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1. Introduction 

 

1.1 Biosensors 

 

The combination of optical, electrochemical, piezoelectric, thermal and other 

physicochemical instrumental techniques with the specificity of a biological recognition 

system has resulted in a variety of new analytical devices known as biosensors. Biosensors 

are under intensive development worldwide because they have many potential applications, 

e.g. in the fields of clinical diagnostics1, food analysis2, environmental monitoring3 and 

process control of industrial processes4. 

Biosensors are devices that transform biochemical information into an analytically 

useful signal. Three structural parts are essential, a recognition system, a detector element and 

a transducer that associates the two other components (Figure 1.1.1). The recognition site is 

usually a biological material, e.g. tissue, cell receptor, enzyme, antibody, protein or nucleic 

acid. The main function of the recognition system is to be highly selective for the analyte to 

be measured. The detector element measures physicochemical properties, such as small 

optical, piezoelectric electrochemical, thermometric, or magnetic changes. In contrast to the 

recognition system, the main purpose of the detector element is to offer a high sensitivity. 
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Figure 1.1.1: Principle of a biosensor. 
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Surface plasmon resonance (SPR) spectroscopy has become a routine technique in 

optical biosensor applications, where interactions between an analyte in solution and a 

biomolecular recognition element immobilized on the surface are probed5, 6. In 1990, the 

company Biacore introduced the first commercial SPR biosensing instrument where surface 

plasmon resonances are excited in a dense gold film and used to probe small changes in 

refractive index at the gold surface7.  

Much effort is spent on the development of more sensitive sensor platforms. One 

strategy for amplifying the sensitivity is to increase the amount of analyte binding sites. This 

can be realized by an enhancement of the sensor surface area. Subsequently, Biacore modified 

the flat gold film by attaching a three dimensional dextran hydrogel matrix, that allows high 

loading of analytes8. 

Other approaches try to influence the evanescent field of the plasmon wave to gain 

further sensitivity. The so-called long range surface plasmon, excited at the two sides of a 

metal layer in contact with two identical dielectric media9, promises high resolution, as the 

field intensity at the interface is higher than in case of conventional SPR and the decay length 

of the evanescent field can be in the extended range of 400 - 800 nm10. Another approach to 

enhance the sensitivity is the use of localized surface plasmon phenomena11, 12 for the 

detection of small molecules13. Novel fabrication methods for plasmonic materials are 

developed14, 15. 

 

1.2 Aim of the study 

 

This study is divided into three parts. In the first part, nanoporous gold, as a new plasmonic 

material, is investigated in detail (chapter 4). In the second part, plasmonic features of 

gold/silica composite inverse opals are studied (chapter 5). While parts one and two mainly 

focus on fundamental research by looking into the properties of novel substrate materials in 

order to provide a basis for new optical biosensors, part three addresses an application of 

biosensing (chapter 6).  

Generally, nanoporous gold, as a rough, but continuous gold membrane, shows 

features of both planar metal films that exhibit propagating-SPR (p-SPR) and nanostructured 

metal materials that exhibit localized-SPR (l-SPR), two kinds of optical excitations used in 

state-of-the-art optical sensing technologies. Therefore, nanoporous gold is an interesting 

substrate that can be incorporated into the recognition system of improved biosensors. 

Detailed analyses of the nanoporous gold are described in chapter 4. 
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In chapter 5, silica inverse opals are used as a substrate to host gold nanoparticles in 

order to investigate the optical features that may be created as a combinatory result of both the 

ordered macropores and the l-SPR from the nano metallic particles. 

The fundamental question addressed in chapter 6 is the development of a binding 

assay to probe the protein/protein interaction of the calcium binding protein centrin with the 

heterotrimeric G-protein transducin. Therefore, a commonly evaporated, flat/dense gold film 

was used to support a propagating surface plasmon mode. 
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2. Methods for surface characterization 

 

2.1 Theoretical Background – Surface Plasmon Resonance (SPR) Spectroscopy  

 

During the last 15 years surface plasmon resonance (SPR) spectroscopy has become a popular 

technique for optical immunosensor applications
1
. In general, it is a method for measuring the 

refractive index of very thin (order of nm)
2
 layers of material adsorbed on metals. A change in 

the refractive index can be detected close to the metal, typically within a distance of 

200 - 300 nm to the sensor surface
3
. Material adsorption can be converted into mass and 

thickness with knowledge of the respective refractive indices. The following chapter outlines 

the principles of SPR. 

 

2.1.1 Excitation of Propagating Surface Plasmons (p-SPR) 

 

2.1.1.1 Optical properties of materials 

 

Plasmons are collective oscillations (non-radiative) of free electron gas at optical frequencies. 

Surface plasmons are confined to surfaces and occur at the interface of a material with a 

positive dielectric constant (εdielectric) and a material of a negative dielectric constant (εmetal). 

Surface plasmons can be excited on metallic surfaces under certain conditions (depending on 

material, incident angle, polarization and wavelength of the incident light). The conditions 

depend on the dielectric constants (≅ refractive indices) of the metal, dielectric and dielectric 

adsorbate layers, and are consequently reliant on the excitation wavelength. Equations 2.1 and 

2.2 describe the relationship between the dielectric constant and refractive index.  

 

2 2
n kε ′ = −                      --- 2.1 

 

2nkε ′′ =                      --- 2.2 

 

Optical properties of materials can be described by the refractive index, n which describes the 

real part and the absorption coefficient, k which describes the imaginary part. Alternatively 

the dielectric constants ε’ (real part) and ε’’ (imaginary part) are used. 

The electromagnetic field of the surface plasmon decays exponentially into both the 

dielectric and the metal, with the highest intensity at the interface. The plasmonic dispersion 

relation (between angular frequency ω and wave vector k) reveals that the longer the 
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excitation wavelength λ nm (smaller ωL, since ω = 2π(c/λ)), the smaller the k vector needed 

to match the plasmon excitation condition (cf. Figure 2.1.1). 

The kph of the incident light (also called momentum) can be tuned/magnified using 

either prism or grating coupling, so that photons are not coupled directly to the 

metal/dielectric interface, but via high-index prism (with εprism > εdielectric)
3
. The wavevector 

kSP is described by kSP = (2π/λ)·nprism·sinθPSP. 

 

m d
SP Ph d

m d

K K
c c

ε εω ω
ε

ε ε
= ≥ =

+
                   --- 2.3 

 

Plasmonic dispersion relation: At any angle θ |ksp| (k surface plasmon) is larger than |kph| (k 

photon, air). 

 

1/λλλλ
0

594 nm

..

…

1152 nm

ksp

kphoton,air kphoton,prism

kksurfacesurface plasmonplasmon

 
Figure 2.1.1: Dispersion relation demonstrates the enhancement of k using a high index prism, e.g. 

LaSFN9. There is no intersection for kphoton,air and ksurface plasmon, while kphoton,prism intersects ksurface plasmon. It 

also becomes apparent that the light coupling needs smaller k for longer excitation wavelength. 

 

 

When the energy and the momentum of the photon are just right, it interacts with the 

free electrons of the metal. The incident p-light (transversal magnetic, TM- or p-polarized) 

photons are absorbed and converted into surface plasmons. 
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2.1.1.2 Prism coupling 

 

Different configurations of SPR devices are capable of generating and measuring propagating 

surface plasmons: devices that use prism coupling
4, 5

 or grating coupling
6
. Prism based SPR 

was firstly described in 1959 by Turbadar
7, 8

. One decade later, prism coupling was further 

developed and split in two coupling variations, known as the Otto
5
 and the Kretschmann/ 

Raether configurations
4
. In this thesis, only prism coupling in the Kretschmann/Raether 

configuration was used, in this arrangement the photons travel through a high index prism and 

couple through a gold film, that is in contact with the dielectric medium (Figure 2.1.2).  

normal to the surface

LaSFN9 prism

incident beam

= θTIR

> θTIR

< θTIR

reflected beam

surface plasmon (ATR)

εprism

εmetal

εdielectric

 
Figure 2.1.2: Prism coupling in the Kretschmann/Raether configuration was used in this thesis to excite 

propagating surface plasmon resonances. Both the angle of incidence and the angle of reflection are 

defined as the angle between the corresponding light beam and the normal to the surface, so the reflected 

beam is detected at 2θθθθ. 
 

The incident laser beam passes into the prism and is reflected, partially transmitted or 

absorbed at the base of the prism (Figure 2.1.2). Below θTIR (angle of the total internal 

reflection) most of the light is transmitted (green line). At θTIR the transmitted light propagates 

parallel to the surface (red line). If the angle of incidence is greater than θTIR, no light is 

transmitted. The surface plasmon occurs at higher angle θ dependent on the properties of the 

materials (gold film: thickness, ε`, ε``,…).  
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2.1.1.3 SPR signal 

 

The SPR signal can be derived by monitoring the intensity of the reflected light as a function 

of the incident angle
7, 8

:  
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Figure 2.1.3: Simulated surface plasmon resonance signal (Winspall, version 2.20): triangular prism, 

50 nm Au film, air; 632.8 nm excitation in p-polarization. 

 

Due to absorption, the plasmon phenomenon is also called the attenuated total internal 

reflection (minimum of reflectivity). The thickness of the gold film, as well as the excitation 

wavelength influences the coupling angle and the coupling efficiency. 

 

2.1.1.4 Influence of the excitation wavelength to the SPR signal  

 

The SPR signal is strongly influenced by the excitation wavelength. With larger wavelengths 

the resonances become narrower and the angle of total internal reflection increases: 
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Figure 2.1.4: Simulated surface plasmon resonance signals (Winspall, version 2.20) demonstrate the 

influence of the excitation wavelength for three different wavelengths. All other parameter stayed the 

same as in Figure 2.1.3. 
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2.1.1.5. Changes in the dielectric due to adsorbates leading to changes in the plasmon 

resonance minimum 

 

The SPR signal is highly sensitive to physical or chemical adsorption of molecules in the 

order of nm. During adsorption processes, the total internal reflection stays the same, while 

the surface plasmon minimum shifts to higher angles (Figure 2.1.5 C). 

 

 
 
Figure 2.1.5: Prism coupling in Kretschmann/Raether configuration to probe adsorption of layers (A). 

Dispersion relation (cf. Fig. 2.1.1), here ωωωω versus kSP, shows that for a given ωωωωL the momentum of surface 

plasmons increases, when the dielectric constant εεεεd increases e.g. due to adsorption of layers (B). The 

angular reflectivity curve (C) reveals a shift of the coupling angle θθθθ0 to θθθθ1 to θθθθ2, if layers are adsorbed. 
 

A change in the refractive index can be only detected near the metal. At a distance of 

200 - 300 nm to the sensor surface, the signal loses sensitivity.  

Surface plasmon resonance curves, in opposition to optical waveguide systems, do not 

allow the separation of the refractive index (n) and thickness (d) of the layers. With known 

values for either n or d, the other parameter can be calculated assuming the formation of a 

dense homogeneous monolayer via the Fresnel equations based on Maxwell’s theory. 
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2.1.2 Excitation of Localized Surface Plasmons (l-SPR) 

 

Both propagating and localized surface plasmon resonance (p-/l-SPR) are collective electron 

oscillations
9
. But the p-SPR is a travelling wave, propagating along the interface shared with a 

dielectric as described above; whereas the l-SPR is a localized field confined to metallic 

nanoparticles and other nanostructures, e.g. voids with high curvature metal/dielectric 

interfaces. Raether defines the localized plasmon phenomenon as a resonance of a small 

sphere
6
. In general, the term localized plasmon is frequently used in the literature to describe a 

range of different phenomena. 

The phenomenon of localized plasmons has found application in the field of 

biosensing
10

, because the l-SPR is medium dependent just like the p-SPR. An absorption in 

the visible or UV parts of the spectrum originates from the collective oscillation of the 

conduction electrons. The peak position shifts if the refractive index of the surrounding 

medium is changed. To exemplify, an absorbance spectrum before and after deposition of 

immunoglobulin onto a gold-nanoparticle-coated three-dimensionally ordered macroporous 

film is shown:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.6: Absorption spectra of the gold-nanoparticle-coated three-dimensionally ordered 

macroporous film before (solid line) and after (dashed line) the immobilization of hIgG
10

. 

 

The main advantage of the localized plasmon is its independence from the incident 

angle of the excitation light and sample orientation
9
. Thus angle-resolved spectroscopy allows 

l-SPR and p-SPR modes to be distinguished from each other. A setup was build to 

simultaneously monitor the angular dependent reflectivity and the absorbance from two 

different sides of the substrate [Chapter 3]. A second advantage of the l-SPR is the much 

shorter decay length of the evanescent field (~ 20 nm) compared to the p-SPR (~ 200 nm), so 

that only changes within this short distances are detectable, thus the crude bulk solution does 

not influence the signal. 

The l-SPR is dependent on the material, particle shape and excitation wavelength, but 

independent of incident angle and polarization. 
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2.2 Basics of Cyclic voltammetry (CV) 

 

Cyclic voltammetry as a three-electrode method (reference, working and counter electrode) 

has become a popular analytical technique for electrochemical studies. The choice of solvent, 

background electrolyte and specific working electrode material determines the potential 

window of the electrochemical measurement. The background electrolyte is a salt added both 

to increase the solution conductivity and to suppress charge transport by migration. A 

potential difference is measured between the reference and the working electrode while any 

current flowing is measured between the working and the counter electrode. The electrodes 

are connected to a potentiostat which is used to adjust the voltage to maintain a potential 

difference of choice between the reference and working electrodes. 

In cyclic voltammetry the potential (E) is continuously changed as a function of time 

(t), the direction of the potential is reversed at the end of the first scan (E2) and scanned back 

to the original value, E1 (Figure 2.2.1). The different scans directions are also sometimes 

termed anodic and cathodic scans, respectively. The rate of change of potential with time is 

referred as the scan rate. A current response (i) is obtained when an electro active species is 

oxidized or reduced at the electrode. A typical one-electron (e
-
) transfer reactions is

11
: 

 

Fe(CN)6
3-

+ e
-
 ↔ Fe(CN)6

4-                                          
--- 2.4 

 

The ferricyanide Fe(CN)6
3-

 (hexacyanoferrate(III) ion)/ferrocyanide Fe(CN)6
4-

 (hexacyano-

ferrate(II) ion) redox couple is reversible and the electron transfer does not involve making 

or breaking of Fe-C bonds.  

During the anodic scan the current increases as the potential reaches the oxidation 

potential of the analyte, but then drops as the concentration of the analyte is depleted close to 

the electrode surface. During the cathodic scan, the electrode is returned to a potential that 

will reoxidize the analyte and generate a current of reverse polarity from the forward scan. In 

the case of a simple reversible redox couple, such as the Fe
2+

/Fe
3+

 couple, the oxidation and 

reduction peaks will have a similar shapes and the same amount of charge will be passed in 

the forward scan as in the reverse scan (Figure 2.2.1). 
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Figure 2.2.1: Representative cyclic voltammogram for a reversible electron transfer reaction: 

ferricyanide-ferrocyanide conversion measured on a large (0.5 cm
2
) flat evaporated gold electrode vs. 

Ag/AgCl reference electrode. Because of the non-optimal conditions, it is not an ideal cyclic 

voltammogram, e.g. the peak separation is too large. The inset shows the variation (waveform) of the 

applied potential (E) as a function of time (t) in a cyclic voltammetry experiment. 
 

 

The potential of the electrode for a reversible half-reaction is given by the Nernst equation
11

: 

0 [ ]
ln

[ ]

RT c OX
E E

nF c RED
= +                    --- 2.5 

 

where 

• Electrode potential (E) 

• Standard electrode potential (E
0
) 

• Universal gas constant (R), equal to 8.314510 J K
-1

 mol
-1

 

• Temperature (T) in Kelvin (Kelvins = 273.15 + °C.) 

• Faraday constant (F) (the charge per a mole of electrons), equal to 9.6485309·10
4 

C 

mol
-1

 

• Number of electrons (n) transferred in the half-reaction 

• c[OX]/c[RED] are the concentrations of the oxidized and reduced species, 

respectively. 

In my studies only reversible electron transfer reactions will be addressed. 



Chapter 2. Methods for surface characterization 

 13 

Basics of Electrode processes 

 

Faradaic and Non-Faradaic processes 

 

Both Faradaic and Non-Faradaic processes can occur at electrodes, when a potential 

difference is applied. If electron transfer causes oxidation or reduction (e.g. Fe
2+

/Fe
3+

), the 

resulting current is termed Faradaic. In cyclic voltammetry the peak current (ip) is given by 

the Randles-Sevcik equation
11

: 

 

5 3/ 2 1/ 2 1/ 2(2.69 10 )pi n ACD V= ×                   --- 2.6 

 

where A is the electrode area (in cm
2
), C the concentration (in mol/cm

3
), D the diffusion 

coefficient (in cm
2
/s), and v the scan rate (in V/s).  

The Non Faradic current is the charging current caused by the movement of ions in the 

solution when a potential in applied to the working electrode. When considering 

electrochemical data the Non-Faradaic processes always have to be taken into account. 

 

 

Brief Explanation of the Electrical Double Layer 

 

The whole array of charged species and oriented dipoles at the electrode - solution interface is 

termed the electrical double layer (Figure 2.2.2 B). So far several models have been 

developed to describe the nature of the electrical double layer. The earliest model is attributed 

to Helmholtz (~ 1853). He considered the double layer as a simple capacitor consisting of a 

single layer of ions close to the electrode surface (Figure 2.2.2 A). But the “double” layer at 

the solution side is thought to be made up of quite a few layers. In the beginning of the 19
th

 

century, Gouy and Chapman introduced a diffuse model, in which the potential at the 

electrode surface decreases exponentially due to a diffuse layer of charge compensating ions 

at the electrode-solution interface. Stern combined the two models.  

The Bockris – Devanathan - Müller model (water-dipole model) is used as a current 

model (Figure 2.2.2 B). The zone of the specifically adsorbed ions at distance x1 is called the 

inner Helmholtz plane (IHP). The solvated ions can approach the electrode only to a distance 

x2 termed outer Helmholtz plane (OHP). The so called diffuse layer formed of charge 

compensating ions extends from the OHP into the bulk solution. The thickness of this diffuse 
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layer is dependent on the total concentration of ions in the solution. In low concentrated 

solution the charging current can be even larger than the Faradaic current, because of the 

double layer capacitance. 

 

 

 

 

 

Figure 2.2.2 (A): The attracted positive ions are forming a layer balancing the negative electrode charge. 

The distance of approach is limited to the radius of the ion and salvation shell. The overall result is the 

double layer (two layers of charge) situation, which is analogue to a capacitor. Helmholtz (1853). 
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Figure 2.2.2 (B): The most modern model of the electrical double layer of Bockris, Devanathan, Müller, 

which also shows the presence and orientation of solvent dipoles. The sketch illustrates the double layer 

region, and also takes into account anions specifically adsorbed at the electrode surface. 
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2.3 Introduction to Electrochemical Impedance Spectroscopy (EIS) theory 

 

Electrochemical Impedance spectroscopy (EIS) is a powerful tool for the investigation of 

electrochemical systems. In recent years, EIS has found various applications and is routinely 

used in the characterization of batteries
12

, semiconductors
13

, fuel cells
14

, and corrosion 

phenomena
15

. 

 The advantage of EIS over CV (described above) is that EIS uses very small excitation 

amplitudes such as 5 - 10 mV causing only minimal perturbation of the tested system. CV is 

used to investigate the response of the system when a direct current (DC) voltage ramp is 

applied; EIS is measured by applying a small amplitude alternating current (AC) wave around 

a fixed DC potential. In the first characterization step of the substrate, the potential range of 

electrochemical phenomena can be found by running a cyclic voltammogram. In the 

following EIS measurements this range can be further examined by probing frequency 

dependent processes at a fixed DC potential. A broad range of frequencies can be investigated 

by EIS (typically between MHz and mHz). EIS measurements can be executed in low 

conductivity solutions such as physiological buffer systems. EIS provides data of electrode 

double layer capacitance and can give information about charge-transfer kinetics 

[Chapter 4.7; NPG capacitance; cytochrome c oxidase reaction]. 

 

The concept of complex impedance  

 

In impedance spectroscopy a sinusoidally modulated voltage is applied to an electrochemical 

system. The modulation amplitude is chosen to be small so that the system responds linearly 

to the perturbation and the output is also a sine wave. In the case of EIS the input sine wave is 

a voltage and the measured output is a sinusoidally varying current at the same frequency. 

Depending on the nature of the electrochemical system the sinusoidal current response 

(Figure 2.3.1) can be phase shifted and display changes in amplitude relative to the incident 

voltage sine wave. Ohm’s law known as E = I·R for the resistance in DC (direct current, 

continuous current), can be expressed in E = I·Z for the impedance in AC case.  

E
Z

I
=                       --- 2.7 

 

Potential (E) values are measured in volts (V), current (I) in amperes or amps (A), and in this 

case impedance (Z) as well as resistance (R) in ohms (Ω). In AC circuits resistors, capacitors 
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and inductors impede the flow of electrons so that impedance can be expressed as a complex 

number with the resistance as the real component and the combined capacitance and 

inductance as the imaginary component, so called reactance. In the special case of measuring 

the pure resistance, no shift (θ) in the two waveforms is observed. They would be accurately 

in phase and different only in amplitude. 

E
 a

n
d

 I

Time

voltage (E) sine wave

sinusoidal current (I) response

 

Figure 2.3.1: Drawing of sinusoidally varying AC voltage over and the resulting current which shows a 

different phase and amplitude to the incident signal.  

 

Equivalent circuit models 

 

In EIS studies the response of the system to the voltage sine wave is modelled as the response 

of circuit elements, for example resistors and capacitors. The simplest equivalent (RC) circuit 

(resistor-capacitor circuit) that could be used to model the electrochemical cell described in 

this work is depictured in Figure 2.3.2. Rsolution is the ohmic resistance of the solution between 

working (e.g. nanoporous gold) and reference electrode (e.g. silver/silver chloride). Rsolution 

can be extracted directly from the Bode plot (Figure 2.3.4), when the frequency equals Zero. 

Rmembrane is the resistance at the electrode/solution interface, e.g. where the lipid bilayer 

membrane is built [cf. Chapter 4.7]. Cdl (capacitance of the double layer) or Cmembrane is the 

capacitance at this interface. From this double layer capacitance measurements information on 

ad- and desorption processes can be derived. 

Rs
Rm

Cdl  

Figure 2.3.2: Equivalent circuit for a single electrochemical cell. 

 

This simplified equivalent circuit was extended by a constant phase element (CPE) to model 

the complexity of the submembrane space of the tethered lipid bilayer established on the 
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nanoporous gold substrates [Chapter 4.7]. Several factors can cause the need of a CPE. One 

explanation for CPE behaviour is electrode roughness
16

, e.g. the fractal structure of the 

nanoporous gold substrates. Variations in thickness and composition of a coating can be 

second reason
17

. Further reasons can be inhomogeneous reaction rates on a surface
18

 and 

non-uniform current distribution
19

. 

Rs
Rm

Cdl

CPE

 

Figure 2.3.3: Equivalent circuit for a complex system. 

 

 

Impedance plots 

 

The most prominent plot is the so called Bode plot. The Bode plot format shows directly the 

magnitude of the impedance |Z| and the phase shift (θ), both as a function of frequency 

(Figure 2.3.4). It is a log-log plot, so that a wide range of frequencies and corresponding 

values of impedance can be viewed.  
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Figure 2.3.4.: Simulated Bode plot for a simple equivalent circuit model with Rsolution (50ΩΩΩΩ), Rmembrane 

(1MΩΩΩΩ) and Cdl (1µF). 
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The admittance, denoted Y, is simply the inverse of the impedance: Y = 1/Z. An admittance 

plot, also called capacitance plot, contains the same information as the other plot formats (e.g. 

Bode plot, Nyquist plot) but sometimes allows the system response to be viewed more clearly. 

The semicircle shape is due to the interaction between the resistance and the capacitance. The 

value of the capacitance can be directly extracted from the graph either from the extrapolation 

of the semicircle to the y-axis or from the Y´/w value on the horizontal line section of this plot 

(Figure 2.3.5). 

 

0 5.0e-7 1.0e-6 1.5e-6 2.0e-6

-5.0e-7

0

5.0e-7

1.0e-6

1.5e-6

Y'/w

Y
''/

w

R
solution R
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Figure 2.3.5.: Simulated admittance plot (capacitance plot) for a simple equivalent circuit model with 

Rsolution (50ΩΩΩΩ), Rmembrane (1MΩΩΩΩ) and Cdl (1µF). 
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2.4 Scanning Electron Microscopy (SEM) 

 

The incident electron beam was emitted via a field emission gun (FEG). The interaction 

between the incident electron beam and the electrons of the sample (NPG as an electrically 

highly conductive material) resulted in the emission of low-energy electrons (<50 V) from 

near the sample’s surface, so-called secondary electrons (SE). An in-lens SE detector (Zeiss) 

collected the secondary electrons with high efficiency on the same specimen site as the 

incoming e-beam. The resulting signal was rendered into a two-dimensional intensity 

distribution that was viewed and saved as a digital image. The resolution was about 2.5 nm at 

1 kV (~ 1.0 nm at 20 kV and ~ 5 nm at 0.2 kV). This resolution is two orders of magnitude 

larger than optical light microscopy, which has its limitations due to the wavelength of visible 

light. The wavelength of an electron with a certain energy is around 3 - 6 nm
20

 compared to 

400 - 700 nm for the visible light. 

 

 
 

Figure 2.4.1: LEO (Zeiss) 1530 Gemini 
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2.5 Autocorrelation 

 

The one dimensional (1D) autocorrelation function (ACF) can be expressed as a function of a 

single variable x: 

1

2

1

( ) ( )

( )

( )

N

i

N

i

F i F i x

ACF x

F i

=

=

⋅ + ∆

∆ =
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∑
                            --- 2.8 
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Figure 2.5.1: Exploitation of the 1D correlation function. Exemplarily for one data point a shift of ∆∆∆∆x = 4 is 

shown. 

 

A sequence of discrete values is determined for the function F(i), where i = 1,2,... N refers to 

the set of all natural numbers. ∆x is the displacement in the x direction.  

By adding a second variable y the two dimensional (2D) autocorrelation function 

(ACF) is formulated as follows: 

, 1

2

, 1
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( , )
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N

i k

N

i k

F i k F i x k y

ACF x y

F i k
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=

⋅ + ∆ + ∆

∆ ∆ =

 
 
 

∑

∑

                      --- 2.9 

An illustration of the 2D correlation function is shown in Figure 4.4.2 [Chapter 4]. 

 

As in the case of the 1D autocorrelation function a sequence of discrete values is determined 

for the function F(i, k), where i, k = 1,2,... N and ∆y is the displacement in the y-direction. 

The software Igor Pro (version 5.02) was used to resolve the 2D autocorrelation function. The 

original SEM images were imported and the parameters such as dimensions in x- and y-

direction, the autocorrelation dimensions and the step size were selected. The number of 

nanometers per pixel was defined by the SEM image, and was usually 1.00 nm/pixel. The 

larger the chosen area (x- and y-direction) and the smaller the step size, the more precise the 

values that could be calculated, but the longer the correlation process lasted. 
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3 Experimental Section 

 

3.1 Instrumental - SPR setup 

 

A home-built surface plasmon resonance (SPR) instrument in the Kretschmann configuration1 

was used for optical p-SPR studies. The components of the setup are easily transposable or 

extendable for additional applications such as electrochemical2 (Chapter 4.5/4.7) 

measurements or detection of surface enhanced fluorescence3. The setup was also modified to 

monitor localized SPR4 and propagating SPR simultaneously utilizing a fiber-optic 

spectrometer, so that the localized plasmon response was recorded from the backside of the 

sample, while the propagating plasmon excited by a laser source was detected by measuring 

the reflected light from the prism with a photodiode detector. A schematic drawing of the 

setup is depicted in Figure 3.1.1. A photograph of this setup is then shown in Figure 3.1.2.  

Simultaneous study of propagating SPR and 
localized SPR on NPG

HeNe laser (1152 nm)

polarizer

photodiode

2θθθθ goniometer

lock-in 
amplifier

Fiber optic 
spectrometer

Ocean optics 
USB 2000

motor-
steering

chopper

laser-
shutter

shutter 
controller

prism

θθθθ

flow cell

white light
source

PC

substrate

 
Figure 3.1.1: Simultaneous propagating and localized surface plasmon resonance setup based on a 
Kretschmann configuration. In order to conduct the l-SPR study, a fiber optic spectrometer (Ocean 
optics) with a reflection probe was used. The reflection probe was used for both the illumination and the 
collection of reflected light from the NPG surface. 
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Figure 3.1.2: Photograph of the setup. 
 

Briefly, linearly polarized frequency-modulated laser light was used to illuminate the 

sample through a right-angle glass prism. The reflected laser intensity was focused by a lens 

(f = 50 mm, Owis) onto a photodiode detector. The frequency modulator, a chopper 

(frequency = 1331 Hz), and the detection unit (silicon pin photodiode; Infineon Technologies 

Corporation, BPW 34 B) were connected to a lock-in amplifier (EG&G) as a reference to 

filter the noise coming from other light sources with different frequencies. 

For momentum matching on NPG substrate with high coupling efficiency at small 

incident angle an IR laser (HeNe, Laser 2000, 10 mW, λ = 1152 nm) was used. The IR laser 

beam was invisible to the human eye light, so that the assistance of a parallel red laser (HeNe, 

Uniphase, 5 mW, λ = 632.8 nm) was obligatory in order to properly align the beam. The red 

laser was also used to excite surface plasmons on evaporated, flat Au (50 nm) in the second 

project (epitope mapping). A flipping mirror (Owis) was utilized to select between these two 

lasers. Before starting experiments an infrared sensor card (0.75 - 1.35 µm; Newport, Model 

F-IRC1) was always used to ensure that the two laser beams remained parallel. 

For characterization of the NPG membranes by SPR, various other excitation 

wavelengths (594, 780, 820 nm, respectively) were also selected. If other wavelengths were 

required the SPR measurements were performed on similar set-ups to the one shown in 
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Figure 3.1.2 which contained lasers with wavelengths other than the standard λ = 632.8 nm 

red HeNe laser. 

The chopped laser light was passed through a polarizer (Glan-Thompson) to adjust the 

polarization (TE, TM). In the case of high intensity lasers, e.g. 632.8 nm, a second polarizer 

(Glan-Thompson) was used to adjust their intensity. A shutter was installed to block the laser 

beam during any alterations of the setup or to protect fluorescent dyes from photo bleaching. 

The sample (prism, gold slide, and quartz flow cell) and the detector were mounted on two 

coaxial goniometers, enabling precise tuning of the incident angle of the laser (θ) and the 

detection angle (2θ). The sample configuration can be seen in Figures 3.1.3 and 3.1.4. The 

high refractive index prism (LaSFN9, Schott Glass Inc., refractive index n = 1.85 at λ = 632.8 

nm) was connected via immersion oil (n = 1.7 at λ = 632.8 nm) to a LaSFN9 glass slide 

which was coated with gold (NPG, evaporated, or template stripped Au). A thin polydimethyl 

siloxane (PDMS) spacer (300 µm, with an elliptical hole 5 mm × 7 mm) was used to seal the 

substrate to a quartz slide (Herasil glass). Two holes in the quartz glass slide provided an inlet 

and outlet. Two steel needles were carefully inserted and glued into the two holes to enable 

the connection to Tygon tubing (inner diameter 0.76 mm). A peristaltic pump (Ismatec, 

Switzerland) was used to pump liquid from a small container (e.g. Eppendorf tube or other 

buffer container systems - manually exchanged) through the cell in a closed circulation loop 5. 

The loop volume was ~ 300 µL, a minimum sample volume of ~ 400 - 600 µL was injected to 

guarantee a proper analyte working concentration6.  

 
 
 

 
Figure 3.1.3: Details of the sample configuration. 

LaSFN9 prism

quartz flow cell

steel needles

PDMS spacer 

LaSFN9 glass + 
NPG or 50 nm Au

oil
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Figure 3.1.4: Photograph of the sample holder clamping the flow cell, the PDMS Spacer, the substrate and 
the prism. The left side shows the back of the sample (l-SPR) and the right side a top view (p-SPR) of the 
sample holder.  

 
L-SPR on NPG was measured using a spectrometer (USB2000, Ocean Optics Inc.) 

equipped with a reflection probe (R400-7, Ocean Optics Inc.) and a light source (HL-2000, 

Ocean Optics Inc.). The l-SPR experiments measured the reflection spectrum of the NPG 

sample through the quartz window of the flow-cell. The absorbance spectra were measured by 

taking the ratio between the raw detector spectrum of the measurement sample and the raw 

detector spectrum of the reference sample, followed by taking the logarithm of base 10 of this 

ratio (log (reference/sample)). In all raw spectra, the dark spectrum was subtracted 

automatically by the Ocean Optics data acquisition software. The reference sample was either 

the bare NPG substrate or modified by soaking in pure Milli Q water or buffer. The particular 

reference used will be indicated in the text describing the different absorbance spectra. 

 

3.2. Modifications of the SPR setup: Halogen lamp plus monochromator 

 

In order to excite surface plasmons on NPG with different pore sizes various laser wavelength 

(594, 632.8, 780, 820 and 1152 nm) were used. These lasers were located in different setups, 

so the cell mounted with the NPG samples had to be moved. It was never possible to 

illuminate exactly the same spot at the gold surface twice. Due to inhomogeneities of the gold 

film thickness the coupling efficiencies therefore altered slightly from measurement to 

measurement. In order to measure the same spot for all wavelengths the laser was replaced by 

a halogen lamp. The light of the halogen lamp was passed through a monochromator and was 

tuned to single wavelengths between 450 nm and 850 nm. Every 10 nm a SPR scan was 

recorded.  
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3.3 Instrumental – CV/EIS- setup 

 

Electrochemical studies were carried out using an Autolab PGSTAT 30 (Ecochemie) with 

internal frequency response analyzer (FRA). The working electrode was a gold film 

(nanoporous or evaporated) supported on a glass slide. The electrochemical teflon cell was 

tightly clamped to the gold slide with an o-ring, which defined an active surface area of 

0.77 cm2. A platinum coil counter electrode and a silver/silver chloride reference electrode 

(World Precision Instruments, DriRef-2) completed the cell (Figure 3.3.1). Impedance spectra 

were fit using the modeling program contained within the Ecochemie FRA software. The 

equivalent circuit was RS(RFCdl), where RS was the series resistance, RF the Faradaic 

resistance and Cdl the double layer capacitance.  

 

 

 

 

Figure 3.3.1: Sketch of the electrochemical flow cell, which can serve as a SPR flow cell as well. 
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3.4 Further instruments 
 
3.4.1 Plasma cleaner 
 
LaSFN9 (“Lanthanschwerflint“ Schott) or BK7 (“Borkron“ Fisher Scientific) glass slides for 

the preparation of nanoporous gold substrates were cleaned by using an Harrick Scientific 

Plasma Cleaner (Figure 3.4.1). The oxygen plasma reacted with organic impurities 

(hydrocarbons CHx) on the surface producing gaseous products (carbon dioxide and carbon 

monoxide) which were easily removed by the connected vacuum system. 

 

 

 

Figure 3.4.1: Harrick Scientific Plasma Cleaner (expanded model) 
 

 
3.4.2 Surface profiler 
 
For thickness measurements a computerized surface profiler (KLA-Tencor P-10) was used. 

The P-10 is a stylus profilometer, that makes use of a sharp stylus (~ 2 µm tip radius) to 

measure the surface topography precisely. The stylus is held at a fixed position, while the 

sample is scanned. The film thicknesses were measured across a step (2D line scan), where 

the nanoporous gold film was scratched away to the glass support by a plastic device. 

 

 
 

Figure 3.4.2: Computerized Surface Profiler: KLA-Tencor P-10 
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3.4.3 UV/VIS/NIR Spectrometer 

 
For transmission measurements of nanoporous gold substrates a Perkin Elmer Lamda 900 

UV/VIS/NIR spectrometer was used. Tungsten-halogen and deuterium lamps serve as 

sources. Although "Lambda 900" is a double-beam and double-monochromator UV/VIS/NIR 

spectrophotometer, only one beam was exploited to measure first a BK7 glass slide as the 

reference and then the nanoporous gold membranes all samples in the transmission mode. The 

"Lambda 900" system enables spectral recording from 186 up to 3300 nm. In these studies, a 

range of 350 – 800 nm was scanned in an interval of 3 nm. 

 

 
 

Figure 3.4.3: Perkin Elmer Lamda 900 UV/VIS/NIR spectrometer  
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3.5 Preparation of Evaporated Gold (EG) films 

 

New LaSFN9 (“Lanthanschwerflint“ Schott) or BK7 (“Borkron“ Fisher Scientific) glass 

slides were cleaned in 2 % Hellmanex® solution in an ultrasonic bath for 15 minutes. Then, 

the slides were rinsed with Milli Q water and ethanol. Afterwards, the slides were dried with 

nitrogen or argon. ~ 50 nm gold films were deposited by electrothermal evaporation 

(0.1 - 0.2 nms-1, 2×10-6mbar). The gold films were stored under argon atmosphere. 

 

3.6 Preparation of Template Stripped Gold (TSG) films7 

 

Silicon wafer (roughness according to AFM was < 0.5 nm) were cleaned with a solution 

consistent of 32 % ammonia (1 part), 35 % hydrogen peroxide (1 part), and Milli Q water 

(5 parts) at 75° C for 1 hour. Then, the slides were rinsed with Milli Q water and ethanol. 

Afterwards the slides were dried with nitrogen or argon. ~ 50 nm gold films were deposited 

by electrothermal evaporation (0.1 - 0.2 nms-1, 2 × 10-6 mbar) on the cleaned silicon wafers. 

The gold films on the silicon wafers were then glued with EPO-TEK 353ND-4, (n = 1.5922) 

to cleaned LaSFN9 or BK7 glass slides and heated at 150° C for 1 hour. The silicon wafer 

was split off the gold film just before use. 

 

3.7 Preparation of silane monolayers 

 

In the 1990s, the self-organisation and interfacial properties of long-chain alkyl-

trichlorosilanes and alkyltrimethoxysilanes were investigated. Their properties such as SAM 

thickness, degree of surface coverage and surface orientation were studied by X-ray 

photoelectron spectroscopy (XPS)8, atomic force microscopy (AFM), ellipsometry9 and 

contact angle measurements10. 

One nice application for 3-MPT layers for micro patterning through reverse self-

assembly was reported by Bandyopadhyay et.al, using the selective self-assembly attributes of 

the thio group binding to gold and the methoxy group binding to SiO2 substrates11. 

It is known that silane SAMs form disordered heterogeneous domains. 3-MPT layers 

on SiO2 have been shown to consist of dispersed domains 20 - 200 nm in diameter, a 

continuous and flat monolayer is not formed12. The concentration of 3-MPT, the amount of 

water present, the solvent properties, deposition temperature10 and incubation time are the 

controlling parameters in preparation of well-ordered 3-MPT SAMs.  
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For instance good self-assembly results from 5 × 10-3 M 3-MPT dissolved in benzene, 

but not above this concentration12. An increase of 3-MPT molecules on SiO2 reveals 

disordered orientation and irregularities. The influence of the 3-MPT concentration on the 

morphology of 3-MPT layers might be due to the competition between condensation (self-

polymerization), physisorption and chemisorption process (surface dehydration reaction) 

(Figure 3.7.1). 

 

 
 
Figure 3.7.1: Schematic representation of the silanization reaction mechanism13 
 
 

In the first step of a silanization process, hydrolysis, a trace amount of H2O or 

catalyzer H+, OH- is needed. In the second step, called condensation or self-polymerization, 

water is released. The second step is the critical step in the formation of 1D or 2D & 3D 

structures (oligomers). The physisorption of the 3-MPT molecules is followed again by water 

elimination termed chemisorption to link covalently to the glass substrate. The silanization 

solution together with the glass substrates was heated up to 80° C for two hours. After cooling 

down the samples back to RT and rinsing with Milli Q they were immediately used to attach 

the nanoporous gold, a delay could cause the mercapto group to oxidize. 
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3.8 Materials 

 

Materials used for investigations on nanoporous gold NPG [Chapter 4.6]: 

 

Biotin thiol- and oligo-ethylene-glycol thiol- (spacer thiol-) derivatives and streptavidin were 

kindly provided by Roche Diagnostics and were used as received. 11-Mercaptoundecan-1-ol 

as a spacer thiol and 11-mercapto-(8-biotinamido-4,7 dioxaoctyl-)-undecanoylamide carrying 

a biotin function were used to form a mixed monolayer. The thiols (0.5 mM in absolute 

ethanol 99 %)14 were mixed as follows: one part of biotinylated thiol to nine parts of spacer 

thiol in order to reduce the steric hindrance of the following streptavidin binding15. 

Biotinylated rabbit anti-goat antibody (biotinylated IgG, with 5.2 biotins per IgG) was 

purchased from Molecular Probes. HBS-EP buffer (degassed 10 mM HEPES buffer saline, 

pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05 % (v/v) surfactant P-20, Biacore, Uppsala, 

Sweden) was used for the preparation of the protein solutions. The working concentration for 

both streptavidin and biotinylated IgG were 500 nM. 

1 % (w/v) streptavidin modified polystyrene latex beads (from Roche Diagnostics; 

SA-LX; r = 56 nm; n = 1.56 at λ = 1152 nm) were diluted in phosphate buffer (PBS) to a 

0.01 % working solution. These beads were used for building up the multilayer architecture 

on NPG and flat gold substrates. 

 

Materials used for applications on nanoporous gold NPG [Chapter 4.7]: 

 

Nanoporous gold films were exposed to a solution of 1.2 mg/mL dithiobis (N-succinimidyl 

propionate) (DTSP, Fluka) and 0.42 mg/mL dithiodipropionic acid (DTP, Fluka) in DMSO 

for ~ 3 hours. After monolayer formation the samples were rinsed several times with pure 

DMSO and dried in a nitrogen stream. These samples were immersed in 0.5 M K2CO3 buffer 

(pH 9.8) containing 150 mM amino-nitrilotriacetic acid (ANTA, Fluka) for several hours 

(~ 18 hours). This time the samples were rinsed with Milli Q water. In the next step, the NTA 

terminated surface is incubated with 50 mM NiCl2 (Sigma) solution (pH 5.5) for 20 minutes. 

The samples were rinsed again with Milli Q water. Then the sample was mounted on the 

SPR/EIS setup and the flow cell was floated with PBS buffer.  

2 µM cytochrome c oxidase (CcO) dissolved in 0.1 % n-Dodecyl-β-D-maltoside 

(DDM; Merck) and 50 mM phosphate buffer was added to the Ni-NTA-modified gold 

surface. Excess CcO was removed by rinsing with phosphate buffer containing 0.1 % DDM. 
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Detergent- solubilization ensures the full functional integrity of CcO. Then, the lipid solution 

(0.01 mg/ml DiPhyPC/DDM buffer; 1,2-diphytanoyl-sn-glycero-3-phosphocholine 

(DiPhyPC), Avanti Polar Lipids; Alabaster AL) was added. Macroporous Bio-Beads 

(BioRad) were inserted carefully into the flow cell to remove the DDM. 

Finally, cytochrome c (Cyt c; from bovine heart; Sigma) was injected to prove the 

functionality of the CcO. 

 

Materials used in the centrin project [Chapter 5]: 

 

Gabi buffer (buffer for the transducin):  

•  20 mM BTP (1,3-Bis[tris-(hydroxymethyl)methylamino]propan),  

•  130 mM NaCl 

•  1 mM MgCl2 

•  2 mM DTT (Dithiothreitol) 

 

Buffer F (buffer for the centrin):  

•  20 mM Hepes (pH 8.0) 

•  100 mM NaCl 

•  2 mM EDTA 

•  11 mM CHAPS 

•  1 mM DTT in dd H2O 

•  Addition of 10 mM CaCl2 or 6 mM EGTA 
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4. Nanoporous gold (NPG) membrane 

 

4.1 Advantage of Porous Gold - new plasmonic material and the aim of the study 

 

Nanoporous metal materials composed of two- and three-dimensional porous structures are 

becoming increasingly important in analytical and materials chemistry. The development of 

many new synthesis methodologies have resulted in a variety of novel materials that can 

exhibit extraordinary properties1, 2, 3, 4, 5. 

Numerous possibilities are described to create porous structures such as: nano particle 

lithography6, templated growth7, 8, E-beam etching9, chemical etching10-13, electrochemical 

etching14, etc. All of these methods can be used to create structures with different pore sizes. 

 

Table 4.1.1: According to IUPAC nomenclature15, 16, microporous materials possess pore diameters of less 
than 2 nm and macroporous materials have pore diameters of greater than 50 nm; the mesoporous 
category belongs to the middle. 
 
Porous materials Pore diameter IUPAC notation 
Carbon, nitroprussides less than 2 nm microporous 
NPG, silica, aluminum;  
oxides of titanium, tin, zirconium 

2 - 50 nm mesoporous 

Glass, polymeric greater than 50 nm macroporous 
 
 
The types of pores are defined by IUPAC15, 16 (Table 4.1.1). Materials with pore sizes less 

than 50 nm are termed mesoporous17. The term “nanoporous” refers to pore diameters 

between 1 and 100 nm. 

Recently Erlebacher et al12 reported a novel way to fabricate freestanding nanoporous 

gold (NPG) membranes using a wet-chemical dealloying method [Chapter 4.2 fabrication]. 

Dealloying is the dissolution of less noble components from a metallic solid. This 

phenomenon has an ancient history starting with the Incans dealloying copper from Cu/Au 

alloys known as depletion gilding. Other synonyms of dealloying are demetalification, 

etching, selective corrosion, selective leaching, roughening transition or parting. 

In a binary AxB(1-x) alloy a porous structured metal A can be achieved by solving out 

the less noble component B18. There are many examples for this phenomenon: Au-Zn19, Au-

Ag10,12, Au-Cu11, Cu-Al (selective dissolution of Al due to a leaching reaction in 2 - 8 M 

NaOH20). 



Chapter 4. Nanoporous gold (NPG) membrane 

 35 

Porous materials can be manufactured by different methods such as annealing of an 

alloy21, immersing an alloy in a corrosive bath10,12, radiation-assisted selective dealloying11, or 

some combination of these treatments17. 

Nitric acid as a highly corrosive solution has been used in different concentrations for 

etching Ag/Au alloy in Europe since the twelfth or thirteenth century10. 

Here, a commercially available, mechanically thinned 12 carat white-gold leaf is 

etched in nitric acid. This simple method produces a three-dimensional bicontinuous 

mesoporous metal with a tuneable ligament size on the order of ~ 10 - 50 nm. The NPG 

leaves exhibit an enhanced surface area relative to flat gold, of the order of 10 m2 g-1 

depending on the etching times. The ultra-thin (~ 100 nm thick) NPG sheets have a geometric 

surface area of ~ 100 cm2, whereas the accessible surface area of such samples is of the order 

of 1000 cm2, and the material thus lends itself naturally to catalysis22 and sensing. 

There are many other benefits to using NPG substrates. For the fabrication of NPG one 

can utilize the ability of the thin gold leaf to float on the surface of aqueous solutions. The 

fabrication of the NPG substrates is described in detail in Chapter 4.2. The decorative gold 

leaf is also inexpensive, costing less than 1 cent per cm2, as the gold sheets are widely sold for 

non-scientific purposes, such as the designing of reliefs in churches. The gold leaf is produced 

by a highly parallelized cold working process which allows thousands of sheets to be formed 

simultaneously with very few defects appearing in the hammered leaves. 

The aim of this study was to further extend the application of NPG leaf into the (bio-) 

sensing field by investigating its intriguing ability to support both propagating and localized 

surface plasmon resonances (SPR) simultaneously [Chapter 4.6]. Generally, NPG can be 

considered as a rough, high curvature, yet continuous gold membrane. As a result, it shows 

features of both planar metal films that exhibit propagating-SPR (p-SPR) and nanostructured 

metal materials that exhibit localized-SPR (l-SPR), two kinds of optical excitations used in 

state-of-the-art optical sensing technologies. Within the context of the sensing application, 

one can notice that these NPG membranes are not only translucent, but also appear to be 

copper hued instead of being gold colored. In addition, color changes are discernable to the 

naked eye upon adsorption of thiolated monolayers. Figure 4.1.1 shows a photo of a 

nanoporous gold membrane with a thiol (3-mercaptopropionic acid) modification in the center 

position. The simple adsorption of such small molecules is enough to modify the absorbance 

spectrum to the naked eye, so that the modified material looks somewhat bluer. This effect 

motivated a study of the optical response of nanoporous gold leaf. 
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Figure 4.1.1: A photograph of a nanoporous gold membrane attached to a LaSFN9 glass slide with a thiol 
(3-mercaptopropionic acid) modification in the center position.  
 
 

Another advantage of NPG compared to a planar, dense substrate is the possibility to 

transport ions through the porous network. As a result the substrates were investigated as 

supports for lipid membranes, where the pore could act as ionic reservoirs underneath the bi-

layer [Chapter 4.7]. A summary of advantages and disadvantages of NPG can be found in the 

appendix [Chapter 8.1]. 
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4.2. Fabrication of Random Nanoporous Gold Substrates 

 

4.2.1 Cleaning of the glass slides 

 

New LaSFN9 (“Lanthanschwerflint“ Schott) or BK7 (“Borkron“ Fisher Scientific) glass 

slides were rinsed by Milli Q water, dried with nitrogen or argon and treated with oxygen 

plasma (Harrick Plasma); RF level: “High” for15 min. 

Conventional cleaning methods cannot completely remove contaminations from glass 

surfaces, which are mainly from solvents after cleaning. The glass substrates were plasma 

cleaned to remove even non-visible contaminations of hydrocarbons. An additional advantage 

is that plasma treatment activates the surface for increased bonding strength. Finally, plasma 

cleaning is much safer than cleaning and activating the glass slides with piranha solution (3:1 

mixture of sulfuric acid and 30 % hydrogen peroxide). 

 
4.2.2 Silanization of the glass slides 

 

The plasma activated glass slides were directly immersed into the silanization solution; a 

mixture of absolute ethanol, Milli Q water and 0.1 molar (3-mercaptopropyl) trimethoxy-

silane. [400 g EtOH/10 g water/10 g 3-MPT equivalent to 506 ml EtOH/10 ml water/9.46 ml 

3-MPT converted by the specific gravities; (3-MPT: molecular weight 196.3; C6H16O3SSi)]. 

The 3-MPT silane molecules formed self assembly monolayers (SAMs) on the 

substrates and acted like a glue providing adhesion between the silica surface and the 

(nanoporous) gold23. The principle of this strong adhesion is covalent bonding24. If 3-MPT is 

not used, the porous gold is poorly adherent to the glass substrate and is easily removed in 

water. 

 

4.2.3 Wet-chemical acid etching of the decorative gold leafs 

 

Commercially available decorative, genuine 12 carat white gold leafs containing Ag/Au alloy 

(1:1 ratio by weight; Monarch brand) were purchased from Sepp Leaf Products. Inc (New 

York). The chemical etching process, also called dealloying, was used to fabricate NPG.

 During the etching process of the decorative gold leaves the silver is dissolved while 

the gold atoms tend to cluster and form larger structures of gold-rich islands (Figure 4.2.1), 
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rather than to distribute themselves homogeneously over the whole surface, which would stop 

further etching12. 

 
Figure 4.2.1: Gold island nucleation and growth due to high concentration of gold adatoms by the surface 
dis- and reordering mechanism10. 
 
 
4.2.3.1 Execution of dealloying (experimental part): 

 

With the help of a moistened graphite roller the approx. 100 nm thick decorative gold leaf was 

taken out of the booklet (500 gold leaves) and spread on Milli Q water in order to be flattened 

(Figure 4.2.2.1). In the next step this leaf was transferred via the graphite roller to a 

concentrated (70 %) nitric acid (Fisher) bath, where the silver was dissolved within minutes at 

room temperature. During the etching of the gold leaf irregularly shaped structures were 

formed (“spongy” gold, Figure 4.2.2.2). Degradation of the light- and oxygen sensitive nitric 

acid was avoided by always using a fresh nitric acid solution and a teflon trough with teflon 

lid/cover. This teflon trough was designed in such a way that there was almost no air above 

the nitric acid level. The chemically etching procedure is described as follows: 

 

4 HNO3 + 3 Ag → 3 AgNO3 + NO + 2 H2O                 --- 4.1 

2 NO + O2  → 2 NO2↑                     --- 4.2 

 

For safety reasons the corrosive etching procedure was carried out in a fume hood. 

After 5 minutes immersion most of the silver was selectively dissolved as easily soluble silver 

nitrate. Leaving the gold leaf for longer time periods in the concentrated nitric acid caused the 

pore size to become larger due to the rearrangement of the gold atoms. The gold atoms are 

able to move ~ 1 nm during 1 sec25. This fast surface diffusion occurs only in electrolyte and 
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can be easily stopped by taking the leaf out of the nitric acid and transferring it to Milli Q 

water (Figure 4.2.2.3). It has been shown that the morphology achieved during the etching 

process remains stable in water for at least six month12. 

12 carat white gold 
decorative leaf (Ag/Au, 
1:1 ratio by weight)

H2O

Rolling up

H2O

3-MPT 
silanized

glassH2O

Fig. 4.2.2.1

Fig. 4.2.2.2

Fig. 4.2.2.3

Fig. 4.2.2.4

Fig. 4.2.2.5

HNO3

Si

SH

OCH3

OCH3

OCH3
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Figure 4.2.2: Fabrication of the NPG substrates 

 

After etching, the nitric acid solution was removed from the teflon trough and the 

NPG was washed several times by pumping in Milli Q water with a syringe. A silanized glass 

substrate [Chapter 4.2.2] was adjusted at an angle that allowed the thin nanoporous gold 

membrane to be attached onto it by further lowering of the water level (Figure 4.2.2.4). 

After air-drying of the samples the nanoporous gold membrane were permanently 

bound to the glass slide via the thiolate layer and remained stable12. Only a very small amount 

of gold remains (per area of the NPG, the gold content is only 0.12 mg cm-2 )22. 
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4.2.4 Electrochemical dealloying 

 

For some special applications of NPG it was thought to be useful to fabricate smaller pores 

than those resulting from 5 min chemical etching process, which is the minimum time needed 

to chemically dissolve the silver. Upon applying a potential difference during the dealloying 

process, the resulting silver nitrate is dissolved within seconds, so that the resultant pores 

were much smaller than the pores achieved by only chemical etching. 

The slightly varied experimental set-up is depictured in Figure 4.2.3. Crocodile clamps 

were fixed on the metal screws of two graphite rollers placed in the concentrated (70 %) nitric 

acid bath, so that an electric current can be passed between them. 

 

HNO3

 
Figure 4.2.3: Experimental setup for electrochemical dealloying method. 

 

In this case the gold leaf is not completely rolled off the graphite roller as it is done for 

the chemical etching process. If a potential is applied the corrosion of the decorative white 

gold leaf is so fast, that no teflon coverage is needed during the acid treatment. The color 

change due to the dealloying can be easily followed by the naked eye; the smaller the 

resulting pores the blacker the substrates appeared. 
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4.3 Scanning electron microscopy as a tool to visualize the NPG morphology 

 

Scanning electron microscopy (SEM) is capable of producing high resolution images of the 

nanoporous gold surface. All images were acquired using a LEO 1530 Gemini SEM operated 

at an acceleration voltage of 3 kV (low voltage SEM) (Figure 2.4.1)26 

 

 
 
Figure 4.3.1: Scanning electron micrographs of the NPG substrates for different etching times (chemical 
etching method). The shortest dealloying time was 5 minutes, the longest was 2 days. On the left side the 
up views (top views) are depicted; and on the right side the lateral views are shown.  
 

The SEM technique was employed in order to monitor the porous structure evolution 

of the NPG substrates for different etching times. Figure 4.3.1 presents a series of SEM 
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images starting from five minute etched NPG, and ending with the 2 days etched NPG. The 

longer the decorative white-gold leaf remained in the nitric acid bath [Chapter 4.2, 

fabrication] the larger were the resulting pores12. For the five minute etched NPG a small pore 

size was found. Continued immersion in the nitric acid bath resulted in bigger pore sizes. The 

biggest pore sizes were obtained in the 2 days dealloyed sample. 

The scanning electron microscope images revealed also that NPG slides possessed 

large crack-free areas that were important for further investigations of the substrates. 

The two volt electrochemically dealloyed NPG possessed the smallest pores, followed 

by the 1.2 volt electrochemically etched NPG (Figure 4.3.2). 

 

2 volt

1.2 volt

100 nm

2 volt

1.2 volt

100 nm

HNO3

 

 
Figure 4.3.2: SEM images of the electrochemically dealloyed NPG substrates applying a potential of 2 volt 
and 1.2 volt, respectively, are shown. On the left side one can see the up views (top views); and on the right 
side the lateral views and the electrochemical setup are depicted.  
 

As the average pore size was determined by SEM images (plan view), the thickness of 

the NPG was extracted directly from the lateral view SEM (cross section). The thicknesses 

were around 100 nm. A surface profiler (Figure 3.4.2) confirmed thicknesses of ~ 100 nm – 

150 nm for the NPG substrates.  

The side views also showed that bigger structures were formed during the gold adatom 

rearrangement and thus with longer etching times the original three dimensional nanoporous 

structure became a two dimensional structure. 
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4.4 Two dimensional autocorrelation to determine the typical structure size of the NPG 

for different etching times 

 

Autocorrelation as a mathematical tool is frequently used in signal processing for analysing 

functions or series of values. An autocorrelation function can be applied to find typical length 

scales in specimen27-29. Scanning electron micrographs consist of picture elements (abbr.: 

pixels) and contain information about the typical length scale of nanoporous gold substrates 

expressed in gray scales. The pixels are the smallest addressable imaging elements (discrete 

values). In the x-and y- variation of the gray scales the microstructure of NPG is represented. 

The gray scales correspond to numbers, the high numbers represent bright area (rough gold 

“knobs”) and the lower numbers dark areas (void/pore fraction). 

The pore size difference shown in the SEM images of the samples of different etching 

times is obvious even to the naked eye and could be estimated. But the two dimensional 

autocorrelation is a well defined algorithm that was used to obtain a more accurate number for 

the typical length scale of each NPG sample. 

The 2D autocorrelation procedure is illustrated in detail for the 2 volt etched NPG 

sample below. The gray scale of the SEM image reflects the morphology of the porous 

substrate, even if the numbers associated with the intensity do not necessarily refer to the 

absolute height of the gold and depth of the pores respectively. Some inhomogeneities, like 

the grain boundaries, crinkles or cracks in the gold membrane can be averaged out choosing a 

large enough area. 

Figure 4.4.1: Scanning electron microscope image of the two volt electrochemically dealloyed nanoporous 
gold substrate, loaded in Igor Pro. 
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Figure 4.4.2: This three D image plot represents the autocorrelation function ACF (∆∆∆∆x, ∆∆∆∆y). The 
parameters described on the right hand side are selected for this autocorrelation process. The colors give 
information about the surface of the 2 volt etched sample.  

 

Running a 2D autocorrelation procedure generated a 3D image plot (Figure 4.4.2), 

which could be converted into a 2D diagram, where the correlated data points are plotted 

versus ∆r (Figure 4.4.3 + 4.4.4). In order to obtain the value for the typical length scale, it was 

first necessary to average over all of the data points. The straight line displays the arithmetic 

mean of all the data points in one x interval corresponding to the step size.  
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Figure 4.4.3: The 2D diagram shows the data points resulting from the ACF, which are plotted versus ∆∆∆∆r. 
The solid line is the arithmetic mean derived from one x interval. (2 volt etched NPG sample for instance). 

 

Reading off the maximum and minimum y - value of the mean curve leads to the y 

middle value (y max – y min = y middle). In this study it was defined that the corresponding x - value 

to this y middle value identifies the number for the half typical length scale; and the full width at 

half maximum equals the typical length scale. 
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Figure 4.4.4: Schematic presentation to find typical length scales with ACF method. 

 

The two dimensional autocorrelation procedure described above has been carried out for all 

the different NPG samples created by electrochemical and chemical dealloying. Scanning 

electron micrographs were recorded for each NPG sample at several different spots on the 

surface. 

Due to the irregularities of the NPG substrates a distribution of values for the typical 

length scale was derived. The error was calculated by the standard deviation σ: 

 

2

1

1
( )

N

i
i

X X
N

σ
=

= −∑                                    --- 4.3 

 

The resulting error is shown as error bars together with the values of the typical length 

scale derived from the autocorrelation method (cf. Figure 4.4.5).  
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Figure 4.4.5: The values of the typical length scale resulting from the 2D correlation of the NPG samples 
created by a chemically etching procedure are plotted versus the dealloying time. The error bars indicate 
the standard deviation. 

 

The correlation procedure confirmed the increase in pore size that could be seen from the 

SEM images by the naked eye. The electrochemically etched NPG substrates had the smallest 

structures, such as length scales between 6.72 – 7.9 nm for the 2 volt sample and 9.2 – 9.4 nm 

for the 1.2 volt sample (not shown in Figure 4.4.5). It was not possible to produce length 

scales less than ~ 12 nm by the chemical dealloying method; this was due to the fact that at 

least a five minute residence time in the nitric acid was needed to dissolve the silver, which 

leads to a morphology with typical length scales around 12 to 14 nm. 

There is nearly no discrimination in structure development between the 5 min etched 

sample and the 2 hour etched sample. However by leaving the decorative gold leaf in the 

acidic bath for 5 hours, 24 hours or 48 hours it was possible to monitor the structure 

development up to 28 nm as a typical value to describe the structure elements. 

It can be concluded that analysing the SEM pictures with the 2D autocorrelation tool is 

useful for finding typical length scales of the NPG substrates created with different etching 

times. It should be remembered that these numbers are not absolute values that can 

completely characterize the pore sizes, because the SEM images did not accurately reflect the 

fractal morphology (randomly distributed pores) of the NPG and the NPG also exhibited a lot 

of inhomogeneities (structural irregularities). 
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4.5 Cyclic voltammetry and electrical impedance spectroscopy as methods to determine 

the surface area of NPG substrates 

 
The surface area of the NPG was characterized by cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS)30. In cyclic voltammetry an oxide layer 

(Au2O3; AuxOy) was formed at potentials positive of 1 V during anodic scans in 1 M sulfuric 

acid (H2SO4). As the applied potential was reversed, the oxide layer was stripped and a sharp 

peak was seen in the cathodic scan of the voltammogram5. The area under the reduction peak 

is proportional to the charge needed to reduce the gold oxide monolayer and is related to the 

surface area of the gold film31. In order to obtain the enhancement (roughness) factor, the area 

under the cathodic peak of the different porous samples was compared to the area obtained for 

evaporated flat gold films. As an example for the oxidative and reductive scans, the complete 

cyclic voltammogram of a 15 minutes etched NPG sample is shown in Figure 4.5.1. The 

current in amperes is plotted versus the potential in volts with respect to the silver/silver 

chloride reference electrode. The area under the reduction curve for integration is marked in 

orange. 
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Figure 4.5.1: The cyclic voltammogram for a 15 minutes etched NPG sample. Gold oxides were formed at 
positive potentials and reduced at less positive potentials. The sweep rate in 1M H2SO4 amounted 100 
mVs-1.  



Chapter 4. Nanoporous gold (NPG) membrane 

 48 

In Figure 4.5.2 the cyclic voltammograms of NPG substrates (chemically etched for 

5 minutes, 15 minutes, and 1 hour) and evaporated dense gold films are depicted to 

demonstrate the large surface enhancement of the porous substrates. The reduction peaks were 

integrated by using the software Origin (version 7.5). 
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Figure 4.5.2: The cyclic voltammograms of the 5 minutes, 15 minutes, 1 hour dealloyed NPG (colored 
lines) and the EG film (black line). A sweep rate of 100 mV/sec was applied. 
 

As a second method electrochemical impedance spectroscopy was used to obtain 

values for the double layer capacitance of the NPG films32 [Chapter 2.3]. Provided that the 

distance of closest approach of the counter ions is sufficiently small, the double layer 

capacitance will be proportional to the surface area of the gold films. The impedance spectra 

reported were taken at 0.3 V versus silver/silver chloride in 1 M sulfuric acid; at this potential 

no Faradaic peaks were seen in the cyclic voltammetry. 

Figure 4.5.3 shows then the variation in the surface area of the different NPG 

substrates with respect to chemical dealloying time, measured by both CV and EIS, whereas 

Figure 4.5.4 shows that area enhancement after electrochemical dealloying. In all cases it is 

assumed that the EG films had a relative surface area of 1 and the numbers shown refer to the 

surface increase relative to these films. All NPG films show enhanced surface areas relative to 

EG.  
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Figure 4.5.3: CV and EIS measurements for the chemically dealloyed NPG samples compared to EG. The 
NPG samples etched for 5 min, 15 min, 60 min and 2 days are shown.  
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Figure 4.5.4: CV and EIS results of electrochemically etched NPG (1.2 volt and 2 volt) in comparison to 
EG. The first data point displays an evaporated gold film with a dealloying time of zero. 

 

The 2 volt etched NPG samples exhibit the smallest pores (SEM) and show an 11 fold 

increase in the double layer capacitance relative to EG. The 1.2 volt electrochemically etched 
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NPG substrates show 5 - 7 times larger surface areas than the EG substrate. The 5 min 

chemically etched NPG films have surface areas 6 times larger than the EG. The largest 

surface enhancement (~ 10 fold increase; 9.6 (EIS) and 8.5 (CV)) was seen for the 15 minute 

chemically etched sample. Chemical dealloying times longer than 15 minutes led to a 

decrease in the surface area enhancement. This decrease was thought to correlate to the 

formation of bigger structures during the gold adatom rearrangement (Figure 4.5.6). Large 

structures possess a much smaller surface to volume ratio than little structures. The 

development of large structures was seen in the lateral view of the SEM images [Chapter 4.3]. 

The surface enhancement measured by CV agrees roughly with that measured by EIS; 

in addition the same trends are seen by both methods with respect to increasing chemical 

dealloying time. The EIS revealed slightly higher values for the surface enhancement in 

comparison to the values measured by CV. A reason could be that gold oxides were not 

formed all over the NPG surface. 

Since mechanically thinned 12 carat white-gold leaf was the starting material for the 

fabrication of nanoporous gold membranes, a few inhomogeneities in the thickness of the 

NPG substrates are expected. By using a surface profiler [Chapter 3.4.2] the thicknesses were 

pre-estimated. Here, a more precise method was needed to calculate the thicknesses and 

possibly correct the factors of surface enhancement obtained by cyclic voltammetry and 

electrical impedance spectroscopy, respectively. 

For that reason, an UV/VIS/NIR spectrometer [Chapter 3.4.3] was used as a second 

method to determine the thickness of the nanoporous gold membranes by measuring the 

absorbance in transmission mode. The UV/VIS spectra of the differently etched NPG 

substrates are shown in Figure 4.5.5. Three to four different positions per substrate were 

measured to get an average of the respective sample. As in the UV region no plasmonic 

features were seen, the absorbance was read off at λ = 400 nm in all cases. These values were 

used to correct the electrochemical data. 
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Figure 4.5.5: UV/VIS spectra of the differently etched NPG substrates: 2 volt and 1.2 volt 
electrochemically etched; 5 min, 15 min, 60 min and 2 days chemically etched. BK7 glass was the 
reference. 
 

The UV/VIS spectra indeed revealed inhomogeneities of the samples, not only 

between the differently dealloyed samples, but also within the sample. Especially, the 2 days 

chemically etched sample was measured at four different positions and showed huge 

differences in the absorbance. 
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In the following paragraph, the mathematic correlation between surface area 

(determined by CV and EIS) and volume (thickness measured by UV/VIS) is described 

briefly. A spherical model of NPG is chosen for simplification. Here, a sketch of gold spheres 

illustrates the structural changes caused by the dealloying procedure (Figure 4.5.6). 

 

 

dealloying r
r

 

 

Figure 4.5.6: The formation of bigger gold structures during the dealloying procedure leads to larger radii 
and smaller surface areas, but constant volumes. 
 
 
 
The surface area (A) of a sphere of radius (r) is 

 

2A = 4 r                  π⋅ ⋅                                            --- 4.4 

 

and the volume (V) of this sphere is 

 

34
V = r

3
π⋅ ⋅                      --- 4.5 

 

Subsequently, the ratio of the surface area and the volume is 

 

A 3

V r
=                                  --- 4.6 

 

Therefore, the decrease in surface area during the dealloying procedure was thought to 

correlate to the formation of bigger structures due to the gold adatom rearrangement 

(Figures 4.5.6 and 4.2.1). 
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Figure 4.5.7: Coherency between surface area enhancement measured and 1/typical length scale. Results 
of CV (unfilled circles) and EIS (filled squares) are plotted. The chemically etched NPG samples are 
shown in black and the electrochemically etched ones in gray. The dashed lines are a guide for the eye of 
the beholder. Left: uncorrected CV and EIS data. Right: thickness corrected data sets. 
 

In Figure 4.5.7 the experimental data obtained by CV and EIS were summarized. The 

data of chemically and electrochemically etched NPG substrates were plotted against the 

inverse typical length scales that were determined by autocorrelation function. The data point 

at x = 0/ y = 1 represents the evaporated dense gold film. 

Generally, the surface area (A) of a sphere is inversely proportional to its radius (r), 

(A ∝  r-1). Therefore, the gold-rich islands of the NPG simplified as spheres were expected to 

show a similar correlation of the surface area to the determined typical length scales. The 

dotted lines through 0.5 guide the eye of the beholder to follow the trend of surface 

enhancement compared to the flat case. Since NPG originally was a white gold leaf, 

composed of 1:1 silver and gold, the non etched surface is thought to possess half of the 

surface area of an evaporated pure gold film. 

The graph on the left side shows the uncorrected CV and EIS data, while the graph on 

the right side contains the thickness corrected data sets. The right plot identifies a different 

behavior of the chemically and the electrochemically etched samples (two dotted lines). The 

chemically etched NPG substrates came closer to the predicted model, while the 

electrochemically etched NPG membranes further diverged. Several reasons can be 

considered why the electrochemically dealloyed samples behaved differently to the other 

samples. One reason could be an error in the UV/VIS absorbance. For example, loss of light 

due to more scattering compared to the chemically etched samples leads experimentally to an 

overestimation of the absorbance, thus falsify the thickness measurement enormously. 
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4.6 Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance 

in Nanoporous Gold Membranes (p-SPR and l-SPR)1 

The use of nanoporous materials for the optical sensing of adsorbates has obvious advantages 

– in addition to the potential for greater sensitivity, the different length scales associated with 

a variety of optical phenomena allow for a greater variety of adsorption characteristics to be 

examined. Here, it is shown that ultra-thin (~ 100 nm) nanoporous gold (NPG) membranes 

possess features of both planar metal films that exhibit propagating SPR (p-SPR) excitations 

and nanofeatured metals that exhibit localized SPR (l-SPR) excitations. This is the first report 

of such multifunctionality in a plasmonic material. Illustrative examples of using this material 

to probe bio-recognition reactions and to probe the structure evolution of different 

layer-by-layer deposition systems are given. The results are consistent with the very different 

lengths of the tail of the evanescent field decays associated with each of these plasmon 

excitation modes (Figure 4.6.1). 

Generally, surface plasmon resonance refers to the generation and propagation of 

plasmons at metal/dielectric interfaces [Chapter 2.1]. The propagating and localized plasmon 

resonances that were studied here were both excited through interaction with a stimulating 

radiation, but the geometries of the excitations were different. In p-SPR, plasmon waves were 

generated at metal/dielectric interfaces in the tested multilayer systems (See Fig. 4.6.5 and 

4.6.6; 4.6.13 and 4.6.15) under conditions of total internal reflection of the probe light 

source33. When examining such a multilayer (for instance, in the geometry of a thin film), at 

just the right incident angle/probe radiation wavelength, there was resonant absorption. The 

evanescent tails of p-SPR waves are long, in the range of 200 – 300 nm, much longer than the 

thickness of the applied multilayer films, and thus represented a long-range average response 

of the multilayer. Analytically, p-SPR scans of reflectivity versus angle are analyzed in a 

straightforward way using the Fresnel equations. The typical experiment employs the 

so-called Kretschmann configuration34 where a probe laser reflects off the backside of the 

multilayer through a high index glass prism (LaSFN9). In contrast, localized SPR excitations 

occur around high (nanoscale) radii of curvature metal/dielectric features; consequently, the 

evanescent tail of l-SPR excitations are typically of a similar length scale as the nano-feature. 

The theoretical underpinning of l-SPR, developed by Mie et al, can be used to model the 

l-SPR response of nanoparticles with spherical symmetry35 and more recently, a 

                                                 
1 Chapter 4.6 is based on the following publication: Yu, F.; Ahl, S.; Caminade, A. M.; Majoral, J. P; Knoll, W.; 
Erlebacher, J., Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous 
gold membranes. Analytical Chemistry 2006, 78, (20), 7346-7350. 
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computational methodology to calculate the response of arbitrary-shaped metal/dielectric 

interfaces has become available36. Experimentally, localized SPR has been examined in two 

and three-dimensionally roughened gold films made by a variety of methods37, 38, but not in 

nanoporous gold. The primary mode of examination of l-SPR excitations is to look at an 

absorption or reflection spectrum as a function of wavelength at a fixed angle of incidence. 

Anomalous absorption peaks, usually in the visible range, that can be correlated to size effects 

within the target material are ascribed to localized surface plasmons. 

The trick to make a material exhibiting good l-SPR is to make it microscopically 

extremely rough in order that the statistical number of field magnification points is large 

enough to generate a macroscopic response. Usually, then, l-SPR excitations are events within 

the bulk of a porous metal/dielectric composite, occurring at sharp curvatures and small 

structures, where the geometry is just right. For these conditions, there is a huge resonance 

leading to greatly enhanced absorption, usually in the optical spectrum39-42. In random porous 

media with a statistically relevant number of these points exhibiting l-SPR excitations, the 

overall material response will be a characteristic optical absorption spectrum. If there is a 

chemical adsorption event that changes the dielectric constant within the porous media, then 

the absorption spectrum will also change. 

 

Evanscent tail of 
p-SPR

Evanscent tail of l-SPR
 

Figure 4.6.1: A sketch of NPG substrate coated with a dielectric demonstrates the different evanescent 
decay length of l-SPR and p-SPR field. 
 

The SPR setup in the Kretschmann configuration [Chapter 3.1] was used to 

characterize the p-SPR response by monitoring the reflectivity of the nanoporous gold as a 

function of incident angle with irradiation at different wavelengths (594 nm, 632.8 nm, 

780 nm, 820 nm and 1152 nm, respectively). A series of angularly resolved reflectivity scans 
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for NPG samples (Fig. 4.6.2(A)) clearly shows a strong wavelength dependence of the p-SPR 

signal. The longer the laser wavelength, the sharper is the SPR dip and the smaller the dip 

angle. For example, using the λ = 632.8 nm laser, the p-SPR response was heavily damped by 

the rough NPG and showed a broad minimum with a FWHM of ~ 23 degrees in the 

reflectivity curve, in contrast to a much sharper SPR dip obtained from an evaporated gold 

sample using the same laser wavelength (FWHM ~ 2 degrees) (data not shown). With the λ = 

1152 nm laser, however, the FWHM of SPR dip was improved to ~ 1.1 degrees; this may be 

ascribed to a more efficient SPR propagation at the metal-dielectric interface, which to some 

extent compensates for the inevitable impingement/scattering loss of  light due to roughness at 

the NPG/glass interphase. Referring to Raether’s theory33, the dispersion-relation (between 

angular frequency ω and wave vector k) [Chapter 2.1.1] curve at the metal/dielectric interface 

approaches asymptotically to that of the free photon in air. At a longer laser wavelength, these 

two dispersion curves become closer and smaller k-vector amplification factor by the 

high-refractive-index prism is needed to fulfill the SPR excitation condition. Therefore, for 

longer laser wavelengths, the resonance coupling happens at a smaller incident angle where 

the in-plane component of the k-vector is smaller. 
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Figure 4.6.2: (A) The excitation of p-SPR on 100 nm thick NPG using lasers of different wavelengths. The 
measurements were performed in air using a right-angle BK7 glass prism. 
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Figure 4.6.2: (B) p-SPR curves of (1) 100 nm NPG, p-polarized laser, λλλλ=1152 nm; (2) 100 nm NPG, 
s-polarized laser, λλλλ=1152 nm; (3) 200 nm NPG, p-polarized laser, λλλλ=1152 nm. The measurements were 
performed in air using a right-angle LaSFN9 (Schott glass) glass prism. 
 

The argument that p-SPR excitation is obtained with NPG was supported by the 

reflectivity results in Figure 4.6.2 B, which show that the SPR minimum was absent if the 

sample was irradiated with an s-polarized λ = 1152 nm laser. Additionally, a 200 nm NPG 

layer only exhibited very limited SPR coupling efficiency using a p-polarized λ = 1152 nm 

laser. 

One may expect that the porous network and microscopic roughness of a nanoporous 

gold membrane will have a significant effect on its p-SPR behavior. A few studies33, 43 have 

examined p-SPR on rough metal films, and these studies may be considered being the 

foundations of the work reported here. Generally, the effect of roughness is to strongly 

perturb the reflectivity band by damping propagating surface plasmon modes (SPs). Such 

perturbations may be analytically described by considering the forward scattering and 

directional backward scattering of non-radiative SPs due to roughness. The general result is 

that resonant absorption peaks in the angular reflectivity scan tends to be broadened in 

comparison to volume-equivalent films with sharp interfaces.  
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Dense, non-porous, gold films thicker than 47 nm exhibit very limited plasmon 

coupling efficiency as evidenced by the Winspall simulations depicted in Figure 4.6.3. A 

100 nm dense gold substrate, for instance, reveals a similar degree of surface plasmon 

coupling to a 200 nm thick NPG substrate (see Figure 4.6.2 (B) above). 

23.0 23.5 24.0 24.5 25.0 25.5 26.0
0

20

40

60

80

100

 (1)

  (2)

R
ef

le
ct

iv
ity

 /%

Angle/ degrees

23 24 25 26
81.0

81.5

82.0

82.5

83.0

83.5

84.0
R

ef
le

ct
iv

ity
 /%

Angle/ degrees

 (2)

 
Figure 4.6.3: Winspall (version 2.20) simulations are shown for surface plasmon excitation of 47 nm (1) 
and 100 nm (2) evaporated flat gold films, respectively. The excitation source was an infrared laser with 
wavelength of 1152 nm. The measurements are simulated in air. The inset is an enlargement of the 
reflectivity curve of the 100 nm thick film. The parameters used for the Winspall simulations can be found 
in Table 4.6.1. 
 
 
 
Table 4.6.1: Parameters used in Winspall (version 2.20) simulations to model the surface plasmon events 
on pure, dense gold surface. The resulting reflectivity curves are depictured in an angular dependency in 
Figure 3. P- polarized light and a right-angle LaSFN 9 prism were presumed. 
 
Layer Thickness/[Å] εεεε` εεεε`` Thickness/[Å] εεεε` εεεε`` 
1 LaSFN9 0 3.31487 0 0 3.31487 0 
2 gold 470 -61.2413 4.0716 1000 -61.2413 4.0716 
3 air 0 1.00053 0 0 1.00053 0 
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A systematic study of the appearance of p-SPR on NPG substrates was completed 

using a white source (halogen) with a monochromator to select wavelengths at ∆λ = 10 nm 

intervals in the range of 450 nm to 850 nm. The plasmon matching condition was reached at 

certain excitation wavelengths and incident angles (Figure 4.6.4). The longer the wavelength, 

the sharper the surface plasmon resonance response and the smaller the resonance angle as 

described above. Measuring the same spot on the NPG substrate showed that the coupling 

efficiency also increased with increasing excitation wavelength. The different coupling 

efficiencies seen in Figure 4.6.2 A were thought to be due to NPG sample inhomogeneities, 

such as diverse thicknesses or differences in the local gold morphology. 

With increasing pore size it becomes harder to match the plasmon coupling condition. 

The 2 days dealloyed NPG has a 2D porous gold layer, where the pores reach trough the 

entire film. At the same time the 2 day etched sample absorbs ~ 2 times more light than the 

2 volt etched NPG membrane. 

In a series of experiments the influence of different sized Au colloids on the surface 

plasmon resonance response of a colloidal Au modified Au film was studied by L.A. Lyon et 

al44. Plasmon angle, minimum reflectance and curve breadth were manipulated by the 

deposition of 30 – 59 nm diameter colloidal Au on the surface of a 47 nm thick Au layer. 

With larger particle size the p-SPR curve became shallower and broader due to damping 

(imaginary component of colloid Au) and localized coupling. A similar effect was observed 

using NPG substrates that were etched for longer times and contained larger gold islands. 
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Figure 4.6.4: SPR excitation on 100 nm thick NPG substrates of different pore sizes; left column: SEM 
images of the NPG substrates under investigation; middle column: 2D plot of the different excitation 
wavelengths vs. incident angle. The colors indicate the intensity of the reflected light, while the crosses 
mark the intensity minima. Additionally the dispersion relation for a flat/dense gold film is shown plotted 
as a solid line. The measurements were performed in air using a right-angle BK7 glass prism; right 
column: view of the data in a plot of reflectivity vs. angle of incidence. 
 

The relation between the energy of a system and its corresponding momentum, here 

1/λ vs. Theta, is known as the dispersion relation. The crosses in Figure 4.6.4 mark the 

measured intensity minima for the NPG. Instead of following the dispersion relation of 

evaporated gold, the NPG show an “S shaped” feature. For larger pore sizes it becomes more 

and more linear. These minima are thought to be due to localized plasmon resonances, which 

occur at a fixed excitation wavelength. 
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4.6.1 Multilayer architecture built on NPG and flat gold substrates 

 

Firstly, some simple experiments that typify the p- and l-SPR responses of NPG (15 minute 

etched) will be described. The NPG with a relatively short dealloying time and consequently 

small pores was chosen in order to have optimal conditions for p-SPR. Even though the 

electrochemically etched NPG substrates provide smaller pores and a better coupling, they are 

more brittle and less easy to work with. The applicability of using p-SPR in NPG for detecting 

bio-recognition events is demonstrated in Figure 4.6.5 (I) by the extensively-studied 

interfacial biotin-streptavidin binding system. NPG was first functionalized by a biotinylated 

self-assembled monolayer (SAM) containing about 10 % biotin functional groups45. Then, a 

streptavidin monolayer was formed via the strong biotin-streptavidin interactions (strongest 

non covalent interaction known: Ka ~ 1015 M-1)46. Finally, a biotinylated antibody (IgG) was 

bound to the streptavidin layer.  
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Figure 4.6.5: (I) p-SPR (λλλλ=1152 nm) measurements of streptavidin/biotinylated IgG bindings on biotin 
SAM modified (A) 100 nm thick NPG membrane and (B) 50 nm evaporated gold film surface, 
respectively. For both figures, curve (1) is for SAM modified sample, curve (2) for after streptavidin 
binding, and curve (3) for after biotinylated IgG binding (published47, Yu et al. 2006). 
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In the resulting SPR reflectivity curves, significant shifts of the resonance angle were 

monitored upon the formation of each biological layer. The same experiment was performed 

on an evaporated gold film (~ 50 nm in thickness) for comparison. The average pore size of 

the 15 min etched NPG sample (as determined by top view and cross section SEM) and the 

molecular sizes of streptavidin and IgG are comparable (~ 15 nm compared to ~ 5 nm and 

~ 12 nm, respectively); in fact, the sizes are such that only a limited amount of streptavidin 

(60 kDa; streptavidin dimension48 ~ 4.5 × 4.5 × 5.2 nm3) should penetrate into the NPG, and it 

is unlikely that any IgG (150 kDa) penetrates into the pores at all, instead binding should 

occur only on the top surface of the NPG sample. 

The optical fits confirm this hypothesis: assuming that to first approximation the NPG 

(with and without adsorbates) can be modeled as a smooth metal/dielectric film, Fresnel fits 

were applied in order to correlate the SPR angular shifts to the optical thickness of the 

biological layers (refractive indices are all assumed to be 1.45). On the NPG samples (cf. Fig. 

4.6.5 (I)(A)), the thickness of the streptavidin and IgG layers were found to be 70 ± 4.1 Å and 

40 ± 1.4 Å, whereas on flat gold samples (cf. Fig. 4.6.5 (I)(B)) (Table 4.6.2 and 4.6.3), the 

thickness of streptavidin and IgG became 34.5 ± 0.7 Å and 41 ± 1.7 Å. The apparent thicker 

streptavidin layer on NPG compared to the flat sample suggests some binding into the 

nanopores of the NPG whereas the similar IgG layer thicknesses in the two cases suggest 

binding onto the NPG surface exterior to the pores only. It remains questionable whether the 

Fresnel equation is perfectly suitable to model the streptavidin binding if this binding might 

happen inside the NPG layer; i.e., there might be an interpenetration between the virtual 

“streptavidin layer” and the “NPG layer”. In order to answer this question, rigorous 

calibration experiments need to be performed using independent instruments, such as FT-IR 

or QCM. 

In order to visualize the surface coverage with scanning electron microscopy an 

additional layer of polystyrene latex beads doped with streptavidin (SA-LX) [Chapter 3.8, 

Materials] was deposited on top of the architecture (cf. Figure 4.6.5 (II)). First NPG and flat 

gold samples were investigated by SPR in air; then buffer was introduced into the flow cell 

and SPR scans were taken after each layer was deposited (Figure 4.6.6). 
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• Polystyrene latex bead doped 
with streptavidin (SA-Lx, r≈56 nm,
RI≈1.56@1152 nm)

• Biotinylated IgG
(IgG-bio) 150 kDa

• Streptavidin (SA) 60 kDa 
• Biotin/spacer thiol SAM (SAM)
• Nanoporous gold 100 nm (NPG100)

glass substrate

1µµµµm

(A)

(B)

1µµµµm
 

 

Figure 4.6.5: (II) Multi-layer formation on NPG – a model system: A schematic representation on which 
the measurements are based is shown above. One scanning electron micrograph (A) shows the porous 
structure covered by the latex beads from the perpendicular view. The second SEM image (B) views the 
polystyrene latex bead coverage for the evaporated gold film. 



Chapter 4. Nanoporous gold (NPG) membrane 

 64 

In buffer a huge minimum shift was observed following the polystyrene latex bead 

binding. Subsequent to drying the samples, attenuated total reflection scans were recorded 

once more; and finally, SEM images of the samples were made. So measurements in air were 

only done for the bare gold surface, the thiolated surface and after the polystyrene latex bead 

(SA-LX) binding at the end of the experiment (Figure 4.6.7). 
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Figure 4.6.6: p-SPR (λλλλ=1152 nm) measurements in buffer condition monitoring of streptavidin/ 
biotinylated IgG bindings on biotin SAM modified 100 nm thick NPG membrane and 50 nm evaporated 
gold film surface, respectively [= Figure 4]. Additionally polystyrene latex bead were deposited on top of 
the supramolecular architecture. For both substrates, curve (1) is for SAM modified sample, curve (2) for 
after streptavidin binding, curve (3) for after biotinylated IgG binding; and finally curve (4) represents 
the latex bead binding. 
 

 

Due to the partial coverage of the latex beads and the large latex particle size -112 nm 

in diameter - a heterogeneous film was created. For the partially polystyrene latex bead (SA-

LX) uncovered area the attenuated total reflection minimum in air appeared at an angle of 

27,9°; for the SA-LX dense covered area at an angle of 32.8°. The value for the combined 

thickness increase after streptavidin and biotinylated IgG binding (10.2 nm sample 1; 11.6 nm 

sample 2, Table 4.6.3) resulted from the Fresnel fit of the first minimum after the latex bead 

binding was measured in air (Figure 4.6.7).  
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Figure 4.6.7: p-SPR (λλλλ=1152 nm) measurements on NPG sample in air. Scan curve (1) resulted for the 
bare gold surface, curve (2) the thiolated surface and after the polystyrene latex bead binding curve (3) is 
derived. The solid lines stem from the Fresnel simulation. Remarkably after latex bead binding, the curve 
featured two minima in the attenuated total reflection scan. The first minimum was characteristic for the 
streptavidin/biotinylated IgG binding, while the second minimum was indicating the optical thickness of 
the polystyrene latex beads. The two minima were fitted separately by applying Fresnel equation. Curve 
(4) recorded another spot of the NPG with densely packed SA-LX area. 
 
 

Fresnel curve fitting. For each SPR scan a simulation was run with the software 

Winspall (version 2.20) based on the Fresnel equations to calculate the optical thickness of 

each layer deposited. The refractive indices of the materials are summarized in Table 4.6.2. 

 

 

Table 4.6.2: Refractive indices at wavelength of 1152 nm IR laser and a temperature of 25,00°C. 
 
material n κκκκ εεεε´ εεεε“ 
LaSFN 9 prism49 1.82068 0 3.31487566 0 
gold50 0.26 7.83 -61.2413 4.0716 
nano porous gold 0.3186 3.5 -12.42 2.23 
mixed thiol 1.5 0 2.25 0 
streptavidin 1.45 0 2.1025 0 
IgG 1.45 0 2.1025 0 
latex beads 1.56 0 2.4336 0 
air51 1.000263 0 1.000526 0 
water/buffer52 1.32359 0 1.75189 0 
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In order to obtain the SA-LX volume ratio values based on the SPR scans and the 

Fresnel calculations, the polystyrene latex bead thickness was fixed at 112.0 nm for each 

sample and the refractive index was the variable parameter (naverage).Thus, the volume 

fraction of polystyrene beads (x) was calculated with the following equation, where n was the 

refractive index: 

 

naverage = nwater·(1-x)+nps·x                    --- 4.7 

 

In order to obtain the volume ratio values based on the SEM images, the total volume 

of the polystyrene latex beads doped with streptavidin (SA-LX) was calculated by equation 

4.8, where N was the number of the counted beads. The total film thickness was given by 

equation 4.9, where A was the area of the SEM image times pixel properties. The radius of 

the beads was about 56 nm. Finally, the volume ratio x was obtained by equation 4.10. 

 

Vtotal spheres= (4/3)πr3·N                                         --- 4.8 

 

Vtotal film= A·2r                            --- 4.9 

 

Vspheres fraction= Vtotal spheres/ Vtotal film                           --- 4.10 

 

 

 
 
Figure 4.6.8 (A): Sketch of the polystyrene latex beads deposited on the NPG substrate to calculate the 
total volume of the spheres and the total volume of a homogeneous film. 



Chapter 4. Nanoporous gold (NPG) membrane 

 67 

345 beads

m 2µm1µµµµm 2µµµµm

345 beads

 
Figure 4.6.8 (B): Two authentic scanning electron micrographs at different magnifications show the 
surface coverage of the latex beads on 15 min etched NPG. On the left side it is demonstrated how the 
beads were counted to calculate the total volume (Vtotal) of the beads. Inside the white frame 345 beads 
were counted, labelled with randomly chosen colors to avoid counting them twice. 
 

The polystyrene latex beads coverage was found to be 27 ± 1 % for the NPG and the 

evaporated gold film (50 nm) calculated using SPR and SEM. Table 4.6.3 summarizes the 

thicknesses of all the different layers in the multilayer system for two NPG substrates 

compared to a flat/dense gold sample. 

 

Table 4.6.3: p-SPR on NPG (2 substrates shown) and flat gold was demonstrated by a multilayer 
assembling system involving 112 nm streptavidin doped latex beads. The p-SPR signals were converted 
via Fresnel fits into the corresponding thicknesses [nm]. The optical thickness found for the latex beads 
correlated well with the bead density calculated from scanning electron microscope (SEM) images. 
 

 NPG1 

in air 

NPG1 in 

solution 

SEM 

(NPG1) 

NPG2 

in air 

NPG2 in 

solution 

SEM 

(NPG2) 

Flat Au in 

solution 

SEM 

(flat) 

SAM (Å) 17.4 - - 17 - - 13 - 

SA (Å)  73 -  67 - 34 - 

IgG-bio 

(Å) 
102 41 - 116 39 - 40 - 

SA-LX 

volume 

ratio (%) 

27 28 29 20 18 21 26.8 26.9 

 

The sequential build-up of this functional supramolecular architecture showed that the 

diffusion of molecules to the NPG interior was hindered if the pore size was comparable to 

the molecular dimensions; this “molecular sieve” effect was used to for realizing of size-

selective adsorption. 
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4.6.2 Environmental refractive index changes to NPG (glycerol test) 

 

In order to examine the sensitivity of l-SPR on NPG to environmental refractive index 

changes, the refractive index (RI) of the dielectric volume was adjusted within the pores of 

the NPG by filling them with aqueous solutions of glycerol, and then examine the l-SPR 

response via changes in the visible light absorption spectrum. Representative reflection 

absorption spectra are shown in Figure 4.6.9, collected using the fiber-optic spectrometer. It is 

seen that, even with 5 % glycerol, corresponding only to an ~ 0.5 % change in RI, an 

absorbance peak centered at λ = 590 - 600 nm was detected. As the glycerol concentration/ 

medium RI was increased, this peak became more pronounced. Overall, a linear increase in 

the peak absorbance value and a slight red-shift of the peak wavelength was seen (Figure 

4.6.10). This observation agrees with those of Dahlin42 et al., who examined l-SPR in gold 

films decorated with nanometric holes made by colloidal lithography. 
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Figure 4.6.9: Evolution of the relative reflection absorbance spectrum of a 100 nm thick, 15 min etched 
NPG membrane (the reference sample is: NPG in pure water) immersed in solutions of increasing glycerol 
concentration: (1) pure water, RI=1.333, (2) 5 % RI=1.339, (3) 15 % RI=1.352, (4) 35 % RI=1.378, (5) 
60 % RI=1.413; the RI of the glycerol solutions are calculated by the mass fraction of glycerol in water. 
The inset shows a linear relationship between the glycerol concentration and the intensity of absorbance 
peak at λλλλ = 600 nm (published47, Yu et al. 2006). 
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Y
 

X 

 
Figure 4.6.10: Explanation of the absorbance results. The four solid lines represent Gaussian curves that 
were simply shifted to higher x-values. The three dotted lines resulted if the Gaussian curves were 
subtracted from the first Gaussian curve, respectively.  
 
The increase in intensity with only a slight red shift for all the absorbance curves measured in 

reflection mode can be explained mathematically. Therefore, a plot was generated by the 

software Igor Pro (version 5.02) that represents Gaussian curves (Figure 4.6.10). These curves 

were simply shifted to higher x-values. Then, the curves were subtracted from the first 

Gaussian curve, respectively. The dotted lines resultant of the subtraction, simulate the 

measured absorbance spectra. But the left parts of the dotted lines were not seen in the 

measured absorbance spectra due to the noise of the lamp spectrum. The NPG samples soaked 

in water/aqueous buffer solution served as reference and comply with the yellow solid line. 

Further refractive index studies on different samples were carried out using the same 

optical setup. The refractive index change was experimentally compared for a series of the 

NPG substrates possessing different pore sizes to an evaporated flat gold film. After injecting 

various glycerol concentrations the flat/dense gold showed only a limited absorbance at small 

excitation wavelength (~ 400 – 550 nm) near the noise range of the white lamp serving as the 

excitation source (Figure 4.6.11 (A)). This absorbance was also seen even more pronounced 

in all the other samples of the experimental series (Figure 4.6.11 (B - D)), which still lack a 

satisfying explanation. Additionally, for all the NPG samples flushed with a 5 % glycerol 

solution that permeates into the pores an effective change in the absorbance spectrum (~ 530 –

 800 nm) was derived. Exposure to higher glycerol concentrations caused an obvious increase 

in the peak intensity and a slight red shift of the peak position (λpeak shift), which is additional 

evidence for the excitation of l-SPR. 
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Figure 4.6.11: Exposure of different gold substrates to increasing glycerol concentrations: The response of 
a flat evaporated gold film (A), a 10 minutes dealloyed NPG (B), an one hour dealloyed NPG (C) and a 
24 hours dealloyed NPG membrane (D), respectively was monitored by the optical fiber spectrometer. 
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The peak wavelength was slightly higher for NPG 24h (λ = 630 nm) than for NPG 

10 min (λ = 597 nm) due to the larger nano-sized features in NPG 24 h. With pore size 

increase of the NPG membranes a general red shift of the peak position (λpeak shift) (Figure 

4.6.12) in the absorbance spectra for all the glycerol concentrations was observed. 
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Figure 4.6.12: Evolution of the relative reflection absorbance spectrum of different samples exposed to a 
60 % glycerol concentration: (1) flat/dense gold film, (2) 10 min and (3) 24 hours dealloyed NPG 
membrane soaked in 60 % glycerol solution. 
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4.6.3 Layer by layer (LbL) deposition of charged dendrimers 

 

Simultaneous p-SPR and l-SPR was used to monitor the stepwise variation of the dielectric 

environment within the pores of NPG (15 min etched) created by using a layer-by-layer (LbL) 

system based on charged dendrimers (cationic [G4(NH+Et2Cl-)96] and anionic [G4(CH-COO-

Na+)96])
53 (see Figure 4.6.13 and 4.6.14). This LbL system was particularly interesting for the 

NPG experiments because it has been shown54 that the layer build-up is highly uniform and 

regular with excellent penetration leading to good coverage even of the inner walls of deep 

nanopores. Here, NPG leafs bonded to LaSFN9 slides were first functionalized by 

3-mercaptopropionic acid (MPA thiol) to generate a negatively charged surface on which the 

first cationic layer adsorbs. The consecutive repetition of anionic/cationic dendrimer 

deposition should lead to the stepwise formation of a multilayer coating inside the pores of 

NPG until the pores get clogged; at this point, the multilayer should continue growing only 

outside the NPG membrane extending the overall thickness of the film. 
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Figure 4.6.13: Molecular structures of the charged dendrimers used in this study: (Up) G4(CH-COO-

Na+)96; (Down) G4(NH+Et2Cl-)96. These N,N disubstituted hydrazine phosphorus - containing dendrimers 
of the 4th generation comprise 96 functional groups at the surface53, 55, 56. The molecular masses are 
M=33.702g*mol-1 for G4+ and M=34.819g*mol-1 for G4-. 
 

Optically, the multilayer dendrimer evolution was accompanied by a very regular shift 

of the resonance angle of the p-SPR excitation, as shown in Figure 4.6.15 (A). Fresnel’s 

equations were again used to fit the p-SPR curves. After establishing the first p-SPR fit, the 

geometrical thickness of dendrimer layers was determined from the shift of the resonance 

angle by assuming a refractive index of 1.5 for the dendrimer. The thickness increment per 

deposited double layer was calculated to be 2.2 nm, which is unexpectedly identical to the 

value of 2.2 ± 0.3 nm obtained by a previous study of the same dendrimer multilayer system 

deposited on flat, dense, gold samples54. Taking into account the enhanced surface area of 

NPG (shown by the streptavidin binding result), this result indicates a slightly smaller 

dendrimer coverage per layer on the NPG surface, which may suggest that electrostatically 

driven binding can be biased inside nanopores.  
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Figure 4.6.14: Picture of the dendrimer molecule G4(NH+Et2Cl-)96 showing all the 96 functional groups. 
 

On the other hand, it was observed that the SPR minimum reflectivity for NPG 

slightly increased (Figure 4.6.15 (A)) as the multilayer grew in thickness whereas it remained 

constant for flat/dense gold. This observation suggests the penetration of the initial dendrimer 

layers into the NPG in such a way that the effective dielectric constants of the NPG/dendrimer 

membrane was altered, becoming lossier to the incident light. As mentioned before, this might 

cause a deviation in the Fresnel modeling and needs further consideration. 
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Figure 4.6.15: Simultaneous monitoring of p-SPR and l-SPR on NPG (15 min dealloyed) during the 
formation of dendrimer multilayers: (A) SPR raw data; (B) original absorbance spectra taken at the same 
time as the SPR scans. (C) Kinetic measurement recorded at λλλλ = 570 nm and λλλλ = 700 nm. The SPR 
minimum reflectivity increased during the dendrimer deposition and constantly shifted to higher angles, 
while the absorbance spectra showed a peak intensity increase at λλλλ = 600 nm.  
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Figure 4.6.15 (D): Simultaneous monitoring of p-SPR and l-SPR on NPG (15 min dealloyed) during the 
formation of dendrimer multilayers. The solid lines represent the trend of the signal as the layers grow. 
The first layer is a self-assembled monolayer (see text for details). The reference sample for l-SPR 
measurement is the SAM modified NPG in pure water (published47, Yu et al. 2006). 
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The SEM micrographs (Figure 4.6.16) of dendrimer – deposited NPG support the p-

SPR results by showing that the dendrimer layers grow by simply following the profile of the 

NPG surface. Even after the deposition of 16 dendrimer layers (nominally filling the pores), 

the nanosized features of NPG are still pronounced. In this case, the thickness variation 

between dendrimer layers was expected to be regular, if not constant, with the result that if the 

pores do clog, the p-SPR signal will not change in any dramatic way. 

 

 

 

Figure 4.6.16: SEM images of a nanoporous gold membrane - 15 min etched (A) after (and (B) before LbL 
deposition of 8 double layers of dendrimers. White arrows in (A) indicate pores on the geometric exterior 
surface that were obviously clogged by dendrimer (published47, Yu et al. 2006). 
 

Although the p-SPR minimum shifted linearly with the increasing number of 

dendrimer layers, the l-SPR signal weakened and eventually saturated after ~ 8 double layers. 

By this number of layers, dendrimers are no longer depositing in the pores, but are clogging 

them so that further layers are only deposited on top of the geometric surface of the NPG 
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membrane. This is consistent with the scanning electron microscope (SEM) observations 

shown in Figure 4.6.16 where one sees that at ~ 8 double layers deposited, the pores directly 

opening to the interface are filled with dendrimers whereas those indirectly connected pores 

appear empty. Saturation at ~ 8 double layers (~ 17 nm) is in excellent agreement with the 

geometric constraint associated with a ~ 15 nm pore size. 

The smooth saturation of the l-SPR excitation is understandable by noting that the 

evanescent electric field of the l-SPR mode decays quickly moving away from the metal-

dielectric interface and an l-SPR response (here, the increasing of absorbance peak intensity at 

λ = 600 nm (Figure 15B)) should be only observed when dendrimer layers are being 

deposited within this field. Thus, if the pores are clogged and the surface multilayer is thicker 

than evanescent electric field, the l-SPR response should remain unchanged, as observed. 

A similar distance dependency has been reported by Van Duyne´s group40, 41, who 

monitored the l-SPR spectrum evolution while depositing multiple self-assembled monolayers 

or Al2O3 monolayers on triangular silver nanoparticles (NPs). By solving Maxwell’s 

equations for light interacting with an arbitrary shape/composition NP using a finite element 

calculation, they showed that the 1/e decay length ld of the electrical field near the NP is 

around 5 – 15 nm (1 – 3 % of the light’s wavelength, depending on NP’s shape, size and 

composition). This contrasts dramatically with the 200 – 300 nm decay length (20 – 25 % of 

the light’s wavelength) of the evanescent field of a p-SPR excitation, and indicates a much 

sharper distance-dependence of l-SPR sensors. Due to the lack of a ‘regular’ nanostructure in 

NPG, we can not perform a similar calculation and can only provide qualitative descriptions. 

An exponential fit of the l-SPR curve yields a decay length ld =12.3 nm, which falls into the 

theoretical range. But the l-SPR field distribution is extremely heterogeneous and usually is 

the strongest at sharp turns or corners. Therefore, clogging of the nanopores may reduce the 

sensitivity of l-SPR to the dendrimer layer, hastening the saturation of the l-SPR signal, and 

leading to an underestimation of the value of ld.  
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4.6.4 Layer by layer (LbL) deposition of avidin and antiavidin   

 

A different LbL assembly system57 was employed here to alter the interfacial refractive index 

in a fast pace. The use of biotinylated anti-avidin IgG and avidin (Figure 4.6.17; Chapter 3.8) 

formed a mutual recognition system and greatly enhanced the thickness of each double layer 

(~ 9.3 nm with the assumed refractive index of 1.45). This fast-growing LbL system has been 

studied extensively in our group by Liu58 and Christensen59. 

 

avidin, Mw 66kDa

biotinylated antiavidin antibody
Mw 160kDa

avidin, Mw 66kDa

Avidin and biotinylated antibody LbL system

 
Figure 4.6.17: A schematic representation of the layer-by-layer assembly of multilayer films composed of 
avidin and biotinylated antiavidin antibody on NPG substrate. 
 
 

A gold (nanoporous or evaporated) film was first functionalized by a biotinylated 

SAM containing ~ 10 % functional biotin groups. Then avidin/ biotinylated anti-avidin IgG 

solution (both 1 µM in PBS buffer with 0.01 % (w/t) Tween-20R) were alternated in the flow 

cell, leading to the stepwise formation of an avidin/ anti-avidin multilayer. The use of 

biotinylated anti-avidin IgG significantly enhances the recognition probability to avidin and 

accelerates the layer thickness increase. 

Phosphate buffered saline (PBS) with 0.01 % (w/t) Tween-20R was used as solvent for 

all the sample solutions. For each layer-forming step the binding was monitored kinetically 

and terminated by a PBS buffer rinse when equilibrium was reached. 

In comparison to the LBL system, which involved oppositely charged dendrimers with 

molecular weight of ~ 35 kDa, the current system had a molecular size that can cause 

dramatically different binding pattern on NPG substrates with different pore sizes. As shown 

in the SEM pictures (cf. Figure 4.6.18), the protein layers on NPG 5 min had a distinctive 
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divide line to the NPG film, meaning the proteins were mostly binding onto the NPG. 

Whereas in the NPG 24 h image, it was hard to tell where the protein layer started which 

clearly indicated a “binding-into” mechanism. 

100 nm

100 nm

Protein layers

NPG

(A)

(B)

 
Figure 4.6.18: SEM images of a nanoporous gold membrane - 5 min etched NPG (A) after LbL deposition 
of 18 double layers of avidin/biotinylated anti-avidin. The proteins were binding mostly onto the NPG. 
24 h etched NPG (B) after deposition of 11 double layers of avidin/biotinylated anti-avidin, which were 
binding into the NPG pores.  
 

The SEM observation was confirmed by the l-SPR results. For clarity, only the 

deposition of up to 3.5 double layers is shown (cf. Figure 4.6.19). On the EG surface, there 

was a growing peak between 430 – 600 nm. This turned out to be a typical reflection 

interference phenomenon caused by the deposited dielectric layer, as manifested by the later 

periodical oscillation in reflectivity as the protein layer grew. Similar interference patterns 

were observed on NPG 5 min (Figure 4.6.20). The seemingly larger modulation in the NPG 
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curves was simply due to the fact that the reflectivity Iref for bare NPG was smaller than for 

bare EG. In NPG 24 h curves, not only the similar interference pattern was seen, but also a 

distinctive peak at 625 nm, exactly matching its peak induced by glycerol irrigation 

(4.6.11 D). In contrast, the curves of NPG 5 min sample were free of any peak at the 

characteristic wavelength – 590 nm. This observation was in agreement with the SEM image 

that only proteins binding into the nano-pores could modify the dielectric environment and 

thus altered the l-SPR signal. The fast saturation of the l-SPR signal was also in agreement 

with the fact that the l-SPR had very short evanescent decay (~ 10 - 20 nm). 
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Figure 4.6.19: Evolution of the relative reflection absorbance spectra of different samples after 3.5 protein 
double layer depositing process: (A) flat/dense gold film (EG evaporated gold), (B) 5 min and (C) 24 hours 
dealloyed NPG membrane. The gold (evaporated or nanoporous) film was first functionalized by a 
biotinylated self assembled monolayer containing ~ 10 % functional biotin groups. Then, an avidin layer 
was formed followed by a biotinylated antiavidin antibody layer. Subsequently 7 layers were deposited, 
alternately avidin and antibody. 
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Figure 4.6.20: Evolution of the relative reflection absorbance spectra of 5 min etched NPG sample after 18 
protein double layer depositing process. The NPG was first functionalized by a biotinylated self assembled 
monolayer containing ~10 % functional biotin groups. Then, an avidin layer was formed followed by a 
biotinylated antiavidin antibody layer. Subsequently 36 layers were deposited, alternately avidin and 
antibody. In the kinetic measurement, the change in absorbance was recorded for three selected 
wavelength (570 nm, 700 nm and 800nm). For clarity, the complete double layer depositing process is 
shown separately in four graphs for all the measured wavelength: (1) first 3.5 double layer (2) next 5.5 
double layer (3) following 6 double layer (4) 3 double layer deposition. 
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The interference pattern observed for the 5 min etched NPG might be described as the 

interference of the light waves that were reflected off the protein covered surface and the gold 

surface, respectively (Figure 4.6.21): 

interference

NPG

d protein

 
Figure 4.6.21: Scheme of the interference of light due to the protein layers. 

The difference in the optical route of the light can be calculated as: 

 

2x d n∆ = ⋅ ⋅                    --- 4.11 

 

while the optical interference was expressed in: 

 

0 1 0
0

2
sin

x
I I I

π ϕ
λ

 ∆= + + 
 

                 --- 4.12 

 

An assumption was made, 

 

Bd d m∆ =                         --- 4.13 

 

where m was the number of bilayers and dB was the thickness of a single bilayer. The 

refractive index of n = 1.45 for the proteins is based on an assumption as well. Finally, 

equation 4.14 resulted: 

 

0 1 0
0

2
sin 2 BI I I n d m

π ϕ
λ

 
= + ⋅ ⋅ ⋅ + 

 
                       --- 4.14 

 

The periodical oscillation in the measured reflectivity was fitted by using the following sine 

function: 

 

( ) ( )sinf x a b m c m eζ= + ⋅ + ⋅ ⋅ −                          --- 4.15 
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Some variables were chosen, so that the sine function was able to follow the slight 

drift of the measurement and a proper fit result was achieved. Variable a represents the 

vertical offset; variable b stands for variations in the gradient; variable c is altering the 

amplitude and variable e corresponds to the phase shift. Again m is the number of bilayers. 

The fit provided a result for the term 
0

4
B

n
d

πζ
λ

=  for each wavelength. Figure 4.6.22 shows 

the fit results.  
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Figure 4.6.22: A sine function was employed to fit the periodical oscillations in the measured reflectivity 
curves after the protein layer deposition on the 5 min etched NPG (confer Figure 4.6.20). The fits were 
generated by using the software Igor Pro (version 5.02). Reflectivity curves of (A) 570 nm, (B) 700 nm and 
(C) 800 nm were fitted.  



Chapter 4. Nanoporous gold (NPG) membrane 

 83 

The correlation of the obtained thicknesses for a protein bilayer and the corresponding 

excitation wavelengths is shown in plot 4.6.23. A linear fit trough zero was conducted with 

the software Origin (version 7.5).  

The error (∆f) of the ratio 0

Bd

λ
 in the plot was calculated as follows: 

2

1
4f nπ ζ

ζ
∆ = ⋅ ⋅∆                      --- 4.16 
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Figure 4.6.23: Correlation of the calculated thicknesses versus the three excitation wavelengths. The 
refractive index of the proteins was assumed to be n = 1.45. 
 
The calculated values for the thicknesses of a bilayer (dB) are summarized in Table 4.6.4 as 

well. The error in the thickness of a protein bilayer (∆dB) was computed with the following 

equation: 

0

4Bd
n

λ ζ
π

∆ = ∆                    --- 4.17 

 
Table 4.6.4: The thickness of the bilayer (dB) was calculated for all three excitation wavelengths. 

 

λλλλ dB 

570 nm 16.7 ± 0.1 nm 

700 nm 17.2 ± 0.4 nm 

800 nm 14.4 ± 0.9 nm 

 
 



Chapter 4. Nanoporous gold (NPG) membrane 

 84 

It was possible to determine the thickness of the protein bilayer (dB) composed of 

avidin and biotinylated antiavidin antibody (IgG) by the analysis of the interference pattern. 

But the resulting thicknesses of 14.4 - 16.7 nm (Table 4.6.4) are much higher than the 

expected 9.3 nm, that were found for a flat dense substrate measured by Jing Liu58. The size 

of avidin is 5.6 × 5.0 × 4.0 nm60 and the size of the biotinylated antiavidin antibody (IgG) is 

around 15 × 15 × 3 nm61, so that the maximum thickness of a densely packed bilayer could be 

~ 20 nm (Figure 4.6.24). The biotinylated antiavidin antibody (IgG) is able to bind several 

avidins, so that on the rough NPG surface seemingly more material was immobilized than on 

an evaporated gold film.  

 
 

15 nm

3 nm
IgG

 
 

Figure 4.6.24: The Y-shaped IgG antibody will approximately seize the volume of a lense-shaped spheroid 
with a diameter of 15 nm and a thickness of 3 nm61. On the right side: Profiles of the IgG packings on a 
surface illustrating the density ratio of 5 to 1 between molecules densest packed in upright position 
(above) and in lying position (below). A packing density, that is experimentally achieved, is presumably in 
between the two extremes. 
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4.7 Application of NPG 

The Protein-Tethered Lipid Bilayer established on a Nanoporous Gold Substrate 

 

No living cell can exist without a membrane. The membrane consists of a lipid bilayer with 

proteins incorporated. Membrane proteins play an important role in the metabolism of each 

cell. The study of membrane proteins has long been a challenge because of the lack of 

experimentally addressable biomimetic systems for the incorporation of membrane proteins. 

Various model systems of the biological membrane have been investigated, e.g., black 

lipid membranes (BLMs). They provide easy access to both sides of the membrane but lack 

mechanical stability62. To solve the problem of instability, solid-supported lipid membranes 

were developed63. Different types of supported membranes were introduced with the inner 

leaflet of the bilayer either covalently or electrostatically bound to a solid substrate. To 

provide a biologically relevant model system of the lipid bilayer, it was separated from the 

substrate by ultrathin water layers (~ 10 Å) or a soft hydrated polymer film (polymer 

cushion)64. The so called tethered lipid bilayer (tBLM) strategy developed during the last 

decade was an important step towards mimicking the natural plasma membrane. This strategy 

offers a flexible and stable lipid bilayer. Tethering molecules of various structures can be 

applied. A novel concept developed recently65-67
 used the membrane protein itself to act as a 

tethering molecule. 

The submembrane space provided by these model systems is relatively small, e.g. the 

tBLM system presented reservoirs of 20 - 60 Å length68, dependent on the hydrophilic part of 

the tethering molecules. Attempts have been made to increase the submembrane space and 

consequently the ionic reservoir to offer enough space to allow for the incorporation of 

membrane proteins with larger hydrophilic domains. This can be achieved by a different 

design of spacer molecules (branched thiol, longer chains69) or by the use of a porous solid 

support70-72. 

Here, the concept of the protein tethered lipid bilayer membrane (ptBLM) for the 

oriented immobilization of cytochrome c oxidase on a solid support was transferred to a 

nanoporous support. The aim was to use the volume inside the pores of the nanoporous gold 

(NPG) and the submembrane space together to mimic the inside (cytosol) of a living cell. The 

arrangement on the NPG allows for the simultaneous application of surface plasmon 

resonance (SPR) and electrochemical impedance spectroscopy (EIS) measurements. The SPR 

and EIS measurements obtained from a five minute dealloyed NPG substrate were directly 

compared to the data taken from an ultraflat template stripped gold (TSG) surface73. 
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The membrane work was conducted with the NPG substrate featuring the smallest 

pore size reached by chemically dealloying method (NPG 5 min etched). By scanning 

electron microscopy (SEM) and autocorrelation function (ACF) a pore size distribution 

around 12 nm was found for the five minute etched NPG [cf. Chapter 4.3 and 4.4]. This pore 

size is still too large compared to the size of the protein (6 × 9 nm cross section). NPG with 

the smallest pores (~ 7 - 8 nm) were obtained by electrochemically dealloying at 2 volts, 

followed by 1.2 volt NPG (~ 9 nm) [cf. Chapter 4.3, 4.4]. But these samples were too brittle 

to be used for SPR or EIS measurements in solution. 

Figure 4.7.1 illustrates the modification of the 5 min etched nanoporous gold substrate. 

To modify the NPG substrate, it is first provided with a self assembled monolayer of 

dithiodipropionic acid (DTP) (A) and dithiobis (N-succinimidyl propionate) (DTSP) (B) 

(mole fraction 0.6; viz 60 % DTSP). DTP was chosen to dilute the DTSP molecules. The 

disulfides DTP and DTSP anchored to the gold via thiolate linkages to form thiopropionic 

acid and thio (N-succinimidyl propionate) (TP and TSP). TSP was thereafter coupled with 

compound (C), an amino–nitrilo-triacetic acid (ANTA), forming a NTA functionalized 

surface (E). Ni2+ addition enabled chelating of NTA with two histidines of the histidine-tag of 

the protein (F). In that way, recombinantly expressed his-tagged cytochrome c oxidase (from 

Rhodobacter sphaeroides with the His-tag fused to the C-terminus of subunit I) was anchored 

on the nitrilo-triacetic acid (NTA) modified NPG surface (Figure 4.7.2). For further 

experimental details65 see Chapter 3.8, Materials. 
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Figure 4.7.1: Illustration of the coupling reaction leading to the chelating surface architecture65, 66 
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Figure 4.7.2: Schematic representation of the surface-bound cytochrome c oxidase via the affinity of the 
His-tag to the Ni-NTA modified nanoporous gold surface. 
 

In order to preserve the conformation of the cytochrome c oxidase, a 1 % solution of 

detergent n-Dodecyl-β-D-maltoside (DDM) was used for the immobilization. Finally, the 

substitution of the detergent by a lipid (1,2-diphytanoyl-sn-glycero-3-phosphocholine 

(DiPhyPC)) formed a membrane around the protein (Figure 4.7.3). 

 

 
Figure 4.7.3: Schematic illustration of the in-situ dialysis: substitution of the detergent by the lipid. 
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4.7.1 Characterization of the layer formation by SPR and EIS 

 

Surface plasmon resonance spectroscopy scans were recorded in PBS/DDM buffer before and 

after cytochrome c oxidase binding; and after exchange of the detergent DDM by the lipid. 

Therefore, a p-polarized IR laser (λ = 1152 nm) was used to excite a plasmon on NPG 

dealloyed for 5 minutes.  

The binding of the His-tagged cytochrome c oxidase in its detergent solubilized form 

to the NTA modified NPG surface resulted in a significant shift of the minimum of the SPR 

curve (~ 0.35°) (Figure 4.7.4). Assuming a refractive index of ~ 1.45 (ε` ~ 2.1) for the 

cytochrome c oxidase, the shift in the minimum correlated to a thickness of ~ 6 nm (winspall 

simulation, version 2.20). The reconstitution of the lipid bilayer (1,2-diphytanoyl-sn-glycero-

3-phosphocholine (DiPhyPC)) resulted in a slight minimum shift (~ 0.047°) corresponding to 

a thickness of ~ 0.5 nm (ε` ~ 2.1). 
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Figure 4.7.4: Surface plasmon resonance spectroscopy scans on NPG (dealloyed for 5 minutes). The inset 
zooms in the minimum angles. 

 
Electrochemical impedance spectroscopy was measured simultaneously with surface 

plasmon spectroscopy. Data were fitted to the equivalent circuit Rs(RmCm)CPE, where Rs was 

the solution resistance; Rm the resistance of the lipid membrane; Cm the capacitance of the 

lipid membrane. A constant phase element (CPE) was chosen to model the complexity of the 

submembrane space (Figure 4.7.5).  
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Figure 4.7.5: Illustration of the electrochemical impedance spectroscopy measurements observing the lipid 
bilayer reconstitution. (A) Nyquist admittance plots and (B) Bode impedance diagrams of the TSG 
(upper) and the NPG (lower) samples measured after CcO binding and after membrane reconstitution, 
respectively. (C) Equivalent circuit to model the system. (D) Illustration of the system. Table 4.7.1 
summarizes the fitting results using the described electrical circuit. 

 

 

Table 4.7.1: Summary of the fit results obtained for TSG and NPG, respectively. 

Sample Capacitance 
CCccOO  
[µF/ cm2] 

Capacitance 
reconstituted 
[µF/ cm2] 

Resistance 
CCccOO  
[M ΩΩΩΩ*cm2] 

Resistance 
reconstituted 
[M ΩΩΩΩ*cm2] 

Template 
stripped Au 
~ 50 nm (TSG) 

13.1 ± 3.9 7.3 ± 0.5 0.3 ± 0.08 12 ± 7 

5 min etched 
NPG 

792 ± 82 335 ± 9 0.021 ± 0.005 0.042 ± 0.0015 
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Substitution of the detergent by the lipid led to an effective decrease of the capacitance 

(Cm) and an increase of the resistance (Rm). Parameter obtained of the fit procedure are given 

in Table 4.7.1 for both substrates, 5 min etched NPG and TSG, respectively. 

The capacitance of the protein layer was very large for the NPG 792 ± 82 [µF/cm2] 

compared to the TSG 13.1 ± 3.9 [µF/cm2], which is, however, not only accounted for by the 

high surface area. The capacitance of a homogeneous dielectric layer can be calculated using 

the equation for the parallel plate condenser: 

0

A
C

d
ε ε= ⋅ ⋅                          --- 4.18 

where  •   C is the capacitance, 

•   ε is the permittivity of the insulator used (or ε0 for vacuum), 

•   A is the surface area of the electrode, 

•   d is the thickness of a homogeneous layer. 

 

Accordingly, a 5 nm thick protein74 layer of εprotein = 30 formed on TSG is expected to yield 

C = 6 µF/cm2. The higher value of C = 13 µF/cm2 found experimentally is explained in terms 

of water75 (εwater = 81) and detergent molecules interspersed between the proteins. If they are 

replaced by lipids (εlipid = 2) the capacitance decreased approximately approaching the 

theoretical value of the homogeneous protein layer C = 6 µF/cm2. Other effects are expected 

from the surface-confinement geometry of the NPG-CcO structure. The pores are large as 

compared to the protein molecules. Hence the cytochrome c oxidase will bind not only to the 

outer surface of the NPG but also to surfaces inside the pores (Fig. 4.7.5 D). Consequently a 

closed layer of CcO molecules cannot be formed on the NPG, contrary to TSG were the 

roughness is small (Root mean square ≤ 1nm)73 compared to the size of the CcO. 

For this extremely heterogeneous CcO layer on NPG, a larger amount of water 

molecules and detergent should be present between the proteins. Water75 with an εwater = 81 

increased the capacitance according to equation 4.18. Even if some of the detergent and water 

molecules were replaced by lipids during dialysis, as evidenced by the decrease of 

capacitance, the reconstitution will never result in a closed bilayer spanning the pores, due to 

the marked inhomogeneity of the protein layer. A correlation of the electrical properties 

between nanoporous gold and template stripped gold is therefore hard to achieve. 

However, first indications of a membrane can be seen from the decrease of the 

capacitance and the slight increase of resistance of 0.042 ± 0.0015 [MΩ·cm2] which is small 

compared to the TSG 12 ± 7 [MΩ·cm2]. 
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4.7.2 Activation of the Cytochrome C Oxidase 

 

In order to probe the functionality of the cytochrome c oxidase, cytochrome c was injected 

after the reconstitution of the membrane. By adding reduced cytochrome c (Cyt c; from 

bovine heart; Sigma) as the substrate of the cytochrome c oxidase a decrease in the resistance 

(Rm) was monitored due to the turnover of the enzyme. With increasing Cyt c concentration 

the resistance (Rm) decreased continuously until saturation was reached (Figure 4.7.6). The 

mechanism of Cyt c oxidation76 by cytochrome c oxidase is well studied77. The overall 

reaction is (cf. Figure 4.7.6): 

 

4 Fe2+(-cytochrome c) + 8 H+in + O2 → 4 Fe3+(-cytochrome c) + 2 H2O + 4 H+
out          --- 4.19 

 

The effect of Cyt c addition seemed to be reversible, because after rinsing with pure buffer the 

initially high resistance was regained (data not shown). 
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Figure 4.7.6: Illustration of the cytochrome c effect: (A) sketch of the surface architecture; (B) structure of 
the cytochrome c78; (C) EIS spectra (Bode plots) were recorded after every addition of Cyt c; (D) 
decreasing resistance plotted versus the Cyt c concentration. 
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As a conclusion from the results so far, the CcO was efficiently immobilized on the 

NPG. The pore size was not optimal, so that the protein (~ 9 × 6 × 9 nm)79 seemed to bind not 

only to the top layer of the NPG comprising 12 nm pore diameter, but also to some lower 

regions so that the membrane was not really suspended across the pores (Figure 4.7.7 

(middle)). However, the effective decrease of the capacitance (Cm) and the slight increase of 

the resistance (Rm) was a strong indication that a membrane was formed around the protein.  

 

 

~~50 nm Template Stripped Gold (TSG)50 nm Template Stripped Gold (TSG)

~10~100 nm 0 nm Nanoporous GoldNanoporous Gold((NPNPG)G)

optimizedoptimized Nanoporous GoldNanoporous Gold((NPNPG)G)  
Figure 4.7.7: Demonstration of the membrane suspension on different substrates. 
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Porous substrates with a defined aspect ratio (ratio between depth and width of the 

pores) using a smaller pore width and larger depth, might be suitable (Figure 4.7.7 (lower)). 

Another option would be stamping of the DTSP to the top layer of the NPG via a 

polydimethyl siloxane (PDMS) stamp, instead of immersing the whole substrate into the thiol 

solution. In this case the Cyt c oxidase would be able to bind only to the exposed pinnacles of 

the NPG, thus a smooth membrane could be suspended across the pores. 

 

4.8 Conclusion 
 

First of all, NPG provided a significantly enhanced surface-to-volume ratio which was 

shown by cyclic voltammetry and electrical impedance measurements. The electrochemical 

studies indicated a nearly one order-of-magnitude enhancement of the surface area of NPG 

compared to an evaporated gold film, which was of assistance to achieve better reaction 

efficiency and detection sensitivity. 

Secondly, porous materials, as well as NPG, are in general particularly useful as 

separation media for their size-selectivity in chromatographical isolation, adsorption and 

catalysis, etc. The nano-sized porous structure strongly affects the sequential build-up of 

functional supramolecular architectures on substrates that is inherent in the sensing process 

itself The diffusion of molecules to the NPG interior was hindered when pore size was 

comparable with the molecular dimension; this “molecular sieve” effect was used to for 

realizing size-selective adsorption. This means the accessible surface area of the NPG 

substrate changed drastically with the analyte size. Twice the amount of streptavidin/avidin 

binding was found on NPG compared to a flat dense gold film; and no access for molecules 

larger than the average pore size such as biotinylated IgG and polystyrene latex beads was 

seen. The charged dendrimer molecules showed similar coverage of NPG as they did on the 

evaporated gold. Taking into account the enhanced surface area of NPG (shown by the 

streptavidin binding result), this result indicates slightly smaller dendrimer coverage per layer 

on the NPG surface, which may suggest that electrostatically driven binding can be biased 

inside nanopores (Figure 4.8.1). 



Chapter 4. Nanoporous gold (NPG) membrane 

 94 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

1

2

3

4

5

6

7

8

9

 CV method, chemically etched
 EIS method, chemically etched
 CV method, electrochemically etched
 EIS method, electrochemically etched
 streptavidin and avidin
 dendrimers, IgG and latex beadsS

ur
fa

ce
 a

re
a 

en
ha

nc
em

en
t 

re
la

tiv
e 

to
 E

G
/ T

hi
ck

ne
ss

 c
or

re
ct

ed

1* typical length scale-1/ nm
 

 

Figure 4.8.1: Surface area enhancement of the differently etched NPG substrates relative to an evaporated 
gold film. The dotted lines are guides for the eye of the beholder: the “base line” for a flat/dense gold film 
is shown in black; the trend for the enhancement of electrochemically etched NPG samples is marked in 
blue and the trend for the chemically etched NPG substrates is shown in red [confer Figure 4.5.7]. 
 

Thirdly, NPG uniquely offered propagating (p-SPR) and localized (l-SPR) surface 

plasmon resonance modes that could be used to probe interfacial refractive index variations 

on different length scales. The p-SPR possessed a 200 - 300 nm decay length (20 - 25 % of 

the light’s wavelength) of the evanescent field, whereas an exponential fit of the l-SPR curve 

for the 5 min etched NPG yielded a decay length of only ld = 12.3 nm. But the field 

enhancement of the l-SPR was strongly dependent on the size and shape of the pores; and the 

excitation wavelength. Species that went into the pores of NPG and modified their dielectric 

atmosphere, were detectable by absorption measurements of l-SPR excitations, whereas 

species that adsorbed onto the geometric surface of the pores of a film of NPG were less 

influential to l-SPR but equally detectable by p-SPR measurements (Figure 4.8.2). The 

surface plasmon resonance signals were therefore directly linked to the accessibility of NPG 

pores which can be tuned by the dealloying condition and time. The combination of p-SPR 

and l-SPR monitoring provided size-selectivity in bio-recognition reactions using the NPG. 

The streptavidin-doped bead binding experiment demonstrated the utility of NPG for 

quantitative p-SPR measurement. Layer by layer studies revealed the different binding modes 

of large biomolecules (e.g. avidin and IgG) to NPGs possessing different pore sizes, where the 

hypothesis was confirmed by both l-SPR and SEM observation. 

Finally, for supported membrane applications, first experiments on NPG were promising. 
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All these results will help to further understand the character of NPG as a novel plasmonic 

substrate for wider applications. 

 

Glycerol test

The glycerol really comes into the 
nano-pores to modify the dielectric 

atmosphere

Layer-by-layer
using charged dendrimers

The dendrimers come into the pores 
too, due to their small size

(Mw. 34kDa, 35kDa respectively)

Layer-by-layer
using avidin/anti-avidin

The proteins only partially come into the pore for 
the very first several layers, then stay out side as an 

optical interference layer
(Mw. 65kDa for avidin, 150kDa for anti-avidin)

interference

Nanopores

Layer-by-layer
using avidin/anti-avidin
on 24 hour-etched NPG

The pores are big enough for accommodating
proteins, but the modification of l-SPR

by the protein is still inefficient.

interference

 
 

Figure 4.8.2: Summary of layer by layer experiments 
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5. Gold/Silica Composite Inverse Opals 

 

5.1 Advantage of gold/silica composite inverse opals - new plasmonic material and the 

aim of the study 

 

Nanostructured metal materials strongly attracted the interest of scientists, as mentioned 

above [Chapter 4, NPG], and various surface patterning methods are known, such as chemical 

patterning1, laser patterning2, etc. In chapter 4 random nanoporous gold substrates were 

investigated, whereas here, 3D macroporous, well defined gold coated structures from 

colloidal crystal templates were examined. 

Using self-assembled colloidal crystals (synthetic opals) as templates, highly ordered 

interconnected macroporous films (so-called “inverse opals”)3 were created. These structures 

exhibit special features and are of interest for catalysts, bioreactors, photonic and phononic 

band gap materials etc4-12. 

Inverse opals from a variety of materials, such as metals, inorganic oxides, or 

polymers, have been created by utilizing colloidal crystal templates. With traditional 

patterning procedures, for instance photolithography13, soft lithography14 and holographic 

patterning15, it is difficult, or even impossible to fabricate such kind of ordered 3D array with 

highly structural quality. However, colloidal crystal self-assembly is an easy, inexpensive and 

efficient mass production method16, 17. Recent work has been done on the preparation and 

characterization of binary colloidal crystals18-20. In this study, multilayered colloidal crystal 

substrates fabricated by vertical lifting deposition were used. 

The aim of this section is to further explore established plasmonic techniques on silica 

inverse opals with bio- or chemical sensing applications in mind. For this special application 

gold nanoparticles were deposited onto the silica inverse opal wall and electroless plating was 

used to prepare so called gold/silica composite inverse opals [Chapter 5.2]. Gold 

nanoparticles alone feature interesting physical properties, such as localized surface plasmon 

resonances (l-SPR)21, 22 giving rise to, e.g., surface enhanced Raman scattering (SERS)23. But 

here, inverse opals were used as a substrate to host gold nanoparticles in order to investigate 

the optical features that may be created as a combinatory result of both the ordered 

macropores and the l-SPR from the nano metallic particles. 

The substantially enhanced available surface area of the three dimensional gold/silica 

composite inverse opals is an additional advantage towards biosensing applications. 
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5.2 Fabrication of gold/silica composite inverse opals 

 

BK7 glass substrates were cleaned by piranha solution (H2O2 : H2SO4 = 30 : 70, v/v. Caution: 

piranha solution reacts violently with organic compounds) and subsequently washed with 

copious amounts of Milli Q water (ultrapure water, Milli-Q system from Millipore GmbH, 

Eschborn, Germany). 

Monodisperse polystyrene latex particles (d = 626 ± 16 nm) were prepared by 

emulsion polymerisation24 and were purified by several cycles of centrifugation and re-

dispersion in Milli Q water. The particle size was measured by dynamic light scattering with a 

Zeta Sizer 3000 HS (Malvern Instrument Ltd.)25 and confirmed by SEM [Chapter 2.4]. Silica 

nanoparticles (d = 10 nm) were provided by EKA Chemicals. 

The formation of a binary colloidal crystal multilayer film was obtained from the 

colloidal suspension of the mixture of polystyrene and silica particles by using the so-called 

vertical lifting deposition method26. A concentration of 0.01 w/v polystyrene was used in 

order to form a high quality crystal. 

The cleaned glass slides were lifted out of the colloidal suspension by a home made 

dipping devise (Figure 5.2.1). The optimized lifting speed was 0.2 µm s-1. Hence, the large 

crystal-forming polystyrene latex particles (the sacrificial template) and the replica-forming 

silica nanoparticles (the matrix material filling the interstitial space) were deposited 

simultaneously. 

motor

substrate

colloid suspension

 
Figure 5.2.1: A) Schematic and B) photographic picture of the dip coating setup 
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By vertical lifting, preparation of colloidal crystal multilayers with high order and 

large dimensions, practically over several square centimetres, was achieved within 15 hours. 

This technique relies on the particle transport and deposition at the growing crystal front 

(confer Figure 5.2.2), which is induced by the liquid flow from the suspension bulk to the 

drying crystal layer (besides capillary forces at the liquid-air interface)27-29. The common 

lattice geometry generally formed by vertical lifting deposition is the close-packed face-

centered cubic lattice (fcc) with the (111) plane parallel to the substrate interface. Large 

clusters of the silica nanoparticles were embedded within the interstitial space of the fcc 

lattice between the large polystyrene particles without disrupting the crystal order. 

 
Figure 5.2.2: Schematic representation of the particle transfer and crystallization mechanism during 
vertical lifting deposition, which is largely driven by the liquid and particle flux from the suspension bulk 
to the porous crystal layer, where the liquid is evaporating. The black arrows show the lifting direction 
and the cyan arrows demonstrate the water evaporation. In the background an original SEM of a binary 
colloid crystal sample from a mixed suspension of large (626 nm) polystyrene colloids and silica 
nanoparticles (10 nm) is shown. 
 

The formed composite films consisting of polystyrene microspheres and silica 

nanoparticles were used to fabricate inverse opals by annealing the film at 450°C in air in 

order to remove the polystyrene template and sinter the silica nanoparticle matrix. The top 

view of the resulting macroporous film is shown in Figure 5.2.3) with the void diameter of 
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620 ± 11 nm being comparable to the diameter of the templating PS microspheres (d = 626 ± 

16 nm), which indicates a negligible shrinkage during the pyrolysis. The inset with higher 

magnification revealed that each air sphere is connected with its neighbours by round holes 

resulting from the contact points of the templating polystyrene particles. The image in Figure 

5.2.3 at lower magnification together with the inset, the fast Fourier transformation (FFT) of 

this image, shows that the domain of the perfect crystals film with pronounced hexagonal 

lattice geometry between cracks can be as large as several hundred microns. Due to the 

sintering process at 450°C the fabricated film is mechanically robust and thermally stable, 

which renders it strong enough for further processing such as washing with water, blowing 

with nitrogen, and further wet-chemical surface modification. 

 

 

 
Figure 5.2.3: Scanning electron micrographs show the top view of inverse opals obtained by calcination of 
the film with optimal parameters. The scale bar of the left image is 500 nm and of the right image is 
10 µm. The left inset is taken at a very high magnification. The right inset with the fast Fourier 
transformation (FFT) demonstrates the hexagonal lattice geometry. 
 

Next, the silica inverse opal wall was functionalized with a positively charged silane, 

+
4NR  (N-trimethoxysilylpropyl- N, N, N- trimethylammonium chloride)30 (Figure 5.2.4) 

[Chapter 3.7 silanization procedure]. In the next step, negatively charged gold nanoparticles 

(d = 20 nm) were deposited from suspension onto the positively charged, silane modified 

silica inverse opal wall as shown in the SEM image, Figure 5.2.5 A, which reveals the 

individual gold particles adsorbed on the silica inverse opal wall through the electrostatic 

attraction via anchored cationic +
4NR  groups. The spacing between the gold nanoparticles is 

caused by interparticle Coulomb repulsions31. During the following electroless plating, 

adsorbed gold nanoparticles behaved as catalysts and seeds, with Au3+ from solution being 

reduced by hydroxylamine-hydrochloride32 resulting in an increment in diameter of the 

existing gold nanoparticles. The plating time was set to 10 minutes, so that a thin granular 
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gold film was formed along the silica inverse opal scaffold with the openings of the 

composite inverse opal being preserved as shown in the SEM image, Figure 5.2.5 B. 

NR4
+

functionalization

gold nanoparticle

deposition

electroless plating

Inverse silica opal wall  

gold nanoparticle

Inverse silica opal wall  

AuAu Au

20 nm

 

 

Figure 5.2.4: Scheme of the fabrication of gold/silica composite inverse opals starting from a sintered silica 
nanoparticle matrix. 
 

(A) (B)

 
 
Figure 5.2.5: (A) SEM image of gold nanoparticles with a diameter of 20 nm deposited on walls of silica 
inverse opals. (B) Gold/silica composite inverse opal obtained after electroless plating. The scale bars are 
1µm, respectively. 
 
 

Fracture SEM images revealed that the whole three dimensional structure of the silica 

nanoparticle matrix was covered by gold particles, thus a complete gold coverage was 

achieved by subsequent electroless plating. The holes that resulted from the contact points of 

the templating polystyrene particles guarantee the accessibility of the greatly enhanced gold 

covered surface area for the bio-molecules to allow for sensing applications. 
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5.3 Surface plasmon resonance features of gold/silica composite inverse opals 

 

In order to examine the plasmonic response of gold/silica composite inverse opals to the 

changes of the surrounding refractive index, visible light reflection absorption spectra were 

measured while tuning the refractive index (RI) of the dielectric medium within the inverse 

opals by immersing the composite films in water/glycerol mixture of different composition; 

the same procedure as described for the investigations of localized plasmons on nanoporous 

gold (NPG) samples [Chapter 4.6.2]. Representative reflection absorption spectra of 

gold/silica composite inverse opals are shown in Figure 5.3.1. 

Relative changes in surface reflectivity again were recorded using the fiber-optic 

spectrometer [Chapter 3.1]. The reflectivity was measured perpendicular to the (111) plane of 

the gold/silica composite inverse opals. An ‘apparent absorbance’ was obtained by calculating 

log (I(n)/I(n0)) with n and n0 being the refractive index of the surrounding medium and pure 

water respectively. 
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Figure 5.3.1: Evolution of the apparent absorbance spectra of a gold/silica composite inverse opal 
immersed in solutions of increasing glycerol concentration: (1) pure water, RI=1.333, (2) 10 % RI=1.346, 
(3) 20 % RI=1.359, (4) 30 % RI=1.372, (5) 60 % RI=1.410; (6) 87 % RI=1.445; the RI of the glycerol 
solutions are calculated by the mass fraction of glycerol in water. 
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As a prominent feature in Figure 5.3.1, an increase in the apparent absorbance was 

seen around λ = 730 nm and a corresponding decrease around λ = 890 nm. This represents a 

clear signal due to refractive index changes which is measured by standard laboratory 

equipment in a straightforward fashion. This spectral feature is due to an extinction peak 

around λ = 790 nm which is shifting to longer wavelength with increasing n. 

The increase of the peak intensity was explained [Chapter 4.6.2] in the context of the 

nanoporous gold substrates and holds for the gold/silica composite inverse opals as well. But 

in the case of the gold/silica composite inverse opals, a much sharper peak of the apparent 

absorbance and a much more distinct shift in the peak position was observed due to the 

regularity of the sample. The corresponding decrease of the apparent absorbance, that was 

predicted from the calculations [Chapter 4.6.2], and was not seen in the absorbance spectra of 

the NPG substrates due to the broadened peak that resulted from the randomly distributed 

pores. Here it was confirmed by the optic measurements on the gold/silica composite inverse 

opals. The peak intensity of the gold/silica composite inverse opals was higher compared to 

the intensities obtained for the NPG samples. 

All these observations are consistent and thus were explainable by the properties of the 

substrates, random structured NPG and highly ordered gold/silica composite inverse opals, 

respectively. 

 

5.4 Conclusion and Outlook 
 
 
In conclusion, binary colloidal crystals with a thickness of several ten layers were directly co-

crystallized across a uniform area of several square centimeters within 15 hours by vertical 

lifting deposition from suspension of binary colloidal mixture. The lattice type of the formed 

crystals was the close-packed face-centered cubic lattice (fcc) with the (111) plane parallel to 

the substrate interface. Typical structural defects, like point defects (e.g. vacancies), line 

defects (e.g. dislocations), planar defects (e.g. stacking faults), and cracks, usually present in 

colloidal crystals formed by vertical deposition33, 34 were also found in this material. But in 

this study, the defect density was significantly reduced at the appropriate preparation 

conditions. This might be due to variations of the evaporation kinetics and capillary 

condensation effects in the mesoporous structure formed by the hydrophilic silica 

nanoparticles between the polystyrene colloids in contrast to other colloidal materials. 

By calcination of the high quality inverse opals, following silanization, gold 

deposition and electroless plating an optically interesting sample substrate was fabricated. 
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This hierarchical composite porous material showed a distinct response to the changes of 

refractive index of the surrounding medium, which may offer a significant potential for a 

bio-/chemo-sensing platform. 

Compared to the nanoporous gold (NPG) substrates discussed in the previous chapter 

[Chapter 4], the gold/silica composite inverse opals showed a much sharper peak of the 

apparent absorbance and a much more distinct shift in the peak position due to the regularity 

of the sample. Actually, a much higher optical signal was obtained than in the case of the 

NPG that promised sensitive detection. 

Both substrates possess an enhanced surface area compared to a flat, dense gold film. 

But the accessibility for biomolecules is expected to be quite different. The NPG substrates 

have limitations due to the average pore size of around 7 - 28 nm, while the gold/silica 

composite inverse opals offer sufficient large pores up to ~ 100 nm to allow for unhindered 

protein diffusion. In future, this material may be used to probe bio-recognition reactions. 

Some future work may include further sample development, such as tuning of the pore 

size and entire sample thickness by variation of the polystyrene or silica particle size as well. 
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6. Epitope mapping to identify the centrin sequence interacting to 

transducin 

 

6.1 Processes of optical signaling 

 

The third part of this thesis focuses on the protein/protein interaction of the calcium binding 

protein centrin [Chapter 6.3] with the heterotrimeric G-protein transducin [Chapter 6.2]. 

While the centrins are ubiquitously expressed in eukaryotic cells, the expression of the 

transducin alpha subunit (Gtα) is restricted to photoreceptor cells. In the context of the 

photoreceptor cell, the anatomy of the human eye and the visual signal transduction cascade 

are described briefly. 

An eye is a specialized organ of vision that detects photons. Light enters through the 

pupil, and is focused by the cornea and the lens onto the retina (Figure 6.1.1). The ciliary 

muscle allows for exact focusing by changing the shape (thickness and curvature) of the lens. 

The suspensory ligaments support the lens and connect it to the ciliary muscle. The sclera 

(“white of the eye”), a tough and fibrous outer layer, covers and protects the whole eye except 

for the cornea. The cornea is protected by the conjunctiva, a membrane that is kept moist by 

the tear glands. 

Lens

Pupil

Optic nerve

Retina

Fovea

Sclera
Suspensory ligament

Ciliary muscle

Iris

Cornea

Conjunctiva

 
Figure 6.1.1: A photograph of a human eye (left). Schematic presentation of a human eye1 (right). 

 

The retina and the optic nerve originate as outgrowths of the developing brain2-4. The 

retina5 is a network of nerve cells containing two types of photosensitive cells, rods and cones 

that are important for vision. Rod cells are highly sensitive to dim light and black/white 

detection. In contrast, cones need higher light intensities to respond and detect color. Directly 

behind the lens is the localization of the fovea (human) that consists of mostly densely-packed 

cone cells. The pigmented iris decides the color of the eye (Figure 6.1.1 (left)) and protects 

the photoreceptors in the retina from being damaged by too high light intensities. 
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Furthermore, light shines through all layers of neuronal retinal cells before hitting the light 

sensitive photoreceptor cells. Hence, the vertebrate eye is also called inverse eye. 

The structure of a rodent's retina is comparable to the structure of a human retina. In 

contrast to the human retina, the retina of rodents is adjusted to the nocturnal behavior of the 

animal. Therefore, the mouse retina possesses no fovea and consists of ~ 97,2 % rods and 

only ~ 2,8 % cones that are distributed homogeneously all over the retina6, 7. 

Vertebrate photoreceptor cells (PRC) offer morphological and functional structuring in 

several compartments (Figure 6.1.2). The nucleus is arranged next to the basal end with the 

synaptic connection. Energy producing and protein synthesizing components are located in 

the inner segment (IS), while the light absorbing machinery is concentrated in the outer 

segment (OS). All proteins synthesized in the inner segment but required for the outer 

segment have to pass through a narrow non-motile connecting cilium (CC) as an intracellular 

linkage between inner and outer segment. 

 

6.1.1. The vertebrate visual signal transduction cascade 

 

The visual signal transduction pathway in rods is the mechanism by which the energy of an 

incoming photon results in an electrical hyperpolarization of the photoreceptor cell (PRC). 

This hyperpolarization leads to the transmittance of a neuronal signal that reaches the brain 

via the optic nerve. 

An incoming photon reaches the disc membranes in the outer segment of the 

photoreceptor cell and is absorbed by the 7-transmembrane-receptor rhodopsin (RHO; a G-

protein-coupled-receptor). Rhodopsin consists of opsin, a protein that is reversibly covalently 

bound to the chromophor 11-cis-retinal8, a derivative of vitamin A. The absorption of the 

photon causes an isomerization of the 11-cis-retinal to the more energetic trans-form. The 

resulting change in conformation of the rhodopsin8 leads to the binding of the G-protein 

transducin (Figure 6.1.2). Each photo activated rhodopsin (RHO*) triggers activation of about 

100 transducins9, 10. That is the first amplification step. 

Opsin is phosphorylated by rhodopsin kinase (GRK1)11. Then arrestin12, that binds 

specifically to phosphorylated active G-protein coupled receptors, arrests or reduces signaling 

by inhibiting transducin binding to rhodopsin in a fast protecting manner. 
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Figure 6.1.2: Schematic drawing of a rod photoreceptor cell. Due to the inverse eye geometry, the light 
shines through multi neuronal layers before illuminating the outer segment (OS) of the photoreceptor cells 
(PRC). The PRC consists of a light sensitive outer segment (OS) that is linked via non-motile connecting 
cilium (CC) to the inner segment (IS). The signal transduction is taking place in the membrane discs of the 
outer segment (zoomed in). After the absorption of light and the activation of rhodopsin (RHO*) the 
inactive heterotrimeric G-protein transducin (Gtαααα +GDP and Gtβγγγγ [Chapter 6.2; Figure 6.2.1]) can be 
bound. The Gtβγγγγ dissociates from the Gtαααα subunit and the activated Gtαααα +GTP affects second messenger 
molecules in the following steps13, 14.  
 

 

Otherwise, the activation of transducin causes the exchange of guanosine diphosphate 

(GDP) to guanosine triphosphate (GTP) that is bound to the alpha subunit (Gtα), respectively, 

and results in an activated alpha subunit (Gtα) dissociating from beta-gamma subunit (Gtβγ) 

[Chapter 6.2]. Each alpha subunit (Gtα) then activates the enzyme cyclic guanosine 

monophosphate (cGMP)-specific phosphodiesterase (PDE). Phosphodiesterase then catalyzes 

the hydrolysis of about 1000 cGMP (cyclic guanosine-3´5´-monophosphate) molecules to 

5´GMP. That is the second amplification step. 

If the intracellular concentration of cGMP is reduced, cGMP dependent Na+/Ca2+ ion 

channels in the photoreceptor membrane close15, 16. As a result, Na+ and Ca2+ ions can no 

longer enter the cell, and the photoreceptor cell hyperpolarizes17. The hyperpolarization of the 
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photoreceptor cell slows the release of the neurotransmitter glutamate at its postsynaptic 

terminal to the bipolar cells17. The glutamate affects the bipolar cells (ON- and OFF-bipolar 

cells) differently, depending upon the type of receptor imbedded in that cell’s membrane18-20. 

One population of bipolar cells is excited by light and the other population is inhibited by it. 

The optic nerve is composed of retinal ganglion cell axons and support cells and passes the 

signals to the visual cortex. 

 

6.1.2. Light and dark adaptation 

 

Light and dark adaptation in human vision describe the remarkable ability of the visual 

system to automatically adjust its sensitivity to the amount of incoming photons. During dim 

light conditions, vertebrates need rod photoreceptors for vision. The phenomenon of dark 

adaptation in the rod cell is complex8 and still not fully understood. Here, the light and dark 

adaptation at the subcellular level will be discussed. 

Products of light absorption from the photoreceptor outer segment have to be 

removed, the released retinoid to be recycled to its original isomeric form as 11-cis retinal, the 

visual pigment rhodopsin to be regenerated21, etc. Light induced exchanges of signal cascade 

components between the outer and inner segment were observed about one decade ago22-24 

and are currently of interest25, 26. 

The localization of transducin in the vertebrate photoreceptor cell is regulated by light 

(Figure 6.1.3). In the dark, transducin is concentrated in the outer segments of rod 

photoreceptor cells, while light adapted rod cells show a high concentration of the 

translocated transducin in the inner segment22-24, 27-33. About 80 % of transducin (Gtα and 

Gtβγ) move in minutes from the outer to the inner segment and the cell body of rod 

photoreceptor cell29. Gtα was more mobile than Gtβ, with a half-time of translocation that is 

~ 3-fold shorter (5 min for Gtα versus 12.5 min for Gtβ)29. A time course of hours was found 

for the repopulation of Gt subunits in the outer segment29.  
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Figure 6.1.3: Immunolocalization of transducin (Gtαααα) and all centrin isoforms in mouse retinas (pan-cen 
monoclonal antibody (clone 20H5) detects all four isoforms)34, 35. Indirect anti-transducin (red) and anti-
centrin (green) immunofluorescence in light adapted mouse retina (left) and dark adapted mouse retina 
(right). Significant translocation of the Gt between the inner and outer segment (IS/OS) through the 
narrow connecting cilium (CC) contributes to the light-dark adaptation of photoreceptor cells. ONL is the 
outer nuclear layer. Bar, 10 µm. Schematic representations of the adapted rod photoreceptor cells are 
beside the real immunofluorescence pictures. Red color indicates the transducin contribution and green 
color the centrin localization. For clarity, the directions of transducin movement are also illustrated 
(outside margin). 
 
 

The light dependent translocation of proteins is also known in the case of arrestin that 

is involved in the signal transduction cascade as well. But the translocation of arrestin 

happens in the opposite direction to transducin22, 24, 32. Light induced translocation processes 

of proteins have to occur through or along the connecting cilium (CC) that is the only 

intracellular linkage between the inner and outer segment and allows for bidirectional 

exchange36. Different mechanism for the translocation of diverse proteins via elements of the 

cytoskeleton, such as actin filaments and microtubules, are discussed37-39. 

The two proteins, rhodopsin kinase40 and arrestin41, inactivate metarhodopsin, the 

active state of rhodopsin, in a fast manner to protect against to high light intensities (see 

above). The phenomenon of translocation of transducin is a much slower process, but reduces 

the sensitivity to light without changing the kinetic answer42. Therefore, the 

translocation-function of transducin and arrestin may be described as “molecular 

sunglasses”42, 43. 
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During translocalization process centrins are potential interaction partners of 

transducin43. Centrin 1, 2, 3 and 4 [Chapter 6.3] are components of the cytoskeleton of the 

connecting cilium44, 45. Double immunofluorescence analyses with antibodies detecting 

transducin and centrin showed clearly colocalization of the two proteins in the connecting 

cilium. Actually, electro microscopic immunolocalization of the proteins and quantification of 

the labeled areas revealed that centrin and transducin are indeed colocalized at the inner 

surface of the microtubule ring34, 35 in the same subcellular compartment of the connecting 

cilium (Figure 6.1.3). 

Light modulated changes of the free calcium ions in the outer segment (OS) of the 

photoreceptor cells are known as well35, 46-49. If these changes in the Ca2+ concentration are 

transmitted into the connecting cilium, Ca2+ dependent assembly of centrin-transducin 

complexes can take place. 

 

6.1.3. Barrier hypothesis - relevance of centrin-G-protein complex  

 

Since any intracellular exchange between the outer segment (OS) and the inner segment (IS) 

should occur through the connecting cilium (CC)36, this represents an appropriate domain for 

regulation processes45. 

The high affinities of centrin 1 and 2 to the beta-gamma subunit of transducin and the 

localization in the connecting cilium suggest that the centrins are relevant candidates for this 

Ca2+ dependent protein-protein interaction35. Centrins may regulate transducin movement 

through the connecting cilium in a Ca2+ dependent manner28, 30, 34, 50 (Figure 6.1.4). 

An increase of the intracellular Ca2+ concentration in the photoreceptor cell should 

activate the centrins due to the binding of calcium ions. This activation is thought to induce a 

binding of centrin molecules or centrin oligomers to transducin that is transported through the 

connecting cilium. It is shown for centrin 1 that only two Ca2+ ions are needed to form a 

complex together with transducin30. Due to the Ca2+ dependent interaction, the passage of 

transducin should be decelerated or rather stopped for high Ca2+ concentrations (Figure 6.1.4).  
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Figure 6.1.4: Schematic illustration of the barrier hypothesis. Ca2+ triggered assembly of centrin-
transducin complexes in the connecting cilium of vertebrate photoreceptor cells is thought to regulate 
transducin movements26, 34, 35. (A) Under low Ca2+ concentrations centrin is phosphorylated and not 
activated, so that transducin can float through the connecting cilium. Casein kinase 2 (CK2) 
phosphorylats centrin. (B) High Ca2+ concentrations cause the centrins to be dephosphorylated and 
activated by Ca2+, which induces also the centrin-transducin complex assembly. The centrin-transducin 
complexes can be composed of either Gtholo or Gtβγ subunits. 
 
 

It is not yet fully understood, if the heterotrimeric transducin is transported through the 

connecting cilium or the subunits of transducin move separately through the connecting 

cilium. Serial tangential sections through the retina show that the translocation of Gtα is three 

times faster than the translocation of Gtβγ from the outer to the inner segment29 [Chapter 

6.1.2]. This result indicates a separate transport29. However, a knockout Gtα mouse did not 

show redistribution to the inner segment of Gtβγ alone, which is a hint for the heterotrimeric 

transducin movement51, 52. If this is true, only completed not yet activated Gtαβγ is 

transported back to the inner segment or the heterotrimeric Gtαβγ has to be formed before 

passing the connecting cilium43. 
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The accumulation of Gtαβγ in the connecting cilium of light adapted retinas suggests a 

light-induced assembly of centrin-G-protein complexes. It can be concluded that the 

interaction between centrins and transducin in the connecting cilium is responsible for light 

dependent translocation of transducin. Changes in the Ca2+ concentration of the rod 

photoreceptor cells that are needed for interaction have been well characterized46. Usually, 

after light activation of the visual transduction cascade a dramatic decrease in calcium ion 

concentration in the outer segment is observed. But under light saturated conditions indeed a 

calcium ion increase in the outer segment is found47 that can be the Ca2+ source for assembly 

of centrin-G-protein complexes. To ensure translocation of transducin a low Ca2+ 

concentration in the connecting cilium is required. No details about the fluctuation of Ca2+ 

concentration in the connecting cilium are known so far. The assembly of centrin and 

transducin could build a Ca2+ induced barrier for transducin movements30. 

The centrin-G-protein complex is expected to dissociate if the Ca2+ concentration drops, so 

that transducin can float through the connecting cilium22, 24, 27-30, 32, 33, 38. 

To understand related diseases on the molecular level, it is important to locate and annotate 

the processes involved in the light perception in the retina. 
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6.2 Characteristics of Transducin 

 

Transducin (Gt) is a heterotrimeric guanine nucleotide binding protein (G-protein). The alpha 

subunit of transducin is naturally only expressed in vertebrate retina photoreceptor cells. In 

each cell type, rods and cones, a different transducin gene is expressed. 

In general, G-proteins are a family of proteins involved in various second messenger 

cascades. Their signaling mechanism is based on the exchange of guanosine diphosphate 

(GDP) for guanosine triphosphate (GTP)53, 54. Basically, two different classes of G proteins 

are known, the small and the large G-proteins. The small G-proteins are monomeric. The 

large G-proteins are membrane-associated and made up of alpha (α), beta (β) and gamma (γ) 

subunits. These G-proteins are activated by G-protein coupled receptors, that are integral 

membrane proteins55. G-protein coupled receptors represent the largest class of receptors in 

the mammalian genome. These receptors are involved in the sensations of light, smell, and 

taste and other regulatory processes. 

Transducin consists of a catalytic alpha subunit Gtα and an inhibitory Gtβγ – dimer 

that play a role in the signal amplification in the visual cascade53, 54 (Figure 6.2.1). Transducin 

is a mediator between the light sensitive seven transmembrane receptor rhodopsin and 

phosphodiesterase53, 56. The GTP-activated alpha subunit of transducin hydrolyses cyclic 

GMP to 5`GMP resulting in a closure of the ion-channels in the plasma membrane53, 54. 

Closing of these ion-channels leads to a hyperpolarization of the photoreceptor cell 

membrane. 

 

+

 
 
Figure 6.2.1: The heterotrimeric transducin (alpha-beta-gamma subunits) is activated by a 
conformational change in rhodopsin due to the adsorption of a photon [cf. Chapter 6.1.1]. This activation 
causes the exchange of GDP to GTP that is bound to the alpha subunit, respectively, and results in 
activated alpha subunit dissociating from beta-gamma subunit. 
 

Generally, the alpha subunits contain two domains, the GTPase domain and the alpha-

helical domain. Roughly 20 different types of alpha subunits are discovered. For instance Gs 

activates adenylate cyclase, Gi inhibits adenylat cyclase; Golf couples to olfactory receptors. A 
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recently discovered family of G proteins, Gq, stimulates phospholipase C. Transducin (Gt) 

however couples to rhodopsin.  

The β and γ subunits are tightly bound together and are referred as the beta-gamma 

complex. The Gβγ complex is released from the Gα subunit after the exchange of guanosine 

diphosphate (GDP) for guanosine triphosphate (GTP)53. Free Gβγ complexes can activate 

other second messengers or gate ion channels. Table 6.2.1 summarizes the characteristics of 

the three subunits of transducin extracted from the bovine retina. 

 

Table 6.2.1: Characteristics of the three subunits of transducin extracted from the bovine retina (bos 
taurus). Omiga software was used to calculate the values for the different protein subunits (Omiga: 
Programmes „Omiga 2.0“; company: Oxford Molekular Ltd.) 
 
Protein Molecular 

weight, MW 
Length Isoelectric 

point, pI 
Charge at pH 7.0 

Alpha subunit Gtα 39.965 kDa 350 aa 5.331 -9.643 
Beta subunit Gtβ 37.377 kDa 340 aa 5.490 -7.127 
Gamma subunit Gtγ 8.544 kDa 74 aa 4.508 -5.172 

 

In search of centrin 1 interaction partners located in the vertebrate retina, a Ca2+ 

dependent interaction with the Gtβ subunit was found in a testing system so called overlay-

assay. Coimmunoprecipitation experiments confirmed that also the heterotrimeric G-protein is 

an interaction partner of centrins. In the following surface plasmon resonance studies only the 

Gtβγ complex was immobilized on the surface to probe centrin interactions [Chapter 6.6]. 

Figure 6.2.2 shows the Gtβγ subunits in three different perspectives. 

The extracted and purified transducin Gtβγ subunits from the bovine retina were kindly 

provided by Alexander Pulvermüller; lab of Klaus Peter Hofmann, Institut für Medizinische 

Physik und Biophysik, Charité – Universitätsmedizin Berlin, Ziegelstr. 5-9, D-10098 Berlin, 

Germany. 

 

 
Figure 6.2.2: The beta and gamma subunits of the G-protein transducin are shown in three different 

perspectives (determined by x-ray crystal structure). The larger beta subunit is pictured in blue, the 
gamma subunit in brown. The seventeen accessible lysine moieties are presented in green. 
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6.3 Centrins in the vertebrate cells  

 

The centrins are relatively small acidic proteins with a molecular weight of about 20 kDa 

(~ 170 aa). Centrins are phospho proteins and belong to the parvalbumin superfamily of the 

calcium binding proteins57, 58. Centrins contain like the second messenger calmodulin57, 58 four 

EF-hand motifs, that are Ca2+ binding helix-loop-helix structural motifs. The term EF-hand 

stems actually from the two flanking α-helices E and F, that are positioned roughly 

perpendicular to one another. They look like a hand with helix E as the thumb and helix F as 

the index finger. The predicted 3D structure59 of human centrin 1 is shown in Figure 6.3.1. 

During evolution some EF motifs apparently lost their ability of Ca2+ binding. Human 

centrins 1 and 2 bind two moles of calcium per mole of protein (EF1 or EF3 and EF4)59, 

whereas centrin isoforms 3 and 4 bind only one mole of calcium per mole of protein 

(EF4)50, 59. Ca2+ activated centrins are more compact in structure and can form dimers, 

oligomers or even polymers34, 60-62, The binding of Ca2+ enhances the affinity of the centrins 

to their interaction partners as well60, 61, 63.  

 

 
Figure 6.3.1: ModBase64 predicted 3D structure of human centrin 1 (caltractin isoform 2) containing 4 EF-
hand domains59. Three different perspectives are shown (front view, side view, top view- rightwards, from 
the left to the right). ModBase is a database of 3D protein models calculated by comparative modeling64. 
The models are derived by ModPipe that relies on the two programs PSI-BLAST and MODELLER. The 
theoretically calculated models include fold assignments and alignments, but may contain errors. 
 

Other Ca2+ binding proteins are for example the signaling protein calmodulin and a 

muscle protein troponin C. The centrins are ~ 50 % similar to calmodulin, one of the best 

known proteins of the Ca2+ binding family. 

Centrins were first described in unicellular green algae Tetraselmis striata65 and 

Chlamydomonas reinhardtii 57, 58, 66. Over the last decade, centrins have been found in various 

species from all kingdoms of eucaryotic organism, protists, fungi, plants and animals66-77. 

Centrins from diverse species have relatively high sequence homologies (55 – 85 %)66, 78. The 
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high level of conservation in the amino acid sequence of the centrins suggest that cetrins play 

a fundamental role for the cells66. 

In green algae centrins are the major compounds of flagellar rootlets, where they form 

filamentous contractile structures that contract ATP-independent in a response to an increase 

of calcium ions57, 58, 79. These nano filaments feature a length of 2 - 6 nm. In green algae and 

yeast only two centrin isoforms are expressed. In rodent cells four different centrin isoforms 

(centrin 1 - 4) were discovered66, 70, 72-77. Centrins are commonly associated with centrosom-

related structures80-82. They are found for example in centrioles of centrosomes, basal bodies, 

spindle poles and the transition zone of cilia57, 58. They are involved in the biological 

processes of cell division and mitotic centrosome separation. 

Cen3

cilium

basal
body

centrosome

modified from Gießl et al., 2004 
Figure 6.3.2: (A) Immunoelectron microscopy to localize centrin 3 in a mouse photoreceptor cell [OS-
outer segment; IS-inner segment; BB-basal body; Bar, 0.5 µm]. (B) Schematic illustration of the 
differential localization of the four centrin isoforms in vertebrate photoreceptor cells. (C) Schematic 
illustration of the differential localization of th e four centrin isoforms in non-specialized cells34. 
 

In vertebrates centrin 2 and centrin 3 are expressed ubiquitously. In contrast, centrin 1 

and centrin 4 expression is constrained to ciliated cells. The four known centrin isoforms are 

all expressed in the ciliated photoreceptor cells of the rodents34. These isoforms are 

differentially localized in the subcellular compartments34 (Figure 6.3.2). In 



Chapter 6. Epitope mapping to identify the centrin sequence interacting to transducin 
 

 123 

immunofluorescence analysis, preadsorbed antibodies were utilized to show different 

localizations of the centrin isoforms in the retina34. Centrin 1 is selectively associated with the 

connecting cilium34 [Chapter 6.1.3]. Centrin 2 and 3 were localized in the connecting cilium 

as well as in the basal body of photoreceptor cells and at the centrosomes of non-

photoreceptor cells34. But the antibody of centrin 4 shows staining only with the basal body of 

photoreceptor cells34. 

The colocalization of centrin 1 – centrin 3 in the photoreceptor connecting cilium 

suggests centrin-transducin-complexes have been formed, whereas the centriolar localization 

of centrin 2 - 4 indicates a second function of the centrins34. Soluble cytoplasmatic centrins 

may regulate enzymatic reactions in a calcium dependent manner similar to calmodulin. So 

far little is known about centrin function in mammalian cells. 

Sequence analysis of the centrins revealed the largest differences in the N terminus. 

Thus, the N terminal region is thought to be responsible for variable functions of the centrins 

in the different species as well as between the different isoforms of the same species57, 60, 83. 

The N terminus is also responsible for the Ca2+ induced polymerization of the centrins60, 62. 

Therefore several centrin 1 constructs that are shortened from the N terminus will be 

examined in the following studies to further approve this theory (Figure 6.3.3). This centrin 

fragments and isoforms originate all from the genome of Mus musculus. 

Table 6.3.1 refers to the absolute values of the centrin 1 constructs used in my studies 

as interaction partners of the beta-gamma subunit of the G-protein transducin (Gtβγ) [Chapter 

6.4 - 6.9]. 

 

Table 6.3.1: Properties of the different centrin 1 constructs that I used in my studies. The complete 
sequence of centrin 1 protein is abbreviated as Cen1p holo; the missing N-terminal sequence of centrin 1 
plus 6 amino acids is abbreviated as Cen1p∆∆∆∆S1Nterm; the absent N-terminal sequence of centrin 1- 
Cen1p∆∆∆∆Nterm; missing EF-hand 1 centrin 1 is called Cen1p∆∆∆∆EF1. Isoform centrin 3 was studied as well. 
All centrins originate from the genome of Mus musculus. Omiga software was used to calculate the values 
for the different protein fragments (Omiga: Programmes „Omiga 2.0“; company: Oxford Molekular 
Ltd.). 
 
Constructs Molecular 

weight, MW  
Length Isoelectric 

point, pI 
Charge at pH 7.0 

Cen1p holo 19.696 kDa 172 aa 4.538 -9.965 
Cen1p∆S1Nterm 17.044 kDa 148 aa 4.235 -14.961 
Cen1p∆Nterm 16.329 kDa 142 aa 4.251 -13.967 
Cen1p∆EF1 12.420 kDa 107 aa 4.265 -10.980 
Cen3p holo 19.519 kDa 167 aa 4.369 -14.782 
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Figure 6.3.3: Schematic illustration of generated centrin 1 fragments for identification of functional 
protein domains (MmCen1p -Mus musculus, centrin 1 protein)43. Isoform centrin 3 was also used in the 
study and is depictured below the centrin 1 fragments. The EF-hand motifs are pictured in a round shape. 
Ca2+ binding is indicated, if the EF-hand is not degenerated. Additionally, domains for phosphorylation by 
proteinkinase C (PKC- small, black rectangle) and by caseinkinase2 (CK2- big, red rectangle) are shown. 
The nomenclature of the fragments refers to missing domains, e.g. Cen1p∆∆∆∆Nterm misses the N terminus. 
The notation S1 in Cen1p∆∆∆∆S1Nterm stands for additional 6 amino acids in comparison to the 
Cen1p∆∆∆∆Nterm construct (cf. Table 6.3.1). 
 
 

The different centrin 1 fragments and centrin isoforms were bacterially expressed and 

kindly provided by Andreas Gießl; lab of Prof. U. Wolfrum, Institute of Zoology, Dept. of 

cell & Matrix Biology; Johannes Gutenberg University, Mainz, Germany. 

 



Chapter 6. Epitope mapping to identify the centrin sequence interacting to transducin 
 

 125 

In the first step, the complete centrin isoforms were amplified using reverse 

transcription polymerase chain reaction. During this reaction the m-RNA is transcribed in a c-

DNA strand that is amplified with specially designed primers for the centrin amplification. In 

the next step, the centrins were cloned in Bluescript vectors (Amersham) suitable for the 

storage. Then, the clones were used for recombinant expression with another expression 

vector pGex4T3 inserted. The GST expression vectors code for the glutathione S-transferase 

as well. GST fused to the N-terminus of the centrins allows for various applications. 

Firstly, GST-fusion proteins can be easily purified by a glutathione-sepharose column. 

Addition of free glutathione that bind to the GST-centrins release the GST-proteins after 

purification from the column. Secondly, GST-fused centrins possess a mass of ~ 46 kDa 

compared to the mass of ~ 20 kDa for the centrin protein alone. By using surface plasmon 

resonance spectroscopy as a mass sensitive detection method, it is a quite obvious advantage 

to double the mass of the centrins. Thirdly, the GST is cleaved from the GST-fusion protein. 

 

6.4 Motivation 

 

During the last decade, four different isoforms of the Ca2+ binding protein centrin have been 

identified in rodents [Chapter 6.3]. Although centrins are ubiquitously expressed, only little is 

known about their biological functions. This thesis focuses on the function of the centrins in 

rod photoreceptor cells of the vertebrate retina. The different localizations of the isoforms 

suggest that the centrins may conduct special functions. In search of interaction partners, 

previous studies revealed binding of centrins to the βγ-subunits of the visual G-protein 

transducin in a calcium dependent manner [Chapter 6.2]. While the centrins are expressed 

universally, the expression of the transducin alpha subunit (Gtα) is limited to the vertebrate 

retina photoreceptor cells. The connecting cilium of the photoreceptor cell is predestinated for 

the binding event of centrin and transducin [Chapter 6.1]. 

The aim of this study is to identify the interacting-sites of centrin 1 (Cen1) to the βγ-

subunits of transducin by epitope mapping. Demanding interest exists in a method that allows 

not only for the identification of the interacting-site but also for differentiating between the 

centrin isoforms. Basic monitors, such as light scattering, absorption and fluorescence, 

investigate the proteins in their natural environment. These methods exploit the endogenous 

properties of proteins, e.g. the intrinsic fluorescence of tryptophan, Trp-207 in transducin that 

is localized near the active center of the G-protein, is utilized for detection. Light scattering 

uses the activation dependent solubility of transducin. The scattering signal is interpreted as a 
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gain of protein mass that is bound to the disc membranes of photoreceptor cells9, 84. Another 

completely different technique is size-exclusion chromatography that detects a weight shift 

for protein complexes in contrast to the single protein molecule. 

Kinetic light scattering and size-exclusion chromatography experiments provided first 

data for possible centrin transducin interaction. Here, surface plasmon resonance spectroscopy 

as a method to monitor specific interactions at surfaces is used to further investigate the 

protein-protein interaction. The significant advantage of the SPR technique is its capability of 

labelfree detection to monitor real-time interactions without changing the natural kinetic 

characteristics of the proteins. SPR is thought to give a detailed kinetic interpretation of the 

centrin- transducin interaction. It is expected to confirm the data derived from light scattering 

and to determine the affinity constants (kon, koff). 

Several GST-Cen1 and Cen1 fragments, respectively, are expressed to give a detailed 

answer, which sequence of the centrin 1 is essential for the binding to transducin (Gtβγ) 

[Chapter 6.3]. 

Centrin 3 isoform was expressed as well and compared to the binding behaviour of 

centrin 1. The regulation mechanism of the protein binding is under investigation as well. It is 

analyzed, weather there is an in vitro regeneration of the protein complexes possible or not. 

This thesis contributes to further understanding of centrin function in sensory systems. 
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6.5 Development of the sensor architecture 

 

6.5.1. Commercial CM5 sensor chip (Biacore) 

 

The commercial CM5 Chip from Biacore as an established surface matrix was chosen for the 

molecular interaction of centrin to transducin. As we learned from previous chapter 

[Chapter 4; NPG] that surface enhancement increases the signal of detection, the three 

dimensional dextran matrix was also expected to exhibit a better signal than a two 

dimensional matrix. The carboxy-methyl-dextran (CMD) matrix bound to gold films for 

surface plasmon resonance spectroscopy purposes was firstly described by Stefan Löfås and 

Bo Johnsson in 199085. 

In my studies, CM5 chips without the housing (Biacore; Uppsala, Sweden) were used 

to excite surface plasmon resonances in the homebuilt setup [Chapter 3.1]. The chips consist 

of a D263 glass (n = 1.523 at λ = 588 nm) with a thickness of ~ 0.5 mm that is coated with 

~ 50 nm of gold. The refractive index mismatch between the D263 glass and the LaSFN9 

prism (n= 1.85 at λ= 633 nm) was negligible for angles smaller than ~ 62 - 63 degrees86. The 

plasmon reflectivity dip appeared at the same position as in the case of a LaSFN9 glass 

substrate coupled to a LaSFN9 prism86. 

The CM5 chip (Figure 6.5.1) is a specially modified substrate. On the gold surface, a 

self assembled monolayer (SAM) of a long chain 1,ω-hydroxyalkyl thiol (typically, 

16-mercaptohexadecan-1-ol) is formed87 to prevent unspecific binding of ligands. Then, this 

hydroxy terminated layer is activated by epichlorohydrin under basic condition to generate 

epoxy groups. In the next step, dextran, a linear polymer of 1,6- linked glucose units, is 

covalently bound to the epoxides. The dextran provides a highly stable, flexible, 

non-crosslinked brush-like matrix that extends ~ 100 nm from the gold coated surface if 

incubated with physiological buffer. Further functionalization of the dextran was done by 

reaction with bromoacetic acid to form carboxylic groups. The detailed preparation steps are 

described by Löfås85. The main advantages of the CM5 chip are the minimization of 

non-specific binding, due to the SAM and the dextran brush, and the greatly enhanced surface 

for sensing. 

The carboxylated dextran chains of the CM5 chip provide a negatively charged 

hydrogel-covered surface (-COO-) that can be utilized for covalent coupling of various 

ligands. Biacore developed an activation-coupling-deactivation protocol to immobilize 

proteins. A fraction of carboxy groups (~ 25 – 30 %) was activated by using a mixture of 
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freshly prepared 0.2 M N-ethyl-N´-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) and 0.05 M N-hydroxy-succinimide (NHS) in Milli Q water (Figures 6.5.2 and 6.5.3). 

After 10 minutes of activation, 1 µM transducin in Gabi buffer [Chapter 3, Materials] was 

injected directly to bind to the reactive N-hydroxysuccinimide esters. Actually, the key of 

protein immobilization to a negatively charged dextran matrix is to use electrostatic attraction 

to preconcentrate a positively charged protein (protein -NH3
+) in the matrix (dextran -COO-). 

Therefore, a solution with a pH smaller than the isoelectric point of the protein and low ionic 

strength is preferred. 
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Figure 6.5.1: Schematic presentation of a CM5 sensor chip. A) Unloaded 3D carboxy-methyl-dextran 
matrix, commercially available. B) Dextran matrix loaded with transducin for further interaction 
experiments with the centrin 1 holo and centrin delta EF1 construct. 
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Figure 6.5.2: Chemical reaction of EDC/NHS activation. Here, the first step in the binding reaction is an 
N-ethyl-N´-(3-dimethylaminopropyl) carbodiimide (EDC) activation of the carboxy group of either the 
dextran matrix or the P19 matrix (Chapter 6.5.2) to form O-acylisourea intermediates. These inter-
mediates are only stable for a few seconds. If no amine is coupled, the intemediates will hydrolyze and 
result in the carboxyl group. In the presence of NHS reagent the O-acylisourea intermediates can be 
converted to amine-reactive NHS-esters. 
N-hydroxy-succinimide esters yield stable products upon reaction with primary amines. Accessible 
αααα-amine groups existent on the N-termini of proteins and εεεε-amines on lysine residues of proteins react 
with NHS-esters to form amide bonds. Relatively efficient coupling can be achieved under physiological 
buffer conditions.  
 

Both beta and gamma subunits of transducin (Gtβγ) are negatively charged in Gabi 

buffer at pH = 7.1 [Table 6.2.1]. Due to the unsuitable binding condition only poor binding of 

transducin was obtained. Furthermore, transducin (Gtβγ) offers ~ 17 lysine residues and thus 

was bound in sterically random way, so that some centrin binding sites may not be accessible 

in the protein-protein interaction assay. After the immobilization of the transducin (Gtβγ) and 



Chapter 6. Epitope mapping to identify the centrin sequence interacting to transducin 
 

 130 

the following rinsing step, excess NHS-esters were then deactivated using 1 Mol 

ethanolamine hydrochloride adjusted to pH 8.5 with sodium hydroxide. Ethanolamine 

solution also desalted loosely bound transducin, which was seen in the kinetic measurement 

as a decrease in reflectivity (Figure 6.5.3). When 10 µM Cen1p∆EF1 in buffer F [Chapter 3, 

Materials] was injected, a slight increase in reflectivity was detected. But after the rinsing step 

no centrin fragment remained bound to the beta and gamma subunits of transducin (Gtβγ). 

10 µM Cen1p holo in buffer F showed similar behaviour, even though centrin 1 holo was the 

positive control. The centrins diluted in buffer F with a pH of ~ 8.0 were negatively charged 

since the centrins feature isoelectric points of ~ 4.2 - 4.5 (Table 6.3.1). 
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Figure 6.5.3: Centrin-transducin interaction on a Biacore CM5 Chip. SPR kinetic measurement monitors 
the different steps: EDC-NHS activation of the carboxy groups; binding of transducin to the NHS-esters; 
binding of ethanolamine to excess NHS-esters and desalting of losely bond transducin; interaction of the 
centrin fragment Cen1p∆∆∆∆EF1 and the holo protein Cen1p holo. The blue arrows indicate injection of 
buffer F with Ca2+ (10 mM) as rinsing steps. 
 

It can be concluded from surface plasmon resonance measurements on Biacore CM5 

Chip, that the negatively charged carboxylated dextran matrix indeed was not suitable to 

probe transducin centrin interaction due to the low isoelectric points of the proteins. Around 

70 - 75 % of the carboxy groups remained inactivated as -COO-, so that the negatively 

charged proteins of interest were repulsed from the dextran matrix. 
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6.5.2. Peptide P19 matrix 

 

Since the three dimensional dextran matrix was not appropriate to probe transducin-centrin 

interaction, a two dimensional surface architecture was considered in a second approach. The 

19-mer peptides CSRARKQAASIKVAVSADR (CYS-SER-ARG-ALA-ARG-LYS-GLN-

ALA-ALA-SER-ILE-LYS-VAL-ALA-VAL-SER-ALA-ASP-ARG) ab breviated as P19 were 

used as hydrophilic spacer molecules to immobilize the transducin at the evaporated gold 

surfaces [Chapter 3.4]. P19 (Sigma) is a fragment of laminin derived from the alpha subunit 

of the heterotrimeric protein88. Laminins89 are a family of large extracellular glycoproteins 

that are involved in cell growth and differentiation.  

The self assembly of the peptide P19 layer was allowed by the gold-sulfur interaction 

of the N-terminal cysteine (C; CYS) residues90. The C-terminus of the peptide P19 was 

activated by EDC/NHS coupling reagent (cf. Figure 6.5.2). The helical structure of the 

peptide P19 is self-spacing and thus enables unhindered binding of the beta and gamma 

subunits of transducin (Gtβγ) to the activated NHS-esters. 
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Figure 6.5.4: Two dimensional surface architecture based on peptide P19 matrix to probe centrin-
transducin interaction. 
 

After the built up of the surface architecture (Figure 6.5.5) centrin-transducin 

interaction was probed. In order to gain enhancement of the surface plasmon resonance signal 

on a 2D matrix, glutathione S-transferase (GST-Cen1p) fusion proteins were chosen. GST-

fused centrins possess a mass of ~ 46 kDa compared to the mass of ~ 20 kDa for the centrin 



Chapter 6. Epitope mapping to identify the centrin sequence interacting to transducin 
 

 132 

protein alone [Chapter 6.4]. Firstly, glutathione S-transferase (GST) as a negatively control 

was investigated. Subsequent to a short rinsing interval with Ca2+ containing buffer F 

(10 mM), the positive control of GST-Cen1p holo was probed. The proteins both in a 

concentration of 10 µM showed different binding behaviour. For GST a low binding signal 

was observed, while GST-Cen1p holo high binding signal during the same time interval. 
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Figure 6.5.5: Built up of the two dimensional surface architecture based on peptide P19. SPR kinetic 
measurement monitors the different steps: self-assembly of P19 in Milli Q; EDC-NHS activation of the 
carboxy groups; binding of transducin (Gtββββγγγγ) to the NHS-esters The black arrows show injection of Milli 
Q water and the blue arrows indicate injection of buffer F with Ca2+ (10 mM) as rinsing steps. 
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Figure 6.5.6: Centrin- transducin interaction on the two dimensional peptide P19 matrix. GST was 
utilized as a negative control. GST-fusion protein (GST-Cen1p holo) was used for an enhancement of the 
SPR signal compared to the centrin (Cen1p holo). The blue arrows show injection of buffer F containing 
Ca2+ and the cyan arrows indicate injection of buffer F with EGTA. 
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During rinsing with buffer F containing Ca2+ (10 mM) not much of the proteins was 

dissociated. For regeneration purposes, buffer F with 6 mM ethylene glycol tetracetic acid 

(EGTA) was chosen, because the binding of centrin to transducin is thought to be Ca2+ 

dependent. Buffer F with 6 mM EGTA was applied for two times, but was not able to 

regenerate the surface completely. After changing back to buffer F containing Ca2+ 

centrin 1 holo (10 µM) was probed. 

As results from the use of the two dimensional P19 matrix can be concluded, that the 

peptide P19 formed a reproducible and stable mono layer and transducin was coupled to the 

P19 via active ester chemistry. As well as on the Biacore chip the binding of transducin was 

undirected. But this time at least a poor centrin binding was detected afterwards. 

GST attached to the N-terminus of the centrins apparently did not strongly influence 

the interaction between transducin and centrin, because centrin 1 holo resulted in less binding 

than the GST-centrin 1 holo fusion protein with the double mass of ~ 46 kDa. 

Centrin binding to transducin is thought to be Ca2+ dependent [Chapter 6.1.2/6.1.3]. 

However, the centrin interaction with transducin was not completely reversible by just adding 

ethylene diamine tetracetic acid (EDTA; data not shown) nor ethylene glycol tetracetic acid 

(EGTA), a highly specific Ca2+ chelating agent, to the buffer. 

The negative control, GST alone, resulted in binding to the P19 sensor surface. This 

indicates the need of additional improvements to the P19 matrix. 
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6.5.3. Combined mPEG thiol matrix 

 

In order to minimize non-specific protein absorption of the peptide P19 matrix the sensor had 

to be further developed. Poly (ethylene glycol) monomethylether (mPEG) as one of the most 

promising materials that prevent non-specific binding of proteins to glass91 and metal coated 

surfaces92, was chosen to cover the intermolecular space of the helical P19 molecules. 

Subsequent to the self-assembly of the peptide P19 (5 µM P19 (Sigma) in Milli Q; 

~ 80 min) mPEG thiol (1 µM mPEG (Polypure) in Milli Q; ~ 20 min) was assembled on the 

evaporated gold film. The structure of the used mPEG thiol and conformation of the improved 

sensor architecture is depictured in Figure 6.5.7. 
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Figure 6.5.7: Combined mPEG thiol matrix. Two improvements were made compared to the peptide P19 
matrix. Firstly, passivation of the accessible gold sensor surface was completed with mPEG thiol. 
Secondly, deactivation of the excess NHS-esters was achieved by using ethanolamine. All of the centrin 
fragments, centrin 1 holo and centrin 3 holo isoform were probed on this sensor surface. 
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Additional to the passivation of the gold surface with the mPEG thiol, excess NHS-

esters were deactivated this time by ethanolamine as it was done for the Biacore CM5 Chip 

[Chapter 6.5.1]. After the passivation, no proteins, neither transducin nor centrin, were bound 

non-specifically to the gold film. And after the deactivation of the NHS-ester groups, no 

further protein could be covalently bound to the peptide P19 matrix. 
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Figure 6.5.8: Built up of the improved two dimensional surface architecture based on P19. SPR kinetic 
measurement monitors the different steps: self-assembly of peptide P19 in Milli Q; self-assembly of mPEG 
thiol; injection of buffer F + Ca2+ as a reference; EDC-NHS activation of the carboxy groups of the 
c-terminus of P19; binding of transducin (Gtββββγγγγ) to the NHS-esters; binding of ethanolamine to remaining 
NHS-esters; floating the cell with buffer F +Ca2+ as the last step. Three different kinetic curves (black, red 
and green line) resultant of three different gold films are shown. 
 

Henceforth, only the combined mPEG thiol matrix was used to investigate centrin-

transducin interactions. All of the centrin fragments, centrin 1 holo and centrin 3 holo isoform 

were probed on this sensor surface in the following chapter. 
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6.6. Regeneration of the sensor surface 

 

Fundamental to an optimal sensor is the ability to perform multiple cycles of an assay on the 

same sensor surface. Not only to minimize the expenditure of the measurement time, but also 

to have reproducible conditions. Since slight sample to sample variations can cause some 

undesired error. Surface regeneration should guarantee an efficient removal of the bound 

material from the sensor surface whilst maintaining the activity of the immobilized 

compound. 

In this study, transducin (Gtβγ) was covalently bound to the peptide P19 matrix. The 

interaction partner centrin was expected to be removed to allow for probing of the differently 

expressed centrin constructs. The binding of centrin to the beta and gamma subunit of 

transducin is thought to be Ca2+ dependent. Therefore, in the very first approach buffer F with 

ethylene glycol tetracetic acid (EGTA) was chosen to regenerate the sensor. EGTA is a 

chelating agent that is similar to the well-known ethylene diamine tetracetic acid (EDTA) 

reagent, but with a higher affinity for calcium than for magnesium ions. From other binding 

assays it is known that quite high concentrations of the chelating agent are needed to release 

the interaction partner out of a complex93, 94. Therefore, in the binding study of centrin- 

transducin, EGTA concentrations of 6 mM up to 250 mM were applied to the system. But the 

centrin was dissociated only to some extent. Even in use of high concentrated chelating agent, 

a full regeneration of the P19 sensor surface was not achieved. 

Regeneration protocols often exploit a pH jump or optional low or high ionic strength 

solutions. But the beta and gamma subunits of the transducin started to unfold at pH values 

lower than pH 6. Variations in ionic strength also did not regenerate the peptide P19 surface. 

Another conventional regeneration method that causes dissociation of protein complexes uses 

sodium dodecyl sulfate (SDS). A short pulse of SDS disrupts non-covalent bounds in the 

proteins, thereby partially denatures the proteins and causes a change in conformation. In this 

study SDS concentrations of 1 % up to 10 % were injected to dissociate the centrin- 

transducin complexes without success. 

Due to the failure of the conventional regeneration methods, a more complex 

regulation than only the presence or absence of Ca2+ in centrin-tranducin complexes had to be 

considered. In vivo the centrin-transducin complexes may be dissociated after phosphorylation 

by the casein kinase 2 (confer Figure 6.1.4). In one test experiment casein kinase 2 and 

adenosine 5´-triphophate (ATP) containing buffer was applied to the centrin-transducin 

complexes anchored to the peptide P19 matrix. But no change in the surface plasmon 



Chapter 6. Epitope mapping to identify the centrin sequence interacting to transducin 
 

 137 

resonance signal was observed. No effect of the casein kinase 2 under these buffer conditions 

does not mean that no interaction between the casein kinase 2 and the protein complex is 

possible in general. 

 

6.7 Further experimental optimization 

 

Since the flow cell volume of ~ 11 µL was really small, the flow rate had to be optimized for 

the peptide P19 system first. The P19 matrix was very sensitive turbulences that caused 

bubbles. But when the peristaltic pump was switched off completely, mass transport 

limitations of centrin binding were observed. So the lowest flow of ~ 35 µL/min that could be 

obtained from the peristaltic pump was chosen to probe centrin-transducin interactions. 

Centrin-transducin binding was also dependent on the concentrations of both 

interaction partners. A densely packed layer of transducin molecules resulted from a 10 µM 

solution and did not show a satisfying centrin signal, while a 1 µM solution of transducin 

yielded a good signal. The centrins were always used in a concentration of 10 µM. 

The contact time for the interaction had to be optimized as well. Due to really slow 

binding of centrin to transducin a binding interval over ~ 1000 minutes with the flow of ~ 

35 µL/min was selected. During this time interval a saturation of the surface plasmon 

resonance signal was reached mostly. 

In vivo the centrin-transducin reaction should happen within minutes. The much longer 

time period that is needed for the interaction might be due to the fact that transducin is 

immobilized on the surface. Also the accessibility of the transducins is limited, because the 

transducins are linked to the matrix in an undirected way. In principle, a His-tag strategy for 

the immobilization of transducin is practical. But in this study, the His-tag strategy was 

purposely not chosen to interfere as less as possible with the natural kinetic characteristics of 

the protein. 

 

6.8 SPR results of centrin-transducin interactions 

 

The following surface plasmon resonance measurements were conducted under all these 

optimized conditions. Firstly, the interactions of centrin 1 protein constructs and 

centrin 1 holo protein were probed. Secondly, centrin 3 holo isoform was compared to the 

centrin 1 holo. Since no complete regeneration of the sensor surface was possible, for each 

interaction experiment a new sample was used. The centrin constructs or centrin 3 isoform 
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were measured first and centrin 1 holo as the positive control was monitored afterwards. For 

all interaction experiments buffer F containing Ca2+ (10 mM) pH 8 was used. 

 

6.8.1. Centrin 1 (Cen1p) constructs 

 

First of all the Cen1p∆EF1 construct was analysed, because it was the shortest protein 

fragment (Figure 6.3.3). The N-terminus and the first EF-hand were missing. If a difference 

existed between centrin 1 holo and the constructs, it was expected to be clearly seen for the 

Cen1p∆EF1 construct. Indeed, the surface plasmon measurements proved the expectation 

(Figure 6.8.1). In the kinetic measurement a small signal (~ 1 % change in reflectivity) was 

observed for the binding of Cen1p∆EF1 to the beta and gamma subunits of transducin (Gtβγ). 

After 1000 min of binding reaction, the sample was rinsed with buffer F + Ca2+ for ~ 400 min. 

Almost no Cen1p∆EF1 construct remained at the peptide P19 matrix after the rinsing step. 

At the same sensor surface the centrin 1 holo protein showed a huge binding to the 

subunits of transducin (Gtβγ). This binding was not reversible by rinsing with buffer F + Ca2+ 

for ~ 400 min. 

 

0 200 400 600 800 1000 1200 1400 1600

19

20

21

22

23

24

25

 10 µM centrin 1 holo
 10 µM centrin 1 ∆∆∆∆EF1

R
ef

le
ct

iv
ity

/ %

Time/ min

 

Figure 6.8.1: Surface plasmon resonance kinetic measurement of Cen1p∆∆∆∆EF1 versus Cen1p holo. The 
measurement was conducted on the combined mPEG thiol/P19 matrix, where the beta and gamma 
subunits of transducin were immobilized [the oscillations at the beginning of the kinetic measurement of 
the centrin 1 holo are artefacts due to liquid handling problems]. 
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In a second experiment the affinity of Cen1p∆Nterm construct to transducin (Gtβγ) 

was investigated. This centrin 1 fragment was missing only the N-terminus (Figure 6.3.2). 

Thus, the length of the Cen1p∆Nterm construct (142 aa) was not much different to the length 

of the centrin 1 holo protein (172 aa); ~ 83 % of the length of centrin 1 holo. But still showed 

a similar binding behviour to the transducin (Gtβγ) than the Cen1p∆EF1 construct (107 aa). 

After 1000 min of binding reaction, ~ 1.5 % change in reflectivity was derived in the 

case of the Cen1p∆Nterm fragment (Figure 6.8.2). Subsequent rinsing with buffer F + Ca2+ 

for ~ 400 min dissociated around two third of the protein. The following centrin 1 holo 

binding yielded a very high signal, which was not reversible by rinsing the sensor surface. 
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Figure 6.8.2: Surface plasmon resonance kinetic measurement of Cen1p∆∆∆∆Nterm versus Cen1p holo. The 
measurement was conducted on the combined mPEG thiol/P19 matrix, where the beta and gamma 
subunits of transducin were immobilized. 
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A third experiment was conducted with Cen1p∆S1Nterm, a centrin 1 construct that 

was only 6 amino acids longer than the previously analyzed Cen1p∆Nterm (Figure 6.8.3). 

This time a huge binding signal was observed. The change in reflectivity was comparable to 

the signal of centrin 1 holo protein. Subsequently rinsing did not much influence the binding 

signal. 
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Figure 6.8.3: Surface plasmon resonance kinetic measurement of Cen1p∆∆∆∆S1Nterm versus Cen1p holo. The 
measurement was conducted on the combined mPEG thiol/P19 matrix, where the beta and gamma 
subunits of transducin were immobilized. 
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6.8.2. Centrin 3 (Cen3p) isoform 

 

In this experiment, centrin 3 holo isoform was compared to the centrin 1 holo protein 

(Figure 6.8.4). Again the optimized combined mPEG thiol/P19 matrix was used. 

Centrin 3 holo (167 aa) showed a slightly higher surface plasmon resonance signal than 

Cen1p∆EF1 construct (107 aa) and Cen1p∆Nterm construct (142 aa), that might be due to the 

larger size of centrin 3 holo. 

But after rinsing for ~ 400 min, almost no centrin 3 holo protein remained at the sensor 

surface. The positive control of centrin 1 holo protein showed a high surface plasmon signal 

as in the experiments before. 
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Figure 6.8.4: Surface plasmon resonance kinetic measurement of Cen3p holo versus Cen1p holo. The 
measurement was conducted on the combined mPEG thiol/P19 matrix, where the beta and gamma 
subunits of transducin were immobilized. 
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6.9 Conclusion and Outlook 

 

A surface plasmon resonance sensor platform for centrin-transducin interaction measurements 

was successfully developed. The so-called combined mPEG thiol/P19 matrix was stable, 

reproducible and non-fouling. 

The surface plasmon resonance measurements suggest the evidence that centrin 1 

(Cen1p holo ) and transducin indeed interact with high affinity28. In vitro assays, such as 

co-immunoprecipitation, overlay and co-sedimentation as well as size exclusion 

chromatography and kinetic light scattering experiments, all of these methods, previously 

demonstrated that Cen1p holo binds with high affinity to transducin. Therefore, Cen1p holo 

was capable to serve as the positive control in the interaction experiments. 

This study showed additionally the variations in binding affinity that exist for the 

differently expressed centrin 1 constructs. Although the constructs possessed very different 

masses, a clear differentiation in binding to the transducin was investigated in comparison to 

the centrin 1 holo protein. The Cen1p∆EF1 and Cen1p∆Nterm constructs exhibited nearly no 

binding affinity to the beta and gamma subunit of transducin. But the Cen1p∆S1Nterm 

fragment, that is only six amino acids longer than the Cen1p∆Nterm protein constructs, 

resulted in a similar binding behavior than the Cen1p holo protein. For that reason, these six 

amino acids, LTEDQK, are thought to be responsible for the binding to transducin (Gtβγ) 

(Figure 6.9.1). 

 

 

 

Figure 6.9.1: Simulation of the centrin 1 holo protein. The six amino acids, that were found to be 
responsible for the binding to the beta and gamma subunits of transducin, are marked in blue. The 
simulation was generated with software Vector-NTI-Suite (3D-viewer of Vector-NTI) using the 3D-
coordinates of the Brookhaven Protein Database (PDB). 
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Cen3p holo, an isoform of centrin 1, was investigated in the surface plasmon 

resonance studies as well. In comparison to Cen1p holo the centrin 3 isoform resulted in very 

limited binding to the beta and gamma subunits of transducin. In Table 6.9.1 the SPR results 

of the binding study were summarized. 

 

Table 6.9.1: Summary of the SPR binding study to probe centrin-transducin interactions. 
 
Limited binding to transducin (G tββββγγγγ) high affinity to transducin (G tββββγγγγ) 
Cen1p∆EF1 Cen1p holo 
Cen1p∆Nterm Cen1p∆S1Nterm 
Cen3p holo  
 
 

The affinity constants kon and koff could not be determined in this study for several 

reasons. The main difficulty to verify the binding affinity of centrin to transducin was that no 

1 : 1 ratio for the interaction was found. SPR measurements for longer periods of time, over 

some days, showed a binding curve of centrin 1 holo that became linear and constantly 

increased. Therefore, dimerization and oligomerization of centrin 1 could be possible. Item in 

vivo, centrin 1 holo protein was thought to form dimers and oligomers to build nanofilaments. 

A second problem to determine the affinity constants was that the centrin-transducin 

interaction was irreversible under the applied buffer conditions. Hence no dissociation process 

with buffer F (+ Ca2+) was monitored and no koff was determinable. Even the usual 

regeneration methods for sensors failed to separate centrin and transducin. In vivo, the 

centrin-transducin dissociation might be regulated by an enzyme. Casein kinase 2 in an ATP 

containing buffer was applied in this study as possible candidate for regulation, but did not 

show any effect under the testing conditions. 

Thirdly, every interaction experiment was conducted on a different substrate due to the 

irreversibility of the centrin-transducin interaction. As the beta and gamma subunits of 

transducin that expose17 lysin residues were linked to the matrix in an undirected way, the 

response and the affinity constants could vary from sample to sample slightly. 

There still remain unresolved issues in the centrin-transducin interaction mechanism. 

Especially the sensor regeneration needs a lot of further work. The binding behaviour of the 

two other centrin isoforms, centrin 2 and centrin 4, can be investigated on the combined 

mPEG thiol/P19 matrix as well. Different buffer conditions for the interaction can be studied. 

Another approach to get an idea about the affinity constants, kon and koff, could be 

realized on a Biacore surface plasmon resonance device under completely controlled 

conditions. Constant temperature and flow in a Biacore machine, injection by robot-controlled 
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pipettes, smaller reaction volumes etc., all these factors could improve the measurements. For 

example, Biacore 2000 and 3000 instruments use a sensor chip technology, where the thin 

gold film (~ 50 nm) on the glass substrate is divided into four channels or flow cells. Both 

devices can record from all four flow cells at the same time, allowing real-time reference 

subtraction and measurement of analyte binding, so that three different analytes can be probed 

simultaneously. A Biacore device could not only fasten the SPR kinetic measurements, but 

also increase the reproducibility. The centrin fragments could be traced and compared to the 

centrin 1 holo in real time, each on a newly built sensor matrix. For the experiments on 

Biacore instruments the combined mPEG thiol/P19 matrix could be used as well. 
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7. Summary 

 

In this study, surface plasmon phenomena, i.e. propagating and localized surface plasmon 

resonances (p-/l-SPR), were used for detailed investigations of molecular interactions on 

different substrate surfaces. Other surface characterization methods such as cyclic 

voltammetry, impedance spectroscopy, and scanning electron microscopy were used to obtain 

complementary information. 

In the first part of this study, nanoporous gold (NPG) substrates were examined. It 

emerged that the use of NPG substrates was not a simple reiteration of “another metal” for 

plasmonic sensing. The NPG substrates displayed unique properties due to their porosity. 

They were uniquely suited to the examination of surface plasmons because the material 

simultaneously showed features of both planar metal films exhibiting p-SPR excitations and 

nanoparticles exhibiting l-SPR excitations. The streptavidin-doped bead binding experiment 

proved the utility of NPG for quantitative p-SPR measurements. Taken together, the 

experimental results led to an hypothesis regarding optical sensing of size-selective 

adsorption on nanoporous metal membranes: that species that were able to diffuse into the 

pores of NPG and modify their dielectric atmosphere were detectable by changes in the l-SPR 

excitations, whereas species that adsorbed only onto the geometric surface of the pores of a 

film of NPG were less influential to l-SPR but equally detectable by p-SPR measurements. 

More generally, the results of this research provide insights into the fundamental optical 

properties of mesoporous materials and the design of new high surface area materials for 

dynamic optical sensing of adsorbates. 

The second part of this study was based on the investigations of macroporous 

gold/silica composite inverse opals. The substrates were prepared through silane surface 

modification, followed by gold nanoparticle deposition and electroless plating on the silica 

inverse opal templates. These samples combined the advantages of a larger available gold 

surface area with a regular and highly ordered grating structure. A plasmonic response of the 

gold/silica composite inverse opals was observed, which showed a pronounced spectral 

change upon the variation of the surrounding dielectrics. This observation demonstrated the 

capability of this novel material to be used for sensing applications. 

In the final part of this thesis, surface plasmon resonance spectroscopy was utilized to 

monitor interfacial protein/protein interactions of the calcium binding protein centrin with the 

heterotrimeric G-protein transducin on an evaporated flat/dense gold film in order to 

understand the molecular concept of vision better. A sensor platform for centrin-transducin 
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interaction measurements was successfully developed. The interacting-site of centrin 1 was 

identified by probing differently expressed centrin 1 fragments. Six amino acids, LTEDQK, 

were shown to be responsible for the binding to transducin (Gtβγ). Kinetic measurements 

showed that centrin-transducin binding does not occur in a 1:1 ratio. Furthermore, 

dimerization and oligomerization of centrin 1 was indicated. Consequently, centrin 1 can bind 

the transducin passing the ciliary lumen and may contribute to a Ca2+ dependent barrier for 

transducin in the connecting cilium. 

 



Chapter 8. Appendix  
 

   153 

8. Appendix 
 
 
8.1 Summary of advantages and disadvantages of NPG at a glance 
 
 
 
Advantage of NPG Disadvantage of NPG 
Inexpensive material and production (low-
cost) 
> affordable (hammering) 

Inhomogeneities in film thickness 

Compatible with well-studied SAMs of thiols 
> biocompatible 

NPG roughness causes forward scattering and 
directional backward scattering of 
nonradiative SPs, 
no sharp signals (both in plasmon and in 
absorbance peak) 

Free corrosion of Ag-Au alloy in 70 % HNO3 
at room temperature 

Production of toxic NO2 during fabrication 

Pore size tuneable with time of exposure in 
acid bath 

No major differences in pore size for samples 
5 min to 2 h etched 

High surface area due to 3D pore structure 
>sponge like morphology 

Fractal structure leads to size limitations –
pores are not accessible for larger molecules - 
> penetrable only by molecules of certain 
shapes and sizes.  

Stable NPG substrate with only a few defects 
such as cracks – sponge like morphology 
stays stable for at least 6 month (in water and 
dried state) 

Critical step in NPG fabrication is the 
silanization of the glass slide, where 3D self-
assembly of the 3 MPT molecules can happen 
preventing the NPG from being fully glued to 
the glass substrate 
 i.e. the NPG could come off during the 
experiment 

Continuous gold can exhibit p-SPR A sharp resonance can be derived only by an 
invisible IR laser. This laser should be parallel 
aligned, for example to a red laser, for 
visualizing the measuring spot. 

Nanostructures can exhibit l-SPR Small signals, such as DNA-DNA 
hybridization are smeared out / in the noise 
range due to large pore size distribution 

p-SPR and l-SPR modes can be excited 
simultaneously 

 

NPG is compatible with typical 
electrochemical impedance spectroscopy EIS 
measurements  

 

NPG membranes are translucent 
> transmission to determine the thickness 

 

Floats on water  
NPG morphology can function as ionic fluid 
reservoir 
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8.2 Supporting material for chapter 6 
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Figure 8.2.1: (A) Centrin-1-holo protein – titration experiment: centrin-1-holo protein as a positive control 
was injected in different concentrations to probe the interaction between transducin and centrin. The 
surface architecture was the combined mPEG thiol matrix described in chapter 6 (6.5.3); (B) Scans were 
recorded before and after the deposition of centrin-1-holo protein. A fit of the scan curves revealed a 
thickness of 10.6 nm for the centrin coverage assuming an homogeneous centrin layer with a refractive 
index of 1.45; Winspall (version 2.20) was used for the fitting. 
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8.3 Table of standard amino acid abbreviations 

 

Symbols of the 20 standard amino acids are listed in the following table according to IUPAC 

(International Union of Pure and Applied Chemistry) and IUB (International Union of 

Biochemistry) nomenclature recommendations (UPAC-IUB Commission on Biochemical 

Nomenclature (CBN). Abbreviations and symbols for nucleic acids, polynucleotides and their 

constituents. Recommendations 1970). The following abbreviations were used in this thesis. 

 

 

Amino Acid 3-Letter 1-Letter 
Alanine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic acid Asp D 
Cysteine Cys C 
Glutamic acid Glu E 
Glutamine Gln Q 
Glycine Gly G 
Histidine His H 
Isoleucine Ile I 
Leucine Leu L 
Lysine Lys K 
Methionine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 
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8.4 List of Abbreviations 

 

This is a list of abbreviations that are used in the text. 

 

aa    amino acid (protein length) 
AC    alternating current 
ACF    autocorrelation function 
AFM    atomic force microscopy 
ANTA    amino-nitrilotriacetic acid 
ATP    adenosine triphosphate (universal energy currency of organisms) 
BK7    Borkron glass (Fisher Scientific) 
BLMs    black lipid membranes 
CC    connecting cilium 
CcO    cytochrome c oxidase 
Cdl    capacitance of the double layer 
cen (cen1-cen4)  centrin (centrin 1- centrin 4) 
cf.    confer 
cGMP    cyclic guanosine monophosphate 
CK2    casein kinase 2 
CPE    constant phase element 
CV    cyclic voltammetry 
Cyt c    cytochrome c 
1D    one dimensional 
2D    two dimensional 
3D    three dimensional 
DC    direct current 
DDM    n-Dodecyl-β-D-maltoside 
DiPhyPC    1,2-diphytanoyl-sn-glycero-3-phosphocholine 
DMSO    dimethyl sulfoxide (CH3)2SO 
DNA    deoxyribonucleic acid 
DTSP    dithiobis (N-succinimidyl propionate) 
DTP    dithiodipropionic acid 
E    potential 
EDTA    ethylenediaminetetraacetic acid (chelating agent) 
EG    evaporated gold (film) 
e.g.    for example (abbr. of Latin exempli gratia) 
EIS    electrochemical impedance spectroscopy 
EtOH    ethanol 
FEG    field emission gun 
Fig.    figure 
FRA    frequency response analyzer 
FT-IR    Fourier Transform Infrared 
FWHM   full width at half maximum 
G-protein   guanine nucleotide binding protein 
GDP    guanosine diphosphate 
GRK1    rhodopsin kinase 
G4    generation 4 (dendrimer) 
Gi    G-protein (alpha subunit) that inhibits adenylat cyclase 
Golf    olfactory-type G protein (alpha subunit) 
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Gq    G-protein (alpha subunit) that stimulates phospholipase C 
Gs    G-protein (alpha subunit) that activates adenylate cyclase 
Gt    transducin (guanine nucleotide binding protein) 
Gtα    alpha subunit of transducin 
Gtβγ    beta-gamma subunit of transducin 
Gtαβγ    heterotrimeric transducin (alpha-beta-gamma subunit) 
GST    glutathione S-transferase 
GTP    guanosine triphosphate 
GTase    enzyme that can bind and hydrolyze GTP 
h    hour 
HeNe (laser)   helium-neon (laser) 
i    current response 
IgG    immunoglobulin G 
IHP    inner Helmholtz plane 
IR    infrared 
IS    inner segment 
kDa    kilodalton being equal to 1000 daltons 
LaSFN9   Lanthanschwerflint glass (Schott) 
LbL    layer-by-layer 
min    minute 
Mm    Mus musculus 
Mm    millimeter, 10-3 m 
mHz/ MHz   millihertz, 10-3 Hz/ megahertz, 106 Hz 
MPA    mercaptopropionic acid 
MPT    (3-mercaptopropyl) trimethoxy-silane 
MW    molecular weight 
mV    milli, 10-3 Volt 
nm    nanometer, 10-9 m 
NP    nanoparticle 
NPG    nanoporous gold 
OHP    outer Helmholtz plane 
OS    outer segment 
PBS    phosphate buffer saline 
pI    isoelectric point 
PDE    phosphodiesterase 
PDMS    polydimethyl siloxane 
PKC    proteinkinase C 
PRC    photoreceptor cell 
QCM    quartz crystal microbalance 
R    resistance 
RS    series resistance 
RF    Faradaic resistance 
RI    refractive index 
RHO    rhodopsin 
SA    streptavidin 
SA-LX    polystyrene latex bead doped with streptavidin 
SAM    self assembled monolayer 
SE    secondary electrons 
SEM    Scanning Electron Microscopy 
SP    surface plasmon 
SPR    surface plasmon resonance 
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l-SPR    localized surface plasmon resonance 
p-SPR    propagating surface plasmon resonance 
tBLM     tethered lipid bilayer 
TSG    template stripped gold (ultra flat sample) 
XPS    X-ray photoelectron spectroscopy 
Y    admittance 
Z    impedance 
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