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Abstract
Following the idea of a field quantization of gravity as realized in group
field theory, we construct a minisuperspace model where the wavefunction
of canonical quantum cosmology (either Wheeler—DeWitt or loop quantum
cosmology) is promoted to a field, the coordinates are minisuperspace
variables, the kinetic operator is the Hamiltonian constraint operator and
the action features a nonlinear and possibly nonlocal interaction term. We
discuss free-field classical solutions, the quantum propagator and a mean-
field approximation linearizing the equation of motion and augmenting the
Hamiltonian constraint by an effective term mixing gravitational and matter
variables. Depending on the choice of interaction, this can reproduce, for
example, a cosmological constant, a scalar-field potential, or a curvature
contribution.

Communicated by P R L'V Moniz

PACS numbers: 98.80.Qc, 04.60.Ds, 04.60.Kz, 98.80.Cq

1. Introduction and motivation

Despite much recent progress [1], background-independent approaches to quantum gravity
face several open challenges. These concern (i) the definition of the quantum dynamics of
the fundamental degrees of freedom of spacetime that they identify, and the full control over
it; (ii) the recovery of an effective description in terms of a smooth spacetime and geometry,
once the dynamics is somehow defined, and in particular when the fundamental degrees of
freedom are not continuous geometric data; (iii) the contact with the effective dynamics of
general relativity and quantum field theory, and with phenomenology.

An example is given by loop quantum gravity (LQG), a background-independent
framework aiming to quantize the gravitational degrees of freedom in a nonperturbative way
[2, 3]. To this purpose, a canonical quantization scheme is employed where the constraints
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are written in terms of the densitized triad and of the Ashtekar—Barbero connection. The end
result at the kinematical level is a Hilbert space of (spin network) states associated with graphs
embedded in the spatial manifold and labeled by algebraic data (Lorentz group elements or
corresponding representation labels). As in any canonical scheme, while geometry is fully
dynamical, the topology of the universe is fixed by construction, at least at the beginning. In
general, however, one may ask whether it is possible to build a quantum theory inclusive of
topology change or, in other words, if one can envisage an interacting multiverse scenario
obeying a set of quantum rules. Since the degrees of freedom of a single universe are already
fields, eventually to be quantized, such a scenario is sometimes said to be one of ‘third
quantization’. This can be achieved, at least at a formal level, by defining a field theory over the
space of geometries, for given spatial topology [4, 5]°. Other (albeit inconclusive) arguments
from a canonical quantum gravity perspective in favor of going to a ‘third-quantization’ setting
were also offered in [9, 10]*.

Besides the issue of topology change, the main difficulty faced by the LQG approach
is the complete definition of the quantum dynamics and the proof that the resulting theory
leads back to Einstein’s gravity in an appropriate limit. A tentative but complete definition of
the quantum dynamics of spin network states is obtained, via spin-foam models [11, 12] (a
covariant definition of LQG dynamics), by embedding LQG states into the larger framework
of group field theories (GFTs) [13—15], in turn strictly related to tensor models [16]. These are
quantum field theories on group manifolds whose states are indeed spin networks and whose
Feynman amplitudes are spin-foam models. This embedding has several advantages, from
the LQG point of view. First of all, as said, it provides a complete definition of the quantum
dynamics. Second, it defines such dynamics as the superposition of interaction processes
(creation and annihilation) of spin network vertices, forming complexes of arbitrary topology,
such that topology is naturally made dynamical; it provides, in other words, a sort of local field-
quantization scheme [13, 14]. Third, the field theory framework offers powerful mathematical
and conceptual tools for tackling the issue of the continuum limit and of the extraction of
effective dynamics for better contact with phenomenology. In doing so, however, one has to
abandon the familiar framework of canonical quantization of a classical (and local) field theory
of gravitation, and is forced to face new types of conceptual and mathematical difficulties.

This program is just as ambitious as the original LQG one, if not more, and is difficult to
realize in a complete and rigorous way, despite many recent advances. Toy models inspired
by the full theory then become very important. In fact, they fulfil three main purposes: (i) they
offer a simplified testing ground for ideas and techniques developed in the full theory; (ii) as
such, they also have an important pedagogical value; (iii) they may represent, in principle, an
effective, approximate framework to which the full quantum dynamics may reduce, in some
limit, and thus they may be directly applicable to phenomenological studies. Obviously, due
to their simplicity, one should be cautious in interpreting the result obtained in the context of
such toy models as truly physical, and their validity can be assessed only once the relation
between the toy model and full theory has been understood.

An important type of simplified scenario has been developed in the context of LQG, in
a symmetry-reduced setting of interest for cosmology. In fact, in order to understand certain

3 String field theory is an example of a ‘third-quantized’ model. While the free Polyakov string is a collection
of particle fields, a string field is a collection of strings interacting via certain vertices. One of the advantages to
consider a field of strings is in the possibility to describe highly nonperturbative phenomena where the initial and
final geometries and topologies are different, such as brane decays into vacuum or into other branes (e.g., [6-8] and
references therein).

4 To avoid confusion, from now on we employ the adjectives ‘field’ or ‘second’ instead of ‘third’ to indicate this type
of quantization.

2



Class. Quantum Grav. 29 (2012) 105005 G Calcagni et al

features of LQG, one often resorts to a minisuperspace model, loop quantum cosmology
(LQC), where degrees of freedom are drastically reduced [17, 18]. In a pure Friedmann—
Robertson—Walker (FRW) universe filled with a massless free scalar field, the classical and
quantum dynamics of the universe as a whole can be described by the same formalism used for
a free particle. In particular, the path integral is well defined [19, 20] and two-point correlation
functions admit the usual classification [21]. By now, a wealth of interesting results has been
obtained in this context [17, 18]. Given this analogy with the free particle, it is all the more
natural to ask oneself if one can construct a sensible ‘interaction’ among FRW universes and,
once this is done, to change the interpretation of the two-point function from particle transition
amplitude to field propagator as in the usual field quantization. One would then write down
a field theory on minisuperspace, to obtain a field-quantized LQC framework. Another way
to see the same field theory would then be as a toy model for GFT, in which many of the
difficult features of the latter are absent due to the global nature of the formulation and to the
simplification provided by symmetry reduction, but where some ideas and techniques can still
be applied. As with any toy model, one would then use it as a pedagogical testing ground and
keep it available as a possible effective description of the full theory.

We propose such a field theory for (loop) quantum cosmology in this paper, with the
above motivations. The presentation is organized as follows. We review some basic features of
LQC in section 2, but the Wheeler—DeWitt case is also easily recovered. In section 3 the field
theory is defined by promoting the quantum Hamiltonian constraint to the kinetic operator of
a (real) scalar field ¥ on minisuperspace. We analyze the relation between different kinetic
operators and the gauge choice, with particular focus on exactly solvable free theories. We
discuss the various possible choices for the interaction term. Following this general definition,
we move on to analyze some consequences of the formalism. We analyze the free propagator
of the theory first, corresponding to the evolution of a single universe (section 4). We show
how the embedding into a field theory setting has immediate interesting consequences also
for the single-universe dynamics. Then, we consider how the presence of interactions affects
this single-universe evolution. Approximating the interaction as a mean-field term, we find
an effective equation linear in the field W, correcting the Hamiltonian quantum constraint
equation by an extra term (section 5). The latter mixes, in general, gravitational and matter
degrees of freedom, and its exact form depends on the chosen initial interaction as well as
on the mean-field configuration considered. We conclude with a discussion of other possible
applications of this formalism.

2. Brief overview of LQC

2.1. Classical theory

Our starting point is the description within LQC of the spatially flat, homogeneous and isotropic
universe with a massless scalar field as matter, which we summarize briefly in this section. In
the canonical analysis of dimensionally reduced general relativity, one restricts integrations to
a fixed fiducial three-dimensional cell of comoving volume 1 < oo, with a flat metric Oqah
which may be taken to be §,, in Cartesian coordinates. The four-dimensional metric is then

ds? = —N*(t) d? + a*(t)°gup dx“ dx?, (1)
where a(t) is the scale factor, spatial indices are labeled by Latin indices a, b, ... = 1,2, 3,
and there is a freedom in the choice of the lapse function N(¢). Indices i, j, ... = 1,2, 3 will

denote directions in the tangent space.
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With a choice of frame {Oe“ } and dual {Oefl } , orthonormal with respect to °g,;, the physical

, : i
triad ¢’ = ¢ aoe’a dx? (¢ = +1) and ¢ = N dr are orthonormal with respect to (1), and the
Lévi-Civita connection is
. aon .

o'y = eﬁoe’, o' =0, (2)
where a dot denotes time derivative. From this, one computes the variables used in LQG, the
Ashtekar—Barbero su(2) connection A}, and the densitized triad Ef, via

A, = y(o),, (3a)

E® = (dete)e? = a*y/detq’¢?, (3b)
where y is the Barbero-Immirzi parameter.
A shortcut to the standard canonical analysis is to substitute the FRW metric and the Ricci
scalar stemming from (1),

R d aN @ A

—(W‘W+WJ @
into the Einstein—Hilbert and matter action, which then depends on ¢, a and N. The conjugate
momenta are p, = —3Vyaa/(4nGN) and py = V) a3<f> /N, and the conservation in time of

the primary constraint py & 0 (the symbol & denotes weak equality) leads to the Friedmann
equation

G P2 P
b= T w0 ®

which should be imposed as a constraint on quantum states in quantum cosmology".

2.2. Kinematics

Focusing on the gravitational sector for now, the crucial difference from traditional
minisuperspace (Wheeler—DeWitt) approaches to quantum cosmology in LQC is that one
follows the kinematics of full LQG, where not the connection but only its holonomies are
defined as operators [2]. It is convenient to introduce new conjugate variables ¢ and p, where

c:sVé/S% = —8%&, p:8a2V§/3, (6)
3V, a

so that A’ only depends on ¢, and powers of V, have been introduced to make ¢ and p invariant

under the residual symmetry a — la, Oqab — Oqah /A% in equation (1). Instead of ¢ and p,

one now defines p and exp(ipc) as operators, where w can be a real parameter or a function

of p chosen by means of a suitable procedure.

The kinematical Hilbert space Hfin is taken to be the space of square-integrable functions
on the Bohr compactification of the real line. One can work in a basis where p is diagonal,
with orthonormality relation (p|p’) = 8, v, so that one is dealing with a nonseparable Hilbert
space. In this represemn, if u is taken to be a nontrivial function of p, the action of the
holonomy operator exp(izc) takes a rather complicated form, and it is convenient to choose
a different representation. In the improved dynamics scheme [22], where u(p) ~ | pI~1/2, this
is a basis {|v)} of eigenstates of the volume operator }V measuring the kinematical volume of
the fiducial cell, V = |p|3/2,

V) = 2wy Glv||v), (7)

3> Throughout this paper we use the symbol K for the Hamiltonian constraint because it will eventually be regarded as
a kinetic operator. Although this differs from the more standard choice of symbol H or H, it has the further advantage
of avoiding confusion with the Hubble parameter.

4
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where v = £a*V,/ (27 y G) has dimensions of length. The states {|v)} can be normalized to
(V|V/> = 8v,v’- ®)

The basic operators are now v, which acts by multiplication, and em), where b =
e 2myGp,)/(3Voa?) is conjugate to v (and is proportional to the Hubble parameter
H = a/(Na)) and A = const, which acts as a shift in v. These satisfy the standard Heisenberg
algebra. For the matter sector, one chooses the usual Schrodinger quantization with a natural
representation of the Hilbert space Hfin, the space of square-integrable functions on R, on
which 43 acts by multiplication and p, by derivation, and with an orthonormal basis given by

(Blg’) =8(¢ —¢)). 9

The Hilbert space of the coupled system is then just the tensor product Hj, ® Hfin. As in
traditional approaches to quantum cosmology, the variable N is removed from the configuration
space because the primary constraint py =~ 0 would mean that wavefunctions are independent
of N. We note that the full constraint would be a multiple of N, so that in situations where the
resulting quantum constraint depends on the choice of lapse function (as below), the choice
N = 1 seems more natural when considering that N is also originally in the configuration
space. In fact, in cosmology the lapse can be regarded as a function of the scale factor,
N = N(a), which is an independent variable. A choice of the form N = N(E) in the full
theory is somewhat less justified before solving the constraints.

2.3. Dynamics

The quantum analogue of the Friedmann equation (5) is obtained by starting with the
Hamiltonian constraint of full general relativity in terms of the variables (3a)-(3b) and
expressing the curvature of A’ through the holonomy around a loop, taking account of the area
gap —the result in LQG that the area of such a loop cannot assume arbitrarily small nonzero
values. The Hamiltonian constraint is

R (v, ¢) := —B)(© + 32)y (v, ¢) = 0, (10)

where v is a wavefunction on configuration space and © is a difference operator only acting
on My, and of the form

—B)OY (v, ¢) :=AW)Y (v +vo, ¢) + C(Y (v, ¢) + DW)Y (v — vo, @), (1)

where A, B, C and D are functions which depend on the details of the quantization scheme
(inter alia, on the choice of lapse function) and vy is an elementary length unit, usually defined
by the square root of the area gap (the Planck length up to a numerical factor). The physical
states are the solutions of equation (10). Due to the structure of equation (11), in LQC one
has an interval’s worth of superselection sectors in Hﬁin: ® preserves all subspaces spanned
by {|v; 4+ nvy) |n € Z} for some v;. We may restrict ourselves to one of these subspaces,
i.e. assume that wavefunctions only have support on a discrete lattice which we take to be
voZ (for a generic gauge choice, there may be issues with the definition of (10) at the most
interesting point v = 0). This restriction picks out a separable subspace to which we will limit
our analysis.
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3. Defining the field theory

We now define our field theory on (mini)superspace. The Hamiltonian constraint (10) of the
first-quantized theory is the natural starting point for the free action of the field theory. We
define this action to be

1 N
S0 =33 [ 40 v 9100 0) (12)

where in the simplest setting we take W to be a real scalar field. If K is asin equation (11), we
must assume that the combination B(v)® is symmetric in v, i.e. that

D) =AW — ) (13)

in equation (11), in order to reproduce the equation of motion (10). Put differently, for any
constraint (11), the action (12) projects out its self-adjoint part with respect to the measure given
by the kinematical inner product of LQC. Taking this measure as given, possible manipulations
of the constraint K are restricted by this requirement. Note, however, that equation (13) does
hold in LQC for the usual choices of gauge, so we do not need to impose it as an additional
requirement. To give an example, for the preferred lapse choice N = 1 and in improved
dynamics, the functions A, B, C take the form [22]

A(U)— 1 ‘U+UQ ‘v+vo ‘v+3v0
12yv2v31 2 4 40
1 1
32 Vo |3 wl?]?
B(U):4—|v| ‘1)4__0 _‘ __0 ,
831y G 4 4
Cv)=—-A@W) —A®@ —w), (14)

where now vy = 4\ := / 323 my G, whereas for the solvable ‘SLQC’ model in [23] (which
uses N = @’ and the symmetry (16))

\/§ Vo 1
AW = (v+ 5), BO) =
Clv)=—-AWw)—AWv —1y) = —ﬁv. (15)
4y

Equation (15) can be shown to agree with the previous expressions (14) in the ‘semiclassical’
limit v > vy.
InLQC, one normally assumes symmetry of the wavefunction i under orientation reversal

v, ¢) =y (=, ¢), (16)

since the kinematical Hilbert space can be split into symmetric and antisymmetric subspaces
which are superselected (in other words, the physics should not depend on the frame
orientation). From the field theory perspective, such a requirement is less natural, in particular
if interactions are taken into account; we will allow for general field configurations without
assuming equation (16).

By definition of second quantization, and by construction in our case, the classical
solutions of the free-field theory will correspond to the quantum solutions of the first-quantized
model.

We now complete the definition of the field theory on minisuperspace with the addition of
an interaction term for our field. The first-quantized theory, that is (loop) quantum cosmology,
does not offer indications on how this interaction should be defined, so one has to proceed
in a rather exploratory way guided only by general intuition (and by the results obtained

6
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following various choices). One could take an arbitrary functional, but we opt for an nth-order
polynomial in W not necessarily local in the minisuperspace variables. We will specialize
to simpler, concrete choices in the following, in order to study some consequences of the
formalism.

We obtain the general form for the interacting theory

1 . " A
Si[v] = 5 Zy:/‘kb Y(v, )KLV (v, ¢) + ; J—j

J
x 3 /d¢1 . dgy £ 80 [ ] . ). (17)
V1.V k=1
where f;(v;, ¢;) are unspecified functions depending on {v;, ¢;};—,...,j. This gives the equation
of motion
N "
IC\IJ(U, ¢) + Z —{ Z /d¢] ce d¢j_]
j=2 ‘] Vi Vjog
j-1 i
< [Twn ¢ fetvi, ¢iz v, ¢) =0, (18)
=1 k=1
where
Fei, iz v.8) = f(uir 91), (19)
with {u;} = {vi, ..., v, v, Vg, .., vt and {@i} = {1, ..., i1, @, r, ..., @)} In writing

down the field theory action, we have included possible nonlocal (in v) quadratic terms in
the interaction part (specified by the interaction kernel f) rather than in the kinetic term, in
order to emphasize the fact that /C is usually chosen to be a local operator in the geometry
in quantum cosmology. These could however be also included in the definition of K.

The above is rather general. Explicit analyses require choosing specific interaction terms,
that is, functions f;(v;, ¢;). Each of them could correspond to a choice of a physical quantity
to be conserved through the ‘interaction’ of the universes, and of a conjugate physical quantity
in terms of which the fields interact, instead, ‘locally’. That means that the conjugate variable
is identified across ‘incoming’ and ‘outgoing’ universes. Different choices for the function
f(v;, ¢;), and hence for the quantities conserved in the interaction, can thus be motivated
by different physical considerations. In particular, the choice will be influenced by the
interpretation of such an interaction as true topology change, that is, splitting/merging of
universes, or rather as a merging/splitting of homogeneous and isotropic patches within a
single inhomogeneous and anisotropic universe. The detailed definition of the second scenario
in physical terms is not easy, and we will confine our treatment to a brief discussion of it at
the end. However, it is important to keep in mind that its consideration would sensibly affect
the very definition of the field theory to analyze. Examples of interactions are:

e If, e.g., only A3 is nonvanishing and we implement locality in (v, ¢) by choosing
F iy @) = 80,.0,80,.0:8 (1 — $2)8(¢h1 — ¢3), we have the field equation

KU (v, ¢) + %\Ilz(v, $) =0. (20)

Such a potential, which implements locality both in the 3-volume (i.e. the scale factor) and
in the scalar field ¢, implies the existence of conservation laws for the conjugate quantities
b and pgy. These conservation laws are nothing but the (modified) second Friedmann and
Klein—Gordon equations, respectively. Since interactions allow for topology change, in

7
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this case for nonzero A3 there is a process where two ‘universes’ merge into one, and the
metric in both ingoing patches as well as in the outgoing patch is required to be the same
(analogous to the interaction term proposed in [4]). Because of the conservation law, there
is a discontinuity in the Hubble parameter b o< H.

e A different conservation law, namely conservation of Hubble volume 53 or locality in
the conjugate quantity b*v, is suggested if one interprets the interaction as the topology-
changing process just described with a discontinuity in the causal past of an observer
passing the ‘merging point’ (this is typically considered ‘bad’ topology change; see the
review [24]).

e Another possibility would be to take the conserved quantities of the classical (Wheeler—
DeWitt) Hamiltonian pg and vb as also conserved in interactions, which would then be
local in ¢ and In(v/vy). For the sSLQC model detailed below, the second quantity would
be modified to (2v/vy) sin (bvy/2) and we would require locality in the conjugate variable
In{(v/vo)[1 + cos(bvo/2)]}.

In the Wheeler—DeWitt case, we can choose the type of interaction analogously, since the only
difference is in the kinetic operator (choice of first-quantization scheme) and not in the choice
of minisuperspace variables.

Before starting our analysis of the model, we introduce a reformulation of the same that
is advantageous for practical manipulations.

Since /C is not diagonal in v, it may be convenient to use a Fourier transform as in [23]

Wb, ¢) =Y eW(v, ¢), 1)

27 /vy
Wy, ¢) = 2”—; /0 dbe "W (b, ¢). (22)

As W(v, ¢) is real, U(b, ¢) = W (21 /vy — b, ¢), and if equation (16) holds, then W (b, ¢) =
V(2 /vy — b, ¢). The action (17) becomes

: _ Vo — 2 n )1
Si[V] = o /d¢fdb\b(b, ¢)K\D(b,¢)+; -
. j j
Vo \/ _
x (g) /I]] déy db, f (bi, @-)E\y(b,,qsl), 23)

where f(b;, ¢;) = Zvl...vj e ' X £ (1;, @) is the (complex conjugate of the) Fourier

transform of the function f(v;, ¢;) appearing in (17), and K is an appropriate differential
operator. In the above conventions,

~

K = e™A(—idy) + C(—idy) + A(—idy) e ™" + B(—idy) ;. (24)
The inverse of this operator will give the propagator.

In the sLQC case, equation (15), in order to avoid nonlocal expressions such as
1/(—i9p) in the action we could multiply the expression for ® by v. However, this
would lead to a ‘nonsymmetric’ form such that equation (13) is not respected (obviously,
vD(v) = vA(v —vg) # (v —vp)A(v — 1p)) and K is not self-adjoint. A symmetrized version
of C, which has not been previously considered in the literature, has

V3,

AQv) = g/—f (v + %)2 B(v) =1, Cv) = —Ev . (25)
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When the nonsymmetric form resulting from multiplication by B~!(v) is used in LQC, the
kinematical inner product is modified accordingly to keep the constraint self-adjoint (see, e.g.,
[25]). The action (12), which involves both the constraint and the kinematical inner product
of LQC, is left unchanged by such a redefinition.
As mentioned above, the LQC setting is chosen because of the initial motivation to obtain

a toy model for a GFT construction, in turn a field theory formalism for LQG states. This is,
however, not essential for our general purposes. One could define an analogous set of models
for Wheeler—DeWitt quantum cosmology, which is actually simpler from a technical point of
view. The usual ordering for the quantum Friedmann equation is [26]
47

3
and the scale factor a is now a continuous variable. It is then convenient to define
N = /3/(47G) Ina so that a is restricted to be nonnegative and the constraint is simply the
Klein—Gordon operator 8}\/ - 3;. One ends up with a scalar-field theory in 1+1 dimensions
with standard kinetic operator and an unusual potential term.

K=

G
(ad,)* = pj, (26)

3.1. Fock space construction

As any ordinary field theory, the above field theory on minisuperspace can be quantized and a
Fock space of quantum states can be constructed. The construction of the Fock space rests on
a choice of a complete basis on the space of fields.

As customary, we can choose a basis of solutions of the free-field theory, that
is single-particle states in {|k)} whose elements correspond to classical (expanding or
contracting) solutions of the modified Friedmann dynamics®. These solutions are labeled by ,
i.e. 3-geometries (described by v) embeddable into a four-dimensional FRW universe by means
of k and a choice of lapse N(¢). In solvable LQC, the deparametrized solutions are of the form

b(¢p) = vig arctan exp[£+v 127 G(¢ — ¢o)1, 27

and k is the value of the Dirac observable py. Equation (27), specifying the classical
trajectories, will later reappear as the ‘light cone’ x(b) = ¢ of the propagator of the theory; see
equation (52). In the gauge N = o>, consider the modified Hamiltonian

2 2
k= P® 6710{1)(:)3 sin[b([)vo:H : (28)
2 Vo 2

Hamilton’s equations give ¢ = Pg and v = 9K/9b, solved by

4
b(t) = — arctan exp[£+/ 127 Gk(t — ty)], (29)
Vo
kvg cosh[£+/ 127 Gk(t — ty)]
V487G ’

so that the bounce is apparent already in each classical history (we have treated v as a
continuous parameter for the purpose of simplicity here). In fact, equation (30) is consistent

v(t) = +

(30)

© We warn the reader about a fine point in terminology. In the LQC and Wheeler—DeWitt literature, by ‘classical
solutions’ one often means the solutions of the unmodified Friedmann equations in classical general relativity. In
contrast, by ‘classical trajectories’ we presently mean solutions generated by a Hamiltonian that already includes the
two effects of replacing the connection by its holonomies and of setting a minimal area for closed holonomies (such as
equation (28)). Both operations can be motivated by the first-quantization framework of LQC, but they are performed
already at the classical level.
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both with (27) (¢ = =kt are solutions of the constraint py = const) and with the expectation
value of the volume operator (37).

The construction of the Fock space proceeds as usual. One defines creation operators a,t
and annihilation operators a; from the mode decomposition of generic fields into the above
basis, and builds generic elements of the Hilbert space of states from their combined action
on the Fock vacuum state |0).

This state, as in the complete GFT formalism [13, 14], would correspond to a very
degenerate ‘no-space’ state, in which no geometric and no topological structure at all is
present. Topological and geometric structures are created out of it by the action of the creation
operators.

A crucial ingredient in the definition of the Fock space is the choice of quantum statistics.
In the following, we fix the statistics to be bosonic, [ak, a}(',] o O 1. This seems physically
natural if quantum states are associated with classical geometries and whole universes.

In GFT, where the Fock space would be constructed out of microscopic ‘building blocks’
of space [14], the choice of statistics is less obvious and is the focus of current research (see for
example the discussion in [27]). We may also expect the situation to be subtler if the objects
created and annihilated in our field theory are to be interpreted as local homogeneous and
isotropic patches of a single universe. However, as anticipated, we do not discuss in detail this
possibility in this work, and thus stick to the simplest choice of statistics.

4. The free-field theory

We now begin the analysis of the field theory we defined. We limit most of our considerations
to solvable sLQC, where explicit calculations can be performed. However, we try to maintain
a certain level of generality in the presentation, to leave room for the study of other cases.
We start with the analysis of the free-field theory. We have seen that, already at this level, the
field theory setting implies certain restrictions on and modifications of the LQC Hamiltonian
constraint operators, and thus of the single-universe dynamics. We focus on these first.

4.1. Equations of motion and Hamiltonian constraint

For sLQC, the free equation (10) can be solved analytically. We reserve the symbol y for field
solutions of the free theory and the symbol W for the classical field solutions of the interacting
model. Inserting equation (15) into (24), one obtains

S 2 b 2
i0,Ky = {92 — 127G [a,,— sin (ﬂ)} } V. 31)
Vo 2
Setting ¢ = 9, and choosing an (irrelevant) integration constant to be zero yields
3 2 b :
Kx =—i{92 - 127G [— sin <ﬂ> a,,} } x =0, (32)
Vo 2

with general solution x = x+[¢ — x(b)] + x—[¢ + x(b)], where

(b) : In |:tan (U0b>i| (33)
x(b) = —11,
V127G 4

so that X’ (b) = [(2v/ 12w G/vp) sin(vyb/2)]~!. Note that b parametrizes the circle S' from
which the point b = 0 (or b = 27 /vy) must be removed to make the coordinate transformation
(33) well defined. As b — 0, we see that dx/db — oco. We will encounter this singular
behavior when giving the expression of the propagator of the theory in terms of b; see
equation (52) below.

10
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We may expand the general solution in Fourier modes

+00 ) B )
(b ) = / Ak (k) MO L fp (k) MO, (34)

o0

and hence

27 /vy ) +00 . .
Y, ¢) = 2”_; / dbe ™" / dkx’ (D){AL (k) €M7 + Ap (k) eMO P}
0

o]

_ Y [ oo dx e—ivb® / oo ik(p—x) ik(¢+x)
= — e dk[AL(k) e + Ag(k)e 1, (35
2z —00 —00
where b(x) = (4/vp) arctanexp(v/ 12w Gx) and Ay = —ikAL and Ag = ikAR are chosen so
that ¢ is real.

In LQC (first-quantized theory), the existence of a bounce can be proven analytically
with the state x. Noting that the volume operator in x representation acts as v & 3, X
cosh(+/12 Gx)d,, one can compute its expectation value on the state (34), with the scalar
product

(xlx) = —i/dX(x*qulﬁIx — [DIx g x™). (36)

Since yx obeys a Klein—Gordon equation in ¢ and x and its left and right sectors depend on the
combinations ¢ =+ x, it is easy to see that the cosh in the volume operator factorizes as a cosh
in the scalar field, so that

(xIV]x) = vicosh(V 127 Go), (37

where the proportionality coefficient v, is the minimum volume at the bounce. Later on, we
shall derive this result again from the ‘light-cone’ condition of the field-theory propagator.
For the operator choice (25), the free equation is

2 2
¥ —6mG { [abz sin (lﬂ)} + [3 sin (lﬂ> ab} } ¥ =0. (38)
Vo 2 Vo 2

One can make the substitution

. [ bvo
- = 39
z = sin ( > ) (39)
to bring this to the form
I — 6mG[(1 — 22%) + (42— 627)9, +22°(1 — 2)3 |y = 0. (40)

By separation of variables and an ansatz ¥ (z, ¢) = e*?z* g(z%), one obtains (y := z°)
1

{—[1+£+2( + 2)]—1(1+ )2} )
8 Py I i w80y

3
+[<M+ 5) —y(u+2)] g +y(1—-yg'(y) =0, 1)

which the reader will recognize as a special case of Euler’s hypergeometric differential equation
[28, equation 9.151]

yd=y)g +lc—(a+b+1)ylgd —abg=0, (42)
provided that the coefficient of g(y)/y is made to vanish

L “3)
HE= 7272V T 3q6
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Figure 1. Wave packet |y (b, ¢)| formed out of the solutions (44), with A = 0.01 and
vo = 3w G =1, so that b € [0, 27).

Then, equation (41) is (42) witha = b = (u + 1)/2 and ¢ = p + 3/2; two independent
solutions around y = 0 are given in terms of Gaussian hypergeometric functions

+1 +1 3
”‘*T, “*T;uﬁ z;z(bf] (44)

where z(b) is given by equation (39) and 4 are the two roots (43). In terms of the variables
v and ¢, the general solution can then be written as

Y, = eXz(b) LR [

27 /vy . +o0o
.9 = /0 dbe / WAL Koo (0 $) + AV iy Bed)]  (45)

o0

for some functions A, (k) and A_ (k) (the interpretation of which as left- and right-moving
modes is less obvious). Taking A, = e and A_ = 0 we obtain a wave packet, plotted in
figure 1 (using MATHEMATICA) as a function of b and ¢. The wave packet is peaked on both
‘expanding’ and ‘contracting’ classical solutions ¢ = £(127G)~"/ 21n tan(vpb/4). This can
be compared with a wave packet composed of right-moving modes x’' (b) 19+ in solvable
LQC, sharply peaked on the ‘contracting’ branch (see figure 2).

The bounce picture is not as clear, analytically, as that in sLQC. Equation (40) is not
a Klein—Gordon equation, derivatives in ¢ do not map directly into derivatives in z and the
volume operator v o /1 — 729, acts on a function whose z and ¢ dependences are completely
uncorrelated. Figure 1 suggests that here also the wave packet follows the classical trajectories
(equation (30)) which contain a bounce, but we must leave a detailed numerical investigation
of the existence of a bounce to future work.

For Wheeler-DeWitt quantum cosmology, the free-field equation is just the
(141)-dimensional wave equation with general solution ¥ (a, ¢) = ¥, [¢—+/3/ (@7 G) Ina]+
Y_[¢ + /3/ (4 G) Ina], decomposed into Fourier modes as

+00
Via¢) = / Ak (k) HON@T o p () TN @) (46)

o]
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Figure 2. Wave packet |1 (b, )| in solvable LQC, with A, (k) = 0, Ag(k) = e~001% in (35),
where again vo = 37G = 1.

4.2. Propagator

Having fixed a self-adjoint operator K in the action (12), one needs to invert it to obtain the
propagator of the theory. In the generic case (10), we can give a ‘spin-foam’ series expansion by
using the results given in [21] (extending those of [19, 20]), where we determined the Feynman
propagator corresponding to a constraint of the form — (@ + 8;) (that is, for B(v) = 1) to be

. P o\
G — ®UU7 ...@\)v@vl)/
mf 3 ool ()

M=0 "M—15+V] k

m# V41

Xp: e—i4 / Owmw (H—¢")
1 2\/% l_[p]: (®wmwm - ®w/wj)
J#m

We refer to [21] for notation and details of the calculation. From this it follows that Green’s
function (right inverse) for IC with general B(v) is

(47)

Gr(v, p; v, @) := B0 ) (48)
since
C Y B( ) Y
KosGrlv, ¢: v/, ¢') = B(;’,) (=©, — 32)Gr(v, ¢: V', )
= 3v,v’5(¢ - ¢/), (49)

where the subscript ofAle indicates that differential and difference operators act on the first
argument only. Since /C is self-adjoint, a left inverse is obtained by taking the adjoint of the
right inverse, G, (v, ¢; V', ¢') = Gr(V/, ¢'; v, §).



Class. Quantum Grav. 29 (2012) 105005 G Calcagni et al

For the sSLQC model, we can give a more explicit expression for the propagator, exploiting
the relation to the Klein—-Gordon equation; Green’s function for (31) is given by

dx
Gr(b, ¢ 0, ¢") = —|  i{Gxalx(b), ¢; x(D), ¢}

db|,_,
: Galx(b), ¢; x(V'), ¢']
=idy v , . (50)
’ { 43 Gsin (1)
where Gg is the Feynman propagator for the Klein—-Gordon equation. Explicitly [29],
1 2 N2 /\2 .
GKG=_EIH{H [(¢—¢)" — (x—x)" —ie]}, (G
where the usual ie prescription cancels the singularities on the ‘light cone’, so that
Gi = (9672G) " ivg[x(b) — x(b)] 52)

sin 4% sin "5 {(¢ — ¢")? — [x(b) — x(B)]* — i€}’
G}, blows up as b — 0 or ¥ — 0 because the coordinate transformation from b, &' to x, x’
becomes singular there, as we noted below (33). Hence, these are not physical singularities.
To obtain Green’s function which can be extended to those values, one would have to solve
equation (49) with appropriate boundary conditions. In the above example, the b representation
elects v as the momenta; swapping representation, the physical interpretation of the light-cone
poles as classical trajectories would be unchanged.

Note that the choice of the Feynman propagator for the particular Green function to use
can be justified formally by the analogy with the free particle case, and thus by a definition of
‘time ordering’ and thus causality conditions with respect to the values of the scalar field used
as internal time for the system. Another justification, possibly more satisfactory, for the same
choice of analytic continuation in the complex plane is the fact that this choice makes not only
the propagator itself but also the formal field-theory path integral well defined, at least as far
as the free theory is concerned.

In comparison, we note that for the Hamiltonian constraint (26) of standard Wheeler—
DeWitt quantum cosmology, one just considers the Klein—-Gordon equation, and the propagator

of the theory is Gxg[+/3/(47G) Ina, ¢; /3/(4nG) Ind', ¢'].

5. Taking interactions into account: mean-field approximation

We now want to extend our analysis to the field interactions, i.e. to the effects of topology
change on the dynamics of a single universe (or, in the alternative interpretation we suggested,
of the interaction of the various homogeneous patches of the universe on the dynamics of
each of them). As in any nontrivial field theory, the exact solution of the dynamics is beyond
question, one has to resort to approximation methods and various truncations. One is of
course the perturbative expansion of the field theory around the Fock vacuum and the study
of the corresponding Feynman diagrams and amplitudes. This is, for example, the level at
which the current understanding of full GFTs (and of the corresponding spin-foam models)
stands. Another type of technique, aiming at an approximate understanding of nonperturbative
features of the theory and at the extraction of effective dynamics from the ‘fundamental’ one,
is mean-field theory. The application of such technique in the full GFT framework has just
started [30], and a similar study of the toy model we defined here is what we focus on in the
following.

As said, a first approximation to the dynamics of an interacting system is obtained if one
assumes that, in an appropriate quantum state |£), the system fluctuates around a configuration

14
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with nonvanishing expectation value of the field operator U and replaces U= (\il) + 68 in
the quantum (operator) version of the field equation (18). A similar expansion can already be
done at the classical level by writing the field W appearing in the action (17) as W = Wy 4§,
that is, when studying the field theory dynamics around a different (nontrivial) vacuum Wy.
The resulting effective action from such an expansion (starting from equation (17)) is the
following:

Sett = S|V = Wy + V] — S|V = Yy
1 .
= Z / dg |:‘IJO(V,¢) + 50w, ¢>} Ksw(v, ¢)

j—m J
+Z _ Z/dqn .dg; f,(v,,dh)Z( )Hwo<vk,¢k) [T swe.on. 53)

ViV m=1 k=1 I>j—m

where we have assumed that the functions f;(vi, ..., v}, ¢i, ..., ¢;) are symmetric under
any permutations of their j pairs of variables. This assumption, needed only to have a more
compact expression for the result, can be lifted straightforwardly’.

We can then isolate the terms that are linear, quadratic and higher than quadratic in the
dynamical field § W to obtain (using the standard convention that a sum running fromn ton — 1
is empty)

eff_[z/

de; ..

)1

j—1
X fi(i, 1) (1_[ Wo (v, ¢k>) SW(v, ¢j>}

k=1

%{Z / dg 5V (v, $)KSW(v, )

A
+j§2:(j_—12)!]);>/d¢1"'d¢jfj(vi»¢[)

J
X (H Wo (Vi ¢k)> SW(vi, @)W (v, ¢>2):|

k=3

[Z DI ERRTRY

Vi)

. (}i ) [T e o0 [T 500 @)}. (54)
m=3

k=1 I>j—m

The term that is linear in §W vanishes if the mean-field configuration W is chosen to satisfy
the classical equation of motion of the original field theory. In practice, it is extremely hard to
find a classical solution of the interacting theory, so, as is the case in some condensed matter
systems, we resort to a further approximation valid in the limit of small coupling constants.
That is, we will choose solutions of the free field theory as our mean-field vacua Wy, either exact

7 When the assumption is not satisfied, the expression replacing the third and fourth lines in (53), for a given j, is
obtained by (i) choosing m ordered elements out of the ordered set of j variables of the functions f;; (ii) convoluting
m fields 6W and (j — m) fields Wy with the same functions f;, with respect to the chosen variables; (iii) summing
over m from 1 to j.
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(when possible) or approximate, and then assume that the coupling constants A ; are very small
(that is, that topology change is strongly suppressed in this cosmological second-quantized
toy model) and that, because of this, the same vacua represent approximate solutions of the
full equation of motion. Under these assumptions, we can neglect the linear terms in the above
effective action.

The quadratic term in § WV defines an effective Hamiltonian constraint for the cosmological
second-quantized model, taking into account the small processes of merging/splitting of
homogeneous isotropic universes/patches. This effective Hamiltonian constraint operator is
given by

K;‘I;t; ik _ 8((]51 ¢2)8U1 ,,ZIC 4+ Z ( — 2)'[C;l’0sfja}n/ (55)
with
sy Z qusa dg; 1"[%(% GOS0, V2, o B By ). (56)

It depends on the original couphng constants A;, on the original interaction kernels f;, and,
crucially, on the mean-field configuration W, chosen as new vacuum.

The new effective interactions Vg for §W depend on the same data, and are given by the
last term in equation (54):

eff_z : Z/d(bl d¢]f,(v,,¢z)2< )]‘[wo(vk,cpk) H SW(u, ¢p),  (57)

ViV m=1 I>j—m
from Wthh one can read out the new interaction kernels.
The above is totally general. The simplest case is when the original field theory contains
only interactions of the lowest (nonquadratic) order, that is, when n = 3. Then, one obtains
the effective action (now assuming the linear term vanishes)

1 .
SerldW] =2 3 / dg1 dgadW (v, $)Kerd W (02, ¢2)

X 3
3 2 f dpy ey dghs f3 (vi. 60) [ [ 89 vk o). (58)

V1,V2,V3 k=1

with the effective Hamiltonian constraint operator
Kett = 8(d1 — $2)8,,.1,K + Ao (01, ¢1: 2, ) + A Z / dos f3(vi, di)Wo(v3, 93).  (59)

In this simple case, one can also easily give the generahzatlon to nonsymmetric interaction
kernels

N N 1
Ketr = K (01, @15 v2, ) + E{Kzfz(vl, V2, @1, ¢2)

A3
+ 25 [ A0l vm 15,61, 62, 03) + 01, v 2 91,03,

+ f3(v3, v2, V1, @3, 92001 | Wo (v3, P3) + (V] < Vz)}- (60)

It is clear that the main issue in this approach, for the extraction of effective single-universe
dynamics from the initial field-quantized model, is the choice of mean field . We have already
anticipated the general requirement of choosing (approximate) solutions of the original field
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theory equations, and the difficulty involved in doing so. We will now work out a choice of
mean-field vacuum. Having done so, we will turn to the role of the original interaction kernels
f;j and the consequences, at the level of the effective Hamiltonian constraint, of some interesting
choices of the same. We keep this final discussion on the possible resulting dynamics rather
brief, leaving a more thorough analysis to the future®.

One can follow two conceptually different but mathematically similar approaches to the
choice of mean-field vacuum, yielding, eventually, the same result. The first would be to take
a known physical state from the first-quantized theory and write

Yo (v, @) = ¥ (v, §). (61)
In the second, one takes a second-quantized coherent state in a Fock space picture [31]
€) = exp [ / d@(k)é(k)al} 10), (62)

where k labels classical solutions to the constraint, do (k) is some measure determined by the
normalization of single-particle states |k) = aZ|O) (by imposing f do (k) (k|k'y = 1) and |0) is
the Fock vacuum. These states are eigenstates of the annihilation operators a; with eigenvalue
& (k), so that the field operator \il(v, ¢) has expectation value

&1V (v, §)IE) = [f do (k)& (k) xx (v, ¢) +c.c} I€1>, (63)

where i (v, ¢) is the solution to equation (10) labeled by k. Clearly, this expectation value can
then be equivalently viewed as a first-quantized (real) wavefunction v (v, ¢), equation (61). In
both viewpoints there is a normalization condition: for |£) to be in the Fock space, one must
have f do(k)|& (k)|* < oo, while v (v, ¢) defines a first-quantized state if it has a finite norm
in the appropriate physical inner product, e.g.,

Iy l? =Y BO)IY (v, ¢o)l, (64)

at some fixed ¢ [22].

For the solvable sLQC model, where the general solution is equation (35), we have to
choose appropriate functions A, (k) and Ag (k) in the mean-field approximation. If we consider
only a single right-moving mode ky > 0 [A. (k) = 0, Ag(k) = §(k — ko)],

Vo +00 ) )
Vi, (v, @) = T / dxe VW gko@+0) 4 ¢ ¢
T J-c0

k 2/ 127G 2
~ cos " _In el LS Lwcos(k()(ﬁ)- (65)

V127G kovo 4 (373GK2)

8 A remark is in order. The logic of a mean-field approximation is the following. One starts from a given dynamical
model of the universe in second quantization through some functions f; (in addition to a given free theory dynamics).
One aims at obtaining an effective free theory, taking into account some effects of the presence of interactions, around
a new vacuum. One has then to identify what this relevant new vacuum is, and extract the effective dynamics around
it (which will of course depend on the original choice of interactions f;). In our presentation we will be forced to
follow a different logic. We will first discuss choices of mean field, then consider interesting possibilities for effective
Hamiltonian dynamics one may want to obtain as a result of the mean-field approximation of the second-quantized
dynamics, and finally we will discuss which initial model (functions f;) would lead to the effective Hamiltonian
considered, given a mean-field configuration. The reason for this line of argument is twofold. First, given the progress
in the context of LQC and the novelty of our second-quantized reformulation, we have some control over the possible
forms of mean-field configurations but very little constraints on the ‘correct’ choice of interactions. Second, in this
paper, whose main goal is to introduce the new second-quantized framework, we are more interested in exploring
the available possibilities, the outcomes of various choices of models, and the ways to deal with them, rather than
analyzing the properties of one specific model.
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Here we have used a stationary-phase approximation

f dxe) ~ 3 el il

s Vigao

in the limit v > vy, in which we find that ¢ does not decay and, in general, does not
satisfy a normalization condition. Alternatively, we might consider a Gaussian, giving a wave
packet centered around a classical trajectory ¢ = —x = —(127G)™ ' 1n tan(vpb/4), similar
to the wave packets studied by Kiefer for Wheeler—DeWitt quantum cosmology [32]. The
stationary-phase method then gives

+00
) . .
Y, ¢) = —20 dx dk e POk @) ¢ ¢

—00

Vo e iko (¢+x)— 2= (p+x)2—ivb(x)
- dx el a5 7+ c.c.
2\/ TA —00
2v/ 127rG)

<zvm)‘wl“(

kovo

Vi, (v, @), (66)

where we pick up an extra factor from the Gaussian. For large v, the field now falls off
faster than any power of v. The scalar field ¢ not only acquires an effective periodic potential
(V ~ f(a)cos(kypp) for n = 3), but it also becomes nonminimally coupled with gravity via a
nontrivial function f(a).

We can redo the analysis for Wheeler—DeWitt cosmology using a wave packet of the usual
form

400
V(@ 9) = / gk eHb—k) ikig-A@)]

o]

— % eiko[¢—N(a)] e_ﬁ[qg_j\/(a)]z’ )

so that for large a (and at fixed ¢) we find again a falloff behavior
¥ (a, ¢) ~ aV 7o s me e (68)

faster than any power of a. )

In general, any statement about the explicit form of the contribution to C will strongly
depend not only on the chosen field configuration W, but also on the form of the interactions in
our model, which are not strongly constrained. Let us discuss possible results for this effective
Hamiltonian dynamics, and how to obtain them.

A possibility which has been suggested by studies in LQC [19, 20] is that, for a ‘monomial’
interaction, the GFT coupling constant A is related to the cosmological constant A. This
possibility had been also considered previously [13, 14], but, in analogy with matrix models
and tensor models and with the ‘third-quantization’ model of [4], the coupling A would be
expected to be related to the exponential of the cosmological constant rather than A itself. For
example, the formal arguments of [4] suggest that a second-quantized field-theory Feynman
amplitude should correspond to e evaluated on the classical spacetime represented by the
Feynman diagram.

Our simplified scheme suggests another way to obtain a relation between a fundamental
field-quantized coupling and an effective cosmological constant. Under the assumption that our
toy cosmological model comes out from some more fundamental GFT dynamics, and thus that
the coupling constant of the toy model can be related to the fundamental GFT interactions, the
mean-field approximation can relate very directly the coupling constant of the cosmological
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model to an effective cosmological constant in the single-universe dynamics (free theory), that
is, in an effective Hamiltonian constraint. Let us see how this can happen.

The effective contribution to X should be of the form K, = A B(v) v2. This term grows
with large v and, for a trivial polynomial interaction (that is, trivial interaction kernels f;),
presumably it could not come from a normalizable W. However, a general choice of interaction
functional, such as that in equation (17), can accommodate an effective cosmological constant.
Actually, it can even reproduce a nonconstant scalar- field potential term

Ky = V($)Bw)n?, (69)

for example of the type that would be needed for inflation in the early universe.

Take, again, n = 3 and equation (59). The contribution in f, is nontrivial only if the
effective Hamiltonian is nonlocal; otherwise, it would just be an extra piece defining the initial
Hamiltonian constraint. Since we are interested in a local constraint, we can ignore it, set
Ay = 0 and absorb A3 in the potential V (¢). Then, a function f3 that happens to match the
behavior of the mean-field vacuum and contains the appropriate dependence on v and ¢ on
top of it would be

L, §i) = 8(d1 — $2)8(d2 — $3)80,.0,80,.0,V (93)B(13) 03[ W (v3, ¢p3)] 7. (70)

Note that, by construction, f3 is symmetric with respect to all its arguments.

Clearly, this is rather adhoc and one should have an independent justification (and
possibly a full derivation from a fundamental GFT) for a given choice of interactions f3,
such that the wished-for effective Hamiltonian constraint comes out, for a reasonable choice
of nonperturbative vacuum which should also be independently justified.

However, the above derivation proves an intriguing possibility, to be explored further: an
underlying, more fundamental dynamics of creation/annihilation of universes, i.e. topology
change, or of merging/splitting of homogeneous and isotropic patches within a single universe
could result, at an effective level, in a nontrivial potential term for the (homogeneous and
isotropic) scalar field, and a cosmological constant term.

Note also that, in the first-quantized LQC and Wheeler—DeWitt frameworks, the presence
of a potential spoils the separation of positive-frequency and negative-frequency sectors, as
recalled, e.g., in [21]. This is not an issue in our second-quantized model (being a field theory),
and we are able to generate a scalar potential (nontrivial in the inflationary early universe)
without formally changing the structure of the free theory.

With the same procedure, we can also obtain other types of effective contributions, for
instance a nonvanishing curvature kK = 1 (closed and open universes, respectively). It is
sufficient to replace

3k

8nG
in equation (70) to obtain an effective spatial curvature term of the form one finds in the
classical Friedmann equation. It is also straightforward to obtain an effective Hamiltonian
constraint corresponding to, e.g., the K = 1 model in LQC [33]. In fact, also in that case the
term corresponding to spatial curvature only acts by multiplication with a function of v.

W(p) — vV (p) —v'/3 (71)

6. Discussion and outlook

In this paper we outlined the construction of a field theory of universes drawing inspiration
from the perspective advanced in quantum gravity by GFT, and by the general idea of ‘third
quantization of gravity, that had been advanced in the early days of the subject [4, 9, 10]. We
have also studied various aspects of the formalism, in particular the consequences it has for the
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single-universe dynamics, that is, for the standard (loop) quantum cosmology setting. These
come already from the embedding of the canonical dynamics within a field theory, as encoded
in the free-field theory. More interesting consequences, of course, come from the existence
of interactions, which, we showed, can be taken into account via mean-field approximation.
Given the subject, and the current level of understanding of the fundamental theory (in either
the LQG or in the GFT formulation), our goal was then in many respects necessarily of an
exploratory nature. In particular, the least developed point of the discussion concerns the
choice of interaction. As in all simplified models for cosmology, however, the main task will
be to better justify the assumptions and the dynamics chosen from the fundamental theory,
and to possibly show how such a simplified model can emerge naturally in some sectors of
the full theory. Understanding this issue will also clarify the role and physical significance of
conserved currents within the model.

Before concluding, we should mention an alternative view of the physics of this ‘group
field cosmology’, that we anticipated in passing in the course of our presentation. While loop
quantum or Wheeler—DeWitt cosmology describes a single evolving quantum universe, in
the field cosmological model one has many-particle interacting states. Instead of interpreting
them as n distinct universes merging and splitting in topology-changing ‘scattering’ processes,
one could think of them as n FRW patches which, collected together, approximate a single
inhomogeneous universe. This is reminiscent of the separate universe approach [34-36],
where inflationary large-wavelength perturbations are represented as spatial gradients among
homogeneous patches of Hubble size’. In each patch centered at some spatial point X, one
has a ‘local’ scale factor a(z, x), Hubble parameter H(¢, x) and so on. In particular, the
local scale factor a(t, x) = a(t) exp[—PnL (¢, X)] encodes both the minisuperspace variable
a and the nonlinear scalar perturbation @y . Linear perturbations can then be identified with
gradients. At the linear level, a(¢,x) =~ a(t)[l — ONL(7,X)]; call da = —a(t) PN, X).
One has [a(t, X;) — a(t,x2)]/(x} — x) ~ a(t, x), so that, up to a numerical factor, for a
perturbation of wavelength A we obtain §a ~ Ad;a(t, X).

In our field-theory picture, the present-day universe would resemble some configuration
of many particles (regions of linear size b~!) that looks homogeneous to high precision at large
scales. This could be a condensate phase of the theory where discrete translation invariance in
the v variable is spontaneously broken, as is known for systems in condensed matter physics.
Then, the challenge would be to define a model whose collective behavior agrees with the
standard cosmological perturbation theory.

However, the resulting action would be nonlocal in order to accommodate the infinite
multiplicity of spatial points into a finite-dimensional, minisuperspace-like phase space. For
instance, following the above-mentioned gradient expansion, a linear perturbation would be
defined via the ‘interaction’ of two patches in a nonlocal quadratic term:

fdad¢fda/d¢'f(a, d,¢,¢)W(a,$)V(d, 9",

where f is a function which should encode the correct dynamics to match with the perturbed
Hamiltonian constraint. Just as we did for the effective Hamiltonian constraint in the previous
section, one could explicitly calculate f from this perturbed Hamiltonian constraint. The main
difficulty to overcome, in developing properly the separate universe perspective of our second-
quantized cosmology, is to develop first a proper quantum cosmology version of the separate
universe approach to cosmological perturbations. Admittedly, it is unclear at the present stage
whether applying our framework to the problem of cosmological perturbations has practical

9 For other work in the quantum cosmology context which is similar to the spirit of the separate universe approach,
see, e.g., [37].
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advantages over conventional strategies, unless some conservation law be implemented. It is
yet another possibility worth exploring, however. On the other hand, the implementation of the
separate universe idea within a field-theoretic formalism like the one we propose could have a
better chance of being derived from fundamental formulations of quantum gravity such as GFT.
This would give a more solid ground to this way of dealing with cosmological perturbations
and also offer a way to test fundamental models via their cosmological predictions.
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