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Introduction

Introduction

m Loop Quantum Cosmology (LQC)
m Satisfactory quantization of several homogeneous cosmological models
m New quantum phenomenology = Resolution of initial singularity

m Hybrid quantization: Inhomogeneous models

m Reduced model with only global constraints

m It assumes that the most relevant effects of loop quantum geometry
are in the homogeneous degrees of freedom

m Combine LQC quantization for this homogeneous sector with a Fock

quantization for inhomogeneities
m Linear polarized Gowdy T3 in vacuo

m Homogeneous sector = Vacuum Bianchi |
m Inhomogeneous sector = Linear polarized gravitational waves
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on

otivation

m Inclusion of a massless scalar field in the Gowdy T3 model

m Minimally coupled
m Same symmetries of the geometry

m Motivation

m Inclusion of matter inhomogeneities in LQC.
m Study of more realistic models, closer to the observed universe.
m Scenario in which one can study some interesting features

® Quantum effects of the inhomogeneities and the anisotropies on an
FRW background.

B Robustness of the Big Bounce scenario of LQC.

m Changes in the evolution of the matter inhomogeneities due to
quantum geometry effects.

B projection to more symmetric quantum models.
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Classical Settings
Classical Settings

m Reduced phase space

m Homogeneous sector: Bianchi | + homogeneous massless scalar field ¢
m Inhomogeneous sector: Matter inhomogeneities and gravitational
waves (propagating in 6 € S1)

m Ashtekar-Barbero variables for Bianchi |
m su(2) connection: ¢/; densitized triad: p, 1€1{0,0,0}

m Satisfactory Fock quantization of the inhomogeneities:

m Unitary dynamics + Vacuum invariant under S* translations.
m Parametrization of the matter ¢ and gravitational £ inhomogeneities

m Creation-annihilation variables (free m. s. f.): (agg)*,agﬁf)) , a=& @
m Two global constraints remain:
m Diffeomorphism constrain: Cy = C5 + C¥

m Densitized Hamiltonian constraint: C = Chom =+ Cinn
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Hybrid Quantization
Hybrid Quantization: Kinematics

Kinematical Hilbert space

Hkin = Htﬁ]m ® Hm Hkm ® L2(R d¢) ® ‘7:\

m Fock Spaces F*:

] agff)*,ag,?) A(a)T 7(71): creation-annihilation operators.

m n-particle states: |n“>— l....m ng, ..o, n €N, Y nd <oo

[e3
—my oty

m Hfommat — [2(R, d¢): A
m Standard Schrodinger quantization: ¢, py = —ihidg

m Bianchi | kinematical Hilbert space:
m Improved dynamics: minimum length, fi;, in the holonomies.
Hkm = span{|Ag, Ao, V) : Ag, A, v € R)} v =2 g\ A

m Nip,: Scale ); such that shift v in +1; p;: p; o sgn(;)A%.
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Hybrid Quantization

Operators on the inhomogeneous Hilbert space

m Diffeomorphism constraint operator

o8]
Co= Yy m(R5+K5), Ko —allal - allal).
. - 8]
m Coln®)®n?) = Y m(X5+X5) =0, X5 =mng —n%,,.
m=1

m F, = proper subspace of F¢ ® F,,.

m Operators in CAinh

I/_j = Z Z mv ]/\\7% = dgg‘) 0‘) +a A(a)T ( )
ac{,p} m=1
ae{&,p} m= 1
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Hybrid Quantization

Hamiltonian constraint operator CA = CAhom + CAinh

5 wiaol .
B Chom = — ZZlﬁﬂGv [&’qb] i,j€{6,0,0}.

i#j
—_—_ 2~ ~ 2 — 2
1 (95 + @a) 1 |-
1 2 1 Hint.
[pe| 4 167y [po| 4

[ CAinh = 27rh|;9;|[?[0 +h

m Symmetric factor ordering:
m Triad operators: v = 0 states decouple (kin. singularity resolution)
m O, operators do not mix states with different sign of A\g, Ao, v.

n 7-Nl|'2'n : states such that Mg, Ag, v > 0 = Ay =logAg, Ay = log \,.
m Superselection sectors:

minv:ve L, = {e+4k; ke N}
m in A, Given an initial A} = A, =A} + 2., z. € 2,
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Hybrid Quantization
Physical Hilbert space

m Action of the Hamiltonian constraint

m The coefficients do not depend on A,

m It is a difference equation in v = evolution equation in v

m The solutions can be determined by a set of initial data on the section
of minimum homogeneous volume

m Physical Hilbert space H,n, < Hilbert space of initial data

/HP = HEI!ys ® L2(Ra dgb) ®"TP

m HEAYS = Physical Hilbert space of Bianchi |
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Projection to LRS-Gowdy
Projection to LRS-Gowdy

The model is symmetric under the interchange of o and § directions.

Classical solutions with local rotational symmetry (LRS)

General state: |¥) = 2 U (Ag, Ao, 0)) @ [Ag, g, v)
Ag Ao v

Projection map:

[U(Ag Aoy 0))  — Y W(Ag, A, v)) = [(Ag, )

Ag

projection
—_—

Quantum Gowdy Model Quantum LRS-Gowdy Model

m projection over Ay to get the isotropic Gowdy model fails
m There is no classical inhomogeneous and isotropic solutions.
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Conclusions
Conclusions

m Satisfactory quantization of the Gowdy 7 model with linearly
polarized gravitational waves and a massless scalar field.

Hybrid quantization applied as in the vacuum model.
Inclusion of the matter field:

m Classical isotropic solutions of the homogeneous sector.
m Two “copies’ of inhomogeneities (mathematically speaking).
m Matter inhomogeneities in LQC.

m Same results as in the vacuum model.

m Standard Fock quantization of the inhomogeneities is recovered.
m Classical singularity resolved at the kinematical level.

Study of the projection to more symmetric systems.

Possibility of analyzing the effect of the anisotropies and the
inhomogeneities on a flat FRW model. (Work in progress)
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Conclusions

Thanks for your attention!
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