σ0

ds Kg +

∫

Σ0

dA KG = 2π , (A.59)

where dA is the infinitesimal area element, Kg is the geodesic curvature of ∂Σ0,
and KG is the Gaussian curvature of Σ0. Note that the integration along the
boundary curve has to be carried out in such a sense that the right-hand rule is
satisfied: take your right thumb and point it in the direction of the normal vector
n. If you then curl your fingers, the tips indicate the direction of integration.
One can check the consistency of Eqn. (A.59) easily by considering a flat circle
with radius a: Its Gaussian curvature is zero and therefore also the integral over it.
The geodesic curvature, however, is equal to 1/a in every point of the boundary.
Thus, the integral over Kg yields 2πa× 1/a, which is equal to the right-hand side
of Eqn. (A.59).

Generalization to multiply connected surfaces

A generalization of this theorem to multiply connected surfaces is also possible
[Kre91, p. 172]: One can cut multiply connected surfaces into simply connected
ones. Take, for instance, a surface as in Fig. A.6. The path of integration along
the boundary may be chosen as depicted by the arrows. The sections are passed
twice in opposite directions; their contributions therefore cancel each other. The
end points of every section, however, add a term of π each to the integral

∫
ds Kg.

This is due to the rotation the tangent makes at each of these points. Every section
therefore contributes 2π to the integral. For the case of Fig. A.6 we thus have an
extra term of 4π which has to be added to the left-hand side of Eqn. (A.59).

Orientable surfaces

The orientation of the normal vector n in one point P of the surface depends
on the choice of the coordinate system [Kre91, p. 108]: exchanging, for instance,
ξ1 and ξ2 also flips n by 180 degrees. A surface is called orientable if no closed
curve C through any point P of the surface exists which causes the sense of n to
change when displacing n continuously from P along C back to P . An example of
a surface that is not orientable is the Möbius strip.
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Figure A.6: Integration contour for multiply connected surface patches

Application to closed surfaces

It is also possible to apply the Gauss-Bonnet theorem to closed surfaces [Kre91,
p. 172]. Topologically, any closed orientable surface is homeomorphic7 to a sphere
with p attached “handles”. This number p is also called genus of the surface.
Consequently, a sphere has genus 0, a torus genus 1, etc. One then obtains for any
closed orientable surface Σ of genus p [Kre91, p. 172]:

∫

Σ

dA KG = 4π(1 − p) . (A.60)

This implies that the integral over the Gaussian curvature is a topological invariant
for any closed surface with fixed genus p.

A.4 Two important surface parametrizations

A.4.1 Monge parametrization

For surfaces with no overhangs (compare Fig. A.8) it is possible to describe their
position in terms of a height h(X‖) above the underlying reference plane as a
function of the orthonormal coordinates X‖ on this plane.

Cartesian coordinates

If we choose Cartesian coordinates on the reference plane, X‖ = xx + y y, and
the surface is given by

X(x, y) = xx+ y y + h(x, y)z . (A.61)

The direction of the basis vectors {x,y,z} ∈ R
3 is chosen as depicted in Fig. A.7.

The tangent vectors on the surface can then be expressed as ex = (1, 0, hx)
T and

7 This means that the mapping and its inverse are continuous and bijective.
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x

y

z

x

y

h(x, y)

Figure A.7: Monge parametrization in Cartesian coordinates

ey = (0, 1, hy)
T, where hi = ∂ih (i, j ∈ {x, y}). The metric is equal to

gij = δij + hihj , (A.62)

where δij is the Kronecker symbol. Let the symbol ∇ denote the two-dimensional
nabla operator in the flat reference plane. In Cartesian coordinates it is given by
∇ = x ∂x + y ∂y. The metric determinant and the infinitesimal surface element
can then be written as

g = |gij| = 1 + (∇h)2 and (A.63)

dA =
√

1 + (∇h)2 dA‖ , (A.64)

where dA‖ = dx dy is the area element on the reference plane.
The inverse metric is given by

gij = δij −
hihj
g

. (A.65)

Note that Eqns. (A.62) and (A.65) are not tensor equations. The right-hand side
gives merely numerical values for the components of the covariant tensors gij and
gij. The unit normal vector is equal to

n =

(
− ∇h+ z

)

√

1 + (∇h)2
. (A.66)

178



A.4 Two important surface parametrizations

With the help of Eqn. (A.29) the extrinsic curvature tensor can be calculated:

Kij = − hij√
g
, (A.67)

where hij = ∂i∂jh. Note that Eqn. (A.67) again is not a tensor equation and gives
only numerical values for the components of Kij.

Finally, it is also possible to write the trace K of the extrinsic curvature tensor in
Monge parametrization:

K = −∇ ·
(

∇h
√

1 + (∇h)2

)

. (A.68)

Polar coordinates

Another possible choice of coordinates on the reference plane are the polar coordi-
nates (ρ, ϕ), where X‖ = ρρ . The angle ϕ is measured from the x to the ρ axis.
The surface is described by

X(ρ, ϕ) = ρρ+ h(ρ, ϕ)z . (A.69)

Thus, the tangent vectors of the surface are given by eρ = ρ + (∂ρh)z and eϕ =
ρϕ+ (∂ϕh)z. One obtains for the metric (i, j ∈ {ρ, ϕ})

gij =

(
1 + (∂ρh)

2 (∂ρh)(∂ϕh)
(∂ρh)(∂ϕh) ρ2 + (∂ϕh)

2

)

(A.70)

and for the metric determinant

g = ρ2[1 + (∇h)2] , (A.71)

where we exploited the fact that ∇ = ρ ∂ρ + ϕ 1
ρ
∂ϕ in polar coordinates. The

metric determinant factorizes into one part (g‖ = ρ2) which is due to the choice
of coordinates on the base plane and one part (g⊥ = 1 + (∇h)2) due to the
height h.8 The latter term involves the nabla operator and remains formally the
same if the coordinate system of the reference plane is changed. This implies
that the infinitesimal surface element dA can simply be obtained by inserting the
nabla operator in polar coordinates into Eqn. (A.64), where dA‖ = dϕ dρ ρ now.
Analogously, n and K follow from Eqns. (A.66) and (A.68), respectively.9

8 We did not notice this fact before as g‖ = 1 in the previous case.
9 One can also check that by straightforward calculation.
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Figure A.8: Angle-arc length parametrization–translational symmetry. The advantage
of this parametrization is that it allows for overhangs.

Small gradient approximation

In Chaps. 4 and 5 we are interested in surfaces that deviate only weakly from a
flat plane. In this situation the gradients of h are small. Therefore, it is enough to
consider only the lowest nontrivial order of a small gradient expansion. For both,
Cartesian and polar coordinates, K and dA can then be written as

K = −∇
2h+ O[(∇h)2] , (A.72)

dA =

{

1 +
1

2
(∇h)2 + O[(∇h)4]

}

dA‖ . (A.73)

A.4.2 Angle-arc length parametrization

If the surface possesses a rotational or translational symmetry, its shape can be
described in terms of the angle ψ(s) between the horizontal plane and the tangent
to the profile as a function of arc length s. The advantage of this parametrization
is that it allows overhangs (see Fig. A.8).
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Translational symmetry

The situation for translational symmetry is depicted in Fig. A.8. The profile of the
surface does not change along the y axis. The projections of the surface normal
and tangent vectors, n and l, onto the Cartesian basis vectors x and z are given
by

x · l = z · n = cosψ , (A.74a)

x · n = −z · l = − sinψ . (A.74b)

The curvature K‖ along the axis of symmetry is zero as well as the off-diagonal
term K⊥‖. Only the curvature K⊥ = K perpendicular to the y axis does not vanish
and is therefore equal to the trace K of the extrinsic curvature tensor. With the
help of Eqns. (A.74) one obtains:

K = K⊥
(A.52a)

= −n · dl

ds
= −n · d

ds
(cosψ x+ sinψ z)

= −n · (− sinψ x+ cosψ z) ψ̇ = −ψ̇ , (A.75)

where the dot denotes a derivative with respect to s.
Monge and angle-arc length parametrizations are connected via the geometrical
relations (see again Fig. A.8)

ẋ = cosψ , and (A.76a)

ḣ = sinψ . (A.76b)

Note that the sign of these equations depends on the direction along which the arc
length is increasing.10

Rotational symmetry

If the surface is axisymmetric, the coordinate lines in angle-arc length parametriza-
tion are given by circles of constant arc length s and curves of constant azimuthal
angle ϕ; the latter are described by the angle ψ(s, ϕ) = ψ(s) between the horizontal
vector ρ and the tangent vector l (see Fig. A.9).
The coordinate lines are lines of curvature with principal curvatures

K⊥ = −ψ̇ , and (A.77a)

K‖
(A.52b)

= −n · 1

ρ
∂ϕt = −n · 1

ρ
(−ρ) = −sinψ

ρ
. (A.77b)

10 In Chap. 5, for instance, the shape of a membrane between two cylinders is calculated. There,
the direction of s is chosen exactly opposite to the one of this section which yields an additional
minus sign (see also App. C.1).
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s

ψ(s)

ρ

ϕ

l
t

n

Figure A.9: Angle-arc length parametrization–rotational symmetry

where ρ is the radial distance from the axis of symmetry. The geodesic curvature
of a circle of constant ρ and s can be obtained from Eqn. (A.55)

Kg = −l · 1

ρ
∂ϕt =

cosψ

ρ
. (A.78)

Note again that one has to be careful with signs. In Sec. 3.5 the directions of
the normal vector n and the tangent vector l are opposite to the convention used
here and in the rest of this thesis. Consequently, the curvatures (A.77) and (A.78)
change sign.

The expressions from the previous section are valid for an axisymmetric surface if
we replace x by ρ. This enables us to rewrite projections and curvatures in Monge
parametrization: if we describe the surface in terms of the height function h(ρ),
Eqns. (A.76) yield h′(ρ) = tanψ, where the dash denotes a derivative with respect
to ρ. The projections of z onto l and n can then be written as

z · l = sinψ =
tanψ

√

1 + tan2 ψ
=
h′(ρ)√
g⊥

, and (A.79a)

z · n = cosψ =
1

√

1 + tan2 ψ
=

1√
g⊥

, (A.79b)

where g⊥ = g/ρ2 = 1 + h′(ρ)2. Expressing the directional derivative along s in
terms of h and ρ

∇⊥ = ∂s
(A.76a)

= cosψ ∂ρ =
1√
g⊥

∂ρ , (A.80)
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enables us to calculate the principal curvatures of an axisymmetric surface in
Monge parametrization:

K⊥
(A.77a)

= −∂s(sinψ)

cosψ

(A.79a,A.80)
= −

(
h′(ρ)√
g⊥

)′
= −h

′′(ρ)
√
g⊥

3 , and (A.81a)

K‖
(A.77b,A.79a)

= − h′(ρ)

ρ
√
g⊥

. (A.81b)
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B Surface variations

In Sec. 2.1.1 we derived the general expression

fa = (T ab −HacKb
c)eb − (∇bHab)n (B.1)

for the surface stress tensor. In this appendix we will specialize (B.1) to a few
important standard cases. Additionally, the tensors Hab, Gabc, and Kabc which
contribute to the boundary term (2.9) of variation (2.2) will be determined.
To simplify the corresponding calculations, we will first compute derivatives of
surface scalars such as

√
g or K with respect to gab and Kab.

B.1 Derivatives of surface scalars

The derivative of the metric determinant g and its square root with respect to
gab can be calculated in the following way [Mül04]: consider first quite generally a
symmetric n×n matrix M. It can be diagonalized with its eigenvalues M1, . . . ,Mn

being the diagonal elements: M = TMDT−1 where MD is the diagonal matrix.
From this follows:

log (detM) = log [det (TMDT−1)] = log (M1 ·M2 · . . . ·Mn)

=
n∑

i=1

logMi = Tr (log MD) = Tr [log (T−1MT)]

= Tr [T−1 log (M)T] = Tr (log M) . (B.2)

Thus,

∂g

∂gab
=

∂ det g

∂gab
=

∂

∂gab

{

exp [log (detg)]
}

(B.2)
=

∂

∂gab

{

exp [Tr (log g)]
}

=
{

exp [Tr (log g)]
} ∂

∂gab

[

Tr (log g)
]

= g Tr
[ ∂

∂gab
(log g)

]

= g Tr
[

g−1 ∂g

∂gab

]

= ggcd
∂gdc
∂gab

= ggab , (B.3)

and
∂
√
g

∂gab
=

1

2

√
g gab . (B.4)
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Technical Point B.1: Variation of the inverse metric

Varying Eqn. (A.7) yields gacδg
cb+δgacg

cb = 0. From this follows that the variation
of the inverse metric is given by

δgab = −gacgbdδgcd . (B.I)

This implies that ∂gab/∂x = −gacgbd∂gcd/∂x for any x. If we especially insert
x = gef , we obtain the derivative of the inverse metric with respect to the metric:

∂gab

∂gef
= −gacgbd ∂gcd

∂gef
= −gacgbd1

2
(δec δ

f
d + δfc δ

e
d)

= −1

2
(gaegbf + gafgbe) . (B.II)

The derivatives of the trace K = Kabg
ab of the extrinsic curvature tensor are given

by1

∂K

∂gab
= Kcd

∂gcd

∂gab
= −Kab , and (B.5a)

∂K

∂Kab

= gab . (B.5b)

Using the doubly contracted Gauss-Codazzi equation R = K2 −KabK
ab together

with Eqns. (B.5), the derivatives of the Ricci scalar R can be determined1

∂R
∂gab

= −2KKab + 2KacKb
c

(A.49)
= −2Rab d=2

= −Rgab , (B.6a)

∂R
∂Kab

= 2(Kgab −Kab) . (B.6b)

Notice that the first equality in Eqn. (B.6a) holds generally, while the second is
specific for surfaces, since it uses identity

Rab =
1

2
Rgab , (B.7)

valid only in two dimensions (see Eqns. (A.51b) and (A.51c)).

1 One has to be careful when differentiating with respect to gab: the tensorKab is an independent
variable, hence ∂Kab/∂gcd = 0; but Kab = Kcdg

acgbd depends on the metric through its
inverse and thus yields a nontrivial term when differentiated. Using Eqn. (B.II), one obtains
∂Kab/∂gcd = − 1

2 (Kbdgac +Kbcgad +Kadgbc +Kacgbd).
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B.2 The stress tensor for a few standard cases

B.2.1 General curvature Hamiltonians

The first example we consider is the general curvature Hamiltonian density H =
H(K,R).2 The two tensors T ab and Hab can be determined by using the definitions
(2.7), and the identities (B.4)-(B.6); a quick calculation leads to

T ab = − 2√
g

δ(
√
gH)

δgab
= −

(
2√
g

∂
√
g

∂gab

)

H− 2
∂H
∂K

∂K

∂gab
− 2

∂H
∂R

∂R
∂gab

= −Hgab + 2
∂H
∂K

Kab + 4
∂H
∂RRab (B.8a)

d=2
= −Hgab + 2

∂H
∂K

Kab + 2
∂H
∂RRgab, (B.8b)

Hab =
δH
δKab

=
∂H
∂K

gab + 2
∂H
∂R(Kgab −Kab) . (B.8c)

Thus, we get with Eqn. (B.1)

fa =

(

−Hgab +
∂H
∂K

Kab +
∂H
∂RRgab

)

eb

−
[

∇a

(
∂H
∂K

)

+ 2(Kgab −Kab)∇b

(
∂H
∂R

)]

n . (B.9)

As H is just a function of gab and Kab, the tensors Gabc and Kabc are equal to zero.
Let us discuss, in particular, the Einstein-Hilbert action H = R. From the general
Eqns. (B.8) one obtains with Eqn. (B.7)

Hab = 2(Kgab −Kab) , and (B.10a)

T ab = −Rgab + 4Rab d=2
= Rgab , (B.10b)

which gives

fa = 2(Rab − 1

2
Rgab) eb = 2Gabeb , (B.11)

where Gab is the Einstein tensor. Due to Eqn. (B.7), this tensor vanishes identically
for a two-dimensional surface, which also renders the stress tensor zero.3

2 In Sec. 3.4.1 it is shown that every Hamiltonian density which depends on intrinsic and extrinsic
surface curvatures can be brought into this form.

3 Note that this implies that the Euler-Lagrange derivative

E(R) = n · ∇af
a = −2KabGab ,

equals zero as well if the surface is two-dimensional. In higher dimensions, however, the stress
tensor does not vanish and E(R) ∝ Gab is a nontrivial result.
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For the Hamiltonian density H = Kn, one derives Hab = nKn−1gab and T ab =
2nKn−1Kab −Kngab. Thus, the stress tensor is given by

fa = (nKn−1Kab −Kngab)eb − n(∇aKn−1)n . (B.12)

The case n = 2 is needed in Sec. 2.2. The corresponding stress tensor is exactly the
same as for H = KabK

ab. This can be shown by rewriting KabK
ab = K2 −R with

the help of the (doubly contracted) Gauss-Codazzi equation (A.50) and inserting
it into Eqn. (B.9). Note, however, that the tensors T ab and Hab for K2 and KabK

ab

are different (see also Table B.1).

B.2.2 Gradients of curvature

Consider the general Hamiltonian density H = H(gab, Kab,∇aKbc). Now we need
to keep in mind that Hab and T ab are functional derivatives. For Hab we obtain

Hab =
δH
δKab

=
∂H
∂Kab

−∇cKcab , (B.13)

where

Kcab =
∂H

∂∇cKab

. (B.14)

Note that the tensor Kabc does not vanish as before because now H depends on
covariant derivatives of Kab.

The determination of T ab and Gabc is a little more difficult; to avoid errors, let us
proceed cautiously and consider the variation of the Hamiltonian H =

∫
dA H(gab,

Kab,∇aKbc) with respect to the metric gab and identify T ab and Gabc at the end of
the calculation. The difficult part is the covariant differentiation, which acts on a
tensor field and is thus dressed with additional Christoffel symbols (see page 168
in App. A). Since the latter depend on the metric and its first partial derivative,
they will contribute to the variation:

δgH =

∫

d2ξ δg(
√
gH) =

∫

dA

[
δg
√
g

√
g

H +
∂H
∂gab

δgab + Kcabδg(∇cKab)

]

. (B.15)

The evaluation of the first term involves the reuse of Eqn. (B.4), while the last
term calls for the Palatini identity (B.III) (see Technical Point B.2) [Wei72]. Using
the latter, variation δg(∇cKab) can thus be rewritten as

δg(∇cKab) = δg(∂cKab −KdbΓ
d

ac −KadΓ
d

cb ) = −Kdb δgΓ
d

ac −Kad δgΓ
d

cb

= −1

2

[
Kd
b

(
∇aδgdc + ∇cδgad −∇dδgca

)
+
{
a↔ b

}]
, (B.16)
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Technical Point B.2: The Palatini identity

The Palatini identity describes the change of the Christoffel symbols upon variation
of the metric. It reads

δgΓ
c

ab =
1

2
gcd
[
∇bδgda + ∇aδgbd −∇dδgab

]
. (B.III)

To proof it, let us consider the variation of the Christoffel symbol explicitly:

δgΓ
c

ab

(A.16)
=

1

2

{

δgcd
[

∂agbd + ∂bgda − ∂dgab

]

+ gcd
[

∂a(δgbd) + ∂b(δgda) − ∂d(δgab)
]}

.

Using Eqn. (B.I) this can be rewritten as

δgΓ
c

ab = −gecΓ f
ab δgef +

1

2
gcd
[

∂a(δgbd) + ∂b(δgda) − ∂d(δgab)
]

. (B.IV)

If we at first specialize to local tangent coordinates, the Christoffel symbols vanish
locally. This implies that the partial derivatives in the second term can be replaced
by covariant ones. Furthermore, the first term in Eqn. (B.IV) vanishes. These two
changes reproduce Eqn. (B.III), and we have thus shown it to hold in local tangent
coordinates.
However, Eqn. (B.III) is a proper tensor equation: the right hand side is clearly
a tensor and δgΓ

c
ab is a tensor as well: it is the difference between two Christoffel

symbols, and thus the term in the transformation law which spoils the tensorial
character cancels. Eqn. (B.III) therefore holds in any coordinate system, not just
the local tangent coordinates in which it has been derived. q.e.d.

which gives, with Kcab = Kcba,

Kcabδg(∇cKab) = −KcabKd
b

(
∇aδgdc + ∇cδgad −∇dδgca

)

= −
(
KbcdKa

d + KcadKb
d −KabdKc

d

)
∇cδgab . (B.17)

The derivative of δgab is removed by a final partial integration. Collecting results,
we find

δgH
(2.7b)
= −1

2

∫

dA T abδgab +

∫

dA ∇c[Gcabδgab] , (B.18)

with

T ab = −Hgab − 2
∂H
∂gab

+ 2∇cGcab , (B.19)

189



B Surface variations

and4

Gcab = −
(
KacdKb

d + KcadKb
d −KabdKc

d

)
. (B.20)

If we specialize to the Hamiltonian density H = 1
2
(∇cK)(∇cK) ≡ 1

2
(∇K)2, we

obtain

Kcab =
∂H

∂∇cKab

= (∇cK)gab , (B.21)

and consequently

Hab (B.13)
= −∇c(g

ab∇cK) = −gab∆K , and (B.22)

Gcab (B.20)
= −(∇cK)Kab . (B.23)

A short calculation gives

T ab
(B.19)
= (∇aK) (∇bK) − 1

2
gab(∇K)2 − 2Kab∆K . (B.24)

Thus, for H = 1
2
(∇K)2 we get for fa given by Eqn. (B.1) the remarkably compact

expression,

fa =
[

(∇aK)(∇bK) − 1

2
gab(∇K)2 −Kab∆K

]

eb + ∇a∆K n . (B.25)

B.2.3 Vector field

As a final example let us consider Hamiltonians of the kind introduced in Sec. 1.2.2,
which have internal vector degrees of freedom. With the symmetric tilt-strain ten-
sor Mab = 1

2
(∇amb+∇bma) we can for instance look at the quadratic Hamiltonian

density H = 1
2
(∇am

a)2 = 1
2
M2, where ma is the (contravariant) surface vector field

and M = gabM
ab. This term is purely intrinsic, hence Hab = 0. Now the covari-

ant differentiation acts on a vector field and is thus dressed with an additional
Christoffel symbol. Analogous to the previous section it will contribute to the
variation:

δgH =
1

2

∫

d2ξ δg(
√
gM2)

=
1

2

∫

dA
{δg

√
g

√
g
M2 + δg(∂am

a + Γ a
ab m

b)2
}

. (B.26)

The first term is once more simplified via Eqn. (B.4), while the second term can
be rewritten as

δg(∂am
a + Γ a

ab m
b)2 = 2MmbδgΓ

a
ab

(B.III)
= Mmbgad(∇bδgda + ∇aδgbd −∇dδgab)

= Mmdgab(∇dδgab) . (B.27)

4 Note that compared to Eqn. (B.17) indices a and b are exchanged in the first term. This is
allowed because of the symmetry of δgab.
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r
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few
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n
d
a
rd

ca
ses

H T ab Hab Kabc Gabc

H(K,R) −Hgab + 2 ∂H
∂K
Kab + 2∂H

∂RRgab
∂H
∂K
gab + 2∂H

∂R ·
(Kgab −Kab)

0 0

1 −gab 0 0 0

R Rgab 2(Kgab −Kab) 0 0

Kn 2nKn−1Kab −Kngab nKn−1gab 0 0

KabK
ab −KcdK

cdgab + 4Ka
cK

bc 2Kab 0 0

H(gab, Kab,∇aKbc) −Hgab − 2 ∂H
∂gab

+ 2∇cGcab ∂H
∂Kab

−∇cKcab ∂H
∂∇aKbc

−
[
(Kacd + Kcad)Kb

d

−KcbdKa
d

]

1
2
(∇K)2 ≡

1
2
(∇cK)(∇cK)

(∇aK)(∇bK) − 1
2
gab(∇K)2

−2Kab∆K
−gab∆K (∇aK)gbc −(∇aK)Kbc

1
2
M2 ≡ 1

2
(∇am

a) 1
2

[

M2 + 2mc∇cM
]

gab 0 0 1
2
Mmagbc

MabM
ab −McdM

cdgab + 2MMab + 2mc∇cM
ab

−(∇cm
a)(∇cmb) + (∇amc)(∇bmc)

0 0 maM bc

1
4
FabF

ab 1
2
gab
(
εcd∇cmd

)2
0 0 0

Table B.1: Tensors T ab, Hab, Kabc, and Gabc on a two-dimensional surface for several Hamiltonian densities.
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The derivative of δgab can again be removed by a final partial integration. Col-
lecting everything, we thus find

δgH =
1

2

∫

dA
{[1

2
M2 −∇d

(
mdM

)]

gabδgab + ∇d

(
Mmdgabδgab

)}

= −1

2

∫

dA
(1

2
M2 +md∇dM

)

gabδgab +

∫

dA ∇d

(1

2
Mmdgabδgab

)

.(B.28)

Thus, the metric stress tensor is

T ab =
1

2

[

M2 + 2mc∇cM
]

gab , (B.29)

and

Gcab =
1

2
Mmcgab . (B.30)

Notice that T ab is directly proportional to the metric; its effect in the stress tensor
will thus be to renormalize the surface tension.
The second quadratic invariant, H = MabM

ab, does not provide any additional
difficulties compared to 1

2
M2, even though the calculation is a bit longer. One

finds:

T ab = −McdM
cdgab + 2MMab + 2mc∇cM

ab

− (∇cm
a)(∇cmb) + (∇amc)(∇bmc) , (B.31)

and
Gcab = mcMab . (B.32)

Finally, the third quadratic invariant H = 1
4
FabF

ab (with Fab = ∇amb −∇bma =
∂amb − ∂bma) can be treated rather easily by noting that Fab and thus H =
1
4
gacgbdFabFcd are independent of the connection.5 A short calculation then shows

that

T ab = F acF b
c −

1

4
gabFcdF

cd . (B.33)

It should not come as a surprise that this has the same form as the energy-
momentum tensor from electrodynamics [LL00]. In two dimensions it can be fur-
ther simplified, since any antisymmetric tensor is then proportional to the epsilon-
tensor: F ab = 1

2
εabεcdF

cd. Inserting this into Eqn. (B.33) and using the identity
εacεbc = gab (see Eqn. (A.14)), we find

T ab =
1

2
gab
(
εcd∇cmd

)2
, (B.34)

5 This also implies that Gcab vanishes for that case as no covariant derivatives of δgab enter the
variation.
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showing that the stress is isotropic, just as in the case of the Hamiltonian H =
1
2
M2. It will thus only renormalize the surface tension and, in particular, not single

out any specific new directions on the membrane.
In Table B.1 the results of this appendix for T ab, Hab, Kabc, and Gabc are summa-
rized. In Chaps. 2 and 3 they are used to determine stress tensor, Euler-Lagrange
equation and boundary conditions.
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C Solutions of the membrane shape
equation

In this appendix the shape equation for an up-down symmetric membrane (4.3)

−κ∆K +
κ

2
K(K2 − 2KabK

ab) + σK = 0 (C.1)

is solved for special cases.

C.1 Two cylinders on a membrane

For a translationally symmetric membrane Eqn. (C.1) reduces to

λ2ψ̈ − η sinψ = 0 . (C.2)

This equation can be solved for the free membrane sections of the two-cylinder case
(see Sec. 5.2).1 As was shown in Sec. 5.2.1, Eqn. (C.2) possesses a first integral
with the proper integration constant:

λ2

2
ψ̇2 + η cosψ = 1 . (C.3)

A separation of variables yields

ds = ± λ
√

2(1 − η cosψ)
dψ . (C.4)

Due to the symmetry it is sufficient to consider only the left half of the membrane.
While the outer sections are qualitatively identical for the symmetric and antisym-
metric case, the inner sections differ. For each section Eqn. (C.4) can be integrated
to determine s as a function of ψ which can be inverted to determine ψ(s). A sub-
sequent differentiation yields the curvature of the profile K(s) = ±ψ̇(s).2 Finally,
the distances along x and z can be obtained from Eqns. (A.76):2

∆x(s) =

∫ s

0

ds′ cosψ(s′)
(C.3)
=

1

η

∫ s

0

ds′
[

1 − λ2

2
K2(s′)

]

, (C.5a)

∆h(s) =

∫ s

0

ds′ sinψ(s′)
(C.2)
=

λ2

η

∫ s

0

ds′ ψ̈(s′) = ±λ
2

η
[K(s) −K(0)] . (C.5b)

1 The calculations can also be found in a Mathematica file at [WWWc].
2 The positive sign is valid for the inner section, the negative sign for the outer.
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αiαo

x

z

ψ
ψ

s

s

∆h

∆h

∆x

∆x

Figure C.1: Relevant parameters for the symmetric case. The arrows point in the
positive direction of ∆x, ∆h, and s, respectively.

The sign of the resulting values for ∆x and ∆h depends on the direction of s (see
Figs. C.1 and C.3 and footnote 10 in App. A.4.2).3

Eqn. (C.3) is a first-order differential equation involving one unknown constant η.
Thus, two boundary conditions are required for each section.

C.1.1 Outer section

At infinity, ψ and its derivative ψ̇ vanish. Inserting these conditions into Eqn. (C.3)
yields η = 1 for the outer section. Without loss of generality we consider only
positive values of ψ. The solution for negative angles can be obtained by reversing
the sign of the function which corresponds to a reflection of the profile in the (x, y)
plane.

At the contact point the profile leaves the cylinder at the fixed angle ψ(0) = αo ∈
[0, 2π] (see Fig. C.1). For increasing arc length s the angle ψ decreases. Thus, the
sign in Eqn. (C.4) is negative and s(ψ) can be obtained:

∫ s

0

ds′ = s(ψ) = −
∫ ψ

αo

λ
√

2(1 − cosψ′)
dψ′ = −

∫ ψ

αo

λ

4 tan
(
ψ′

4

)
cos2

(
ψ′

4

)dψ′

= −λ
[

ln
(

tan
ψ′

4

)]ψ

αo

= −λ ln
[

cot
(αo

4

)

tan
(ψ

4

)]

, (C.6)

3 Note that Eqn. (C.5b) is equivalent to the shape equation (2.64) of a (one-dimensional) fluid
meniscus if we substitute λ = ℓ and η = 1. The physics of an Euler elasticum and a fluid
meniscus can in fact be mapped onto each other (see also Technical Point 5.5 on page 131).
Remarkably, in both cases it is the curvature K of the surface which fixes its height h even
though the former is essentially a second derivative of h (compare Eqn. (A.81a)).
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C.1 Two cylinders on a membrane

η = 1

(a)

η>0 η=0

−1 < η < 0

η = −1 η < −1

(b)

η > 1 η < −1

(c)

Figure C.2: Solutions of Eqn. (C.3) for the (a) outer section (b) inner section -
symmetric case (c) inner section - antisymmetric case (cf. Fig. 5.8).

where we have exploited that 1 − cosψ = 2 sin2 ψ
2

and sin ψ
2

= 2 sin
(
ψ
4

)
cos
(
ψ
4

)
=

2 tan
(
ψ
4

)
cos2

(
ψ
4

)
. The inversion yields

ψ(s) = 4 arctan
[

tan
(αo

4

)

e−s/λ
]

. (C.7)

The curvature is given by

K(s) = −ψ̇(s) =
4es/λ tan αo

4

λ(e2s/λ + tan2 αo

4
)
, (C.8)

and thus

K(0) = Ko =
2

λ
sin

αo

2
. (C.9)

Finally, ∆x(s) and ∆h(s) can be calculated:

∆x(s)
(C.5a)
=

∫ s

0

ds′
[

1 − λ2

2
K2(s′)

]
(C.8)
= s+

λ(1 − cosαo)(1 − e2s/λ)

(1 + e2s/λ) − (1 − e2s/λ) cos αo

2

,

(C.10)
and

∆h(s)
(C.5b)
= λ2[K(0) −K(s)]

(C.8,C.9)
= 2λ

(

sin
αo

2
− 2es/λ tan αo

4

e2s/λ + tan2 αo

4

)

, (C.11)

which yields

lim
s→∞

[∆h(s)] = λ2K(0)
(C.9)
= 2λ sin

αo

2
. (C.12)

as the vertical distance between contact point and asymptotic plane.4

4 This is again nothing but the shape equation of a fluid meniscus (compare footnote 3).
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C Solutions of the membrane shape equation

C.1.2 Inner section

For the inner section, the arc length s is measured from the midplane. Due to this
chosen orientation K = +ψ̇ now. Again, only positive values of ψ are considered.

Symmetric case

In the symmetric case, ψ(0) is equal to zero. From Eqn. (C.3) we thus obtain
η ≤ 1. This result is consistent with the fact that two cylinders on the same side
of the membrane always repel (see Eqn. (5.12)): a scaled force of η = 1 is pulling
to the left at the outer section which is only balanced partly by the scaled force
acting to the right at the inner section (see also Sec. 5.2.3).
For η = 1, the cylinders are infinitely far apart and do not interact. If we omit
this trivial case, five cases with different solutions for ψ(s) must be considered
separately. The sign of Eqn. (C.4) is positive in all of these cases as ψ increases
for increasing s.

a) 0 < η < 1:

The integration of Eqn. (C.4) yields

∫ s

0

ds′ = s(ψ) =

∫ ψ

0

λ
√

2(1 − η cosψ′)
dψ′ =

∫ ψ

0

λ
√

2[1 + η cos (ψ′ − π)]
dψ′

=

∫ ψ

0

λ
√

2[1 + η(1 − 2 sin2 ψ′−π
2

)]
dψ′ =

∫ ψ

0

λ
√

2[(1 + η) − 2η sin2 ψ′−π
2

]
dψ′

=
λ

√

2(1 + η)

∫ ψ

0

1
√

1 − 2η
1+η

sin2 ψ′−π
2

dψ′ . (C.13)

For all of the following it proves handy to define the parameter

m :=
2|η|

1 + |η| , (C.14)

withm < 1 for 0 < η < 1. If we insertm into Eqn. (C.13) and substitute θ′ = ψ′−π
2

,
we obtain

s(ψ) =
2λ

√

2(1 + η)

∫ ψ−π
2

−π
2

1
√

1 −m sin2 θ′
dθ′ = λ

√
m

η

(

F
rψ − π

2
,m

z
+ F

rπ
2
,m

z)
,

(C.15)
where FJϕ,mK is the elliptic integral of the first kind (see Table C.1). Note that
FJπ/2,mK = KJmK, where KJmK is the complete elliptic integral of the first kind
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C.1 Two cylinders on a membrane

[AS70]. The integral can be inverted:

s

λ

√
η

m
−KJmK = F

rψ − π

2
,m

z
⇔ am

r s
λ

√
η

m
−KJmK,m

z
=
ψ − π

2

⇔ ψ(s) = π + 2 am
r s
λ

√
η

m
−KJmK,m

z
, (C.16)

where amJt,mK is the Jacobi amplitude (see Table C.1 and Ref. [AS70]). A differ-
entiation with respect to s yields the curvature

K(s) = +ψ̇(s) =
2

λ

√
η

m
dn

r s
λ

√
η

m
−KJmK,m

z
, (C.17)

with dnJt,mK =
√

1 −m sn2Jt,mK and snJt,mK = sin (amJt,mK) (see again Ta-
ble C.1).
By inserting Eqn. (C.17) into Eqn. (C.5a) we obtain

∆x(s) =
1

η

∫ s

0

ds′
[

1 − λ2

2

(2

λ

√
η

m
dn

r s
λ

√
η

m
−KJmK,m

z)2
]

=
s

η
− 2

m

∫ s

0

ds′ dn2
r s
λ

√
η

m
−KJmK,m

z

=
s

η
− 2λ√

η m

[

E
r

am
rs′
λ

√
η

m
−KJmK,m

z
,m

z]s

0

(C.IIb,C.IVa)
=

s

η
− 2λ√

η m

(

E
r

am
r s
λ

√
η

m
−KJmK,m

z
,m

z
+ EJkK

)

, (C.18)

where EJϕ,mK is the elliptic integral of the second kind and EJπ/2,mK = EJmK its
complete version (see Table C.1).
Inserting Eqn. (C.17) into Eqn. (C.5b) yields,

∆h(s) =
λ2

η

(
2

λ

√
η

m
dn

r s
λ

√
η

m
−KJmK,m

z
− 2

λ

√
η

m
dn

r
−KJmK,m

z)

(C.IVc)
=

2λ√
η m

(

dn
r s
λ

√
η

m
−KJmK,m

z
−
√

1 −m
)

. (C.19)

b) η = 0:

From Eqn. (C.4) follows

ψ̇ =

√
2

λ
⇒ ψ(s) =

√
2

λ
s . (C.20)
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C Solutions of the membrane shape equation

elliptic integral of the first
kind

FJϕ,mK =

∫ ϕ

0

1
√

1 −m sin2 θ
dθ

complete elliptic integral of
the first kind

KJmK = F
rπ

2
,m

z

elliptic integral of the
second kind

EJϕ,mK =

∫ ϕ

0

√

1 −m sin2 θ dθ

complete elliptic integral of
the second kind

EJmK = E
rπ

2
,m

z

Jacobi amplitude amJFJϕ,mK,mK = ϕ

Jacobi elliptic function sn snJt,mK = sin (amJt,mK)

Jacobi elliptic function cn cnJt,mK = cos (amJt,mK)

Delta amplitude dnJt,mK =
√

1 −m sn2Jt,mK

FJϕ,mK = m−1/2FJα,m−1K , where sinα = m1/2 sinϕ . (C.I)

FJ−ϕ,mK = −FJϕ,mK , (C.IIa) EJ−ϕ,mK = −EJϕ,mK . (C.IIb)

amJ0,mK = 0 , (C.IIIa)

cnJ0,mK = 1 , (C.IIIb)

dnJ0,mK = 1 . (C.IIIc)

amJ−KJmK,mK = −π/2 , (C.IVa)

cnJ−KJmK,mK = 0 , (C.IVb)

dnJ−KJmK,mK =
√

1 −m . (C.IVc)

Table C.1: Elliptic integrals and elliptic functions (upper part) and a few identi-
ties between them (lower part). The parameters ϕ, m, and t are real numbers with
m sin2 θ < 1 ∀θ ∈ [0, ϕ] (see also Ref. [AS70]).
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C.1 Two cylinders on a membrane

The solution is a circular arc of curvature K =
√

2/λ. The distances ∆x and ∆h
can be calculated directly:

∆x(s) =

∫ s

0

ds′ cos
(
√

2

λ
s′
)

=
λ√
2

sin
(
√

2

λ
s
)

, (C.21)

and

∆h(s) =

∫ s

0

ds′ sin
(
√

2

λ
s′
)

= − λ√
2

[

cos
(
√

2

λ
s
)

− 1
]

= λ
√

2 sin2
( s

λ
√

2

)

.

(C.22)

c) −1 < η < 0:

For negative values of η the integrated Eqn. (C.4) can be simplified in the following
way
∫ s

0

ds′ = s(ψ) =

∫ ψ

0

λ
√

2(1 + |η| cosψ′)
dψ′ =

∫ ψ

0

λ
√

2[1 + |η|(1 − 2 sin2 ψ′

2
)]

dψ′

=
λ

√

2(1 + |η|)

∫ ψ

0

1
√

1 −m sin2 ψ′

2

dψ′ , (C.23)

where we used m
(C.14)
= 2|η|

1+|η| < 1 again. The substitution θ′ = ψ′

2
yields:

s(ψ) =
2λ

√

2(1 + |η|)

∫ ψ
2

0

1
√

1 −m sin2 θ′
dθ′

m<1
= λ

√
m

|η|F
rψ

2
,m

z
, (C.24)

which can be inverted easily:

ψ(s) = 2 am
r s
λ

√

|η|
m
,m

z
. (C.25)

The curvature is given by

K(s) =
2

λ

√

|η|
m

dn
r s
λ

√

|η|
m
,m

z
. (C.26)

To obtain ∆x(s) and ∆h(s), we insert K(s) into Eqns. (C.5) again

∆x(s)
(C.26)
=

1

η

∫ s

0

ds′

[

1 − λ2

2

(2

λ

√

|η|
m

dn
r s
λ

√

|η|
m
,m

z)2
]

= − s

|η| +
2

m

∫ s

0

ds′ dn2
r s
λ

√

|η|
m
,m

z

(C.IIIa)
= − s

|η| +
2λ

√

|η|m
E
r

am
r s
λ

√

|η|
m
,m

z
,m

z
, (C.27)
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C Solutions of the membrane shape equation

and

∆h(s)
(C.26)
=

λ2

η

(

2

λ

√

|η|
m

dn
r s
λ

√

|η|
m
,m

z
− 2

λ

√

|η|
m

)

(C.IIIc)
=

2λ
√

|η|m

(

1 − dn
r s
λ

√

|η|
m
,m

z)
. (C.28)

d) η = −1:

For the case of η = −1, integration of Eqn. (C.4) yields

∫ s

0

ds′ = s(ψ) =

∫ ψ

0

λ
√

2(1 + cosψ′)
dψ′ =

∫ ψ

0

λ

2 cos ψ
′

2

dψ′

=

∫ ψ

0

λ

2(cos2 ψ′

4
− sin2 ψ′

4
)
dψ′ = λ

[

ln

(

cos ψ
′

4
+ sin ψ′

4

cos ψ
′

4
− sin ψ′

4

)]ψ

0

= −λ ln

(

2

1 + tan ψ
4

− 1

)

. (C.29)

Thus, the angle is given by

ψ(s) = 4 arctan
[

tanh
( s

2λ

)]

, (C.30)

where 0 < ψ < π. The corresponding profile can also be obtained by reflecting
the solution of η = 1 in the (x, y) plane (see Fig. C.2 (a) and (b)). Note, however,
that different parts of the loop have to be considered for each of the two cases.

Differentiating Eqn. (C.30) yields the curvature

K(s) =
4

1 + tanh2
(
s
2λ

)
1

cosh2
(
s
2λ

)
1

2λ
=

2

λ cosh
(
s
λ

) . (C.31)

Now, ∆x(s) and ∆h(s) can be calculated using Eqns. (C.5) once more:

∆x(s)
(C.31)
= −s+

λ2

2

∫ s

0

ds′
4

λ2 cosh2
(
s
λ

) = −s+ 2λ tanh (s/λ) , (C.32)

and

∆h(s)
(C.31)
= 2λ

[

1 − 1

cosh
(
s
λ

)

]

. (C.33)
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C.1 Two cylinders on a membrane

e) η < −1:

The final case for a symmetric cylinder configuration is η < −1. Exactly as in
paragraph c), the arc length can be written as

∫ s

0

ds′ = s(ψ) =

∫ ψ

0

λ
√

2(1 + |η| cosψ′)
dψ′ =

2λ
√

2(1 + |η|)

∫ ψ
2

0

1
√

1 −m sin2 θ′
dθ′ .

(C.34)
The parameter m is greater than 1 now. According to Eqn. (C.I), however, we can
write FJϕ,mK = m−1/2FJα,m−1K with sinα = m1/2 sinϕ (see also Ref. [AS70]).
With ϕ = ψ/2 we get

s(ψ) = λ

√
m

|η|
1√
m
F

q
α,m−1

y
= λ

√

1

|η|F
q
α,m−1

y
, (C.35)

and thus

α = am
r s
λ

√

|η|,m−1
z
. (C.36)

We finally obtain

sinα = m1/2 sin
ψ

2
= sn

r s
λ

√

|η|,m−1
z

⇔ m sin2 ψ

2
= sn2

r s
λ

√

|η|,m−1
z

⇔ m

2
(1 − cosψ) = sn2

r s
λ

√

|η|,m−1
z

⇔ cosψ = 1 − 2

m
sn2

r s
λ

√

|η|,m−1
z
. (C.37)

The angle ψ is positive for 0 ≤ s ≤ 2λ√
|η|
KJm−1K. Thus, for that interval,

ψ(s) = arccos
(

1 − 2

m
sn2

r s
λ

√

|η|,m−1
z)

, (C.38)

where [−1, 1] ∋ x 7→ arccos(x) ∈ [0, π].

With cnJt,mK = cos (amJt,mK) and sn2Jt,mK + cn2Jt,mK = 1 we obtain for the
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C Solutions of the membrane shape equation

curvature5

K(s)
(5.50)
= λ−1

√

2(1 + |η| cosψ)

(C.37)
= λ−1

√

2
[

1 + |η|
(

1 − 2

m
sn2

r s
λ

√

|η|,m−1
z)]

= λ−1

√

2
(

1 + |η| − 2|η|
m

+
2|η|
m

cn2
r s
λ

√

|η|,m−1
z)

=
2

λ

√

|η|
m

cn
r s
λ

√

|η|,m−1
z
, (C.39)

where we exploited that |η| (C.14)
= m

2−m in the last step.

The distance ∆x is given by

∆x(s) =

∫ s

0

ds′ cosψ(s′)
(C.37)
=

∫ s

0

ds′
(

1 − 2

m
sn2

rs′
λ

√

|η|,m−1
z)

= s− 2λ
√

|η|

[

−E
r

am
rs′
λ

√

|η|,m−1
z
,m−1

z
+
s′

λ

√

|η|
]s

0

(C.IIIa)
= −s+

2λ
√

|η|
E
r

am
r s
λ

√

|η|,m−1
z
,m−1

z
. (C.40)

To determine the height ∆h, we insert the curvature (C.39) into Eqn. (C.5b) and
use Eqn. (C.IIIb)

∆h(s) = −λ2

|η|
(2

λ

√

|η|
m

cn
r s
λ

√

|η|,m−1
z
− 1
)

=
2λ

√

|η|m

(

1− cn
r s
λ

√

|η|,m−1
z)

,

(C.41)

Antisymmetric case

In the antisymmetric case, the curvature at the midline vanishes, which implies
that ψ̇ = 0 and

cosψmid
(C.3)
=

1

η
, (C.42)

where ψ(0) := ψmid. Thus, |η| > 1, and we have to consider different cases again.
For ψmid = 0 or ψmid = 180◦ the profile is flat which corresponds to the solution
with the two cylinders infinitely apart. If 0 < ψmid < 90◦, η is greater than 1,
whereas it is lower than −1 if 90◦ < ψmid < 180◦.

5 Note that although ψ is just given for a finite interval of the arc length, the following expressions
for K, ∆x, and ∆h are correct for all s/λ ∈ R.
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C.1 Two cylinders on a membrane

a) η > 1:

According to Eqn. (C.3), cosψ has to decrease for increasing s. Consequently,
ψ̇ > 0, and

∫ s

0

ds′ = s(ψ) =

∫ ψ

ψmid

λ
√

2(1 − η cosψ′)
dψ′ =

√
2λ

√

(1 + η)

∫ ψ−π
2

ψmid−π

2

1
√

1 −m sin2 θ′
dθ′ .

(C.43)
The parameter m is again greater than 1. With Eqn. (C.I), however, we can
rewrite the arc length as

s(ψ) = λ

√
m

η

( 1√
m
F

r
θ,m−1

z
− 1√

m
F

r
θmid,m

−1
z)

, (C.44)

where sin θ = m1/2 sin
(
ψ−π

2

)
and sin θmid = m1/2 sin

(
ψmid−π

2

)
. Eqn. (C.44) can be

converted to

θ = am
r s
λ

√
η + F

r
θmid,m

−1
z
,m−1

z

⇔ sin θ = m1/2 sin
(ψ − π

2

)

= sn
r s
λ

√
η + F

r
θmid,m

−1
z
,m−1

z

⇔ m sin2
(ψ − π

2

)

= sn2
r s
λ

√
η + F

r
θmid,m

−1
z
,m−1

z

⇔ m

2
[1 − cos (ψ − π)

︸ ︷︷ ︸

=− cos (ψ)

] = sn2
r s
λ

√
η + F

r
θmid,m

−1
z
,m−1

z

⇔ cosψ =
2

m
sn2

r s
λ

√
η + F

r
θmid,m

−1
z
,m−1

z
− 1 . (C.45)

From the condition that ψ̇(0) = 0 we obtain a value for θmid. With Eqn. (C.3)
follows:

cosψmid =
1

η

(s=0)
=

2

m
sn2

r
F

r
θmid,m

−1
z
,m−1

z
− 1 =

2

m
sin2(θmid) − 1

⇔ m

2

(

1 +
1

η

)

= sin2(θmid) ⇔ 1 = sin2(θmid) ⇒ θmid = ±(2n+ 1)
π

2
, (C.46)

where n ∈ N. With m > 1 and ψmid ∈ {0, π}, sin θmid = m1/2 sin
(
ψmid−π

2

)
has to

be negative. We choose θmid = −π
2
. Thus,

cosψ =
2

m
sn2

r s
λ

√
η −K

q
m−1

y
,m−1

z
− 1 , (C.47)

and, for − λ√
|η|
KJm−1K ≤ s ≤ λ√

|η|
KJm−1K,

ψ(s) = arccos
( 2

m
sn2

r s
λ

√
η −K

q
m−1

y
,m−1

z
− 1
)

. (C.48)
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C Solutions of the membrane shape equation

The curvature can be obtained in total analogy to Eqn. (C.39) (see paragraph e)
in the previous section)

K(s)
(5.50)
= λ−1

√

2(1 − η cosψ)

(C.47)
= λ−1

√

2
[

1 + η
(

1 − 2

m
sn2

r s
λ

√
η −K Jm−1K ,m−1

z)]

=
2

λ

√
η

m
cn

r s
λ

√
η −K

q
m−1

y
,m−1

z
> 0 for s > 0 . (C.49)

The distance ∆x is given by

∆x(s) =

∫ s

0

ds′ cosψ(s′)
(C.47)
=

∫ s

0
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m
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λ

√
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y
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− 1
)

= −s+
2λ√
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q
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+
s′

λ

√
η −K

q
m−1

y]s
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= s− 2λ√
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E
r
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r s
λ

√
η −K

q
m−1

y
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z
,m−1

z
+ EJm−1K

)

, (C.50)

where Eqns. (C.IIb) and (C.IVa) were inserted in the last step. The height ∆h
can be calculated with the help of Eqn. (C.5b)

∆h(s)
(C.IVb,C.49)

=
2λ√
η m

cn
r s
λ

√
η −K

q
m−1

y
,m−1

z
. (C.51)

b) η < −1:

Now, cosψ has to increase with increasing s because η is negative (see Eqn. (C.3)).
Thus, ψ̇ < 0. One can rewrite Eqn. (C.3) a bit to benefit from the calculations
that were already done:

λ2

2
ψ̇2 +η cosψ = 1 ⇔ λ2

2
ψ̇2−|η| cosψ = 1 ⇔ λ2

2
ψ̇2 + |η| cos (π − ψ) = 1 . (C.52)

From the previous paragraph we know that the solution of the equation on the
right-hand side is given by:

π − ψ = arccos
( 2

m
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r s
λ
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q
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y
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− 1
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r s
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q
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− 1
)
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z)
, (C.53)
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C.1 Two cylinders on a membrane
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Figure C.3: Relevant parameters for the inner section in the antisymmetric case. The
arrows point in the positive direction of ∆x, ∆h, and s, respectively.

if − λ√
|η|
KJm−1K ≤ s ≤ λ√

|η|
KJm−1K.

Note that we have to check that ψ̇ < 0 which is indeed the case here. Analogous
to Eqn. (C.39), we obtain for the curvature

K(s) = −2
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√

|η|
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cn
r s
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√
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z
< 0 for s > 0 . (C.54)

Finally, we calculate ∆x and ∆h again. With cosψ = − cos [π − ψ],

∆x(s) =

∫ s

0

ds′ cosψ(s′) = −
∫ s

0

ds′ cos [π − ψ(s′)]

= −
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, (C.55)

and with the help of Eqn. (C.5b)

∆h(s) =

∫ s

0

ds′ sinψ(s′) =
λ2

η
[K(s) −K(0)]

(C.51)
=

2λ
√

|η|m
cn

r s
λ

√

|η| − K
q
m−1

y
,m−1

z
. (C.56)

If we compare the two equations (C.55) and (C.56) to the corresponding results of
the previous paragraph a), it becomes obvious that the shape for −|η| can simply
be obtained by reflecting the shape for |η| about the x axis (see also Fig. C.3).
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C Solutions of the membrane shape equation

C.2 The nanodrum in small gradient approximation

The shape equation (C.1) for the axially symmetric nanodrum in small gradient
approximation reads:

∇
2
(
∇

2 − λ−2
)
h = 0 . (C.57)

Its solution is given by

h(ρ) = h1 + h2 ln(ρ/λ) + h3 I0(ρ/λ) + h4 K0(ρ/λ) , (C.58)

where the constants h1, . . . , h4 can be determined from the appropriate boundary
conditions (4.8) (see page 86). From h(Rpore) = 0 one directly obtains:

h1 = −h2 ln(Rpore/λ) − h3 I0(Rpore/λ) − h4 K0(Rpore/λ) . (C.59)

Using the relations (4.I) for the derivatives of the Bessel functions I0(ρ) and K0(ρ),
the derivative of the height function can be written as:

h′(ρ) =
h2

ρ
+
h3

λ
I1(ρ/λ) − h4

λ
K1(ρ/λ) . (C.60)

Thus, the boundary conditions (4.8b) yield

h2 = −Rpore

λ
[h3 I1(Rpore/λ) − h4 K1(Rpore/λ)] , and

h3 =
c2λ+ h4Rtip [cK1(c/λ) −Rpore K1(Rpore/λ)]

Rtip [c I1(c/λ) −Rpore I1(Rpore/λ)]
. (C.61)

The constant h4 can be obtained with the help of the second boundary condition
in Eqn. (4.8a). It is given by N/D, where

N = λ
{

2λc2
[
I0(R̃pore/λ) − I0(c/λ)

]
+ (c2 − 2h0Rtip)c I1(c/λ)

+ Rpore I1(Rpore/λ)
[
2 ln (c/Rpore)c

2 − c2 + 2h0Rtip

]}

, and

D = 2Rtip

{

λ
[
2λ− c I0(Rpore/λ) K1(c/λ) −Rpore I0(c/λ) K1(Rpore/λ)

]

− Rpore I1(Rpore/λ)
[
λK0(c/λ) + cK1(c/λ) ln (c/Rpore)

]

− c I1(c/λ)
[
λK0(Rpore/λ) −Rpore K1(Rpore/λ) ln (c/Rpore)

]}

. (C.62)

Combining this result with the expressions for the other constants yields the height
function in terms of the contact point c. The latter has to be determined numer-
ically using the remaining boundary condition (4.8c). The solution of the profile
can then be inserted into Eqn. (4.V) to determine the force.6

6 These calculations can be found in two Mathematica files at [WWWd] and [WWWe].
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[JL96] F. Jülicher and R. Lipowsky. Shape transformation of vesicles with
intramembrane domains. Phys. Rev. E, 53(3): pp. 2670–2683, March
1996.

[JNOF00] A. Janshoff, M. Neitzert, Y. Oberdörfer, and H. Fuchs. Force
Spectroscopy of Molecular Systems—Single Molecule Spectroscopy
of Polymers and Biomolecules. Angew. Chem. Int. Ed., 39(18):
pp. 3212–3237, September 2000.
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