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Abstract
This paper investigates the effects of novel words on a cogni-
tively plausible computational model of word learning. The
model is first familiarized with a set of words, achieving high
recognition scores and subsequently offered novel words for
training. We show that the model is able to recognize the novel
words as different from the previously seen words, based on a
measure of novelty that we introduce. We then propose a pro-
cedure analogous to novelty preference in infants. Results from
simulations of word learning show that adding this procedure to
our model speeds up training and helps the model attain higher
recognition rates.
Index Terms: language acquisition, word learning, computa-
tional modelling

1. Introduction
Extracting words from speech is an important part of human
speech processing and plays a crucial role in child language ac-
quisition. We define word learning as the development of multi-
modal pairings between patterns in the audio stream and refer-
ents in the environment. Children perform this task seemingly
effortlessly, but in investigating the processes that govern this
task we find several ill-understood processes.

Two of these processes are (1) statistical learning and (2)
a preference for novel observations. The present paper studies
the behaviour of a computational model of word learning that
implements these two processes. We discuss them in turn.

First, research in the last years has shown that the ability of
young children to process speech signals is at least partly based
on the use of the statistical properties of the signal [1]. This
ability may help infants discover suitable basic building blocks
from a highly variable speech stream and eventually form mean-
ingful combinations of these building blocks.

Infants have been shown to use statistical inference to dis-
cover matches between ambiguous combinations of auditory
and visual information [2]. Studies like these show that infants
learn word-referent mappings by inferring stochastic cross-
modal and cross-situational associations.

The second phenomenon, infants’ preference for novel or
unexpected observations, has been reported in widely varying
areas of development, from visual processing in newborn in-
fants [3], to learning the sounds of a native language [4] to ar-
tificial grammar learning tasks performed by eight-month-olds
[1]. The pervasive use of the Preferential Looking Paradigm in
word learning studies attests to the role of novelty and familiar-
ity in this area of development.

The exact neurological basis of novelty preference in de-
veloping children (and adults) is not yet completely understood,
but it is assumed to be related to the developing memory struc-
ture of infants (for an overview, see [5]). A common interpreta-

tion of the role of infants’ novelty preferences is that it is based
on the orienting reflex [6]. Proponents of this interpretation pro-
pose that representations of a stimulus in working memory are
compared with predictions about the stimulus based on long-
term memory. If the two differ greatly, the stimulus has high in-
formation content given the learner’s previous experience. The
long-term memory representation of the stimulus is therefore
underdeveloped with respect to the input representation, stimu-
lating an update of the representation in memory.

In summary, we see in the developing infant two processes
that help it learn words, statistical inference over cross-modal
associations and a preference for novel observations.

In this paper we adapt an existing computational model of
word learning to investigate how these processes may enable
infants to efficiently learn words from speech. We hypothesize
that the processes of statistical inference and novelty prefer-
ence will help the model learn new words quickly, by providing
mechanisms for detection and attention to new words. We will
investigate this hypothesis by studying the performance of the
model when it is first familiarized with a set of words and is
then presented with words not previously encountered.

2. Computational Word Learning Model
2.1. Detection of words in speech

In the model under investigation, word representations are built
by a computational method that discovers structure across se-
quences of stimuli, based on the Non-negative Matrix Factoriza-
tion algorithm (NMF) [7]. NMF is a statistical machine learning
algorithm that finds a decomposition of whole representations
into their parts. In our application, the algorithm detects the
basic building blocks and word-like units in a variable stream
consisting of auditory and visual observations. This algorithm
has successfully been applied to speech recognition tasks [8].

In the adaptation of NMF we discuss here, each multi-
modal stimulus, representing the low-level sensory information
that is observed by an infant, is transformed into a feature vec-
tor and stored in an n × m data matrix V. Each column of
V contains n feature values of one of the observed m stim-
uli. The component parts of the observations are extracted by
means of an approximate factorization of the matrix V into a
product of two much smaller matrices W and H, such that
the dissimilarity between the observed matrix V and the re-
constructed matrix WH is minimized with respect to the sym-
metrized Kullback-Leibler divergence DKL, as investigated in
[9] (equation 1, adapted from [7]).

Vij ≈ (WH)ij =
r�

a=1

WiaHaj (1)

While V is the set of observations that the learner makes
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from its surroundings, W and H are internal to the learner. The
r columns of W are the internal representations of the basic
units that compose the speech stream. The m columns of H

correspond to the stimuli in V. The matrix W contains a set
of basis vectors, that can be interpreted as the extracted recur-
rent co-occurrences of speech units and concept units. Each
column of W is an internal representation encoding a form-
referent pair. In this sense W is the compressed representation
(in memory) of the training stimuli. The columns in H con-
sist of the weights that must be applied to W such that a linear
combination of the basis vectors in W optimally approximates
the stimuli. The rank r (= 70) of the factorization is chosen
such that (n + m)r � nm so that the matrix (WH) forms a
compression of the data in V.

We use an incremental adaptation of NMF for reasons of
cognitive plausibility. The data matrix V contains only the most
recent stimuli and W is updated not on the entire dataset at
once, but only on the partial matrix V. This incremental ap-
proach has shown promising results in speech recognition [10].

Each stimulus is encoded as a single feature vector x. This
vector consists of a concatenation of an audio part xa, encoding
the acoustic data in the stimulus, and a visual part xk, which
denotes the keyword present in the audio part by 1-of-K coding
and is the target of learning.

Once an initial estimate of the W matrix is obtained from
some input utterances, the model can identify the keyword
present in an audio file by the following procedure. Let x be
a stimulus vector, consisting of x

a and x
k, the auditory and

visual component respectively. We use NMF to construct an
encoding vector h̃ based only on x

a such that it satisfies (2).

h̃ = argmin
h

DKL(x
a
,W

a
h) (2)

This vector h̃ can then be used to reconstruct the visual
vector by x̃

k = W
k
h̃. The corresponding keyword is indexed

by the maximum of x̃k.

2.2. Novelty Preference

We propose a procedure for modelling infants’ novelty prefer-
ence as follows. Since we can estimate a keyword response vec-
tor x̃k from an auditory vector xa, we can compute the amount
of information with respect to the model’s internal representa-
tions of a stimulus x, by comparing the presented keyword vec-
tor xk with the estimate x̃

k. This comparison is analogous to
that proposed in [6]. The amount of information I implicit in a
stimulus is defined by the divergence in equation (3), based on
the Jensen-Shannon divergence.

I(x) = H(
1
2
(xk + x̃

k))−
1
2
(H(xk) +H(x̃k)) (3)

where H is the Shannon entropy and all vectors are as-
sumed to be normalized to sum to 1. The unit of I depends
on the base of the logarithm in H. We use the natural loga-
rithm and so measure I in nats. Equation (3) is an extension to
the well-known Kullback-Leibler divergence, with several addi-
tional properties desirable for our purposes, such as symmetry
and finite-valuedness. The equation computes the number of
nats needed to code x̃

k when using a code based on x
k and in

this sense gives a measure of the amount of new information in
x given the model’s past experiences. In short, the higher I(x),
the higher the novelty of x given the model’s internal represen-
tations.

Equipped with equation (3) as a measure of novelty, we can
implement a novelty preference as follows. As described above,
the model’s internal representations are updated after every ob-
servation. At each update step, the parameter γ determines the
ratio between the weight of past observations and the current
observation. Higher levels of γ effect a bias toward reusing past
observations. We implement a preference for novel observa-
tions by making this ratio γ for an observation x dependent on
the novelty of x, as expressed by I(x).

The function to express this dependence should be decreas-
ing, bounded and differentiable. We use the generalized logis-
tic function in equation (4). Here, L and H are the lower and
higher asymptote respectively, M is the horizontal shift and α

is the growth rate of the function. L and H are set to empiri-
cally determined values 0.9 and 0.999, M is set to the median
of I(x), 0.49, and α is set to be sufficiently steep (> 20).

γ(x) = H +
L−H

1 + exp(−α(I(x)−M))
(4)

By defining a dependence of the weight of an observation
on its novelty we have implemented a procedure for novelty
preference that is analogous to that described in section 1. The
procedure first measures the novelty of an observation by com-
paring its prediction about that observation with the observation
itself. In the second step, the model decides how much weight
to give to this observation, giving more weight (preferring) to
novel observations than to observations that match its expec-
tations. This means that novel observations lead to stronger
adaptation of the internal representations. As the internal rep-
resentations become more similar to the stimuli with continued
exposure, the weight given to the novel observation will gradu-
ally diminish. In short, we have extended our model to include
a novelty preference as described in [6].

3. Experiments
3.1. Data sets

In the experiments described in this section, the training sets
were designed by selecting utterances from a large database
of simulated infant-directed speech, recorded for the ACORNS
project [8]. The utterances are all simple sentences, consisting
only of a main clause. This elementary structure, as well as
the pronunciation clarity, resemble the form of child-directed
speech [11]. The natural variation in pronunciation of the key-
words creates a cognitively plausible source of uncertainty in
the audio domain.

The training set is divided in two parts. The first part, train-
ing set A, consists of 200 English utterances from a single fe-
male speaker. Each of the utterances contains a single instance
of one of the following ten keywords: sad, yellow, square, give,
duck, ball, banana, fish, cow and cat. The keywords are dis-
tributed evenly over the training set.

The second part of the training set, part B, consists of 280
utterances spoken by the same speaker, but in this set each ut-
terance contains one of fourteen keywords. This training set
contains the keywords of set A extended with four new words:
telephone, lion, woman and apple.

The speech utterances are coded in the form of co-
occurrences of Vector Quantization labels, as proposed by [12].
The code book (150-150-100 for static MFCC, ∆ and ∆2) is
trained on randomly selected feature vectors from the training
set and is fixed throughout the experiments. This coding en-
sures that the audio part of the stimulus is a fixed-length vector
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Figure 1: Baseline performance of the word learning model for
fourteen keywords. The graph shows the development of recog-
nition accuracy as the learning progresses as estimated from a
held out set.

of non-negative reals. The visual part of each stimulus is a 1-
of-K coding of the keyword present in the auditory part.

3.2. Training and testing

In the training phase, the concatenated audio-keyword vectors
are presented to the learning system one by one, as we use an
incremental learning method. The training phase consists of
two parts, corresponding to the two training sets described in
the previous section.

After every twenty observations presented to the model, it
is tested on a separate set of 280 stimuli. The test set consists of
held-out data from the same speaker that produced the training
sets. The keywords again occur evenly in the test set. Dur-
ing testing, training is halted, so that the model’s internal rep-
resentations in W are not updated on the test set. The test set
also consists of two parts. Test set A contains the ten keywords
present in training set A, while B contains only the novel key-
words in training set B. We report on the results on these test
sets separately, so we can investigate the effects of the addition
of new words to the input after the model has been familiarized
with a set of words.

4. Results
Section 2.1 introduced the basic word learning model, without
the novelty preference procedure in place. Figure 1, which will
serve as our baseline, shows the development of accuracy of
word recognition if all fourteen keyword classes are available
from the beginning of training. After training on the full train-
ing set, recognition accuracy is around 0.91 and the model con-
verges to this level after about 300 observations.

Figure 2 shows the development of accuracy if the training
set is split into sets A and B, as described in 3, but the novelty
preference procedure is not in effect. The model is first famil-
iarized on the keywords in set A and only after 200 observations
are the keywords in set B introduced intro training. The vertical
line marks this transition point. The figure depicts the overall
accuracy on all fourteen keywords, as well as separate accuracy
measures on sets A and B.

While the model attains recognition accuracy scores com-

Figure 2: Effect of familiarization training. The graph shows
the development of recognition if the model is first familiarized
with ten keywords (set A). The vertical line marks the point
where the model is presented with words from set B.

parable to those in Figure 1 on set A, the performance on set B
is significantly worse, thereby also affecting the total accuracy
score on the combination of sets A and B. The low scores on set
B are due to the model’s tendency to map novel keywords onto
existing representations.

Figure 3: Development of the model’s estimate of the novelty
of observations in set A and B. The vertical line marks the point
where the model is presented with words from set B.

Figure 3 shows the average novelty of observations in set
A and B as a function of the number of observations. The data
are drawn from the same simulation run as Figure 2, so the nov-
elty preference procedure is not yet in effect. For both sets, the
novelty decreases rapidly as the model has more observations
to learn from. When only a few observations of a keyword are
made, each observation is still highly different from the model’s
prediction about that observation, and so the novelty is high.

We see that after 200 observations, the average novelty for
set B, which was maximal before, starts to drop as the model
becomes more familiar with the keywords in this class. The
initially high values for the keywords in set B support the as-
sumption in our novelty preference procedure that the measure
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of novelty introduced in equation (3) provides a good basis for
detecting novel classes of observations.

Figure 4: The effect of introducing novelty preference. Training
is identical to that in figure 2.

Figure 4 shows the effect of introducing the novelty prefer-
ence procedure into our model. The increased weight allotted
to novel observations helps the model to learn internal repre-
sentations corresponding to the novel keywords in set B more
quickly. This leads to higher recognition accuracy for this class,
and so to a higher overall accuracy on all fourteen keywords.

5. Discussion and conclusions
This paper set out to investigate the role of novelty preference
in a recent computational model of word learning. We formally
defined novelty as the amount of information that an observa-
tion represents given the model’s previous observations. We
implemented a novelty preference procedure by assigning extra
weight to those observations that the model considered novel.

The effects of this novelty preference procedure were quan-
tified by measuring the model’s word recognition accuracy. We
investigated our hypothesis that a preference for novelty helps
the model to learn novel keywords.

The results described in section 4 lead us to the following
conclusions. First, we observe that the measure of novelty al-
lows the model to distinguish newly introduced keywords from
previously observed ones. This means that this measure is ad-
equate, i.e. it reflects our intuitions about what novelty means
and is of practical use for the learner as it provides a base upon
which it can decide to give more importance to novel observa-
tions.

Second, the results show that the novelty preference pro-
cedure causes the model to attain higher recognition accuracy
scores after the introduction of new keywords. This confirms
our hypothesis that adapting the weight of observations depen-
dent on their novelty helps the model to learn new word classes
after a familiarization phase.

Third, we note that the novelty preference procedure does
not negatively affect the model’s performance on the initial set
of keywords. This means that this procedure is a good default
strategy that ensures high performance even if the training set is
not unevenly distributed.

In summary, we have shown how a model of novelty prefer-
ence based on cognitively plausible processes can achieve good

performance when trained on unevenly distributed input. This
leads us to conjecture that novelty preference in infants is a pro-
cess that can help infants deal with the variable and uneven na-
ture of language acquisition and learning in general.

For future research this model can be extended to investi-
gate different distributions of keywords over the training set, for
example by deliberately overtraining the model on a small num-
ber of keywords and subsequently presenting novel words. In
addition, we note that our implementation of the novelty pref-
erence procedure is stated in general terms and is not depen-
dent on the precise implementation of the word learning model.
Other models with similar input/output specifications may also
benefit from this procedure, as it provides a general and prin-
cipled means for data point weighing in the face of unevenly
distributed training examples.
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