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Abstract

We investigate the construction of coherent states for quantum theories of
connections based on graphs embedded in a spatial manifold, as in loop
quantum gravity. We discuss the many subtleties of the construction, mainly
related to the diffeomorphism invariance of the theory. Aiming at approximating
a continuum geometry in terms of discrete, graph-based data, we focus on
coherent states for collective observables characterizing both the intrinsic and
extrinsic geometry of the hypersurface, and we argue that one needs to revise
accordingly the more local definitions of coherent states considered in the
literature so far. In order to clarify the concepts introduced, we work through
a concrete example that we hope will be useful in applying coherent state
techniques to cosmology.

PACS numbers: 04.60.Pp, 98.80.Qc

1. Introduction

Coherent states constitute a key tool to investigate the physics of quantum systems, in both
their kinematical and dynamical aspects, with special attention to the semiclassical limit. They
have first been constructed to describe coherent light [1] and since then have been applied to a
large variety of physical systems (see [2, 3] for a review of different aspects and applications).

In this paper, we want to contribute to the discussion of coherent states in the particular
context of (loop) quantum gravity, with the objective of defining states which have definite
semiclassical properties, as specified below, with respect to extended geometrical quantities,
rather than local ones, in terms of the graphs on which general quantum states of the theory
are defined, in the sense that they depend on many of the data associated with individual links
of such graphs.

Let us briefly summarize the relevant steps of the construction of the states. First, we use
the parametrization of the gravity phase space (intrinsic metric and extrinsic curvature of the
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slice) used in loop quantum gravity (see [4] for a review), obtained by passing from metric
variables to Ashtekar connection variables [5, 6], and then from pointwise defined fields to
their smearing along extended curves and surfaces embedded in the manifold. In particular, the
connection is replaced by holonomies along elementary paths in the slice and the conjugate
triad is replaced by its flux across elementary surfaces, also embedded in the slice. The final
(classical) phase space thus obtained can be parameterized by the set of all graphs embedded in
the manifold and a pair of holonomy and flux variables per edge of these graphs (again see [4]
for details). In the standard connection representation of LQG, holonomies are then quantized
as multiplication operators and fluxes as invariant vector fields, giving rise to a well-defined
kinematical Hilbert space. An alternative (non-commutative) representation is also possible
[7], in which fluxes act by *-multiplication and holonomies act as (functions of) derivatives.
The constraints describing the gauge invariance of the system are well defined on this Hilbert
space. While the Gauss and (spatial) diffeomorphism constraints can be solved—Ileading to a
Hilbert space spanned by invariant spin networks supported on diff-invariant classes of graphs
[4]—the Hamiltonian constraint can be defined (up to certain ambiguities), but cannot be
solved in full generality, at the present stage of development [8]. For this reason, work on the
dynamics of the theory is now exploring alternative strategies, based on the spin foam [9] and
group field theory ideas [10].

At the quantum level, due to Heisenberg’s uncertainty relations, it is of course impossible
to resolve individual points on phase space and the issue becomes that of identifying suitable
semiclassical states in the (kinematical) Hilbert space of the theory that replace classical
configurations, and peak on a given point in continuum phase space given by the connection
and the dual triad fields on the 3-slice.

Given the parametrization used in terms of graphs, the notion of peakedness is a bit more
subtle than usual, as one is mixing two types of approximations: one of quantum nature,
stating that, after quantization, the conjugated variables describing the connection and the
triad fields should have minimal (but nonzero) spread, and then one of classical nature due
to the discretization of the original continuum phase space needed for the construction of the
Hilbert space.

In addition to the above, there is the issue of diffeomorphism invariance and background
independence of the theory, a defining feature of gravitational theories. With respect to which
scale one is defining quantum coherence, given that scales are dynamical in such a theory?

This question originates from the constrained nature of the gravitational phase space. Let
us discuss this in more detail. As well known, there are three sets of constraints describing the
gauge invariance of the phase space: the Gauss, 3D-diffeos and the Hamiltonian constraints.
Classically, the kinematical continuum phase space is described by connections and electric
fields. One could reduce already at the classical level w.r.t. the Gauss constraint, and that
would lead us back to the original ADM variables. Reduction w.r.t. the diffeo constraints is
more difficult, and a solution to this would amount to an exact characterization of superspace
[11,12].

Still at the classical—but discrete—level, the phase space is labeled by embedded graphs
and a pair of connection and flux per edge of these graphs. A comparison of degrees of freedom
becomes nontrivial, since the support of the fields has changed from points to graphs. At this
discrete level, one could as well reduce w.r.t. the Gauss constraint, but one usually reduces after
quantization. The issue with diffeomorphisms is more thorny. Modding out diffeos leads to a
description of the phase space labeled by unembedded graphs, but whose associated classical
variables do not have an obvious geometric interpretation in terms of the continuum ones. The
quantization does not improve the situation on this point, even though it can be performed and
leads then to a Hilbert space given by the projective limit of a direct sum of Hilbert spaces,
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one per (embedded) graph, and each one given by square integrable functions over copies of
SU(2), one per edge of the graph. In this representation, fluxes act as invariant vector fields.
One can then reduce w.r.t. to the Gauss constraint, leading to gauge-invariant functions and
then w.r.t the 3D-diffeos by group averaging over diffeo transformations.

The question now is at which level one is interested in constructing coherent states. The
limitations come mostly from the classical theory. A coherent state peaks on a certain point
of the classical phase space, and one needs first to choose which classical phase space to
work with: the continuum one or the one associated with the discrete graphs embedded in
the continuum manifold. Since we understand better the degrees of freedom in the continuum
setting, we choose this classical phase space. Then, since the only constraint we can actually
solve and characterize geometrically at this level is the Gauss constraint, the only question
we pose at this stage is to construct coherent states that are gauge invariant or covariant
w.r.t. the Gauss constraint. We are not aware of any construction of coherent states that uses
diffeo-invariant quantities only and that defines coherence in a diffeo-invariant way, that is,
that works on the diffeo-invariant Hilbert space, due to the above-mentioned difficulties. So
we will also deal uniquely with diffeo-covariant (as opposed to invariant) coherent states.

Because we choose to construct coherent states peaking on points of the continuum phase
space, but still defined on the phase space coming from the discrete variables associated
with graphs, we need to understand this approximation. The main strategy to understand it
was introduced by Ashtekar, Rovelli and Smolin in [13], where the authors construct states
weaving semiclassically a certain 3-geometry. These weave states are not coherent states,
since they are eigenstates of the intrinsic geometry, thus completely spread over the extrinsic
variables. However, the general procedure and construction, as well as the characterization
of the nature of the approximation introduced by the graph, are valid and we import them in
our own construction. Using the tools introduced by Hall [14], the weave states were later
generalized by Sahlmann, Thiemann and Winkler [15-17], and later works [18] to proper
coherent states on the full kinematical phase space of GR, that is, including the extrinsic
geometry, while keeping the essence of the argument. The coherent state used in those papers
was defined in [19] as a tensor product of Hall states, one for each edge. We will argue here that
this sort of tensor product construction is not optimal when considering collective observables,
which in turn are needed to approximate a discrete set of data by a continuum geometry at
macroscopic scales?.

It is important to highlight the main limitation of the approach, which lies in its purely
kinematical nature. In the study of the physical properties of a given quantum many-body
system, the structure of the chosen (approximate) wavefunction has to be optimized in order
to appropriately capture the relevant physical features of the system. This operation, while
kinematical in nature (it amounts to a specification of a corner of the Hilbert space in which the
dynamics will be explored), cannot be totally independent from specifications of the dynamics
of the system and of the particular regime in which the system is probed (e.g. the condensed
phase, etc).

In particular, the factorized wavefunction, while certainly relevant as a state for a many-
body problem, is not a good choice when considering interacting particles, for which the

3 We will often use words such as collective variables, extended objects and macroscopic variables. These terms
have slightly different meanings, which we will not distinguish. The idea in the background is that we are trying to
move from the specification of a state in terms of microscopic degrees of freedom to a specification of a state in terms
of coarse grained information. Whether this operation can be connected to an operation of averaging, decimation or
change of variables from local to extended ones depends on the specific construction at hand [20]. In the example that
we will consider later, we change the variables with which we parametrize the classical phase space at the discretized
level. This is just a convenient example of the general issue of passing from fine grained data to coarse grained data
that has to be addressed in the elucidation of the macroscopic properties of any candidate theory for quantum gravity.
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eigenfunctions should not be expected to be factorized. So dynamics is crucial to understand
how to proceed in the construction of approximate physical states. We could say that this paper
is a first step in this direction.

Also, it is often more convenient to pass to a second quantized description of a many-body
system, with the effective number of particles (and their phase spaces) becoming a quantity
to be specified only as an average and not as an exact property. Such Fock representation
is not (yet) available for LQG or GFT. Still, passing to a formalism that is less sensitive to
the fine grained structure of a specific graph, while remaining able to capture macroscopic
geometrical quantities, as we do in this paper, represents a necessary step to address concretely
the semiclassical limit of LQG, irrespectively of whether wavefunctions are given in terms of
coherent states, or other states®.

Finally, we have defined in a previous work [21] an alternative to Hall states as coherent
states for a single copy of the group, using a flux representation for LQG [7]. The states defined
there have improved peakedness properties as compared to Hall states (see [15]), and we will
use them when constructing coherent states for collective observables in this paper.

The plan of the paper, in more detail, is as follows. We start in section 2 by critically
reviewing the weaving argument under the form given in [16]. We will identify certain
assumptions and propose an alternative. One of the main points we would like to make is
that the choice of coherent states made in [19] is too local, if one is interested in collective
observables, and we would like to consider a more collective construction adapted to them.
Before trying to give a general construction, we will work through a concrete example in
section 3 that we hope will be useful to applying coherent state techniques to cosmology. We
will then consider the general procedure in section 4, highlighting the ambiguities and choices
made in this work, before concluding with perspectives and possible developments.

2. Approximation scales and general construction

Consider the desired semiclassical state W, g,), peaking on a given point of phase space,
labeled by a certain pair of datasets, Ag, Ey associated, respectively, with the extrinsic and
intrinsic geometry. To properly construct it with the tools of LQG, let us move to the discretized
phase space, where, for each graph, connections are replaced by holonomies supported on
edges of the graph and inverse triads are replaced by fluxes supported on surfaces dual to the
same edges’. The minimal set of variables to be used, then, consists of a graph I' and a pair
(h2, P?) per edge of the graph. The subtlety here is that, with the graphs sampling the geometry
up to a given resolution, many graphs represent the same continuum information. Besides this
difficulty, it is clear that the exact identification of the variables associated with each graph is
both gauge (Lorentz) and frame (diffeo) dependent.

2.1. Classical preliminaries

Let us try to make this statement more precise. Consider the phase space point labeled by
8o := (Ap, Ep). Choose then a graph I and embed it on the manifold given by the 3-slice, using
the data g for that. This means for instance that the lengths of edges and areas of dual surfaces
are computed using the intrinsic metric gy obtained from the triad, and this information is

4 That this must be the case is obvious when considering the possibility that the dynamics, specified by the Hamiltonian
constraint, might involve the action of graph-changing operators.

3 This means that, strictly speaking, the definition of the fluxes requires more than the information contained in the
graph itself; in fact it requires the specification of a surface dual to the edge of the graph (and a reference point on the
graph itself) [4]. For simplicity, we do not use explicitly this extra information, but it has to be kept in mind.
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encoded in the discrete variables Pf. The extrinsic curvature part of gy is encoded in the
variables h?, the parallel transports along the edges e of the graph.

We see that there is a certain number of ambiguities in the set of variables (F, hg, Peo)
describing the continuum phase space. For a general configuration (A, Ey), one would need
infinitely many graphs to describe all its properties using the discretized variables®. For a fixed
graph, the different configurations (h(e), Peo) label different possible embeddings of this graph
on the 3-slice, according to the continuum data go.

It is also clear that both ambiguities are correlated. In order to access all the information
represented by the metric gg, one could take two attitudes. The first would be, say, to consider
only configurations such that holonomy and fluxes take the same value everywhere on the
graph (as long as compatibility conditions are properly taken into account). One would then
probe the geometry by considering finer or coarser graphs. This is the attitude taken in the
dynamical triangulation program, or the more recent causal version of it [22]. A second
attitude, closer to the original Regge calculus approach [23], would be to fix once and for all
the graph. The original continuum phase space would then be probed by different possible
embeddings, or equivalently, by varying the holonomy and flux variables. One can always take
a fine enough graph such that the continuum phase space is approximated to a given precision
[24]. Let us stress that all this is still at the classical level and regards the identification of the
gauge-invariant (classical) phase space, setting only the stage for the quantization program.

The LQG formalism requires a combination of the above, as the full specification of the
Hilbert space of the theory involves both a sum over the variables associated with each graph
and considering all possible graphs embedded in the manifold.

Suppose then that a graph and an embedding of that graph have been chosen. The
continuum metric is then approximated by a finite set of variables (hg P? ) . This approximation,
classical in nature, is controlled by the characteristic edge length of the embedded graph ¢.
This scale is computed in terms of the intrinsic geometry contained in go, and it has statistical
nature, representing a sort of cutoff with which the continuum geometry is sampled.

The geometry gy that we want to approximate will be characterized by many length scales,
in general, associated with intrinsic and extrinsic curvatures. Also, the states we consider here
are still kinematical. However, foreseeing a possible use for studying the effective dynamics,
we might want to introduce a restriction on the kind of data that we want to describe to
the so-called nice slices [25]. Nice slices are the leaves of a particular choice of foliation
of a four-dimensional geometry in such a way that the intrinsic and extrinsic curvatures are
everywhere sub-Planckian. In the parametrization g for the classical phase space, this would
represent the statement that the curvature radius (intrinsic and extrinsic) is much larger than
the Planck length. Of course, the possibility of giving a nice slicing ultimately depends on
the four-dimensional geometry, which has to be low curvature (essentially because of Gauss—
Codazzi relations). Barring special cases of high symmetry, the radii of curvature (intrinsic
and extrinsic) will be thought to be much larger than the statistical scale €.

As said, for generic geometries, it is difficult to specify the curvature scale in a unique
way. In symmetric configurations, this is more straightforward. For example, it would naturally
be given by the Schwarzschild radius, for spherically symmetric and stationary black holes.
It will suffice to keep in mind that it will represent the scale of the features of the kind of
geometries that we want to use for semiclassical states, and that it is a IR scale.

6 For metrics with a high degree of symmetry, as in mini-superspace approximations, it is conceivable that a single
graph—if not a single point as in homogeneous contexts—would capture all degrees of freedom. One should be
careful though since in this context one has no control over perturbations around the mini-superspace metric. Those
perturbations might be generated as soon as the dynamics is allowed to excite the other degrees of freedom of
geometry.
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So we can identify in general three sorts of scales: the first associated with the intrinsic
data, measuring the size of the system, the second associated with the extrinsic data measuring
the scale in which the system changes in time and the third associated with an average (4D)
curvature scale. When considering a specific example in the following, the meaning of these
scales will become transparent.

In the end, it is clear that, sampling the given geometrical data with a discrete structure,
we introduce a (classical) error which can be estimated to be controlled by the ratio € /L, where
L is the smallest of the scales discussed above.

2.2. Quantum/semiclassical analysis

In order to deal with the semiclassical limit, we are interested in constructing a coherent
state W0 po). Following the loop quantization, this state lives in the space L*>(SU2)*N) of
square integrable functions of many copies of the group, one for each of the N edges of graph.
One will later consider the gauge-invariant space L?>(SU(2)*" /SU(2)*") defined by taking
the quotient w.r.t. the action of the internal group on the V nodes of the graph. Holonomy
observables are quantized as multiplication operators and flux observables as right invariant
vector fields on the group. The nontrivial commutators between fundamental operators are
given by [4]

[Ef h] =itR > h, [ELE}] =ite)s.  EY, (1)
where ¢ has the dimension of a length squared’. The fluxes have the dimension of a length
squared. This is because the fluxes are constructed out of triad fields, which are dimensionless,
just as metrics are dimensionless in our choice of conventions. When integrating over a surface
to define the flux, it acquires the dimension of length squared. The connection has a dimension
of an inverse length, and can be integrated over an edge giving a dimensionless quantity. The
holonomies—which are necessarily dimensionless—are thus naturally defined without the
introduction of any new scale. The Immirzi parameter y appears in the commutator because
of the choice of configuration variables:

AL =T, +yK,. 2

At the classical level, it does not affect the solutions to the equations of motion, being related
to a topological term, but it plays an important role in the quantum theory.

Interestingly, in this algebra, the role of A, which distinguishes the classical from the
quantum regime in standard quantum systems, is thus played by the composite quantity

t :=8nGyhy = Epzy, 3)
where, in these units,
tp = (87Gyh)'/? “)

is the Planck length.

Consequently, there are three (fundamental) constants which might be relevant for the
definition of the semiclassical limit: G, h and y, all contributing to the semiclassicality
parameter ¢. Coupling with matter [26] as well as, of course, the quantum dynamics, might
disentangle them and distinguish their respective roles.

One could also take dimensionless phase space variables and define

E,:=E, /L, ®)

7 We are using units in which ¢ = 1.
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which means that the intrinsic curvature is measured in /,, units, which makes the semiclassical
parameter dimensionless and equal to the Immirzi parameter:
ri=y. (6)

Again, one could redefine the connection dividing by gamma and 7 would be simply equal to
1. This would imply that quantum fluctuations should be of order 1 for coherent states.

Together with the length scales characterizing the classical continuum phase space point
and € measuring the classical error in replacing a continuum metric by a discrete one, the
algebra of operators introduces a quantum scale, measured by /,,, in the sense that fluctuations
should be of order 1 in Planck units for semiclassical states. In the end, we will be interested
in imposing some relative conditions on all these scales.

2.3. Tensor product states

Let us take a look at the semiclassical properties of the states defined in [19, 16]. They are
defined as the tensor product

te _ te
Yy = @ Vi) @
e
of states defined edge per edge, and on each edge 1//’(';0 ) is the Hall state [14] peaked on the

point (h?, P?), for an edge of length € and semiclassical parameter 7.

This is very close to the original weave construction [13]. It is the simplest choice, given
the kind of fundamental variables of the theory, and it is the one adopted by all coherent states
constructed to date, in both canonical and covariant (spin foam) contexts. While the state W
depends on all copies of the group and on all labels, the state y» depends only on the variables
supported on a single edge.

This assumption has important consequences. In order to highlight them, let us consider
observables which admit a similar decomposition into observables associated with the edges
of the same graph; for example, one can consider extensive observables supported on a given
(embedded) surface on the 3-slice, which will, in general, intersect many edges of the graph.
That is,

o)=Y 0., ®)

where the sum is over all the edges e intersecting the surface S (and assuming a single
intersection per edge), and where each O, is constructed out of the fundamental operators #,
and P, only. For semiclassical states, the expectation value is supposed to match the classical
(discrete) value O, and considering expectation values with respect to the above type of
states,

Oa = (0) =) (0.). ©)

e

However, the chosen forms for the observables and state imply that the squared fluctuations
AO = (0% — (0)?) are given by the sum of the fluctuations for each edge observable:

AO(S) =) A0 (10)
1

We see that the quantum fluctuations grow with the size of the system, i.e. with the number
of edges involved in the construction of the state and of the observable, and hence the state
cannot be coherent w.r.t. the extensive operator O(S) (and its canonically conjugate variable)
unless the semiclassical parameter ¢ is taken to be arbitrarily small, which is, however, not
allowed by our definitions, being fixed to be of order 1.
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2.4. Toward collective variables

We would like to consider a different construction based on the notion of collective variables.
The strategy behind the construction is that semiclassical states should be written in a way that
is adapted to the observables one wants to approximate semiclassically. If one is interested in
global properties of a dynamical system with a large number of degrees of freedom, then the
states describing those properties semiclassically should be optimized for those variables®.

Let us at this point fix the collective observable we are interested in. Consider then the
total electric flux E(S) computed on the surface S. In terms of the edge operators, it is written
as in (8):

E(S) = ZE,, (a1
I

where I again runs over the intersections between the surface S and the graph. This is a very
natural observable based on the flux—holonomy representation. To simplify, we consider the
dual surfaces S; to which the E; refer, that is, the surface S is the union of the elementary
surfaces S;. This avoids the staircase problem, as explained in the appendix of [16]. We will
come back to this later.

Another subtle, and important, point is that the fluxes E; we want to add need to be defined
with respect to the same reference point. The classical observables corresponding to E,, such
that the flux—holonomy algebra holds, are given by the following expression [27]:

. o'i
El:=tr <?he(0, Pe) [/S Ry, o) * E(x)h;e](x)} h; (0, pe)) . (12)

The elements in this definition are as follow: p,(x) denotes a path in S, from the point
Pe := S, N e to the point x, € S, and belonging to a system of paths to be chosen from the
start. The definition is such that the flux is covariant under internal gauge transformations:
E, — g(0)E,g(0)~!, where g(0) is the group acting on the source of the edge (the reference
point).

In defining the total flux, we should be careful that it is also gauge covariant and should
transform the expression above such that all elementary fluxes transform on the same reference
point. The simplest way is to consider the quantity

E;xO = tr (%l |:/ h(xg — x) * E()c)h_1 (xg — x):|) , (13)
Se

where h(xy — x) is the parallel transport around a path from an arbitrary reference point x, to
x € S,. In this way, any flux will transform with the same group element, being gauge-variant
quantities specified in the same frame. Therefore, it is also possible to define the total flux in
a consistent way”. It should be clear that the definition of the fluxes depends on a number of
structures: the system of elementary dual surfaces S,, the system of paths and the reference
point. A natural system of paths is to take always geodesics between two points, as defined
by the intrinsic metric one wants to approximate. Also, dual surfaces are naturally defined.

8 There is no generic prescription for a semiclassical state that works for every observable. As in the case of
standard coherent states which are associated with creation and annihilation operators, the optimization holds only
for observables that are polynomial functions of the same creation and annihilation operators.

° Note that one could take a similar definition:

. O‘i — —
E,, = tr<7h(x0 - De) [ [S Py ) *E(x)hpyl(x)] 1 (xg — pe)), (14)
which is close to the previous definition for very fine graphs. Both give similar results and the difference in the

definition could be reabsorbed in a redefinition of the system of paths. The second definition is more directly related
to the elementary fluxes.

8
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The choice of reference point is more ambiguous, as we shall see later. We will come back
to this point later. For the purposes of the present discussion, we will assume that a reference
point and a system of paths have been defined globally, in such a way that all the ambiguities
due to the gauge symmetry of the system are reduced to the minimum. This is not completely
equivalent to a choice of gauge, given that, even with a fixed reference point, a different choice
of paths does not lead to a gauge transformed flux, for instance, given that the connection,
in principle, is not a pure gauge. The dependence on the system of paths is an intrinsic and
unavoidable ambiguity of this formalism.

The next step is to define the conjugate variable to E(S). In principle and up to certain
ambiguities related to the fact that we work with a discrete phase space, the conjugate variable
should be determined from the algebra of operators. Since algebra (1) is not in canonical form,
we need to do some preliminary work before defining the conjugate variable.

Some results in this direction were reported in [21] where we defined variables on the phase
space corresponding to a single edge that are close to canonical. The idea was to work in the flux
representation [7] as this is more natural for the kind of observables we are interested in. We
were able to construct a state with the following semiclassical properties. First, the expectation
value of the flux operator is exactly equal to the classical value, that is, for a normalized state
w;to,yo € L*(SU(2)) peaked on the phase space point (hg, yo) € SU(2) x su(2) ~ SL(2, C),
we have

(w;low)’()'EA‘i'w;loqyo) = yé)‘ (15)

Note that this is only true for Hall states [15] at the zeroth order in 7. A similar result for
holonomy seems impossible, due to the non-Abelian nature of the group, even though we do
not have a proof of this. The best we can do is to search for coordinates on the group manifold
@'(h) such that the expectation value is as close as possible to the classical value. Together
with this we ask that the commutation relations [E", ¢/ (h)] are close to §"/. One can see that
both issues are tied together [21]. The main results are as follows:

(@' (1)) y, = ¢'(ho) + O(P}) (16)
and

[E', ¢/ ()] = it (8" + O(PyI)). (17)
In the expressions above, P, is defined as

Pl = —%tr(hoi) (18)
and ¢'(h) = f(P})Pj, with

f@) =1+ 3x+00). (19)
The above expressions imply

(E" @7 ()y, = it (87 + €71 f (PR )Py, + O(PL))- (20)

All approximations are controlled by the distance of the group element A to the identity.
Note that the logic here is very different from the one in [15, 16], where semiclassical
approximations were controlled by ¢. We think of ¢ as of order 1 and cannot be used to control
any approximation. Note also that if the group were to be Abelian—the Abelian limit U(1)*?
of SU(2) is often used in the literature—the expressions above would be exact. We see that the
non-Abelian case is qualitatively different. This will become clear in the next section through
a concrete example.
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Now that we have the conjugate variable to an elementary flux, we can proceed to define
the conjugate to the total flux £ (S). For simplicity, one would start with something of the form

I (S) == "9’ (hy), 1)
1

where the sum is again over intersections and c; are arbitrary complex coefficients. Using the
results discussed above, we have that

[EX(S), @/ ()]~ | Y er )87, (22)
1

We need then that ), ¢; = 1, so that typically, ¢; ~ 1/N, where N is the total number of
intersections'’.

Note that this definition of ® implies that it is an intensive observable, as it should be
expected from the fact that it is the conjugate variable to an extensive variable (as it is the
electric flux).

Even though this observable is naturally defined from the algebra of fundamental
operators, its classical interpretation is not as clear, as it is not a familiar variable in lattice
gauge theory (see for instance [28]). Moreover, the expression we obtained holds only at the
linear approximation. To go for the appropriate approximation in general field configurations,
we need to extend the notion of coordinate canonically conjugate to the fluxes, and disentangle
the nonlinearities. For instance, if we consider the situation with only two links being relevant,
the three functions

i 1
Q) (h)'?), o (e ?) 23)

all have the same linearized approximation, for group elements close enough to the identity,
and are thus equivalent to the quantity we defined above.

As for the fluxes we need to make sure that ®/ is covariant under gauge transformations.
It is sufficient that each 4, transforms in the same way, and with respect to the same reference
point xy used to define the fluxes E;, such that the algebra is preserved as well. We take then
for each edge the Wilson loop [28] starting at xy containing the edge and coming back to xp.
Denote it by Ay ,. It transforms as hy v, — gv,h1.x,8,'» which implies that ¢’ (A, ) transforms
as a vector.

Having dealt with the observables we can now construct the state. We will use the state
defined in [21] on a single copy of the group as a template for the collective state. Its precise
definition, given in the flux representation, is

Urowo ) =K' (y = yo) x "0 (24)
We refer to [7, 21] for the definition of the star product used in this expression. In the holonomy
representation, the same state is written as'!

Uh o () = K} () e i, (25)

In the expression above, K, ;,O (h) defines a Gaussian on the group peaked on /g and can be taken
to be the heat kernel on the group. We would like to emphasize that the particular choice of
coherent state is not so important for the point we want to make in this paper, even though
the state just defined is particularly well suited for observables based on fluxes. Other global

10 There is an intrinsic ambiguity in this definition, at least at this level of the analysis, resulting in the impossibility of
giving a specific prescription for the coefficients ¢;. Indeed, without a full specification of a canonical transformation
from the phase space parametrized in terms of holonomies and fluxes to a parametrization in terms of other (discretized)
canonical coordinates, of which the total flux is one of the variables, it is impossible to resolve this ambiguity.

' Not to overload notations, we consider a state on SO(3) only. For the extension to SU(2), see again [21].

10
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observables, such as the area of a surface or the volume of a region, will probably require
different states. However, any other construction should satisfy properties similar to (15)-(17).

Coming back to the collective state, it would be simpler to have a pair of collective
variables living in SU(2) x su(2). The total flux is already in the algebra. To get an holonomy,
one needs to invert the map ¢ : SU(2) — R3, and this is always possible in a certain
neighborhood of the identity. So denote 4 (S) := ¢~ (®(S)). Noting also expansion (19) of
@ (h) = P, + O(|P,)?), we have that Prys) = P(S). We then take our state to be defined in the
flux representation as

Wi sy, (b)) = K (fo - E(S)) * e O @ @y (). (26)

1

where we take K’ to be the heat kernel in Fourier space. Y.y describes the degrees of
freedom other than E(S) and ®(S), and that are necessary to fully specify the geometry of the
hypersurface. Note in fact that this state is still defined on the Hilbert space associated with
the full graph.

By construction, this state minimizes uncertainties of the collective operators E S, o S,
while it might have larger fluctuations for more local operators, depending on Y eg.

Another important point to note concerns gauge transformations. As we have stressed, the
elementary fluxes, and thus the total flux, have to be computed in the same reference frame
corresponding to an arbitrary vertex on the graph. The fluxes appearing in the above state,
therefore, correspond to the fluxes obtained after parallel transporting (by means of appropriate
combinations of holonomies 4, ) those initially associated with the various edges of the graph
to the same point. The gauge transformations still act on each vertex of the graph itself. Thus,
our flux variables, and our state, will transform differently than states defined in terms of the
original flux variables (which are expressed each in the frame of one of the two graph vertices
touched by their associated edge). In particular, they will not satisfy the standard closure
condition at each vertex of the graph [7], but an appropriately parallel transported version of it.
This difference in the appearance of the action of gauge transformations can also be verified,
of course, in the group representation, that is, when expressing the same state in terms of the
group variables conjugate to the parallel transported fluxes, which are in fact not the standard
holonomies associated with each edge of the graph, but again a combination of them with the
parallel transports needs to go from the initial vertex to the one chosen as a common reference
point.

2.5. An analogy: a system of many point particles in flat space

To clarify the discussion of the LQG case, we might draw an analogy with a much simpler
system. In the case of several point particles moving in a flat Euclidean three-dimensional
space, an obvious parametrization of the phase space is in terms of the coordinates and the
momenta of the various particles. If convenient, one can equivalently parametrize the same
phase space with a different choice of variables, by means of a canonical transformation. The
significance and the specific form of the canonical transformation might reflect symmetry
properties, or specific features of the dynamics.

If the classical system is characterized by a Hamiltonian where the interaction depends
only on the relative positions, it makes sense to choose canonical coordinates which distinguish
the center of mass, which describe the overall motion of the system (highlighting the global
conserved quantities such as total momentum and total angular momentum), from the relative
coordinates, which control the fine details of the dynamics of the system.
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As canonically conjugate collective observables, thus, we can consider the pair (Q,P) of
the center-of-mass coordinate and total momentum. In a certain sense, it is a coarse grained
information. To preserve the canonical commutation relations, because the total momentum is
an extensive variable, i.e. it is scaling with the number of particles, the position of the center of
mass is an intensive variable, representing an average property. The choice of the completion
of this pair into a full set of canonical coordinates for the total phase space is largely arbitrary,
of course, and it has to be motivated on dynamical grounds. This is particularly delicate when
considering the quantum theory. Indeed, when considering a state which is constructed as a
tensor product of single-particle wavefunctions (barring symmetrizations), certain operators
might have optimal properties (minimal fluctuations), while others might be affected by large
uncertainties. This is exactly the case we are facing here.

The very nature of the typical dynamics of many particles, involving more or less
complicated interactions, leads to the necessity of using nonfactorized wavefunctions (or
even density matrices). Without a proper assessment of the properties of the Hamiltonian
constraint, it is impossible to propose one definite class of states as good toy states that will
give reasonable approximation to a physical state. However, for the semiclassical regime of
quantum gravity, it is reasonable to expect that the relevant states (or density matrices) will
have the property of having good expectation values with small fluctuations for the geometric
operators associated with more global geometrical properties, with possibly large fluctuation
for small-scale details of the geometry (spacetime foam). This analogy explains the motivation
and goal of our work in the quantum gravity context.

In the following, we will work through a concrete example that will enable us to get some
intuition on the construction presented so far.

3. Example

It is instructive to consider an explicit case of our construction, in which all the calculations
can be performed. This will allow us to further appreciate the advantages of using a given
collective state instead of a microscopic state in addressing the behavior of large structures.
We want to construct a semiclassical state for a given geometry in such a way that information
about geometry is encoded into extended objects and then compare the situation with the state
constructed edgewise.

3.1. Choice of the classical point

We choose, as a classical phase space point gy, the three-manifold whose topology is that of a
torus 73 = (S')® with a flat three-dimensional metric.
In Cartesian coordinates,

ds3 = gap dx* d”, Gab = @*(T)8ap 27)

with x, v,z € [0, Ly/a), and a(r) the scale factor that might depend on a time parameter
7. The radii of the torus are assumed to be equal to Ly/a, such that their physical length
is equal to Ly. They might be different, in principle. The choice of such a geometry (see
[29] for a different choice) has the advantage of allowing more immediate calculations and
comparisons, highlighting the relevant features with the minimal amount of irrelevant technical
complications.

With a flat metric, we can choose a gauge in which

e =a(r)s.. (28)

12
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The extrinsic curvature is chosen to be proportional to a Kronecker delta as well:
Kap = a(t)a(t)da, =: H(T)qap, (29)

where a(t) and H(t) := a/a to suggest a relation to a cosmological scenario in which the
whole dynamics is controlled by the scale factor.

3.2. Classical observables

We can then induce the Barbero connection, in this gauge,

Al = yK' ="K, = yas’ = yHe! (30)
and easily compute the parallel transport on a geodesic of the metric. In flat space, these
geodesics are just straight segments. For the segment connecting two points A and B,

I A
— XB = —HAB 3D
a

=1

The parallel transport gives

hap = Pexp (i fA;% dx") =cos O, I +isinO,u'o; (32)
H¢
O = VT (33)

For a generic choice of curves and generic connection configurations, it is difficult to give
the parallel transport in an analytic form as here. However, for the case in which the matrix

i iO',' .a
M = Al (x) A (34)
is a constant, i.e. for the choice of curves and connections such that
Al (x)F" 4 3,AL 5 = 0, (35)

an analogous expression holds. This equation, in some sense, can be seen as an equation for
autoparallel curves for the connection. In this particular case, the geodesics are also autoparallel
for this connection.

The connection is associated with a second length scale, Ly = H~ 'y~
implemented automatically, giving that Ly >> {p.

Note that, to simplify even further the analysis, we could set H(t) = 0 and consider then
a chunk of flat spacetime. However, in keeping the explicit dependence on the connection, we
will also have the chance of appreciating a number of subtle issues that are often overlooked.

The connection has a nontrivial field strength

Oj i i J Ak i
Fup = = (0aAl, — A, + €iAiAy) = Mo'€iap, (36)

!, with nice slicing

where

M= 1y*H*d?, (37)
which means that the connection is not a pure gauge, and that the closed holonomies will be
in general different from the identity.

To compute geometrical quantities relevant for the LQG representation, we will have
to integrate 2-forms over plaquettes. However, these 2-forms will be Lie-algebra valued, and
hence will require delicate manipulations to ensure that the integrated quantities will transform
well under gauge transformations.

Consider the form

B =B ,0;dx’ Adr, (38)

13
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whose transformation law under gauge transformation is

g (0)Bg(x). (39)
Under a gauge transformation, the connection will transform as
A'=g ' Ag+ig™ (3g), (40)
while the parallel transport will become
h(xg — x) = W (xo = x) = g(x) 'hg(xo). 41

Given the surface of integration S and a reference point xy, construct a given system of
paths connecting each point of the surface x € S to the reference point xp, and define the
integrated form as

B = /h(x — x0)Bh(xog — x). (42)
s

As a consequence of the transformation properties of the various terms of the integrand,
one easily realizes that

B — g~ (x0)Bg(xo) (43)

under a gauge transformation.
In the specific case we are interested in, we will consider integrals of the following form:

B = f(1)0%pe dx? A dx°. (44)

Consider the surface S as the plaquette of coordinate size €/a(t), laying on the z = 0
plane, and centered in the origin of a Cartesian reference frame. If we consider a general
position of the reference point, and a system of paths connecting it to the surface as made of
straight segments, we can compute

€/2a
B=f(r) dx dy(cos(© (x))I — isin(O (x)) u?c,)o> (cos(O(x)I + isin(O(x)) u’cy,).
—€/2a

(45)

Things are easily computed if we place the point xo on the origin of the Cartesian coordinate
system. Indeed, in this case, u* = (cos &, sin&, 0), and by symmetry

f(@)

B ==—-F(yH, €)o", (46)
a
where
€/2a
F(yH,e) =d* dxdy cos(20(x)). 47)
—€/2a
For small values of €, one sees that
F(yH,e) ~ *(1 — L*y*H?). (48)

Of course, moving around the reference point will result into a less straightforward expression.
However, for small values of the dimensionless parameter €2y ?H> = €2 /L2,

F ~ ¢ (49)
and the form
B~ %62 (50)

which coincides with the result for an Abelian group. The case of the electric flux (our main
interest here) corresponds to the choice f(t) = a®. Another quantity of interest is the magnetic

14
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flux on the surface, that is, the integral of the field strength of the connection. It corresponds
to the choice f(t) = a®>y*H>.

Let us now move the reference point around. Consider a reference point still on the plane
z = 0, but far away from S,. It is convenient to use the second definition of fluxes given in
footnote 9. We need to compute

h(xg — 0)BR(0 — xp). 51
Inserting (46), we obtain
B,, o (cos ®(xo)I — isin O (xp)u0,) o3 (cos O (x0)I + isin O (xo) o)
= 03 (cos O (xp)[ +isin O (xg) i%04)> = 0 (cos 20 (x0)1 + 1sin 20 (xp) i10). (52)

From the last expression, we can read the components of B:

(o) 1 f(@) 1 1
B, ~ e (1= &1 ) (12207 o)) ~ =2 (1 = 2@ WP — DLy °H?
(53)
and
(©) ! ;
B)bc0 = fa2 €2 (1 — §€27/2H2) n €3halxoyHﬁ (54

for a, b = 1, 2. We see that approximations are controlled by both by € /Ly and I, /Ly.
The total flux on the z direction is then given by

2 2
E3(S) ~ 62(1—16——1—1 (x"_p’)> 55
) X[: 3L, 2 L 43
up to higher order corrections in both € /Ly and I (xo — p;)/Ly and the other components are
small compared to it. Taking the reference point to lie on the middle of the surface makes
I (xo — pr) of the order of the total size of the system L(S) so that the relevant ratio is L(S) /Ly,
that is, the size of system compared to the typical scale controlling its evolution in time. Taking
a fine enough graph, the correction in € /Ly becomes negligible.
Let us now compute the conjugate variable ®/(S). As explained in the last section, it is
given by the average coordinate of Wilson loops going from x; to the edge and then back to xy.
Consider then a generic reference point with coordinates (xo, yo, zo) and a link parallel to
the z axis, parametrized by

2n+1)
X:[0,1] > T3 T | C@m+1) | —. (56)
Qr—1)) 2
Therefore, the full holonomy has to be computed as
hexy = h(e(1) — xp)h(e)h(xo — €(0)). (57)
Denote
n' =(0,0,1) (58)
and
vy (e). v’ (e) (59)

the unit connecting vectors from the reference point to the tip (4) and tail (—) of the link
e which has been assumed to be oriented from the negative to the positive values of the
coordinate z (figure 1). Similarly d. and d_ will represent the physical distances. To simplify
the calculation, suppose further that the reference point lies in the y = 0 plane and is equidistant
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Ut

Lo

Figure 1. Wilson loop going from the reference point to the edge and then back to the reference
point.

from the two tips of the edge, so that d, = d_. Keeping terms of second order'? in @ = ©
and ©., we obtain

Bew ~ ((1 = ©2/2)1 — 1OV, ;) ((1 — ©Z/2)I +1O(e)n'o;) ((1 — ©2/2)] + 1OV o)
~1+4i(0n — OV, + OV')0; +i0,00,. (60)

Since we work in a flat space, the linear term is identically zero and we are left with

hey, 1 4+1i0,00, =1+ ialeL;. (61)
’ “4Ly,

This is an interesting result. Remember that the state we chose to work with is a good
semiclassical state as long as the Wilson loops are not too far from the identity. We see from
the above expression that this approximation is controlled by the ratio L(S)e/L?,, where again
we take [, to be of the characteristic size of the surface. We see that for situations where L(S)
is comparable to Ly, € has to be very small, which means one should take a very fine graph.
On the other hand, for situations where L(S) is already much smaller than Ly, € can be taken
to be of the order of L(S), which justifies taking a very coarse graph.

To get a better intuition on the scales discussed above, let us see how they look like in
a cosmological scenario. Consider then a cosmological model describing the evolution of the
scale factor a (7). The approximation discussed above is based on two ratios, € /Ly, controlling
the continuum limit and L(S)/Lg. L(S) is equal to the scale factor times a constant coordinate
scale y, which can be taken to be the size of the system if the scale factor is normalized as
agp=1.Ly = (yH(t))™!, such that for y ~ 1, Ly ~ (d/a)~" and the ratio is of the order of
aly. We see that a(t) controls the behavior of this ratio in time.

Consider moreover that the universe goes through an inflationary phase [30]. The behavior
of a during inflation is quite generic and is such that it starts very small at the beginning of
inflation and then grows exponentially before recollapsing to small values for very late times
(see figure 5.1 in Mukhanov’s book).

Following the discussion above, we see that at the beginning of the inflation it is justified
to use a coarse graph. The moment when the scale factor starts to grow, one is forced to take
finer graphs to control the approximations assumed. This conclusion depends of course on a
number of hypotheses, first in the construction of the pair of collective conjugate variables
and then on the coherent state, but seems very generic for a Hilbert space based on graphs, as
long as the state is based on a single graph. The situation might also change when considering
states given by linear combinations of states supported on different graphs.

12 Note that, in the case of noncompact slices, there is no obvious way to motivate such a truncation for a generic

reference point: if the reference point lays many Hubble radii from the edge considered, there is no way in which the
parallel transports to the reference points are close to the identity.
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3.3. The state

Having described the classical geometric data that we want to reproduce, let us construct a
state along the lines discussed in the previous section. We take a cubic decomposition of the
torus, with uniform spacing, say €. The graph is obtained by joining the nodes with straight
segments (this is equivalent to the choice of a prescription to color the edges). We could choose
different paths, and this would result into the same topological graph, with a different coloring
of the edges. Note that this would not be associated with a displacement of the nodes, but
rather with a certain choice of the embedding of the edges.

Let us consider an adapted Cartesian system of coordinates on the torus, by choosing the
origin in such a way that each edge of the graph is parallel to one of the axes, and in such a
way that the origin sits in the middle of one of the cubes having the graph links as edges.

Take, for instance, the four edges of the cube around the origin, parallel to the z direction.
They will be endowed with certain holonomies, as we said, and with certain fluxes. The fluxes
will be computed across square plaquettes on the xy plane, with side €.

Alternatively, we can store the information about the fluxes into a state that is coherent
for the flux across the union of the four plaquettes that we are considering.

To establish an appropriate comparison, the two states must refer to fluxes computed with
respect to the same reference point and with respect to the same system of paths. For simplicity,
we choose to work with the system of paths consisting of straight segments connecting the
origin to each point of the plaquettes, with the origin being the reference point for all the
fluxes. The flux across the surface consisting of the four plaquettes is

E" = F(yH,2¢)o> (62)

as we have already shown. The small plaquettes instead have fluxes (one has just to chop the
integral into the four quadrants, after rescaling) corresponding to

ED = <M03 + (+o' + GZ)C) (63)
E® = <—F(VIZ’ 2) 03 4 (ol + a2)c) (64)
E® = (wcﬁ + (-0 — UZ)C) (65)
E® = (@f + (+o! — 02)C> , (66)

where

= in(2y Hy/x* + y? _r .
C //(;s 2y x—l—y)mdxdy 67)
The four plaquettes are numbered after the quadrants of the plane going counterclockwise
(figure 2).
In this reference system, and with the choice of the same reference point, in particular, it
is immediate to realize that

Et — g +E(2) +E(3) —|—E(4), (68)

and this relation can be promoted even at the level of operators, given that the parallel transports
are already included in the definition.

Let us now compare our collective states with the standard tensor product states.

At the quantum level, one can now construct two kinds of states. One is adapted to the
graph, treating the information associated with it edgewise, with a factorized wavefunction,
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E®@

ED

Figure 2. The division of a plaquette in four.

and the other one is adapted to larger structures corresponding to the collective observables
we defined. Working in the flux representation, where x; are Lie algebra variables, associated
with the links, these two types of states take the form

4

Yo ey, 2, X3, X () = ([ [0, G — E@) ) x ¥ (rest) (69)
i=1

YV (1, X2, X3, X4, (Xrest)) = Yl (X1 4 X2 + 33 + x4 — E®Y) x 1 (rest). (70)

Note that in the second state, (rest) might still contain xy, . . ., x4, whenever the corresponding

dual plaquettes are involved. Once more, the four Lie algebra elements in the new wavefunction
can be composed only because they are associated with fluxes defined with respect to the same
reference point, and hence they transform in the same way under gauge transformations. In
a factorized state, even though it is expressed in the same variables, this is not obvious. The
same remark we made in the previous section regarding gauge transformations and their non-
standard expression in these variables, due to them being parallel transported to the same
point, applies of course here.

It is immediate now to see that the factorized coherent states, while providing the same
value for the expectation value of the flux, give a fluctuation around the average that is 4¢ rather
than the value, ¢, that is characterizing the fluctuation of the flux with the adapted coherent state.
Note that the precise form of the coherent state 1/ is not important to reach this conclusion,
though the coherent states introduced in [21] are particularly suitable for approximating the
chosen observables.

If instead we measure the fluctuation of the individual fluxes from the second state, we
will have the contribution of the state associated with the surface we are considering, as well as
the one of all the other components of the state, i/ (rest), containing a dependence on the link
i. Hence, we should expect microscopic geometric information to be reproduced on average,
but with large fluctuations.

The procedure can obviously be generalized for different, larger surfaces and sets of
plaquettes, without introducing new concepts (albeit the calculations might be complicated).
In particular, the result about the fluctuations remains the same.

4. Collective states

The previous explicit example has highlighted a number of crucial steps and features that
have to be taken care of in the construction of a general semiclassical state associated with a
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given graph and, in particular, of nonfactorized states designed to support information of the
geometry of extended regions of space, made out of many fundamental degrees of freedom.
We recapitulate them here, outlining the general construction.

4.1. Construction of the state

In the example that we have considered, we have gone through the following steps.

(i) Replace the continuous metric by a discrete one, by first choosing a graph and an
embedding. This limits the possibility of resolving the variables (h?, P?) up to a certain
precision € /L, where € is the characteristic discretization scale of the graph (in the embedding
metric hg) and L is the characteristic curvature scale of the same metric.

(i1) Choose the surface S, a reference point and a system of paths with which all the
gauge-variant quantities have to be computed. Compute the classical values for the electric
flux E{(S) and for the ‘conjugate variable” @ (S).

(iii) Finally choose a state, such that the expectation values of the observables E(S), ®
are in agreement with the classical discrete values, computed with (hg, Py), alsoup to € /L, and
also such that the Heisenberg uncertainty relations are saturated, up to quantum corrections of
order #2.

Of course, this algorithm can and should be generalized to different kinds of operators,
such as areas, volumes and other geometrical properties of more or less extended structures.
The choice of electric fluxes considered here is due to the fact that we have nice semiclassical
states to deal with these variables [21].

Other geometrical features characterizing the slice can also be associated with the
macroscopic scale L. It represents a typical curvature scale but it might also be associated
with topological features, such as the radii of a torus, etc.

The previous steps can be generalized as follows.

(i) From the continuum structure associated with a compact slice, we can construct a discrete
sampling by means of a Poissonian sprinkling [31], determined by the volume element of
the embedding metric, as is customarily done for the construction of causal sets [32]. The
random sprinkling consists of the random selection of points on the manifold, which we
assume to be compact for convenience, according to the volume element specified by the
intrinsic metric tensor. The density of the sprinkling is determined by the total number
of points used. If we assume to sample the geometry with A points, this will amount to
partition the manifold (according to the Voronoi procedure [31]) into A/ random cells of
typical size Vol/N. If, for convenience, we assume that the volume we are interested in
is of order L?, this amounts to assign to each point a chunk of space of typical volume
L*/N.

With a random Voronoi complex, we can construct its associated random graph, which
will be the object that we will assume to be the support of our semiclassical state. In turn,
go will induce certain geometrical data on this graph.

Concerning scales, the random sprinkling provides, through the density of points, the
definition of the length scale €,

L
~ NI
This scale, €, will be the typical scale of all the geometric operators, but, most importantly,

it fixes the accuracy with which we can approximate, at the classical level, the continuum
geometry with the discrete data selected by the graph.

€ (71)



Class. Quantum Grav. 29 (2012) 135002 D Oriti et al

In the case of the holonomies, the construction ensures also that any holonomy that is
induced on the graph, when considered in the parametrization

h=cosO I+ isinfn'o;, (72)
is characterized by
€
0~— =N 73
3 (73)

Let us stress again that the nature of the scale € is purely classical and statistical, and
it has nothing to do with the Planck scale or with any other dynamical scale, at least at
this stage. Indeed, being the scale of the sprinkling, it sets an obvious UV cutoff that
makes impossible to resolve geometrical structures differing on length scales smaller than
€ itself. However, € alone does not describe how we effectively probe spacetime. Indeed,
we codify this latter scale in the way in which we choose the surfaces and the other
extended objects to construct the semiclassical states. It will be the typical length scale of
these extended structures to be really defining the physical coarse graining scale.

The necessity of this kind of random sampling is due to the absence, for generic three-
dimensional geometries, of symmetries that might lead to obvious definition of graphs
that optimally encode the required geometric information.

(i) The next step involves the identification of the variables that we want to use for the

construction of the state. We can either use the graph edgewise or rather use collective
variables, as in the example discussed previously.

There, we considered a surface S and the edges of the graphs intersecting the surface.
Furthermore, we have to compute the classical value of the conjugate variable ®', which
will encode the extrinsic geometry.

At this stage, it is important to mention one problem of the construction of states
based on extended observables. One known problem is the so-called staircase problem
[16]. Given a graph with certain associated geometric data, it is possible to construct the
operators O, O’ such that, while the states give the correct semiclassical value and small
fluctuations for the operator O, it might have an expectation value far off the classical
one for O’, and large fluctuations. This depends on whether the operator corresponds to
objects that are adapted to the graph or not.

The integrated fluxes have to be defined with respect to a definite choice of paths and
reference point, chosen once and for all, so that we can consistently compare the fluxes
computed for each subplaquette with the flux attached to the surface S.

(iii) Finally, according to the given choice of variables, one can construct a coherent state
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that is adapted to this choice. The wavefunction will not be factorized with respect to
the single edges. A similar procedure should be followed for the other variables, to
be included in Y. Besides the numerical value of the classical discrete geometrical
quantities, one will have to complete the discussion by specifying the maximum number
of independent surfaces and fluxes (or other necessary variables) needed to completely
specify a semiclassical state for the given assignment of geometric data g.

The state so constructed will have the property of encoding the classical phase space
point with minimal quantum fluctuations around the expectation values.

The improvement with respect to the situation discussed in section 2 is manifest.

Of course, this very same procedure guarantees us that, when we construct states
in terms only of large structures, the expectation values of the fine grained geometrical
operators (e.g. the parallel transport on a single link) will instead generically suffer
from large fluctuations, as to be expected from other arguments. This type of quantum
state (nicely semiclassical for macroscopic geometric quantities, manifestly quantum
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for microscopic ones) could also be interpreted as a specific encoding of the idea of a
spacetime foam.

5. Conclusions and outlook

Let us summarize what we have achieved in this paper.

First of all, we have reviewed critically the construction of coherent states in a quantum
gravity context, at the kinematical level. We focused on the well-developed kinematical
framework of loop quantum gravity, as a solid example of a canonical quantization of geometry
in the continuum. Because this results in quantum states of geometry associated with graphs
embedded in the spatial manifold, the issue of approximating continuum geometries with
discrete structures comes to the forefront, in addition to the issue of approximation of classical
observables by means of quantum states. Similar quantum states, and thus the above issues,
appear in several approaches to quantum gravity: spin foam models, group field theory and
simplicial quantum gravity. We have discussed in detail the various conceptual and technical
issues to be addressed.

We focused in particular on collective observables, that is, observables depending on
large numbers of the microscopic, discrete data defining generic quantum states. This type of
observables is indeed the most relevant for the continuum approximation and the extraction
of effective physics from quantum gravity at large scales.

Through this type of reasoning, we implement some notion of coarse graining: normally,
the scale € is thought to control the degree of refinement at which the geometrical data are
treated, representing the UV cutoff, from a Wilsonian perspective. However, in this approach
in which we move from single edges to extended portions of the graphs, the true scale at which
the geometry is sampled depends also on the size of the objects we use to encode the geometry.

When considering such observables, a problem arises: if one uses quantum states that
are coherent with respect to microscopic, fundamental observables and have a factorized
structure in terms of states associated with the edges of the same, then quantum fluctuations for
collective observables scale with the number of edges. This is true for all the coherent states that
have been proposed to date in the quantum gravity literature. This makes them unsuitable for
the reconstruction of continuum, classical geometries at large scales.

We have then identified a general, and rather straightforward, solution to this issue:
defining a coherent state based on a different tensorial structure, adapted to the collective
classical observable one wishes to approximate. This is indeed what is done, as we recalled, in
the much simpler case of many-particle systems in non-relativistic quantum mechanics, where
key collective observables are the total momentum of the system and the position of its center
of mass.

We then specialized our general construction to one interesting choice of collective
observable: the total electric flux, that is, the average of the triad 2-form over a (large)
surface embedded in the spatial manifold, and thus generically intersecting many links of any
embedded graph. The motivation for choosing this observable was its simplicity, but also the
fact that in [21] we have defined a new type of coherent states that is especially suitable for
the semiclassical approximation of quantum fluxes. We also identified the conjugate variable
to the total flux, at least in some approximation.

We then defined a collective coherent state adapted to this conjugate pair, which peaks on
the classical values and has dispersions saturating the Heisenberg uncertainty, independently
of the number of fundamental variables involved in its definition. Obviously, the same state
would instead give large fluctuations on microscopic observables and it is thus only convenient
when considering a continuum approximation at large scales. Another property that we expect
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our type of states to satisfy, although we have not proven it, is to be more insensitive to
graph-changing operators, that is, to maintain their semiclassicality properties under their
action. This is relevant for the issue of dynamics, which in LQG (and spin foams/GFTs) is
usually encoded in graph-changing evolution operators. So these states are also expected to be
closer to dynamical coherent states: the fluctuations are not going to become too large under
evolution, again as far as collective, macroscopic observables are concerned.

Besides discussing the general construction of these collective observables and of the
corresponding coherent state, we also gave an explicit example of it in all its details.
This clarifies the various steps of the construction, but also the conceptual subtleties and
computational difficulties of the same.

Finally, we have summarized the steps involved in the construction of generic collective
observables and of the corresponding coherent states, as a template for future work.

Our results are clearly a first step toward a more complete understanding of the continuum
approximation in quantum gravity, at the kinematical level of quantum states, a difficult issue
that is being actively investigated, in a dynamical context, for example, in [33] from a lattice
gauge theory perspective, and in [34—41] in the context of group field theory and tensor models,
not to mention the extensive work in the context of (causal) dynamical triangulations [22].

The immediate next steps in the same direction involve for example considering other types
of collective observables, which could be useful to characterize a continuum semiclassical
geometry (volume or areas of extended regions, average intrinsic curvature, etc) and the
corresponding coherent states.

One would like to define a complete set of such collective observables, in the sense that
requiring coherence properties with respect to all of them (and their conjugate variables) allows
us to specify completely the coherent state associated with a given graph (that is, including
what we called Y eg).

A more ambitious, but not less pressing issue is to construct coherent states that include a
sum over graphs in their definition. This means turning on the statistical features of quantum
geometry. It would be interesting to analyze whether these statistical features help to achieve a
better approximation of classical collective quantities, force to modify the choice of quantum
state associated with each graph (that is, making the choice of a graph-based coherent state
inconvenient) or help to solve any of the many issues involved in the construction of proper
coherent states for quantum gravity [16].

On a more physical level, one would like to use collective coherent states of the type we
constructed, capturing the dependence on a few key macroscopic observables, to study large
scale dynamics of geometry, in particular, in a cosmological context. For example, they could
help in understanding the relation between a more fundamental quantum gravity theory and
(loop) quantum cosmology [42], when the variables selected are the (average) scale factor (or
volume) and its conjugate.

Of course, this is a difficult task, because it involves upgrading our construction to
dynamical coherent states and/or defines some effective dynamics for the mean values of
simple collective observables. A context where this could be tried, in addition to canonical
quantum gravity, is group field theory [10], as a field theory formalism is the best suited
for the study of collective dynamics. Doing this would also involve the difficult problem of
studying the impact of fluctuations on the mean field dynamics, that is, tackling the problem
of geometric averaging at the quantum level.

Another avenue to be investigated is the coupling of gravity with other degrees of freedom,
following the lines of [43] and [17] to compute dispersion relations on a spacetime described
by the coherent state for the gravity sector. In doing this, the sprinkling procedure, as described
in the last section, should be fully understood.
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Finally, it would be interesting to introduce perturbations to the classical metric. This
would require the construction of the Y.y part of the wavefunction and would allow us to
study the action of 3D-diffeos on the state. One is interested here in understanding the diffeo-
invariant degrees of freedom, as this is fully understood for perturbations in the classical
theory.
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