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1 Introduction

The analysis and construction of non-rational conformal field theories (CFTs) in two dimen-

sions is a highly non-trivial task. On the other hand, rational CFTs are well investigated
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and understood. Some non-rational theories can be constructed as limits of rational theo-

ries, and their properties can be inferred from our knowledge about rational models. The

first example of such a limiting theory is the Runkel-Watts theory [1] at central charge

c = 1 that arises as the limit of Virasoro minimal models. Similar constructions have been

considered for Wn minimal models [2], and supersymmetric N = 1 minimal models [3]. A

different approach towards taking limits of conformal field theories is discussed in [4].

It is an obvious question whether such a construction is also possible for the N = (2, 2)

supersymmetric minimal models. For several reasons this is far from being a straightfor-

ward generalisation of the known cases. Firstly, all other examples are constructed as

diagonal coset models of the form gk⊕g`
gk+`

where the level k is sent to infinity. On the other

hand, the N = (2, 2) Grassmannian Kazama-Suzuki models [5], of which the N = (2, 2)

minimal models are the simplest example, have a coset description as su(n)/u(n − 1), so

their structure is different. Secondly, for the diagonal cosets it is known [6–8] that there are

renormalisation group (RG) flows that connect theories with different levels k (triggered by

the (1, 1; Adjoint) field). These flows become short1 for large levels k (being accessible to

conformal perturbation theory), and the models come closer in the space of theories, there-

fore one would intuitively expect a “convergence” to a limiting theory. For the N = (2, 2)

minimal models there are also RG flows connecting different models, but they are not ac-

cessible to conformal perturbation theory [10, 11] and are not short with respect to the

Zamolodchikov metric, so that the theories do not seem to approach a limiting point in

theory space. From this point of view, one might even doubt that a limit of N = (2, 2)

minimal models for large levels can be defined.

In this article we are investigating precisely this question. We analyse the spectrum

of the N = (2, 2) minimal models in the limit of large levels k for which the central

charge approaches c = 3. In the Neveu-Schwarz sector we find primary fields Φq,n with a

continuous charge 0 < |q| < 1 and a discrete label n = 0, 1, . . . . The fields with label n = 0

are chiral or anti-chiral primaries. By taking the limit of the known three-point functions of

minimal models, we show that the fields in the limit theory have well-defined and non-trivial

three-point functions. We also can define two classes of boundary conditions, a discrete one

labelled by an integer M and a continuous one labelled — similarly to the fields — by a

continuous parameter Q and a discrete parameter N , and we determine the disc one-point

functions. One might still wonder whether the limit theory is fully consistent, but the

results so far indicate that it is well behaved. It would be interesting to check that the

resulting theory satisfies crossing symmetry.

Limits of conformal field theories also appear in the context of AdS/CFT dualities for

higher spin gravity theories. Starting from the observation that the asymptotic symmetry

of a higher spin gravity theory on AdS3 is given by a W-algebra [12, 13], Gaberdiel and

Gopakumar proposed a certain limit of Wn minimal models as the corresponding CFT

dual [14]. In this limit, both the level k and the label n are sent to infinity such that

the ’t Hooft coupling λ = n
k+n is kept fixed. This proposal was generalised to N = (2, 2)

superconformal theories in [15, 16]. In this context, our approach to send k to infinity in a

given theory (with fixed n) is related to the situation where the ’t Hooft coupling is zero.

1With respect to the Zamolodchikov metric [9].
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The paper is organised as follows. In section 2 we consider the behaviour of the

spectrum of minimal models in the limit. We define fields in the limit theory and show

that they have sensible two-point functions. In section 3 we compute the limit of the

three-point function, the necessary technical and computational details are collected in

three appendices. Section 4 discusses boundary conditions and disc one-point functions.

In section 5 we deal with the question whether we can define further fields of charge zero

in the limit theory, and we conclude in section 6.

2 The spectrum

In this section we will analyse the spectrum of the limit theory. We start by reviewing

some facts about minimal models, and then study their spectrum for large levels and define

the corresponding fields in the limit theory.

2.1 Minimal models

The N = (2, 2) superconformal minimal models2 come in a family parameterised by a

positive integer k with central charges

c = 3
k

k + 2
. (2.1)

They possess a discrete spectrum. The unitary representations of the bosonic subalgebra

of the N = 2 superconformal algebra are labelled by three integers (l,m, s), where

0 ≤ l ≤ k , m ≡ m+ 2k + 4 , s ≡ s+ 4 . (2.2)

Only those triples (l,m, s) are allowed for which l+m+ s is even, and triples are identified

according to the relation

(l,m, s) ≡ (k − l,m+ k + 2, s+ 2) . (2.3)

The conformal weight and the U(1) charge of the vectors in a representation H(l,m,s) are

given by

h ∈ hl,m,s + N hl,m,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
(2.4)

q ∈ qm,s + 2Z qm,s = − m

k + 2
+
s

2
. (2.5)

We consider models with a diagonal spectrum, i.e. with equal left- and right-moving

weights, h̄ = h, and charges, q̄ = q, of the ground states. The conformal weight and the

U(1) charge of the ground states of H(l,m,s) are exactly given by hl,m,s and qm,s (without

integer shifts) if the labels satisfy

|m− s| ≤ l , (2.6)

which is sometimes called the standard range. Contrary to some claims in the literature,

the identification rule (2.3) does not allow one in general to map a given triple into the

2For an introduction see e.g. the textbooks [17, 18].
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standard range. Exceptions are provided by superdescendants of chiral primary or Ramond

ground states (e.g. (0, 0, 2) ≡ (k, k + 2, 0) cannot be mapped to the standard range).

Representations with even s belong to the Neveu-Schwarz sector. The direct sum

H(l,m,0) ⊕ H(l,m,2) constitutes a representation of the full superconformal algebra. The

primary fields φl,m with respect to the superconformal algebra are then labelled by a pair

of integers (l,m), where

0 ≤ l ≤ k , |m| ≤ k , l +m even . (2.7)

Their conformal weights and U(1)-charges are given by

hl,m = hl,m,0 =
l(l + 2)−m2

4(k + 2)
(2.8)

qm,0 = − m

k + 2
. (2.9)

The chiral primary fields are those with m = −l obeying hl,−l = ql,−l/2, the anti-chiral

primary states have m = l.

Representations with odd s belong to the Ramond sector. The Ramond ground states

have labels (l, l + 1, 1) with weight and charge given by

hl,l+1,1 =
1

8
− 1

4(k + 2)
(2.10)

ql+1,1 =
1

2
− l + 1

k + 2
, (2.11)

the corresponding field will be denoted by ψ0
l . The full representation of the superconformal

algebra built on such Ramond ground states is then H(l,l+1,1) ⊕ H(l,l+1,−1). The other

Ramond representations of the superconformal algebra are given by the sum H(l,m,1) ⊕
H(l,m,−1) with |m| ≤ l − 1. The ground states in the two summands have the same

conformal weight and differ by 1 in the U(1) charge,

hl,m,±1 =
l(l + 2)−m2

4(k + 2)
+

1

8
(2.12)

qm,±1 = − m

k + 2
± 1

2
. (2.13)

We denote the corresponding two fields by ψ±l,m.

2.2 Taking the limit

We want to take the limit k →∞, and analyse what happens to the spectrum. Let us first

consider the primary states in the Neveu-Schwarz sector. When the level k becomes large,

the spectrum of U(1)-charges becomes continuous in the range −1 < q < 1. We want to

keep the U(1) charge and the conformal weight fixed in the limit. For a fixed charge q we

have to scale m with k such that

m ≈ −q(k + 2) . (2.14)
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On the other hand, the label l is determined by hl,m,0 and qm,0 by

l =
√

(k + 2)2q2
m,0 + 4(k + 2)hl,m,0 + 1− 1 . (2.15)

Keeping qm,0 ≈ q 6= 0 and hl,m,0 ≈ h fixed, the label l scales as

l = |m|+ 2
h

|q|
− 1 +O(1/k) . (2.16)

The label l thus differs from the linearly growing |m| only by a fixed finite number, which

has to be an even integer (see (2.7)),

l = |m|+ 2n , n = 0, 1, 2, . . . . (2.17)

Whereas |q| can take any value between 0 and 1, we see by comparing (2.16) and (2.17)

that the ratio h/|q| can only take discrete values,

hn(q) = (2n+ 1)|q|/2 , (2.18)

and n = 0 corresponds to chiral primary and anti-chiral primary fields.

In the h-q-plane, the Neveu-Schwarz spectrum is thus concentrated on lines going

through the origin (see figure 1), and the fields Φq,n are labelled by their continuous U(1)-

charge q and a discrete label n.

By a similar analysis we find in the Ramond sector on the one hand the Ramond

ground states leading to fields Ψ0
q with h = 1

8 and −1
2 < q < 1

2 built from fields ψ0
l with

l ≈ (k + 2)(1
2 − q). In addition there are the fields Ψ±q,n with −1

2 < ±q <
3
2 and

h±n (q) =
1

8
+ n

∣∣∣∣q ∓ 1

2

∣∣∣∣ . (2.19)

They are obtained from fields ψ±l,m with l = |m|+ 2n− 1 and m ≈ −(k + 2)
(
q ∓ 1

2

)
.

2.3 Fields and correlators

We now want to become more precise about how the limit of the fields is taken. We focus

here on the Neveu-Schwarz sector, the construction in the Ramond sector is analogous.

For the fields Φq,n with 0 < |q| < 1 we proceed as follows. We first define averaged

fields,

Φε,k
q,n =

1

|N(q, ε, k)|
∑

m∈N(q,ε,k)
l=|m|+2n

φl,m , (2.20)

where the set N(q, ε, k) contains all labels m such that the corresponding charge qm is close

to q, more precisely

N(q, ε, k) =

{
m

∣∣∣∣q − ε

2
< − m

k + 2
< q +

ε

2

}
. (2.21)

The cardinality of the set is

|N(q, ε, k)| = ε(k + 2) +O(1) . (2.22)

We assume that ε is small enough such that |q| ± ε
2 is still between 0 and 1.
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Figure 1. Behaviour of the spectrum of primary fields in the Neveu-Schwarz sector for large levels

k: when one plots the values of the conformal weight h and of the U(1) charge q as dots in the

h-q-plane, one observes that the points assemble along straight lines starting from the origin. Notice

that we only plotted the points corresponding to positive charge q (the negative charged part is

just the mirror picture) and we truncated the conformal weights by h ≤ 3.

The correlator of fields in the limit theory is then defined as

〈Φq1,n1(z1, z̄1) · · ·Φqr,nr(zr, z̄r)〉 = lim
ε→0

lim
k→∞

β(k)2α(k)r〈Φε,k
q1,n1

(z1, z̄1) · · ·Φε,k
qr,nr(zr, z̄r)〉 ,

(2.23)

where β(k)2 is a factor that can be used to change the normalisation of the correlator in

the limit (which corresponds to a rescaling of the vacuum by a factor β(k)), while α(k) is

a factor that is used to change the normalisation of the fields while taking the limit.3 The

k-dependence of α and β are determined such that we obtain finite correlators in the limit.

Obviously we need at least two correlators with a different number of fields to determine

the k-dependence of both factors α and β.

3We could allow α to depend also on the field labels q, n, but it will turn out that this is not necessary.
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Let us now analyse the two-point function. We normalise the fields in the minimal

models such that

〈φl1,m1(z1)φl2,m2(z2)〉 = δl1,l2δm1,−m2

1

|z1 − z2|4hl1,m1

. (2.24)

The two-point function in the limit theory then becomes

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)〉 = lim
ε→0

lim
k→∞

α(k)2β(k)2〈Φε,k
q1,n1

(z1, z̄1)Φε,k
q2,n2

(z2, z̄2)〉 (2.25)

= lim
ε→0

lim
k→∞

α(k)2β(k)2

ε2(k + 2)2

∑
m∈N(q1,ε,k)∩N(−q2,ε,k)

δn1,n2

|z1 − z2|4h|m|+2n1,m
.

(2.26)

The conformal weight h|m|+2n1,m approaches hn1(q1) = (2n1 +1)|q1|/2 in the limit, and the

sum over m can be replaced by the cardinality of the overlap,

|N(q1, ε, k) ∩N(−q2, ε, k)| = (k + 2)(ε− |q1 + q2|)θ(ε− |q1 + q2|) +O(1) , (2.27)

where θ(x) is the Heaviside function being 1 for positive x, and 0 otherwise. In the limit

ε→ 0 we obtain a δ-distribution,

ε− |x|
ε2

θ(ε− |x|) → δ(x) . (2.28)

With the choice

α(k)β(k) =
√
k + 2 (2.29)

to absorb the k-dependent pre-factor, we find the two-point function in a standard nor-

malisation,

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)〉 = δn1,n2δ(q1 + q2)
1

|z1 − z2|4hn1 (q1)
. (2.30)

Let us conclude by briefly discussing the limit procedure. One might worry that the

outcome depends on the precise ε-prescription of the limits of correlators. A conceptually

clearer procedure would be to directly define correlators of smeared fields,

Φn[f ](z, z̄) =

∫
dq f(q)Φq,n(z, z̄) , (2.31)

by the prescription

〈Φn1 [f1](z1, z̄1) · · ·Φnr [fr](zr, z̄r)〉 = lim
k→∞

β(k)2

(
α(k)

k + 2

)r ∑
{mi}

f1

(
− m1

k+2

)
· · · fr

(
− mr

k+2

)
× 〈φ|m1|+2n1,m1

(z1, z̄1) · · ·φ|mr|+2nr,mr(zr, z̄r)〉 . (2.32)

In this framework one would recover the correlators of the fields Φq,n by letting the test

functions fi approach delta functions. Our prescription in (2.23) corresponds to a special

choice for a family of test functions,

fi(q) =
1

ε
θ(ε/2− |q − qi|) , (2.33)

which approach δ(q− qi) in the limit ε→ 0, but the result does not depend on this choice.
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3 Three-point functions

In addition to the spectrum the three-point functions constitute the fundamental data of a

conformal field theory. In an N = 2 superconformal theory, all three-point functions can be

derived from the correlators of three (super-)primary fields together with the correlators

involving two primaries and one superdescendant field [19, 20]. In this section we will

analyse the limit of these correlators, which will also fix the normalisation factors α(k)

and β(k).

3.1 Correlators of primary fields

The correlators of three primary fields in minimal models have been determined in [19]

(they are closely related to the three-point functions of the SU(2) Wess-Zumino-Witten

model derived in [21, 22]). Similar methods allow the computation of correlators involving

superdescendants (see appendix C) that we will discuss later. The correlator of three

primary fields in the Neveu-Schwarz sector in a model with diagonal spectrum reads [19]

〈φl1,m1(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉

= C({li,mi})δm1+m2+m3,0|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) (3.1)

with

C({li,mi}) =

(
l1
2

l2
2

l3
2

m1
2

m2
2

m3
2

)2√
(l1 + 1)(l2 + 1)(l3 + 1) dl1,l2,l3 . (3.2)

Here,

(
j1 j2 j3
µ1 µ2 µ3

)
denotes the Wigner 3j-symbols, and dl1,l2,l3 is a product of Gamma

functions,

d2
l1,l2,l3 =

Γ(1 + ρ)

Γ(1− ρ)
P 2( l1+l2+l3+2

2 )

3∏
k=1

Γ(1− ρ(lk + 1))

Γ(1 + ρ(lk + 1))

P 2( l1+l2+l3−2lk
2 )

P 2(lk)
(3.3)

with

ρ =
1

k + 2
, P (l) =

l∏
j=1

Γ(1 + jρ)

Γ(1− jρ)
. (3.4)

We want to understand the limit4 of this expression when k → ∞ while the labels li
and mi grow such that the conformal weight h and the U(1) charge q stay constant. In

particular we have

li = |mi|+ 2ni and mi = −q(mi)(k + 2) , (3.5)

where ni is a fixed integer, and q(mi) lies in an ε-interval around qi, hence it stays approx-

imately constant in the limit.

The Wigner 3j-symbols enforce the condition m1 +m2 +m3 = 0 as well as li1 ≤ li2 + li3
for any permutation {i1, i2, i3} of {1, 2, 3}. For definiteness we assume now that

m1,m2 ≥ 0 , m3 = −m1 −m2 ≤ 0 . (3.6)

4In [23] a related limit of WZW models SU(2)k has been considered.
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For large |mi| the conditions on the li translate into a single condition on the ni,

l3 ≤ l1 + l2 ⇒ n3 ≤ n1 + n2 . (3.7)

When we consider the asymptotic behaviour of the three-point coefficient (3.2) for large k,

there are two parts which have to be treated carefully. One is the Wigner 3j-symbol whose

limit will be discussed in appendix A. The other is the limit of the products of Gamma

functions, where P (l) becomes an infinite product when l goes to infinity. However, the

infinite products in the numerator and denominator cancel and leave a finite product in

the limit as we will show in the following.

Firstly we look at the following ratio of products of Gamma functions,

P ( l1+l2+l3+2
2 )

P (l3)
=

∏m1+m2+n1+n2+n3+1
j=1

Γ(1+jρ)
Γ(1−jρ)∏m1+m2+2n3

j=1
Γ(1+jρ)
Γ(1−jρ)

(3.8)

=

m1+m2+n1+n2+n3+1∏
j=m1+m2+2n3+1

Γ(1 + jρ)

Γ(1− jρ)
(3.9)

=

(
Γ(1 + q(m3))

Γ(1− q(m3))

)n1+n2−n3+1 (
1 +O( 1

k )
)
. (3.10)

Similarly we have

P (−l1+l2+l3
2 )

P (l2)
=

(
Γ(1 + q(m2))

Γ(1− q(m2))

)n1+n2−n3 (
1 +O( 1

k )
)

(3.11)

P ( l1−l2+l3
2 )

P (l1)
=

(
Γ(1 + q(m1))

Γ(1− q(m1))

)n1+n2−n3 (
1 +O( 1

k )
)

(3.12)

and

P ( l1+l2−l3
2 ) = 1 +O( 1

k ) . (3.13)

In total, the coefficient dl1,l2,l3 behaves in the limit5 as

dl1,l2,l3 =

 3∏
j=1

Γ(1 + q(mj))

Γ(1− q(mj))

− 1
2

∑3
i=1 σi(2ni+1) (

1 +O( 1
k )
)
. (3.14)

Here, σi = sgn(qi) denotes the sign of the corresponding charge. In this form the expression

is valid without any assumptions on which of the charges are positive or negative.

The asymptotic behaviour of the 3j-symbols is derived in appendix A. For mi linearly

growing with k and m1,m2 ≥ 0, m3 ≤ 0, it is given by (see (A.17))(
|m1|

2 + n1
|m2|

2 + n2
|m3|

2 + n3
m1
2

m2
2

m3
2

)
= (−1)m1+n3+n2 (|m3|)−1/2 dJM ′,M (β)·(1+O( 1

k )) , (3.15)

5Note that this result can also be obtained by using the asymptotic formula for P given in (B.6).
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where dJM ′,M (β) is the Wigner d-matrix and

cosβ =
|m1| − |m2|
|m1|+ |m2|

, J =
n1 + n2

2
, M ′ = −n1 + n2

2
+ n3 , M =

n1 + n2

2
− n2 . (3.16)

Putting everything together, the three-point coefficient C({li,mi}) given in (3.2) has

the limiting behaviour

C({li,mi}) ∼ (k + 2)1/2C({q(mi), ni}) , (3.17)

where C is a smooth function of the charges qi. For q1, q2 < 0 and q3 > 0 it is given by

C({qi, ni}) =

(
|q1q2|
|q3|

)1/2

(dJM ′,M (β))2

 3∏
j=1

Γ(1 + qj)

Γ(1− qj)

n1+n2−n3+ 1
2

, (3.18)

with cosβ = |q1|−|q2|
|q1|+|q2| and J,M,M ′ given in (3.16). Notice that C in this case is non-zero

only for n1 + n2 ≥ n3.

Now we are ready to work out the limit of the 3-point function. By definition it is

given by

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)Φq3,n3(z3, z̄3)〉
= lim

ε→0
lim
k→∞

β(k)2α(k)3〈Φε,k
q1,n1

(z1, z̄1)Φε,k
q2,n2

(z2, z̄2)Φε,k
q3,n3

(z3, z̄3)〉 (3.19)

= lim
ε→0

lim
k→∞

β(k)2α(k)3

ε3(k + 2)3

∑
{mi∈N(qi,ε,k)}

C({|mi|+ ni,mi})δm1+m2+m3,0

× |z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) . (3.20)

We already determined the limit of the three-point coefficient, so it only remains to deter-

mine the factor that originates from the summation over the labels mi, i.e. the cardinality

of the set

N123 = {(m1,m2,m3) ∈ N(q1, ε, k)×N(q2, ε, k)×N(q3, ε, k) : m1 +m2 +m3 = 0} . (3.21)

It is given by

|N123| = (k + 2)2ε2f(1
ε

∑
i qi) +O(k + 2) , (3.22)

where the function f is defined as

f(x) =



0 for x< −3
2

1
2(x+ 3

2)2 for −3
2 <x< −

1
2

3
4 − x

2 for −1
2 <x<

1
2

1
2(x− 3

2)2 for 1
2 <x<

3
2

0 for 3
2 <x .

(3.23)

The function f is displayed in figure 2, it has the property∫
dx f(x) = 1 . (3.24)
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Figure 2. An illustration of the function f defined in (3.23).

When we finally take the limit, we observe that the function f leads to a delta distri-

bution for the sum of the charges,

1

ε
f(1

ε

∑
i qi)→ δ(

∑
i qi) . (3.25)

Using the condition (2.29) we can absorb the remaining k-dependence by setting

α(k) = (k + 2)−1/2 , β(k) = (k + 2) . (3.26)

The total result is then

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)Φq3,n3(z3, z̄3)〉

= C({qi, ni})δ(
∑

i qi)|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) (3.27)

with C given in (3.18).

3.2 Correlators involving superdescendants

Now we want to show that also the three-point function of two primaries and one superde-

scendant (which corresponds to the odd fusion channel [19]) has a well-defined limit. We

will limit ourselves to the case of a superdescendant obtained by acting with G+, the dis-

cussion for G−-descendants is analogous. As derived in appendix C such a correlator is
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given by (see (C.23))

〈(Ḡ+
− 1

2

G+
− 1

2

φl1,m1)(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉

=
k + 2

2(n1 + 1)(l1 − n1)

(
l2+m2

2
l1−m1

2 + 1

)(
l1+l2−m1−m2

2 + 1
l1−m1

2 + 1

)(
l1

l1−m1
2 + 1

)−1

×

(
k−l1

2
l2
2

l3
2

−k−l1
2

m1+m2−l1
2 − 1 m3

2

)2√
(k − l1 + 1)(l2 + 1)(l3 + 1) dk−l1,l2,l3

× |z12|2(hl3,m3
−(hl1,m1

+1/2)−hl2,m2
)|z23|2((hl1,m1

+1/2)−hl2,m2
−hl3,m3

)

× |z13|2(hl2,m2
−(hl1,m1

+1/2)−hl3,m3
) , (3.28)

where li ≥ |mi| and we assume that m1,m2 > 0 and m3 < 0.

To determine the limit we first simplify the prefactor (that we call A) in (3.28) by

expressing the 3j-symbol with the help of (A.5),

A =
k + 2

2(n1 + 1)(l1 − n1)

(
l2+m2

2
l1−m1

2 + 1

)(
l1+l2−m1−m2

2 + 1
l1−m1

2 + 1

)(
l1

l1−m1
2 + 1

)−1

×

(
k−l1

2
l2
2

l3
2

−k−l1
2

m1+m2−l1
2 − 1 m3

2

)2

=
k + 2

2(n1 + 1)(l1 − n1)

( l1+m1
2 − 1)!

l1!( l1−m1
2 + 1)!

×
(−k+l1+l2+l3

2 )!( l3+m3
2 )!( l2+m2

2 )!(k − l1)!

(k−l1+l2+l3
2 + 1)!(k−l1−l2+l3

2 )!(k−l1+l2−l3
2 )!( l3−m3

2 )!( l2−m2
2 )!

. (3.29)

In the limit we set li = |mi|+ 2ni where the ni are kept constant, and the mi are sent to

infinity growing linearly in k. By using (A.11) we get

A =
k + 2

2(n1 + 1)(m1 + n1)

n3!

(n1 + 1)!(n2)!(−n1 − n2 + n3 − 1)!

× (m1 + n1 − 1)!(k −m1 − 2n1)!(m2 + n2)!(−m3 + n1 + n2 + n3 + 1)!

(m1 + 2n1)!(k −m1 − n1 + n2 − n3 + 1)!(m2 − n1 + n2 + n3)!(−m3 + n3)!

=
1

2(k + 2)(n1 + 1)

n3!

(n1 + 1)!n2!(−n1 − n2 + n3 − 1)!

× |q1|−n1−2|1 + q1|−n1−n2+n3−1|q2|n1−n3 |q3|n1+n2+1
(
1 +O( 1

k )
)
, (3.30)

where qi = − mi
k+2 is kept fixed in the limit. By similar arguments as before we can evaluate

the asymptotic form of dk−l1,l2,l3 to be

dk−l1,l2,l3 =

(
Γ(1 + |1 + q1|)Γ(1− |q2|)Γ(1 + |q3|)
Γ(1− |1 + q1|)Γ(1 + |q2|)Γ(1− |q3|)

)n1+n2−n3+ 1
2

·
(

1 +O( 1
k+2)

)
. (3.31)

– 12 –



J
H
E
P
1
0
(
2
0
1
2
)
1
4
1

The final result for the three-point correlator of two primaries and one superdescendant in

the limit theory is then given by

〈(G+
− 1

2

Ḡ+
− 1

2

Φq1,n1)(z1, z̄1)Φq2,n2(z2, z̄2)Φq3,n3(z3, z̄3)〉 =

=
1

2(n1 + 1)

n3!

(n1 + 1)!n2!(n3 − n1 − n2 − 1)!
|1 + q1|−n1+n2+n3− 1

2 |q2|n1−n3+ 1
2 |q3|n1+n2+ 3

2

× |q1|−n1−2

(
Γ(1 + |1 + q1|)Γ(1− |q2|)Γ(1 + |q3|)
Γ(1− |1 + q1|)Γ(1 + |q2|)Γ(1− |q3|)

)n1+n2−n3+ 1
2

× δ(1 + q1 + q2 + q3)|z12|2(h3−h1− 1
2
−h2)|z13|2(h2−h1− 1

2
−h3)|z23|2(h1+ 1

2
−h2−h3) , (3.32)

where we assumed that q1, q2 < 0 and q3 > 0. The generalisation to other cases is straight-

forward. As in a superconformal theory all three-point functions are determined if the

three-point correlators of three primaries and the correlators of two primaries and one su-

perdescendant are given, this result shows that all three-point functions of the limit theory

are well defined.

4 Boundary conditions and one-point functions

In this section we investigate the limit of bulk one-point functions on the upper half plane.

In the minimal models there are two types of maximally symmetric boundary conditions,

called A-type and B-type [24]. In a diagonal model, only chargeless fields can couple to

B-type boundary conditions, so that we do not find any B-type boundary conditions in

the limit theory. On the other hand we will discover two families of A-type boundary

conditions in the limit.

The A-type boundary conditions are labelled by the same labels as the representations

of the bosonic subalgebra of the superconformal algebra, (L,M,S), where L is an integer

satisfying 0 ≤ L ≤ k, M is a (2k + 4)-periodic integer, and S is a 4-periodic integer such

that L+M + S is even. Labels are identified according to (2.3).

Boundary states |L,M,S〉 are given by linear combinations of Ishibashi states [24],

|L,M,S〉 =
∑

(l,m,s)

S(L,M,S)(l,m,s)√
S(0,0,0)(l,m,s)

|l,m, s〉〉 , (4.1)

where S is the modular S-matrix of the N = 2 superconformal algebra,

S(L,M,S)(l,m,s) =
1

k + 2
sin

π(l + 1)(L+ 1)

k + 2
e−πi(

sS
2
−mM
k+2

) . (4.2)

The coefficients of the boundary states determine the bulk one-point functions on the

upper half plane with boundary condition α = (L,M,S) on the real axis. For a primary

field φl,m it is given by

〈φl,m(z, z̄)〉(L,M,S) =
S(L,M,S)(l,m,0)√
S(0,0,0)(l,m,0)

|z − z|−2hl,m . (4.3)
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Writing out the one-point function we get

〈φl,m(z, z̄)〉(L,M,S) = (k + 2)−1/2
sin π(l+1)(L+1)

k+2√
sin π(l+1)

k+2

eπi
mM
k+2 |z − z|−2hl,m . (4.4)

When we take the limit k → ∞ we have some freedom of what to do with the boundary

labels. There are two natural choices: either we keep the boundary labels constant in the

limit, or we scale them in the same way as we scale the field labels. Both lead to sensible

expressions as we will see shortly.

4.1 Discrete boundary conditions

First we will take the limit such that the boundary labels are kept fixed. The one-point

function in the limit is then

〈Φq,n(z, z̄)〉(L,M,S) =

= lim
ε→0

lim
k→∞

α(k)β(k)〈Φε,k
q,n(z, z̄)〉(L,M,S)

= lim
ε→0

lim
k→∞

α(k)β(k)

ε(k + 2)
3
2

∑
m∈N(q,ε,k)

sin π(|m|+2n+1)(L+1)
k+2√

sin π(|m|+2n+1)
k+2

eπi
mM
k+2 |z − z|−2h|m|+2n,m

=
sin(π|q|(L+ 1))√

sin(π|q|)
e−πiqM |z − z|−2hn(q) . (4.5)

For the Ramond fields one finds

〈Ψ0
q(z, z̄)〉(L,M,S) =

sin(π|12 − q|(L+ 1))√
sin(π|12 − q|)

eπi(
1
2
−q)Me−πi

S
2 |z − z|−1/4 (4.6)

〈Ψ±q,n(z, z̄)〉(L,M,S) =
sin(π|12 ∓ q|(L+ 1))√

sin(π|12 ∓ q|)
eπi(±

1
2
−q)Me∓πi

S
2 |z − z|−2h±n (q) . (4.7)

These boundary conditions are not independent. Using the trigonometric identity

sin (π|q|(L+ 1)) = sin (π|q|)
L∑
j=0

eiπq(L−2j) , (4.8)

we see that

〈 · 〉(L,M,S) =
L∑
j=0

〈 · 〉(0,M+L−2j,S) . (4.9)

All boundary conditions are therefore superpositions of boundary conditions with L = 0,

and the elementary boundary conditions are (0,M, S). This can be compared to the

situation in minimal models before taking the limit, where all boundary conditions can

be obtained by boundary renormalisation group flows from superpositions of those with

L = 0 [24, 25]. These flows become shorter when the level k grows, and in the limit the

boundary conditions can be identified.
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4.2 Continuous boundary conditions

Now we will scale the boundary labels in the same way as we did for the field labels. We

introduce a continuous parameter Q, 0 < |Q| < 1, and a discrete parameter N ∈ N0,

and instead of considering fixed boundary labels in the limit, we consider a sequence of

boundary conditions Bk(Q,N) of the form

Bk(Q,N) = (|b−Q(k + 2)c|+ 2N, b−Q(k + 2)c, 0) , (4.10)

where bxc denotes the greatest integer smaller or equal to x. The one-point function in the

limit is then

〈Φq,n(z, z̄)〉(Q,N) = lim
ε→0

lim
k→∞

α(k)β(k)〈Φε,k
q,n(z, z̄)〉Bk(Q,N) (4.11)

= lim
ε→0

lim
k→∞

α(k)β(k)

ε(k + 2)
3
2

∑
m∈N(q,ε,k)

sin π(|m|+2n+1)(|b−Q(k+2)c|+2N+1)
k+2√

sin π(|m|+2n+1)
k+2

× eπi
mb−Q(k+2)c

k+2 |z − z|−2h|m|+2n,m . (4.12)

We observe that the arguments of the sine function in the numerator and of the exponential

diverge when k is sent to infinity, so that we get strongly oscillating expressions. Their

combination behaves as

2i sin
π(|m|+ 2n+ 1)(|b−Q(k + 2)c|+ 2N + 1)

k + 2
eπi

mb−Q(k+2)c
k+2

∼
(
ei
π|m||b−Q(k+2)c|

k+2 ei
π[|m|(2N+1)+(2n+1)|b−Q(k+2)c|]

k+2 −e−i
π|m||b−Q(k+2)c|

k+2 e−i
π[|m|(2N+1)+(2n+1)|b−Q(k+2)c|]

k+2

)
× ei

πmb−Q(k+2)c
k+2 (4.13)

∼


(
e2i

π|m||b−Q(k+2)c|
k+2 eiπ[|q|(2N+1)+(2n+1)|Q|] − e−iπ[|q|(2N+1)+(2n+1)|Q|]

)
for qQ > 0(

eiπ[|q|(2N+1)+(2n+1)|Q|] − e−2i
π|m||b−Q(k+2)c|

k+2 e−iπ[|q|(2N+1)+(2n+1)|Q|]
)

for qQ < 0 .

(4.14)

Upon taking the average over m the strongly oscillating term is suppressed, and in the

limit only the other term survives. The final result is therefore

〈Φq,n(z, z̄)〉(Q,N) =
1

2i
√

sin(π|q|)
|z − z̄|−2hn(q) ×

{
−e−iπ[|q|(2N+1)+(2n+1)|Q|] for qQ > 0

eiπ[|q|(2N+1)+(2n+1)|Q|] for qQ < 0 .

(4.15)

Similarly, in the Ramond sector we find

〈Ψ0
q(z, z̄)〉(Q,N) =

e−πi
S
2

2i
√

sin(π|12 − q|)
|z − z̄|−1/4 ×

−e
−iπ| 1

2
−q|(2N+1) for Q > 0

eiπ|
1
2
−q|(2N+1) for Q < 0

(4.16)

〈Ψ±q,n(z, z̄)〉(Q,N) =
e∓πi

S
2 |z − z̄|−2h±n (q)

2i
√

sin(π|q ∓ 1
2 |)

×

−e
−iπ[|q∓ 1

2
|(2N+1)+2n|Q|] for (q ∓ 1

2)Q > 0

eiπ[|q∓ 1
2
|(2N+1)+2n|Q|] for (q ∓ 1

2)Q < 0 .

(4.17)
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5 Fields of charge zero

When we consider the limit of the spectrum (see figure 1), we observe that there are

also fields of charge zero in the minimal model, which do not contribute to the averaged

fields Φq,n. This raises the question whether we can define another class of fields in the

limit theory that arises from chargeless fields in the minimal model.

Following our general strategy of defining fields in the limit theory leads to an ansatz

for chargeless fields which does not seem to give a sensible result. Therefore we will follow

a different ansatz in section 5.2. The latter one appears to give a sensible class of fields

which however is decoupled from the fields Φq,n.

5.1 First ansatz: average of approximately chargeless fields

In the spirit of our general construction, we should try to define possible chargeless fields

by averaging over fields that approximate a given conformal weight h and a U(1) charge

q = 0 in the limit. In contrast to our analysis in section 2 the label m now has to stay

small compared to k, so that we do not need a strong fine-tuning in the growth of l and

m to get a finite weight h (recall that the difference l− |m| = 2n stays finite in that case).

Instead both terms in the formula (2.8) for the weight hl,m,0, the one depending on l and

the one depending on m contribute to the weight on an equal footing. Therefore we are

led to introduce labels y, p, µ such that

h =
y2

4
, l = p

√
k + 2 , m = v

√
k + 2 . (5.1)

For large quantum numbers l we then get the relation

y2 = p2 − v2 . (5.2)

The condition that the charge q = − m
k+2 is close to zero, |q| < ε/2, translates into a

condition on v,

|v| < 1

2
ε
√
k + 2 . (5.3)

We define the set of labels N̂(y, δ, ε, k) that correspond to fields with charge approximately

zero, and conformal weight close to y2/4,

N̂(y, δ, ε, k) =
{

(l,m)||m| ≤ l, |m| < ε
2(k + 2), |y − 2

√
hl,m| < δ

2

}
(5.4)

=
{

(l,m)||m| ≤ l, |v| < ε
2

√
k + 2, |y −

√
p2 − v2| < δ

2

}
. (5.5)

The cardinality of N̂ for large level is given by

|N̂(y, δ, ε, k)| = (k + 2)yδ log
ε2(k + 2)

y2
(1 +O(δ)) +O(log(k + 2)) , (5.6)

where in the leading term in (k + 2) we only stated the linear term in δ.

This suggests to define the averaged fields

Φ̂δ,ε,k
y :=

1

|N̂(y, δ, ε, k)|

∑
(l,m)∈N̂(y,δ,ε,k)

φl,m . (5.7)
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Introducing a normalisation factor α̂(y, k), we obtain the two-point function for the limit

fields Φ̂y,

〈Φ̂y1(z1, z̄1)Φ̂y2(z2, z̄2)〉

= lim
ε,δ→0

lim
k→∞

α̂(y1, k)α̂(y2, k)β(k)2

|N̂(y1, δ, ε, k)||N̂(y2, δ, ε, k)|

∑
(li,mi)∈N̂(yi,δ,ε,k)

δl1,l2δm1,−m2

|z1 − z2|4hl1,m1

(5.8)

=
δ(y1 − y2)

|z1 − z2|y
2
1

, (5.9)

for α̂(y, k) =
√
y log(k+2)

k+2 . We observe that in contrast to the analysis in section 2 the

normalisation factor α̂ now depends on the field label.

This is only the first oddity of this construction. The main problem of this ansatz

is that the fields Φ̂y come out as an average over fields with different values of p and v,

whereas the correlators heavily depend on p and v, so that the fields over which we average

do not tend to have a similar behaviour in the limit. This is against the spirit of the limiting

procedure because we only want to combine fields that have similar behaviour. One can

now explicitly check that correlators involving these fields do not have a well-defined limit.

For example one can easily check that the one-point function of Φ̂y diverges for the (0, 0, 0)

boundary condition.

All in all, these results suggest that our ansatz for Φ̂ does not lead to a sensible field

in the limit theory. On the other hand, the failure mainly resulted from the attempt to

average over fields that do not behave similarly in the limit. Instead we will now try to

define fields where we keep the quantum number m = 0 fixed in the limit. These fields tend

to behave much better in the limit, although they decouple from the charged fields Φq,n.

Their behaviour seems to point towards the existence of another consistent limit theory

that is decoupled from the one that we discussed before. This will be further explored

in [26].

5.2 Second ansatz starting from exactly chargeless fields

Again we introduce a label p > 0 such that h = p2

4 . For fields φl,0 that approach a conformal

weight h the label l behaves as

l = p
√
k + 2− 1 +O(1/k1/2) , (5.10)

it grows with the square root of k. In addition to the spectrum concentrated on lines of

slope (2n + 1) that we found in section 2, we thus can try to define another continuous

class of fields Φ̃p that have U(1)-charge 0 and conformal weight h(p) = p2/4.

Similarly we set up fields Ψ̃±p in the Ramond sector with q = ±1
2 and h = 1

8 + p2

4 . They

arise from fields ψ±l,0 with l ≈ p
√
k + 2.

We now want to analyse correlators of the fields Φ̃p of zero charge in the limit theory.

As we have seen in (5.10), those fields have to be defined in terms of minimal model fields

φl,0, where the label l grows with the square root of k+2. We introduce the averaged fields

Φ̃ε,k
p =

1∣∣∣Ñ(p, ε, k)
∣∣∣

∑
l∈Ñ(p,ε,k)

φl,0 . (5.11)
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The set Ñ(p, ε, k) contains those labels l such that the corresponding conformal weight is

close to h(p) = p2/4,

Ñ(p, ε, k) =

{
l : p− ε

2
<

l√
k + 2

< p+
ε

2

}
. (5.12)

For large k its cardinality is ∣∣∣Ñ(p, ε, k)
∣∣∣ = ε

√
k + 2 +O(1) . (5.13)

Here we assumed p > 0 and ε small enough such that p− ε
2 > 0.

The two-point function of such fields in the limit theory is then

〈Φ̃p1(z1, z̄1)Φ̃p2(z2, z̄2)〉 = lim
ε→0

lim
k→∞

α̃(k)2β(k)2〈Φ̃ε,k
p1 (z1, z̄1)Φ̃ε,k

p2 (z2, z̄2)〉 (5.14)

= lim
ε→0

lim
k→∞

α̃(k)2β(k)2

ε2(k + 2)

∑
l∈Ñ(p1,ε,k)∩Ñ(p2,ε,k)

1

|z1 − z2|4hl,0
. (5.15)

We introduced a new normalisation factor α̃(k) for the charge zero fields. The conformal

weight hl,0 approaches h(p1) = p2
1/4, and the sum can be replaced by the cardinality of the

overlap,∣∣∣Ñ(p1, ε, k) ∩ Ñ(p2, ε, k)
∣∣∣ =
√
k + 2(ε− |p1 − p2|)θ(ε− |p1 − p2|) +O(1) . (5.16)

By using (2.28) and choosing

α̃(k)β(k) = (k + 2)1/4 , (5.17)

we finally obtain 〈
Φ̃p1(z1, z̄1)Φ̃p2(z2, z̄2)

〉
= δ(p1 − p2)

1

|z1 − z2|4h(p1)
. (5.18)

A similar analysis can be done for the Ramond fields.

5.3 Boundary conditions

The one-point functions of the fields Φ̃p are zero for the discrete class of boundary conditions

that we analysed before. For the continuous class the one-point functions oscillate strongly

with the label l, and after averaging they tend to zero as well. The construction of the

chargeless fields however also suggests another way of defining boundary conditions in the

limit theory. Namely we can scale the boundary labels in analogy to the charge zero

fields Φ̃,

B̃k(P ) = (b
√
k + 2P c, 0, 0) . (5.19)

For such boundary conditions we find trivial one-point functions for the fields Φq,n,

〈Φq,n(z, z̄)〉P = 0 , (5.20)
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but a non-trivial result for the fields Φ̃p,

〈Φ̃p(z, z̄)〉P =
sin(πpP )
√
πp

|z − z̄|−2h . (5.21)

Similarly we find in the Ramond sector

〈Ψ0
q,n〉P = 0 = 〈Ψ±q,n〉 , (5.22)

and 〈
Ψ̃±p

〉
P

=
sin(πpP )
√
πp

. (5.23)

These positive results are encouraging to continue the analysis of the fields Φ̃p.

We can also check whether we can define sensible B-type boundary conditions. They

only couple to fields with opposite left- and right-moving U(1) charges. As we are consid-

ering a diagonal theory with equal left- and right-moving quantum numbers, only fields of

charge zero can couple to a B-type boundary condition in our case. In the minimal models

the B-type boundary conditions [24] are labelled only by two labels L, S, where 0 ≤ L ≤ k
and S is identified modulo 2. The boundary states are built from the B-type Ishibashi

states by

|L, S〉 =
∑
l

(2k + 4)1/2 S(L,0,0)(l,0,0)√
S(L,0,0)(l,0,0)

(−1)l/2
(
|l, 0, 0〉〉B + e−iπS |l, 0, 2〉〉B

)
. (5.24)

In particular this means that we have the one-point functions

〈φl,m(z, z̄)〉(L,S) =
√

2
sin π(l+1)(L+1)

k+2√
sin π(l+1)

k+2

(−1)l/2 δm,0|z − z|−2hl,0 . (5.25)

Keeping the boundary label fixed while taking the limit, the one-point function vanishes

because of the oscillating sign (−1)l/2. On the other hand, if we redefined the fields φl,0 by

the factor (−1)l/2, we would obtain modified fields Φ̃
(mod)
p in the limit theory with finite

one-point functions

〈Φ̃(mod)
p (z, z̄)〉(L,S) =

√
2πp (L+ 1)|z − z̄|−2h . (5.26)

Obviously, we have the relation

〈 · 〉(L,S) = (L+ 1)〈 · 〉(0,S) , (5.27)

which means that all boundary conditions are just superpositions of the one with L = 0.

Again this reflects the fact that in the minimal models all B-type boundary conditions can

be obtained by a boundary renormalisation group flow from superpositions of boundary

conditions with L = 0 [27].

At this point it is hard to decide which of the fields, Φ̃p or Φ̃
(mod)
p , is the better defi-

nition. Φ̃
(mod)
p has a non-trivial one-point function for B-type boundary conditions, on the

other hand its one-point function in the presence of the A-type boundary conditions (5.19)

labelled by P vanishes due to the oscillating sign.
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5.4 Three-point functions

We now want to determine the three-point correlation functions involving the fields Φ̃p,

which have charge zero. Due to charge conservation the correlator
〈

ΦΦ̃Φ̃
〉

is manifestly

zero, so we only have to consider the combinations
〈

ΦΦΦ̃
〉

and
〈

Φ̃Φ̃Φ̃
〉

.

Let us start with the mixed correlator. We have

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)Φ̃p(z3, z̄3)〉
= lim

ε→0
lim
k→∞

β(k)2α(k)2α̃(k)〈Φε,k
q1,n1

(z1, z̄1)Φε,k
q2,n2

(z2, z̄2)Φ̃ε,k
p (z3, z̄3)〉 (5.28)

= lim
ε→0

lim
k→∞

β(k)2α(k)2α̃(k)

ε3(k + 2)5/2

∑
{mi∈N(qi,ε,k))}

∑
l∈Ñ(p,ε,k)

δm1+m2,0

× C(|m1|+ 2n1,m1; |m1|+ 2n2,−m1; l, 0)

× |z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) . (5.29)

Let us assume that q1 < 0 such that m1 > 0 and m2 = −m1 < 0. To continue we have to

determine the asymptotic behaviour of the three-point coefficient

C(|m1|+ 2n1,m1; |m1|+ 2n2,−m1; l, 0) =

(
m1
2 + n1

m1
2 + n2

l
2

m1
2 −m1

2 0

)2

×
√

(|m1|+ 2n1 + 1)(|m2|+ 2n2 + 1)(l + 1) dm1+2n1,m1+2n2,l . (5.30)

The coefficient dm1+2n1,m1+2n2,l behaves as

dm1+2n1,m1+2n2,l =
Γ(1 + ρ)

Γ(1− ρ)
P 2(m1 + n1 + n2 + l

2 + 1)

× Γ(1− ρ(m1 + 2n1 + 1))Γ(1− ρ(m1 + 2n2 + 1))Γ(1− ρ(l + 1))

Γ(1 + ρ(m1 + 2n1 + 1))Γ(1 + ρ(m1 + 2n2 + 1))Γ(1 + ρ(l + 1))

×
P 2(−n1 + n2 + l

2)P 2(n1 − n2 + l
2)P 2(m1 + n1 + n2 − l

2)

P 2(m1 + 2n1)P 2(m1 + 2n2)P 2(l)
. (5.31)

For the asymptotics of the functions P we use the result of appendix B. From (B.6) we get

P (m1 + n1 + n2 + l
2 + 1)P (m1 + n1 + n2 − l

2)

P (m1 + 2n1)P (m1 + 2n2)
→ Γ(1 + |q1|)

Γ(1− |q1|)
e

1
4
p2(ψ(1+|q1|)+ψ(1−|q1|)) ,

(5.32)

where ψ(x) = Γ′(x)
Γ(x) is the Digamma function. Similarly

P (−n1 + n2 + l
2)P (n1 − n2 + l

2)

P (l)
→ exp

(
p2γ

2

)
, (5.33)

where γ = ψ(1) denotes the Euler-Mascheroni constant. The coefficient dm1+2n1,m1+2n2,l

thus has the limit

dm1+2n1,m1+2n2,l → e
1
2
p2(2γ+ψ(1+|q1|)+ψ(1−|q1|)) . (5.34)
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The 3j-symbol behaves as (see (A.23) in appendix A)(
m1
2 + n1

m1
2 + n2

l
2

m1
2 −m1

2 0

)2

=
(n1!n2!)−1

|m1|

(
4|q1|
p2

)−(n1+n2) [
2F0

(
−n1,−n2;−4|q1|

p2

)]2

×
(

1 +O(k−1/2)
)
. (5.35)

In total the three-point coefficient C has the behaviour

C(|m1|+ 2n1,m1; |m1|+ 2n2,−m1; l, 0) ∼ (k + 2)1/4C1(q1, n1, n2, p) (5.36)

with the regular function C1 given by

C1(q1, n1, n2, p) = e
1
2
p2(2γ+ψ(1+|q1|)+ψ(1−|q1|)) (n1!n2!)−1 p

1
2

(
4|q1|
p2

)−(n1+n2)

×
[

2F0

(
−n1,−n2;−4|q1|

p2

)]2

. (5.37)

We finally arrive at the following expression for the three point function:

〈Φq1,n1(z1, z̄1)Φq2,n2(z2, z̄2)Φ̃p(z3, z̄3)〉 = lim
k→∞

β(k)2α(k)2α̃(k)

(k + 2)3/4

× δ(q1 + q2)C1(q1, n1, n2, p)|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) . (5.38)

This three-point function encodes the coupling between two fields Φ and one field Φ̃. It

still contains the normalisation factors. The factor in front can be evaluated as

β(k)2α(k)2α̃(k)

(k + 2)3/4
= (k + 2)−1/2 . (5.39)

The correlator is therefore suppressed, and fields Φ̃p cannot appear in the operator product

expansion of two fields Φqi,ni . Hence, the fields Φ̃p decouple from the fields Φq,n. Had we

instead used the modified fields Φ̃
(mod)
p that we introduced before eq. (5.26), we would have

encountered an additional suppression from the oscillating factor (−1)l/2.

Next we look at the correlator involving only Φ̃. We find〈
Φ̃p1(z1, z̄1)Φ̃p2(z2, z̄2)Φ̃p3(z3, z̄3)

〉
= lim

ε→0
lim
k→∞

β(k)2α̃(k)3
〈

Φ̃ε,k
p1 (z1, z̄1)Φ̃ε,k

p2 (z2, z̄2)Φ̃ε,k
p3 (z3, z̄3)

〉
(5.40)

= lim
ε→0

lim
k→∞

β(k)2α̃(k)3

ε3(k + 2)5/2

∑
{li∈Ñ(pi,ε,k)}

C({li, 0})

× |z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) . (5.41)

The three-point coefficient C is given by

C({li, 0}) =

(
l1
2

l2
2

l3
2

0 0 0

)2√
(l1 + 1)(l2 + 1)(l3 + 1)dl1,l2,l3 . (5.42)
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Using the asymptotic formula (B.6) for the function P that occurs in the coefficients d, we

find

dl1,l2,l3 → 1 . (5.43)

The average6 of the square of the 3j-symbol behaves as (see (A.27))

(
l1/2 l2/2 l3/2

0 0 0

)2

av

∼ (k + 2)−1 4

π

× ((p1 + p2 + p3)(−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3))−1/2 . (5.44)

Notice that the 3j-symbol vanishes if the argument of the square root becomes negative.

In total the three-point coefficient C becomes

C({li, 0}) ∼ (k + 2)−1/4C2({pi}) , (5.45)

with C2 given by

C2({pi}) =
4

π

(
p1p2p3

(p1 + p2 + p3)(−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3)

) 1
2

. (5.46)

The limit of the three-point function is

〈
Φ̃p1(z1, z̄1)Φ̃p2(z2, z̄2)Φ̃p3(z3, z̄3)

〉
= lim

k→∞

β(k)2α̃(k)3

(k + 2)1/4

× C2({pi})|z12|2(h3−h1−h2)|z13|2(h2−h1−h3)|z23|2(h1−h2−h3) . (5.47)

Again we encounter a problem with the global factor that is given by

β(k)2α̃(k)3

(k + 2)1/4
= (k + 2)−1/2 , (5.48)

so that also this three-point function is suppressed. Note that we would have obtained the

same result for the modified fields Φ̃
(mod)
p that we introduced before eq. (5.26), because the

3j-symbol involved is non-zero only for l1 + l2 + l3 even, so that the sign (−1)l1+l2+l3 that

appears in the computation of the correlator of the three fields Φ̃
(mod)
p is trivial.

How should we interpret these results? The vanishing of the three-point function

〈Φ̃ΦΦ〉 tells us that the fields Φ̃ and Φ decouple — in the operator product expansion

(OPE) of two fields Φ there will never appear a field Φ̃, and on the other hand in the OPE

of two fields Φ̃ there will never be a field Φ because of charge conservation. This means

that there might be two different limiting theories, one involving the fields Φ and one that

includes the fields Φ̃. If this is true, then we can use a different normalisation factor β for

the vacuum in the theory of the fields Φ̃, thus rendering the three-point function 〈Φ̃Φ̃Φ̃〉
finite. This will be further explored in [26].

6Note that the 3j-symbol in question oscillates rapidly if one varies the li. Due to the summation over

the li we can insert the average value of the 3j-symbol squared.
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6 Conclusions

In this article we have analysed the limit of N = (2, 2) minimal models at central charge

c = 3. In the Neveu-Schwarz sector we have identified fields Φq,n that are labelled by their

non-zero U(1) charge q (0 < |q| < 1) and by a discrete label n ≥ 0. We have computed the

three-point functions of such fields by taking an appropriate limit of the correlators in the

minimal models. We have also identified boundary conditions in the limit theory that lead

to well-defined disc one-point functions for the fields Φq,n. Although we have not checked

crossing symmetry of the three-point functions, our results strongly suggest that the limit

theory exists as a consistent conformal field theory.

In section 5 we discussed the question whether there are additional fields of zero charge.

Our results indicate that there could be such fields Φ̃p, but they completely decouple from

the charged fields Φq,n. This points towards the existence of a second limit theory contain-

ing only chargeless fields. This second theory would arise by a different limit procedure

where in addition to the weight h the label m is kept fixed. The simplicity of the three-

point function (5.47) suggests that this second limit theory might well be the theory of two

free bosons and fermions.

It is interesting to compare the results to the less supersymmetric situations. In a recent

article [28], Gaberdiel and Suchanek argued that the limit of Virasoro minimal models at

central charge c = 1 (the Runkel-Watts theory [1]) can be understood as a continuous

orbifold of a free compact boson. A similar construction is proposed for other limit theories

that are based on families of diagonal cosets. These results suggest that such limit theories

could in general be related to free theories, and that the kind of non-rationality that one

encounters in such limits is similar to the non-rationality that arises from the existence

of a continuum of twisted sectors. Although the construction of Gaberdiel and Suchanek

cannot be applied directly to the N = 2 case, because the coset structure is different, one

might still suspect that the limit theory is related to a free orbifold. We plan to investigate

this point in a subsequent publication [26].

In less supersymmetric situations, it has turned out that the limit theories are related

to Liouville or more general conformal Toda theories. In [29, 30] it was shown that the limit

of Virasoro minimal models coincides with the c = 1 limit of Liouville theory; similarly,

the limit of N = 1 minimal models is related to N = 1 Liouville theory [3], and the limit

of Wn minimal models to SU(n) conformal Toda theories [2]. One might therefore wonder

whether the N = 2 limit theories are related to N = 2 Liouville theory (see e.g. [31]) —

or equivalently to its mirror [32, 33], the supersymmetric “cigar”. When one compares

these theories, one can observe that the so-called discrete representations in the Liouville

spectrum precisely reproduce the spectrum of our limit theory. It would be interesting to

work out this relation further.

Further clarification of the N = 2 limit theory will also come from a geometric point of

view. In [24] a sigma model interpretation of the minimal models is given, which makes it

possible to understand the limit of large levels also geometrically. This will be analysed in

a forthcoming publication [26]. Finally one might consider the limit also in the framework

of Landau-Ginzburg models, for which a similar limit has been mentioned in [34]. It would

be interesting to work this out in more detail.
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Limits of N = 2 models recently have been discussed [15, 16] in the context of a

duality of supersymmetric higher spin theories on AdS3 backgrounds and two dimensional

superconformal theories. There one does not only take the level k to infinity, but also the

label n of the coset SU(n + 1)k/U(n) (the minimal models correspond to n = 1). Taking

first k → ∞ and then n corresponds to the case of zero ’t Hooft coupling. It would be

interesting to extend our analysis also to the case of n > 1.
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A Asymptotics of 3j-symbols

We want to approximate the Wigner 3j-symbols in the limit of large quantum numbers, in

a specific range of parameters defined by the limiting procedure which is described in the

core of this paper.

A.1 Notations and preliminaries

To set up our notations, let us briefly state the definition of the Clebsch-Gordan coefficients.

A spin j representation Vj of su(2) with standard generators Ji satisfying [Ji, Jj ] = iεijkJk
has a natural basis consisting of the eigenvectors |j, µ〉 of the generator J3 with eigenvalue µ.

The tensor product of two irreducible representations can be decomposed into irreducible

representations of the diagonal subalgebra,

Vj1 ⊗ Vj2 =
⊕
j

Vj , (A.1)

where |j1− j2| ≤ j ≤ j1 + j2 and j + j1 + j2 is an integer. The Clebsch-Gordan coefficients

〈j1, µ1; j2, µ2|j1, j2, j, µ〉 (A.2)

are then given by the overlap of the two natural sets of basis vectors.

Closely related are the Wigner 3j-symbols that are defined as(
j1 j2 j3
µ1 µ2 µ3

)
:=

(−1)j1−j2−µ3√
2j3 + 1

〈j1, µ1; j2, µ2|j1, j2, j3,−µ3〉 , (A.3)

with the choice of conventions: µ3 = −µ = −µ1 − µ2.

An explicit expression was obtained by Racah in [35] (see e.g. [36, section 8.2, eq.3]),(
j1 j2 j3
µ1 µ2 µ3

)
= (−1)j1−j2−µ3

(
(j1+j2−j3)!(j1−j2+j3)!(−j1+j2+j3)!

(j1+j2+j3+1)!

)1/2

× [(j1+µ1)!(j1−µ1)!(j2+µ2)!(j2−µ2)!(j3+µ3)!(j3−µ3)!]1/2

×
∑
z

(−1)z

z!(j1+j2−j3−z)!(j1−µ1−z)!(j2+µ2−z)!(j3−j2+µ1+z)!(j3−j1−µ2+z)!
,

(A.4)
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(a) The shaded region is the projection of the

triangle formed by the classical vectors on the

x-y plane.
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(b) The blue line is a plot coming from the

Wigner estimate (A.7). The points connected

by dashed lines are the exact values of the 3j-

symbols. n ranges from 0 to 200.

Figure 3. Wigner approximation.

where the sum over z runs over all the values for which the arguments of the factorials in

the denominator are non-negative. In particular, this formula provides a simple expression

if one of the labels µi is extremal, e.g.(
j1 j2 j3
−j1 µ2 µ3

)
=

(
j3 j1 j2
µ3 −j1 µ2

)

= (−1)j3−j1−µ2
(

(−j1+j2+j3)!(j3+µ3)!(j2+µ2)!(2j1)!

(j1−j2+j3)!(j1+j2−j3)!(j3−µ3)!(j2−µ2)!(j1+j2+j3+1)!

)1
2

.

(A.5)

A.2 Wigner’s estimate

For large quantum numbers one expects the Clebsch-Gordan coefficients to be related to

the classical problem of adding angular momenta. This issue has first been discussed

by Wigner in [37]. To each quantum angular momentum specified by ji, µi we therefore

associate a vector ~J (i) of length squared | ~J (i)|2 = j(j + 1) and with specified z-component

J
(i)
z = µi. The x- and y- component are not specified. Classically such angular momenta

can be coupled to zero if they satisfy the condition ~J (1) + ~J (2) + ~J (3) = 0. If this is the

case, the triangle their projections form in the x-y-plane (see figure 3 (a)) has an area

A =
1

4

√
(λ1 + λ2 + λ3)(−λ1 + λ2 + λ3)(λ1 − λ2 + λ3)(λ1 + λ2 − λ3) , (A.6)

where λi =

√
| ~J (i)|2 − |J (i)

z |2 =
√
ji(ji + 1)− µ2

i are the lengths of the projections of ~J (i)

in the x-y-plane. The quantum numbers are then said to lie in a classically allowed region.

If there are no associated vectors that can be added to zero, they belong to a classically

forbidden region; in that case the “area” A in (A.6) is imaginary. If the projected triangle

degenerates (A = 0), they are said to be in the transition region.
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Wigner gave an estimate of the averaged semiclassical behaviour of the Clebsch-Gordan

coefficient in the allowed region [37],

|〈j1, µ1; j2, µ2|j1, j2, j, µ〉|2averaged ≈
2j + 1

4π|A|
. (A.7)

One naturally expects (and it is shown numerically e.g. in [38]) that the accuracy of the

approximation goes down when the area A is small compared to the typical length squared

of the vectors ~J (i). For more discussions of the semi-classical asymptotics of the Wigner

3j-symbols see e.g. [38, 39].

For our main application, namely to determine the limit of the three-point function for

the fields Φq,n, we will see that we are precisely in this transition region, and we have to

follow a different route to deal with the limit. For the correlator of the fields Φ̃p, however,

we are in the classically allowed region, and the Wigner estimate applies.

A.3 Asymptotics for the correlators of charged fields

When we discuss the limit of the three-point functions for the charged fields Φqi,ni we are

led to consider the asymptotics of the 3j-symbols for quantum numbers7 ji = |µi| + ni,

where ni is kept fixed, and the |µi| grow linearly in a parameter k.

The 3j-symbol vanishes unless the usual conditions on the addition of angular momenta

are satisfied, namely

µ1 + µ2 + µ3 = 0 and ji1 + ji2 ≥ ji3 (A.8)

for any permutation i1, i2, i3 of 1, 2, 3. If we assume µ1, µ2 > 0 and µ3 < 0, then for large

|µi| the conditions on the ji reduce to one condition n1 + n2 ≥ n3.

Because the z-components of the angular momenta ~J (i) are close to maximal in our

case, their projections to the x-y-plane are short and have lengths

λi =
√
|µi|(2ni + 1) + n(n+ 1) , (A.9)

which only grow with the square root of k. This means that the quantity A given in (A.6),

which describes the area of the triangle in the x-y-plane provided it exists, is relatively

small. Thus we are in the transition region between the classically allowed and the classi-

cally forbidden region, and cannot use the classical Wigner estimate.

Instead we can get the asymptotic behaviour directly from the Racah formula (A.4).

Firstly, we have to understand the range of z in the sum in (A.4). In the limit of large

µi we see that the arguments j2 + µ2 − z and j − j2 + µ1 + z do not constrain the sum

since they are both surely positive. Bounds to the summation range are given by the other

factorials in the denominator of equation (A.4), and the summation range is

I := {z ∈ Z | z ≥ 0, z ≥ n1 − n3, z ≤ n1 + n2 − n3, z ≤ n1} . (A.10)

Even in the limit of large |µi| the summmation range stays finite, and its lower bound is

either zero or n1 − n3 depending on its sign.

7In the main text we use li = 2ji and mi = 2µi.
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The 3j-symbols can be rewritten as(
j1 j2 j3
µ1 µ2 µ3

)
= (−1)j1−j2−µ3

×
(

[n1 + n2 − n3]!

[2(|µ1|+ |µ2|) + n1 + n2 + n3 + 1]!

)1/2

×
(
(n1)!(n2)!(n3)![2(|µ1|+ |µ2|) + n3]!

)1/2
︸ ︷︷ ︸

N

×
∑
z∈I

([2|µ1|+ n1 − n2 + n3]![2|µ1|+ n1]!)1/2

([2|µ1|+ n3 − n2 + z]!)1/2 ([2|µ1|+ n3 − n2 + z]!)1/2︸ ︷︷ ︸
A

× ([2|µ2|+ n2 − n1 + n3]![2|µ2|+ n2]!)1/2

([2|µ2|+ n2 − z]!)1/2 ([2|µ2|+ n2 − z]!)1/2︸ ︷︷ ︸
B

× (−1)z

z!

1

[n1 + n2 − n3 − z]![n1 − z]![n3 − n1 + z]!︸ ︷︷ ︸
C

.

Using the fact that k is large we are able to recast parts A and B using that

(K + a)!

K!
=
K!

K!
× (K + 1) . . . (K + a) = Ka

(
1 +O

(
1

K

))
for large K (A.11)

so that the leading contributions read

A ≈ (2|µ1|)n1+
n2−n3

2
−z , B ≈ (2|µ2|)z−

n1−n3
2 . (A.12)

Similarly, the factor N can be approximated by

N ≈ (2|µ1|+ 2|µ2|)−
n1+n2+1

2 ×
√
n1!n2!n3![n1 + n2 − n3]! . (A.13)

The 3j-symbol then reads(
j1 j2 j3
µ1 µ2 µ3

)
= (−1)2|µ1|+n1−n2

√
n1!n2!n3![n1 + n2 − n3]!(2|µ1|+ 2|µ2|)−

n1+n2+1
2

×
∑
z∈I

(−1)z
1

z![n1 + n2 − n3 − z]![n1 − z]![n3 − n1 + z]!
(2|µ1|)n1+

n2−n3
2
−z(2|µ2|)z−

n1−n3
2 .

(A.14)

Introducing the notation

J =
n1 + n2

2
, M =

n1 − n2

2
, M ′ = −n1 + n2

2
+ n3 , (A.15)

and

cosβ =
|µ1| − |µ2|
|µ1|+ |µ2|

, (A.16)
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we can express the asymptotic form of the 3j-symbol as(
j1 j2 j3
µ1 µ2 µ3

)
≈ (−1)2|µ1|+n3−n2(2|µ1|+ 2|µ2|)−

1
2dJM ′,M (β) . (A.17)

Here, dJM ′,M (β) denotes the Wigner d-matrix [36, 37],

dJM ′,M (β) =
√

(J+M ′)!(J−M ′)!(J+M)!(J−M)!

×
∑
z

(−1)M
′−M+z

(J+M−z)!z!(M ′−M+z)!(J−M ′−z)!

(
cos β2

)2J+M−M ′−2z (
sin β

2

)M ′−M+2z
.

(A.18)

The Wigner d-matrix is expressible in terms of standard 2F1 hypergeometric functions.

More precisely, for n1 ≤ n3, we find(
j1 j2 j3
µ1 µ2 µ3

)
= (−1)2µ1+n1−n2

1

(n3 − n1)!

√
n2!n3!

n1!(n1 + n2 − n3)!
(2|µ1|+ 2|µ2|)−

1
2

× |µ1|n1+
n2−n3

2 |µ2|
n3−n1

2

(|µ1|+ |µ2|)
n1+n2

2

2F1

(
n3 − n2 − n1,−n1;n3 − n1 + 1;−|µ2|

|µ1|

)
(1 +O(1/k)) ,

(A.19)

whereas for n1 ≥ n3 we have(
j1 j2 j3
µ1 µ2 µ3

)
= (−1)2µ1+n1−n2

1

(n1 − n3)!

√
n1!

n2!n3!
(2|µ1|+ 2|µ2|)−

1
2

× |µ1|
n2+n3

2 |µ2|
n1−n3

2

(|µ1|+ |µ2|)
n1+n2

2

2F1

(
−n3,−n2;n1 − n3 + 1;−|µ2|

|µ1|

)
(1 +O(1/k)) . (A.20)

A.4 Asymptotics for the mixed correlators

Now we want to study the asymptotics of the 3j-symbol when two of the (j, µ) pairs behave

as before, i.e. ji = |µi|+ni (i = 1, 2) with fixed non-negative integers ni, and the quantum

numbers µi grow linearly with the parameter k. For the third coloumn we choose µ3 = 0

and j3 grows with the square root of k. As the labels µi have to add up to zero, we have

µ2 = −µ1 and we choose µ1 to be positive.

From the Racah formula (A.4) we find(
j1 j2 j3
µ1 µ2 0

)
= (−1)n1−n2 (n1!n2!)1/2

×
∑
z

(−1)z
(

(2µ1 + n1 + n2 − j3)!(2µ1 + n1)!(2µ1 + n2)!

(2µ1 + n1 + n2 + j3 + 1)![(2µ1 + n1 + n2 − j3 − z)!]2

)1/2

×
(

(j3 + n1 − n2)!(j3 − n1 + n2)![j3!]2

[(j3 − n1 + z)!(j3 − n2 + z)!]2

)1/2
1

z!(n1 − z)!(n2 − z)!
, (A.21)
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where the sum runs from z = 0 to z = min(n1, n2). As in the previous discussion, the ratios

of the factorials growing with 2µ1 and also the ratios of the factorials growing with j3 can

be approximated by (A.11), and we obtain(
j1 j2 j3
µ1 µ2 0

)

= (−1)n1−n2
(n1!n2!)1/2

(2µ1)1/2

∑
z

(−1)z

z!(n1 − z)!(n2 − z)!

(
2µ1

j2
3

)z−n1+n2
2 (

1 +O(k−1/2)
)

(A.22)

= (−1)n1−n2
(n1!n2!)−1/2

(2µ1)1/2

(
2µ1

j2
3

)−n1+n2
2

2F0

(
−n1,−n2;−2µ1

j2
3

)(
1 +O(k−1/2)

)
, (A.23)

where 2F0 denotes the corresponding hypergeometric function.

A.5 Asymptotics for the correlators of uncharged fields

Our third region of interest has all µi = 0, and the ji are growing at the same rate,

proportional to the square root of k. The corresponding 3j-symbols are given by [36,

section 8.5, eq.32](
j1 j2 j3
0 0 0

)
= (−1)

j1+j2+j3
2

(
(−j1 + j2 + j3)!(j1 − j2 + j3)!(j1 + j2 − j3)!

(j1 + j2 + j3 + 1)!

)1/2

×

(
j1+j2+j3

2

)
!(

−j1+j2+j3
2

)
!
(
j1−j2+j3

2

)
!
(
j1+j2−j3

2

)
!

(A.24)

if |j1 − j2| ≤ j3 ≤ j1 + j2 and if j1 + j2 + j3 is an even integer, otherwise it vanishes.

Let us for a moment assume that j1 + j2 + j3 is even. To analyse the behaviour of the

3j-symbol we use Stirling’s formula for the factorial,

n! =
√

2πnnne−n(1 +O(1/n)) . (A.25)

We find(
j1 j2 j3
0 0 0

)
= (−1)

j1+j2+j3
2

√
2

π

× ((j1 + j2 + j3)(−j1 + j2 + j3)(j1 − j2 + j3)(j1 + j2 − j3))−1/4 (1 +O(k−1/2)) .

(A.26)

For the computations in the main text we are interested in the averaged value of the square

of the 3j-symbol. In the allowed region, i.e. where |j1 − j2| ≤ j3 ≤ j1 + j2, every second

3j-symbol vanishes due to the constraint that j1 + j2 + j3 should be even. Therefore we

obtain(
j1 j2 j3
0 0 0

)2

av

≈ 1

π
((j1 + j2 + j3)(−j1 + j2 + j3)(j1 − j2 + j3)(j1 + j2 − j3))−1/2 . (A.27)

This precisely equals the Wigner estimate (A.7), with the area A given in (A.6).
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B Asymptotics of products of Gamma functions

The three-point coefficient contains products of Gamma functions of the form (see (3.4))

P (l) =
l∏

j=1

Γ(1 + jρ)

Γ(1− jρ)
, (B.1)

where ρ = 1/(k + 2). When we take the limit k →∞, also the quantum numbers become

large, so that we have to determine the asymptotics of P (l) for large l and k.

We write l = f/ρ, where f tends towards a constant f0 in the limit,

lim
k→∞

f = f0 , 0 ≤ f0 < 1 . (B.2)

We then have

P (f/ρ) = exp

fρ−1∑
j=1

log
Γ(1 + jρ)

Γ(1− jρ)

 (B.3)

= exp

(
ρ−1

∫ f

0
log

Γ(1 + x)

Γ(1− x)
dx+

1

2
log

Γ(1 + f)

Γ(1− f)
+O(ρ)

)
, (B.4)

where we employed the Euler-MacLaurin sum formula (see e.g. [40]). The integral is given

by (see e.g. [41])∫ f

0
log

Γ(1 + x)

Γ(1− x)
dx = −f2 + f log

Γ(1 + f)

Γ(1− f)
− log [G(1 + f)G(1− f)] , (B.5)

where G is the Barnes G-function.8

When we write f = f0+f1, where f1 goes to zero in the limit, we obtain the asymptotic

formula

P (f/ρ) = exp

(
ρ−1

(
−f2

0 + f0 log
Γ(1 + f0)

Γ(1− f0)
− log [G(1 + f0)G(1− f0)]

)
+ (ρ−1f1 + 1

2) log
Γ(1 + f0)

Γ(1− f0)
+
ρ−1f2

1

2
(ψ(1 + f0) + ψ(1− f0)) +O(f1, ρ, ρ

−1f3
1 )

)
.

(B.6)

Here, ψ(x) = Γ′(x)
Γ(x) denotes the Digamma function.

C Odd channel three-point functions

In this section we consider three-point functions of two primaries and one superdescendant

field in minimal models. In the coset model description they can be derived from the three-

point function of the SU(2) WZW models as it has been done for the three-point function

of three primaries in [19]. To this end one has to realise the superdescendants explicitly as

8G is related to the Barnes double gamma function Γ2(z; b1, b2) by G(z) =
√

2π(Γ2(z; 1, 1))−1.
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descendants in the SU(2) model and determine the corresponding correlators. Although

the computation is straightforward, to our knowledge these results have not appeared in

the literature before.

For explicitness let us consider the Neveu-Schwarz correlator

〈(Ḡ+
− 1

2

G+
− 1

2

φl1,m1)(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉 , (C.1)

where we assume that |mi| ≤ li and m1 > 0. Due to charge conservation a non-zero

correlator has to satisfy

1− m1

k + 2
− m2

k + 2
− m3

k + 2
= 0 . (C.2)

In the coset description we have

Ḡ+
− 1

2

G+
− 1

2

|l,m, 0〉 =

(
l(l + 2)−m(m− 2)

2(k + 2)

)−1

|l,m, 2〉 (C.3)

for −l + 2 ≤ m ≤ l. Notice that as in the main text we have chosen the diagonal minimal

models with equal holomorphic and anti-holomorphic quantum numbers (m̄ = m). To

relate the above three-point function to a correlator in the SU(2) model we have to use

the field identification

|l1,m1, 2〉 = |k − l1,m1 − k − 2, 0〉 = |l̃1,−l̃1 − 2n1 − 2, 0〉 , (C.4)

where we set l̃1 = k − l1 and n1 = l1−|m1|
2 . Then the U(1) part of the coset trivially

factorises (all three labels si are 0, and the new labels mi add up to zero, (m1 − k − 2) +

m2 + m3 = 0, which corresponds to the charge conservation condition (C.2)). The coset

state |l̃1,−l̃1 − 2(n1 + 1), 0〉 comes from the state

ζl1,n1 = γ−1
l1,n1

(J−−1)n1+1(J̄−−1)n1+1|l̃1,−l̃1,−l̃1〉SU(2) (C.5)

in the SU(2) model, where γl1,n1 is a normalisation factor to ensure that |ζl1,n1 |2 = 1. The

conventions for the SU(2) current algebra that we use here are given by

[J+
m, J

−
n ] = 2J0

m+n + kmδm+n,0 , [J0
m, J

±
n ] = ±J±m+n . (C.6)

The primary states in the SU(2) model are labelled by |l,m, m̄〉SU(2), where in our con-

ventions

J0
0 |l,m, m̄〉SU(2) =

m

2
|l,m, m̄〉SU(2) (C.7)(

(J0
0 )2 +

1

2
J+

0 J
−
0 +

1

2
J−0 J

+
0

)
|l,m, m̄〉SU(2) =

l(l + 2)

4
|l,m, m̄〉SU(2) (C.8)

J±0 |l,m, m̄〉SU(2) = c±(l,m)|l,m± 2, m̄〉SU(2) , (C.9)

where

c±(l,m) =
1

2

√
(l ∓m)(l ±m+ 2) . (C.10)
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Anologous relations hold for the operators J̄ . Now it is easy to check inductively that

γl1,n1 =
(n1 + 1)! l1!

(l1 − n1 − 1)!
. (C.11)

The coefficient of the three-point function (C.1) therefore can be read off from the SU(2)

correlator

F =

(
2(n1 + 1)(l1 − n1)γl1,n1

(k + 2)

)−1

× 〈
(

(J−−1)n1+1(J̄−−1)n1+1χl̃1,−l̃1,−l̃1

)
(z1, z̄1)χl2,m2,m2(z2, z̄2)χl3,m3,m3(z3, z̄3)〉 , (C.12)

where we denoted the field corresponding to the state |l,m, m̄〉 by χl,m,m̄. This correlator

can be computed starting from the known three-point function for primary fields [21, 22],

〈χl1,m1,m̄1(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉 =

(
l1
2

l2
2

l3
2

m1
2

m2
2

m3
2

)(
l1
2

l2
2

l3
2

m̄1
2

m̄2
2

m̄3
2

)
×
√

(l1 + 1)(l2 + 1)(l3 + 1) dl1,l2,l3 |z12|2(hl3−hl1−hl2 )|z13|2(hl2−hl1−hl3 )|z23|2(hl1−hl2−hl3 ) ,

(C.13)

where dl1,l2,l3 is given in (3.3), and the conformal weights are

hl =
l(l + 2)

4(k + 2)
. (C.14)

Correlators of descendant fields are then computed by the usual contour integral techniques.

Let us start with the simple case that there is only one operator J−−1 acting on χl̃1,−l̃1,−l̃1 .

We find

〈
(
J−−1χl̃1,−l̃1,−l̃1

)
(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

=
1

2πi

∮
z1

dw

w − z1
〈J−(w)χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

= − 1

2πi

(∮
z2

+

∮
z3

)
dw

w − z1
〈J−(w)χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

=
1

z12
〈χl̃1,−l̃1,−l̃1(z1, z̄1)(J−0 χl2,m2,m̄2)(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

+
1

z13
〈χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2,m̄2(z2, z̄2)(J−0 χl3,m3,m̄3)(z3, z̄3)〉

=
1

z12
c−(l2,m2)〈χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2−2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

+
1

z13
c−(l3,m3)〈χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3−2,m̄3(z3, z̄3)〉 . (C.15)

Due to the shift relations of 3j-symbols [36, section 8.4, eq.5] we have

c−(l3,m3)

(
l̃1
2

l2
2

l3
2

− l̃1
2

m2
2

m3
2 − 1

)
= −c−(l2,m2)

(
l̃1
2

l2
2

l3
2

− l̃1
2

m2
2 − 1 m3

2

)
. (C.16)
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Therefore

〈
(
J−−1χl̃1,−l̃1,−l̃1

)
(z1, z̄1)χl2,m2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉

=

(
1

z12
− 1

z13

)
c−(l2,m2)〈χl̃1,−l̃1,−l̃1(z1, z̄1)χl2,m2−2,m̄2(z2, z̄2)χl3,m3,m̄3(z3, z̄3)〉 (C.17)

= c−(l2,m2)

(
l̃1
2

l2
2

l3
2

− l̃1
2

m2
2 − 1 m3

2

)(
l̃1
2

l2
2

l3
2

− l̃1
2

m̄2
2

m̄3
2

)√(
l̃1 + 1

)(
l2 + 1

)(
l3 + 1

)
dl̃1,l2,l3

× z
hl3−(hl̃1

+1)−hl2
12 z̄

hl3−hl̃1−hl2
12 z

(hl̃1
+1)−hl2−hl3

23 z̄
hl̃1
−hl2−hl3

23 z
hl2−(hl̃1

+1)−hl3
13 z̄

hl2−hl̃1−hl3
13 .

(C.18)

Following this procedure iteratively, one obtains an expression for the correlator given

in (C.12),

F =

(
2(n1 + 1)(l1 − n1)γl1,n1

(k + 2)

)−1
(
n1∏
i=0

c−(l2,m2 − 2i)

)2

×

(
l̃1
2

l2
2

l3
2

− l̃1
2

m2
2 − n1 − 1 m3

2

)2√(
l̃1 + 1

)(
l2 + 1

)(
l3 + 1

)
dl̃1,l2,l3

× |z12|
2(hl3−(hl̃1

+n1+1)−hl2 )|z23|
2((hl̃1

+n1+1)−hl2−hl3 )|z13|
2(hl2−(hl̃1

+n1+1)−hl3 )
. (C.19)

To extract the corresponding minimal model correlator (C.1) we only have to shift the

conformal weights by the contribution − m2

4(k+2) of the U(1)2(k+2) part,

hl3 → hl3 −
m2

3

4(k + 2)
= hl3,m3 (C.20)

hl2 → hl2 −
m2

2

4(k + 2)
= hl2,m2 (C.21)

hl̃1 + n1 + 1→ hl̃1 + n1 + 1− (m1 − k − 2)2

4(k + 2)
= hl1,m1 +

1

2
. (C.22)

After simplifying the prefactor in (C.19) we obtain our final result for the minimal model

correlator (C.1),

〈(Ḡ+
− 1

2

G+
− 1

2

φl1,m1)(z1, z̄1)φl2,m2(z2, z̄2)φl3,m3(z3, z̄3)〉

=
k + 2

2(n1 + 1)(l1 − n1)

(
l2+m2

2

n1 + 1

)(
l2−m2

2 + n1 + 1

n1 + 1

)(
l1

n1 + 1

)−1

×

(
l̃1
2

l2
2

l3
2

− l̃1
2

m2
2 − n1 − 1 m3

2

)2√(
l̃1 + 1

)(
l2 + 1

)(
l3 + 1

)
dl̃1,l2,l3

× |z12|2(hl3,m3
−(hl1,m1

+1/2)−hl2,m2)|z23|2((hl1,m1
+1/2)−hl2,m2

−hl3,m3)

× |z13|2(hl2,m2
−(hl1,m1

+1/2)−hl3,m3) . (C.23)
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