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a b s t r a c t

In this study, event related potentials (ERPs) were used to investigate the extent to which dyslexics (aged
9–13 years) differ from normally reading controls in early ERPs, which reflect prelexical orthographic
processing, and in late ERPs, which reflect implicit phonological processing. The participants performed
an implicit reading task, which was manipulated in terms of letter-specific processing, orthographic
familiarity, and phonological structure. Comparing consonant- and symbol sequences, the results showed
significant differences in the P1 and N1 waveforms in the control but not in the dyslexic group. The
reduced P1 and N1 effects in pre-adolescent children with dyslexia suggest a lack of visual specialization
for letter-processing. The P1 and N1 components were not sensitive to the familiar vs. less familiar ortho-
graphic sequence contrast. The amplitude of the later N320 component was larger for phonologically
legal (pseudowords) compared to illegal (consonant sequences) items in both controls and dyslexics.
However, the topographic differences showed that the controls were more left-lateralized than the dys-
lexics. We suggest that the development of the mechanisms that support literacy skills in dyslexics is
both delayed and follows a non-normal developmental path. This contributes to the hemispheric differ-
ences observed and might reflect a compensatory mechanism in dyslexics.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Reading is a complex skill that entails a multi-stage process,
including visual feature processing, orthographic and phonological
analysis, semantic retrieval, and articulatory processes. Due to ad-
vances in brain imaging technologies in recent years, it is now pos-
sible to investigate the cortical dynamics of the component
processes involved in reading and to provide a neurobiological sig-
nature for reading failure, as in developmental dyslexia (Dehaene,
2010). A number of brain imaging studies have provided converg-
ing evidence that three important neural systems support reading:
one anterior system around the inferior frontal gyrus involved in
word analysis (decoding), and two posterior systems, one in the
parietotemporal region also involved in word analysis, and
the other more inferior in the occipitotemporal region which is
responsible for fluent and automatic reading (for an overview,
see Price & Mechelli, 2005; Schlaggar & McCandliss, 2007;
ll rights reserved.
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Shaywitz & Shaywitz, 2008; Shaywitz et al., 2002). A recent review
and meta-analysis of neuroimaging studies of dyslexia found evi-
dence for an atypical neural organization of the reading process
in dyslexics relative to non-impaired readers. This is mostly ex-
pressed as an underactivation of the left temporoparietal language
regions (posterior aspect of the superior temporal gyrus/sulcus,
supramarginal gyrus) and the left occipitotemporal cortex, while
the inferior frontal system, related to covert articulatory processes,
shows an overactivation (as premotor/motor cortex; Maisog,
Einbinder, Flowers, Turkeltaub, & Eden, 2008; Richlan, Kronbichler,
& Wimmer, 2009).

At present, the dominant explanatory framework for dyslexia is
that this disorder is caused by a language-specific deficit within the
phonological processing system. The phonological deficit explana-
tion of dyslexia contends that dyslexic readers are unable to pro-
cess the phonological structure underlying word reading, which
includes difficulty in manipulating the basic components of lan-
guage (i.e., graphemes and phonemes). Specifically, poorly speci-
fied phonological word representations give rise to a phonemic
awareness deficit which hinders the extraction of grapheme-
phoneme associations on which sublexical reading is dependent
(Ramus et al., 2003; Snowling, 2000; Vellutino & Scanlon, 1987).

http://dx.doi.org/10.1016/j.bandc.2012.02.010
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A recent reformulation proposes that the deficit may have less to
do with the quality of phonological representations and more with
access/accessibility to these representations (Ramus & Szenkovits,
2008).

In support of the phonological deficit hypothesis, dyslexics per-
form below average on a variety of experimental tasks that require
phonological skills. These include verbal short-term memory (e.g.,
digit span), phonological awareness (e.g., phoneme deletion and
rhyme judgments) or phonological decoding (e.g., pseudoword
reading) tasks (Ramus et al., 2003; Shaywitz, 2003; Tijms, 2004;
Wagner, Torgesen, & Rashotte, 1994). Moreover, electrophysiolog-
ical and brain imaging studies have described different brain acti-
vation patterns in dyslexic and non-dyslexic readers during
performance of such tasks (Georgiewa et al., 1999, 2002; Rumsey
et al., 1997; Shaywitz & Shaywitz, 2005; Shaywitz et al., 1998; Si-
mos, Breier, Fletcher, Bergman, & Papanicolaou, 2000). For exam-
ple, the event related potentials (ERPs) literature on phonological
effects tends to report a delayed onset of responses that reflect
phonological processing in dyslexic compared to normal readers
in the N400 range (e.g., Ackerman, Dykman, & Oglesby, 1994;
Rüsseler, Becker, Johannes, & Münte, 2007). A relatively early neg-
ative potential peaking at about 320 ms (N320) has been also
implicated in phonologic transcription (e.g., Bentin, Mouchetant-
Rostaing, Giard, Echallier, & Pernier, 1999). Recently, Jednoróg
and colleagues demonstrated that in a phonological priming task,
the dyslexics differentiate from controls in both the phonologically
incongruent and congruent conditions, that is, dyslexics exhibited
reduced N400 in the former (less negative-going) and enhanced
N400 in the later (more negative-going). This pattern was taken
to indicate that in dyslexia the integration of phonologically re-
lated information and the ability to detect deviant stimuli are im-
paired (Jednoróg, Marchewka, Tacikowski, & Grabowska, 2010).
Further, FMRI studies have indicated that there is a relative under-
activation in dyslexics in the left posterior parts of the reading
network, including the temporal and temporoparietal regions;
these are believed to be central for phonological decoding and inte-
gration processes (Georgiewa et al., 2002; Pugh et al., 2000a; San-
dak, Mencl, Frost, & Pugh, 2004; Shaywitz et al., 2001). Yet, these
deviant brain responses in dyslexic individuals reflect mainly their
difficulties with explicit phonological tasks (e.g., many studies
have typically focused on indirect meta-phonological awareness
tasks like rhyme judgments) and the way in which phonological
information is processed in these tasks is not necessarily the same
as under normal perceptual conditions. On-line phonological pro-
cessing capacities in dyslexics lack further investigation.

Moreover, recent research has suggested that visual-ortho-
graphic processing may also characterize dyslexic reading. This
hypothesis is supported, for example, by behavioral indices show-
ing dyslexic group performance to be poor in tasks that emphasize
lexical orthographic processing (e.g., orthographic judgment tasks,
Marinelli, Angelelli, Notarnicola, & Luzzatti, 2009; orthographic
lexical decision tasks, Bergmann & Wimmer, 2008). Neuroimaging
studies have offered further insight, suggesting evidence for a re-
duced level of automaticity in visual word processing in dyslexia,
which is subserved by the left occipitotemporal region (e.g., Cao,
Bitan, Chou, Burman, & Booth, 2006; Maurer et al., 2007, 2011;
van der Mark et al., 2009; Wimmer et al., 2010).

The left occipitotemporal region has attracted the attention of
reading researchers in the recent years. Development of brain pro-
cesses within this region that are specifically tuned to recurring
properties of a writing system allows, within less than 250 ms,
the rapid extraction of linguistic information from sequences of
letters (separable from higher-order linguistic properties) and the
integration of letters into a perceptual word-form (Brem et al.,
2006; Parviainen, Helenius, Poskiparta, Niemi, & Salmelin, 2006;
Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999). The
left occipitotemporal region corresponds closely to the visual word
form area (VWFA) of Cohen and colleagues (Cohen et al., 2002;
McCandliss, Cohen, & Dehaene, 2003), whose primary function
during reading is to ‘‘support a form of perceptual expertise for vi-
sual word recognition that enables rapid perception of visual
words in one’s own language’’ (Schlaggar & McCandliss, 2007,
p. 480). More specifically, recent evidence indicates that at least
two levels of VWFA specialization exist: a fast, coarse specializa-
tion for print (letter sequences vs. visual control stimuli) and a spe-
cialization for processing letter sequences also at the whole-word
level, as reflected in VWFA sensitivity to the orthographic familiar-
ity of letter sequences (e.g., Bruno, Zumberge, Manis, Lu, & Gold-
man, 2008; van der Mark et al., 2009). A number of FMRI studies
have suggested that disruption of this region in dyslexic when
compared to normal-reading subjects is evident at both coarse,
low-level letter-sequences processing, and, also, dyslexics failed
to exhibit a second level of VWFA specialization at the higher
whole-word level, that is, increased activity for unfamiliar than
familiar word-forms (the so-called orthographic familiarity effect;
van der Mark et al., 2009; Wimmer et al., 2010; see also, Cao
et al., 2006).

Time-sensitive event related potentials have identified the N1
component that peaks within 150–200 ms as the strongest index
of specialized letter-sequences processing (e.g., Bentin et al.,
1999; Maurer, Brem, Bucher, & Brandeis, 2005; Maurer et al.,
2007). In addition, some studies have found similar effects in the
preceding P1 (�50–150 ms; Maurer et al., 2005, 2011). Other
orthographic characteristics have been shown to modulate the
N1, including word frequency. Higher frequency words generally
evoke lower amplitude neural responses (Assadollahi & Pulvermül-
ler, 2003; Hauk & Pulvermüller, 2004; Sereno, Rayner, & Posner,
1998). It has been suggested that this effect reflects facilitated ac-
cess to lexical information (e.g., Hauk & Pulvermüller, 2004),
though the variable word frequency can also affect later stages of
word processing (e.g., Hauk, Davis, & Pulvermüller, 2008).

While a range of studies demonstrate enhanced and left-lateral-
ized N1 to sequences of letters (vs. control stimuli) in skilled read-
ers, some evidence suggests an absence of this N1 effect in the
dyslexic population. For example, Maurer et al. (2007) used ERPs
to investigate for the first time how tuning for print develops in
young dyslexic children and matched, normally developing, read-
ers. The authors demonstrated that over the course of kindergarten
to the second grade, there is an increased activation in normal
readers in response to visual words as compared to similar control
symbols that occurs around 150–270 ms (N1 component). In con-
trast, this was absent in the children who developed dyslexia. The
authors concluded that the earliest cortical activation that is spe-
cifically related to prelexical orthographic analysis is abnormal in
dyslexia. Maurer and colleagues’ results contrasted with those
from a previous study that failed to report a reduction in the N1 re-
sponse in dyslexics (Simos et al., 2000). However, in a magnetoen-
cephalographic (MEG) study with dyslexic adults, Helenius and
colleagues confirmed a delayed activation in left occipito-temporal
areas in dyslexics at the point in time during which letter sequence
specific signals first emerge during reading (�150 ms; Helenius,
Tarkiainen, Cornelissen, Hansen, & Salmelin, 1999). These findings
were restricted to the most severe cases, which raises the possibil-
ity that at some point during development, some dyslexics are able
to attain an appropriate brain sensitivity to text. This is a relevant
topic on the basis of the developmental trajectory of print special-
ization in non-impaired readers (i.e., tuning for print plays an
important functional role in the early phase of reading acquisition
and follows an inverted non-linear U-shaped developmental time
course, probably reflecting a full specialization involving more
selective brain processes; Brem et al., 2009; Maurer et al., 2006).
An open question is whether impaired print specialization is a
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neural marker of dyslexia at the early stages of reading acquisition
but throughout the developmental trajectory it gets reduced.

The aim of the present study was twofold. The first aim was
further investigation of the time course of electrophysiological re-
sponses during print-specific processing in a sample of dyslexics
(9–13 years of age) compared to matched non-impaired readers,
to shed light on whether processing at this low-level represents
a fundamental deficit. To this end, using an implicit reading task,
we compared the ERPs elicited by two stimulus types that differed
with respect to the amount of letter-specific processing required,
consonant vs. symbol sequences. We focused in the P1 and N1
components, as these are the first visual-evoked components that
have been shown to reflect letter-sequence-sensitive activation,
as distinct from stimulus nonspecific visual feature activation
(within the first 250 ms; e.g., Helenius et al., 1999). We expected
non-impaired readers to show a specialization for processing se-
quences of letters in these latency windows of ERPs (i.e., differen-
tial processing of consonant over non-orthographic symbols
sequences), but not dyslexic readers, reflecting impaired special-
ization in the dyslexics. In addition, we aimed to assess further
whether early ERP responses in the P1 and N1 ranges can demon-
strate sensitivity to the orthographic familiarity at the whole-word
level (i.e., visual word-form representations at the lexical-level),
assessed by means of lexicality and printed frequency effects. Thus,
one included high-frequency words, low-frequency words and
pseudowords in this study as a venue to test the effect of familiar-
ity in the early P1 and N1 peaks. Our hypothesis is that lower acti-
vation in response to familiar words (vs. unfamiliar words and
pseudowords) would reflect sublexical sensitivity in terms of
orthographic familiarity at the whole-word level. On the other
hand, if P1/N1 reflects primarily letter recognition, we should not
obtain ERP differences as a function of stimulus type.

A second main goal of the present study was to explore on-line
phonological processing capacities in dyslexics. Our approach to
investigate implicit phonological processing was to compare the
ERPs elicited in an implicit reading task with consonant sequences
and pseudowords, in the N320 component that is believed to be in-
volved in phonological processes (Bentin et al., 1999; Simon, Ber-
nard, Largy, Lalonde, & Rebai, 2004). The consonant sequences
could not be transformed into a coherent phonological structure
(i.e., cannot be transcribed at the phonologic level), whereas for
pseudowords the phonological pattern is plausible. This contrast
reduces a potential confound of the familiarity effect and better
isolates the phonological process. Some results in the literature
suggest that phonological recoding plays a primary role for main-
taining pronounceable stimuli in working memory (e.g., phonolog-
ical loop, Baddeley, 1986; Ziegler & Jacobs, 1995). Conceivably,
only pseudowords, but not consonant sequences, can activate pho-
nological information and, thus, benefit from phonological recod-
ing. Based on this, a possible prediction was that, in both reading
groups, the N320 should be elicited more extensively by pseudo-
words than by unpronounceable consonant sequences. Moreover,
we expected that reduced amplitudes in response to pseudowords
would be shown in the dyslexics compared to controls due to their
reduced ability in phonological coding mechanisms (grapheme-to-
phoneme correspondence, phoneme blending), as well as attenu-
ated differences in N320 ERP amplitudes between pseudowords
and consonant sequences for the dyslexics.
2. Material and methods

2.1. Participants

Twenty pre-adolescent children with dyslexia aged 9–13 years
(13 males and 7 females; mean age [±std] = 10.7 [±1.6] years)
were tested in this study. They were recruited through private
clinics specialized for children with special needs and all had
been formally diagnosed with dyslexia by a specialized therapist.
In this study, the inclusion criteria for the dyslexic participants
were as follows: normal-range intelligence measured by the
Raven Colored Matrices (Raven, Court, & Raven, 1998); reading
abilities significantly below grade mean level; absence of neuro-
logical, emotional, or attentional problems. The individual reading
achievement was assessed through the time-limited reading
aloud test, adapted for the Portuguese population from the Differ-
ential Diagnosis Dyslexia Battery (3DM; Blomert & Vaessen,
2009). The reading test contained two subtasks of high- and
low-frequency word (half a minute for each subtask); reading
speed was taken as the number of correct items read per second.
Scores were converted into z-scores with reference to normative
data, which was collected in a large-scale study with 820 Portu-
guese children in grades 1–4 (test-retest reliability = .91). Only
those subjects who had reading speed scores at least 1.5 SD be-
low the grade mean level of the normative sample were included
in the dyslexic group. For seven dyslexics in our sample (from
grade 5 and 6) we did not have comparative norms, as there were
no standardized tests for the assessment of reading skills for
Portuguese 5th and 6th graders. However, four of these seven
dyslexics scored at similar level or below relative to other sub-
jects graded 4 that were classified as 1.5 SD below the normative
sample. So, we can assume that these four subjects are them-
selves 1.5 SD below the mean of subjects of the same grade. A
re-analysis of the P1, N1, and N320 effect after excluding the
other three dyslexics (i.e., those whose raw scores were not be-
low graders 4) confirmed our results including all pre-adolescent
children; therefore we decided not to exclude these subjects.

The dyslexic group was matched with 20 age-matched controls,
aged 9–13 years (10 males and 10 females; mean age [±std] = 10.6
[±1.7] years), who were recruited from local schools and classified
by their teachers as average pupils and competent readers. All con-
trols had intelligence scores in the normal range (Raven Colored
Matrices) and reading speed scores within or above the average
of the normative sample (3DM reading test). No statistical differ-
ences were observed between groups regarding age or intelligence
(p > .2 for both); however, as expected, these groups strongly dif-
fered in their average 3DM reading raw scores (p < .001). Informed
consent was obtained from all of the parents of the participants in
compliance with the Helsinki Declaration.
2.2. Stimulus material

The stimulus type was manipulated in five experimental condi-
tions: high and low-frequency words, which were selected from a
Portuguese database, pseudowords, consonant sequences, and
symbol sequences. The length of the words varied from one sylla-
ble (3 letters) to two syllables (4–5 letters), and only concrete
nouns were included. Both pseudowords and consonant sequences
were derived from the selected high-frequency words. Each high-
frequency word was transformed into a pseudoword (phonologi-
cally legal) by changing the second syllable; the consonants were
modified, and the vowels were kept (e.g., bico [beak] – bivo). For
the construction of the consonant sequences (neither had phono-
logical or semantic representations), the criterion was to keep
the original words’ consonants and to change the vowels using
other consonants (e.g., bico [beak] – brcn). For the symbol se-
quences condition, twenty-one different non-orthographic sym-
bols were selected. The symbol sequences were matched in
length with the high-frequency words, and a correspondence be-
tween letters and symbols was established and kept consistent
(e.g., hes ). In total, 80 stimuli per condition were selected.
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2.3. Experimental procedures

In the implicit reading task, after the stimulus presentation, two
alternative responses were displayed simultaneously on the screen:
one letter/symbol that was presented in the previous stimulus and
one letter/symbol that was not presented in the previous stimulus.
The relative position of the letter/symbol in the stimuli was ran-
domly determined. The subjects had to decide which of the two
alternative responses was present in the preceding stimulus by
pressing the corresponding response button (left or right shift).
By asking subjects to make a decision we ensured that they were
engaged and motivated throughout the entire task (which is partic-
ularly relevant as we have sampled pre-adolescent children), while
also provide an index by which to assess behavioral performance.
The 400 stimuli (80 for each condition) were presented in eight
pseudo-randomized blocks of 50 trials each; conditions were bal-
anced within blocks. Each stimulus was presented only once per
subject during the experiment. The assignment of the items to
the block, and the order of the presentation of the items within
block, was random. Presentation software (version 0.7; nbs. neu-
ro-bs.com/presentation) was used to display the stimuli on a com-
puter screen and to register the subject responses. Words,
pseudowords, and consonant sequences were presented in lower-
case (‘‘Arial’’; font size 60; black font on white background). All
stimuli were presented at eye-level at the center of the screen,
�60 cm away from the subject, and ranged from 2.0 to 3.7� of visual
angle.

The trial sequence of events was as follows (Fig. 1): first, a fix-
ation cross (+) was presented for 300 ms in the center of the
screen; then, the stimulus was displayed for 1500 ms, followed
by the two alternative responses, which remained on the screen
until the participant pressed a response button. The screen position
of the correct responses was counterbalanced. The subjects were
instructed to avoid blinking and moving during stimulus presenta-
tion; they were allowed to blink their eyes during the response
period. After this response period, an extra time period of
2000 ms was given for the participants to blink their eyes (indi-
cated by several stars ���� on the screen). The participants were
encouraged to pause after each block. Before the task, the partici-
pants were given eight practice trials for each condition to ade-
quately familiarize themselves with the experimental tasks.
2.4. ERP recordings

Continuous electroencephalogram (EEG) was acquired through
the ActiveTwo Biosemi electrode system from 32 Ag/AgCl active
Fig. 1. Schematic illustration of the trial sequence of events. Subjects were
instructed to decide which of the two alternative responses was present in the
preceding stimulus and to press a corresponding response button.
scalp electrodes that were mounted in an elastic cap. These elec-
trodes were located at standard left and right hemisphere positions
over the frontal, parietal, occipital, and temporal areas. They were
also positioned according to the International 10–20 system guide-
lines (Fig. 2). Two additional electrodes were used as an online ref-
erence: Common Mode Sense (CMS) active electrode and Driven
Right Leg (DRL) passive electrode. BioSemi replaces the ground
electrodes that are used in conventional systems with these two
electrodes. CMS/DRL form a feedback loop that drives the average
voltage of the subject (i.e., the common mode voltage) as close as
possible to the reference voltage of the analog-to-digital converter.
Signals are recorded as the voltage between each electrode and the
CMS (for a complete description, see biosemi.com; Schutter, Leit-
ner, Kenemans, & van Honk, 2006). Three other electrodes were at-
tached over the right and left mastoids and below the right eye, to
monitor eye movements and eye blinks. Bioelectrical signals were
amplified using an ActiveTwo Biosemi amplifier (DC-100 Hz band-
pass, 3 dB/octave) and were continuously sampled (24 bit sam-
pling) at a rate of 512 Hz throughout the experiment.
2.5. ERP data analysis

The EEG data were analyzed using the FieldTrip open source
toolbox (Oostenveld, Fries, & Jensen, 2009; documentation and
algorithms available at ru.nl/fcdonders/fieldtrip). ERP data were
averaged over an epoch of 1325 ms (from 200 ms prior to until
1125 ms following the stimulus) and were time-locked to the on-
set of the stimuli. Trials containing ocular artifacts, movement arti-
facts, or electric noise were excluded before averaging the trials.
Three dyslexic subjects and one control subject were not included
in the ERP analysis due to a high percentage of artifacts (more than
30% of the trials per condition). Moreover, only trials with correct
responses were analyzed. The mean (SD) number of the accepted
epochs in the grand averages in normally reading and dyslexic sub-
jects were respectively, 65.3 (4.7) and 57.4 (3.7) for consonant se-
quences, 61.5 (4.1) and 55.7 (3.1) for symbol sequences, 62.5 (4.0)
and 62.5 (5.1) for high-frequency words, 64.6 (5.4) and 61.5 (4.7)
for low-frequency words, and 66.1 (3.2) and 61.9 (4.7) for pseudo-
words. Corrected trials were filtered offline (30 Hz lowpass) and
Fig. 2. The thirty-two-channel electrode montage including all standard sites in the
10–20 system.



Fig. 4. Mean accuracy for each stimulus type (HF: high-frequency words, LF: low-
frequency words, PW: pseudowords, CS: consonant sequences, SS: symbol
sequences) and for each group. The error bars represent standard error of the mean.

Fig. 3. Mean response times for each stimulus type (HF: high-frequency words, LF:
low-frequency words, PW: pseudowords, CS: consonant sequences, SS: symbol
sequences) and for each group. The error bars represent standard error of the mean.
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re-referenced to average reference (eye electrodes were excluded
to compute the common reference). ERP data were analyzed by
computing the mean amplitudes of the waveforms during selected
time windows, relative to the 200 ms pre-stimulus baseline. Indi-
vidual ERPs were averaged within each experimental condition
and for each group. Significant ERP differences between stimulus
conditions were computed separately for each group.

Three main sets of analyses were performed. To analyze the ef-
fects of letter-specific processing, we focused on the comparison of
the ERPs that were elicited by the consonant sequences to the sym-
bol sequences, during the time windows from 110 ms to 160 ms
(P1 component) and from 180 ms to 260 ms (N1 component). Next,
whether the P1 and N1 could reflect orthographic familiarity at the
whole-word level was assessed by comparing the ERPs to familiar
word-forms (i.e., high-frequency words) with the ERPs to unfamil-
iar word-forms (i.e., low-frequency words and pseudowords). For
these comparisons, the statistical analysis of ERPs were limited
to four posterior (P3/4, P7/8, PO3/4) and three anterior electrode
sites (AF3/4, F3/4, FC5/FC6). Lastly, to assess the activity that was
associated with the phonological processing, we compared
pseudowords (phonologically legal) with consonant sequences
(phonologically illegal) in the time window between 290 and
360 ms (N320 component). For the phonological analysis, the sites
of interest spanned the middle and temporal areas (T7/T8, C3/C4,
CP5/CP6). The selection of the time segments and electrode sites
for use in specific analyses was based on visual inspection of the
individual waveforms that seemed to be modulated by stimulus
type. This selection also took the literature concerning the distinct
levels at which words are processed into account (see for instance,
Bentin et al., 1999). The statistical differences among the ERP com-
ponents for the different stimulus conditions and for each group
were tested with repeated measures ANOVAs, including the Stim-
ulus Type, Electrode Site, and Hemisphere (right vs. left) as within-
subject factors and the Group as a between-subject factor. For the
analysis of the effect of orthographic familiarity, Greenhouse-Geis-
ser adjustments were employed to correct for violations of spheric-
ity. Post-hoc analyses (Tukey HSD) were conducted to investigate
significant interactions.
3. Results

3.1. Behavioral results

The data were analyzed using a repeated-measures ANOVA,
with Stimulus Type as a within factor and reading Group as a be-
tween factor.

3.1.1. Response time analysis
Response times (RTs) from the incorrect answers and implausi-

bly long or short RTs (i.e., 3 SD below or above the subject and con-
dition means) were excluded from the analysis. Mean RTs were
calculated for each subject and each condition. A significant main
effect of Group on RTs, [F(1,37) = 6.3; p = .017], indicated that re-
sponses were generally slower for the dyslexic group
(1405 ± 340 ms) as compared to the age-matched controls
(1168 ± 246 ms; Fig. 3). Neither a significant Stimulus Type effect
nor a significant two-way interaction between Group and Stimulus
Type were obtained.

3.1.2. Accuracy analysis
A main effect of Group was observed, [F(1,37) = 27.4; p < .001].

Regardless of the stimulus type, the subjects with dyslexia made
relatively more errors in comparison with their respective controls,
(81% and 95% correct answers, respectively; p < .001). A significant
main effect of the Stimulus Type was also found [F(4,15) = 53.1;
p < .001]. This effect was due to significantly more errors for the
consonant and the symbol sequences compared to the other condi-
tions (p < .001, for all comparisons) and to higher error rates in the
symbol than in the consonant sequences (p = .020). Lastly, the ef-
fect of Stimulus Type on errors was modulated by the factor Group,
as indicated by the interaction Group by Stimulus Type
[F(4,15) = 5.2; p = .001]. The controls’ responses were less accurate
to symbol than to consonant sequences (p = .006), but the same
difference failed to reach significance in dyslexics. On the other
hand, while controls performed equally well in words with high
and low-frequency, the dyslexics performed significantly worse
on the last (p = .009; Fig. 4).

3.2. Electrophysiological results

3.2.1. Early ERP components
3.2.1.1. Comparison of consonant sequences with symbol sequences.
3.2.1.1.1. P1 (110–160 ms). A marginally significant main Stimulus
Type effect indicated that the early P1 response in the ERPs was
smaller for the consonant than for the symbol sequences,
[F(1,34) = 4.0, p = .054]. The main effect of Electrode Site was also
significant, [F(1,34) = 144.6, p < .001], as well as the interaction be-
tween Electrode Site and Hemisphere, [F(1,34) = 5.9, p = .021]. The
observed interaction was due to the fact that at posterior sites, the
ERPs elicited by consonant and symbol sequences were more posi-
tive over the right hemisphere than the left hemisphere, while at
anterior sites, the ERPs showed bilateral activity. Lastly, a trend
for an interaction between Group and Stimulus Type indicated that



Fig. 5. ERPs elicited by consonant sequences (red line) and symbol sequences (blue
line) for selected electrodes, averaged separately for (a) normal readers and (b)
dyslexics. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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only the control readers differentiate processing of consonant vs.
symbol sequences. [F(1,34) = 3.0, p = .094].
3.2.1.1.2. N1 (180–260 ms). A main effect of Stimulus Type was
found, [F(1,34) = 12.5, p < .002], with responses to consonant se-
quences being more negative than the responses to symbol se-
quences. The interaction Stimulus Type by Electrode Site was
significant, [F(1,34) = 13.8, p < .002], as well as the interaction Elec-
trode Site by Hemisphere, [F(1,34) = 4.6, p = .039]. Post-hoc analy-
ses revealed that, at left posterior locations, the ERPs to consonant
sequences were overall more negative than the ERPs to symbol se-
quences, while no such effect was found at anterior locations. More
importantly, the Stimulus Type also interacted with Group,
[F(1,34) = 4.8, p = .035], as the ERPs to consonant and symbol se-
quences were significantly different in the control group
(p < .002) but failed significance in the dyslexic group (Figs. 5 and
6). We note that similar N1 differences between the groups were
found when we ran an ANOVA on the four conditions with ortho-
graphic stimuli (i.e., the mean of high and low-frequency words,
consonant-sequences, and pseudowords) vs. symbol sequences.
Again, this comparison showed specificity for letter-processing in
control readers but not in dyslexics, as indicated by the interaction
between Stimulus Type and Group, F(1,34) = 8.2, p = .007. This
analysis of variance also showed that the interaction between
Stimulus Type and Electrode Site, [F(1,34) = 30.9, p < .001], and be-
tween Electrode Site and Hemisphere, [F(1,34) = 6.3, p = .018],
were significant.

3.2.1.2. Comparison of familiar with unfamiliar word-forms.
3.2.1.2.1. P1 (110–160 ms). The ERPs to high-frequency words,
low-frequency words, and pseudowords did not differ (F < 1). Addi-
tionally, no Group [F(1,34) = 1.7, p = ns] or interaction of Group
with Stimulus Type (F < 1) were observed. Only interaction Elec-
trode Site by Hemisphere was found, [F(1,34) = 4.5, p = .042], as
posterior electrode sites elicited leftward asymmetry whereas
anterior electrode sites presented bilateral activity.

3.2.1.2.2. N1 (180–260 ms). No Stimulus Type and no Group or
interaction were evidenced (Fs < 1). Only the interaction between
Electrode Site and Hemisphere was found, [F(1,34) = 6.0,
p = .020], revealing that, at posterior sites the N1 elicited by all
stimuli was more negative over the left than over the right hemi-
sphere, whereas anterior sites presented bilateral activity.

3.2.2. Late ERP component
3.2.2.1. Comparison of phonologically legal with phonologically illegal
stimuli.
3.2.2.1.1. N320 (290–360 ms). ERPs to pseudowords and consonant
sequences were significantly distinct [F(1,34) = 6.1, p = .019], with
pseudowords showing larger amplitude than the consonant se-
quences. A main effect of Hemisphere was also observed,
[F(1,34) = 7.8, p = .009], as stimuli elicited significant leftward
asymmetry. Interestingly, the interaction between Group and
Hemisphere approached significance, [F(1,34) = 3.5, p = .059],
reflecting the fact that in the control group, the medial and tempo-
ral sites exhibited leftward asymmetry, whereas in the dyslexic
group these sites showed bilateral activity. No other main or inter-
action effects were observed (Fs < 1; Figs. 6 and 7).
4. Discussion

In this ERP study, we aimed to extend previous results related to
the different temporal dynamics observed in pre-adolescent chil-
dren with dyslexia and normally reading controls, related to early
prelexical, letter-specific processing, and late, implicit phonologi-
cal processing. We used an implicit reading task and compared
the ERPs associated with five types of stimuli that varied in terms
of letter-specific processing, familiarity, and pronounceability.
First, we hypothesized that early letter-sequence-sensitive



Fig. 6. Topographic distribution of the P1 and N1 effects (left panel; relative scaling, P1/N1 min/max �5/3 lV), and of the N320 effect (right panel; relative scaling, N320 min/
max �2/2 lV) in control and dyslexics readers.

S. Araújo et al. / Brain and Cognition 79 (2012) 79–88 85
processing observed in normally developing readers would be im-
paired in subjects with dyslexia. More specifically, we predicted
that this would be reflected in attenuated ERP-amplitude differ-
ences between consonant and symbol sequences in the dyslexics
compared to the controls.

Consistent with previous ERP findings, normally developing
readers showed an early negative ERP component peaking around
200 ms post-stimulus onset over left posterior sites. This N1
amplitude was significantly larger for consonant compared to
symbol sequences. This effect probably reflects specificity for
letter-processing and is therefore compatible with the coarse
print-specific N1 specialization described in the reading literature
(e.g., Brem et al., 2009). This effect was also seen for the other letter
sequence conditions compared to symbols in the normal readers,
In addition, although the N1 component appeared as the strongest
index of letter-specific processing, consonant and symbol se-
quences evoked responses already in the earlier P1 component
(i.e., enhanced P1 response to symbol sequences). This has previ-
ously been found in children (e.g., Maurer et al., 2011) and suggests
that letter-specific processing is under way well before 200 ms
(Brem et al., 2006). Thus, the observed ERP activity in the P1/N1
window is consistent with the idea that the reading network
specializes for visual aspects of written text during childhood
(Kronbichler et al., 2006; Maurer et al., 2005, 2006; Parviainen
et al., 2006). This specialization likely reflects a reorganization of
the brain that occurs within a short time period as a function of
reading training. Moreover, automatic skilled reading is associated
with left hemispheric dominance (Maurer et al., 2005; McCandliss
et al., 2003) and the left hemisphere dominance for letter se-
quences in our non-impaired readers thus suggests that reading
in pre-adolescent children is already automated.

In the dyslexic group, the N1 response did not show the letter-
processing sensitivity found in the normal readers. In contrast to
the control readers, the N1 peak was attenuated, consistent with
ERP findings of attenuated P1/N1 responses to orthographic stimuli
in dyslexic children (Maurer et al., 2007) and adults with severe
dyslexia (Helenius et al., 1999). Paralleling these ERP findings,
the performance accuracy was greater for consonant compared to
symbol sequences in the controls, while this was not the case for
the dyslexic participants. Taken together, the behavioral and ERP
findings in the dyslexics thus provided support for an impairment
in the fast, coarse processing specialization for print in develop-
mental dyslexia (e.g., Kast, Elmer, Jancke, & Meyer, 2010; Maurer
et al., 2007; van der Mark et al., 2009). This processing specializa-
tion in non-impaired readers might represent the initial, ‘‘first
pass’’ specialization of the VWFA. One may argue that although
the dyslexic deficit is evident already during learning to read, the
deficit remains, including neural markers, throughout develop-
ment. One possibility is that letter-sequence-specific neuronal
groups do not develop normally or that the development of these
is delayed which affects the perceptual encoding of orthographic
properties, therefore preventing normal development of automatic
reading skills in dyslexics.

While the P1 and N1 components reflect low-level text special-
ization, we also tested whether these early ERP responses are sen-
sitive to orthographic familiarity at the whole-word level. To
answer this question, we analyzed lexicality and text frequency ef-
fects. This analysis of the P1 and N1 responses showed no differ-
ences between high-frequency words and low-frequency words
or pseudowords, for the controls and dyslexic readers. Thus, our re-
sults suggest that for pre-adolescent children (9–13 years), the ERP
responses up until about 200 ms post-stimulus onset to letter se-
quences are not sensitive to variation in orthographic familiarity.
This differs from previously reported effects in the N1 range in
adults. For instance, Hauk and Pulvermüller (2004) reported word
frequency effects in a time window between 150 and 200 ms. Hauk
and colleagues (Hauk, Davis, Ford, Pulvermüller, & Marslen-Wil-
son, 2006) showed larger brain activation for pseudowords than
for words at about 160 ms, whereas in Taroyan and Nicolson’s
study (2009) the word/pseudoword differences were found for
P1 amplitude as early as 110 ms. It has been proposed that these
effects of familiarity reflect facilitation of early access to lexico-
semantic information (Hauk & Pulvermüller, 2004). In the present
study, the absence of a significant amplitude difference between
familiar and unfamiliar words in earlier time windows encompass-
ing the P1 and N1 suggests that these responses might arise at the
earliest prelexical stages of the orthographic system, as opposed to
reflecting lexical orthographic processing. Moreover, the finding of
similar P1/N1 responses to words and consonant sequences
strengths this interpretation, as it suggests insensitivity of the
P1/N1 to orthographic structure of the letter sequences (only
words conform to orthographic rules). However, it is important
to note that our data do not exclude the possibility that the effect
of word frequency can be modulated by task demands, which
would suggest that word frequency effects are more related to
task-specific decision processes, rather than lexico-semantic



Fig. 7. ERPs elicited by pseudowords (red line) and consonant sequences (blue line)
for selected electrodes, averaged separately for (a) normal readers and (b) dyslexics.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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processing (see, for example, Carreiras, Mechelli, & Price, 2006;
Chee, Hon, Caplan, Lee, & Goh, 2002).
A second goal of the present study was to investigate ERP mea-
sures of on-line phonological processing in dyslexics, without
imposing the requirements of an explicit phonological task. We ad-
dressed this issue by assessing changes in the N320 component
that is believed to reflect phonological processes (Bentin et al.,
1999), by contrasting phonologically legal/pronounceable (pseudo-
words) vs. illegal/unpronounceable (consonant sequences) stimuli.
In both groups, the pseudowords triggered a larger negative ampli-
tude than the consonant sequences did. The observed N320 modu-
lation is consistent with similar phonological N320 effects reported
in the literature (Bentin et al., 1999; Simon et al., 2004), and may
be explained by intrinsic differences in the processing operations
that occur; that is, the pseudowords obey phonological rules and
thus can benefit from phonological recoding for maintaining
stimuli in working memory (e.g., Baddeley, 1986) – note that our
participants have to keep the entire letter sequences in working
memory until they knew what the target letter was – whereas
consonant sequences cannot significantly or systematically
activate phonological information. Admittedly, an alternative
interpretation of the differences found between pseudowords
and consonant sequences should be considered. It is clear that con-
sonant sequences can be discriminated from pseudowords on the
basis of pronounceability, but both stimulus types can be discrim-
inated on the basis of visual/orthographic structure as well. The
pseudowords obey orthographic and phonological rules, and can
therefore activate both sources of information, whereas the conso-
nant sequence does not. Although one may reason that modula-
tions of the N320 response are rather late to index orthographic
analysis, some caution must be exercised when interpreting our
finding.

As impoverished phononological processing often underlies im-
paired reading ability in dyslexia (e.g., Georgiewa et al., 2002;
Shaywitz & Shaywitz, 2005), we expected that dyslexics would
show smaller N320 amplitudes than normal readers. However,
the phonological effect in the N320 range was indistinguishable
between groups, that is, dyslexics and normal readers showed
the same N320 amplitude increase in responding to pseudowords.
This finding might suggest that the dyslexics did not experience an
increased processing effort during the phonological coding (graph-
eme-to-phoneme correspondence, phoneme blending) as ex-
pected. Yet, inspection of Fig. 3 shows a trend for consonant
sequences to lead to longer RTs (vs. pseudowords) in control read-
ers, suggesting that different strategies might have been recruited
during the processing of the two item types. However, this was not
the case for dyslexics. Our ERP results contrast with previous stud-
ies that used explicit phonological awareness tasks (e.g., auditory
and visual rhyming) and reported time course differences between
reading groups (Ackerman et al., 1994; McPherson & Ackerman,
1999; McPherson, Ackerman, Holcomb, & Dykman, 1998). The
present findings therefore suggest that phonologically related
ERP effects might critically depend on the explicit requirement of
phonological monitoring or awareness. The present data do not ex-
clude the possibility that a phonological deficit would have be-
come apparent if we had used a more demanding experimental
task. For example, behavioral studies have shown that dyslexic
readers exhibit greater difficulties with overt pseudoword pronun-
ciation compared to implicit decoding tasks (e.g., Stanovich &
Siegel, 1994). Functional neuroimaging studies also described
smaller group differences for easier compared to harder phonolog-
ical tasks (e.g., Shaywitz et al., 1998), suggesting that task difficulty
is an important factor in identifying dysfunctional activation
patterns. Actually, this aspect gains particular interest given the
characteristics of Portuguese orthography, which is an orthography
of intermediate depth (i.e., letter-sound relations are relatively reg-
ular; Seymour, Aro, & Erskine, 2003). In these orthographies, the
phonological deficits appear to be somewhat less pervasive and
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their expression more evident when task demands increase (e.g.,
de Jong & van der Leij, 2003; Wimmer, 1996). Future studies in
which explicit vs. implicit processes in phonological analysis is
contrasted ought to clarify whether the absent phonological effect
can be explained in terms of the influence of the orthographic
depth of the writing system.

An interesting observation in our analysis was the topographic
differences between groups: the control readers tended to show a
lateralized pattern with relatively greater left than right negativity;
in contrast, the dyslexic group did not show any lateralization
effect. Previous studies using an illiterate population show that lit-
eracy itself might influence the functional hemispheric balance
between brain structures related to reading, including the inferior
parietal and temporoparietal regions (e.g., Petersson, Silva,
Castro-Caldas, Ingvar, & Reis, 2007). Therefore, it seems likely that
a relationship exists between reading expertise and the hemi-
spheric differences reported in our study. That is, our findings are
indicative of a less consolidated reading network in the left hemi-
sphere of the dyslexic pre-adolescent children. This would be in
agreement with results from earlier studies of increased right-
hemisphere participation in phonological tasks in individuals with
dyslexia (Démonet, Taylor, & Chaix, 2004; Pugh et al., 2000b; Shay-
witz et al., 1998, 2002; for a review, see Richlan et al., 2009). For
example, Shaywitz and colleagues suggested that non-impaired
readers show a well-functioning left-hemisphere posterior circuit
(including both dorsal, temporo-parietal and ventral, occipitotem-
poral components) for word and pseudoword reading, while read-
ing-disabled individuals do not, which might be compensated by
increased bilateral inferior frontal activation and an increased role
of right-hemisphere posterior regions in reading (Pugh et al.,
2000b; Shaywitz et al., 1998). To some extent, the pattern of our
behavioral results (errors and response times) is consistent with
our ERP results and suggest that compensatory mechanisms might
be at play (i.e., the pseudoword performance was not more
impaired than the word performance in dyslexic readers).

In summary, the dyslexics showed deviant letter-specific pro-
cessing effect in earlier time windows, including the P1 and N1
components, whereas phonological effects were comparable to
those of normal readers in the later N320 window. In addition,
the normally reading pre-adolescent children exhibited a left-lat-
eralized N320 topography which was not present in the dyslexic
group. This suggests a lack of consolidation of the left hemisphere
reading network in the dyslexics.
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