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In a recent work, a dual formulation of group field theories as noncommutative quantum field theories

has been proposed, providing an exact duality between spin foam models and noncommutative simplicial

path integrals for constrained BF theories. In light of this new framework, we define a model for four-

dimensional gravity which includes the Immirzi parameter �. It reproduces the Barrett-Crane amplitudes

when � ¼ 1, but differs from existing models otherwise; in particular, it does not require any rationality

condition for �. We formulate the amplitudes both as BF simplicial path integrals with explicit

noncommutative B variables, and in spin foam form in terms of Wigner 15j symbols. Finally, we briefly

discuss the correlation between neighboring simplices, often argued to be a problematic feature, for

example, in the Barrett-Crane model.
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I. INTRODUCTION

Group field theories [1] are quantum field theories show-
ing up as a higher dimensional generalization of matrix
models in background independent approaches to quantum
gravity [2]. The perturbative Feynman expansion generates
stranded graphs dual to simplicial complexes of all top-
ologies, weighted by spin foam amplitudes [3]. Conversely,
it can be shown [4] that any spin foam model admits a
group field theory (GFT) formulation, which removes its
dependence on the triangulation.

Most spin foam and GFT models for quantum gravity
are based on modifications of the Ooguri model for
four-dimensional BF theory.1 This approach is motivated
by the fact that classical four-dimensional gravity can be
expressed as a constrained BF theory (Plebanski formula-
tion) [6,7]

Sð!;B; �Þ ¼
Z
M

TrB ^ Fð!Þ þ �CðBÞ; (1)

for soð4Þ valued2 1-form connection ! and 2-form field B,
where CðBÞ are polynomial (so-called simplicity) con-
straints and � is some Lagrange multiplier. The variation
with respect to the Lagrange multiplier constrains B to be a
function of a tetrad 1-form field B ¼ �ðe ^ eÞ, turning BF
to the Palatini action for gravity in the first-order formal-
ism. The Immirzi parameter �, which plays a crucial role
in loop gravity, can be introduced by replacing B ! Bþ
1
� � B in the BF term of the action. Solving the constraints

reproduces the Holst action [8], classically equivalent to
Palatini gravity and the starting point for the quantization
leading to loop quantum gravity.

The spin foam quantization stems from a discretization
of the classical theory, by choosing a triangulation � on

M. While the most direct route to quantization would be to
include a discrete analogue of the constraints CðBÞ into the
definition of the measure of the discretized path integral
[9,10]

I� ¼
Z

D½!�; B���ðCðB�ÞÞei TrB�F� ; (2)

the standard spin foam strategy consists of quantizing first
the topological BF part of the discretized theory: the
discretization and quantization of BF theories in any
dimension are in fact well-understood [10,11]. The task
is then to implement a quantum version of the constraints
in order to recover the gravity degrees of freedom. This has
been shown to be a quite subtle task, partly because of the
very simplicial setting in which the construction takes
place: in fact, no standard canonical quantization proce-
dure exists in such discrete setting, and of course things
only become more difficult when the classical system
to be quantized is a background independent simplicial
gravity theory.3 Proposals for the implementation of the
constraints motivated by the geometric quantization of
simplicial structures [13,14] first led to the famous
Barrett-Crane model [15], and more recently to the Engle-
Pereira-Rovelli-Livine (EPRL) model [16], which includes
the Immirzi parameter and reduces to Barrett-Crane when
� ¼ 1.
One of the main difficulties that this strategy encounters

stems from the noncommutative nature of the geometrical
variables in the BF Ooguri model [13]—beginning with the
quantum B variables themselves represented as generators
of the gauge group—which obscures the geometrical in-
terpretation of the constraints. As an attempt to remedy this
problem, Livine and Speziale suggested [17] to rewrite the

1With some exceptions, see for example [5].
2We will restrict to the Riemannian signature in this paper.

3See however [12] for a recent proposal of a general canonical
formalism for simplicial gravity.
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BF amplitudes in a basis of Perelomov group coherent
states and to interpret the coherent state labels as classical
bivectors (though with quantized norm) on which to im-
pose the constraints. The realization of this idea led to the
Freidel-Krasnov (FK) or FK� model [18] which, remark-

ably, coincides with EPRL when � < 1. Using the coherent
state representation, it can be shown that both models
exhibit a path integral-like formulation [19]. Though it
provides a powerful tool to relate the models to Regge
gravity in the semiclassical limit [20], this formulation,
which involves a quite specific and nonstandard action, is
however far remote from the original path integral (2).

The goal of the series of papers [21,22] and the present
work, in the spirit of earlier works [23] by Bonzom and
Livine, is instead to dig deeper into the relation between
spin foam models and simplicial path integrals of the
type (2). Our main result is to show that generic spin
foam models based on quantum BF theory have a dual
formulation as a version of (2) in which functionals of the
discrete bivectors B� are endowed with a noncommutative
structure (star product) deforming the usual pointwise
product. Such a formulation of the path integral,4 in con-
trast to standard constructions with commutative variables
[25], captures the key aspect of noncommutativity of bi-
vectors in spin foam models, covariant counterpart of the
noncommutativity of the flux variables in loop gravity
[26,27]. It is important to note that this noncommutativity
is not an anomaly of quantization, as it can be traced back
to the classical theory [26,28–30].

This result is important for the study of spin foam
models, in many respects. It gives a direct correspondence
between purely algebraic amplitudes describing the quan-
tum geometry on one hand, and a measure on the variables
of the classical theory on the other. It allows for a direct
comparison between the spin foam quantization and a
proper path integral quantization of Holst-Plebanski grav-
ity [31,32]. It also opens the way for a precise study of the
consequences of noncommutativity of the geometry inher-
ent to these models.

The duality between spin foam models and the path
integrals (2) is realized at the level of the generating group
field theories. We will thus work in this very general
setting, though the construction could also be carried out
directly at the level of the amplitudes. The mechanism is
the following. As wewill review in Sec. II, in addition to its
usual formulations in terms of gauge-invariant group fields
’ðg1; � � �g4Þ or of its Peter-Weyl tensor components, the
Ooguri GFT model for SO(4) BF theory has a dual for-
mulation in terms of fields on four copies of the Lie algebra
soð4Þ, obtained by a Fourier transform, where d denotes a
differential,

’̂ðx1; � � � x4Þ :¼
Z
½dgi�4’ðg1; � � � g4Þei Trx1g1 � � � ei Trx4g4 ;

(3)

which endows the space of fields with a noncommutative
star product (dual to group convolution). It can be shown
that the gauge invariance of the field translates into a
closure condition x1 þ � � � þ x4 ¼ 0 for the soð4Þ varia-
bles, which have a direct interpretation as the discrete B
variables labeling the faces of a tetrahedron. In fact, in this
representation, the GFT Feynman amplitudes are simpli-
cial BF path integrals [21]. In such a representation, where
all the geometrical variables are explicit, constrained mod-
els for gravity take a very suggestive form in terms of
constrained fields ðS ? ’̂ÞðxjÞ for some functions SðxjÞ
constraining the bivectors. By construction, the Feynman
amplitudes are simplicial path integrals for constrained BF
theories.
In principle, every GFT and spin foam model for gravity

based on BF theory, thus including EPRL-FK, can be
formulated this way, with more or less natural forms for
the constraint functions S. In this paper, however, we rather
follow a constructive approach: in Sec. III, we define S in
the most natural way in this framework, namely, in terms of
(noncommutative) Dirac distributions SðxjÞ ¼ �ðCðxjÞÞ,
where CðxjÞ are the discrete simplicity constraints. The

use of Dirac distributions effectively amounts to constrain-
ing the measure on the bivector variables. As we will see,
the fact that the constraints are imposed on the group field,
hence in all tetrahedra, will automatically lead to addi-
tional constraints on the connection in the path integral
form of the amplitudes [32].
We will work with the linear form of the discrete sim-

plicity constraints [16,18,33,34], with Immirzi parameter,
and a minimal extension of the group field formalism to
include the normals to tetrahedra as an additional variable
of the field: this allows us to implement the constraints in a
gauge covariant way. In this formalism, polynomial bound-
ary observables are labeled by so-called projected spin
networks [35]. We thus obtain a constrained GFT formu-
lated as a theory of dynamical (noncommutative) geomet-
ric tetrahedra, which interact in the simplest possible way,
as dictated by the star product. Its Feynman amplitudes
define a spin foam model for gravity with Immirzi parame-
ter �, which gives a variant of the Barrett-Crane model
when � ¼ 1 but differs from the existing models for
generic values of �. In particular it does not require any
rationality condition for �. This model is formulated both
as a path integral (2) and in terms of Wigner 15j symbols,
in Eqs. (50) and (51) below: this is the main result of the
paper.
The framework will also allow us to take a new (cova-

riant) look at the peculiar features of the path integral
amplitudes induced by noncommutativity. In particular
we briefly discuss in Sec. IV how the so-called ‘‘ultra-
locality problem’’ anticipated for the Barrett-Crane model

4This formulation is adapted to the quantization of classical
systems with a ‘‘curved’’ phase space. See [24] for the simple
example of a quantum system on the group SO(3).
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manifests itself in our framework and argue that it may
disappear in a suitable semiclassical limit involving a
commutative limit.

In Sec. V we conclude and sketch some directions for
future work.

II. GFT MODELS FOR BF THEORY

In this section, we start by recalling the standard Ooguri
GFT for BF theory and its noncommutative bivector rep-
resentation. We then present an extension of the GFT
formalism, where the usual field variables, associated
with the four triangles of a tetrahedron, are supplemented
by an S3 vector playing the role of the normal to the
tetrahedron. As we will see, it will allow us to implement
the linear simplicity constraints (26) in a covariant way.

Our notations and conventions are as follows. We iden-
tify functions on SO(4) with functions on SUð2Þ� �
SUð2Þþ=Z2 and denote by g ¼ ðg�; gþÞ the SU(2) decom-
position of the field variables. We also use the decompo-
sition of soð4Þ in anti–self-dual and self-dual sectors
soð4Þ ¼ suð2Þþ � suð2Þ� and denote by x ¼ ðx�; xþÞ
the corresponding decomposition of its elements. From
Sec. II B on, based on the SO(3) Fourier transform5 [38],

we further assume an invariance of group functions
under g ! �g, so that they are effectively functions on
SOð3Þ � SOð3Þ.

A. Connection and spin formulations

In the standard connection formulation, the Ooguri GFT
model [11] for BF theory is described in terms of a field
’ðg1; � � � g4Þ on four copies of the gauge group, satisfying
the gauge invariance condition,

8 h 2 SOð4Þ; ’ðg1; � � � g4Þ ¼ ’ðhg1; � � � hg4Þ: (4)

The dynamics is governed by the action

S ¼ 1

2

Z
½dgi�4’2

1234 þ
�

5!

�
Z
½dgi�10’1234’4567’7389’96210’10851; (5)

where ’1234 is a shorthand notation for ’ðg1; � � �g4Þ, dg is
the normalized Haar measure, and � is a coupling constant.
The perturbative expansion in � generates four-stranded
graphs dual to four-dimensional simplicial complexes (see
Fig. 1): if one associates the field variables to the four
triangles of a tetrahedron, the quintic interaction sticks
five tetrahedra together on a common triangle to form a
4-simplex; the kinetic term dictates the gluing rules for
4-simplices along tetrahedra.
By using the harmonic analysis on SO(4), the gauge-

invariant field is expanded into four SO(4) irreducible
representations, labeled by pairs of SU(2) spins J ¼
ðj�; jþÞ, and 4-valent intertwiners { ¼ ð{�; {þÞ labeled by

FIG. 1. GFT propagator and vertex.

5An extension of the group transform to the whole SU(2) has
been developed in [36]. We do not use it in this work, because on
the one hand we do not expect the results to be very much
modified by such an extension, and on the other hand the general
case would entail a more involved notation. Note also that a
different SU(2) transform has been proposed and studied in [37].
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a pair of intermediate SU(2) spins. The interaction vertex is
expressed in terms of the SU(2) Wigner 15j symbols [11].
In this formulation, the Feynman amplitudes takes the form
of a state sum model on the simplicial complex dual � to
the graph

I� ¼ X
fJt;{g�

Y
t

dj�t djþt

Y
�

f15jg�� f15jgþ� : (6)

The sum is over the SO(4) representations Jt and inter-
twiners {� labeling the triangles and the tetrahedra; dj ¼
2jþ 1 is the dimension of the SU(2) representation j. The
symbol for the vertex amplitude (associated with each 4-
simplex), is the product of two SU(2) Wigner 15j symbols.

B. Noncommutative Fourier transform
and bivector formulation

The simplicial geometry encoded in the model (5) is best
understood in a dual formulation, coined ‘‘metric repre-
sentation’’ in [21], obtained by a group Fourier transform
of the field. The relevant Fourier transform here is the
obvious extension of the noncommutative SO(3) Fourier
transform [36,38,39] to the group ½SOð3Þ � SOð3Þ�4,

’̂ðx1; � � � x4Þ :¼
Z
½dgi�4’ðg1; � � �g4Þei Trx1g1 � � � ei Trx4g4 :

(7)

The variables xi belong to the Lie algebra soð4Þ ¼ suð2Þ �
suð2Þ. The kernel of the Fourier transform is a product of
‘‘plane waves’’ EgðxÞ ¼ ei Trxg, where the trace Tr is

defined in terms of the usual trace of 2� 2 matrices6 as
Trxg ¼ P

��g� tr½x�g�� with �g� ¼ sgnðtrg�Þ. Thus

EgðxÞ is itself a product of two SO(3) plane waves

eg�ðx�Þ :¼ ei�g� trx�g� . The plane waves satisfy the prop-

erties

Z
d6xEgðxÞ ¼ �ðgÞ; Eg�1ðxÞ ¼ Egð�xÞ:

Here d6x is the Lebesgue measure on soð4Þ � R6 and
�ðgÞ :¼ �SOð3ÞðgþÞ�SOð3Þðg�Þ acts as the delta distribution
on group fields. We deduce from these the following ex-
pression of the GFT action (5) in terms of the dual field ’̂:

S ¼ 1

2

Z
½d6xi�4’̂1234 ? ’̂�1�2�3�4 þ �

5!

Z
½d6xi�10’̂1234

? ’̂�4567 ? ’̂�7�389 ? ’̂�9�6�210 ? ’̂�10�8�5�1:

(8)

Notations are as follows. ’̂�1�2�3�4 is a shorthand nota-
tion for ’̂ð�x1; � � � ;�x4Þ. The star product is defined on

SO(3) plane waves as eg ? eg0 ðxÞ ¼ egg0 , extended to Eg ?

Eg0 ðxÞ ¼ Egg0 ðxÞ and by linearity to the algebra functions.

In the expression above, it is understood that the star
product pairs repeated indices: for example, the first prod-
uct of the interaction term is a product of functions of the
variable x4, ’̂1234 ?x4 ’̂�4567. To recover (5) from (8), one

expands the dual fields in group modes; the integration
over the variables xi produces delta functions �ðg�1

i g0iÞ ¼R
dxiEg�1

i g0i
ðxiÞ which identify the group elements associ-

ated with the same index.
Gauge invariance (4) translates into the invariance of the

dual field under ?-multiplication by a product of four plane
waves Ehðx1Þ � � �Ehðx4Þ ¼ Ehðx1 þ � � � þ x4Þ labeled by
the same h,

8 h 2 SOð4Þ; ’̂ ¼ Eh � � �Eh ? ’̂: (9)

Integrating over h on both sides of this equality gives

’̂¼�ðx1þ���þx4Þ?’̂; �ðxÞ :¼
Z
dhEhðxÞ; (10)

where � plays the role of noncommutative delta function
on algebra functions � ? �ðxÞ ¼ �ð0Þ�ðxÞ. In other words,
gauge invariance corresponds to a constraint on the dual
fields imposing the closure x1 þ � � � þ x4 ¼ 0 of its vari-
ables.7 It is interesting to note that, in the noncommutative
setting, the closure constraint is implemented by a projec-
tor, since � ? � ¼ �. Geometrically, ’̂ represents a tetra-
hedron whose four faces are labeled by a bivector xIJi . The
gluing rules for tetrahedra dictated by the action (8) cor-
responds to the identification of the face bivectors, modulo
a sign encoding a flip of the face orientation.
More precisely, propagator and vertex in this represen-

tation are given by

Pðx; x0Þ ¼ Y4
i¼1

��xiðx0iÞ;

Vðx; x0Þ ¼
Z
½dh‘�5

Y10
i¼1

ð��x‘i
? Eh‘h

�1

‘0
Þðx‘0i Þ;

(11)

where i labels the oriented strands (triangles) and ‘ the half
lines (tetrahedra) of the graphs in Fig. 1 and �xðyÞ :¼
�ðx� yÞ, with � defined as in (10). In terms of simplicial
geometry, the vertex function encodes the identification,
for each of the ten triangles i of a 4-simplex, of the two

bivectors x‘i , x
‘0
i associated with it, corresponding to the

two tetrahedra ‘, ‘0 sharing the triangle, up to parallel
transport h‘h

�1
‘0 from one tetrahedron to another [21].

The sign difference reflects the fact, in an oriented
4-simplex, a triangle inherits opposite orientations from
the two tetrahedra sharing it. The integration over h‘
implements the gauge invariance (9). We have chosen to

6Let �j be i times the Pauli matrices, then tr�i�j ¼ ��ij.
Given an SU(2) element u ¼ e�n

j�j parametrized by the angle
� 2 ½0; 	� and the unit R3 vector ~n and a ¼ aj�j in the algebra
suð2Þ, we thus have tr½au� ¼ � sin� ~n � ~a. Also �u :¼
sgnðtruÞ ¼ sgnðcos�Þ.

7In terms of the canonical theory, this is indeed just the
standard Gauss law corresponding to SO(4) gauge invariance
in flux variables [27].
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gauge-average the vertex here, but since gauge-averaging

is a projection Ĉ2 ¼ Ĉ, one could instead gauge-average
the propagator or both vertex and propagator without
affecting the amplitudes.

The Feynman amplitudes are obtained by taking the star
product of propagator and vertex functions, following the
strands of the graph in Fig. 1 [21]. The structure of the star
product gives a clear geometrical meaning to the algebraic
expressions. In particular, commutation with a plane wave
signifies a change of frame: Eh ? ’ ¼ ’h ? Eh with
’hðxÞ ¼ ’ðh�1xhÞ.

For a given closed graph dual to a simplicial complex,
this results in integrals over group elements h�� labeled by
adjacent pairs ftetrahedron; 4-simplexg, interpreted as par-
allel transport from the center of the 4-simplex � to the
center of its boundary tetrahedron �, and over soð4Þ vari-
ables x�t , x

�
t , interpreted as the same bivector of t seen in

different frames associated with the tetrahedra and
4-simplices sharing t. In what follows we set h�� :¼ h�1

��

and denote by h��0 ¼ h��h��0 the holonomy between two
neighboring tetrahedra through an adjacent 4-simplex. The
integrand factorizes into contributions of each loop of
strands, dual to a triangle t, taking the form of a star
product of delta functions identifying all the variables
x�t ; x

�
t associated with the triangle t.

After integration over all variables but one per triangle
xt :¼ x�0t associated with a ‘‘reference’’ tetrahedron �0ðtÞ,
the amplitude reads

I BF ¼
Z Y

h��i
dh��

Y
t

d6xte
i
P
t

TrxtHt

; (12)

whereHt ¼ h�0�1 � � �h�Nt�0 is the holonomy along the loop

of Nt þ 1 tetrahedra sharing t calculated for a choice of
orientation and reference tetrahedron.8 The integrand is the
exponential of the discrete BF action, resulting from the
star product of Nt plane waves for each t,

Eh�0�1
? � � � ? Eh�Nt �0

ðxtÞ ¼ ei TrxtHt : (13)

The GFT amplitudes in the bivector representation thus
take the form of simplicial path integrals for BF theory,
where field variables x 2 soð4Þ and group elements h 2
SOð4Þ arising from gauge invariance play the respective
roles of discrete B field and discrete connection.

The bivector formulation of a GFT suggests clear routes
for defining geometrical models, by means of constraint
operators implementing the simplicity constraint on the
field variables. The linear constraints (26), however, in-
volve an another geometrical variable: the normal to the
tetrahedron. In the next section, we review an extension of
the usual GFT formalism introduced in [22], which in-
cludes the normals as an additional field variable.
Although the extended GFT generates the same BF

amplitudes for closed graphs, it will allow us to impose
the constraints covariantly, that is on fields that are gauge-
invariant under a simultaneous SO(4) rotation of both
bivectors and normal vector.

C. Introducing normals: Extended GFT formalism

In the extended GFT formalism [22,40], the basic group
field ’kðg1; � � � g4Þ is supplemented with a fifth variable
k 2 SUð2Þ � S3, viewed as a unit vector in R4. In geo-
metrical models, k will be interpreted as the normal to a
tetrahedron. Gauge invariance (4) is replaced by a gauge
covariance with respect to the normal k,

8 h; ’kðg1; � � � g4Þ ¼ ’hxkðhg1; � � � hg4Þ; (14)

where hxk :¼ hþkðh�Þ�1 is the normal rotated by h.
Clearly, the field obtained by integrating over the normals
obeys the gauge invariance (4).
The dynamics is governed by the action

S½’� ¼ 1

2

Z
½dgi�4dk’2

k1234 þ
�

5!

Z
½dgi�10

�½dki�5’k11234’k24567’k37389’k496210’k510851;

(15)

where ’k1234 is a shorthand notation for ’kðg1; � � � g4Þ, dg
and dk are the Haar measures on SO(4) and SU(2). Hence,
whereas the interaction polynomial does not couple the
normals, the kinetic term, which encodes the gluing rule of
4-simplices along a tetrahedron, identifies both group ele-
ments and normals. It is already clear from the structure of
this action that the amplitudes of closed diagrams will not
depend on the normals; the extended formulation only
modifies the structure of boundary states.
Note that gauge covariance (14) induces an invariance

under the stabilizer group SOð3Þk ¼ fh 2 SOð4Þ;
hþkðh�Þ�1 ¼ kg of the normal k, affecting only the four
group arguments of the field. Upon Peter-Weyl decompo-
sition, gauge-invariant fields are expanded into four irre-
ducible SO(4) representations [given by pairs of SU(2)
spins Ji ¼ ðj�i ; jþi Þ, i ¼ 1 � � � 4], each of which can be
further decomposed into SOð3Þk representations. A set of
basis functions is given by

�ðJi;ki;jÞ
m�

i ;m
þ
i
ðgi; kÞ

¼
�Y4
i¼1

D
j�i
n�i m

�
i
ðg�i ÞDjþi

nþi m
þ
i
ðgþi Þ ~Cj�i j

þ
i ki

n�i n
þ
i pi

ðkÞ
�
ð
jÞkipi

; (16)

where repeated lower indices are summed over. Dj�ðg�Þ
are the SU(2) Wigner matrices, ð
jÞki form a basis of

4-valent SO(3) intertwiners, labeled by an intermediate
spin j. The k-dependent coefficients, defined in terms of

the SO(3) Clebsch-Gordan coefficients Cj�jþk
mnp as

~C
j�i j

þ
i ki

m�
i m

þ
i pi

ðkÞ ¼ X
m

C
j�i j

þ
i ki

mmþ
i pi

D
j�i
mm�

i
ðkÞ; (17)

8The amplitude does not depend on these choices.
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define a tensor that intertwines the action of SOð3Þk in the
representation j�i 	 jþi and the action of SO(3) in the
representation ki. Namely, given uk ¼ ðk�1uk; uÞ 2
SOð3Þk, we have
~C
j�i j

þ
i ki

m�
i m

þ
i pi

ðkÞDj�i
m�

i n
�
i
ðu�

k ÞDjþi
mþnþi

ðuþ
k Þ¼ ~C

j�i j
þ
i ki

n�i n
þ
i qi

ðkÞDki
qipi

ðuÞ:
(18)

Equation (16) corresponds to the vertex structure of the
so-called projected spin networks of the covariant ap-
proach to loop quantum gravity [35], which thus define a
basis for polynomial gauge-invariant observables (and thus
boundary states) in the extended GFT formalism.

Just as in the standard formulation, the bivector repre-
sentation of the GFT is obtained by Fourier transform of
the field

’̂ kðx1; . . . ;x4Þ :¼
Z
½dg�4’kðg1; . . . ;g4ÞeiTrx1g1 ���eiTrx4g4 :

(19)

Gauge invariance translates into

8 h; ’̂k ¼ Eh � � �Eh ? ’̂h�1xk; (20)

where h�1xk ¼ ðhþÞ�1kh�, thus implemented by the
gauge invariance projector acting on extended fields as

ðĈx’̂Þk ¼
Z

dhEh � � �Eh ? ’̂h�1xk: (21)

Note that upon integration over the normal, gauge invari-
ance gives the closure of the four bivector variables: in fact

if ĉ ¼ R
dk’̂k, then ĉ ¼ �ðx1 þ � � � þ x4Þ ? ĉ . The ac-

tion is the obvious extension of (8). It is interesting to write

the interaction in terms of ĉ , to emphasize the fact it
implements the closure constraints,

S ¼ 1

2

Z
½d6xi�4½dk�’̂k1234 ? ’̂k�1�2�3�4

þ �

5!

Z
½d6xi�10 ĉ 1234 ? ĉ�4567 ? ĉ�7�389

? ĉ�9�6�210 ? ĉ�10�8�5�1: (22)

The propagator of the extended GFT is supplemented
with an additional strand which identifies the normals k up
to parallel transport arising from gauge invariance. Just as
in the nonextended case, gauge invariance can be imple-
mented in the vertex only, or in the propagator, or in both
vertex and propagator. Choosing the first case, the propa-
gator then reads, in the bivector formulation,

Pðx; k; x0; k0Þ ¼ Y4
i¼1

��xiðx0iÞ�ðk0k�1Þ: (23)

The additional contribution reduces the number of SU(2)
variables to one per link, hence, in terms of the dual
simplicial complex, to one k� per tetrahedron. The inte-
grals over the normals on the internal links (bulk tetrahe-
dra) drop from the amplitudes; just like in the standard

formulation, the extended GFT generates simplicial BF
path integrals as Feynman amplitudes. However, due to
the extension of the GFT field to include the normal vectors
to tetrahedra, the boundary states appearing in the ampli-
tudes for GFT n-point functions are different from those of
the standard Ooguri model, recovered only after averaging
out the normal variables independently at each tetrahedron
in the boundary.

III. GEOMETRICAL MODELS

We have seen in the previous section that, in the bivector

representation of the GFT for BF theory, the field ĉ ¼R
dk’̂k represents a tetrahedron characterized by four bi-

vectors xj, j ¼ 1 . . . 4 playing the role of a discrete B

field; gauge invariance implements the closure conditionP
jxj ¼ 0. We now propose a natural modification of the

GFT (15) in terms of a constraint operator acting on the
field by implementing the simplicity constraint of its bi-
vector variables, for any positive value of the Immirzi
parameter �, allowing one to reconstruct a discrete tetrad
for the tetrahedron. By construction, the Feynman expan-
sion will generate simplicial path integrals for a
constrained BF theory of the Holst-Plebanski type.
We start by recalling the discrete form of the (linear)

simplicity constraints for a classical bivector geometry.

A. Discrete simplicity constraints

In the absence of Immirzi parameter, the simplicity
constraints state that the Hodge duals �xIJj are the area

bivectors of a geometric (metric) tetrahedron: this is the
discrete equivalent of B ¼ �e ^ e. Following [18,32],
these constraints are implemented by requiring that the
four �xIJj lie in the same hypersurface normal to a given

unit vector kI in R4, namely �xIJj kJ ¼ 0 for all j ¼ 1 . . . 4.

Using the self-dual/anti–self-dual decomposition of the
algebra soð4Þ, this can be expressed as

8 j 2 f1 . . . 4g; 9k 2 SUð2Þ;
kx�j k�1 þ xþj ¼ 0:

(24)

The variable k 2 SUð2Þ � S3 is then the SU(2) represen-
tation of the unit vector kI normal to the tetrahedron.9 If ten
bivectors labeling the faces of a 4-simplex satisfy simplic-
ity and the closure constraint for each tetrahedron, then
they define a geometric 4-simplex (for nondegenerate con-
figurations). Furthermore, if the (constrained) bivectors
associated with a given tetrahedron are also correctly
identified across the two 4-simplices sharing it, then the
reconstruction of a discrete tetrad can be carried out for the
whole simplicial complex, again modulo degenerate
configurations.

9Let �k :¼ ð �k�; �kþÞ be the SO(4) rotation mapping the vector
NI ¼ ð1; 0; 0; 0Þ to kI , then k ¼ �kþ �k�1.
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The inclusion of the Immirzi parameter can be per-
formed easily also at the discrete level [18]. We have
mentioned that the Immirzi parameter is introduced in
the continuum action (1) by a change of variables B !
�B ¼ Bþ 1

� � B in the BF term. The action in the new

variables looks again like a constrained BF theory, but
where the constraints CðBð �BÞÞ are now imposed on the
following linear combination field �B:

Bð �BÞ ¼ �

1� �2
ð� �B� � �BÞ: (25)

In the discrete setting, the simplicity condition with
Immirzi parameter is thus obtained from (24) by replacing
xj by the linear combinations �xIJj � �xIJj . In terms of the

self-dual/anti–self-dual decomposition of the bivectors, it
reads

8 j 2 f1 . . . 4g; 9k 2 SUð2Þ;
kx�j k�1 þ �xþj ¼ 0;

(26)

where the parameter � is related to the Immirzi
parameter as

� ¼ �� 1

�þ 1
: (27)

Note that the relation (26) is invariant under simultaneous
sign flip � ! �� of the Immirzi parameter and exchange
xþj $ x�j of the self-dual and anti–self-dual part of the

bivectors. It is also well-defined for � ¼ 1, although then
the change of variables (25) is singular and the geometrical
interpretation is lost. In the following, we restrict to � 2
½0;1�, so that the parameter � takes its value in ½�1; 1�.

B. Constraint operator
and noncommutative tetrahedra

Back to GFT, we now need to encode the simplicity
condition (26) of the bivector variables xj as a constraint on

the field ’̂k, the idea being of course to identify the normal
to the tetrahedron to the SU(2) variable k of the field. The
natural way to do so while taking into account the non-
commutativity of the fields is to use noncommutative delta
functions, defined by their plane wave expansion (10).
These delta functions act as distributions for the star prod-
uct, � ? �ðaÞ ¼ �ð0Þ�ðaÞ, so using these to constrain the
field will effectively amount to constraining the measure
on the bivectors.

We thus introduce the following function of x ¼
ðx�; xþÞ 2 soð4Þ:

S�k ðxÞ :¼ ��kx�k�1ð�xþÞ ¼
Z
SUð2Þ

duei tr½k�1ukx��ei� tr½uxþ�;

(28)

where ��aðbÞ :¼ �ðaþ bÞ and � is the suð2Þ noncommu-
tative delta function. Our geometrical GFT models will be

defined by constraining the field ’̂kðxjÞ in the action (8), by
means of an operator Ŝ� acting on it by ?-multiplication by

the product S�k ðx1Þ . . .S�k ðx4Þ of four simplicity functions,

ðŜ�x’̂Þkðx1; � � � ; x4Þ ¼
Y4
j¼1

S�k ðxjÞ ? ’̂kðx1; . . . x4Þ: (29)

We give below the explicit expression of the star product
(29) in terms of group and tensor Fourier components. But
first, let us show that the action of this operator is well-
defined. We will also see that it commutes with the SO(4)
gauge transformations (20).

To be able to take the star product of the S�k with the

field, we need the function (28) to be in the image of the
group Fourier transform. To see why this is indeed the case,
notice that, because j�j 
 1, there exists u� 2 SUð2Þ such
that � tr½au� ¼ tr½au�� for all a 2 suð2Þ. Indeed, if u ¼
e�n

j�j is parametrized by the angle � 2 ½0; 	� and the unit
R3 vector ~n, where the �j are i times the Pauli matrices, we

define u� ¼ e��n
j
�
�j , where the parameters �� and ~n� are

sin�� ¼ j�j sin�; sgnðcos��Þ ¼ sgnðcos�Þ;
~n� ¼ sgnð�Þ ~n: (30)

The simplicity function (28) can thus be written as a
superposition of plane waves EgðxÞ ¼ ei Trgx,

��kx�k�1ð�xþÞ ¼
Z
SUð2Þ

duEuk
�
ðxÞ; (31)

where we introduced uk
� ¼ ðk�1uk; u�Þ 2 SUð2Þ �

SUð2Þ. Therefore it belongs to the image of the Fourier
transform, and its star product with the field is well-
defined.

The operator Ŝ is not a projector for generic values of �,
unless � ¼ 0; 1 (which corresponds to � ¼ 1, 1). Indeed,
because of the nonlinearity of scaling by � in the definition

(30), we have that ðuvÞ� � u�v�, and thus S
�
k ? S�k � S�k .

Remarkably, however, the action of Ŝ is well-defined on
gauge-invariant fields, as it commutes with the gauge trans-
formations (20),

Ŝ �x½Eh � � �Eh ? ’̂h�1� ¼ Eh � � �Eh ? ðŜ�x’̂Þh�1xk;

(32)

thanks to the commutation relations between plane waves
and simplicity functions,

Eh ? S�k ¼ S�hxk ? Eh: (33)

Geometrically, these relations express the fact that rotating
a bivector which is simple with respect to a normal k gives
a bivector which is simple with respect to the rotated
normal hxk :¼ hþkðh�Þ�1. This is the advantage of the
extended GFT formalism, where the normals are explicit
variables of the field: the linear simplicity constraints on
the bivectors can be imposed a covariant way. This is not
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the case in the standard formulation of the Barrett-Crane
model, nor on the EPRL-FK model, where simplicity and
gauge invariance are implemented by means of two non-
commuting projectors.

Let us now examine the dual action of Ŝ on the original
group fields ’kðgjÞ. By using the plane wave expansion

(31) of the simplicity functions and the definition of the
star product, we obtain

ðŜ�x’Þkðg1; � � � ; g4Þ
¼

Z
SUð2Þ4

½duj�4’kðuk
1�g1; � � � ;uk

4�g4Þ;
(34)

where uk
j� ¼ ðk�1ujk; uj�Þ 2 SUð2Þ � SUð2Þ and uj� is

defined as in (30). For the particular value � ¼ 1 reached

in the limit � ! 1, Ŝ1 reduces to the projector onto fields
on four copies of the homogeneous space SOð4Þ=SOð3Þk.
Using the invariance (14), one can gauge fix the normal to
the value k ¼ 1 (time gauge). On such gauge-fixed fields,
the simplicity operator coincides with the projector defin-
ing the standard GFT formulation of the Barrett-Crane
model [15,22,41]. The difference here, however, is that
the gauge-fixed extended fields are obviously not gauge-
invariant under the full SO(4)—but only under the diagonal
SU(2) subgroup.

Upon Peter-Weyl decomposition of the constrained field

ðŜ�x’Þk, a set of basis functions is given by the action of

the Ŝ on the functions (16),

Ŝ�x�ðJi;ki;jÞ
m�

i ;m
þ
i
ðgi; kÞ

¼
�Y4
i¼1

D
j�i
n�i m

�
i
ðg�i ÞDjþi

nþi m
þ
i
ðgþi ÞFj�i j

þ
i ki

n�i n
þ
i pi

ðkÞ
�
ð
jÞkipi

; (35)

where repeated lower indices are summed over. This ex-
pression is obtained from (16) by replacing the

k-dependent coefficients ~Cj�jþk
m�mþpðkÞ ¼ Cj�jþk

mmþpD
j�
mm�ðkÞ by

new ones given by

F
j�i j

þ
i ki

n�i n
þ
i pi

ðkÞ¼
Z
SUð2Þ

duD
j�i
m�

i n
�
i
ðk�1ukÞ

�D
jþi
mþ

i n
þ
i
ðu�Þ ~Cj�i j

þ
i ki

m�
i m

þ
i pi

ðkÞ; (36)

with u� given as in (30). Just as in (16), these coefficients

intertwine the action of stabilizer subgroup SOð3Þk in the
representation j�i 	 jþi and the action of SO(3) in the
representation ki. Namely, given uk ¼ ðk�1uk; uÞ 2
SOð3Þk, we have
F
j�i j

þ
i ki

m�
i m

þ
i pi

ðkÞDj�i
m�

i n
�
i
ðu�

k ÞDjþi
mþnþi

ðuþ
k Þ ¼ F

j�i j
þ
i ki

n�i n
þ
i qi

ðkÞDki
qipi

ðuÞ:
(37)

Here, they also contain all the information about the sim-
plicity constraints and the specific form of the operator that
implements them. In particular the integral of the two
Wigner matrices encodes a relation between the spins

ðj�i ; jþi Þ, which depends on the Immirzi parameter; for
example j� ¼ jþ when � 2 f�1; 1g, namely, when � 2
f0;1g. However for generic values of�, it does not enforce
the spin relations j� ¼ j�jjþ characteristic of the EPRL-
FK models, an analogue of which we expect to recover
only in the asymptotic regime. In particular, they do not
impose any rationality condition on the Immirzi parameter
�. A detailed study of the properties of these coefficients,
in particular, their asymptotic behavior for large spins, is
left for future work.

To sum up this section, we have defined an operator Ŝ�

acting on the field by imposing the linear simplicity con-
dition (26), for any positive value of the Immirzi parameter,
on its four bivector variables. Note that, because of gauge
invariance, the closure constraint holds after integration

over the normal: let ĉ :¼ R
dkŜ�x’̂k, then ĉ ¼ �ðx1 þ

� � � þ x4Þ ? ĉ , where � is the noncommutative delta func-
tion � ? �ðxÞ ¼ �ð0Þ�ðxÞ defined in (10).
In relation to a canonical theory, one can link the defi-

nition of the constrained GFT field to a quantization of a
tetrahedron characterized by its four constrained bivectors:
in particular, one can check (using the Fourier duality with
group fields) that the generators JIJj of the gauge group act

by ?-multiplication by the coordinate functions x̂IJj ðxjÞ ¼
xIJj . The quantization procedure consists of first quantizing

classical configurations fxjg 2 soð4Þ, k 2 SUð2Þ � S3 of

bivectors and normal and then imposing geometricity (sim-
plicity) constraints at the quantum level. The Hilbert space
is the tensor product of L2ðSUð2ÞÞ with

O4
i¼1

L2
?ðR6Þ;

where the L2
? spaces, which also appear as state spaces in

the flux representation of loop quantum gravity [27], are
spaces of functions on soð4Þ � R6 endowed with the scalar
product

R
d6xð �f ? gÞðxÞ, where �fðxÞ ¼ fð�xÞ. The algebra

structure encoded in the star product, which deforms the
usual pointwise product, stems directly by Fourier trans-
form from the algebra of group functions. It makes explicit
the noncommutativity of the geometry inherent to spin
foams and group field theories. This procedure is mani-
festly dual to geometric quantization: the advantage here is
that the classical variables characterizing the geometry
remain explicit, as arguments of the fields. Geometricity
conditions are then implemented by using two commuting

operators: the simplicity operator Ŝ� and the gauge pro-

jector Ĉ defined by (21), leading to the unambiguous

definition of a ‘‘geometricity operator’’ Ĝ ¼ Ŝ�Ĉ ¼
ĈŜ�. All constraints are imposed by means of noncommu-
tative delta functions, acting as Dirac distributions for the
star product, so that it effectively amounts to constraining
the measures d6xj on the classical field variables.

The algebra structure and scalar product allow one to
build up more involved polyhedra obtained by gluing
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tetrahedra along a common triangle. Thus, gluing five

geometric tetrahedra �̂ :¼ R
dkĜx’̂k along common tri-

angles as

�̂ 1234 ? �̂�4567 ? �̂�7�389 ? �̂�9�6�210 ? �̂�10�8�5�1;

(38)

where �̂k�1�2�3�4 is a shorthand notation for

�̂kð�x1; � � � ;�x4Þ and the star product pairs repeated
lower indices give a straightforward ansatz for a quantum
4-simplex. This is precisely the interaction polynomial of
our geometrical GFT, which we define now.

C. GFT for gravity with no Immirzi parameter

We first focus on the particular case � ¼ 1. It corre-
sponds to � ! 1, namely, the case of gravity with no

Immirzi parameter. In this case, the operator Ŝ1 reduces
to the projector onto the homogeneous space SOð4Þ=
SOð3Þk. The corresponding geometrical GFT has been
introduced and studied in [22]; we recall the basics here,
before treating the general case.

The model is defined by constraining the field ’̂k in the

action of the extended Ooguri model. Since Ŝ1 is a projec-
tor, it can be inserted in the propagator, in the vertex, or in
both, without affecting the amplitudes. In particular, these
choices all lead to a unique form of edge amplitudes in the

spin foammodel. Here we set �̂ :¼ R
dkŜ1x’̂k and define

the action

S ¼ 1

2

Z
½d6xi�4dk’̂k1234 ? ’̂k�1�2�3�4 þ �

5!

�
Z
½d6xi�10�̂1234 ? �̂�4567 ? �̂�7�389

? �̂�9�6�210 ? �̂�10�8�5�1; (39)

where the star product pairs repeated indices.
We now calculate the Feynman amplitudes of this the-

ory. We will obtain two dual representations of these, in
terms of simplicial path integrals on one hand, and spin
foam models on the other.

1. Simplicial path integral representation
of the amplitudes

The Feynman amplitudes of this theory are calculated
with the same propagator as in (23) and the vertex

Vðx‘i ; k‘Þ ¼
Z
½dh‘�5

Y10
i¼1

ð��x‘i
? Sk‘ ? Eh‘h

�1

‘0
? Sk0

‘
Þðx‘0i Þ;

(40)

where i labels the oriented strands (triangles) and ‘ the
half lines (tetrahedra) of the vertex graph, and Sk ¼
��kx�k�1ðxþÞ is the simplicity function for � ¼ 1. The
calculation is analogous to the unconstrained case. For a
given closed graph dual to a simplicial complex �, this

results in integrals over holonomies h�� 2 SOð4Þ, tetrahe-
dra normals k� 2 SUð2Þ, and bivectors x�t , x

�
t on t seen in

different frames associated with the tetrahedra and
4-simplices sharing t. After integration over all variables
but one per triangle xt :¼ x�0t associated with a reference
tetrahedron �0ðtÞ, the amplitude reads [22]

I�¼
Z
½dh���½dk��½d6xt�

�Y
t

w
Nt

j¼0Sh0jxkjðxtÞ
�
?e

i
P
t

TrxtHt

:

(41)

The notations are that of Sec. II B: Ht ¼ h�0�1 � � �h�Nt �0 is
the holonomy along the (oriented) loop of Nt þ 1 tetra-
hedra sharing t, labeled by the integer j; h0j ¼
h�0�1 � � � h�j�1�j is the holonomy from the reference tetra-

hedron to the j-th tetrahedron sharing t. kj :¼ k�j is the

normal of the j-th tetrahedron around t. The function
Sh0jxkjðxtÞ imposes on xt the linear simplicity condition

with respect to the rotated normal h0jxkj :¼ hþ0jkjðh�0jÞ�1,

namely, the pull-back of kj in the frame of the reference

tetrahedron �0ðtÞ. It amounts to imposing the linear sim-
plicity of the pushed forward bivector h�1

0j xth0j with re-

spect to kj. The integrand results from taking, for each t,

the alternate star product of Nt plane waves and Nt sim-
plicity functions,

Sk0 ? Eh�0�1
� � � ? SkNt ? Eh�Nt �0

ðxtÞ
¼ ½wNt

j¼0Sh0jxkj� ? ei TrxtHt ; (42)

where we used the commutation relation Sk ? Eh ¼
Shxk ? Eh to regroup all the plane waves on the right-
hand side of the expression.
The Feynman amplitudes of the GFT (8) thus take the

form of (noncommutative) simplicial path integrals for a
constraint BF theory of Plebanski type. The constraints are
noncommutative delta functions modifying the measures
d6xt on the bivectors, imposing the simplicity of each xt
with respect to the normals of all the tetrahedra sharing t.
Note that by construction, the integrand of (41) is in-

variant under SO(4) rotations fg�; g�g of all local frames,

h�� � g�h��g�; k� � gþ� k�ðg�� Þ�1

xt � g�1
�ðtÞxtg�ðtÞ;

(43)

where �ðtÞ is the reference tetrahedron of the triangle t.
This includes the gauge invariance of the discrete BF
action. The choice g� ¼ ðg�� ; gþ� Þ :¼ ðk�1

� ; 1Þ leads to the
‘‘time gauge’’ k� ¼ 1, which shows that the integral over
the normals k� drops out of the amplitude. Of course in the
case of open graphs, dual to simplicial complexes with
boundary, the amplitude still has an explicit dependence on
the normals of the boundary tetrahedra.
It is interesting to distinguish two types of constraints on

the bivector xt of a given triangle. The j ¼ 0 contribution
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Sk0ðxtÞ ¼ ��k0x
�
t k

�1
0
ðxþt Þ in (41) imposes the linear simplic-

ity of each bivector xt with respect to the normal to the
reference tetrahedron �0ðtÞ. The remaining part, for a given
set of bivectors, can be viewed as constraints on the hol-
onomies modifying the measures dh�� on the discrete
connections. The effective measure

D xt;k�½h��� ¼ ½dh���
Y
t

~w
Nt

j¼1��h0jjx
�
t ðh0jjÞ�1ðxþt Þ (44)

transforms covariantly under the gauge transformations
(43). Using the cyclic invariance of the star product under
integration, the amplitude (41) can be written in terms of
this measure as

I� ¼
Z
½d6xt�½dk��Dxt;k�½h���

?
Y
t

½ei TrxtHt ? ��k�oðtÞx
�
t k

�1
�oðtÞ

ðxþt Þ�; (45)

where the star product pairs the variables xt. Note that the
appearance of a gauge covariant measure on the discrete
connection is the result of using extended GFT fields, and
thus of requiring a covariant imposition of the simplicity
constraints. The need of a generalization of the closure
constraint to achieve this has been noted on several occa-
sions in the literature [32,34] (see also [31]).

2. Spin foam representation of the amplitudes

We have derived the GFT amplitudes starting from the
bivector formulation of the group field theory, where the
simplicial geometry is implicit. By construction, they take
the form of simplicial path integrals. It should be clear,
however, that the dual connection and spin formulations of
the same GFT will generate dual expressions of the same
amplitudes in terms of a lattice gauge theory and spin foam
amplitudes.

The spin foam representation of the amplitudes (41) can
be also be computed directly by Plancherel decomposition
of the group functions into irreducible representations and
integration over group and Lie algebra elements. As proved
in [22], it gives the Barrett-Crane amplitudes

I � ¼ IBC :¼ X
fjtg

Y
t

d2jt

Y
�

1Q
t2@�

djt

Y
�

f10jg�: (46)

The sum is over SU(2) spins jt labeled by triangles, djt :¼
2jt þ 1. The products are over all triangles t, tetrahedra �,
and 4-simplices �. The 4-simplex weight f10jg� is the
Barrett-Crane 10j symbol [15]. This derivation singles
out a specific edge amplitude (tetrahedral weight), which
differs from the ones that appear in the literature with the
exception of [23]. We emphasize again that, in our GFT
construction, although the amplitudes of closed graphs
reproduce the Barrett-Crane amplitudes, the requirement
of a covariant imposition of the simplicity constraints
imposed the use of extended boundary states which include

tetrahedra normals, hence labeled by projected spin
networks.
This geometrical construction sheds an interesting new

light on the Barrett-Crane model. In particular, the formula
(41) gives a new simplicial path integral formulation of its
amplitudes, making the simplicial geometry of the model
manifest. We refer to [22] for a detailed analysis and
discussion.

D. Including the Immirzi parameter:
GFT for Holst-Plebanski gravity

We now turn to the inclusion of the Immirzi parameter in

the model. For generic values of � ¼ ��1
�þ1 , the operator Ŝ

�

is no longer a projector. Depending on whether it is in-
serted in the propagator, in the vertex, or in both the vertex
and propagator, in a single or in multiple copies, will lead
to a priori different spin foam amplitudes. These will
however have the same vertex amplitude (4-simplex
weight) and differ only in the edge and face amplitudes
(weights associated with tetrahedra and triangles). Here,
just as in the previous section, we constrain the field in
the interaction of the extended Ooguri model. Setting

�̂�: ¼ R
dkŜ�x’̂k, we thus consider

S ¼ 1

2

Z
½d6xi�4dk’̂k1234 ? ’̂k�1�2�3�4

þ �

5!

Z
½d6xi�10�̂1234 ? �̂�4567 ? �̂�7�389

? �̂�9�6�210 ? �̂�10�8�5�1; (47)

where the star product pairs repeated indices.

1. Simplicial path integral representation
of the amplitudes

The derivation of the Feynman amplitudes is analogous
to the case � ¼ 1. These amplitudes are calculated with
the same propagator as in (23) and the vertex

V�ðx‘i ; k‘Þ ¼
Z
½dh‘�5

Y10
i¼1

ð��x‘i
? S�k‘ ? Eh‘h

�1

‘0
? S�

k0
‘

Þðx‘0i Þ;

(48)

where i labels the oriented strands (triangles) and ‘ the

half lines (tetrahedra) of the vertex graph, and S�k ¼
��kx�k�1ð�xþÞ is the simplicity function. Using the same
notations as in (41), we obtain, for the amplitude of a
closed graph,

I �
� ¼

Z
½dh���½dk��½d6xt�

�Y
t

w
Nt

j¼0S
�?2
h0jxkj

�
? e

i
P
t

TrxtHt

;

(49)

where S�?2 denotes the squared function S� ? S�. For
each triangle t, the constraints impose, by means of
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noncommutative delta functions, the linear simplicity
condition of xt with respect to the normals of all the
tetrahedra f�jgj¼0:::Nt

sharing t. The square stems from

the fact both 4-simplices sharing the tetrahedron �j con-

tribute to a factor S�h0jxkj
ðxtÞ. The Feynman amplitudes of

this theory thus take the form of simplicial path integrals
for a constrained BF theory of Holst-Plebanski type with
Immirzi parameter �, with linear simplicity constraints
[34].

Just as for the case with no Immirzi parameter, the
integrands of (49) are invariant under the gauge transfor-
mations (4); in the case of closed graphs, the integration
over the normals k� 2 SUð2Þ drops from the amplitude.
Making explicit the form of the simplicity functions, we
thus obtain

I�
�¼

Z
½dh���½d6xt�

�Y
t

w
Nt

j¼0�
?2
� �h0jx

�
t
�h�1
0j

ð�xþt Þ
�
?e

i
P
t

TrxtHt

;

(50)

where we wrote f?2 for the squared function f ? f, and
�h0j ¼ hþ0jðh�0jÞ�1. Finally, by splitting the constraints into a

part (the j ¼ 0 contributions) that is independent of the
holonomies and a part playing the role of constraints on the

holonomies, the amplitude I�
� can be put under a form

analogous to (46), in terms of a covariant measure on the
space of discrete connections.

2. Spin foam representation of the amplitudes

The spin foam representation of the amplitudes can be
obtained either directly from (49) by inverse Fourier
transform and Peter-Weyl decomposition of the group
functions, or from the Feynman rules of the spin represen-
tation of the generating GFT. In this section we give the
explicit form of the resulting spin foam amplitudes in terms
of 15j symbols and so-called fusion coefficients, which
will allow a direct comparison with the existing models
[16,18,19]. Their derivation from the GFT is straightfor-
ward: we only sketch it here.

In the spin foam representation, the amplitudes read

I�
� ¼ X

j�t ;jþt ;�t�;{�

Y
t

dj�t djþt

Y
ðt�Þ

d�t�

Y
�

A�
�ðj�t ; �t; i�; k�Þ; (51)

where the 4-simplex weight (vertex amplitude) is given by

A�
�ðj�t ; �t�; i�; k�Þ
¼ X

{���;{þ��

f15jg�� f15jgþ�
Y
���

d{���d{þ��f
{�
{���;{þ��

ðj�t ; �t�; k�Þ: (52)

The notations are as follows. t, �, and � denote the tri-
angles, tetrahedra, and 4-simplices of the simplicial
complex �. The sums are over SO(3) representation j, �
and 4-valent SO(3) intertwiners {, all labeled by an integer
spin, and dj ¼ 2jþ 1. This gives a pair of spins ðj�t ; jþt Þ

for each triangle, a spin �t� for each couple ðt�Þwith t � �,
a spin {�� for each tetrahedron, and a pair of spins ð{�� ; {þ� Þ
for each couple ð��Þwith � � �. We set dj ¼ 2jþ 1. The

variables k� 2 SUð2Þ are the normals to the tetrahedra: as
we have seen, the dependence upon the normals for the
bulk tetrahedra (internal links of the GFT graph) drop,
hence we have not made the integrals over these explicit.
The above amplitude may as well be evaluated in the time
gauge k� ¼ 1 for all bulk tetrahedra, though it then makes
less transparent the nature of the boundary states, here
labeled by projected spin networks.

The amplitude A�
� is defined in terms of SU(2) Wigner

symbols f15jg�� ðj�t ; {���Þ and so-called fusion coefficients
[16] f{�

{�� ;{þ��
. These coefficients define a map from the space

of SO(3) intertwiners between the representations
�t1�; . . . ; �t4� and the space of SO(4) intertwiners between

the representations ðj�1 ; jþ1 Þ; . . . ; ðj�4 ; jþ4 Þ,
fj{�i ¼

X
{���;{þ��

f{�
{���;{þ��

j{��� 	 {þ��i: (53)

While the form (51) is quite general for a spin foam model
defined as a constrained BF theory, the specificity of a
model lies in the exact form of the fusion coefficients,
which encode the way simplicity constraints are imposed.
For the new model presented here, they are given by

f{�
{���;{þ��

ðj�t ;�t�;k�Þ¼ h{���	 {þ��j	i F
j�ti j

þ
ti
�ti�ðk�Þj{�i

¼ð{���Þm�
i
ð{þ��Þmþ

i

�Y
i

F
j�ti j

þ
ti
�ti�

m�
i m

þ
i pi

ðk�Þ
�
ð{�Þpi

;

(54)

where repeated lower indices are summed over. The tensor

Fj�ti j
þ
ti
�ti�ðk�Þ are the ones defined in (36). They provide an

embedding of SO(3) structures into SO(4) ones. In particu-
lar, because of the intertwining property (37), they realize
SO(3) as the stabilizer subgroup SOð3Þk � SOð4Þ of the
normal k� to the tetrahedron. They also depend on the
Immirzi parameter and encode the simplicity constraints.
This form (51) of the amplitudes follows from the GFT

Feynman rules in the spin representation. In this represen-
tation, the bivectors xt are replaced by pairs of spins Jt :¼
ðj�t ; jþt Þ and magnetic numbers labeling the strands of the
graphs. Away to read these rules is then the following. For
a given graph G labeled by spins Jt and tetrahedron nor-
mals k�, they attach to each four-stranded line (tetrahe-
dron) a propagator P�;Jiðk�Þ 2 endðN4

i¼1 JtiÞ defined as an
endomorphism of the tensor product of the representations
labeling its strands (triangles). The amplitudes are obtained
by taking the trace (i.e., index contractions) of all propa-
gators, following the combinatorics of the graph and by
summing over all spins (and normals) as

I �
� ¼ X

fJtg

Y
t

dj�t djþt TrG½
O
�

P�;Jiðk�Þ�; (55)
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where dj ¼ 2jþ 1. The propagator decomposes as

P�;Jiðk�Þ ¼ PJi
SOð4Þ ~P

�;JiðkÞPJi
SOð4Þ; (56)

where PJi
SOð4Þ is the projector onto SO(4)-invariant tensors

and ~P�;JiðkÞ is defined in terms of the tensors (36) as

~P�;Ji
m�

i ;m
þ
i ;n

�
i ;n

þ
i
ðkÞ

¼ Y4
i¼1

�X
�i

d�i
�F
j�i j

þ
i �i

m�
i m

þ
i pi

ðkÞFj�i j
þ
i �i

n�i n
þ
i qi

ðkÞ
�
ðP�i

SOð3ÞÞpiqi ; (57)

where repeated lower indices are summed over. Pki
SOð3Þ is

the projector onto SO(3) invariant tensors in 	i�i. Note
that its insertion is actually redundant in the definition of
the propagator. Indeed, because of the property (37), an
SO(3) rotation in 	i�i is intertwined by F with a SOð3Þk
rotation in 	iJi, which can be reabsorbed into PJi

SOð4Þ. This
form however allows us to split the trace in (55) into a
product of 4-simplex weights as in (51). This is done by

expanding the projectors PJi
SOð4Þ and Pki

SOð3Þ into 4-valent

intertwiners ð{�; {þÞ and {.
To close this section, we emphasize again that, as in the

extended BF case, the boundary states of the model are by
construction (constrained) projected spin networks [35].
Even in the presence of the Immirzi parameter, we see
therefore that the boundary states of the amplitudes (or the
GFT polynomial observables) are different from the states
of standard loop quantum gravity (LQG). The projected
spin network structure is actually present also in the bound-
ary states of all the new models [16,18], even if in a less
explicit way, and even if their apparent coincidence with
LQG states in representation space (because of the specific
form of the simplicity constraints imposed there) is more
emphasized.

E. Limiting cases

The model presented in the previous sections corre-
sponds to a candidate quantization of a simplicial version
of the Plebanski-Holst formulation of four-dimensional
gravity, for generic values of the Immirzi parameter �.
We have already seen that the case � ¼ 1, which corre-
sponds to � ¼ 1, gives a variant of the Barrett-Crane
model with a specific edge amplitude, where the boundary
states are extended to include tetrahedra normals, hence are
labeled by projected spin networks. Thus, the formula (41)
not only gives a new simplicial path integral formulation of
the Barrett-Crane model, but it also provides a natural
deformation of that model which includes the Immirzi
parameter. We now discuss briefly other limiting cases of
this model: the self-dual case � ¼ 1 and the topological
case � ¼ 0.

For � ¼ 1, as mentioned the change of variables (25)
becomes singular—so the contact with the classical Holst

theory is lost. Despite the lack of a clear geometric inter-
pretation, the constraint operator S� and the resulting
model are well-defined for � ¼ 0; it acts on the field by
’̂k by projection of its bivector variables onto the self-dual
part of soð4Þ. The constrained model reduces to the Ooguri
model for topological SU(2) BF theory.
The case � ¼ 0 corresponds to the so-called ‘‘topo-

logical sector’’ of Holst gravity. This denomination
comes from the fact that the term of the classical Holst
action that seemingly dominates in this limit is the one
that vanishes on shell, due to the requirement of torsion
freeness of the connection. As a consequence, one would
expect that the resulting spin foam model/path integral
would define a trivial dynamics for any boundary state. It
is not totally obvious, however, that the above reasoning
goes through in the quantum theory as well. It could also
be argued [42] that the resulting quantum theory would
rather correspond to a quantization of second order,
metric gravity with no torsion. The rough argument is
that in a path integral for the Holst action, the limit
� ! 0 would force, analogously to a semiclassical limit,
the same path integral to be dominated by solutions of
the equations of motion coming from the topological
term only, that is exactly the torsion freeness condition.
While these arguments are obviously not conclusive, they
suggest not to dismiss the resulting model as uninterest-
ing. In our context, this corresponds to � ¼ �1. As
discussed also in [22], the constraint operator for � ¼
�1: (a) projects onto simple SO(4) representation J ¼
ðj; jÞ; and (b) does not impose any restriction on the
expansion of ðj; jÞ into SU(2) irreducible representations
k ¼ 0; � � � 2j, and (c) acts on each component ðJ; kÞ by
multiplication by the phase ð�1Þ2jþk. In computing the
amplitudes, the phase factors cancel each other. The
resulting model, distinct from the EPR amplitudes [16],
is obtained from the SO(4) Ooguri model (6) by restrict-
ing the representations to simple ones Jt ¼ ðjt; jtÞ. It
would be interesting to study what the geometric inter-
pretation of such amplitudes may be.
The general GFT model for arbitrary � thus encom-

passes and generalizes several distinct models, and inter-
polates between them. It is tempting to speculate (see also
[42,43]) that the model possesses a nontrivial renormaliza-
tion group flow in parameter space ðGN;�Þ, where GN is
Newton’s constant, which is hidden in our formulation as
we use dimensionless quantities throughout. The natural
candidates for fixed points would then be these special
values for the � parameter: (� 1; 0; 1), namely � ¼ 0, 1,
or1. In particular, while the case � ¼ �1 is distinguished
only for being in some sense extremal, and for its peculiar
classical analogue, the other two values can be seen as
special already at the level of the very definition of the
corresponding model. In fact, as we have seen, in these two
cases, and only then, the simplicity operator defines a
projector, and the quantum amplitudes are insensitive to
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the specific choice of insertion of this operator in the GFT
action.

IV. SIMPLEX CORRELATIONS AND
ULTRALOCALITY

The main advantage of the framework developed in this
paper is that the variables encoding the (fuzzy) bivector
simplicial geometry of GFT and spin foam models are
explicit. In particular, with respect to other formalisms,
this framework gives a more direct access to the way
simplices are correlated in the model, namely, how the
model relates the geometrical data of common subsimpli-
ces in the gluing of neighboring simplices.

It has in fact often been argued that, for example, the
Barrett-Crane model suffers from a default of correlations
between neighboring simplices. This ultralocality feature
has been one of the reasons to discard this model in favor of
the new models. Since the Barrett-Crane amplitudes show
up in our model for the value � ¼ 1 of the Immirzi
parameter, this feature can be made explicit and clarified
in our framework. An indepth study of the ultralocality
issue is beyond the scope of the present paper. In this
section we however discuss how it manifests itself in our
framework.

The interaction and kinetic polynomials of our GFT
model are written as a simple star product of copies of the
constrained field in which the bivector variables associated
with the common triangles are strictly identified (modulo an
orientation flip). At the level of the Feynman amplitudes
however, after expansion of the gauge invariance operator,
the Feynman rules dictate the relation between bivectors
fx�t ; x�t g expressed in different frames related by holonomies

h��. For example in the BF model, two bivectors x�t , x
�0
t on

the same triangle t but seen from different tetrahedra are
related by a noncommutative delta function,

ð��x�t
? Eh��0 Þðx�

0
t Þ; (58)

where h��0 ¼ h��h��0 parallel transports the frame of one
tetrahedron to the frame of the other. The structure of the
star product gives a clear geometrical meaning to the alge-
braic expressions. In particular, the algebraic operation
corresponding to the parallel transport of bivectors is the
commutation with plane waves: Eh ? f ¼ fh ? Eh, where
fhðxÞ ¼ fðh�1xhÞ.

In the amplitudes of the constrained theory, the plane
waves are supplemented with simplicity functions impos-
ing the linear simplicity condition of the bivectors in each
frame,

Eh��0 ! S�k�ðxtÞ ? Eh��0 ? S�k�0
ðxtÞ; (59)

so that the commutation with the plane wave encodes the
parallel transport of simple bivectors. In the case � ¼ 1
(i.e., � ¼ 1) corresponding to the Barrett-Crane
amplitudes, the simplicity functions Sk :¼ S1k satisfy

Sk ? Sk ¼ Sk. The definition (28) of these functions and
the structure of the star product then lead to the identity

Sk� ? Eh��0 ? Sk�0 ¼ Sk� ? E
u�
t h��0u

�0
t
? Sk�0 (60)

for all u�
t ¼ ðk�1

� u�t k�; u
�
t Þ and u�0

t ¼ ðk�1
�0 u

�0
t k�0 ; u

�0
t Þ in the

stabilizer subgroups SOð3Þk� and SOð3Þk�0 of the normals.

This is because u�
t , u

�0
t can be reabsorbed into the group

elements labeling the plane wave expansion (28) of Sk� and

Sk�0 . This identity can be understood as a relaxation of the

parallel transport condition, or a weakening of the bivector
correlations: upon parallel transport h��0 , simple bivectors
are identified only up to spatial rotations. This is the
manifestation of ultralocality in this geometrical setting,
here due to the interplay between simplicity and parallel
transport conditions induced by the noncommutativity of
the star product.
Note that the argument does not extend to general values

of � in an obvious way, for the same reason that makes the
constraint operator fail to be a projector Sk ? Sk � Sk.
However it remains that upon commutation with (59), a
Lie algebra function gets conjugated not only by the hol-
onomy h��0 but also by the Lagrangian multipliers of the
simplicity functions.
Arguing whether or not this feature is a serious problem

from the point of view of quantum geometry is not our
point here. Our point is to emphasize that it appears in our
framework as an unavoidable feature following a clear
geometrical construction of a dynamical theory for non-
commutative tetrahedra. In fact, as has been anticipated in
the literature, the above argument shows that ultralocality
is manifestly inherent to the noncommutativity of the
bivector geometry, here entirely encoded into the star
product. From the point of view of the canonical theory,
where the tetrahedron states live in a tensor product of
noncommutative spaces L2

?ðR6Þ, it is tied to the choice of
quantization map. The presence of the star product thus
encodes also quantum corrections, of which the above
effect is a manifestation.
This raises the question whether ultralocality survives

in a semiclassical regime involving a commutative limit.
The star product structure being dual to group composi-
tion, this limit corresponds to a linearization of the
group. It can be formally defined by introducing a pa-
rameter � in the coordinates of the group manifold and to

parametrize SUð2Þ� group elements u ¼ ei� ~n:� for e.g. by
R3 vectors ~pu ¼ 1

� sin� ~n. The Fourier transform can be

parametrized accordingly [38]; in the regime of small �,
the SO(3) [respectively, SO(4)] star product reduces to
the usual pointwise product on functions of R3 (respec-
tively, R6). The commutative regime should correspond
by duality to the large spin limit of spin foam models.
However since it amounts to linearizing the holonomies,
it could also be viewed as an analogue of the continuum
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limit in lattice gauge theories. Whether or not a proper
development of the model around a commutative limit, at
the level of the GFT [44] or its amplitudes, can be
properly defined, and shown to tame the ultralocality
feature, remains to be seen.

V. CONCLUSIONS

In this paper, we exploited a dual formulation of group
field theories in terms of noncommutative bivector varia-
bles, which provide a duality between spin foam models
and simplicial path integrals for constrained BF theories, to
derive a new model for four-dimensional gravity with
Immirzi parameter. All geometrical variables remain ex-
plicit in this construction, which consists of inserting a
constraint operator in a GFT for four-dimensional SO(4)
BF theory implementing the discrete simplicity constraints
turning quantum simplicial BF theory into quantum sim-
plicial gravity.

Thanks to the framework chosen, we can keep the
geometric content of all variables and of imposed con-
straints manifest at all stages of the construction. The
resulting amplitudes for each simplicial complex, gener-
ated in the Feynman expansion of the GFT, give a quantum
simplicial version of the Holst-Plebanski formulation of
gravity. We formulated these amplitudes both as BF sim-
plicial path integrals with explicit noncommutative B var-
iables and in terms of Wigner 15j symbols and fusion
coefficients. The new model differs from existing ones in
the literature; it imposes a different restriction on repre-
sentation labels for quantum states. In particular, it does
not lead to any rationality condition for the Immirzi
parameter.

In light of this geometrical framework, we suggested a
possible new perspective on the issue of the quantum
correlations between neighboring simplices, often argued
to be a problematic feature, for example, in the Barrett-
Crane model. In our formalism, in fact, the relaxation of
parallel transport condition is an unavoidable consequence
of the very noncommutative nature of bivector variables
and of the simplicity constraints, and is tied to their
quantization. Moreover, our framework is best suited for
studying the geometric interpretation and consequences of

this relaxation, as well as the semiclassical limit of the
amplitudes.
While this problematic issue certainly needs to be in-

vestigated further, we believe that the construction we
performed suggests to consider the resulting model seri-
ously as a candidate model for quantum gravity. In fact, its
features appear all natural from the point of view of
quantum geometry. Of course, this new model should
now to be tested in all its aspects to support further or
refute its validity. Note that its explicit formulation as a
path integral for constrained BF theory, in contrast with the
other existing models, should facilitate the study of its
relation with a path integral quantization of continuum
Holst-Plebanski gravity [31,32].
We also believe that the noncommutative formalism on

which the construction is based, and that has proven useful
already in different contexts and for different purposes,
should itself be studied in depth, to unravel even more
aspects of (simplicial) quantum geometry. We have in
mind the issue of symmetries, in particular, the simplicial
analogue of diffeomorphism symmetry. This has been
studied in the BF context in [45] and the analysis should
now be extended to the four-dimensional gravity model
proposed here. Indeed, the bivector representation is the
one most suited for defining such symmetries in a geomet-
rically clear way.
Finally, the crucial question is whether this formalism

leads to an effective continuum dynamics of geometry,
hopefully governed by some form of general relativistic
action, in the continuum limit. For this one has to study
either the coarse graining of the lattice path integral ap-
pearing [46] in our amplitudes, or the renormalization flow
and critical behavior of our GFT model [43]. Also in this
respect, our result offers a new, promising concrete model
to analyze.
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