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Preface 
 
 

This dissertation is devoted to the experimental exploration of the propagation of 

elastic waves in soft mesoscopic structures with submicrometer dimensions. A strong 

motivation of this work is the large technological relevance and the fundamental 

importance of the subject. Elastic waves are accompanied by time-dependent 

fluctuations of local stress and strain fields in the medium. As such, the propagation 

phase velocities are intimately related to the elastic moduli. Knowledge of the elastic 

wave propagation directly provides information about the mechanical properties of 

the probed mesoscopic structures, which are not readily accessible experimentally. 

On the other hand, elastic waves, when propagating in an inhomogeneous medium 

with spatial inhomogeneities comparable to their wavelength, exhibit rather rich 

behavior, including the appearance of novel physical phenomena, such as phononic 

bandgap formation. So far, the experimental work has been restricted to macroscopic 

structures, which limit wave propagation below the KHz range. It was anticipated 

that an experimental approach capable of probing the interplay of the wave 

propagation with the controlled mesoscopic structures would contribute to deeper 

insights into the fundamental problem of elastic wave propagation in inhomogeneous 

systems.  

The mesoscopic nature of the structures to be studied precludes the use of 

traditional methods, such as sound transmission, for the study of elastic wave 

propagation. In this work, an optical method utilizing the inelastic scattering of 

photons by GHz frequency thermally excited elastic waves, known as Brillouin light 

scattering spectroscopy (BLS), was employed. Two important classes of soft 

structures were investigated: thin films and colloidal crystals. For the former, the 

main interest was the effect of the one-dimensional (1D) confinement on the wave 

propagation due to the presence of the free-surface or interface of the layer and the 

utilization of these waves to extract relevant material parameters. For the second 

system, the primary interest was the interaction of the elastic wave and the strong 

scattering medium with local resonance units in a three-dimensional (3D) periodic 

arrangement. 

I 



The dissertation is organized as follows. Chapter 1 serves as a general 

introduction and the background of the present work. In Chapter 2 and Chapter 3, the 

physical principles of elastic wave propagation and the BLS method necessary for 

comprehending the results in later chapters are introduced. Chapter 4 is devoted to 

the experimental technique encompassing the tandem Fabry-Perot interferometer and 

the related scattering geometry. From Chapter 5 to Chapter 8, the BLS results for the 

various mesoscopic structures are presented, including thin supported polymer films, 

multilayer polymer films, dry colloidal crystals, and wet colloidal crystals. In 

Chapter 9 a brief summary and perspectives are provided. 
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  Chapter 1 
        

 

Introduction 
 

 

 

It is generally acknowledged that many of the true breakthroughs in technology have 

their roots in a deeper understanding of the properties of materials. The use of materials from 

which major tools have been constructed has had such a significant impact that 

archaeologists refer to those materials to classify the prehistoric human societies, e.g. the 

Bronze Age. The past century has witnessed the greatest changes in human history, results 

benefiting chiefly from the advanced comprehension of nature that has enabled manifold 

significant technological progress permeating every corner of life. Once again, the discovery 

and usage of new materials have played paramount roles. For instance, one can try to 

imagine what would happen if synthetic polymers are removed from daily life, being aware 

that they are essentially the chemical building blocks of plastics, rubbers, fibers, paints, and 

adhesives. 

It has been realized that the properties of a material depend not only on its chemical 

composition but also on its dimension. Many materials exhibit different properties from their 

corresponding bulk properties when the dimensions of the system approach the molecular 

level. For example, metal and semi-conducting nanoclusters with dimensions of a few 

nanometers exhibit remarkable optical, electrical, mechanical, catalytic, and magnetic 

properties [1]. For polymers, the size-dependent effect is expected to appear at larger length 

scale as the dimensions of a single polymer chain can reach tens of nm or even larger 

depending on the molecular weight. Advances in nanotechnology have permitted the 

fabrication of materials, especially polymeric materials, with various submicrometer 
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1. Introduction 

structures [2-8]. These materials, having structures at least in one dimension in the range 

about a few hundred nm, are often called mesoscopic materials.    

 Polymer thin films with thicknesses below hundreds of nm are used extensively in 

technological applications such as protective or optical coatings, barrier layers, and 

packaging materials. The dramatically increased surface-to-volume ratio and the restriction 

on the chain conformation in the film thickness direction are believed to influence the 

mobility of the molecules and consequently lead to different viscoelastic properties of the 

thin film compared to the bulk [9]. Continuous theoretical and experimental efforts are being 

carried out in an attempt to achieve better understanding of the dynamics of macromolecules 

in confined environments [9]. Of great practical importance and therefore particular 

experimental interest is the reliable determination of the glass transition temperature (Tg) and 

the elastic moduli of polymer thin films as their performance depends highly on these 

material properties. Despite the facile experimental access to the Tg and mechanical 

properties of bulk polymers, this is prohibitive for thin films due to the low signal-to-noise 

ratio inherent to the small dimensions of the sample. Hence traditional methods for thermal 

and mechanical characterization can hardly be employed.   

The first systematic study of the dependence of Tg on the thickness of thin polymer films 

was conducted by Keddie et al. [10] using ellipsometry. Since then, a number of techniques 

with high sensitivity including ellipsometry [11-13], dielectric spectroscopy [14,15], X-ray 

reflectivity [16], positron annihilation life time spectroscopy [17], Brillouin light scattering 

(BLS) [11,18], and local thermal analysis [19] have been applied to measure Tg of polymer 

thin films, either supported or free-standing. Following the seminal experiments by Forrest 

et al. [20], it is now widely perceived that the Tg of free-standing thin films (below 100 nm) 

is substantially lower than that of the bulk material. But for supported thin films, no reliable 

conclusion has been drawn about the magnitude of the shift of Tg on the film thickness and 

even the direction of the shift (positive or negative) is ambiguous since the results from 

different techniques have been contradictory [21,22]. The determination of mechanical 

properties of thin polymer films is a more arduous task. The state-of-the-art methods are 

based mainly on the mechanical deformation of the thin film [23], e.g. the substrate 

curvature test, the nanoindentation and the bulge test, or on the acoustic wave propagation 

within the film [23,24], e.g. impulsive stimulated thermal scattering and BLS. The wave 

propagation based methods show great promise because of their noncontact, nondestructive 
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characteristics, the virtue of requiring no special sample preparation procedures and the high 

reproducibility of the results. In addition, the measured quantity, usually the phase velocity 

of the acoustic wave, is sensitive to the change in the free-volume of polymer. Therefore in 

combination with a change in temperature, these methods have been directly used to 

determine Tg of thin polymer films.  

To date, BLS is the only wave propagation based method that has been used to 

determine elastic properties of thin polymer films with thickness below 100 nm [18,25]. 

Briefly, this technique leverages the Doppler shift of the inelastic light scattered by 

thermally activated hypersonic (GHz) elastic waves in the matter. This frequency shift and 

the scattering geometry allow the determination of the phase velocity of the acoustic waves. 

In spite of few BLS studies on thin polymer films [11,18,24-26], ample space remains for 

further investigations. For example, the determination of Tg by BLS has so far been 

restricted to free-standing thin films [11,18]. Furthermore, the exploration of elastic 

excitations in some both theoretically and practically important systems, including the 

multilayer stack of alternating thin layers, is essentially lacking.  

From a fundamental point of view, the study of acoustic wave propagation in 

inhomogeneous systems is itself of great importance. Since the late 1980s, it has been 

realized that fascinating material properties can be introduced by constructing composites 

with periodic structures. The pioneering work by Joannopoulos [27-32] and Yablonovitch 

[32-35] has shown that composite materials with specially designed periodic variation of 

dielectric constant, or photonic crystals, offer the possibility of complete control over light 

propagation. This powerful capability mainly originates from a distinct hallmark of photonic 

crystals, that is, the existence of photonic bandgaps, which prevent light with certain 

frequencies from propagating through the crystal in analogy to electronic bandgaps in 

semiconductors. Recalling the impact of semiconductors on the field of electronics, one can 

easily anticipate the revolution in optical, information and telecommunication industries by 

the development of photonic crystals. For example, future high-speed computers may be 

based on photonic crystal chips using light signals instead of electricity for data processing. 

Soon after the birth of this emerging field of the novel manipulation of light, theoretical 

work embarked on the propagation of acoustic waves in structures with periodic variations 

of density and/or sound velocities, these structures are coined phononic crystals [36] by 

analogy with their optical counterparts. A major effort is the search for phononic bandgaps 
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that forbid the propagation of acoustic waves within certain energy ranges. Phononic crystals 

could achieve the same level of control over acoustic waves as photonic crystals do on light 

and semiconductors on electrons. Therefore, promising technological applications in sonics, 

ultrasonics, and hypersonics are highly anticipated, including sound shields, acoustic 

superlenses, acoustic lasers, and thermal barriers [37-44]. 

In spite of the different physical nature of phononic and photonic crystals as well as 

semiconductors, the physical reason for the bandgap formation in these systems is essentially 

the same. In all cases, the bandgap is generated by the destructive interference of Bragg 

diffracted waves in periodic structures [45]. The bandgap formation phenomenon, however, 

becomes increasingly complex when the system varies from semiconductors to photonic 

crystals and then to phononic crystals in as much as the corresponding wave nature changes 

from scalar wave (electronic) to transverse wave (electromagnetic) and finally to full vector 

wave (acoustic). For phononic crystals, more material parameters are required to specify the 

system, which further complicates the nature of wave propagation. Two theoretical papers in 

1993 by Kushwaha et al. [36] and Economou et al. [46] have been generally regarded to 

trigger the research on phononic crystals. Thereafter, an increasingly growing number of 

publications have been devoted to this newly-born field every year.  

Most of the studies on phononic crystals are from a theoretical point of view and with a 

special emphasis on the band structure calculations for various lattice types and elastic 

combinations. The existence of bandgaps in various phononic crystals has been 

experimentally confirmed [40,42-44] and some derivative novel physical effects have also 

been observed, such as the tunneling effect [47] and negative refraction [48,49]. These 

experiments were mainly based on ultrasonic transmission techniques. All of the systems 

realized so far have been restricted to sonic and ultrasonic crystals with macroscopic 

periodicity, e.g. in the millimeter range patiently assembled manually [40,43,44]. The desire 

for further extending the investigation of this phononic bandgap formation phenomenon to 

even higher frequencies, entering the hypersonic range, largely comes from the distinct 

nature inherent to hypersonic waves and the consequent emergence of possible novel 

applications [37-39,41].  

Unlike sonic and ultrasonic waves, whose generation usually relies on an external 

stimulus, acoustic waves at hypersonic frequencies (phonons) can be formed merely by 
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random thermal motion of the atoms of a material. In dielectric materials, thermal energy is 

mainly transported by phonons, therefore hypersonic phononic crystals capable of 

manipulating the flow of phonons are expected to have an impact on controlling the thermal 

conductivity. Furthermore, a hypersonic crystal permits concurrence of phononic and 

photonic bandgaps [37,38,41], making the integrated management of electromagnetic and 

elastic waves possible. This feature, unique to hypersonic crystals, allows the design of a 

number of novel acousto-optical devices [37,38,41], including optical modulators and 

optically pumped acoustic oscillators. The significance of hypersonic crystals calls for 

thorough experimental investigations, unfortunately the dual difficulties associated with the 

fabrication and characterization caused by the intrinsic small dimensions of the structure 

(submicrometer scale) pose serious obstacles.  

From the introduction above, one can recognize that the study of elastic excitations in 

mesoscopic materials is of both practical and fundamental importance. The status quo is that 

compared to the knowledge on the electronic and optical properties, the understanding of the 

elastic properties of mesoscopic systems is much less satisfactory. The present dissertation 

therefore was carried out in an attempt to narrow this gap. 
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  Chapter 2 
 

 

Elastic wave propagation in solids 

 
 
 

2.1 Elasticity fundamentals  

2.1.1 Stress and strain 
 

When a solid body2-1 is deformed under the application of external forces, the 

arrangement of its molecules changes from the initial equilibrium state, internal forces 

therefore arise which tend to restore the body to equilibrium. These internal forces associated 

with deformation are called internal stresses. 

Consider a closed volume V of the body, the total internal force on V can be represented 

by , where F is the force per unit volume and FdV is the force on a volume element 

dV in V. With the aid of Gauss’s divergence theorem, the volume forces can be related to the 

surface forces via the following relation 

V
dV∫ F

V S
dV dS= ⋅∫ ∫F n σ , with ∇ ⋅F = σ ,                              (2.1) 

where dS is a surface element of the surface S that encloses V, and n is the unit normal 

characterizing the direction of dS whose positive direction is pointing outward of dS. Since F 

is a vector,  is then a second-rank tensor, which is called the stress tensor. Written in 

component form, we have 

σ

                                                 
2-1 The “solid” discussed in this chapter includes also liquid, the latter can be regarded as a special case of solid which 
cannot support shear stress, or equivalently, µ=0, where µ is the Lamé coefficient whose meaning will be made clear in the 
following. 
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ik
i

k
F

x
σ∂

=
∂

,                                                   (2.2) 

where the Einstein summation convention is used. It can be readily shown that [50] the stress 

tensor is symmetrical, namely, ik kiσ σ= . Therefore there are only six independent 

components of stress, among which 11σ , 22σ and 33σ are called normal components of stress 

as they cause dilatation or contraction of the body; while 12σ , 13σ  and 23σ  are called shear 

components of stress as they lead to a change in the shape of the body. 

The deformation of a solid body can be completely described if the displacement of 

every point of the body is known. Consider some particular point whose position vector 

before the deformation is r, and after the deformation is r′. The displacement of this point 

due to the deformation is denoted by the so-called displacement vector u, 

                                                ′=u r - r   

or      i iu x xi′= − .                                                   (2.3) 

Certainly ui is a function of the coordinates xi. When a body is deformed, the distances 

between its points change. Consider two closely spaced points. If the distance vector joining 

them before the deformation is dxi, obviously the distance between them is given by 

2

i

id l d x= . After the deformation, the distance vector jointing the two points 

becomes , correspondingly the distance between them is i id x d x d u′ = + 2
id l d x′ ′= . 

Substituting i
i

k
du dx

x k
u∂

=
∂

, we obtain 

2 2 i i i
i k k l

k k l

u u ud l d l d x d x d x d x
x x x

∂ ∂ ∂′ = + +
∂ ∂ ∂

.                       (2.4) 

For small deformations as in the context of this thesis, the higher order terms in Eq. (2.4) can 

be ignored, therefore 

2 2 i
i k

k

ud l d l d x d x
x

∂′ = +
∂

 .                                        (2.5) 
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Defining a second-rank tensor uik as 

1
2

i k
ik

k i

u uu
x x

⎛ ∂ ∂
= +⎜ ∂ ∂⎝ ⎠

⎞
⎟ ,                                    (2.6) 

Eq. (2.5) becomes              2 2 ik i kd l d l u d x d x′ = +  .                                 (2.7) 

The tensor uik is called the strain tensor. It is self-evident from its definition that the strain 

tensor is also a symmetrical tensor, that is, ik kiu u= . 

2.1.2 Hook’s law 
 

For a perfectly elastic body, Hook’s law can be generalized to state that each component 

of stress is linearly related to each component of strain, namely 

ik iklm lmc uσ = ,                                          (2.8)  

where ciklm is a fourth-rank tensor called the elastic constant tensor or stiffness tensor. In the 

most general case, ciklm has 3×3×3×3=81 components. Fortunately, by virtue of the 

symmetry of the stress and strain tensors (both of them have only six independent 

components), the number of the coefficients can be reduced to 6×6=36. It can be shown that 

further reduction is possible from energy considerations [50,51]. The number of independent 

elastic constants for the most general anisotropic body can be reduced to 21, as a result of 

the following symmetry relations, 

   iklm kilm ikml lmikc c c c= = = .                                       (2.9) 

For solids with certain symmetries, e.g. crystals, the number of the elastic constants can 

be even reduced according to Voigt’s principle [50,51] which states that the symmetry of the 

physical process is superimposed on the symmetry of the crystal. In practice it is customary 

to use the matrix notation in place of the full tensor notation to express the stress-strain 

relation in Eq. (2.8). The following rules are adopted: 
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Tensor notation 11 22 33 23, 32 13, 31 12, 21 

Matrix notation 1 2 3 4 5 6 

For example, the tensor component c1122 is replaced by the matrix index C12, and so on. 

Accordingly Eq. (2.8) can be rewritten in the following equivalent matrix form, 

1 11 12 13 14 15 16

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

C C C C C C u
C C C C C C u
C C C C C C u
C C C C C C u
C C C C C C u
C C C C C C u

σ
σ
σ
σ
σ
σ

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢

=⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

1 ⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.           (2.10) 

This symmetric 6×6 matrix [C] is called the stiffness matrix. The general discussion of the 

specific matrix form corresponding to a given crystal symmetry can be found in specialized 

treatises. Here the result will be given only for the simplest case, the isotropic body, for 

which the physical properties do no depend on the orientation of the body. In many cases, 

especially when polymeric materials are concerned, the isotropic treatment serves as a very 

good approximation. 

2.1.3 Elastic moduli of isotropic bodies 
 

For an isotropic body, symmetry considerations show that the stiffness matrix in Eq. 

(2.10) has the following form 

   .             (2.11) 

1 111 12 12

2 212 11 12

3 312 12 11

4 444

5 544

6 644

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

uC C C
uC C C
uC C C
uC
uC
uC

σ
σ
σ
σ
σ
σ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
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In fact, there are only two independent elastic constants as the following relation holds 

11 12 442C C C= + .                                                       (2.12) 

Conventionally two elastic parameters, the so-called Lamé coefficients l and µ, are often 

used to describe the elastic properties of an isotropic body. Their relation to the elastic 

constants is 

    12Cλ =  and 44Cµ = .                                                 (2.13) 

µ is also called shear modulus and sometimes is denoted by G. Some other elastic 

parameters are also often encountered, e.g., the bulk modulus, the Young’s modulus and the 

Poisson’s ratio.  

The bulk modulus is defined as the ratio of the hydrostatic pressure 

( 11 22 33p σ σ σ= − = − = − ) to the fractional volume change, 

 2p
3ii

K
u

δ λ µ
δ

≡ − = + .                                                 (2.14) 

The Young’s modulus is defined as the ratio of the longitudinal stress to the longitudinal 

strain, 

11

11
E

u
(3 2 )σ µ λ µ

λ µ
+

≡ =
+

 .                                            (2.15) 

The ratio of the lateral strain to the longitudinal strain is called the Poisson’s ratio, 

22

11 2( )u
u λσ

λ µ
≡ − =

+
.                                             (2.16) 

The use of s to denote the Poisson’s ratio and sik (or si  in the matrix notation) to denote the 

components of the stress tensor cannot lead to ambiguity, since the latter always have 

suffixes. 

 

 10



2.2 Elastic waves in isotropic media 

2.2 Elastic waves in isotropic media  

2.2.1 Longitudinal and transverse waves 
 

The equation of motion for an elastic body can be obtained from the Newton’s second 

law. Specifically, one has to equate the resultant force due to the internal stresses to the 

product of acceleration and mass per unit volume. By referring to Eq. (2.2), we have                                

2

2
ik i

k

u
x t
σ ρ∂ ∂

=
∂ ∂

,                                               (2.17) 

where ρ is the density and ui is the displacement vector. For an infinite homogeneous and 

isotropic medium, after applying Hook’s law and adopting the Lamé coefficients 

representation, the equation of motion is found to have the following form: 

( 2 ) ( 2
tλ µ µ ρ+ ∇ ∇ ⋅ ∇ × ∇ × ∂u) - ( u) - u = 0 .                        (2.18) 

In the case of a harmonic elastic wave of angular frequency ω, the displacement vector u can 

be written as 

  -( , ) = Re ( )e i tt ω⎡ ⎤⎣ ⎦u r u r ,                                                  (2.19) 

and Eq. (2.18) can be reduced to the following time-independent form: 

2( 2 ) (λ µ µ ρω+ ∇ ∇ ⋅ ∇ × ∇ ×u) - ( u) + u = 0

t

.                            (2.20) 

Mathematically we can express u as the sum of two vectors l +u = u u  such that 

   and 0l∇× =u 0t∇⋅ =u .                                             (2.21) 

Eq. (2.20) can then be decomposed into two independent Helmholtz equations of motion: 

2 2( l lk 0∇ + =)u                                                        (2.22) 

and      2 2( t tk 0∇ + =)u ,                                                      (2.23) 
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where l lk clω= and t tk tcω=  are the wavenumbers of the longitudinal and transverse 

waves, respectively. The solutions of these two equations represent two elastic waves which 

propagate independently: the longitudinal wave with a phase velocity 

11 ( 2 )lc C ρ λ µ ρ= = + , also called the longitudinal sound velocity; and the transverse or 

shear wave with a phase velocity 44tc C ρ µ ρ= = , also called the transverse or shear 

sound velocity.  

For the longitudinal wave the particle displacement is in the direction of wave 

propagation, while for the transverse wave the particle displacement is perpendicular to the 

direction of propagation. It is easy to recognize that the transverse wave has two possible 

polarizations which are orthogonal to each other. Note also that the longitudinal wave 

involves changes in the volume of the medium, i.e. dilatation or compression of a local 

volume element. On the other hand, the transverse wave causes no volume change.  

2.2.2 Spherical-wave solutions 
 
       Elastic wave propagation in an isotropic medium usually serves as the start point for 

studying more complicated systems, e.g. composite materials having two or more 

components. In the present thesis, composite elastic media with many spherical inclusions 

will be examined. To theoretically explore elastic wave propagation in such systems, a 

feasible and usually adopted approach [52-54] is to consider the scattering of a plane-wave 

by these spherical inclusions. In this instance, the use of a Cartesian coordinate system will 

meet many difficulties in the treatment of the equation of motion. The choice of a spherical 

coordinate system, however, could simplify much the computation.  

        In the following, we briefly introduce the spherical-wave solutions of the elastic wave 

equation for an isotropic medium. In a spherical coordinate system, the displacement vector 

u can be written as the sum of three vectors +u = l m + n  such that Eq. (2.20) can be broken 

into three independent vector Helmholtz equations [55] as the following: 

2 2( ) 0lk∇ + =l 2 2( )tk,   0∇ + =m 2 2 ) 0tk,  (∇ + =n .                        (2.24) 

Evidently, l represents the displacement associated with the longitudinal wave and m and n 

represent the transverse displacements which are orthogonal to each other. The longitudinal 
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component of the solution, l, can be written as the gradient of a scalar function, ϕ , which is 

the solution of a scalar Helmhotz equation 2 2( )lk ϕ 0∇ + = : 

 
1

lk
ϕ= ∇l .                                                         (2.25) 

The transverse displacement vectors m and n can be expressed as the curl and the curl curl 

of a vector function. The vector function can be constructed from the product of a constant 

vector and a scalar potential function which satisfies the scalar Helmholtz equations 

 and 2 2( )tk ψ∇ + = 0 02 2( )tk χ∇ + =  for m and n respectively. For spherical coordinates, in 

place of the constant vector, the position vector r can be used, and m and n remain 

independent of l. Then one can write 

ψ= ∇×m r ,                                                        (2.26) 

1

tk
χ= ∇×∇×n r .                                                 (2.27) 

 

        The solution of the scalar Helmholtz equation in a spherical coordinate system is well 

known and has the form: 

( , , ) ( ) ( , )lm l lmf r R kr Yθ φ θ φ= .                                     (2.28) 

( , )lmY θ φ  are the so-called spherical harmonics, with l =0, 1, 2, 3, …, and m running over all 

integer values from -l to l. The radial functions, , are the appropriate Bessel functions. 

For each l there are two linearly independent Bessel functions, and . The function  

diverges [56] at r=0 and therefore it is excluded in a region which contains the origin. The 

function  describes an outgoing spherical wave and consequently it is this linear 

combination of and  which should be used in the case of a scattered wave. 

( )lR kr

lj ln ln

l lh j in= + l

lj ln

       The basic vector solutions of Eq. (2.24) in a spherical coordinate system, , and 

, can then be derived from the solution of the scalar Helmholtz equation. The result is as 

follows: 

lml lmm

lmn
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2.3 Elastic waves in supported thin layers 

 [1 ˆ( , ) ( ) ( )lm l l l lm ]R k R k r Y
k

= ∇l r ,  l =0, 1, 2, 3, …                           (2.29) 

  [ ]ˆ( , ) ( ) ( )lm t l t lmR k R k r Y r= ∇ ×m r  , l =1, 2, 3, …                             (2.30) 

 [1 ˆ( , ) ( ) ( )lm t l t lm
t

R k R k r Y r
k

= ∇×∇×n r ] , l =1, 2, 3, …                        (2.31) 

Note that monopole (l=0) waves can exist only as longitudinal solutions. 

2.3 Elastic waves in supported thin layers 
 

In the preceding discussion of the elastic wave propagation in an isotropic body, it was 

assumed that the body is infinitely large so that the boundary effect can be ignored. 

Practically, an elastic body is always finite. If its surface is concerned or if its size is very 

small compared to the wavelength of the elastic wave, the existence of the boundaries will 

have a substantial influence on the wave propagation and hence cannot be neglected.  

Regarding the boundary effects, an important case of much theoretical and practical interest 

is wave propagation in supported thin layers. This section will give a brief introduction to 

this subject. 

Considering the following system consisting of a substrate and a thin layer on top as 

shown in Fig. 2.1, both the substrate and the layer are infinite in the directions parallel to 

their interface and are treated as isotropic. The coordinate system to be used for the 

discussion is also illustrated. It can be seen that the x3=0 plane is the interface between the 

layer and the substrate while the plane x3=h is the free surface of the layer. To study elastic 

waves in the thin supported layer, the wave equation (2.18) is still workable and has to be 

applied to both the layer and the substrate. The major difference now is that the mechanical 

boundary conditions must be taken into account. More explicitly, the continuity of the stress 

and the strain at the interface (x3=0) and the vanishing of the stress at the free surface (x3=h) 

must be satisfied, which leads to much more complicated wave propagation compared to the 

bulk.   
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Figure 2.1 Coordinate system for elastic wave propagation in thin layers. a, 
Propagation direction and sagittal plane. b, Sagittal plane coordinates. 

It is easily appreciated from symmetry considerations that the waves of interest will be 

“straight crested” in the sense that there are no variations of any of the displacement 

components in a direction parallel to the free surface and perpendicular to the direction of 

propagation. The direction of propagation will be taken as the x1 direction in Fig. 2.1, thus 

the disturbance has constant phase and amplitude for each component along any line parallel 

to the x2 axis. However, the nature of the waves will be such that they decay with depth into 

the substrate and in general become of negligible amplitude a few wavelengths below the 

interface. In fact, this nature is in accordance with the assumption that the waves of interest 

are surface or film excitations. Therefore one is seeking for straight-crested propagating 

waves of the following form: 

[ ]3 1exp( ) exp ( )j ju ikbx ik x vtα= − .                                   (2.32) 

It will be seen below that b is in general complex and it gives, in this interpretation, the 

variation with depth of the amplitude and phase of the partial waves measured on a “plane of 

constant phase”, namely, a plane perpendicular to x1. The aj ( j=1, 2, 3) give the relative 

amplitudes of the different components of each partial wave. 

Substituting Eq. (2.32) into Eq. (2.18) results in the following relation between v, b and 

a in the isotropic substrate considered: 
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ρ
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α
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Γ Γ − Γ

Γ Γ Γ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

                     (2.33)
 

where                                2
11 44 11c b cΓ = + 12 0Γ =      13 11 44( )c c bΓ = −  

                                         2
22 44 (1 )c bΓ = + 23 0Γ =      2

33 11 44c b cΓ = +  

In order to have nontrivial solutions, the determinant of the square matrix in Eq. (2.33) must 

be set equal to zero, which produces the secular equation of the form: 

2 0rs rs vδ ρΓ − =    r, s, = 1, 2, 3.                                       (2.34) 

An important point to note in Eq. (2.33) is that the sagittal-plane displacements, a1 and a3 of 

Eq. (2.32), are completely uncoupled in the equations of motion from the transverse 

displacements, a2. Thus, Eq. (2.34) separates into two equations  

                                           2 2 2 2
44 44 11 11( )(c b c v c b c vρ ρ ) 0+ − + − =  

and                                                      2 2
44 44 0c b c vρ+ − = ,                                         (2.35) 

which can be regarded as algebraic equations in b for an assumed value of v.  

Similar equation as Eq. (2.33) can be found for the displacement components in the 

isotropic layer, involving layer material parameters referred to the same axes. In the final 

solution, all the partial waves (Eq. (2.32)) in the substrate and layer will have the same phase 

velocity. The roots and corresponding eigenvectors for the two media are 

I. for transverse motion in the substrate 

                   ( ) 2 1/ 2[1 ( ) ]a
tb i v v= − −             [ ]( ) 0, 1, 0a =α                          (2.36) 

II. for transverse motion in the layer 

                (1) 2 1/ 2ˆ[1 ( ) ]tb i v v= + −               [ ](1) 0, 1, 0=α                          
(2.37)

 

                                 (2) 2 1/ 2ˆ[1 ( ) ]tb i v v= − −                [ ](2) 0, 1, 0=α  
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2.3 Elastic waves in supported thin layers 

III. for sagittal motion in the layer 

                                 (5) 2 1/ 2ˆ[1 ( ) ]tb i v v= + −               (5) (5) , 0, 1b⎡ ⎤= −⎣ ⎦α                 

                               (6) 2 1/ 2ˆ[1 ( ) ]lb i v v= + −                (6) (6)1, 0, b⎡ ⎤= ⎣ ⎦α                        
(2.38)

   

                                 (7) 2 1/ 2ˆ[1 ( ) ]tb i v v= − −               (7) (7) , 0, 1b⎡ ⎤= −⎣ ⎦α   

                                 (8) 2 1/ 2ˆ[1 ( ) ]lb i v v= − −               (8) (8)1, 0, b⎡ ⎤= ⎣ ⎦α  

IV. for sagittal motion in the substrate 

                    ( ) 2 1/ 2[1 ( ) ]c
tb i v v= − −                ( ) ( ) , 0, 1c cb⎡ ⎤= −⎣ ⎦α                     

(2.39)
 

                                 ( ) 2 1/ 2[1 ( ) ]d
lb i v v= − −                ( ) ( )1, 0,d db⎡ ⎤= ⎣ ⎦α  

where 1/ 2
44( )tv c ρ= and 1/ 2

44 ˆˆ ˆ( )tv c ρ= are the transverse sound velocities for bulk waves in 

the substrate and the layer, respectively, while 1/ 2
11( )lv c and ρ= 1/ 2

11 ˆˆ ˆ( )lv c ρ= are the 

corresponding bulk longitudinal sound velocities. Notice that for the substrate only values of 

b lying in the lower half of the complex plane are retained, as the solutions desired (Eq. 

(2.32)) are to represent surface waves. 

Figure 2.2 Schematic show of the 
displacements of the two uncoupled 
surface modes. a, Love modes. b, Lamb 
modes. 

Under the isotropic assumption, it can be easily shown that [57] the boundary-condition 

equations also separate into two uncoupled sets, one set involving roots a, 1 and 2 and hence 

the in-plane (x1-x2 plane) displacement 

components only, and the second set 

involving the roots 5, 6, 7, 8, c, and d and 

thereby sagittal-plane displacements only. 

Thus for the isotropic case, the final 

solutions for elastic wave propagation in 

supported thin layers are divided into two 

categories: 

I. Love modes 

II. Lamb modes 

Love modes have only in-plane displacements, in contrast, only sagittal-plane displacements 

are involved in Lamb modes. Their displacements are schematically depicted in Fig. 2.2a 

and b, respectively. It is seen that only Lamb modes can cause interface or surface 
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2.3 Elastic waves in supported thin layers 

corrugation, which is important for the determination of Lamb modes on an opaque substrate 

by light scattering techniques [58]. 

The following discussion will be restricted to Lamb modes, since it is the Lamb modes 

that have been probed in this work. In addition, experimental investigations on waves in thin 

layers are almost exclusively focused on Lamb modes. Mechanical boundary conditions for 

the sagittal-plane displacements lead to the following equation:    

(5) (5 ) ( )

(6 ) (6 ) ( )

(5 ) 2 (6 ) (5 ) 2 ( 6 ) ( ) 2 ( )

(5 ) (5 ) 2 (5 ) (5 ) 2 ( ) ( ) 2

(5 ) 2 (5 ) (6 ) (6 ) (5 ) 2 (5 ) (5 )

1 1

1 1 1

1 2 1 2 (1 ) 2

2 (1 ) 2 (1 ) 2 (1 )

(1 ) exp( ) 2 exp( ) (1 ) exp( ) 2 exp(

c

d

c d

c c

b b b

b b

b b b b r b rb

b b b b rb r b

b ikb h b ikb h b ikb h b i

− − − −

− − −

− − − − −

− − − − − − −

− − − − −

5

6

7

8

(6 )

(5 ) (5 ) (5 ) 2 (6 ) (5 ) (5 ) (5 ) 2 (6 )

0

) 0 0

2 exp( ) (1 ) exp( ) 2 exp( (1 ) exp( ) 0 0

c

d

C
C
C
C
Ckb h
Cb ikb h b ikb h b ikb h b ikb h

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

1

b

−
=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦− − − − − − −⎢ ⎥⎣ ⎦

 

where 44 44ˆr c c=                      

(2.40) 

Given that the material properties of both the substrate and the layer are known, from Eq. 

(2.36) to Eq. (2.39) we easily see that b is only a function of v, the phase velocity of the 

surface wave. Substituting Eq. (2.38) and Eq. (2.39) into Eq. (2.40) and equating the 

determinant of the square matrix to zero, one actually defines an implicit function, v, which 

is a function of kh, the product of the wavenumber of the surface wave and the film thickness. 

This relation v=v(kh), is often referred to as the dispersion relation. Unfortunately, there is 

no simple analytical solution to Eq. (2.40) and numerical calculations are necessary to 

determine the propagation velocity v. In general, the solution to Eq. (2.40) can be rather 

complicated, which highly depends on the elastic combination of the two relevant media, the 

substrate and the layer. A complete discussion of all possible cases is far beyond the scope of 

this chapter, only some most common situations will be checked below.  

First, a special case will be considered, that is, the substrate has a free surface, or 

equivalently, the layer thickness h=0. In this instance, kh is always zero. By referring to Eq. 

(2.40) it can be easily seen that all the exponential terms in the square matrix will vanish and 

be replaced by 1. Consequently, the solution v for a given set of elastic parameters of the 

substrate is a constant, which represents a non-dispersive mode, the so-called Rayleigh mode. 

Love modes at this time degenerate into the horizontally polarized bulk shear waves 

propagating parallel to the substrate surface. The velocity of the Rayleigh wave is somewhat 
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2.3 Elastic waves in supported thin layers 

less than the bulk transverse velocity vt, and ranges from 0.874vt to 0.955vt, corresponding to 

a variation of the Poisson’s ratio s from 0 to 0.5. 

With the presence of a layer on top of the substrate surface, h≠0, and the phase 

velocities then become kh dependent. We consider two cases: 

I. Layer stiffens the substrate2-2  ( > ) t̂v tv

II. Layer loads the substrate  ( < ) t̂v tv

When > , the layer is said to “stiffen” the substrate because the presence of the layer 

increases the surface wave velocity above that of the Rayleigh velocity of the substrate, 

whereas when < , the layer is said to “load” the substrate because the velocity of the 

free-surface Rayleigh mode on the substrate is decreased by the presence of the layer.  

t̂v tv

t̂v tv

For the stiffening situation, it is characteristic for the dispersion curve (v~kh) to start 

from kh=0 at the substrate Rayleigh velocity and increase until the substrate shear velocity 

is reached at a particular value of kh; for larger values of kh this mode of propagation does 

not exist. For the material combination of this type, only one Lamb mode can propagate and 

that only for a limited range of kh. Since the minimum velocity of this mode is the substrate 

Rayleigh velocity and the maximum is the substrate shear velocity, the phase velocity does 

not cover a wide range. An example of the dispersion curve of this type is given in Fig. 2.3a 

for a silicon layer on a ZnO substrate. 

When the layer loads the substrate, a significant feature is the existence of an unlimited 

number of higher order Lamb modes, sometimes also called Sezawa modes [57]. In this case, 

the dispersion curve for the first Lamb mode, often referred to simply as Rayleigh mode, 

starts with negative slope at the Rayleigh velocity of the substrate, for kh=0. As kh 

increases, the phase velocity continues to decrease and for layer thickness large compared to 

the wavelength, kh>>1, it tends asymptotically to the Rayleigh velocity of a free surface of 

the layer material. The higher order Lamb modes all have a low frequency cutoff2-3 at which 

                                                 
2-2 More strictly speaking, the “stiffening” (or “loading”) behavior refers to the case that there is substantial difference 
between the shear moduli of the layer and the substrate, i.e. >t̂v 2 tv (or <t̂v 2 tv ). 
2-3 The appearance of this cutoff frequency is due to the restriction imposed by our definition of a surface wave, which has 
to decay into the substrate. If the velocity exceeds the substrate shear wave velocity, the corresponding wave will radiate 
into the substrate, representing a leaky wave. We will see in Chapter 5 that these leaky waves have been experimentally 
probed.  
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2.3 Elastic waves in supported thin layers 

the phase velocity is equal to the substrate shear velocity. Their phase velocities also 

decrease with increasing kh and have a high frequency asymptote at the layer shear velocity. 

An example of the dispersion relation of this type of material combination is given in Fig. 

2.3b for a ZnO layer on a silicon substrate, the reverse case of Fig. 2.3a. 
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Figure 2.3 Examples of the dispersion relation for Lamb modes. a, Silicon layer on ZnO 
substrate, the stiffening case. ZnO: vl=6000 m/s, vt=2831 m/s, vR=2649 m/s; silicon: vl=8945 m/s, 
vt=5341 m/s, vR=4890 m/s. b, ZnO layer on silicon substrate, the loading case. Only the first three 
Lamb modes (R1, R2 and R3) are shown. (see Ref.[57]) 

In addition to the above mentioned well-known surface and film excitations, in the past 

20 years or so, people found that there exists another kind of elastic excitations on the 

surface which is mainly longitudinally polarized, the so-called longitudinal guided mode 

[59,60]. It can be regarded as the longitudinal counterpart of the Rayleigh mode, and has a 

phase velocity slightly below the bulk longitudinal velocity. Since this mode radiates usually 

quite strongly into transverse substrate waves, it is quasi-localized, i.e. leaky. The 

longitudinal guided mode is not often observed experimentally, especially for a free surface 

or a very thin layer (in a sense kh is small), and further discussion of it will be omitted. 
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2.4 Vibrations of an elastic sphere 

2.4 Vibrations of an elastic sphere 

2.4.1 Vibration eigenmodes 

In the preceding section, the modification of elastic wave propagation due to the 

presence of one-dimensional confinement has been studied. In this section, another 

important confinement effect, elastic excitations in a sphere, will be considered. The 

restriction imposed by the three-dimensional spherical boundary makes the description of the 

elastic excitations in such a sphere in terms of traveling waves no longer valid.  

In this case, the sphere of finite size actually forms an elastic resonator that sustains 

elastic standing waves, and hence it “vibrates”. These elastic standing waves are usually 

called vibration eigenmodes. The free vibrations of an isotropic elastic sphere under stress-

free boundary condition have been studied more than a century ago by Lamb [61]. Two 

types of modes are found: the torsional modes and the spheroidal modes. The torsional 

modes involve only shear motions and do not change the volume of the sphere, whereas the 

spheroidal modes involve both shear and stretching motions and produce radial 

displacements. Both the torsional and spheroidal modes are specified by two indices in 

analogy to the atomic orbitals: an angular momentum l (=0, 1, 2, …) and a branch number n 

(=1, 2, 3, …). 

In the following, the computation of the vibration eigenmodes will be briefly described. 

Instead of just treating an elastic sphere with a stress-free boundary, a more general situation 

is considered, in which the sphere is embedded in an infinite homogeneous medium. It 

should be pointed out at this stage that strictly speaking one can only talk about eigenmodes 

when the sphere has a stress-free boundary. When the sphere is embedded in an elastic 

medium, the eigenmodes are coupled to the acoustic waves propagating through the 

surrounding medium, consequently energy leakage will happen, e.g. from the sphere to the 

surrounding medium. If the energy leakage is serious, the particle character will become 

diminished and finally disappear in case the particle has exactly the same density and elastic 

parameters as the surrounding medium. On the other hand, if the coupling between the 

eigenmodes and the acoustic waves is weak, the energy will be highly concentrated within 

the sphere. In this instance the presence of the surrounding medium has insignificant impact 

on the sphere vibration eigemodes. 
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  Assume the sphere of radius sr  has a density iρ  and is made of a material with the 

longitudinal and transverse sound velocities and  respectively. The elastic parameters 

of the surrounding medium are correspondingly given by 

l ic tic

oρ , and . The field inside 

the sphere, u

loc toc

in, can be expanded as a linear combination of spherical waves , and , 

as discussed in Section 2.2.2, 

lml lmm lmn

 { }( ) ( , ) ( , ) ( , )in
lm lm li lm lm ti lm lm ti

lm
A j k B j k C j k= + +∑u r l m n ,               (2.41) 

where /li lik cω= and /ti tik cω= are the wavenumbers used in the Bessel functions ( )lij k r  

and ( ti )j k r . In a similar way, the field outside can be written as, 

 { }( ) ( , ) ( , ) ( , )out
lm lm lo lm lm to lm lm to

lm
D h k E h k F h k= + +∑u r l m n ,            (2.42) 

where /lo lok cω= and /to tok cω= are the wavenumbers used in the Bessel functions  

and . These Bessel functions were chosen so that the field is appropriately defined 

everywhere, i.e., it is finite in the origin of the sphere and outgoing outside the sphere. 

( )lih k r

( tih k r)

The two fields defined above must satisfy boundary conditions (the continuity of the 

stress and strain across the boundary) at the surface of the sphere, i.e. at sr r= ,  

| |
s s

in out
r r r r= ==u u ,                                                 (2.43) 

| |
s s

in out
r r r r= ==P P  ,                                                (2.44) 

where i ikp knσ=  is the force per unit area of the surface of the sphere with n being the 

outgoing unit vector normal to the surface. Each of the above equations is equivalent to three 

scalar equations. Thus, the boundary conditions form a system of six homogeneous 

equations with an infinite number of unknowns. Using the orthonormality over the spherical 

surface of the spherical harmonics Ylm, after a few calculations, one can decompose each of 

these equations into an infinite number of equations, one for each l. Due to the fact that the 

coefficients in these equations are not functions of m, the unknowns will depend only on l 

and we can re-denote them as: Al, Bl, Cl, Dl, El and Fl. Therefore, for each l there are six 

homogeneous equations with six unknowns. Because of the orthogonality of the vector 
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spherical harmonic  to  and , the system of six equations can be broken into two 

smaller systems: one of two equations involving only the coefficients B

lmm lml lmn

l and El of the basic 

vector , and one of four equations containing only the rest four coefficients 

corresponding to  and . These two systems admit nontrivial solutions if and only if 

their determinants are zero. For each l, the condition that the determinant is zero is satisfied 

only by a discrete set of modes of frequencies

lmm

lml lmn

n
lω , where n is the branch number. The 

solutions of the two systems lead to the previously mentioned two types of modes: the 

torsional modes (involve only ) and the spheroidal modes (involve only  and ). lmm lml lmn

2.4.2 Single sphere scattering 
 

In this section, we consider the scattering of a plane sound wave propagating in a host 

material by a single elastic sphere. During this process, resonances may occur at certain 

frequencies of the incident wave and strong resonances will appear at frequencies close to 

the eigenfrequencies of the sphere vibrations. If the elastic mismatch between the sphere and 

the surrounding medium is sufficiently large, the eigenmodes are well-localized within the 

sphere and the strong resonances can be found as sharp peaks in the plot of scattering cross 

section versus frequency. When the elastic contrast is not remarkable, the resonances do not 

manifest themselves as sharp peaks. Instead, they are considerably broadened due to energy 

leakage and the peak frequencies also exhibit noticeable shift from the eigenfrequencies of a 

free-boundary sphere.  

The significance of study of the single sphere sound scattering lies not just in the fact 

that it offers an alternative way to compute the eigenfrequencies of an elastic sphere. More 

importantly it could provide deeper insights into the physics of wave propagation in elastic 

composites with many spherical inclusions — a practically often encountered situation. For 

instance, if the coupling between the acoustic wave and the eigenmodes is weak, the 

information given by the single sphere scattering is enough to describe the corresponding 

collective modes of the composite. In this case, these modes propagate by coherently 

hopping from one scatterer to another, in analogy to electronic propagation in solids by a 

linear combination of atomic orbitals (LCAO) with the eigenmodes being the analogues of 

atomic orbitals. It has been pointed out by Economou et al. [62] that the single sphere 

 23



2.4 Vibrations of an elastic sphere 

scattering cross section can be connected with the appearance of acoustic bandgaps in such 

composites induced by multiple phonon scattering. Moreover, the calculation of the 

scattering cross section by a single sphere constitutes the basis for a more complicated 

multiple scattering method for the study of more complex modes.   

  When the incident wave impinges onto the sphere, in general there are subsequently 

three separate waves: one is the unimpeded incident wave,  ; the second is the wave 

scattered  by the sphere, 

incu
scu ; and the third is the wave excited inside the sphere, . The 

following calculations are based on the determination of 

inu
scu and . As in the case of the 

calculation of the sphere eigenmodes, we expand all these waves into vector spherical 

harmonics, , and , 

inu

lml lmm lmn

  { }1 2 3( ) ( , ) ( , ) ( , )inc
lm lm lo lm lm to lm lm to

lm
j k j k j kα α α= + +∑u r l m n ,                  (2.45) 

{ }1 2 3( ) ( , ) ( , ) ( , )in
lm lm li lm lm ti lm lm ti

lm
j k j k j kβ β β= + +∑u r l m n ,                     (2.46) 

{ }1 2 3( ) ( , ) ( , ) ( , )sc
lm lm lo lm lm to lm lm to

lm
h k h k h kγ γ γ= + +∑u r l m n .                    (2.47) 

The coefficients i
lmα are supposed to be known for a given incident wave, while the 

coefficients i
lmβ and i

lmγ are calculated by applying the boundary conditions at the surface of 

the sphere. The boundary conditions are similar to Eq. (2.43) and (2.44). In this case the 

displacement vector outside the sphere consists of two contributions: the incident wave and 

the scattered wave. We have 

| | |
s s

in inc sc
r r r r r rs= == +u u u =

|

,                                        (2.48) 

| |
s s

in inc sc
r r r r r rs= == +P P P = .                                       (2.49) 

Similar as before, the above equations can be decomposed into six scalar equations which 

can be easily separated (each of them) into an infinite number of equations, one for each lm 

combination. Then for each lm there is a system of six equations with the unknowns i
lmβ and 

i
lmγ (i=1, 2, 3), therefore i

lmβ and i
lmγ can be uniquely determined.  
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2.4 Vibrations of an elastic sphere 

The scattering cross section is defined as the ratio of the scattered energy flux to the 

incident energy flux per unit surface, in the far field. Suppose that the sphere is placed at the 

origin of the coordinate system and the incident wave travels along the z axis, the above 

definition can be mathematically expressed as: 

  
2sc

r
inc
z

J r d
J

σ < > Ω
=

< >
, for                                        (2.50) r → ∞

where Ji is the energy flux per unit area defined broadly in terms of the complex fields, 

 j
i ij

u
J

t
σ

∂
=

∂
,                                                         (2.51) 

and the symbol “< >” denotes the time average. Assume the time-dependent field is of the 

form i te ω− , the time-averaged energy flux per unit area is transformed into: 

*1 Im( )
2i ij jJ uω σ= − ,                                               (2.52) 

where “Im” and “*” represent the imaginary part and the complex conjugate of a complex 

quantity, respectively. By using the corresponding expressions for ijσ  and in Eq. (2.52) 

and then inserting it into Eq. (2.50), the dimensionless scattering cross section is finally 

given by 

ju
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∞
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∑
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Here Zlo= , Zlo sk r to= and to sk r σ̂ is the dimensionless partial cross section due to the 

contribution of the lth spherical wave;  and are the previously defined longitudinal and 

transverse wave velocities in the surrounding medium; 

loc loc

1
lmγ  2

lmγ  and 3
lmγ are the coefficients 

in Eq. (2.47). 

Figure 2.4 shows an example of how the scattering cross section varies with the 

frequency of the incident sound wave for a silica sphere embedded in a cyclohexane/decalin 

solvent. The sharp, well-separated peaks correspond to diverse l-resonances, which are 
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2.4 Vibrations of an elastic sphere 

obtained by subtracting from the scattering amplitude of the silica sphere the scattering 

amplitude of a rigid (incompressible) sphere of the same size for better visualization [63].  

 

 

 

 

 

 

                        /s lor cω

Figure 2.4 Total dimensionless 
scattering cross section of silica 
spheres in cyclohexane/decalin
matrix. The incident wave is longitudinal 
and the numbers on top of the peaks denote 
the spherical harmonics l responsible for the 
resonances. Silica: ρ=1.83 g/cm3, vl=5600 
m/s, vt=3400 m/s; matrix: ρ=0.78 g/cm3,
vl=1270 m/s, vt=0. (see Ref.[63]) 

 

2.5 Elastic waves in periodic elastic composites  

2.5.1 General overview 

Composite materials with periodic variations of density and/or sound velocities are often 

called phononic crystals as introduced in Chapter 1. Elastic wave propagation in phononic 

crystals differs greatly from that in a homogeneous medium, with the most distinct 

characteristic being the possible formation of phononic bandgaps. Although this 

phenomenon is similar to the appearance of electronic bandgaps in semi-conductors and 

electromagnetic bandgaps in photonic crystals, the situation for the elastic wave propagation 

is much more complicated due to the full vector nature of the wave field and the large 

number of material parameters involved. Regarding the latter difference, for example, in the 

case of a binary system (consisting of material 2 distributed in material 1), we have for 

photonic crystals two independent parameters: the ratio of the dielectric constants of the two 

materials, 2 1ε ε , and the fractional volume occupied by material 2, j. Yet for phononic 
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2.5 Elastic waves in periodic elastic composites 

crystals there are five independent parameters: 2 1µ µ , 2 1λ λ , 2 1ρ ρ , 2 1µ λ  and j, where 

jρ , jλ  and jµ denote the mass density, and the Lamé coefficients of the material j= 1, 2. 

Motivated by the promising technological applications, the study of phononic crystals is 

currently focused mainly on the search for phononic crystals that can display complete (or 

absolute) bandgaps, where no elastic wave can propagate whatever the direction of 

propagation. Moreover, the exploration of elastic wave propagation in phononic crystals can 

also lead to a deeper insight into the wave localization phenomenon in random media. As 

suggested by John and Rangarajan [64], and by Economou and Zdetsis [65], the existence of 

a band of localized eigenstates in a random system is directly related to the existence of 

spectral gaps in a periodic system, since both are due to destructive interference of multiply 

scattered waves. Indeed, by gradually disordering a periodic system possessing gaps, one 

creates tails of localized eigenstates within the gap. At the same time, also the band states of 

the periodic crystal near the gap become localized, thus increasing the frequency range 

where acoustic waves cannot be transmitted through the system [66]. 

The detailed wave propagation behavior in phononic crystals depends on the lattice type, 

the topology and the elastic combinations. To theoretically investigate the normal modes in 

phononic crystals, which in the most general case include both propagating and non-

propagating modes, more complex computation techniques have to be used. Various 

methods have been developed for the calculation of the frequency band structure of 

phononic crystals, some most often used include the plane-wave (PW) method [67,68], the 

multiple-scattering (MS) method [52-54], and the finite-difference-time domain method 

(FDTD) [69]. In the following, the PW and the MS methods will be briefly introduced. 

2.5.2 The plane-wave (PW) method 
 

The PW method is a fast and easy-to-apply method for the calculation of the band 

structure of an infinite periodic composite. It is based on the expansion of the periodic 

coefficients in the wave equation into Fourier series. This method is ideal for the calculation 

of the dispersion relation of solid/solid or fluid/fluid composites, but it encounters problems 

for mixed (solid/fluid) composites. Let’s first consider the solid/solid combination.  
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2.5 Elastic waves in periodic elastic composites 

The starting point of the calculation is the general elastic wave equation for isotropic 

elastic medium, which has the following form: 

2

2
1i l i

i l l l i

u u u
x x x x xt

λ µ
ρ

⎧ ⎫
lu⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎪ ⎪= + +⎨ ⎢⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ⎝ ⎠ ⎝ ⎠⎪ ⎪

∂
⎥⎬

⎣ ⎦⎩ ⎭
,       i, l=1, 2, 3,         (2.54) 

where  and iu ix  are the Cartesian components of the displacement vector  and of the 

position vector r , respectively. The density

( , )tu r

( )ρ r  and the two Lamé coefficients ( )λ r  and 

( )µ r  are functions of the position vector r . Assuming the time-dependent displacement 

vector to be of the form ( , ) ( ) -i tt e ω=u r u r , Eq. (2.54) then becomes, 

2 1 l i
i

i l l l i

u uu
x x x x x

ω λ µ
ρ

⎧ ⎫
lu⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎪ ⎪− = + +⎨ ⎢⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪

⎥⎬
⎣ ⎦⎩ ⎭

,       i, l=1, 2, 3.         (2.55) 

For a phononic crystal, in general all the elastic parameters ρ , λ  and µ   are periodic 

functions of spatial coordinates r, namely, 

( ) ( )f f+ =r R r ,                                                      (2.56) 

where R is a lattice vector, and stands for ( )f r ( )λ r , ( )µ r or . Because of the 

periodicity of the lattice,  can be expanded into a three-dimensional Fourier series, 

1( )ρ− r

( )f r

   ( ) if f e ⋅= ∑ G r
G

G
r ,                                                   (2.57) 

where the summation extends over all reciprocal lattice vectors G. Due to the periodicity of 

ρ , λ  and µ , which are the coefficients in Eq. (2.55), its eigensolutions can be written in 

the following form according to Bloch’s theorem,  

( ) ( )ie ⋅= k r
ku r u r .                                                  (2.58) 

Here k is a vector in the reciprocal lattice, and  is a periodic function of r that also 

satisfies Eq. (2.56) and therefore can be expanded into Fourier series in the same manner as 

in Eq. (2.57).  Consequently, Eq. (2.58) can be rewritten as 

( )ku r
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 (( ) ie + ⋅= ∑ k G) r
k+G

G
u r u .                                            (2.59) 

Substituting Eq. (2.57) (with 1, ,f λ µ ρ −= ) and Eq. (2.59) into Eq. (2.55) finally leads to  
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.   (2.60) 

Here (i = 1, 2, 3) are the Fourier transformation coefficients of , the Cartesian 

components of the displacement vector . If the infinite series in Eq. (2.57) and Eq. (2.59) 

can be approximated by a sum over N reciprocal vectors, then Eq. (2.60) can be reduced to a 

3N× 3N matrix eigenvalue equation of the form for the 3N unknown coefficients 

. The number of N needed depends on the desired convergence. For a good 

convergence better than 1%, N is on the order of 400-500.  

iu +k G
iu

( )u r

2A ω=X X
iu +k G

The calculation is done for some k directions in the first Brillouin zone (BZ), especially 

those of high-symmetry near the center and at the boundary of the zone. For a given k in the 

first BZ, it turns out that an infinite number of eigensolutions are obtained, each 

characterized by a natural number n (besides k), and the corresponding eigenfrequency is 

nωk, . Usually one plots nωk, vs k for n= 1 , 2, 3, …, as the tip of k varies along straight 

segments in the first BZ. A spectral gap corresponds to a region in the frequency axis to 

which no nωk, belongs.  

Figure 2.5 shows an example of the band structure calculated by the PW method, for 

elastic wave propagation in an fcc (face-centered-cubic) lattice consisting of Pb spheres 

embedded in an epoxy matrix. The volume fraction occupied by the spheres is 0.25ϕ = . 

The calculation is done for k in a few high symmetry directions in the first BZ (U–L–Г–X–

W – K )  up to the first sixteen bands. A wide complete gap appears between the sixth and the 

seventh band. 
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Figure 2.5 Phononic band structure for an fcc lattice of Pb spheres in epoxy. The 
wavevector varies across the irreducible Brillouin zone. The volume fraction of the Pb spheres is 
j=0.25. The relevant elastic parameters for Pb and epoxy are: for Pb, ρ=11.36 g/cm3, cl=2160 m/s, 
ct=860 m/s; for epoxy, ρ=1.18 g/cm3, cl=2540 m/s, ct=1160 m/s. (see Ref. [63]) 

When dealing with a fluid/fluid composite, the treatment is very similar. The only 

difference is that in this case 0µ = , and by introducing the pressure p λ= − ∇ ⋅u , Eq. (2.55) 

becomes 

          .                                   (2.61) 1 2( ) ( ) ( ) ( ) 0p pλ ρ ω−⎡ ⎤∇ ⋅ ∇ + =⎣ ⎦r r r r

Following the same steps as before (i.e. the Fourier transformation of ( )λ r  and , and 

the application of Bloch’s theorem to the pressure field, ), the corresponding 

form of Eq. (2.60) is 

1( )ρ− r

( ) ( )ip e p⋅= k r
kr r

21 + ) ( + ) p pλ ρ ω−
′ ′ ′′ ′′− − + +

′′ ′

′ ′′⋅ =∑∑ G G G G k G k G
G G

(k G k G .                      (2.62)                 

Eq. (2.62) is an N× N matrix eigenvalue equation for N Fourier expansion terms, in contrast 

to a 3N× 3N matrix equation in the case of solid/solid combination. 

Despite its success in band structure calculation, the PW method has some limitations. 

First, it encounters problems in the calculation of the dispersion relation of mixed 
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(fluid/solid) composites, e.g. solid scatterers in fluid host. In this case, besides the normal 

modes of the whole system which are purely longitudinal, there exist also transverse modes 

localized inside the solid scatterers. The PW method is unsuitable to describe this kind of 

modes due to their localized character. Secondly, this method cannot calculate the wave 

propagation in non-periodic systems. In addition, the PW method can only be applied to 

infinite periodic elastic structures and is also unable to calculate the transmission properties. 

Therefore new methods are desired to overcome these shortcomings, and one of them is the 

multiple scattering algorithm.  

2.5.3 The multiple-scattering (MS) method 
 

The MS method is a powerful method for band structure calculation, it can be applied to 

both periodic and non-periodic composites, can treat mixed (solid/fluid) composites, deal 

with finite systems and account for the transmission properties. The MS method is based on 

the well-known Korringa-Kohn-Rostoker (KKR) theory in the electronic band structure 

community [70]. In the following, we shortly describe the calculation of elastic wave band 

structure by the MS method with reference to periodic systems consisting of non-

overlapping spherical solid scatterers embedded in fluid host.  

The basic idea is that the incident wave on one sphere is the sum of the scattered waves 

from all the other spheres and the external field (if present). This can be expressed 

mathematically in terms of summation of the pressure fields  in the fluid defined in the 

previous section, 

( )p r

0( ) ( ) ( )inc sc
n p

p n
p p

≠

= + p∑r r r

p

,                                               (2.63) 

where is the external field and the subscripts n and p denote the scatterer at the 

position R

0 ( )p r

n and Rp, respectively. For the calculation of the global eigenmodes, the external 

field must be taken as zero and Eq. (2.63) becomes 

 ( ) ( )inc sc
n

p n
p p

≠

= ∑r r .                                                  (2.64) 

Both sides of Eq. (2.64) can be expanded as a sum of elementary spherical waves, that is, 
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( ) ( )sc p p
p lm l

lm
p b= Φ m∑r r

m

,                                                (2.65) 

( ) ( )inc n n
n lm l

lm
p a= Ψ∑r r

R R

,                                                (2.66) 

where ,  and ( ) ( | |) ( )p
lm l o p lm ph k YΦ = − −r r R r ( ) ( | |) ( )n

lm l o n lm nj k YΨ = − −r r R r

o ok cω= with the sound velocity in the host material. Inserting Eq. (2.65) and (2.66) into 

Eq. (2.64), one can obtain 

oc

( ) ( )n n p p
lm lm lm lm

lm p n lm
a b

≠

Ψ = Φ∑ ∑ ∑r r .                                  (2.67) 

The coefficients p
lmb  are proportional to p

lma ,  

p p p
lm l lmb t a= .                                                    (2.68) 

The proportionality coefficient p
lt is called scattering coefficient which can be found by 

solving a single scattering problem [52,62] as in Section 2.4.2. Due to the periodicity of the 

system under consideration, all the scatterers are identical, thus  p
lt tl≡  is independent of the 

lattice position.  

The spherical functions in Eq. (2.65) centered at Rp can be transformed to functions 

centered at Rn, 

( )( ) ( ) ( )p n h
lm l m p nl m lm

l m
g′ ′ ′ ′

′ ′
Φ = Ψ −∑r r R R                                   (2.69) 

for | < | ||n−r R p n−R R , 

where ( ) ( ) / 2
; ;( ) ( 1) 4 ( ) ( )R l l

l m lm m m m ml m lmg C R kD Yλ
λ λ λ

λ
π′− −

′ ′ ′ ′′ ′ − −⎡ ⎤= − ×⎣ ⎦D∑D , R= j  or h, and 

 are the Gaunt numbers [52,71]. Applying Bloch’s theorem, the coefficients ; ;l m lm m mC λ′ ′ ′−

p
lmb at different lattice sites can be connected, 

 .                                                 (2.70) ( )p nip
lm lmb e b⋅ −= k R R n

Substituting Eq. (2.68), (2.69) and (2.70) into Eq. (2.67), interchanging the ( ,  with the 

, after a few algebraic manipulations, we obtain 

)l m′ ′

( , )l m
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Eq. (2.71) is a linear homogeneous algebraic system. To have nontrivial solutions the 

determinant must vanish, which gives the eigenmodes of this periodic system. In other words, 

the dispersion relation is obtained. 

Eq. (2.71) is a linear homogeneous algebraic system. To have nontrivial solutions the 

determinant must vanish, which gives the eigenmodes of this periodic system. In other words, 

the dispersion relation is obtained. 

    

Figure 2.6 shows the elastic wave band structure of two fcc periodic composites 

calculated by the MS method (open circles). One system consists of steel spheres in air (Fig. 

2.6a) and the other is made of glass spheres in water (Fig. 2.6b), the volume fraction of the 

spheres in both cases is 

Figure 2.6 shows the elastic wave band structure of two fcc periodic composites 

calculated by the MS method (open circles). One system consists of steel spheres in air (Fig. 

2.6a) and the other is made of glass spheres in water (Fig. 2.6b), the volume fraction of the 

spheres in both cases is 0.5ϕ = . For comparison, the band structure calculated by the PW 

method is also given (solid lines). Note that in order to apply the PW method to such a 

solid/fluid combination, the transverse component of the wave within the solid scatterer is 

completely ignored, namely, 0µ = is used.  

 

 

 

 

 

 

 

 

 

 
Figure 2.6 Phononic band structure for two fcc phononic crystals. The open circles are 
calculation results from the MS method and the solid lines are from the PW method. The volume 
fraction of the spheres in both systems is j=0.25. a, Steel spheres in air. Material parameters: steel, 
ρ=7.8 g/cm3, cl=5940 m/s, ct=3220 m/s; air, ρ=0.001 g/cm3, cl=345 m/s, ct=0. b, Glass spheres in 
air. Material parameters: glass, ρ=2.5 g/cm3, cl=5700 m/s, ct=3400 m/s; water, ρ=1.0  g/cm3, 
cl=1500  m/s , ct=0. (see Ref.[63]) 
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2.5 Elastic waves in periodic elastic composites 

In Fig. 2.6a, the MS method and the PW method are in very good agreement for the 

system consisting of steel spheres in air. The success of the PW method in this case is due to 

the very large elastic mismatch between steel and air. Under such a condition, the steel 

spheres are so “hard” as to exclude almost all traveling waves from penetrating into its 

interior, as a result, the details of the waves inside the sphere are irrelevant. However, for the 

glass/water combination which has smaller elastic contrast, the PW method which neglects 

the shear stress of the solid, is no longer acceptable. Large deviation from the results by the 

MS method appears as in Fig. 2.6b.  

A very powerful variant of the MS method is the so-called layer-multiple-scattering 

(LMS) method, which can describe elastic composites with the same two-dimensional 

periodicity (in the x-y plane) while periodicity along the normal (z) direction is not required 

[53,54]. Therefore, this method allows to calculate the frequency band structure of a three-

dimensional phononic crystal, viewed as an infinite succession of planes of scatterers 

parallel to a given crystallographic plane (layers), but also the transmission and reflection 

coefficients of an acoustic wave incident at a given angle on a finite slab of the crystal. 

Composite systems which include, in addition, homogeneous slabs and/or substrates can be 

treated in a straightforward manner, thus allowing the realistic description of an actual 

experiment. The LMS method takes into account the full vector nature of the acoustic field, 

consequently it can be applied to systems of solid or fluid scatterers in a fluid or solid host. 

An additional advantage of the method is that, contrary to traditional band structure or time-

domain methods, it proceeds at a given frequency, i.e., it is an “on-shell” method. Therefore, 

it can directly describe composite media characterized by frequency-dependent elastic 

coefficients and treat absorption or viscosity. Further, it provides all modes, propagating and 

evanescent, of the system at a given frequency. The LMS method employs spherical-wave 

expansions for the acoustic field to describe multiple scattering within each plane of 

scatterers, while interlayer multiple scattering is evaluated by expanding the field into plane 

waves. A powerful computer program which implements numerically the LMS method 

became recently available [72]. 
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  Chapter 3 
 

 

Light scattering basics 
 
 
 

The experimental investigation of the propagation of elastic waves in an elastic medium 

with spatial periodicities or inhomogeneities in the length scale of tens of nanometers to a 

few micrometers cannot be realized by using conventional acoustic methods, e.g. ultrasonic 

transmission technique which uses a couple of ultrasonic broadband transmitter/receiver 

transducers, due to the very high frequencies (GHz) associated with these waves. In this 

work, a noncontact, nondestructive method which is so far unique to achieve this purpose 

was employed. It is based on the scattering of light by thermally excited phonons, referred to 

as Brillouin light scattering (BLS). By analyzing the scattered light, information about the 

excited phonons can be obtained since the scattering process is very sensitive to the 

characteristics of the phonons. In this chapter, the mechanism responsible for BLS will be 

discussed. 

3.1 Fundamental light scattering theory 

In the following theoretical description of light scattering, both the scattering medium 

and the light are treated classically, without having to specify the molecular properties. In 

fact, a single molecule can also scatter light, e.g. the well-known molecular Raman 

scattering. In that case a satisfied description of the scattering process requires at least 

treating the molecule quantum mechanically [73]. The discussion of scattering of light by 

such quantum systems is beyond the scope of this dissertation, and for our purposes it is 

sufficient to confine ourselves to the phenomenological description on the basis of classical 

electromagnetic theory. 
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3.1 Fundamental light scattering theory 

The optical property of an isotropic medium (nonmagnetic, nonconducting, 

nonabsorbing) is usually characterized by the dielectric constant 0ε . More precisely speaking, 

this is only an average value, and the dielectric constant associated with a local volume is 

actually fluctuating around 0ε  owing to the thermal motion of the molecules of the medium. 

Taking into account possible anisotropy introduced by the fluctuation of the relative 

orientations of anisotropic molecules, the local dielectric constant, in its most general form, 

becomes a tensor quantity, and can be written as 

0( , ) ( , )t tε δ=r I rε ε+ ,                                                  (3.1) 

where ( , )tδ rε is the dielectric constant fluctuation tensor at position r and time t, I is the 

second-rank unit tensor. Suppose the incident light to be a plane wave of the form  

0( , ) exp ( - )i i it E i itω=E r n k r⋅ ,                                         (3.2) 

where ni is a unit vector in the direction of the incident electric field, E0 is the field amplitude, 

ki is the wavevector, and ωi is the angular frequency. The scattered electric field E s(R , t) at 

a large distance R from the scattering volume can be computed by demanding that the total 

field E=E i+E s  satisfies the Maxwell equations throughout all space. The detailed derivation 

can be found in Ref. [74,75], here only the solution of the Maxwell equations is given, as it 

is the physics behind instead of the extensive mathematics that concerns us.  

The component of the scattered electric field at a large distance R from the scattering 

volume with polarization ns , wavevector ks, and frequency ωs is [74] 

[ ]30

0
( , ) exp exp ( - ) ( ( ( , ) ))

4s s i s s sV

EE R t ik R d r i t t
R

ω δ
π ε i⎡ ⎤= × ×⎣ ⎦∫ q r n k k r n⋅ ⋅ ⋅ε .   (3.3) 

Although this equation looks complicated, its components can be broken down and the 

essence can be understood physically without the need to resort to complex mathematics. In 

Fig. 3.1 a large portion of the scattering volume V is indicated by the irregular region in 

yellow, O inside the scattering volume is the origin of the established reference coordinate 

system. The detector of the scattered light is located at the position R with respect to the 

origin, r is the position of an infinitesimal volume element inside the scattering volume, and 

the distance vector between the volume element and the detector is given by R-r, here R >>r 

(Fig. 3.1a). The so-called scattering wavevector q is defined as the vector difference 
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between the wavevector of the incident light (ki) and that of the scattered light (ks), whose 

magnitude can be readily calculated as follows by referring to Fig. 3.1b, 

22 2 2 2 2 22 2 2 cos 4 sin
2s i s i i s i i iq k k k k k 2 θθ= − = + − = − =k k k k⋅  

or   42 sin sin
2 2i

i

nq k θ π θ
λ

= = .                                                (3.4) 

In the above, the relation i ≅k k s

s

was used since the incident wavelength (λi) changes very 

little in the scattering process. 

 

 

 

 

          

 

 

 

 

 

 

 
Figure 3.1 Scheme of light scattering geometry. a, The relative position of the scattering 
volume V and the detector, the yellow region denotes a large portion of the scattering volume. Note 
that the size of the scattering volume is exaggerated for clarity. The total scattered field at the 
detector is the superposition of the fields radiated from all infinitesimal volumes d3r at position r with 
respect to the center of the scattering volume. b, The light scattering process. The incident light 
impinges onto the sample and is scattered in all directions. The position of the detector determines 
the scattering geometry which further defines the scattering wavevector i= −q k .The polarizer 
and the analyzer are used to select the polarization state of the incident and scattered light, 
respectively. 

k

In Eq. (3.3), the integration is performed over the whole space within the scattering 

volume V, and it only influences terms in the integrand containing the space coordinates r. 

Eq. (3.3) can be then rewritten as 

     0

0
( , ) exp ( - ( (( exp ( , )) ))

4
3

s s i s s s V

EE R t i k R t) dr i t
R

ω δ
π ε i

⎡ ⎤⎡ ⎤= ⋅ × × ⋅⎢ ⎥⎣ ⎦⎣ ⎦∫n k k q r r n⋅ ε ,   (3.5) 
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where the term  0

0
exp ( - )

4 s i
E i k R t
R

ω
π ε

 represents a spherical wave emitted from the origin O in 

the scattering volume. Its appearance is not unexpected since the scattering volume is rather 

small compared to its distance to the detector. To a first approximation, the scattering 

volume can be regarded as a point scatterer at the origin. Certainly this picture is 

oversimplified and corrections are needed. The integral  accounts for 

the interference effect between the wavelets emitted from different volume elements within 

the finite scattering volume. The vector cross and dot products are responsible for the 

angular distribution and the polarization of the scattered field.  

exp ( , )3
V

dr i tδ∫ q r r⋅ ε

The integral is actually the spatial Fourier transformation of the dielectric 

fluctuation ( , )tδ rε : 

( , ) exp ( , )3
V

t dr iδ = ∫q q r⋅ε tδ rε .                                     (3.6) 

Eq. (3.5) then becomes  

[ ]0

0
( , ) exp ( - ( ( ( , ) ))

4s s i s s s
EE R t i k R t) t
R

ω δ
π ε i⎡ ⎤= ⋅ × × ⋅⎣ ⎦n k k q nε .           (3.7) 

By working out the vector product Eq. (3.7) can be simplified to 

2
0

0
( , ) exp ( - ( , )

4
s

s s i
k E

isE R t i k R t) t
R

ω δε
π ε

−
= q ,                           (3.8) 

where ( , ) ( , )is s it tδε δ≡ ⋅ ⋅q n q nε is the component of the dielectric constant fluctuation tensor 

along the initial and final polarization directions. The time-correlation function of Es can be 

computed as 

     
4 2

0
2 2 2

0

( ,0) ( , ) ( ,0) ( , ) exp (- )
16

s
s s is is

k EE R E R t t i t
R iδε δε ω

π ε
∗ ∗= q q .               (3.9) 

And the spectral density of the scattered light reads, 

4
0

2 2 2
0

4
0

2 2 2
0

( , , ) exp ( ,0) ( , )

( ,0) ( , ) exp ( - )
16

( ,0) ( , ) exp
16

is s s s s

s
is is s i

s
is is

I R dt i t E R E R t

k I dt t i t
R

k I= dt t i t
R

ω ω

δε δε ω ω
π ε

δε δε ω
π ε

∗

∗

∗

=

=

∫

∫

∫

q

q q

q q

,            (3.10) 
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where s iω ω ω≡ −  is the frequency change in the scattering process, and  is the 

incident beam intensity. Important features of   Eq. (3.10) are: 

2
0I E≡ 0

41. 4(or )is sI k λ−∝ , the scattering intensity is inversely proportional to the forth power of 

the light wavelength. 

2. 2
isI R−∝ , this R-2 dependence is expected from a spherical wave. 

3.  depends on isI iω  and sω  only through their difference s iω ω ω≡ − . 

Note that for a given scattering experiment, the proportionality coefficient in Eq. (3.10) is a 

constant and the scattering intensity is then determined by the integral which is in fact the 

spectral density of the dielectric constant fluctuations: 

( , ) ( ,0) ( , ) expis is isI dt t i tω δε δε ω∗= ∫q q q .                              (3.11) 

If ( , )is tδε q  is time-independent, obviously  is non-zero only when ω=0. This means that 

“frozen” fluctuations (static optical inhomogeneities) can only lead to elastic scattering, in 

which the frequency of the scattered wave coincides to the frequency of the incident wave. 

The frequency changes only when  

isI

( , )is tδε q  varies with time. 

From the above discussion it is easy to appreciate that the light scattering spectrum 

( , )isI ωq  directly measures the local dielectric constant fluctuations in a medium, which is 

in turn caused by various thermal fluctuations, e.g. density fluctuations, orientation 

fluctuations for anisotropic molecules. Therefore light scattering can in principle provide 

valuable information about diverse dynamic processes in a system.    

3.2 Introduction to BLS 

BLS usually refers to the scattering of light by thermal sound waves in a medium. The 

most distinct characteristic of BLS is the appearance of a doublet in the frequency 

distribution of the scattered light. This doublet was first predicted by Leon Brillouin [76] and 

now is known as the Brillouin doublet.  
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3.2.1 A simple approach to BLS 
 
       In its simplest description, BLS can be understood as constructive interference between 

multiply reflected light beams by sound waves. To appreciate this, let’s refer to Fig. 3.2 

where the interaction of the incident light and the propagating sound wave is schematically 

depicted assuming a plane wave form with a wavelength Λ. The existence of such an elastic 

wave in the medium modulates the local dielectric constant which also assumes a plane 

wave form of identical wavelength traveling along the same direction.  

 

 

 
Figure 3.2 Understanding Brillouin 
light scattering from multiple-beam 
interference. The scattering process can be 
regarded as constructive interference 
between multiply reflected beams at the 
interface between two adjacent “layers”. 
Each “layer” has a thickness corresponding 
to the wavelength (Λ) of the sound which
produces the “mutilayers”. 

 

 

 

 

 

 

 

Due to the large discrepancy between the speed of light (~3×108 m/s) and sound 

(~3×105 m/s), at any given instant when a single light scattering event happens, the spatial 

variation of the dielectric constant in the medium can be regarded as “frozen”, i.e. static 

dielectric inhomogeneities described by a spatial plane wave. The travel of the beam inside 

the medium is then very similar to that in a periodic multilayer stack with periodicity Λ as 

shown in Fig. 3.2, where the light beam undergoes multiply reflections3-1. The maximum 

reflected intensity, or the scattering, will occur only when the condition for constructive 

interference is satisfied, namely, 

2 sin
2 in θΛ λ= .                                                     (3.12) 

Here, n is the refractive index of the medium, iλ  is the wavelength of the incident light, and 

θ is the angle between the incident and reflected beams. The Bragg condition, Eq. (3.12), can 

be rewritten as 

                                                 
3-1 For more details about multiple beam interference, see Chapter 4. 
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2 4 sin
2i

nπ π
Λ λ

=
θ .                                                     (3.13) 

A comparison of Eq. (3.13) and Eq. (3.4) leads to 

2q π
Λ

= .                                                           (3.14) 

Eq. (3.14) indicates that the wavevector k ( 2 /k π Λ= ) of the sound wave is equivalent to 

the scattering wavevector q. By changing the scattering angle θ, a different q is selected and 

correspondingly different sound waves are probed by BLS. The equality q=k reflects the 

exchange of momentum between the sound wave and the light during the scattering process. 

The traveling sound wave has a certain phase velocity, say v, therefore the frequency fs 

of the scattered light seen by the detector suffers a Doppler shift, that is, 

(1 2 sin )
2s i

vf f
c

θ
= ± ,                                               (3.15) 

where fi is incident light frequency and c= f iλ i /n is the velocity of light within the scattering 

medium. The plus and minus signs correspond to the two possible propagation directions of 

the sound wave: one is toward the detector (“+”) leading to an increase in the frequency of 

the scattered light (anti-Stokes scattering), the other is away from the detector (“–”) leading 

to a frequency decrease (Stokes scattering). Eq. (3.15) can be further simplified to: 

                                          

4 sin
2

2

s i
i

i

v nf f

vf q

2
π θ

π λ

π

= ±

= ±

.                                         (3.16) 

In terms of angular frequency, 

s i vqω ω ω= − = ± .                                            (3.17) 

Now it becomes clear that in the scattering spectrum ( , )isI ωq  there is a doublet centered at 

the frequency vqω = ± . Since q is also the wavenumber of the sound wave (Eq. (3.14)) 

traveling at a speed v, then ω  naturally becomes the angular frequency of the sound wave. 

Therefore Eq. (3.17) reflects the energy exchange between the sound wave and the light.     

As already mentioned we do not have to invoke any quantum mechanical treatment. 

However, some basic concepts from quantum mechanics can offer a better understanding of 
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BLS. The scattering process is in fact governed by two fundamental laws in nature, as seen 

already, the momentum conservation and the energy conservation. These two conservation 

laws can be more easily appreciated by viewing the scattering event in terms of inelastic 

photon-phonon collisions. An incident photon with energy iω=  and momentum is 

inelastically scattered by a phonon of energy 

ik=

ω=  and momentum q= in the scattering 

medium. During this process a phonon is either created with the scattered photon losing the 

corresponding energy, or annihilated with the scattered photon gaining the corresponding 

energy. Conservations of momentum and energy in the scattering process require 

            Momentum conservation:      s i= ±k k= = =q                           (3.18) 

             Energy conservation:          s iω ω ω= ±= = =                           (3.19) 

The plus sign corresponds to the phonon annihilation (anti-Stokes scattering), while the 

minus sign indicates the phonon creation (Stokes scattering). 

A phonon is an elastic analogue of a photon, that is, a piece of quantized elastic energy. 

In the context of this dissertation, phonons are used to refer to high frequency (GHz) 

thermally excited elastic waves. Despite the subtle difference in the meanings of names like 

sound waves, elastic waves, acoustic waves, mechanical waves, elastic excitations and 

phonons, they will not be distinguished in this dissertation and will be used interchangeably.   

3.2.2 A thermodynamic approach to BLS 
 

The above simple approach is elegant in elucidating the main features of BLS, e.g., the 

appearance of the doublet and the correct prediction of its frequency in relation to the sound 

velocity in the medium. However, the factors that determine the intensity of the scattered 

light are not included. To have more complete information of the scattered light, we must 

recall Eq. (3.11), the most general description of light scattering and address the question  

how the sound wave determines the dielectric constant fluctuations ( ,0) ( , )is is tδε δε∗ q q . 

Thermal sound waves in a medium are essentially density or pressure fluctuations 

caused by the thermal random motion of the molecules. Associated with the thermal sound 

waves are fluctuations of the local thermodynamic properties. For a homogeneous one- 

component system at equilibrium, a macroscopic physical property can in general be 
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specified by two independent thermodynamic parameters. Therefore the dielectric constant 

ε  of an isotropic medium is a function of any pair of independent thermodynamic variables, 

e.g. the density ρ  and the temperature T, or the pressure P and the entropy S, that is, ( , )Tε ρ  

or ( , )P Sε . Note that the fluctuation of the thermal dynamical properties is isotropic and 

hence δε caused by the fluctuation is a scalar, or the tensor isδε  has no off-diagonal element. 

Then the scattering formula Eq. (3.11) can be simplified as 

2( , ) ( ) ( ,0) ( , ) expis i sI dt t i tω δε δε ω= ⋅ ∫q n n q q .                     (3.20) 

The immediate information from the above formula is that the scattering by local 

fluctuations of the thermodynamic properties is polarized scattering, i.e., the scattered light 

has the same polarization as the incident light. This is obvious by noticing the vector product 

 when0i s⋅ =n n i s⊥n n . 

Usually it is convenient to choose the density ρ and the temperature T as independent 

variables as they are properties that can be readily measured. Expressing ( , )tδε r  in terms of 

ρ and T, we get 

( , ) ( , ) ( , )
T

t t
T ρ

ε εδε δρ δ
ρ

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
r r T tr .                              (3.21) 

In most cases,  0
T ρ

ε∂⎛ ⎞ ≅⎜ ⎟∂⎝ ⎠
 is a very good approximation. Substitution of Eq. (3.21) into Eq. 

(3.6) and referring to Eq. (3.20), we obtain the scattering power spectrum, 

2
2( , ) ( ) ( ,0) ( , ) expis i s

T

I dt t i tεω δρ δρ ω
ρ

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

∫q n n q q .                (3.22) 

Clearly, the density fluctuations are responsible for the scattering spectrum. In this section, 

our main concern is the total scattering intensity, 

( ) ( , )is isI d Iω ω= ∫q q ,                                          (3.23) 

rather than the detailed spectral distribution. Inserting Eq. (3.22) into Eq. (3.23), we obtain 
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( )
2

2

2
2

2
22

( ) ( ) exp ( ,0) ( , )

( ) ( ) ( ,0) ( , )

( ) ( )

is i s
T

i s
T

i s
T

I dt d i t t

= dt t t

ε ω ω δρ δρ
ρ

ε δ δρ δρ
ρ

ε δρ
ρ

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
⋅ ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

∫ ∫

∫

q n n q q

n n q q

n n q

.         (3.24) 

According to Eq. (3.24) the total scattering intensity is simply determined by the mean-

square fluctuation of the qth Fourier component of the density fluctuation ( )δρ q . In BLS 

experiments the probed q is relatively small, and the corresponding 2p q-1 (>100 nm) is much 

greater than the intermolecular interactions, hence the q dependence of ( )δρ q  can be 

ignored. In this case, 

22

0 0

22

22

( ) ( )

( )

Vq q
d e

V

V

δρ δρ

δρ

δρ

⋅

→ →

=

=

=

∫ iq rq r r

r .                             (3.25) 

 

Statistical thermodynamics [77] shows that 

2 21
B Tk T

V
δρ ρ= β ,                                             (3.26) 

where V is the scattering volume, ρ is the average density, kB is the Boltzmann constant, and  

1 1
T

T T

V
P V P
ρβ

ρ
∂ ∂⎡ ⎤ ⎡ ⎤= = −⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

is the isothermal compressibility. The integrated scattering intensity 

consequently becomes 

 
2

2 2( ) ( )is i s B T
T

I Vε k Tρ β
ρ

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

q n n .                                  (3.27) 

This formula was first derived by Einstein (1910). Neglecting the possible small change of 

the scattering volume V with the change of scattering angle in an experiment, the total 

scattering intensity is independent of q.  
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The density fluctuations can be also expressed in terms of fluctuations of the pressure P 

and the entropy S. Following similar procedures and noting the statistical independence of P 

and S, we can easily obtain 

2 2
2 2

S P

2P S
P S
ρ ρδρ δ δ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

.                               (3.28) 

Now the density fluctuations are decomposed into two independent parts: 

1. the adiabatic fluctuations (constant entropy) 

2. the isobaric fluctuations    (constant pressure) 

The scattering intensity due to the adiabatic density fluctuations is 

2 2
22 2( ) ( )

S

ad
is i s

T

I V
P

ε ρ δ
ρ

⎛ ⎞∂ ∂⎛ ⎞= ⋅ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
q n n P .                          (3.29) 

By definition  

1 1
s

s s

V
P V P
ρβ

ρ
∂⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ,                                          (3.30) 

where sβ is the adiabatic compressibility. From statistical thermodynamics, 

2 B

s

k TP
V

δ
β

= .                                                    (3.31) 

Inserting Eq. (3.30) and Eq. (3.31) into Eq. (3.29), we obtain 

2
2 2( ) ( )ad

is i s B s
T

I ε V k Tρ β
ρ

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

q n n .                                  (3.32) 

The scattering intensity due to isobaric density fluctuations is 

2 2
22 2( ) ( )iso

is i s
PT

I V
S

ε ρ δ
ρ

⎛ ⎞∂ ∂⎛ ⎞= ⋅ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
q n n S .                           (3.33) 

From statistical thermodynamics, 

2
1 1

P P P

V T V
S V S TC V
ρ

ρ
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠P∂

                             (3.34) 

and       2
B PS k C Vδ ρ= ,                                             (3.35) 
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where CP is the heat capacity at constant pressure. Since the thermal expansion coefficient α  

is defined as 

1

P

V
V T

α ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
,                                                    (3.36) 

Eq. (3.33) can be rewritten as 

2 2 2
2 2( ) ( )iso B

is i s
pT

k TI V
C

αε ρ
ρ ρ

⎛ ⎞∂
= ⋅ ⎜ ⎟∂⎝ ⎠

q n n .                                (3.37) 

 

The total scattering intensity is the sum of Eq. (3.32) and Eq. (3.37), 

2 2
2 2( ) ( ) ( )is i s B s

pT

TI V k T
C

ε αρ β
ρ ρ

⎛ ⎞∂
= ⋅ +⎜ ⎟∂⎝ ⎠

q n n .                         (3.38) 

Compare the above formula with Eq. (3.27), the following relation is found, 

2

T s
p

T
C

αβ β
ρ

= + .                                                   (3.39) 

It can be shown [75] (by computing respectively the time-correlation functions of the 

pressure and the entropy fluctuations) that only the adiabatic density fluctuations are 

responsible for the appearance of the Brillouin doublet. The isobaric density fluctuations are 

not propagating fluctuations and contribute to a central line without frequency shift. 

Consequently only the adiabatic compressibility sβ  affects BLS intensity. Note that [78,79] 

21/s lvβ ρ= ,                                                      (3.40) 

where vl is the longitudinal sound velocity in the scattering medium. Therefore BLS intensity 

is also a direct indicator of the “hardness’’ of a material. The intensity ratio of the central 

line to the Brillouin doublet can be easily calculated, 

1
2

iso
c is T s T

ad
B sis

I I
I I

β β β
β β
−

s
= = = − .                                 (3.41) 

By definition, the specific heat ratio γ is 
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T

V

C
s C

Pβγ
β

= = ,                                                   (3.42) 

and hence                     1
2

c P V

B V

I C C
I C

γ−
= = − .                                           (3.43) 

This ratio, first calculated by Landau and Placzek [80], is called the Landau-Placzek ratio.  

3.3 Some remarks 

This chapter was devoted to the origin of BLS and its main features. It has to be pointed 

out that the thermal sound waves responsible for the Brillouin doublet should not be only 

understood as traveling plane waves (including damped plane waves) with longitudinal 

polarization as in the usual context of sound. Transverse waves can too lead to the Brillouin 

doublet, and the Doppler effect explanation works equally well. However, the preceding 

thermodynamic argument is no longer valid to account for the scattering intensity caused by 

transverse waves. The dielectric fluctuations now are not caused by density (or pressure) 

fluctuations, instead, due to the coupling of shear waves to rotation of the molecules which 

bear more or less some degree of anisotropy. In general, the scattering intensity due to 

transverse waves is very weak compared to that due to adiabatic density fluctuations. One 

should also be aware that the previous thermodynamic discussion is only strictly valid for 

systems in thermodynamic equilibrium. 

In complex elastic systems, e.g. systems with elastic inhomogeneities on the scale of the 

elastic wavelength, wave propagation is far more complicated than in a homogenous 

isotropic elastic body of infinite size as we have seen in Chapter 2. For propagating modes 

with different phase velocities, they will be revealed (assuming enough intensity) and 

distinguished by their different frequency positions in the BLS spectrum. Apparently the 

Doppler effect is still perfect in explaining the frequency shift. For non-propagating modes 

(localized due to elastic confinement), it is meaningless to talk about the phase velocity and 

hence the Doppler effect. In fact, both propagating modes and non-propagating modes are 

necessary components in synthesizing the complex adiabatic density fluctuations in some 

complex elastic systems. Obviously the time-dependent localized density fluctuations will be 

reflected in its Fourier transformation spectrum in the frequency space, as a result they also 

give rise to the Brillouin doublet at the corresponding frequencies. A simple and vivid way 
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to appreciate BLS due to non-propagating modes is to again borrow the quantum mechanical 

concepts. Regardless of the nature of the various modes, either propagating or non-

propagating, they can be envisaged as “material vibrations” in analogy with “molecular 

vibrations” of a molecule. Naturally, the exchange of energy between these “material 

vibrations” and the incident photons results in frequency shift in the scattered light. 

The width of the Brillouin peak reflects the lifetime of the phonon. A number of factors, 

like sound absorption, phonon scattering, molecular relaxation and so on, can lead to a 

reduction of the phonon lifetime [81]. The final peak width is an overall effect of all these 

contributions. Therefore an accurate description of the width requires complete information 

on all these factors, which is hardly possible in practice. Only in a few simple cases, where 

one factor dominates, the Brillouin width can be reasonably well captured theoretically. For 

example, in a Newtonian fluid where the Navier-Stokes equation holds, the Brillouin width Г 

is found to be proportional to the square of the scattering wavevector q [74], that is, Г~q2. In 

general, the spectra obtained experimentally are a convolution of the real spectrum and the 

instrumental function. In this dissertation, BLS is employed as a tool to reveal the various 

elastic excitations in the systems of interest, and it is the frequency shift that primarily 

concerns us. For this reason, in the experimental data analysis deconvolution with the 

instrumental function is not necessary as the peak frequency is in the first order unaffected. 

3.4 Surface BLS 

So far we have discussed BLS due to the interaction of the incident photons with the 

bulk phonons of a material. The scattering mechanism applies as well when coming to the 

surface (assuming a flat boundary) since the surface phonons do not show essential 

difference from bulk phonons in terms of their modulation of the local dielectric constant in 

the near surface region. In this context it is often referred to as the elasto-optic effect. 

However, there exists another additional mechanism responsible for BLS intensity at the 

surface. In Chapter 2, we have seen that surface waves, like Rayeigh waves, have a 

displacement component perpendicular to the surface. This leads to ripples on the surface, 

and these ripples form a grating which can diffract light. Considering the propagating nature 

of the surface waves, the grating is indeed a “moving” grating and the Doppler effect is 

responsible for the frequency shift. 
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Theoretical calculations show that in general for transparent substances, the elasto-optic 

effect dominates the scattering intensity by surface phonons, while for opaque substances, 

the “surface ripple” mechanism takes over [58,82]. Moreover, for opaque samples, the 

incident light is exponentially attenuated with distance into the substrate and hence has a 

very small penetrating depth. The momentum conservation condition in BLS is then relaxed, 

and only the component of the scattering wavevector q along the surface is conserved [83]. 

Usually when “surface BLS” is mentioned, it implicitly refers to the scattering from opaque 

substances in which the “surface ripple” mechanism becomes important.  

The work done in this dissertation is only marginally linked to “surface BLS”, or to 

“surface ripple” scattering. The brief treatment of it is to keep the integrality of the 

introduction of BLS, and further discussion of it will be excluded.  
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  Chapter 4 
 

 

Brillouin light scattering instrumentation 
 
 
 

4.1 Introduction to Fabry-Perot interferometer 

The frequency shift involved in Brillouin light scattering (BLS) generally ranges from 

109 to 1011 Hz. This is rather small compared to the incident laser frequency in the visible 

spectrum which is on the order of 1014 Hz. To achieve such a high spectroscopic resolution 

the frequently encountered diffraction grating spectrometers widely used in Raman 

scattering and fluorescence spectroscopy do not suffice. Spectrometers based on the Fabry-

Perot (FP) interferometer have to be used. The FP interferometer, providing extremely high 

resolving power, is the most crucial element of the whole BLS experimental setup. A solid 

understanding of how a FP interferometer works is necessary to carry out a successful BLS 

experiment.  

4.1.1 Multiple beam interference 
 

The working principle of a FP interferometer is based on multiple beam interference. 

Consider the simple case of a transparent parallel plate of dielectric material with a refractive 

index fn  and a thickness d as shown in Fig. 4.1a. Suppose that the film is nonabsorbing and 

let the refractive indices on both sides of the film be equal, namely, . An incident 

beam with the amplitude E

1n n= 2

0 impinges on the plate at an incident angle θi. The amplitude-

transmission coefficients are represented by t, the fraction of the amplitude of a wave 

transmitted on entering into the film, and t ' , the fraction transmitted when a wave leaves the 

 50



4.1.1 Multiple beam interference 

film. The corresponding amplitude-reflection coefficients are denoted by r  and r′  

respectively. In the absence of energy dissipation, we have [84] 

r r′= − and 2 1tt r′ + = .                                            (4.1) 

Indeed, whenever the amplitude-reflection coefficients, the r’s, are not small, multiple 

reflections inside the plate will become significant and the final transmission or reflection 

intensity is determined by the interference of those multiply transmitted or reflected rays. 

The optical path length difference L between adjacent rays can be easily computed by 

referring to Fig. 4.1b, 

1[( ) ( )] ( )fL n AB BC n AD= + − .                                        (4.2) 

By simple trigonometric manipulation and using Snell’s law, the expression for L finally 

becomes 

 cos2 f tdL n θ= ,                                                    (4.3)

with θt being the refractive angle. Accordingly, the phase difference d between adjacent rays 

is simply given by d= k0L , where k0 is the wavenumber of the incident light in vacuum. The 

total reflected scalar wave Er is the summation of the externally reflected wave E1r and the 

large number of higher-order internally reflected waves, E2r, E3r, E4r …, namely,  

Er= E1r+ E2r+ E3r+…+ ENr.                                        (4.4) 

 

 

 

 

 

 

 

 
Figure 4.1 Multiple beam interference. a, Multiple reflections and  transmissions which happen 
when an light beam is incident onto a dielectric thin film. b, Illustration of the optical path length 
difference between adjacent reflected beams in the plane of incidence.  
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Assuming 0
i tE e ω  to be the incident wave, the reflected waves, with consideration of the 

corresponding phase shift, are then given by  

  E1r = E0reiω t ,   E2r = E0tr' t 'ei (ω t -d) ,   E3r = E0 tr '3t 'e i (ω t -2d) ,  . . .  

                 EN r  = E0 tr ' ( 2 N -3 )t 'e i [ω t - (N - 1 )d] .  

The addition of these reflected waves ultimately yields, 
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where  represents the incident beam intensity. Following similar procedures, the 

transmitted beam intensity is found to be 
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With the definition of the coefficient of finesse F, such that 
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Eq. (4.6) and Eq. (4.7) can be rewritten as 
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The term 
121 sin ( / 2) (F δ ϑ

−⎡ ⎤+⎣ ⎦ A≡ is known as the Airy function. It represents the 

transmitted light intensity distribution as a function of the phase difference between adjacent 

beams and is plotted in Fig. 4.2.  
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Figure 4.2 Airy function.
Examples of Airy functions 
with different F values. Sharp 
transmission happens only 
with large F.  

 

It is clear that as F increases, the transmitted light intensity decreases. When r, the 

amplitude-reflection coefficient, approaches 1, F approaches infinity. The transmitted 

intensity then becomes very small, expect within the sharp spikes centered about the points 

d/2= mp, m=1, 2, 3…. In fact, this very strict condition (for large F) for transmission lays 

the theoretical foundation for constructing devices utilizing multiple beam interference to 

attain high spectroscopic resolving power.  

4.1.2 Standard Fabry-Perot interferometer 
 

The FP interferometer is a multiple beam interferometer of considerable contemporary 

interest, first constructed by Charles Fabry and Alfred Perot in the late 1800s. Besides being 

a spectroscopic device of extremely high resolving power, it serves as the basic laser 

resonant cavity. The simplest configuration consists of two plane, parallel, and highly 

reflected surfaces separated by some distance d as shown in Fig. 4.3.  If the enclosed gap 

(usually air) can be mechanically varied by moving one of the mirrors, it is referred to as an 

interferometer. When the mirrors are held fixed and adjusted only for parallelism, it is called 

an etalon (although the latter is still an interferometer in the broad sense).  

 In practice, two semisilvered or aluminized glass optical flats form the reflecting 

boundary surfaces. The introduction of a thin metal layer is to increase the reflectivity, as we 

have seen already that high resolving power can only be achieved with large r. In the 
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absence of light absorption, the equation t t ' + r 2 = 1  holds. Since in most cases it is the 

reflected and transmitted beam intensity that are concerned, another two useful parameters 

are defined, the reflectance R, the reflected fraction of the incident intensity, and the 

transmittance T, the transmitted fraction of the 

incident intensity. It can be easily shown that 

R = r 2 . Following the energy conservation, 

obviously we have R + T = 1. In reality, there 

is always some loss of energy, e.g. 

transformation to heat. If the absorbed fraction, 

referred to as the absorptance, is denoted by A, 

the above relation then becomes R + T + A = 1.  

 The appearance of A will not change the 

essential physics of multiple beam 

interference discussed in the last section, yet it 

affects the transmitted intensity. With the 

presence of A, Eq. (4.10) is changed to     

Figure 4.3 Fabry-Perot etalon. 
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Apparently, if A = 0, the above equation reduces to Eq. (4.10); if A is nonzero, the 

transmitted intensity maxima (I t)max will always be somewhat smaller than I i . However, the 

relative transmitted intensity is still determined by the Airy function, since 
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Of great importance is the sharpness of the transmitted “peak” in Fig. 4.2, that is, how 

rapidly the intensity drops off on either side of the maximum. This is described by g, the 

width at half-maximum, as indicated in Fig. 4.4. The value of g can be readily calculated, e.g. 

by considering the peak centered at dmax= 0, in this case, g = 2 d1/2,  where d1/2 is the value of 

d when (I t)max=2I t .  It follows that 1
1/ 2 2sin (1/ )Fδ −= . Since F is generally rather large, 

1sin (1/ ) 1/F F− ≈ , hence 

4 / Fγ = .                                                  (4.13) 
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4.1.2 Standard Fabry-Perot interferometer 

This width, to a very good approximation, represents the smallest phase increment 

separating two resolvable peaks, which actually determines the resolving power of a FP 

interferometer. Another quantity of particular interest is the ratio of the separation of 

adjacent maxima to the peak width 

at half-maximum, known as the 

finesse . Obviously, 2 /π γ= , 

from Eq. (4.13), 

2
Fπ

= .             (4.14) 

Over the visible spectrum, the 

finesse of most ordinary FP 

instruments is about 50. In practice, 

the finesse cannot be made much 

greater than about 100 due to 

limitations on the quality of mirror substrates and coatings, as well as deviations of the 

mirrors from plane parallelism. Note that as the finesse increases, the width at half-

maximum decreases. Thus the resolving power becomes higher, but at the expense of the 

transmission intensity. 
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Figure 4.4 Fabry-Perot fringes and 
the finesse.  

The FP interferometer is used as a high resolving power spectrometer by varying the 

spacing d (Fig. 4.3) between the two mirrors so as to select light transmission at different 

wavelengths. Recall that the maximum transmission happens at d/2= ( k0L/ 2 ) = m p ,  m=1, 

2, 3, …. Referring to Eq. (4.3), we have 

       0 2 cosf tn dm θλ = ,                                                (4.15) 

where 0 2 / k0πλ =  is the wavelength of light in vacuum. For nearly normal 

incidence, cos 1tθ = , then 

0 2 fn dmλ = .                                                    (4.16) 

We realize immediately that for a given spacing d, the transmitted light does not necessarily 

have the same wavelength because the change in wavelength can be compensated by the 

corresponding change in the integer number m. This makes an unambiguous interpretation of 

the spectrum impossible, unless it is known a priori that the spectrum of interest entirely falls 
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into a certain wavelength span (∆λ0)FSR, the so-called free spectral range (FSR). For a fixed d, 

differentiating Eq. (4.16) leads to  

                            0
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λ
λ

∆ ∆= − .                                                   (4.17) 

The minus is irrelevant since it means only that the order increases when λ0 decreases. The 

separation between the two adjacent transmission maxima (Fig. 4.4) is 2p ,  and the 

corresponding change of m is 1, namely, ∆m=1. Therefore, Eq. (4.17) becomes 
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In combination with Eq. (4.16), we have 

                    2
0 FSR 0) / 2( fn dλ λ=∆ ,                                           (4.19) 

or in terms of frequency 

        FSR) / 2( fc n df =∆ ,                                              (4.20) 

where c is the speed of light in vacuum. The FSR is a very important instrumental parameter 

to be set before using the FP interferometer for spectroscopic purposes.  

4.1.3 Tandem Fabry-Perot interferometer 
 

It was early recognized in the field of Brillouin scattering that the standard FP 

interferometer has too low a contrast to allow weak Brillouin signals to be observed in the 

presence of normally extremely intense elastically scattered light. This problem was not 

really solved until 1971 when the high contrast, multipass FP interferometer was introduced 

by Sandercock [85]. However, a multipass FP interferometer, like the simple configuration, 

still suffers from the overlapping of neighboring interference orders, which makes the 

interpretation of the measured spectra somewhat ambiguous, especially for rich or broad 

spectral features. 

One solution to suppress this effect is to use a tandem arrangement, i.e. two FP 

interferometers (FP1 and FP2) in series with slightly different FSR. In this case, the 

neighboring order transmission peaks of the two FP interferometers cannot coincide due to 

the slight difference in their FSR as illustrated in Fig. 4.5. As a result, the adjacent 
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4.1.3 Tandem Fabry-Perot interferometer 

interference orders of one of the two 

interferometers are blocked by the other, 

leading to a significant suppression of 

interference higher order transmission. In 

order for the tandem interferometer to 

function as a spectrometer, the wavelengths 

transmitted by the two FP combinations 

must satisfy the following two equations 

simultaneously for all wavelengths within 

the relevant FSR, 

                  1 0 12 fn dm λ =   (for FP1),            
Figure 4.5 Suppression of higher 
order transmission in a tandem 
Fabry-Perot.  

2 0 22 fn dm λ =  (for FP2).   (4.21) 

This implies that the scanning of the two FP 

interferometers has to be synchronized, such 

that, 

1

2 2

d d
d d

1∆
∆

= .                                                      (4.22) 

However, for quite a long time, this seemingly simple relation remained the biggest 

obstacle to the practical realization of the tandem FP interferometer. This difficulty was 

removed in the 1980s by Sandercock [86] who proposed a very simple but elegant solution 

based on a novel design of the scanning stage. The principle of the tandem scan is 

demonstrated in Fig. 4.6. The first interferometer FP1 is arranged to lie in the direction of 

the translation stage movement. One mirror sits on the translation stage, the other on a 

separate angular orientation device. The second interferometer FP2 lies with its axis at an 

angle j to the scan direction. One mirror is mounted on the translation stage and the other 

mirror on an angular orientation device which can also allow a small translation of the mirror 

for adjustment purposes. The relative spacings of the mirrors are set so that a movement of 

the translation stage to the left would bring both sets of mirrors into simultaneous contact. A 

movement of the translation stage to the right then sets the spacings to d1 and d1cosj. 

Moreover, a scan ∆d1 of the translation stage produces a change of spacing ∆d1 in FP1 and 

∆d1cosj in FP2. In other words, Eq. (4.22) is satisfied. 
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 Figure 4.6 Principle of the tandem 
scanning of a tandem Fabry-Perot. 

 

 

In my experiment, a six-pass tandem Fabry-Perot was used and the related tandem 

optics is briefly sketched in Fig. 4.7. The scattered light enters the system at the adjustable 

pinhole P1. Mirror M1 reflects the light towards the lens L1 where it is collimated and 

directed via mirror M2 to the first interferometer FP1. Then the light hits mirror M3 and is 

directed to the second interferometer FP2. After transmission through FP2 the light strikes 

the 90° prism PR1 where it is reflected downwards and returned parallel to itself towards 

FP2. Upon the reflection by M3 it continues to pass through FP1, after transmission through 

lens L1 it travels underneath mirror M1 and is focused on to mirror M4. This mirror returns 

the light through lens L1 where it is again collimated and directed through FP1. The 

combination of lens L1 and mirror M4 lying at its focus acts as a spatial filter which filters 

out unwanted beams such as the beam reflected from the rear surfaces of the interferometer 

mirrors. After the final pass through FP2, the light strikes mirror M5 where it is directed to 

the prism PR2. This prism, in combination with the mirror M6, the lens L2 and the output 

pinhole P2, forms a bandpass filter with a width determined by the size of the pinhole. 
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Figure 4.7 Optics inside a six-pass tandem Fabry-Perot interferometer. The scattered 
light enters the tandem system via the pinhole P1 and leaves via the pinhole P2. Before it finally 
reaches the photodetector, the scattered light passes the two interferometers (FP1 and FP2) six times. 

4.2 Experimental setup 

The whole BLS experimental setup is schematically shown in Fig. 4.8. A solid state 

diode pumped, frequency-doubled Nd:YAG laser (Coherence) with an output power of 100 

mW (532 nm) is mounted on the rotatory arm of a goniometer (Huber). After passing 

through a Glan polarizer, the outcoming laser beam with polarization (V) perpendicular to 

the scattering plane (horizontal plane) is focused into the center of the goniometer where the 

sample is located. The focusing size is around 200 µm in diameter. The scattered light along 

a well-defined direction is collected by an aperture and focused into the entrance pinhole of 

the tandem Fabry-Perot (JRS Scientific Instruments) after successive transmission through 

two lenses. A Glan-Thompson analyzer is inserted between the two confocal lenses to allow 

the selection of the scattered light with polarization either perpendicular (V) or parallel (H) 

to the scattering plane. After passing through the tandem Fabry-Perot which acts as a 

spectrometer, the scattered light is detected by a single-photon avalanche photodiode (APD). 

The resulting electronic signal is processed by a multi-channel analyzer (MCA). A tiny
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4.2 Experimental setup 

fraction of the incident laser intensity is separated from the incident beam and introduced as 

a reference beam via an optical-fiber into the tandem Fabry-Perot to achieve a long period 

(up to several weeks) stabilization of the interferometer. The experimental change of the 

scattering angle θ, hence the scattering wavevector q, is accomplished by rotating the 

goniometer with an electronically controlled motor, which can cover a broad θ range, 

roughly from 8° to 160°. 

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 Scheme of the BLS setup. The sample is sitting at the center of the goniometer, the 
variation of the scattering angle θ is realized by rotating the laser mounted on the goniometer. The 
scattered light is collected by two lenses into the six-pass tandem Fabry-Perot interferometer. 

The sample holder used allows BLS measurements at elevated temperatures up to 

453 K. This feature is important for investigating the temperature dependence of BLS in 

some polymer samples, especially effects related to the glass transition. As seen in Fig. 4.9, 

the holder is cylindrical-shaped and has a metallic body. A flat, wide-open slit with a width 

of 1 cm is made out of the body at the appropriate height, allowing the transmission of the 

incident laser beam and the emanation of the scattered light. A transparent, round quartz wall 

with intimate contact to the inner wall of the metallic body is inserted inside the holder to 

make the inside a closed system necessary for good temperature control. With a special 

adapter, the sample is brought to a proper height in the center of the holder, and a cover lid is 

used to enclose the interior. The system is electrically heated, with a Pt100 temperature 
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sensor embedded in the metallic body to regulate the heating behavior. Another Pt100 sensor 

is placed in close proximity to the sample to read the sample temperature. The temperature 

of the system is stabilized within ±0.2 K. 

 

 

 

 
 
 
 
 

Figure 4.9 The sample holder 
allowing BLS experiment to be 
performed at elevated temperatures.

 

4.3 Scattering geometry 

The scattering geometry is another important BLS experimental issue deserving special 

attention. In fact the scattering geometry is to a large extent determined by the geometrical 

characteristics of the sample. Usually two well-defined sample forms are utilized in BLS 

experiments: the cylinder and the film. In the following discussion of the scattering 

geometry, we confine ourselves to the situation that the rotation axes of the cylinder and the 

film plane are perpendicular to the scattering plane.  

1. scattering geometry for a cylindric sample 

This is the simplest scattering geometry 

encountered in a BLS experiment. Samples of 

such a form are generally liquids filled in 

transparent cylindrical glassware, e.g. a NMR tube. 

The scattering wavevector q has a magnitude 

0

4 sinnq
2

π θ , as evidenc
λ

= ed in Fig. 4.10, where n 

is the refractive index of the scattering medium.  

θ q
Incident laser

Scattered light

Figure 4.10 BLS scattering 
geometry for a cylindric sample.
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2. scattering geometry for a film sample 

When dealing with solid samples, in most cases a film with a refractive index n is used, 

either free-standing or supported. In this case, complication in the calculation of q comes 

from the refraction at the sample surface. Depending on the relative position of the incident 

beam and the scattered beam with respect to the film plane, the scattering geometry for a 

film can be further divided into two classes: the transmission geometry, in which the incident 

and the scattered beam lie at different sides of the film plane, and the reflection geometry, in 

which the incident and the scattered beam are on the same side of the film plane.  

      The transmission geometry is shown in Fig. 4.11a. For a defined scattering angle θ, the 

scattering wavevector q is not yet well defined since the orientation of the film can be varied. 

In other words, the incident angle a still has freedom to change. What really matters in 

determining q are the wavevectors of the incident and the scattered beams inside the film, 

both of which are functions of θ and a. After simple trigonometric manipulation and 

applying Snell’s law, one obtain 

0
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in which θ ranges from 0° to 180° and a is between -90° and 90°. Note that a is negative 

when the rotation from the surface normal to the incident beam is clockwise as in Fig. 4.11a. 

The quantity qpara is the component of q along the film plane, the ratio of qpara/q reflects the 

relative direction of q with respect to the film plane. It can be shown that this ratio in most 

cases is more than 0.9. Therefore when the transmission geometry is adopted, BLS is mainly 

used to study phonon propagation parallel to the film plane. 

The reflection geometry is depicted in Fig. 4.11b. Following similar simple 

trigonometric procedures, q and qpara can be found to be 
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It is remarkable that the expression 

of q in the reflection geometry is the 

same as the expression of qpara in the 

transmission geometry, and vice versa.  

However, for a given combination of θ 

and a, there can be only one scattering 

geometry. The transmission and the 

reflection scattering geometries cannot 

exist simultaneously. Therefore when 

using the above expressions for the 

calculation of q, care has to be taken to 

first identify which scattering geometry 

is used. The most distinct feature of the 

reflection geometry is that the direction 

of q is very close to the film normal, 

thus this geometry is chosen when 

phonon propagation along the film 

normal needs to be studied.  
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Figure 4.11 BLS scattering geometry for 
a film sample. a, Transmission case. b,
Reflection case. 

3. A special scattering geometry 

In my experiment, transparent solid samples in the form of a film were almost 

exclusively used. Of the two scattering geometries for film samples, the transmission 

geometry was the one selected for most of the studies because the reflection geometry can 

only provide a very small range of q so that the dispersion relation of the phonon 

propagation cannot be attained. For the transmission geometry, when a= –θ/2, that is, the 

incident angle is half of the scattering angle (notice the sign convention for the incident 

angle), Eq. (4.23) can be simplified to 

                     
0

4 sin
2

q π θ
λ

= .                                                      (4.27) 
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We can see that q is now independent of the refractive index n, a quantity which is not 

always available. Moreover, under such a condition the ratio qpara/q is equal to 1. Hence q is 

strictly parallel to the film plane, which is 

ideal for the investigation of in-plane 

phonon propagation. It is easy to verify 

that Eq. (4.27) holds not only for a single 

film but also for bilayer and even 

multilayer films, making this special 

scattering geometry of great practical 

importance since very often we deal with 

films with many layers. For example, a 

supported single film is actually a bilayer 

system considering the presence of the 

substrate. In Fig. 4.12, this special 

scattering geometry applied to a bilayer 

film is schematically sketched. Despite the 

refractive index difference between the two constituent layers, the scattering wavevectors q1 

and q2 in the two layers are equal. The generalization to more layers is straightforward. 

Scattering

/2θ

/2θ /2θ

q1

q2

Incident laserReflection

Transmission

n0=1

n0=1

n1

n2

Figure 4.12 A special BLS scattering 
geometry for a bilayer film. The incident 
angle with respect to the film normal is half of 
the external scattering angle, and q does not 
depend on the refractive indices of the layers. 
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  Chapter 5 
 

Elastic excitations in supported thin polymer films  

 
 
 
 
 

5.1 Introduction 
 

Brillouin light scattering (BLS) capable of probing elastic wave propagation has been 

demonstrated to show great potential to extract the elastic information of thin polymer films. 

For supported thin layers, no noticeable change in elastic moduli has been found with 

thickness down to about 150 nm [24]. Although a substrate is also present, its influence on 

the elastic wave propagation is well defined, in contrast to some other nanomechanical 

methods like nanoindentation or atomic force microscopy (AFM). Moreover, due to the 

strong dependence of the speed of elastic waves on the elastic moduli of the film, which in 

turn are sensitive to the free-volume of the polymer, temperature-dependent BLS has been 

successfully applied to extract the Tg of free-standing thin polymer films [11,18]. In fact, 

original information about the dimension-dependent Tg of free-standing thin polymer films 

was exclusively obtained by BLS. Despite the apparent virtue of BLS of being able to obtain 

the elastic properties and Tg simultaneously, the determination of Tg by BLS has been so far 

only restricted to free-standing thin films. The hindrance of applying BLS to supported thin 

films for this purpose comes from the negative impact from the substrate. For opaque 

substrates, e.g. silicon wafers which are often used, there is an appreciable laser heating 

effect which complicates the determination of Tg [11].  On the other hand, it has been 

pointed out that large amount of light scattering from bulk phonons in transparent substrates 

would obscure the much weaker signal from the film-guided acoustic modes [11]. As a result, 
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the few existing BLS measurements on the mechanical properties of thin supported films 

were all conducted with the use of opaque substrates [24,26].  

It is the supported thin films that are widely used technologically. In addition, the 

overwhelming majority of the Tg measurements on thin polymer films using different 

techniques are dealing with supported films [10,12-15,17,19]. Therefore it is highly desirable 

to integrate, for supported thin polymer films, the determination of the elastic constants and 

Tg. In this chapter, it will be shown that with the use of the previously introduced high-

resolution six-pass tandem Fabry-Perot interferometer (Section 4.1.3) and by employing a 

transmission scattering geometry (Section 4.3), one can overcome the above-mentioned 

difficulties and successfully extend the BLS determination of the elastic constants to thin 

polymer films on transparent substrates. A systematical check of the elastic constants of thin 

supported polymer films was made over a large thickness range, from about 40 nm to 500 

nm. As a natural consequence of this progress, BLS measurement of the Tg of supported thin 

polymer films was demonstrated to become feasible, further enriching the tools for studying 

the glass transition under confinement conditions.  

5.2 Experimental  

5.2.1 Sample preparation 
 

The thin supported films were prepared by my collaborator Anna V. Kiyanova at 

University of Wisconsin. Two glass-forming polymers, polystyrene (PS) and poly(methyl 

methacrylate) (PMMA) with narrow molecular weight distribution, were used in this study. 

PS (Mw=61800, Mw/Mn=1.03) and PMMA (Mw=62500, Mw/Mn=1.04) were purchased from 

Polymer Source Inc. Microscope cover slides made by optical borosilicate glass were used 

as substrate (Fisherbrand 25CIR1D), and cleaned before use by oxygen plasma in PE-200 

Oxygen Plasma Surface Treatment and Etching System (Plasma Etch) at 50 cm3/min oxygen 

flow and 250 W radio frequency power for 10 min. 

Thin supported films of PS and PMMA were fabricated by spin-coating of their 

solutions in toluene on glass substrates at 2000 round/min for 1 min. Thin films with 

thickness in the range of about 40-500 nm were prepared by using different polymer solution 

concentrations (1-8 wt%), as listed in Table 5-I. The solutions were filtered through 0.2 µm 
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pore size filters prior to spin-coating. After spin-coating, all films were annealed in a 

custom-made vacuum furnace at 423 K for 10 h. Nominal residual gas pressure in the 

furnace was about 133 Pa, and the cooling rate after annealing was about 20 K/h.  

Table 5-I: sample information 

Polymer film 
wt% polymer 
concentration 

Spinning 
speed 

(round/min) 

Spinning time 
(min) 

Film thickness 
h 

(nm) 

Deviation 
(nm) 

PS-39 1.03 2000 1 39.3 0.3 
PS-110 2.35 2000 1 109.8 0.9 

PS-322 5.23 2000 1 322.2 2.3 

PS-514 7.22 2000 1 514.5 12.3 

PMMA-41 1.15 2000 1 40.9 0.3 

PMMA-110 2.43 2000 1 110.3 1.2 

PMMA-320 5.93 2000 1 320.4 2.7 

PMMA-492 7.94 2000 1 491.7 9.8 

 

5.2.2 Film characterization 
 

Film thickness was measured by a three-wavelength nulling ellipsometer (AutoELII-

NIR-3) on samples fabricated using the same procedure and sample solutions as stated above, 

except that piranha solution (4:1(v/v) of 98% H2SO4/30% H2O2) cleaned silicon wafers were 

used in place of glass slides. The ellipsometric results were verified by X-ray reflectometry 

and scanning confocal microscopy on the very samples on glass substrate for the BLS 

measurement. The thickness values and estimated deviations are listed in Table 5-I. X-ray 

reflectometry (surface XRD-TT3003 diffractometer, SEIFERT) was used to measure the 

films with thickness below 120 nm. The thickness can be obtained by fitting the measured 

reflectivity curve that shows oscillatory decay due to Bragg reflection, as shown in Fig. 5.1a 

for the PS-39 film. For films with thickness above 120 nm, a scanning confocal microscope 

(Nanofocus AG µSurf) equipped with rotating Nipkow disk was employed to directly 

measure the depth of a scratch on the film made by a sharp needle tip, as illustrated in Fig. 

5.1b for the PMMA-492 film. The depth profile in Fig. 5.1b corresponds to the cross section 

indicated by the red line in the inset, and the thickness was obtained by averaging over the 

whole sampled area. The surface quality of these films is high, as indicated by the tapping 

mode AFM (Digital instruments Dimension 3100) image for the PMMA-41 film in Fig. 5.1c.  
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Figure 5.1 Film thickness and surface quality characterization. a, The reflectivity curve 
measured by X-ray reflectometry for the PS-39 film. The green open circles are the experimental 
points and the red curve is the fit, the corresponding scattering length density profile is given in the 
inset. b, The thickness measurement of the PMMA-492 film using scanning confocal microscopy. The 
depth profile is along the direction indicated by the red line in the inset, clearly revealing the sudden 
jump in height due to the scratch made by the needle tip. c, Tapping mode AFM image of the PMMA-
41 film manifests rather smooth film surface. 

For the BLS measurement, the special transmission scattering geometry (Fig. 4.12) 

discussed in Section 4.3 was used. The accumulation time for one spectrum was film 

thickness dependent, typically 1 h for the thickest film and 10 h for the thinnest film in order 

to achieve good signal-to-noise ratio. At room temperature, for each film spectra at different 

q were recorded to map the dispersion relation. The Tg measurement was performed at a 

fixed q in air with the use of the sample holder described in Fig. 4.9 and the temperature was 

increased by multiple steps from room temperature to about 403 K. The effective heating 

rate was 1 K/min, and the sample was kept for 10 min at each temperature before starting the 

BLS measurement.     
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5.3 Results and discussion  

5.3.1 Elastic constants 
 

Figure 5.2a and b display the room temperature polarized BLS spectra of the PS and 

PMMA films with two extreme thicknesses, recorded at q=0.0167 nm-1. The spectra are 

shown in logarithmic intensity scale to reveal better both the strong and weak spectral 

features. For a better visualization, the central elastic feature due to the reference beam was 

omitted over the frequency range ±3.0 GHz around f =0 GHz. The very intense peak 

centered at about 15 GHz in all spectra is due to the strong light scattering from the bulk 

longitudinal phonon with wavenumber q=0.0167 nm-1 in the glass substrate. The frequency 

of the glass peak could act as an internal standard for the scattering wavevector q. The 

excellent reproducibility of the glass peak frequency in Fig. 5.2a and b indicates the well-

defined scattering geometry in my experiment. Besides the intense glass peak, other weaker 

spectral features are also clearly present in the spectra, even for the film thickness down to 

40 nm, which are due to the scattering of light by the film-guided phonons propagating 

parallel to the film-substrate interface. The presence of these film-guided modes clearly 

indicates that the study of elastic excitations in thin supported polymer films on transparent 

substrate by BLS is possible in spite of the existence of strong light scattering from the 

substrate.  

The spectra in Fig. 5.2a and b were recorded with FSR (free spectral range) 30 GHz. 

Often higher resolution FSR was used to better resolve some closely spaced spectral features. 

For example, the spectrum of the PMMA-492 film measured at q=0.0167 nm-1 using 15 GHz 

FSR reveals five peaks as indicated in Fig. 5.2c, but only three peaks are resolved in the 

spectrum of Fig. 5.2b with 30 GHz FSR. In general, the identification of the various modes 

needs to follow their frequency dependence on phonon wavenumber, namely, the dispersion 

relation (f versus q). Figure 5.2d gives an example of the experimental dispersion relation 

for the PMMA-492 film. The frequency values were obtained by fitting the peaks with 

Lorentzian functions with a program developed in house. As expected, these film-guided 

modes are dispersive, in other words, a simple linear q dependence of the phonon frequency 

2f cq π=  is not satisfied, here c is the frequency-independent phonon phase velocity. Their 

frequencies roughly fall between the frequencies of the transverse phonons in bulk PMMA 

and glass, as indicated by the two dashed lines in Fig. 5.2d.  
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Figure 5.2 BLS spectra of glass substrate supported PS and PMMA thin films. a,b, BLS 
spectra of the PS-514 and PS-39 films (a) and of the PMMA-492 and PMMA-41 films (b), measured 
at q=0.0167 nm-1 with 30 GHz FSR. The intense peak centered at around 15 GHz corresponds to the 
longitudinal phonon in the glass substrate. The logarithmic intensity scale is used for better revealing 
both the strong and weak spectral features. c, BLS spectrum of the PMMA-492 film measured at 
q=0.0167 nm-1 using 15 GHz FSR. This high-resolution spectrum resolves five peaks denoted by the 
numbers on top of the peaks, in contrast to the three discernable peaks in (b). d, An example of the 
measured dispersion relation for the PMMA-492 film, where a linear f dependence on q is lacking. 
The two dashed lines indicate the transverse phonons in bulk PMMA and glass, respectively.  

In the case of thin films, it is customary to demonstrate the dispersion relation in terms 

of phase velocity c versus qh, the product of the phonon wavenumber and the film thickness. 

This is because for a certain material combination, the phase velocity of a given mode is 

only a function of qh, as pointed out in Section 2.3. Figure 5.3a and b present the measured 

dispersion relations (the square and circle symbols) in terms of c~qh for all the prepared four 

PS and PMMA films, respectively. At the same qh value, data points measured from 

different films show very good superposition in the c~qh plot, suggesting the very close 
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elastic properties of these thin films. To theoretically identify the nature of the observed 

modes, the newly developed layer-multiple-scattering method (LMS) mentioned in the end 

of Chapter 2 was employed. In the next paragraph, we digress for a moment to briefly 

introduce this method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Dispersion relations of film-guided elastic waves in the supported PS and 
PMMA thin films. a,b, Experimental and theoretical dispersion curves presented in the plot of 
phase velocity c versus qh for both the PS (a) and PMMA (b) thin films. The solid and open symbols 
are the experimental points. The solid lines are the theoretical predictions of the Lamb modes based 
on the layer-multiple-scattering (LMS) method with the use of the bulk elastic parameters (in Table 
5-II) for both polymers. The horizontal dashed lines indicate the longitudinal and transverse sound 
velocities of the bulk polymer material, and the transverse sound velocity of the glass substrate.   
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Table 5-II: bulk elastic parameters for theoretical calculation 

 Longitudinal sound 
velocity cl (m/s) 

Transverse sound 
velocity ct (m/s) Density ρ (g/cm3) 

PS 2350 1150 1.05 
PMMA 2800 1400 1.18 

Glass substrate 5665 3340 2.50 
Air 340 0 0.00123 

 

This method constitutes a powerful tool for an accurate evaluation of the elastic 

properties of composite systems consisting of a number of different layers having the same 

two-dimensional periodicity in the x-y plane (parallel to the layers). An advantage of the 

method is that it does not require periodicity in the z direction (perpendicular to the layers). 

For each layer, the method calculates the transmission and reflection matrices, QI and QIII 

respectively, for a plane wave incident on the layer with given frequency and k|| (the 

component of the wavevector in the x-y plane) from z→−∞ (i.e. with kz>0), as well as the 

corresponding matrices QIV and QII for incidence from z→∞ (i.e. with kz<0). Explicit 

expressions for these Q matrices can be found in Ref. [72]. The transmission and reflection 

matrices of the composite system are calculated from those of the constituent layers. In the 

specific case considered here, we deal with the simple situation where a planar interface 

between two different homogeneous media is considered. The transmittance, reflectance, and 

absorbance of a (composite) slab, as well as the corresponding density of states of the elastic 

field, are obtained from the transmission and reflection matrices of the slab [72,87]. The 

eigenfrequencies of possible guided modes are evaluated from the condition to have a wave 

field localized within the slab. Dividing the slab into a left and a right part, this condition 

leads to the secular equation: det[I-QII(left)QIII(right)]=0. On the other hand, quasiguided 

modes of the slab manifest themselves as various types of resonance structures in the 

corresponding transmission spectrum and as lorentzian-shaped resonances in the density of 

states [88]. 

The theoretical calculation was done by my collaborator Dr. R. Sainidou at University 

of Athens. The simulation of the dispersion relation was performed with the use of bulk 

material properties for the film and the substrate, i.e. the longitudinal and transverse sound 

velocities and the density. For the glass substrate, the two sound velocities were obtained 
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directly from the measured longitudinal and transverse phonons in the glass substrate. The 

bulk elastic parameters used are listed in Table 5-II. As introduced in Section 2.3, there exist 

two kinds of film-guided modes distinguished by their polarizations, the Lamb modes 

polarized in the sagittal plane and the Love modes polarized in the film plane. The 

theoretical dispersion curves for the Lamb modes are indicated by the solid lines in Fig. 5.3a 

and b. Very good agreement between theory and experiment is obtained without using any 

adjustable parameter. On the contrary, the calculated dispersion curves (not shown) for the 

Love modes show strong deviation from the experimental data, further demonstrating that 

the experimentally observed modes are Lamb modes. The fact that a single set of bulk elastic 

parameters can capture well all the observed modes for all the films (both PS and PMMA) 

strongly indicates that these thin supported polymer films (down to 40 nm) can be well 

treated as isotropic and their elastic properties exhibit no obvious deviation from the 

corresponding bulk values. This finding is consistent with some few earlier BLS experiments 

on thin supported films or nanostructures down to the size of around 100 nm [24,25].  

The dashed horizontal lines in Fig. 5.3a and b, from the bottom to the top, denote the 

transverse sound velocity and the longitudinal sound velocity  of the film and the 

transverse sound velocity of the substrate, respectively. At large qh, the phase velocity of 

the Rayleigh mode (the first Lame mode) becomes slightly below and approaches 

asymptotically to the surface Rayleigh velocity of the film material. This is due to the much 

shorter phonon wavelength compared to the film thickness at large qh. It is noteworthy that 

many experimental data points are above the threshold , especially for the thinnest film. 

Lamb modes above this substrate transverse velocity threshold, instead of decaying rapidly, 

show strong energy leakage into the substrate, therefore are quasilocalized as mentioned in 

Section 2.3. In principle, the energy leakage into air is also possible, but the huge acoustic 

impedance difference makes this leakage negligible. 

tpc lpc

tsc

tpc

tsc

Note that in the present experiment, the intensity of the Rayleigh mode, e.g. the peak 1 

marked in Fig. 5.2c, is rather weak compared to some higher order Lamb modes and even 

not always discernable, in sharp contrast to the very strong Rayleigh mode observed in 

supported films on opaque substrate [24,26,89]. This disparity should be related to the 

difference in the relevant scattering mechanisms in the two cases. From Section 3.4, we 

know that there are two mechanisms responsible for Brillouin light scattering from surface 
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waves: the elasto-optic mechanism and the surface ripple mechanism. In general, for opaque 

substrate the surface ripple effect dominates due to the very small light penetration depth, 

while for transparent substrate, the elasto-optic effect takes over [58,82]. Hence the 

scattering intensity in my experiment should overwhelmingly come from the elasto-optic 

mechanism, as also manifested by the observed thickness dependent scattering intensity (the 

thicker the film, the stronger the intensity). This strong elasto-optic contribution is believed 

to be also responsible for the many observed leakage modes which are seldom observed on 

opaque substrates [24,26,89]. It is surprising that for all the films, the third Lamb mode is 

not observed experimentally, possibly due the very weak elasto-optic coupling strength for 

this mode. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Optimal theoretical fitting for the thickest and thinnest PS and PMMA thin 
films. Dispersion relations presented in the plot of reduced frequency versus qh for both the PS and 
PMMA films with two extreme thicknesses: PS-514 (a), PS-39 (b), PMMA-492 (c) and PMMA-41 (d). 
The solid symbols are experimental points and the red lines are the theoretical fits. The elastic 
parameters for the fits are listed in Table 5-III for each film, respectively. 
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Table 5-III: elastic parameters for the optimal fitting 

 clp (m/s) ctp (m/s)  clp (m/s) ctp (m/s)
PS-514 2409 1179 PMMA-492 2912 1456 
PS-39 2350 1219 PMMA-41 2800 1512 

 

Although the overall agreement between theory and experiment in Fig. 5.3a and b is 

very good, a more accurate estimation can be achieved by allowing variations of the elastic 

parameters from the bulk values and fitting the data points for different films separately. In 

the following, the Lamb modes for the thickest and the thinnest supported PS and PMMA 

films will be examined. In this case, the comparison between experiment and theory is better 

shown on the frequency (see Fig. 5.2d) than on the phase velocity dispersion diagrams (see 

Fig. 5.3). The strategy is to vary  and  relatively to the bulk values and seek for the best 

agreement with the experiment. For the thinnest films, the experiment probes the beginning 

of the lower branches of the Lamb modes, and it is found that these branches are rather 

insensitive to moderate variations of . Consequently for the thinnest films, we kept  to 

the bulk value and adjusted to achieve the best agreement between theory and experiment. 

On the contrary for the thickest films, in addition to the lower branches, higher branches are 

also probed experimentally. It turns out that the latter are sensitive to the change of , thus 

the fitting procedure is more delicate since now both  and must be adjusted for a good 

fit of both the lower and higher branches.    

tpc lpc

lpc lpc

tpc

lpc

lpc tpc

Figure 5.4a and b refer to the optimal fitting results for the PS-514 and PS-39 films 

respectively. Note that in Fig. 5.4 the reduced frequency axis (wh/cair) and wavenumber axis 

(qh) are used emphasizing the importance of the quantity qh, where w=2pf is the angular 

frequency of the phonon. For the ultra-thin PS-39 film, the best capture of the two lowest 

branches can be achieved by increasing by 6% relative to the bulk PS value. The five 

branches observed for the PS-514 film can be well represented by allowing and  2.5% 

higher than the bulk values. Similar results are obtained for the PMMA films, the fits are 

shown in Fig. 5.4c and d. In the case of the PMMA-41 film, an 8% higher  is used, while 

for the PMMA-492 film an increase of both and by 4% is necessary. The sound 

tpc

lpc tpc

tpc

lpc tpc
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velocities of these films determined from the fits are listed in Table 5-III. The experimental 

results show that the high-frequency mechanical properties, within 5% errors, remain the 

same in the glassy state for both supported thin PS and PMMA films in the thickness range 

of about 40-500 nm. In other words, no notable change in mechanical properties has been 

found in these thin supported polymer films with thickness down to at least 40 nm. The 

current phenomenological picture of the glassy state leads to [90] the relation ∂ (ulpc 0/uf)1/3, 

where uf  is the free volume defined by uf =u -u0, the difference between the specific volume 

u and the closest packing volume u0. The closeness of for the two different thicknesses 

for both polymers would imply either the same packing or the same ratio u

lpc

0 /uf in these 

annealed glassy thin films. 

5.3.2 Glass transition 
 

Let’s first consider the possible novel aspects related to the glass transition phenomenon 

in thin polymer films. The 1D confinement imposed by the thin film geometry causes two 

major effects on the dynamics of polymer chains: the finite-size effect and the interface 

effect. Based on the cooperative-motion theory developed by Adam and Gibbs [91], a 

cooperative rearrangement of neighboring particles at low temperatures is necessary in order 

for any motion to occur. The smallest independent regions to permit such a cooperative 

motion are called cooperatively rearranging regions (CCR). When the size of the sample 

becomes comparable to the size of CCR which is inversely proportional to the 

configurational entropy of the system, the finite-size effect may start to appear. For polymers, 

there is an additional relevant length scale, that is, the size of a single polymer chain, e.g. the 

end-to-end distance REE which depends on the molecular weight. A number of experiments 

on thin PS films show that decrease in Tg occurs at sample thickness much larger than the 

size of CCR (typically a few nm [92,93]) and for free-standing films the reduction in Tg is 

molecular weight dependent. These observations suggest that the Tg reduction is not directly 

related to cooperative rearrangement, and the finite-size effect is reflected on the 

confinement of polymer chains. 

Many experimental findings imply that the existence of a free surface or a substrate-film 

interface has a larger effect on the mobility of polymer chains [9]. The presence of a free 
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Figure 5.5 Volume V versus temperature T
for a glass forming material. Two cooling rates 
are considered, Glass 1 has been cooled faster, 
resulting in a higher Tg than the the more slowly 
cooled glass 2. Upon heating glass 2, a too small 
heating rate will lead to a notable decrease of the 
volume at temperatures close to the Tg, as indicated 
by the blue path.  

surface is believed to be able to enhance the chain mobility near the surface region and have 

an effect in reducing Tg [15,94,95]. In fact, Tg reduction is always observed for free-standing 

thin films. The extent of reduction is sensitive to the chemical structure, e.g., PS shows a 

much more pronounced drop in Tg than PMMA for the same film thickness and molecular 

weight. On the other hand, for supported thin films the existence of a substrate in general 

restricts the chain motion at the solid interface. This is manifested in the much less 

significant reduction in Tg for supported PS thin films than for a free-standing form of the 

same thickness. Moreover, if there is a strong interaction between the molecules and the 

bounding surface which exceeds the free-surface effect, an increase in Tg relative to the bulk 

value can be anticipated as suggested by theoretical simulations [96]. Increase of Tg with 

decreasing film thickness has been observed for PMMA films on silicon wafer with a native 

silicon oxide layer [19,97], whereas a decrease in Tg has also been found, e.g. on Au [97] or 

Al surface [98]. The increase in Tg has been attributed to the possible formation of hydrogen 

bond between PMMA and the silicon oxide surface [97]. By controlling the interfacial 

energy, P. Nealey et al. [99] have shown that the Tg of supported thin PS and PMMA films 

can be either higher or lower than the corresponding bulk values, further emphasizing the 

importance of the interface effect on the glass transition of thin films. 

 

 

 

 

 

 

When BLS is applied to study the glass transition, Tg can be estimated from the 

distinctly different temperature dependence of sound velocities in the glassy and rubbery 

regime. For thin films, in which propagation of pure longitudinal or transverse sound wave is 

not allowed, one can follow the temperature dependence of the phase velocity of any Lamb 

mode, as demonstrated for the free-standing thin films [11,18]. These Lamb modes have 

mixed polarizations with both longitudinal and transverse components and will exhibit the 
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characteristic “discontinuous” phase velocity change at the same temperature, namely, the Tg. 

The successful detection of the Lamb modes makes the study of the glass transition of thin 

supported polymer films by BLS possible. In this case the complication brought about by the 

substrate heating effect is no longer present. 

A noteworthy aspect is that glass transition bears a strong kinetic nature [100], time, in 

general, becomes an important factor. This can be easily appreciated from the well-known 

volume V versus temperature T plot in Fig. 5.5. Suppose a cooling process from the melt, 

with a fast cooling rate the transition will take place at a higher temperature due to the 

insufficient time for structure relaxation compared to a slow cooling rate. As a result, the 

glass line is shifted up and a higher Tg (Tg1) is obtained as indicated in Fig. 5.5. The 

accumulation time in my experiment for one spectrum is relatively long (on the order of 

several hours) and varies with film thickness. Hence it is necessary to first consider the 

possible influence of time in the determination of Tg. It is not preferred to use the cooling run 

to determine Tg because this would easily lead 

to the above mentioned non-well-defined glassy 

state and make the comparison of Tg of different 

films somewhat ambiguous. On the contrary, 

the choice of the heating run is able to minimize 

the heating rate dependent Tg effect, which 

takes advantage of the extremely slow 

relaxation rate in the glassy state. Note that this 

approach has a precondition, namely, the 

starting glassy state must be well defined. This 

condition was obviously satisfied with our 

sample preparation procedure in which all the 

films underwent the same well-defined thermal 

history. Upon heating, physical aging could in 

principle happen in the glassy state, especially 

when the heating rate is very small. A direct consequence of this structure relaxation is that 

the specific volume of the polymer will deviate from the previously defined glass line (e.g. 

glass 2 in Fig. 5.5) and gradually decrease. This would lead to a lower Tg as indicated by the 

blue curved path in Fig. 5.5. However, if the physical aging becomes significant only in the 

Figure 5.6 Time-dependent BLS 
spectra of a bulk PS sample. Two 
BLS spectra from a bulk PS sample were 
measured at two different times with a time
interval more than 12 h, at 353.1 K and 
388.1 K, respectively. The accumulation 
time for all spectra was about 1 min. 
 

 78



5.3.2 Glass transition 

close vicinity of Tg, it will have negligible impact on the accuracy of the determined Tg in the 

present experiment because its value is identified by the intersection of the glass line and the 

liquid line which are free from the influence of the complex structure relaxation near Tg. In 

fact, this is believed to be the case, and the heating approach has been previously used to 

determine Tg of thin free-standing films by BLS [18] and the results were confirmed by later 

transmission ellipsometry measurements [101] on much shorter time scale.  

 

 

 

 

 

 

 

 

To further support this view, a reference experiment on a bulk PS slice (thickness 1.2 

mm, Mw=284000, Mw/Mn=2.6, Goodfellow Ltd.) was performed and the results are shown in 

Fig. 5.6. This bulk PS sample was heated (10 K/min) from room temperature to 353.1 K, and 

kept for 5 min before the BLS measurement started. A short accumulation time (~1 min) was 

adequate for this bulk sample benefiting from the very strong scattering intensity. To check 

the possible structure relaxation effect, two spectra were recorded at two different times. 

Despite the large time interval (more than 12 h), the two spectra are essentially identical 

(within 0.2% errors) when the peak frequency and width are concerned. This clearly 

corroborates the assumption that structure relaxation in the glassy state can be well ignored 

in the experimental time window for the thin film Tg measurement. A similar check was also 

performed at 388.1 K above Tg and the same result was obtained. This is evident as in the 

liquid state the system can reach its thermal dynamic equilibrium very quickly. 

Figure 5.7 Temperature dependent 
BLS spectra for the PS-514 film. The 
spectra were measured at eleven different 
temperatures below and above the Tg, at the 
fixed q=0.0152 nm-1. The glass transition can 
be studied by monitoring the change of peak 
frequencies with temperature.   
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In the present experiment, the Tg of the thickest and thinnest films for both polymers 

were measured to check the possible confinement effect. The reason for this choice was 

twofold. First, many existing experimental results suggest that deviation of Tg from the bulk 

value starts to appear when the film thickness becomes below 100 nm [9]. Second, the main 

purpose of the present work, instead of conducting a systematic BLS measurement of Tg, 

aimed to illustrate, for the first time, the ability of BLS in probing the glass transition of thin 

supported polymer films. By plotting the frequency (or phase velocity) of the Lamb modes 

as a function of temperature, based on the glass line and liquid line, the Tg can be determined. 

Figure 5.7 displays the BLS spectra of the PS-514 film at q=0.0152 nm-1, at eleven different 

temperatures. The two dashed lines indicate the frequencies of the two strong modes at room 

temperature. The result is shown in Fig. 5.8a from which one can clearly recognize the 

different temperature dependence of the phase velocity of a given Lamb mode in the glassy 

and rubbery state. The symbols are the experimental data points, and the solid lines are the 

least square fit of the experimental data in the glassy and rubbery regime, respectively. The 

Tg is defined by the intersection of the glass and liquid lines, as highlighted by the shadowed 

Figure 5.8 Tg determination of thin supported PS and PMMA films by BLS.  The phase
velocities of the Lamb modes at a given q are plotted as a function of temperature for the thickest and 
thinnest PS (a) and PMMA (b) films. The different temperature dependence of the phase velocity in 
the glassy and liquid state leads to the characteristic kink at Tg. The symbols are the experimental 
points and the sold lines are the least-square fitting results. The Tg value is determined by the 
intersection of the glass line and the liquid line, as indicated by the shadowed region. For the thicker 
films, the two strong Lamb modes are chosen for the determination of Tg, and for the thinner films, 
the only observable Lamb mode is utilized. For both PS and PMMA, a reduction in Tg for the ultra-
thin film is observed. 
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region in Fig. 5.8. For this PS-514 film, the determined Tg is about 368 K, agreeing with the 

commonly encountered literature value 373 K [102] for bulk PS. The results for other films 

are also presented in Fig. 5.8. A clear Tg suppression is observed in both ultra-thin films 

(around 40 nm) irrespectively of their different chemical nature. 

This notion of softening of thin films at lower temperatures compared the bulk materials 

is corroborated by the values of the elastic constants of the ultra-thin films at temperatures 

near but above Tg. For example, at 374.1 K, using the data for the PS-39 and PS-514 films, 

clp and ctp are found to, compared to their respective room temperature values, decrease by 

about 28% and 13% for the PS-39, and 22% and 6% for the PS-514. The stronger softening 

for the PS-39 film is in conformity to its lower Tg. The reduction in Tg (from 368 K to 358 K) 

for the PS-39 film agrees with many existing experimental results. In fact, for PS thin films 

negative deviation of Tg is almost always observed whatever kind of substrate is used, 

indicating the weak interaction between PS and the substrate. For the PMMA-41 film, the 

clearly observed decrease in Tg (from 387 K to 372 K) did not follow our expectation, as the 

formation of the hydrogen bond between PMMA and the silicon oxide surface is supposed to 

lead to a higher energy barrier for the chain motion and therefore to an increase in Tg. It 

should be mentioned that the PMMA system is much less extensively investigated than the 

PS, no reliable conclusion can be made so far and contradictory results exist [21,22]. For 

PMMA thin films, it is found that the tacticity also plays a role. For example, Grohens et al. 

[103] observed strong decrease in Tg for isotactic PMMA on Si substrate but significant 

increase for syndiotactic PMMA on the same substrate. To compare the results from 

different techniques, it is important to know what kind of physical property is used to 

determine Tg. For example, in the ellipsometry and X-ray reflectometry experiments [19], 

the film thickness h is measured as a function of temperature. In the BLS experiment, the 

phase velocity for a given phonon is measured as a function of temperature, and this velocity 

is directly related to the adiabatic compressibility sβ  of the material. When the temperature 

varies and passes Tg, both thermal expansion coefficient and temperature dependence of sβ  

show a near discontinuous change, signifying the glass transition. Practically, the 

intersection of the glass and the liquid lines are extensively used to define the Tg value. 

        The observed negative deviation of Tg for the PMMA ultra-thin film supported on glass 

substrate seems to suggest the insufficiently strong interaction between PMMA and the 

substrate surface. This should be related to the detailed sample preparation process as well as 
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the surface properties of the substrate. On the other hand, other factors such as chain 

conformations, thermal history, or entanglements may also be responsible for this 

observation. A detailed investigation is beyond the aim of this work, however it is highly 

desirable to check the glass transition on the same sample using other techniques under 

similar experimental conditions, e.g. in the same time window. A challenge is that the 

widely used ellipsometry fails to effectively work with transparent substrate. There is no 

direct correlation between the room temperature elastic properties of these thin films and the 

change in their Tg. Even for free-standing thin PS films, no deviation from bulk elastic 

parameters has been found for a reduction in Tg as much as 65 K [104]. In my experiment 

the probed elastic parameters and Tg are the average values across the entire film thickness. 

Despite the even more demanding experimental challenges, future investigation should also 

consider measurements of the distribution of elastic properties and Tg values across the 

thickness of the film, as suggested by the recent work by Torkelson et al [105-108]. 
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  Chapter 6 
 
 

Elastic excitations in 1D polymeric photonic 

structures  
 
 
 
 
 
 

6.1 Introduction 
 

Recently Weber et al. at 3M [109] successfully created broadband omnidirectional 

dielectric stack mirrors based entirely on polymer multilayer architectures. This invention 

eliminates a long-standing limitation in constructing a mirror by using a multilayer stack as 

restricted by Brewster’s law, according to which the reflection of p-polarized light at a 

material interface decreases with increasing angle of incidence and ultimately vanishes at a 

critical angle (Brewster’s angle). These multilayer mirrors consist of hundreds or thousands 

of thin layers of two different polymers in strictly alternating fashion with at least one 

constituent being highly birefringent. Each birefringent layer is either uniaxial, with equal 

in-plane (x, y) refractive indices or biaxial with different refractive indices along all three 

directions (x, y, z). In addition, the in-plane refractive indices of adjacent polymer layers 

differ, which gives rise to so-called giant birefringent optics accompanied by surprising and 

useful optical effects [109]. 

Being so much attracted by the novel optics of these multilayer mirrors, much less 

attention has been paid to their elastic properties. The giant birefringence is not only an 

indication of optical but also of mechanical anisotropy. The periodic variation of the 

refractive index along the film thickness direction is accompanied by a corresponding 

variation of the elastic constants and layer densities. When the elastic and/or density contrast 

between adjacent layers is sufficiently large, the film may behave as a one-dimensional (1D) 
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phononic crystal [36,46] with stop bands at certain frequencies for elastic waves propagating 

along the z-direction. On the other hand, waves propagating in the sample plane (x-y plane) 

are also significantly affected by the elastic properties of individual layers, especially when 

their wavelengths are comparable to the individual layer thickness h, as already encountered 

in the case of supported thin films in the last chapter. Consequently, elastic excitations in 

these multilayer structures can be complex and capable of carrying valuable information 

about the system, i.e. the elastic properties and the structural periodicity.  

So far the only BLS experiment on polymer films with a multilayer structure was 

performed by J. Forrest et al. [26] on supported one to five alternating 

polystyrene/polyisoprene (PS/PI) spin-coated homopolymer thin films. They did not succeed, 

however, to mechanically resolve the individual homopolymer layers (20-80 nm thick) 

despite the large mechanical contrast between the glassy PS and the rubbery PI at room 

temperature. The above mentioned polymeric mutilayer films composed of many 

periodically stacked thin layers obviously serve as a better model system for the 

investigation of elastic wave propagation in the presence of multilayers. First, although the 

individual layer is very thin (tens of nm to hundreds of nm), the large number of layers 

makes the final film rather thick (tens of µm), which greatly enhances the light scattering 

signal in BLS experiments. More important, the thick film in a free-standing form eliminates 

the substrate interference and also makes the free-surface effect negligible, therefore 

simplifying the boundary conditions that may influence the wave propagation as only the 

layer interfaces are involved. In this chapter, elastic excitations in a polymeric multilayer 

(1D periodic) film will be studied.  

6.2 Film characterization 
 

The sample analyzed is a multilayer polymer mirror film manufactured by 3M and 

kindly provided by Dr. A. J. Ouderkirk (3M Company). Despite its high reflectivity of light, 

this film with purple color allows sufficient transmission for the BLS measurement. The film 

is a stack of over 200 identical bilayer units composed of poly(methylmethacrylate) (PMMA) 

and poly(ethyl terephthalate) (PET)  layers, 78 nm and 118 nm thick respectivley. The layer 

thickness values are deduced from transmission electron microscope (TEM) 
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images of the film cross section as shown in Fig. 6.1. PMMA layers are optically and 

mechanically isotropic, while PET layers possess uniaxial anisotropy with  and 

. Here n

zyx nnn ≠=

zyx EEE ≠= x, ny, nz and Ex, Ey, Ez are refractive indices and Young’s moduli along 

the x, y, and z directions, respectively. The degree of birefringence in PET layers was 

estimated from ellipsometry and polarized reflectometry measurements to be . For 

TEM examination, thin sections of about 60 nm were prepared using a Leica EMUC6 ultra-

microtome employing a diamond knife at room temperature. TEM experiments were carried 

out on a JEOL 2010F equipped with a post-column Gatan Imaging Filter (GIF).  The zero 

loss energy filtered images were taken with an energy window of 15 eV.  

15.0≈∆n

 
 

 

 

 

 

 

  
Figure 6.1 TEM images of the cross section of the PMMA-PET multilayer film. a, Low 
magnification. b, High magnification. PMMA layer thickness is 78 nm and PET layer thickness is 
118 nm. 

 

6.3 Results and discussion 

6.3.1 Dispersion relation for in-plane phonon propagation 
 

As for the supported thin films in the last chapter, the special scattering geometry with q 

parallel to the film plane is used. Figure 6.2 shows typical polarized BLS spectra measured 

at two different q values (0.0116 and 0.0150 nm-1) at ambient conditions. The film displays 
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up to six modes, which are well resolved in the spectra of Fig. 6.2a and b. These modes are 

successively labeled from 1 to 6 in order of increasing frequency. At q=0.0116 nm-1 (Fig. 

6.2b), three distinct Brillouin doublets (2-4) are observed, with mode (4) being the most 

intense. At higher frequencies two additional spectral features (mode (6) and G) can be 

identified.  Albeit barely discernible in the linear intensity scale, their existence is clearly 

visualized by plotting the intensity logarithmically, as shown in the inset of Fig. 6.2b. The 

faint peak marked as G is identified as the ghost of the strong mode (4) due to higher order 

interference effects in the tandem Fabry-Perot interferometer. At higher q values (Fig. 6.2a) 

two other modes are resolved: the weak low-frequency mode (1) and the high-frequency 

mode (5) with intensity comparable to mode (4). Moreover, an additional shoulder-like 

spectral feature appears on the high frequency side of mode (5). Note that this shoulder-like 

spectral feature should not be confused with mode (6).  

 

        

 

 

 

 

 

 

 

 

Figure 6.2 Typical BLS spectra at two different q values. a, Spectrum at q=0.0150 nm-1. 
The numbers denote the distinct phonons and the strong central Rayleigh line is shielded for clarity. 
b, Spectrum at q=0.0116 nm-1. The inset emphasizes the weak mode (6) by choosing logarithmic 
intensity scale. The small feature G is the interferometer ghost of the strong mode (4). 

Figure 6.3 illustrates the dispersion relation for the in-plane phonon propagation in this 

polymeric multilayer system. The six modes are labeled in accordance with the six 

numbered peaks in Fig. 6.2. At low q values, due to the proximity of their velocities, not all 

six modes are resolved, as shown in Fig. 6.2b. In fact, the identification of these modes can 
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only be made by referring to the dispersion relation. The observation of up to six modes is 

strikingly different from what would be expected if the film (with total thickness of ~40 µm) 

behaved as a mechanically homogeneous isotropic medium, where only two bulk modes 

(longitudinal and transverse) are anticipated. Their existence unambiguously suggests the 

explicit contribution of the individual constituent layers to the elastic excitations in this 

multilayer film. The result is in clear distinction from the earlier BLS study by J. Forrest et al. 

[26], where the dispersion relation of the PS/PI multilayer film was well described by an 

effective medium approach even though the mechanical contrast between the glassy PS and 

rubbery PI is large at room temperature. 
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Figure 6.3 Dispersion relations of in-plane propagating phonons. The different symbols 
represent different modes observed experimentally, the dashed lines are the linear fits to the five 
observed acoustic-like modes. Mode 6 is insensitive to the variation of q. The upper abscissas show 
the corresponding qh ranges for the two constituent layer thicknesses. 

It is evident from the dispersion relation that five out of the six observed modes are 

strictly acoustic-like. In other words, their frequency increases linearly with q, which results 

in a constant (q-independent) phase velocity, in sharp contrast to surface dispersive modes 

discussed in the last chapter. According to the two upper abscissas in Fig. 6.3 displaying the 

qh values for the two constituent layers, qh falls roughly between 0.5 and 2.5. In this range, 
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the elastic wavelength and the layer thickness are comparable and under such conditions, 

dispersive modes, e.g. Rayleigh and Lamb waves, are expected for either free-stranding or 

supported films [24,26,110,111]. All these dispersive modes possess both transverse and 

longitudinal components of the displacement fields, travel parallel to the film surface and are 

polarized in the sagittal plane. In this self-supporting polymeric film, except for the two 

outmost layers, every constituent layer A of the same type can be regarded as located in the 

same microenvironment, namely, sandwiched by another two identical layers B. For each 

layer the mechanical boundary conditions encountered  are similar to those in supported thin 

films, thus similar in-plane phonon propagations with dispersive characteristics are 

anticipated. The five observed non-dispersive modes suggest that other types of elastic 

excitations are active in this PMMA/PET multilayer film. The phase velocities of the five 

acoustic-like modes are listed in Table 6-I.  

Table 6-I: Elastic parameters 

Mode 1 2 3 4 5 

Sound velocity (m/s) 890±20 1175±23 1415±25 2905≤30 3085≤30 

aT(T<Tg)x104 (K-1) — 3.9±0.2 8.6±0.4 9.0±0.4 5.8±0.3 

aT(T>Tg)x103 (K-1) — 1.46±0.05 1.50±0.06 1.3±0.03 1.23±0.03 

 

6.3.2 Finite element analysis (FEA) modeling 
 

To provide an interpretation for the observed in-plane propagation modes, the 

theoretical phonon dispersion relation using finite element analysis (FEA) was computed. 

The computation was carried out by my collaborator Taras Gorishnyy at MIT (Boston). A 

two-dimensional (2D) eigenvalue model was created and solved using the COMSOL 

MULTIPHYSICS 3.2 FEA package based on the linear elastic plain-strain approximation. 

Since the film is periodic along the z direction, it is sufficient to model a single unit cell 

consisting of one PMMA and one PET layer and use Bloch boundary condition 

( ) ( ) ( )diqdxuxu zexp,0, ⋅=
GG

 for the boundaries parallel to the x axis. Here  is the z-

component of the phonon wavevector and d is the bilayer thickness. The film is 

homogeneous and infinite (the sample size is much larger than the phonon wavelength) 

zq
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along the x and y directions and the phonon wavevector is taken to be parallel to the x axis. 

Thus, we look for the wave equation solution in the form ( ) ( xiqzuzxu xexp)(, ⋅ )=
GG , which 

leads to the second boundary condition, ( ) ( ) ( )liqzluzu xexp,,0 ⋅=
GG  for the cell boundaries 

parallel to the z axis. Here l is a length of the modeling domain along the x direction. This 

periodicity along the x axis is artificially introduced in order to apply the FEA, and the 

solution independent of the actual value of l is used in further analysis. The model meshing 

and solver accuracy were previously validated by computing phonon dispersion relations for 

a homogeneous material and for 2D hexagonal phononic crystals and comparing the results 

with the analytical solutions (homogeneous material) and independent numerical 

computations (2D phononic crystals) [38,41]. In both cases an excellent match was observed.  

        The amorphous PMMA layer is modeled as an isotropic medium with Young’s 

modulus EPMMA = 6.26 GPa, Poisson ratio νPMMA = 0.341 and density ρPMMA = 1200 kg/m3. 

These values for elastic constants are based on independent measurements of the speed of 

hypersound in pure PMMA films. On the other hand, the PET layer, due to the 

crystallization ability of PET, has to be taken as anisotropic (uniaxial). Its elastic constants 

depend on the degree of anisotropy, which is in turn determined by the history of the sample 

processing. As a result, it is very difficult to prepare pure PET films with exactly the same 

elastic constants as in our sample for hypersound velocity measurements. For this reason, we 

were unable to determine elastic constants of anisotropic PET layers independently and 

instead we used them as fitting parameters to ensure the best match between experimental 

and theoretical dispersion relation. Rich features of the dispersion relation allow the 

identification of a single combination of elastic constants that provides good agreement 

between theory and experiment. In particular, it was found that the transverse sound velocity 

was determined almost entirely by shear modulus Gxz, the longitudinal sound velocity was 

influenced primarily by Young’s moduli Ex and Ez and Poisson ratios νxy and νxz, while the 

position of the q-independent mode (Fig. 6.3) was a function of shear modulus Gxz and 

Young’s moduli Ex and Ez. Accordingly, the PET layer was modeled as a transverse 

isotropic medium with Ex_PET = Ey_PET = 6.0 GPa, Ez_PET = 4.0 GPa, νxy_PET = 0.40, νxz_PET = 

0.48, Gxz_PET = 2.2 GPa and ρPET = 1380 kg/m3; here Gxz_PET is the shear modulus in the xz 

plane. These values are consistent with previous studies of elastic constants of anisotropic 

PET [112-114].  
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Figure 6.4 Finite element analysis of in-plane phonon propagation. a, The various lines 
represent theoretical dispersion relations: solid line — longitudinal mode, dashed line — transverse 
mode, dotted lines — mixed modes. For the ease of comparison, experimental data denoted by black 
squares are also included. b, Elastic displacement field for a transverse mode at q=0.01257 nm-1. c, 
Elastic displacement field for a longitudinal mode at q=0.01257 nm-1. d,e, Elastic displacement 
fields for the mixed anti-parallel modes at q=0.01257 nm-1. 

The theoretical phonon dispersion relation is shown in Fig. 6.4a. For the ease of 

comparison, experimental data are also plotted on the same graph (black rectangles). Four 

modes are expected according to the model prediction – a transverse mode (dashed lines), a 

longitudinal mode (solid lines) and two closely spaced high frequency quasi-longitudinal 
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guided modes (dotted lines). The details of their displacement fields at q=0.01257 nm-1 are 

shown in Fig. 6.4b-e. Note that for both the longitudinal (Fig. 6.4c) and transverse (Fig. 

6.4b) waves, the regions of high deformation are not confined to any individual layer, but 

rather are spread such that their displacement vectors are only weakly dependent on z, 

especially for the transverse wave. In contrast, for the high frequency quasi longitudinal 

waves there are two regions of high deformation with the displacement vectors anti-parallel 

to each other, as shown in Fig. 6.4d-e. These regions are localized within individual layers. 

The positions of all modes are in good quantitative agreement with the experimental 

data. However, the model does not predict the splitting of the transverse and longitudinal 

lines into three and two components, respectively, as observed experimentally. It is well 

known that optical birefringence or diffraction [115] may lead to the splitting of Brillouin 

lines due to the possible generation of light beams propagating in directions other than the 

main beam. However, for the present experiment, these possibilities can be safely ruled out. 

For , the birefringence induced splitting (ordinary and extraordinary rays) would 

be an order of magnitude smaller than what we have observed and cannot be resolved 

experimentally. The small periodicity (compared to the laser wavelength) as well as the 

weak refractive index contrast also excludes optical diffraction interference, as confirmed by 

the failure of observing any abnormal optical beams in the present experiment. Therefore 

one must search for the cause of additional modes within the framework of elastic wave 

propagation. 

15.0=∆n

There are two relevant length parameters in our problem, the bilayer thickness 

d=hPMMA+hPET and the phonon wavelength λ. Their ratio /dξ λ= will determine how the 

propagating waves interact with the layered medium, i.e., if they experience it as a 

homogeneous medium or if they are sensitive to the structure of the individual layers. The 

larger the ξ , the more one can expect waves to be localized within individual layers. In the 

extreme case when 1>>ξ , waves propagating in each layer become completely insensitive 

to the presence of the other layers. 

Figure 6.4b-e shows a weak z-dependence for the transverse and longitudinal modes, 

but not for the two high-frequency q-independent modes. This behavior corresponds to the 

regime, where phonon propagation is starting to be influenced by the multilayer structure of 

the film. It is helpful then to examine now how wave propagation changes upon further 
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increase in ξ paying special attention to acoustic-like modes. Figure 6.5 shows the 

theoretical dispersion relation for the transverse-like (dashed lines) and longitudinal-like 

(solid lines) modes, as well as the extrapolation of the experimental data (dotted lines) based 

on sound velocities of modes (2)-(5) for q in the range from 0.05 nm-1 to 0.07 nm-1. 

Interestingly, the existence of three transverse-like and three longitudinal-like modes is now 

predicted by the model. The phase velocities of these modes match the experimental values 

quite well. Unlike the case of lower q values, the displacement fields of these modes exhibit 

strong z dependence and are contained either in PET or in PMMA layers. This result 

suggests that the five acoustic-like modes observed experimentally may relate to localized 

longitudinal-like and transverse-like phonons propagating within individual layers. It is not 

entirely clear why the theory predicts the line splitting for somewhat higher values of q than 

observed experimentally. Imperfections at interfaces, such as interfacial roughness and strain 

fields, as well as certain degree of uncertainty about elastic constants of anisotropic PET 

layers may be responsible for this difference.  
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6.3.3 Temperature dependence of the elastic constants 
 

In the preceding section, the observed acoustic-like phonons were associated with the 

individual layers. Since PET and PMMA possess different glass transition temperatures Tg, 

the variation of the phase velocities of these acoustic-like phonons with temperature is 

anticipated to display the characteristic kink at Tg, which should occur at distinctly different 

temperatures. This would be a direct confirmation of their association to the individual 

layers. For the temperature dependent measurement, the sample was heated from room 
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temperature to about 413 K by multiple steps. At each temperature the sample was stabilized 

for about 10 min before the beginning of the measurements. Then BLS data were acquired 

for about 40-60 min for each scan.    

 In Fig. 6.6, the phase velocities of the 4 modes (modes (2)-(5)) are plotted as a function 

of T. Clearly, the harder layer (PMMA) exhibits a higher Tg  (about 373 K) than the softer 

layer (PET) with a Tg about 353 K. It is also evident from Fig. 6.6 that modes (2) and (4) 

should be associated with PET layers and modes (3) and (5) with PMMA layers since they 

exhibit the same values of Tg, respectively. These results are in accordance with our attempt 

to associate these modes with the two types of individual layers. The sound velocity of the 

weak, low frequency mode (1) shows a very small variation with T that renders the 

identification of the kink feature ambiguous, and it is therefore excluded from Fig. 6.6.  
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Figure 6.6 Temperature dependence of the phonon phase velocities. The phase velocities 
of the four main acoustic-like modes (see Fig. 6.3) are plotted as a function of temperature. The 
shaded regions demote the region of the respective glass transition temperatures of the two 
component polymers. The Tg is determined by the intersection of the glass line and the liquid line as 
represented by the solid lines which are obtained from the least square fit to the experimental data 
before and after glass transition. Data points in the vicinity of Tg were excluded from fitting. 

The dependence of phase velocities of these modes at temperatures above and below Tg 

can be well described by the linear relation ( ) (0)(1 )Tc T c Tα= −  with c(0) being the 

extrapolated velocity in the particular polymer at 0 K, and aT is the proportionality 
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coefficient which describes how rapidly the sound velocity of a particular mode changes 

with temperature. Since the longitudinal sound velocity is related to the adiabatic 

compressibility bs of the material, aT of the two longitudinally featured modes (4) and (5) in 

different layers characterize the temperature dependence of bs of the two component 

materials. In addition, the high frequency low strain tension/compression and shear moduli 

are directly determined by the longitudinal and transverse velocities respectively. Therefore 

aT (Table 6-I) for the four modes also provides the information about the temperature 

dependence of these two very important material properties in the glassy (T<Tg) and the 

rubbery (T>Tg) regime. These values were obtained by performing a linear fit of the 

experimental sound velocities before and after the glass transition. Data points in the vicinity 

of Tg were excluded from the fit.  In this context, it should be mentioned that the DSC, a 

non-local technique sensitive to the specific heat change at Tg, was unable to detect the 

higher Tg, displaying only a single Tg~348-353 K. Therefore, BLS that measures the 

adiabatic compressibility of the system could in principle be utilized to probe the Tg at 

different layer thicknesses in this sandwiched multilayer arrangement. 

For the transverse mode (2) and (3) in the PET and PMMA layer respectively, the 

coefficient aT is somewhat larger than for the longitudinal modes in the rubbery regime. This 

is expected, since the shear modulus should eventually decrease to zero in the liquid state in 

contrast to the tension/compression modulus. In the glassy regime, these material properties 

reflect different deformations of the matter and a prediction on the relative magnitude of aT 

for the two moduli is not possible.   

6.3.4 Mechanical anisotropy 
 

The existence of mechanical anisotropy in this polymeric multilayer film is quite 

probable based on the birefringent nature of the PET layers. Indeed, the mechanical 

anisotropy has already been recognized in the previous modeling of the PET layer in FEA. 

The reason that the main focus of this work is on phonon propagation parallel (q||) instead of 

normal to the layers ( ) is due to the geometrical restriction that allows access to only a 

very narrow range of . Therefore, it is impossible to record a complete dispersion 

relation

⊥q

⊥q

( )qω ω ⊥= , as was done for the case of in-plane phonon propagation. 
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Nonetheless, the mechanical anisotropy can still be revealed with a single measurement 

at a particular value of , without having to resort to the dispersion relation. In contrast to 

the presence of six modes (Fig. 6.3) for the in-plane phonon propagation, only a single 

longitudinal phonon is resolved in the spectrum of Fig. 6.7 with q perpendicular to the layers. 

Note that for this scattering geometry (inset to Fig. 6.7), the value of q and hence the phase 

velocity c

⊥q

l=2pf/q of the phonon depends on the refractive index n of the film (see Eq. 4.25). 

Since nPMMA=1.49 and nPET=1.57 (noncrystalline, isotropic), it is quite safe to assume the 

lowest limit of n of the film (even after stretching) is 1.5, which yields q=0.035 nm-1.  

 

 

            

 

 

 

 

 

 

 
Figure 6.7 Brillouin spectrum for out-of-plane phonon propagation. At the scattering 
angle 150° and the reflection angle close to 15°, q (=0.035 nm-1 ) is almost perpendicular to the 
plane of the film. The scattering geometry is indicated in the inset. The peak at about 14.7 GHz 
corresponds to the longitudinal phonon propagating along the surface normal. The weak feature at 
about 6 GHz is the ghost of the strong longitudinal peak. 

 This q value corresponds to a phonon with a wavelength of about 180 nm, which should 

be short enough to distinguish (180 nm vs 196 nm) the mechanically different two layers. 

However, the single phonon spectrum of Fig. 6.7 displaying a longitudinal wave propagating 

with a phase velocity in an effective medium appears to contradict the layered structure of 

the film. This apparent contradiction with the in-plane phonon propagation (Fig. 6.2 and 6.3), 

where the two layers do exhibit distinct in-plane sound velocities, is easily removed by 

assuming a sufficiently low elastic contrast between the two layers in the direction of the 

film normal. For the out-of-plane phonon propagation, one is actually dealing with a 1D 

phononic crystal. The phononic band structure of this 1D phononic crystal can be calculated 
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by FEA with the use of the same sets of elastic constants for PMMA and PET, which 

however reveals negligible small Bragg gaps at the first Brillouin zone boundary, 

 nm0.0196q⊥ = -1. To a good approximation, the phonon propagation along the film normal 

is isotropic, in accordance with the single experimental phonon spectrum (Fig. 6.7). The 

experimental and theoretical phase velocities of this single phonon are 2650 m/s and 2580 

m/s, respectively. The small difference is not significant considering the uncertainty of the 

experimental velocity due to the assumption of n=1.5. An increase of n would further narrow 

this disparity. The absence of the anticipated transverse phonon in the spectrum of Fig. 6.7 is 

rationalized by the weak elasto-optic coupling at this large scattering angle (I~cos2(θ/2), θ is 

the scattering angle) [74], which leads to very low scattering intensity from transverse waves. 
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  Chapter 7 
 

 

Elastic excitations in dry colloidal crystals 
 
 
 
 
 

7.1 Introduction 
 

In Chapter 5 and 6, we have seen complex elastic excitations in thin polymer layers. In 

the next two chapters, we switch to another class of commonly encountered, yet very 

important composite material systems, the colloidal crystals. As a result of the presence of 

numerous spherical inclusions, traveling acoustic waves in colloidal crystals usually suffer 

from strong multiple phonon scattering in addition to the interference effect brought about 

by the periodic structure, leading to rather complicated wave propagation behavior. In 

colloidal suspensions or polycrystalline crystals, BLS has revealed the presence of various 

excitations related to particle eigenmodes [116,117], “Bragg” modes and mixed modes [117] 

due to acoustic phonons/particle eigenmodes hybridization. Despite the significance of the 

particle eigenmodes in affecting wave propagation in colloidal systems, a clear and direct 

observation of the eigenmodes of colloidal particles was only achieved until recently. In a 

suspension of monodisperse spherical copolymer micelles, using BLS Fytas et al. observed 

the vibration mode localized within the individual micelles [118]. A succeeding big step was 

made when BLS was applied by Kuok et al. to synthetic opals consisting of close-packed, 

monodisperse silica nanospheres (in air), where they observed various localized particle 

eigenvibrations [119,120]. However, in the case of silica, due to its high compressibility, the 

intensity of the inelastically scattered light is weak and the quality of the spectrum is less 

satisfactory, hence probably many eigenmodes are still missing and some fine spectral 

features cannot be well recognized. In addition, the elastic parameters deduced from the 
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fitting of the experimental data [119,120] show dramatic deviations from that of bulk fused 

silica which exceed what would be expected from any confinement effect at this scale. The 

authors attribute this to the inhomogeneities of the particles, preventing, however, a vigorous 

comparison between theory and experiment.  

To explore thoroughly the fundamental particle vibrations, BLS was applied to dry (in 

the sense that the particles are immersed in air) colloidal crystals made of soft PS particles 

anticipating stronger scattering intensity intrinsic to the higher compressibility of the much 

softer particles. Furthermore, using newly synthesized amorphous CaCO3 powders as an 

example, it will be shown that the detection of eigenmodes with the use of BLS is a very 

effective method for extracting elastic properties and even size distribution of submicrometer 

particle aggregates. 

7.2 PS colloidal crystal film preparation 
 

The PS dry colloidal films used in this work were kindly furnished by my collaborator 

Jianjun Wang at MPIP. There are two steps to making a colloidal film: the particle synthesis 

and the self-assembly of the particles into colloidal crystal film. These steps are briefly 

described below.   

The PS particles were prepared by emulsion polymerization in ultra-pure water (Milli-Q 

system) with the styrene (distilled under reduced pressure before use), sodium 4-styrene 

sulfonate and acrylic acid monomers and the initiator ammonium peroxodisulfate being 

purchased from Aldrich. After mixing the components according to the desired particle size 

(details see Ref. [121,122]) the polymerization was run while stirring in a nitrogen 

atmosphere for 24 h at 348 K. The particles were purified from large agglomerates by 

filtration through a standard paper filter followed by six cycles of centrifugation and 

redispersion to remove low molecular weight impurities.  

To obtain the colloidal crystal film, a recently developed vertical lifting deposition 

method [121,122] was employed, in which a clean glass substrate, 1.5 cm × 3 cm, was lifted 

from the colloidal suspension (0.5%-2.5% w/v) by a home made dipping device at 308 K 

with a typical lifting speed of about 1 µm/s. This is schematically shown in Fig. 7.1a. The 

thickness of the film depends largely on the concentration and on the lifting speed. In our 
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7.2 PS colloidal crystal film preparation 

work, a thickness typically in the range of 4-10 µm was obtained. The resulting colloidal 

crystal has an fcc structure which can be well identified from the top and side view SEM 

(scanning electron microscope) images of fractured native samples (non-sputtered), as 

shown in Fig. 7.1b and c for the film consisting of particles with diameter d= 856 nm. 

Similar SEM images were obtained for films made from particles of other sizes. The SEM 

images were taken on a low-voltage SEM with a LEO Gemini 1530 at acceleration voltages 

of 0.2-1 kV. The low-voltages, hence low energy electrons, were adopted to minimize 

possible damage to soft polymer materials. Before the BLS measurement, the freshly 

prepared colloidal film was kept in the fume hood for 24 h for completely drying.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1 Fabrication of PS colloidal crystal films. a, Schematic picture of the vertical 
lifting deposition method. b,c, SEM images of a synthetic colloidal crystal film consisting of seven 
ordered layers of monodisperse PS spheres with diameter d=856 nm, top view (b) and side view (c). 
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Colloidal suspension

Lifting 
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7.2 PS colloidal crystal film preparation 

The particle sizes adopted in this work were measured directly from the SEM images of 

native colloidal film samples as in Fig. 7.1. For a given sample, I measured up to 600-800 

particles and the particle size and polydispersity therefore can be reliably deduced from 

statistic analysis. The particles were found to have good polydispersity for all sizes used 

(assuming a Gaussian size distribution, the variance s≤15). An example of the result of the 

particle size measurement from the SEM images is given in Fig. 7.2 for d= 856 nm.          
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Figure 7.2 Example of particle size 
distribution. The particle sizes were 
measured from the SEM images and the 
size distribution can be described by a 
Gaussian function centered at d=856 nm 
with variance s=12. 

7.3 Results and discussion 

7.3.1 Brillouin spectra 
 

Five dry opals with different particle diameters between 170 nm and 860 nm were 

examined and the polarized BLS spectra recorded at a low scattering angle (10°) are shown 

in a semilog presentation in Fig. 7.3a. To encompass a broad frequency range, two spectra 

recorded at two different FSR (7.5 GHz and 25 GHz) were spliced together with the proper 

intensity ratio. In this way, the entire spectral features can be well revealed. These spectra 

exhibit very rich spectral features, which is uncommon in normal BLS experiments even 

considering the previously encountered thin layer situation where many excitations can exist. 

For the opals with the largest particle size, up to 21 peaks can be resolved, in contrast to the 

six modes observed in silica opals [119]. It is noteworthy that the frequencies and the 
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7.3.1 Brillouin spectra 

relative intensities of these peaks do not depend on the scattering angle (or q) and the in-

plane orientation of the film.   

 This finding suggests that the Brillouin peaks in Fig. 7.3a arise from localized elastic 

excitations confined in individual PS particles instead of acoustic waves in the bulk material. 

Owing to the strong elastic form factor of the individual spheres and their larger optical 

contrast (refractive index difference) with the surrounding air, these PS opals exhibit strong 

multiple elastic light scattering. The multiple scattering is so strong that the transmitted 

beam becomes rather weak and sometimes hardly discernable despite the strong incident 

laser power (~50 mW) onto the sample. Therefore in such a case the scattering wavevector q 

is ill defined, preventing the record of dispersion relations of acoustic-like modes that show 

q dependence. 
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Figure 7.3 BLS spectra of PS dry opals with five different particle diameters. a, The 
original BLS spectra plotted in logarithmic intensity scale for better visualization of all spectral 
features. b, The same spectra re-plotted in reduced frequency scale, fd,  the product of frequency and 
the particle diameter d. 

It is easy to notice in Fig. 7.3a the similarities between the BLS spectra from opals with 

different particle sizes. The intrinsic connection between these spectra becomes even more 

evident when plotting them in reduced frequency scale as shown in Fig. 7.3b, where the 



7.3.1 Brillouin spectra 

particle size is incorporated in the “frequency”. Although not all spectra display the same 

number of peaks, the resolved ones, common to all, appear at the same position in the 

reduced frequency scale, implying the frequency of a given mode is inversely proportional to 

the particle diameter, a feature characteristic of sphere vibration resonances. 

There is a salient background underneath the observed peaks in the spectra of the opals 

with larger particle size. The background ends up at a frequency corresponding to that of the 

acoustic mode in bulk PS observed in back-scattering geometry, which suggests that it 

originates from the convolution of acoustic modes in the current PS sample at a number of 

different q values caused by the strong multiple light scattering. For the relatively large 

particles (d= 636 and 856 nm), the particle size exceeds by a notable amount the smallest 

probing wavelength (~180 nm) of acoustic waves in the BLS experiment. Therefore to a 

certain degree acoustic waves can still be excited in these particles. The cutoff frequency of 

the background provides useful information, that is, the longitudinal sound velocity in the 

investigated PS particles which is found to be cl = ( 2350±40) m/s, agreeing well with the 

reported sound velocity in bulk PS [123]. 

7.3.2 Eigenmodes identification 
 

To identify the observed modes with the particle eigenfrequencies, the latter was 

computed from the “single-phonon scattering-cross-section” calculations (Section 2.5.2). 

The computation was performed by my collaborator Dr. R. S. Raluca at University of Crete. 

Figure 7.4 Single phonon scattering 
cross section of a PS sphere in air. The 
sharp peaks represent the strong resonances 
which correspond to the various particle 
eigenmodes. Elastic parameters: for PS, 
ρ=1.05 g/cm3, cl=2350 m/s, ct=1210 m/s, and
for air, ρ=0.05 g/cm3, cl=340 m/s, ct=0. 
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7.3.2 Eigenmodes identification 

A plane sound wave is considered to propagate in air and impinging onto a single PS sphere 

in air. As a result of the large acoustic mismatch between PS and air, the incident sound 

wave will be strongly scattered and sharp resonance peaks will appear in the plot of 

scattering cross section versus frequency as shown in Fig. 7.4 where the reduced frequency 

fd is used. To reveal more clearly the resonances, the contribution from a rigid sphere of 

equal size has been subtracted from the calculated scattering amplitude. These resonance 

peaks then correspond to the eigenmodes of the PS sphere since the elastic field energy is 

very well localized inside the sphere. To avoid the possibility of losing a peak in the 

calculations (due to its almost d-function shape), a larger mass density of 0.05 g/cm3 was 

artificially used instead of the air mass density (0.00123 g/cm3) for the surrounding medium. 

This introduces a broadening of the peaks but without altering their frequency position.  

The computation of the single phonon scattering cross section in Fig. 7.4 requires the 

knowledge of the elastic parameters of the PS sphere. We use the experimentally determined 

longitudinal sound velocity for the PS particle, while the value of the transverse sound 

velocity ct = 1210  m/s is determined by the optimal fitting of the calculated frequencies to 

the experimental ones, which 

is in good accordance with 

the bulk PS value [123]. 

These theoretical calculations 

with a single adjustable 

parameter describe the 

experimental vibration 

eigenfrequencies very well as 

demonstrated in the frequency 

versus inverse diameter plot 

in Fig. 7.5, where the green 

solid lines are theoretical fits 

and the red solid dots are 

experimental frequencies. The 

comparison between the 

theoretical and experimental 

reduced frequencies f ( i, l)d is given in Table 7-I, with the experimental reduced frequencies 
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Figure 7.5 Peak frequencies of the Brillouin spectra 
as a function of the inverse diameter. Up to thirteen 
experimental frequencies (red dots) are shown to obey the 
theoretical f ~ d -1 scaling (green lines). The paired numbers 
(i, l) denote the lth harmonic of the ith mode.   
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7.3.2 Eigenmodes identification 

being obtained by the least-square fit of the solid dots in Fig. 7.5.  The q-independent nature 

of these modes and the excellent theoretical capture of their frequencies finally allow us to 

draw the conclusion that what we observed is indeed the eigenmodes of the PS spheres.  As 

already introduced in Section 2.5.1, here each eigenmode is specified by two paired integer 

numbers defining the lth spherical harmonic of the ith radial mode, in analogy to atomic 

orbitals.  

All the observed eigenmodes in our BLS experiment are spheroidal modes in as much as 

the purely transverse nature of torsional modes cannot couple effectively with the incident 

light field. The observed mode (1, 2) in fact represents the lowest energy spheroidal mode 

for the PS elastic sphere. Based on symmetry arguments, Duval [124] has shown that, the 

only Raman-active modes of an elastic sphere are the symmetric l = 0  and quadrupolar l = 2  

spheroidal modes, with the former producing polarized and the latter depolarized scattering 

light. Obviously, this theoretical prediction contradicts our experimental results. The 

disparity might arise from the dipole approximation assumption in the theory that the particle 

size is much smaller compared to the wavelength of light. Regarding the polarization of the 

scattered light, a direct examination is not possible in the present experiment due to the 

strong multiple light scattering that scrambles the polarization of both the incident and 

scattered light. Therefore identical (in terms of peak frequency and relative intensity) 

Table 7-I:  Vibration modes of PS spheres in air 

 
f ( i, l)d (nm GHz)Experimental f ( i, l)d (nm GHz)Theoretical (i, l) 

1 1040 1017 1, 2 
2 1480 1518 1, 3 
3 1900 1945 1, 4 
4 2310 2348 1, 5 
5 2480 2538 1, 6 
6 3140 3119 1, 7 
7 4100 4237 2, 10 
8 4700 4607 1, 11 
9 5290 5340 2, 13 

10 6780 6797 2, 17 
11 7450 7523 1, 19 
12 8100 8247 3, 21 
13 8730 8609 2, 22 
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7.3.3 Particle size distribution 

polarized and depolarized spectra were observed. Nonetheless we tend to believe that these 

spheroidal particle eigenmodes lead to polarized light scattering, as the origin of the inelastic 

light scattering, the dynamic optical inhomogeneities, should be overwhelmingly caused by 

density fluctuations due to the stretching motions of the spheroidal modes which mainly 

modulate the diagonal elements of the dielectric tensor. 

7.3.3 Particle size distribution 
 

In addition to the frequencies of the particle vibration eigenmodes, the experimental 

BLS spectrum also provides information about the size distribution of these particles. The 

latter is reflected in the shape and width of the observed peaks. Recalling Fig. 3a, one can 

easily notice that the width of the lowest frequency peaks shows strong dependence on 

particle size. Moreover, the shape of the peak is asymmetric, which is more evident for the 

low l modes and in the spectra of the smaller particles. On the other hand, this particle size 

dependence is clearly diminished in the reduced frequency plot of Fig. 3b. 

For an isolated particle at a temperature well below the Tg of PS, it can be treated to a 

good approximation as a perfect elastic sphere without internal losses. The absence of elastic 

energy dissipation should lead to very narrow spectra indistinguishable from the 

instrumental function. The observed broad and asymmetric line shape of the experimental 

peaks, in particular for the low l modes, should most probably be attributed to the finite 

particle size polydispersity. To verify this conjecture, I approximate the instrumental 

function with a Lorentzian line shape and represent the measured scattering power spectrum 

of a given mode by a convolution of a Gaussian distribution function of the particle size and 

a Lorentzian line representing the instrumental function,  

2 2

2 2

( ) exp[ ( ) / 2 ]( ) ( )
( ( )) ( ) 2

x x DI dxA x
x x

σω
ω ω πσ

Γ − −
=

− + Γ∫                      (7.1) 

where ( )A x º , 0A 1( ) 2 /x c xω π= is the peak frequency of the Lorentzian line and the 

relevant half-width at half maximum ( )xΓ is a constant obtained from the measured 

instrumental line width which corresponds to ideal monondisperse particles without internal 

losses.  

 105



7.3.3 Particle size distribution 

The lowest-frequency mode (1, 2) is most intense and also well separated from other 

modes. Hence it was chosen to demonstrate the point. The experimental line shape for the 

mode (1, 2) of the smallest (170 nm) and largest (856 nm) PS spheres can be well 

reproduced by Eq. (7.1) as shown in Fig. 7.6, using a fixed =1020 GHz nm (the slope of 

the solid line in Fig. 7.5) and the variance s as the only adjustable parameter besides the 

amplitude . The different experimental line shape of the mode (1, 2) for these two 

diameters is the result of the combined effect of the dependence and the different 

particle size polydispersity (s= 14 and 10) with the larger particle possessing a lower s. The 

obtained values of the variance conform to the size distribution extracted from the SEM 

images. The polydispersity induced broadening of the peak has been further confirmed by a 

recent BLS experiment on a single silica sphere [125]. Albeit the particle size distribution is 

found to be the most important reason responsible for the experimental line shape and width, 

there are other possibilities that could also broaden the peak. In reality, the particles are 

never ideally isolated and with a stress-free boundary. Weak energy leakage could happen, 

possibly leading to a broader intrinsic line width than the instrumental width. This effect 

should be more pronounced for the smaller size particle due to the larger surface-to-volume 

ratio, which may explain the resulting polydispersity of the 170 nm particles being slightly 

larger than that from the SEM images.   
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Figure 7.6 Representation of the experimental spectrum of the mode (1, 2).  The lowest-
frequency mode (1, 2) for the smallest and largest PS spheres are represented by Eq. 7.1 with the 
variance s= 14 and 10, respectively. The orange lines are the theoretical fits. For the smallest 
spheres, a vertical dashed line is used to make the asymmetry of the peak more apparent. 
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7.3.4 The low-frequency continuum 

7.3.4 The low-frequency continuum 
 

Another important spectral feature we have not been addressed so far is the existence of 

a low-frequency continuum in the measured BLS spectra, e.g. those from d=170 nm and 

d=256 nm, in Fig. 7.3. Like the eigenmodes, this low-frequency continuum also exhibits a 

particle size dependence, as the width is approximately proportional to the inverse particle 

diameter. This rationalizes the vanishing of this continuum for the larger particles. Two 

possible reasons might be responsible for this unexpected spectral feature: slow lattice 

dynamics and/or the “eigenmodes” of small particle aggregates. 

The lattice dynamics postulation originates from the realization of possible coupling 

forces between adjacent spheres, e.g. the capillary neck-based restoring forces owing to the 

presence of a condensed thin water film between particles or some polar and chargeable 

groups on the surface of these particles, which could in principle lead to overdamped shear 

lattice mode. However, to match the experimental observation, the lattice dynamics must be 

very fast, still in the GHz range. This frequency is unrealistically high based on the measured 

high frequency shear modulus from colloidal crystals [126,127] which suggests that the 

frequency of the lattice vibration is of the order of tens of KHz. As we will see in the next 

chapter, this low-frequency continuum disappears after introducing a viscous fluid into the 

interstices of these particles, again disfavoring the lattice dynamics contribution. 

It seems reasonable that the “eigenvibration” of some particle aggregates could be the 

origin of this unexpected dynamics. In the present colloidal systems, two or more particles 

might “stick together” due to forces between them and form larger “particles”. These 

“heavier particles” can vibrate like a single particle but with expectedly lower 

eigenfrequencies, which naturally accounts for the size-dependent effect. In addition, a 

temperature-dependent (up to PS Tg ~373 K) measurement shows that the intensity of this 

low-frequency continuum is intimately related to the intensity of the numerous single-

particle eigenmodes, which contradicts the expectation if the presence of the continuum is 

caused by the lattice dynamics relying on the condensed thin water layer between the 

particles.  
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7.4 An application of the particle eigenfrequencies 

7.4 An application of the particle eigenfrequencies 

7.4.1 Introduction 
 

The BLS detection of particle vibration eigenmodes and the subsequent theoretical 

capture of the eigenfrequencies by the “single-phonon scattering-cross-section” calculations, 

allow for the determination of unknown material elastic parameters. The continuing 

advancement of nanofabrication has boosted the emergence of a variety of nanoobjects with 

well-defined shape and monomodal size distribution. Their micromechanical 

characterization usually remains a challenge, which however can be addressed by the novel 

optical approach developed here. In the following let’s see an example of an elegant 

application of this method for the determination of the mechanical strength of amorphous 

CaCO3.  

Amorphous CaCO3 has been identified as a precursor to its crystalline modifications 

calcite, vaterite, and aragonite in biomineralization [128,129]. Even some life forms have 

been found that preserve glassy CaCO3 as part of their skeleton. Little is known about the 

physical properties of amorphous CaCO3 since a reproducible synthesis that produces a 

regular particle shape became available only very recently. This synthesis in which dialkyl 

carbonate in dilute aqueous solution serves as a source of CO2 that is homogeneously formed 

in the medium produces spherical particles (droplets) of amorphous CaCO3 of monomodal 

size distribution with diameters in the range between 400 and 1500 nm. The precise diameter 

is subject to control parameters such as temperature of formation, rate of CO2 production, 

and whether surfactants are added to stabilize droplets of smaller size. Amorphous CaCO3 as 

produced exists in a metastable glassy state and contains water. The approximate 

composition as obtained from reaction is CaCO3·0.5H2O [130]. Residual water can be 

removed by careful drying, and water-free glassy CaCO3 particles in the form of colloidal 

powders are obtained that are stable against recrystallization up to temperatures around 553 

K. At this temperature, calcite starts to form. CaCO3 powders obtained from calcite play an 

important role as fillers and modifiers in poly(olefine) composites and in pharmaceutical 

preparations. One could imagine that amorphous CaCO3 that is easily synthesized directly in 

a monomodal particle size distribution could become an important material in these areas of 

application.  
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7.4.2 Results 
 

The CaCO3 particles used in this work were prepared by my collaborator Micheal Faatz 

at MPIP. To make the BLS measurement possible, freshly prepared powder of CaCO3 

particles was dispersed on a glass slide to form a thin white layer of colloidal spheres. A 

typical SEM image is shown in Fig. 7.7, and these particles can be reasonably well described 

as spherical particles in spite of the deviation of from an ideal spherical shape. As in the case 

of PS particles, the average particle size and the polydispersity can be extracted from the 

SEM images, and these particles show monomodal size distribution.   

 

 

    

 

Figure 7.7 SEM image of amorphous CaCO3 particles. The CaCO3 particles used for BLS 
measurements have an approximately spherical shape. The averaged particle size and polydispersity 
can be extracted from the SEM images as shown here for the d = 850 nm sample having a Gaussian 
size distribution with the variance s=43. 

Four samples with different particle sizes in the range of 400~1300 nm were measured, 

and the resulting BLS spectra display several doublets around the central Rayleigh line as 

shown in Fig 7.8a for the sample with an average particle size d= 850 nm recorded at 25 

GHz FSR. We already know that these q-independent modes are due to particle 

eigenvibrations, and the task is then to find out the elastic parameters of these particles by 

fitting of the experimental frequencies with values derived from theory. Like for the PS 

opals, the longitudinal sound velocity can be obtained from the cutoff frequency of the 

background (see Section 7.3.1) which yields cl = ( 5600± 200) m/s. The calculations were 

then run with two floating parameters: the density ρ and the transverse sound velocity ct . By 

choosing 1.9ρ = g/cm3 and ct = ( 2700 ± 100) m/s, a very good agreement between theory 

(solid lines in Fig. 7.8b) and experiment (orange solid dots in Fig. 7.8b) can be obtained for 

all observed modes. It is noteworthy that a value for the density of amorphous CaCO3 of 1.9 
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g/cm3 was also found by Ballauf et al. [131] recently who employed a totally different way 

of preparation. The experimental and theoretical reduced frequency values are listed in Table 

7-II. The fact that one transverse velocity suffices to reproduce all observed eigenfrequencies 

is a strong support of the amorphous state of the CaCO3 spheres in agreement with the X-ray 

scattering data [130]. For the crystalline CaCO3 (calcite), the reported values are 7400 m/s 

for the longitudinal and 2900 and 4400 m/s for the two transverse sound velocities [132]. 

 

 

    

 

 

 

Figure 7.8 BLS measurements of amorphous CaCO3 particles. a, BLS spectrum of 
amorphous CaCO3 particles with average particle size d=850 nm, recorded at FSR 25 GHz. Mode 1 
is buried in the strong elastic Rayleigh wing in the main plot, which however is clearly revealed in 
the spectrum in the inset recorded at a higher resolution (7.5 GHz) FSR. The two lowest-frequency 
modes, 1 and 2, are described by convoluting a Gaussian particle size distribution with a Lorentzian 
natural line shape, as shown in the inset. b, The eigenfrequencies of amorphous CaCO3 particles are 
plotted as a function of the inverse diameter. The dots are experimental points and the solid lines are 
simulations. 

 Table 7-II:  Vibration modes of amorphous CaCO3 spheres in air 

 
f ( i, l)d (nm GHz)Experimental f ( i, l)d (nm GHz)Theoretical (i, l) 

1 2310 ± 50 2299 1, 2 
2 3550 ± 110 3422 1, 3 
3 4270 ± 180 4402 1, 4 
4 5060 ± 200 5312 1, 5 
5 6050 ± 240 6185 1, 6 
6 6850 ± 300 7041 1, 7 
7 8640 ± 350 8734 1, 9 
8 14960 ± 600 15347 1, 17 
9 17920  17807 1, 20 

10 21430 21016 2, 24 

  

 

 

 

 



7.4 An application of the particle eigenfrequencies 

With the obtained sound velocities, the Poisson ratio 2 2 2 2( 2 ) / 2(l t l tc c c c )σ = − − of these 

amorphous CaCO3 spheres is found to be 0.35. The Young modulus 
2(1 )(1 2 ) /(1 )lE cρ σ σ= + − −σ  and shear modulus 2

tG cρ= can be computed to be 37 GPa 

and 14 GPa, respectively. The Young modulus is comparable but slightly lower than the 

range of moduli found for common inorganic glasses (60-150 GPa) [133] and is about 1 

order of magnitude larger than the commonly encountered values for glassy polymers (3-5 

GPa).  

Following the same procedures shown in Section 7.3.3, I could successfully reproduce 

for the d= 850 nm sample the experimental line shape of the modes (1, 2) and (1, 3) with the 

same variance s=35 as illustrated in the inset to Fig. 7.8a. The resulting variance of 35 

coincides reasonably well with the result from SEM images. Note that the spectrum in the 

inset of Fig. 7.8a was measured under the same experimental condition at 7.5 GHz FSR, 

which allows the resolving of the lowest-frequency eigenmode (1, 2) absent in the main 

spectrum recorded with a lower resolution (25 GHz) FSR. 
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  Chapter 8 
 
 

Elastic excitations in wet colloidal crystals 
 
 
 
 

8.1 Introduction 
 

The name “wet colloidal crystals” is used to distinguish from the “dry colloidal crystals” 

encountered in the preceding chapter, meaning that the colloidal crystals are immersed in a 

liquid instead of air. The creation of wet colloidal crystals is aimed at searching for possible 

phononic bandgaps in the hypersonic frequency range. In spite of the great importance of 

hypersonic phononic crystals as mentioned in Chapter 1, an experimental identification of 

such a hypersonic gap is not yet achieved. To shift the bandgap to the hypersonic frequency 

range, the creation of periodic patterns is necessary at the submicrometer scale, thus 

imposing substantial demand on fabrication and characterization techniques that are 

currently being developed. For example, holographic interference lithography has recently 

been used to fabricate polymer-based hypersonic phononic crystals [38,134]. The phononic 

dispersion relation of such a single-crystalline triangular array of cylindrical holes in an 

epoxy matrix was recently measured by BLS [38]. These measurements, however, did not 

reveal the anticipated bandgap, which was probably due to the simultaneous strong optical 

diffraction. 

On the other hand, both the dry and wet colloidal crystals fabricated by self-assembly in 

principle also represent phononic crystals because of the periodically varied elastic 

parameters and/or density associated with these systems. The detailed phononic properties 

depend on the lattice type, filling ratio and elastic combinations. Owing to the strong 

multiple light scattering, traveling elastic waves in the dry opals cannot be examined with 

BLS even though the existing large elastic contrast probably leads to a sizeable bandgap. A 
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8.1 Introduction 

way to overcome this difficulty is to infiltrate the dry opals with a fluid having a similar 

refractive index to the colloidal particles to eliminate the multiple light scattering. 

BLS examination of acoustic wave propagation in colloidal systems dates back to the 

early nineties of the last century, and very uncommon acoustic excitations have been 

observed. For example, in colloidal suspensions Sheng et al. [116,135] found surprisingly 

two distinct propagating acoustic modes. In polycrystalline colloidal crystals, Fytas et al. 

[117,136,137] observed very rich acoustic excitations, including both acoustic-like and 

optic-like modes. All these unusual observations are related to the fact that the relevant 

acoustic wavelength is comparable to the colloidal particle size and these spherical particles 

represent strong resonant units. In the case of polycrystalline crystals, the structure influence 

is also reflected [117]. However, due to the polycrystalline nature of the system, no clear 

Bragg gap has ever been observed. Now the progress in colloidal crystal fabrication 

technique enables the production of large domain single crystalline crystals, e.g. the dry 

opals we have seen, making a careful examination of Bragg gap effect possible.  

In this chapter, the first experimental observation of a hypersonic Bragg gap in fcc PS 

wet colloidal crystals will be demonstrated. Depending on the particle size and the sound 

velocity in the infiltrated fluid, the frequency and the width of the gap were successfully 

tuned. When the elastic contrast between the matrix and the particles is sufficiently large, 

additional gaps due the hybridization of the acoustic mode and the particle resonances 

appear, revealing rather complex elastic excitations in such phononic systems.    
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8.2 Experimental 

8.2 Experimental  
 

Using the previously obtained PS dry opals as precursor, the wet colloidal crystals used 

in this study can be easily prepared. The fabrication process is summarized in Fig. 8.1. The 

dry opal (I) film was infiltrated with a viscous, non-evaporative liquid (non-solvent for PS) 

by pipetting a few drops onto the sample. Any liquid excess was blown off the crystal with 

an air jet treatment for ~4 h to result in the final sample to be measured. In this way a liquid-

infiltrated opal (II) was obtained. Three different fluids (glycerol, Merck; silicon oil, 

Wacker-Chemie; poly(dimethylsiloxane) (PDMS), anionic polymerization, MPIP, Mn = 979) 

were used in this work. After the infiltration the previously opaque film becomes transparent, 

and a well-defined scattering wavevector q can be attained.  

 

      

 

 

 

 

 

 

 

Figure 8.1 Fabrication of wet colloidal crystals. The wet opal was prepared by infiltrating the 
dry opal with a fluid and removing the excess liquid with an air jet. 

The scattering geometry adopted here was the same as that used for the thin layer 

systems where the scattering wavevector q is parallel to the film plane and its magnitude 

is independent of the refractive indices of the opal film and the glass substrate. Specific 

to the fcc colloidal crystal under consideration, the wavevector q is parallel to the (111) 

lattice plane of the crystal as indicated in Fig. 8.2a. Unlike in homogeneous systems 

where the momentum conservation condition in the light scattering process is q=k  with 

k being the phonon wavevector, in hypersonic crystals, as requested by the translational 

symmetry of the lattice, the momentum conservation has to be modified by introducing a 
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8.2 Experimental 

reciprocal lattice vector G so that q= k + G . Since phonons with wavevectors k and 

k + G  represent the same wave according to Bloch’s theorem, the phononic properties of 

a hypersonic crystal can be revealed by recording the dispersion relation ( )ω q . In this 

case, the direction of q is important because of the presence of the reciprocal lattice 

vector G in the momentum conservation. 

 

 

 

 

 

 

 

 

 

 
Figure 8.2 Scattering geometry and the first Brillouin zone. a, The scheme shows the 
different light beams (incident, reflected, transmitted and scattered) and the wavevectors (ki, ks) for 
the incident laser and the scattered light defining the scattering wavevector q in the (111) plane of 
the fcc crystalline colloidal film. b, The truncated octahedron with its center at Г represents the first 
Brillouin zone (BZ) of the fcc crystal. The plane intersecting the BZ is the plane in which the 
experimental q is confined. 

It is desirable to probe the dispersion relation ( )ω q  along the high symmetry directions 

in the reciprocal space, since the phononic bandgap is usually manifested in the dispersion 

diagrams along these directions as seen in Section 2.5. It can be shown that the first Brillouin 

zone (BZ) of the fcc lattice (of which the reciprocal is bcc) is a truncated octahedron with its 

center denoted by Г and the corresponding highest symmetry directions pointing from Г to 

the zone face centers, i.e. along Г-L and Г-X as shown in Fig. 8.2b. In the scattering 

geometry of Fig. 8.2a, all possible experimental q vectors are confined in a plane, whose 

intersection with the BZ forms a hexagon (Fig. 8.2b). Therefore it is unlikely to follow 

strictly the phonon propagation along Г-L or Г-X. Nevertheless, the direction of q can be 

selected close to Г-L, as along Г-M, where M denotes the edge center of the hexagon defined 

here above. In this case, the probed dispersion diagram should show no essential difference 
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8.3.1 Hypersonic Bragg gap formation 

from the Г-L direction, since on a given zone face the band splitting near the face center is 

roughly constant, as can be shown by first-order perturbation theory [70].    

8.3 Results and discussion 

8.3.1 Hypersonic Bragg gap formation 
 

The wet opal made up of close-packed PS spheres (fcc) with the interstices fully 

occupied by the liquid represents a hypersonic crystal of solid inclusions in a fluid host, as 

shown in the SEM image in Fig. 3c for the opal with d= 256 nm infiltrated by silicon oil. 

Figure 8.3 Brillouin light scattering spectra of dry and wet opals. a,c, SEM top-view images 
of the fcc dry opal consisting of polystyrene (PS) spheres (a) and the corresponding wet opal (c) after 
silicon oil infiltration. The particle diameter is 256 nm. b, BLS spectrum of the dry opal exhibiting no q
dependence. d, BLS spectra of the wet opal at five different q values near the Brillouin zone (BZ) 
boundary along Г-M. The observed double peak feature is well reproduced by two Lorentzian shapes. 

The resulting BLS spectrum differs greatly from that of both the dry opal where several q-
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8.3.1 Hypersonic Bragg gap formation 

independent modes appear and the pure silicon oil in which only a single longitudinal 

phonon exists. For the present silicon oil infiltrated wet opal, at low q a single peak is 

observed. As q increases and approaches the BZ boundary, a double-peak feature shows up 

as demonstrated in Fig. 8.3d by the polarized BLS spectra taken at five different values of q 

near the BZ boundary along the Г-M direction. For comparison, a SEM image of the dry 

opal before infiltration and the corresponding BLS spectrum are also given in Fig. 8.3a and 

b, respectively. Note that the spectrum representing the eigenmodes in Fig. 8.3b is now 

plotted in linear intensity scale.  

The observed double-peak feature in Fig. 8.3d can be well represented (red lines) by a 

dou

gation can be obtained by referring to 

the 

ble Lorentzian line shape (violet and green lines, convoluted with the instrumental 

function). The violet line indicates the mode with acoustic-like behavior in a sense that this 

mode will be the only preserved mode whose frequency increases linearly with q if the 

Bragg-gap effect vanishes. Note that the red lines incorporate also the contribution of a 

Loretzian peak centered at f=0 GHz responsible for the central Rayleigh wing. The splitting 

of the single peak feature (not shown in Fig. 8.3d) at low q (long wavelength) into double 

peaks across the BZ boundary is a typical Bragg-gap effect due to the band folding into the 

first BZ. The observed acoustic phonons are longitudinally polarized, as they disappear in 

the depolarized BLS spectrum. However, the concurrent absence of the transverse phonons 

in the depolarized spectrum is consistent with the nature of this phononic system as the 

infiltrated fluid does not support shear waves.  

A more complete knowledge of the phonon propa

measured dispersion relation ( )ω q  as depicted in Fig. 8.4.  The two dashed gray lines 

indicate the acoustic phonon propa n in pure PS and silicon oil, measured independently. 

The slope of these lines yields the sound velocity in the respective medium, and c amounts to 

(1400≤25) m/s in silicon oil. In the hypersonic crystal, only one longitudinal acoustic 

phonon branch is observed at low frequencies. The corresponding dispersion curve, ( )

gatio

ω q , is 

linear and thus describes sound propagation in a homogeneous effective med  as 

anticipated for long wavelengths exceeding the lattice spacing. The slope of this line yields 

an effective sound velocity c

ium,

eff= (1950≤40) m/s, which is intermediate between the sound 

velocities in the two component materials. As q approaches the BZ boundary, the linear q-

dependent frequency growth ceases and the acoustic branch starts to bend, the frequency 

increase tendency resumes only after some frequency interval. The emergence of such a 
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8.3.1 Hypersonic Bragg gap formation 

frequency interval in fact represents the most striking feature of the dispersion relation, that 

is, the presence of a clear Bragg gap at frequency 5 GHz with a width about 0.4 GHz for 

qº0.015 nm-1 which matches the distance Г-M. Correspondingly, propagation of hypersonic 

phonons with frequencies within the marked blue region in Fig. 8.4 is forbidden in the 

present wet opal with a sound velocity ratio of about 1.7 between the particle and the fluid. It 

is remarkable that, after infiltration, no particle eigenmodes are observed (cf Figs. 8.3b and 

d), which should relate to the weaker elastic contrast between the constituent media of the 

wet opals and hence stronger leakage of the elastic field energy into the surrounding liquid. 

In general, depending on the elastic contrast, the eigenmodes could have significant impact 

on phonon propagation in colloidal crystals, e.g., lead to a hybridization gap between the 

continuum acoustic band and the l=2 resonance band as predicted theoretically [138]. This 

kind of acoustic-and-eigenmode hybridization phenomenon will be encountered later. 

  

 

 

 

 

Figure 8.4 Experimental dispersion relation of the longitudinal phonon propagation in 
the wet opal along Г-M. The red open circles are experimental frequencies from the wet opal, and 

8.3.2 Hypersonic Bragg gap tuning 

The width of the phononic bandgap, in general, increases with the difference in the 

densities and sound velocities of the component materials. In the case of our colloidal 

 

 

 

the two dashed grey lines denote the acoustic phonon propagation in pure PS and silicon oil. The 
highlighted blue region indicates the observed hypersonic bandgap. Inset: The truncated octahedron 
with its center at Г represents the first BZ of the fcc crystal. The plane intersecting the BZ is the plane 
in which the experimental q is confined. 
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8.3.2 Hypersonic Bragg gap tuning 

Figure. 8.5 Band gap tuning by different infiltration. a, Examples of BLS spectra of the pure 
matrices and bulk PS, recorded at qº0.017 nm-1. b, BLS spectra of three PS fcc wet opals infiltrated 
by different fluids. All spectra were taken at q=0.0152 nm-1, i.e. the BZ boundary along Г-M. The 
separation of the two constituent peaks (violet and green lines) of the observed double peak spectral 
feature reflects the width of the band gap. The blue bars represent the full width at half maximum of 
the single BLS peak measured at the same q in the corresponding pure fluids. c, Dispersion 
relations in a reduced wa/2pceff vs (2/3)3/2qa/p presentation where ceff is the effective medium phase 
sound velocity for the three PS infiltrated colloidal crystals, a is the lattice parameter and (3/2)3/2p/a 
is the distance G-M in reciprocal space. The marked regions indicate the phononic gaps in the 
silicon oil (blue) and in the PDMS (blue plus yellow) infiltrated opals. There is no discernible gap in 
the opal infiltrated with glycerol. 

crys

contrast between the fluid matrix and the PS particles. In addition to silicon oil, glycerol and 

low molecular mass PDMS were also used as matrix fluids, both of which have notably 

different sound velocities from silicon oil. In PDMS, c=(1050≤20) m/s is virtually q-

independent whereas in glycerol c increases from 2000 m/s at ultrasonic to 2500 m/s at 

tals, it is the sound velocity contrast that matters since most soft materials have 

comparable low densities. Hence, the gap width in Fig. 8.4 should depend on the elastic 

 119



8.3.2 Hypersonic Bragg gap tuning 

 120

which all spectra were recorded at similar q. For comparison, the spectrum of a bulk PS 

uin 

 

. 

 

onic 

cry n of 

pho cles 

as ong 

sca and, 

the  the 

Brillouin line width increases. 

hypersonic frequencies due to structural relaxation in the GHz frequency range at ambient 

temperature [139]. The sound velocity in these three matrix fluids was computed from the 

respective dispersion curve obtained from their BLS spectra, e.g. as shown in Fig. 8.5a in 

The successful tuning of the bandgap in hypersonic phononic colloidal crystals by 

means of different infiltration media is even more apparent in the combined dispersion 

relations of Fig. 8.5c. These are plotted in reduced scales, wa/2pc

sample is also shown. The unusually high sound velocity in glycerol (comparable to that in 

PS) is mainly due to its remarkably strong hydrogen-bonding network that slows down the 

structural relaxation, i.e. from the sub-THz to the GHz domain, thus leading effectively to a 

solid-like behavior at hypersonic frequencies. The very different phonon attenuation in these 

fluids is directly reflected in the line width of their BLS spectra and this disparity could help 

understand and ultimately control the losses in phononic crystals. 

The influence of the fluid matrices on the bandgap becomes apparent in the Brillo

spectral shape in Fig. 8.5b, recorded at the BZ boundary (q=0.0152 nm-1) along Г-M for 

three phononic crystals with different liquid infiltration. The elastic contrast between PS and 

the liquid matrices clearly controls the splitting of the two peaks and hence the width of the 

gap. In the PDMS opal, the two peaks exhibit the largest separation, in contrast to the

glycerol opal where only a single peak is discernible suggesting a negligibly small gap. This 

clear trend follows the elastic contrast between PS and the pure liquids reflected in Fig. 8.5a

There is no obvious correlation, however, between the line width in the phononic crystals 

and that in the corresponding infiltrated liquids, marked by the blue bars, which were 

measured at about the same q. Instead, the phonon damping in the opal infiltrated by a fluid

with strong sound attenuation, e.g. glycerol, is significantly suppressed, and vice versa. 

Since the attenuation of acoustic waves in glassy PS is very weak, as indicated by the narrow 

Brillouin peak (Fig. 8.5a), the origin of the hypersonic sound attenuation in the phon

stals and in the pure matrix fluids should be different. In the former, the attenuatio

nons appears to relate to the elastic mismatch between the matrix fluid and PS parti

it increases with the elastic constant contrast. Large elastic contrast leads to str

ttering of phonons at the interface between the component materials. On the other h

stronger the scattering of phonons the shorter the mean free path is, and thus

eff vs (2/3)3/2qa/p, where 



8.3.2 Hypersonic Bragg gap tuning 

ceff is the effective medium phase sound velocity for the three wet opals, a is the lattice 

constant of the fcc crystal (a= 2 d) and (3/2)3/2p/a is the distance Г-M in the reciprocal 

space. The successful overlap of the acoustic branch at low q in all the three phononic 

crystals results from the different experimental values of ceff decreasing from (2400≤50) m/s 

in the glycerol to (1670≤20) m/s in the PDMS-infiltrated opals. This trend is expected since 

the disparity between the PS sound velocity and the fluid sound velocity increases from 

glycerol to PDMS (Fig. 8.5a). For the wet opals with distinct elastic contrast between the 

constituent media, ceff can be captured by the effective medium theory [140] of elastic 

composites consisting of a fluid host with solid (PS) inclusions. With no adjustable 

parameter, using the experimental densities and the sound velocities of the constituent media, 

the 

Obv

computed ceff is about 8% lower than the experimental values. This moderate deviation 

might relate to the neglect of sound dissipation and possible contacts of the solid inclusions 

at this high packing density in the theory. 

The tuning of the bandgap can be further achieved by changing the periodicity of the 

phononic crystal while maintaining the elastic parameters of the component materials. 

Benefiting from the well-

controlled self-assembly of fcc 

colloidal crystals, this can be 

easily accomplished by 

varying the size of the 

monodisperse PS nanospheres. 

The measured dispersion 

relations for longitudinal 

phonons traveling in two 

phononic colloidal crystals of 

two different PS particle 

diameters along the same 

crystallographic direction Г-M 

are displayed in Fig. 8.6. 

Figure 8.6 Tuning the phononic gap with particle 

iously, the central 

frequency of the gap fc as well 

as its width Df can be tuned with the particle diameter. Long wavelength (low q) longitudinal 

diameter. The dispersion relation, f vs q, for two PS/silicon 
oil phononic crystals with 256 nm and 307 nm PS particle 
diameters. Inset: The band structure diagram for the systems of 
the main plot.
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8.3.3 Hybridization gap effect 

phonons see the same effective medium and thus expectedly propagate with the same phase 

velocity, ceff=(1950≤40) m/s, in both systems. This value is used to map the experimental 

dispersion relation of Fig. 8.6 on the band structure diagram of an fcc phononic crystal. With 

no adjustable parameter, indeed, both systems exhibit the same bandgap along the same Г-M 

direction, suggesting that the frequency fc and the width of the Bragg gap Df are inversely 

proportional to the lattice parameter. Therefore, these phononic crystals forbid wave 

propagation with wavelengths commensurate to their lattice periodicity. This result is a 

direct consequence of the invariance of the wave equation of elasticity under the 

simultaneous transformation of space coordinates and frequency: r→sr and f→f/s, where s is 

an arbitrary scale parameter, for any inhomogeneous system characterized by frequency-

independent elastic coefficients. 

8.3.3 Hybridization gap effect  
 

ce of the periodicity of the structure which 

ed waves, and therefore gaps open up at the 

s with many spherical inclusions, strong particle 

ring, could happen if the contrast of the acoustic impedance 

edium is large. In this case, the elastic energy is 

nds can be formed. When the 

 propagation in an effective medium meet 

d hybridization gaps [141] may 

with strong resonant units, e.g. spheres and cylinders, the 

tion ef

int eff

ll ast, only weak Mie scattering takes place. 

minates, which usually gives small Bragg gaps at the BZ 

In the above, the observed phononic bandgap has been identified as Bragg gap. This is 

straightforward with the awareness that the gap appears at the BZ boundary and the acoustic-

like branch continues its linear q

8.6. Bragg gap formation is a direct consequen

leads to destructive interference of Bragg diffract

BZ boundary. In the current colloidal system

resonances, or strong Mie scatte

between the sphere and the surrounding m

highly localized within these spheres and relatively narrow ba

continuum acoustic bands corresponding to wave

these narrow bands due to particle resonances, the so-calle

open up.  

Usually in phononic crystals 

Bragg effect and the hybridiza

structure is determined by the jo

phononic systems with relatively sma

In this case, the Bragg effect do

boundary. The observed gap in the silicon oil infiltrated wet opal is a good example of such 

-dependent frequency growth after the gap, as shown in Fig. 

fect coexist, and the final appearance of the band 

ect of these two contributions [62,138,141-143]. For 

elastic contr
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8.3.3 Hybridization gap effect 

a situation. When the Mie scattering is strong, the hybridization effect often overwhelmingly 

dominates the gap formation. Indeed, it has been realized that strong Mie scattering is 

important for the formation of complete phononic bandgap, especially for 3D solid phononic 

crystals [141] in which both longitudinal and transverse propagating waves are allowed. 

Because of the relatively large elastic contrast between PS and PDMS ( /s versus 

1050 m/s), stronger Mie scattering is expected to exist in the PDMS infiltrated PS colloidal 

crystal. Therefore gap formation under the influence of the hybridization effect is likely to 

happen. In fact, in the dispersion curve for the PDMS infiltrated wet opal (purple triangles) 

in Fig. 8.5c, one could notice some special features different from the silicon oil infiltrated 

crystal. Specifically, before reaching the BZ boundary (at about 1.0 in the reduced horizontal 

scale in Fig. 8.5c) the propagating longitudinal wave in

2350 m

 the effective medium shows some 

notable deviation from a well-behaved acoustic mode as in the case of the silicon oil 

udden jump in the mode frequency at about 0.7 in 

e reduced horizontal scale, and this discontinuity exceeds the possible experimental 

read

 Figure 8.7 displays representative BLS spectra (normalized to the strongest peak) 

measured at seven different q values along the Г-M direction for the PS opal infiltrated by 

PDM

infiltrated opal. This is manifested in the s

th

ing error related to the broad peak width. In addition, it seems that the same 

discontinuity happens to the “acoustic-like” branch above the gap. 

In the following, it will be shown that despite the observation of a Bragg gap, some 

important information is still missing in the dispersion curve for the PDMS infiltrated opal in 

Fig. 8.5c. This is mainly caused by the broad width of the peak and the strong Rayleigh wing, 

which limit the obtainable resolution of some fine spectral features. To achieve better 

resolution, particles with slightly larger size were used with d=307 nm instead of 256 nm. 

With the use of the same FSR, this could result in narrower peak width due to the red shift of 

the peak frequencies at the same q. However one should be aware that for even larger 

particles the resolution will diminish again due to the strong decrease of the phonon 

frequency.

S with particle size d=307 nm. The black lines on the right (positive frequency) side are 

the measured spectra and the red lines on the left side (negative frequency) are the fitting 

curves synthesized from the individual Lorentzian lines (as indicated on the right side) 

representing different phonons and a central Lorentzian line accounting for the Rayleigh 

wing contribution to the spectrum.  Clearly, more than two peaks are well-resolved in a large 

q range, in sharp contrast to the two resolved peaks in the silicon oil infiltrated opal as 
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Figure 8.7 BLS spectra for phonon propagation along Г-M in the PDMS infiltrated PS 
colloidal crystal. The particle size is d=307 nm. The black lines on the positive frequency side 
represent the experimental spectra recorded at different q values which are normalized to the 
strongest peak. The red lines on the negative frequency side are the sum of the individual Lorentzian 
lines shown on the positive frequency side and a central Lorentzian shape responsible for the 
Rayleigh wing. The Lorentzian peaks in orange on the right side represent the acoustic-like mode, 
and other Lorentzian lines in the same color fall into the same continuous band in the dispersion 
curve in Fig. 8.8. 

The dispersion relation of the observed phonons is plotted in Fig. 8.8, which shows 

novel features not present in the previous dispersion curve, e.g. in Fig. 8.6. The dashed 

arrows indicate the q positions where the spectra in Fig. 8.7 were taken for better 

appreciation of the relation between the spectra and dispersion curve. At low q, very good 

acoustic behavior is observed, which yields the same effective medium sound velocity 

shown in Fig. 8.3d. At low q, there is only one single phonon detected, in accordance with 

wave propagation in an effective medium at the long wavelength limit. As q increases, 

additional modes emerge and the relative intensity of the different modes exhibits rather 

dramatic changes with the change of q. Generally speaking, these relative intensities reflect 

the displacement strength of the different phonons, which is connected to the light scattering 

intensity via the relation 2( )I ∇ ⋅u∼ [63].       
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8.3.3 Hybridization gap effect 

(1670≤20 m/s) as obtained before. However, this acoustic branch stops its linear frequency 

increase at qº0.010 nm-1, much earlier than the BZ boundary. Accompanying this acoustic 

stoppage is the appearance of a frequency gap (yellow region) centered at about 2.75 GHz 

with a width about 0.5 GHz. With further increase of q, the phonon branch below this 

frequency gap tends to a flat mode, while the branch right above the gap shows a bending 

frequency increase trend until it reaches the BZ boundary and then starts to fold down, a 

typical zone folding effect. It is remarkable that there is a second frequency gap (blue region) 

centered at around 3.95 GHz with a width about 0.7 GHz. By referring to the dispersion 

curve for the PDMS infiltrated system in Fig. 8.5c, it becomes clear that this second gap 

corresponds to the Bragg gap observed there and the existence of the lower gap explains the 

non-well-resolved frequency discontinuity in Fig. 8.5c mentioned earlier. Note that the 

acoustic-like mode reappears after the frequency gaps.  

 

rystal. The yellow region indicates the hybridization gap and the blue 
region indicates the Bragg gap. The dashed arrows mark those q values at which the spectra in Fig. 
8.7 were taken. The PS particle size is d=307 nm. 

 

 

 

 

Figure 8.8 Dispersion relation for phonon propagation along Г-M in the PDMS 
infiltrated PS colloidal c

The lower gap formation (yellow region) must be due to the hybridization effect 

between the continuum acoustic band and the particle resonances since it cannot be 

described by the zone folding effect caused by the periodic structure responsible for a Bragg 

gap. The existence of particle resonance (largely localized) is further indicated by the 
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PMMA (cl=2800 m/s and ct=1400 m/s) and PDMS leads to a slightly higher effective 

medium

crystal. a, 
Dispersi rections: Г-M 

lue open dots) and Г-K (green solid squares). It is remarkable that the Bragg gap observed along 
-M is not present for phonon propagation in the Г-K direction, while the hybridization gaps exist 

in both cases. The PMMA particle size is d=327 nm. b, Two spectra taken at q=0.0127 nm-1 are 

appearance of the flat mode at around 2.3 GHz. Due to the weak intensity and limited 

spectral resolution, some possible fine structures at the very low frequencies are not well-

resolved in Fig. 8.7. However this does not affect the prominent feature of the dispersion 

relation. As for the upper Bragg gap, the band right above it is also rather flat, suggesting 

this gap formation includes very likely the contribution from higher order particle resonance 

mode.  

To further check the generality of the observation of the hybridization gap effect, this 

investigation was extended to the PDMS infiltrated PMMA fcc colloidal crystals. Similar 

behavior was observed as shown by the blue open circles in Fig. 8.9a, which depict the 

phonon propagation along Г-M. The previously encountered two gaps, the Bragg gap and 

hybridization gap, are clearly present. The small increase in the elastic contrast between 

 sound velocity which is (1720≤20) m/s. Note that another narrow gap seems to 

appear above the Bragg gap, which is less obvious in the PS colloidal crystal in Fig. 8.8. 

This should be related to the particle resonances close to that frequency region. This effect, 

being stronger in the PMMA colloidal system, may be due to the slightly increased elastic 

Figure 8.9 Phonon propagation in PDMS infiltrated PMMA colloidal 
on relations corresponding to phonon propagation along two different di

(b
Г

selected to show the spectral changes corresponding to the changes in the dispersion relation in 
panel (a). 



8.3.4 Some remarks 

mismatch between the particles and the surrounding medium. It has been pointed out 

[141,142] that the hybridization gap should be insensitive to the lattice structure as its 

formation strongly depends on the localized resonances which are not much affected by the 

long range order of the scatterers. Indeed, by mapping the phonon propagation along the Г-K 

(see Fig. 8.2) direction which is further away from the BZ face center, the central gap around 

4.2 GHz observed along Г-M vanishes, as indicated by the corresponding dispersion relation 

(the g Fig. 8.9a

excellent overlap of the two acoustic branches for the two different propagation directions at 

n 

ure 

with nly 

obse EM 

ima ole 

layer [146]. Besides the visual inspection by SEM or optical microscopy, the defect 

characterization in such samples remains an experimental challenge. A detailed analysis of 

reen solid squares) in . This observation agrees with its Bragg gap origin. It is 

not fully clear why the Bragg gap disappears along Г-K [70]. Two BLS spectra taken at the 

same q=0.0127 nm-1 are shown in Fig. 8.9b to demonstrate the disappearing of the Bragg 

gap when the phonon propagation varies from Г-M to Г-K. On the contrary, the 

hybridization gaps are much less influenced by the phonon propagation direction. The 

the optical diffraction patterns of the dry opals could in principle be used to investigate the 

defects like stacking faults [147]. 

Theoretically, the various structural defects can introduce states within a bandgap and 

thus the gap may be reduced or even totally suppressed. Experimentally, possible influence 

the low q limit is a solid illustration of the validity of the effective medium approach to 

describe the wave propagation in inhomogeneous systems at the long wavelength limit. 

8.3.4 Some remarks  
 

Structural defects, like point defects (e.g. vacancies), line defects (e.g. dislocations), 

stacking faults, and cracks, are usually present in colloidal crystals formed by vertical 

deposition [144,145] and can be well identified in SEM images. In the present crystals the 

approximate diameter of compact domains between cracks are in the order of 10-50 µm, a

approximate point defect areal density is about 0.005 µm-2 at the crystal surface, while line 

defects and stacking faults are found about every 5-10 µm. The overall fcc crystal struct

 very high orientational domain order throughout the whole crystal is commo

rved in these vertically deposited colloid crystals and was clearly identified in S

ges of fractured samples, which also reveal the high crystal quality within the wh
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of the presence of defects should be reflected in the detailed features of the observed peaks 

(e.g. shape, intensity, width, frequency and so on). In the present case, BLS spectra taken at 

different sample areas do not show any essential difference, which indicates that the 

prominent phononic properties of the crystals under investigation are free from the influence 

of the presence of minor defects, in accordance with the high crystal quality revealed by 

SEM. A systematic experimental study of the influence of the defects on the phononic 

properties requests that the defects in the crystal must be introduced in a controllable way. 

This still remains a challenge for the vertical lifting deposition. 

Although the dispersion relation carries the most important information of the phononic 

crystal, obviously other spectral features, e.g. the peak width and the relative intensity, could 

also provide additional valuable details about the wave propagation. Unfortunately, at the 

current stage, it is very difficult to well analyse and understand these detailed features. 

Experimentally, the apparent width is more influenced by the unavoidable strong Rayleigh 

wing. More importantly, despite the general drastic increase in the width with q in the 

vicinity of the gap, a well-defined behaviour is not found. On the theoretical side, no theory 

dress the wavenumber dependent phonon damping in a strong 

ultiple scattering inhomogeneous medium including also viscous loss, needless to say the 

com

has been well-developed to ad

m

plication by the structure relaxation at hypersonic regime. In addition, the viscosity 

contribution is almost exclusively ignored in the state-of-the-art band structure calculation 

for a phononic crystal [148]. However, it is highly desirable to capture the experimentally 

observed dispersion relation theoretically, especially regarding the unusual hybridization gap 

formation. It is still a challenge to completely capture the experimental dispersion curve 

using popular computation techniques, probably due to the neglect of viscous loss and the 

touch of colloidal particles which in principle could affect the band structure. 
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  Chapter 9 
 

 

Epilogue 

 
 
 

amb modes, or waves of mixed longitudinal-transverse character polarized in the sagittal 

plane, were detected using BLS in an appropriate transmission scattering geometry. For both 

s, no appreciable change in the elastic properties compared to the 

bulk material was found with thickness down to 40 nm. The detection of Lamb modes using 

transparent substrates extends the applicability of BLS to study elastic excitations and 

interfacial properties in thin films. The temperature dependence of the Lamb modes allows 

the determination of the glass transition temperature of supported thin films by BLS. A 

reduction in the Tg for both PS and PMMA ultra-thin supported films was found, despite the 

 
 
 

9.1 Conclusions 
 

In this dissertation, Brillouin light scattering (BLS) has been applied to investigate 

hypersonic elastic excitations in polymer thin films and colloidal crystals. The aim was to 

explore elastic wave propagation in inhomogeneous systems and investigate the relation of 

their structural characteristics and micromechanical properties. Complex elastic wave 

propagation and localization have been revealed in these soft mesoscopic structures 

including the first experimental discovery of propagation gaps at GHz frequencies. The 

designed approach was to first study thin amorphous polymer films and then 1D periodic 

polymeric multilayer films to assess possible interfacial effects. Afterwards, the focus was 

on colloid crystalline structures containing strong resonance units to examine the modulation 

of elastic waves by structure and/or local resonances.   

For supported thin polymer films on a transparent (glass) substrate, various quasi-guided 

L

PS and PMMA thin film

 129



9.1 Conclusions 

difference in their ch

direct correlation has be

emical nature as well as the interactions with silicon oxide surface. No 

en established between the elastic parameters and the Tg reductions. 

Next, the study was on the in-plane elastic excitations in a 1D periodic polymeric film 

mprised of more than 200 alternating PMMA (h=78 nm) and PET (h=118 nm) thin layers. 

odes with constant phase velocities plus an additional high frequency 

optic-like mode were observed. Finite  was used to compute the theoretical 

onon dispersion relation and provide interpretation of the observed modes. Complex 

atures of the phonon dispersion relation were attributed to elastic waves propagating 

ithin the individual polymer layers. This association was further supported by measuring 

e temperature dependence of sound velocities of these modes, which exhibited glass 

ansitions at two distinctly different temperatures corresponding to the individual 

 was shown to be capable of revealing the mechanical 

 accompanied with its optical birefringence.  

strated to be of great practical 

importance in extracting unknown elastic parameters and even the size distribution of 

nano

co

Five acoustic-like m

 element analysis

ph

ef

w

th

tr

components. Moreover, BLS

nisotropy of this multilayer filma

Further, in fcc dry colloidal crystals consisting of close-packed PS spherical 

submicrometer particles, a large number of localized particle resonances were observed. 

These modes were unambiguously identified as the vibration eigenmodes of the individual 

PS spheres by “single-phonon scattering-cross-section” calculations. The frequencies of 

these eigenmodes were found to depend on the particle diameter. The peculiar line shape of 

the low-frequency modes was found to be a sensitive index of the particle size distribution. 

A novel low-frequency continuum was also observed, whose origin remains unclear, 

possibly due to the eigenvibrations of small particle aggregates. By using amorphous CaCO3, 

the BLS detection of particle vibration eigenmodes was illu

object aggregates. 

Finally, optically transparent fcc wet colloidal crystals were prepared by infiltrating the 

dry precursors with appropriate fluids. The application of BLS to such systems led to the 

first experimental observation of a hypersonic Bragg gap. Depending on the particle size and 

the sound velocity in the infiltration fluid, the frequency and the width of the gap were tuned. 

Larger gap width appeared with the increase of elastic mismatch between the solid 

inclusions and the fluid matrix, at the same time the phonon lifetime was reduced due to 
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stronger phonon scattering. For sufficiently high elastic contrast, such as PS particles in a 

PDMS matrix, besides the Bragg gap, additional gap formation due to the hybridization of 

acoustic m

propagation in colloidal system

 efforts in: (i) 

the glass transition and micromechanics of thin films, sandwiched polymer layers, and (ii) in 

the em

ment can be fulfilled by PC/PMMA (PC stands for polycarbonate) 

multilayer stacks. 

contrast of the constituents, such as using silica in place of polymeric particles, is anticipated 

to lead to further insights into the gap formation phenomenon, especially for the 

ode and particle resonance occurred, which further complicates the phonon 

s. Unlike the Bragg gap, the hybridization gap was found to 

be insensitive to the change of the propagation direction of the phonon, in conformity to its 

special origin. The successful probing of phononic properties of single crystalline colloidal 

crystals manifests that the combination of BLS and phononic structures constitutes an 

effective methodology in search of the design of optimal phononic crystals operating in the 

hypersonic regime. 

9.2 Outlook 
 

The results of this PhD work generated new questions and suggest future

erging area of phononics. 

(i) To investigate the confinement effect on the change of elastic properties and glass 

transition of thin polymer films, one choice is to introduce stronger modification of the 

substrate-polymer interactions, e.g. by covalent modification of the substrate surface with 

molecules or polymer brushes. In the case of elastic wave propagation in multilayer polymer 

films, variation of the absolute and relative thickness of the individual layers would certainly 

advance the understanding of this phenomenon. In addition, the choice of a nearly optically 

isotropic multilayer assembly system would allow the distinction of the scattered light with 

orthogonal polarizations, facilitating the identification of the nature of the various modes. In 

fact, this sample require

(ii) In the investigation of hypersonic phononic crystals, many more possibilities and 

challenges lay ahead. Concerning the building blocks, instead of using simple spheres, core-

shell particles are worth investigating for their capacity of modulating local resonances in a 

nontrivial manner. Attempts should also be directed towards altering the volume fraction of 

the fcc crystals as well as trying other available crystal types. Further increase of the elastic 
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9.2 Outlook 

hybridization-induced gap. Such experiments will challenge band structure calculations for 

different particle architectures and volume fractions. Attention should be also paid to 

developing other experimental techniques to overcome opacity, and realizing the potential 

applications, such as novel acousto-optical devices and thermal management, which utilize 

this unusual phononic effect.                       
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