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Abstract. A dual formulation of group field theories, obtained by a Fourier
transform mapping functions on a group to functions on its Lie algebra, has
recently been proposed. In the case of the Ooguri model for SO(4) BF theory,
the variables of the dual field variables are thus so(4) bivectors, which have a
direct interpretation as the discrete B variables. Here we study a modification
of the model by means of a constraint operator implementing the simplicity of
the bivectors in such a way that projected fields describe metric tetrahedra. This
involves an extension of the usual group field theory (GFT) framework, where
boundary operators are labeled by projected spin network states. By construction,
the Feynman amplitudes are simplicial path integrals for constrained BF theory.
We show that the spin foam formulation of these amplitudes corresponds to a
variant of the Barrett–Crane model for quantum gravity. We then re-examine the
arguments against the Barrett–Crane model(s) in light of our construction.
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1. Introduction

Group field theories (GFTs) represent a second quantized framework for both spin networks
and simplicial geometry [6, 7, 9], field theories on group manifolds (or Lie algebras) producing
Feynman amplitudes which can be equivalently expressed as simplicial gravity path integrals [5]
or spin foam models [10], in turn covariant formulations of spin networks dynamics [1]3. Most
spin foam (and GFT) models for 4d gravity are obtained starting from models describing
topological BF theory and adding constraints on the 2-form B field; imposing it comes from
a tetrad 1-form as B = ∗e ∧ e. This is based on the Plebanski formulation [11, 12] of general
relativity as a constrained BF theory. A classically equivalent modification of the same action is
obtained by adding a topological term to it, which vanishes on-shell, with a coupling constant
named the Immirzi parameter [11]. This gives the so-called Holst action, which is the classical
starting point of loop quantum gravity (LQG) [1]. The construction of spin foam amplitudes
takes place in a simplicial context, by first assigning to the two-dimensional (2D) faces of a
simplicial complex data representing the discrete analogue of the fields of BF theory, that is, Lie
algebra elements representing the B field, and group elements defining a discrete connection,
and then defining a quantum amplitude imposing the Plebanski constraints on them. Ideally, one
would want to constrain the discrete data at the classical level and then quantize the resulting
geometric structures, as one would do in a simplicial path integral. However, this has proven
very difficult until now, and the usual route [4, 17, 22] starts with a quantization of topological
BF theory and proceeds by imposing the constraints at the quantum level, that is, at the level
of quantum states, hoping to obtain the correct result nevertheless, and despite the ambiguities

3 They can also be seen, from a more statistical field theory perspective, as a higher dimensional generalization of
matrix models [2] and a particular class of tensor models [3].
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involved when proceeding in this way. More precisely, existing models [22] (which exist in
both Euclidean and Minkowskian signatures) result from the imposition of constraints via the
solution of operator equations (e.g. via a master constraint technique) or from constraining the
quantum labels of BF coherent states, identified with the quantum analogue of the bivector fields
of this theory, and are further distinguished by the presence and value of the Immirzi parameter.
In the absence of the Immirzi parameter γ (or in the γ = ∞ sector of Holst theory), one gets the
Barrett–Crane (BC) model [17] by using the operator method and the so-called FK model [22]
via the coherent state method. With finite γ > 1, the operator method gives the so-called EPRL
model [22] or an extension of the FK model. These two models coincide remarkably for γ < 1,
and in particular for γ = 0 (corresponding to the ‘topological sector’ of Holst gravity). The
new models thus succeed in incorporating the Immirzi parameter into the spin foam (and GFT
[19, 20, 54]) formalism, attempts at which began very early [37, 38].

In parallel with the above results, the simplicial path integral route has also been explored,
providing important insights [21, 30]. In particular, the analysis in [21] clarified to a great
extent the (quantum) simplicial geometry of the BC model. The results we present in this paper
can be seen as a new take on, and a generalization of, the results presented there. A decisive
impulse to this line of research was given recently by the definition of a metric representation of
GFTs [5]4, in terms of B variables, and the proof of the exact duality of simplicial path integrals
and spin foam models, within a GFT context, based on non-commutative tools [13–16], then
applied also to LQG states [31]. Despite being phrased in terms of simplicial geometry and
in seemingly classical terms, as appropriate for a path integral quantization, this method of
quantization necessarily relies on a certain choice of quantization map (which dictates, for
example, the choices of operator orderings). The one that seems [15] to be at the root of the
non-commutative Fourier transform and star product on which these results rely is the Duflo
quantization map [34]. This map is the most mathematically natural one for systems whose
classical phase space is (based on) the cotangent bundle of some group manifold [36], has been
successfully applied to the path integral formulation of the Chern–Simons theory [35] and is
argued to be relevant also for LQG [36]. Further support for the interpretation and use of these
tools comes from their application to the much simpler case of the quantization of a particle
on the sphere, where they allow us to derive a complete and correct canonical path integral
formulation of the dynamics [33]5.

The EPRL and FK models [22] have now replaced the BC model in the interest of the
spin foam community. On the one hand, this is due to the mentioned success in incorporating
the Immirzi parameter into the formalism, and to the consequent close relation between the
boundary states associated with these new models and those of canonical LQG. On the other,
this is due to a variety of results and arguments that have been put forward as implying the
failure of the BC model in correctly describing quantum geometry and thus in representing a
compelling candidate for a quantum gravity model6.

These (numerous) arguments (related to each other) concern: the boundary states of the
model (used also to define the vertex amplitude) and the quantization procedure used to obtain
such states [22], the role of degenerate geometries [26], the possible lack of (discrete analogues

4 For earlier attempts aiming at the same result, see [24].
5 This metric formulation also allows us to identify diffeomorphism transformations at the GFT level, and to link
nicely their features across the canonical, spin foam and simplicial gravity formulation of the same theory [32].
6 These arguments mostly refer to the BC vertex in the spin representation, and to the choice of data entering it,
also because there is no definite consensus on the other ingredients entering the model, i.e. ‘measure’ factors.
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of) needed secondary second class constraints [39, 40] and, most importantly, the encoding of
simplicial geometry in the quantum amplitudes.

This last issue, often referred to as the ‘ultralocality of the BC model’ , can be articulated
as

(a) 4-simplices speak only through face representations, i.e. triangle areas [25];

(b) bivectors associated with the same triangle in different simplices are not identified [21, 22];

(c) normal vectors to the same tetahedron seen in different 4-simplices are uncorrelated [5, 43];

(d) the simplicity constraints are imposed in a non-covariant fashion [5];

(e) because of this non-covariance, there are missing constraints over the connection
variables [5].

The last two issues had been identified in [5], in a first application of the non-commutative
metric formalism to GFT gravity models, which has the advantage of making the simplicial
geometry behind spin foam models manifest. In this paper, we take further advantage of this
representation to re-analyse the imposition of the simplicity constraints without the Immirzi
parameter in a GFT context, and thus in the simplicial gravity path integral based on BF theory
appearing as the Feynman amplitude of the theory. We actually solve the above two issues,
and keep under control the rest of the encoding of simplicial geometry at the quantum level,
by means of a simple generalization of the GFT formalism itself. This generalization has also
the advantage of recasting the boundary states of the resulting model explicitly in the form of
projected spin networks [23, 42]. Moreover, we show that the resulting model is unique, in a
sense we will specify. The Feynman (spin foam) amplitudes turn out to be still a variant of the
BC model. We are thus led to re-analyse the existing criticisms on this model.

While we leave the inclusion of the Immirzi parameter into the formalism to a forthcoming
paper [48], we also give a model for the topological sector of Plebanski gravity and compare it
with the so-called EPR spin foam model.

We work in the GFT context because it is the most complete setting to study the dynamics
of spin networks and simplicial structures. But it should be clear that the entire construction
could be carried through directly at the level of simplicial path integrals (as done in [21]) or
spin foam amplitudes, if one so prefers.

2. Group field theories in the metric representation

In this section, we briefly recall the construction of the metric formulation of GFTs [5]. We
start with the GFT model for 4D SO(4) BF theory and then discuss, in the metric framework,
the implementation of the simplicity constraints [5], leading to the (usual versions of the) BC
model.

2.1. GFT for BF theory

The GFT for SO(4) BF theory is defined in terms of a field ϕ1234 := ϕ(g1, . . . , g4) on four copies
of the group, satisfying the gauge invariance condition

∀h ∈ SO(4), ϕ(g1, . . . , g4) =

∫
dh ϕ(hg1, hg2, hg3, hg4). (1)
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The dynamics is governed by the action

S =
1

2

∫
[dgi ]

4ϕ2
1234 −

λ

5!

∫
[dgi ]

10ϕ1234 ϕ4567 ϕ7389 ϕ962 10 ϕ10 851,

where [dgi ]4 and [dgi ]10 denote the Haar measures on four and ten copies of SO(4). The
combinatorics of the interaction term is that of a 4-simplex (the ten indices i = 1, . . . , 10
corresponding to its ten triangles), while the kinetic terms dictate the gluing rules for 4-simplices
along tetrahedra. The quantum theory is defined by the perturbative expansion in λ of the
partition function and, by construction, the Feynman diagrams are 2-complexes dual to 4D
simplicial complexes: vertices, links and faces (2-cells) of the graph are dual to 4-simplices,
tetrahedra and triangles of the simplicial complex, respectively. Using harmonic analysis on
SO(4), the Feynman amplitudes take the form of the Ooguri state sum model [27].

The metric formulation [5] of the same model is based on the group Fourier transform of
the GFT field. The SO(3) group Fourier transform [13–16], which maps functions on the group
to functions on its Lie algebra su(2), straightforwardly extends to functions of (several copies
of) SO(4) ∼ SU−(2) × SU+(2)/Z2; it is invertible on even functions7 f (g) = f (−g). The group
Fourier transform of the field ϕ is thus the function on four copies of the Lie algebra so(4) given
by

ϕ̂(x1, . . . , x4) ≡

∫
[dg]4 ϕ(g1, . . . , g4) eg1(x1) · · · eg4(x4), xi ∈ so(4) ∼ R6, (2)

where [dg]4 is the normalized Haar measure on SO(4)4. The plane waves eg: so(4) → U(1) are
the functions defined as eg(x) = eiTrxg, where Tr is trace and is the fundamental representation
of SO(4). Explicitly, using the decomposition of the Lie algebra and group elements x =

(x−, x+), g = (g−, g+) into the left and right components x± ∈ su(2), g± ∈ SU(2), and the
parametrization g± = eθ En·Eτ and x±

= Ex · Eτ of these components in terms of the (anti-Hermitian)
su(2) generators Eτ = (τ1, τ2, τ3), the plane waves read

eg(x) = eiTrx−g−eiTrx+g+,

where the trace is defined as Tr τiτ j = −δi j .
The space of dual fields inherits by duality a non-trivial (non-commutative) pointwise

product from the convolution product on the group. It is defined on plane waves as

(eg ? eg′)(x) := egg′(x), (3)

and extends component-wise to the tensor product of four plane-waves and by linearity to the
whole image of the Fourier transform.

The Lie algebra variables of the dual field ϕ̂ are interpreted, geometrically, as the bivectors
associated with a triangle, in each tetrahedron, in the standard discretized version of BF theory.
Upon Fourier transform, the gauge invariance condition (1) translates into a closure constraint
Ĉ for the bivectors associated with each tetrahedron (field), obtained as the group Fourier
transform of the gauge invariance projector P:

Pϕ(g1, . . . , g4) =

∫
dh ϕ(hg1, . . . , hg4), → P̂ϕ = Ĉ ? ϕ, (4)

7 In the following, we thus assume further invariance of the Ooguri field under gi → −gi in each of the variables.
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where Ĉ(x1, . . . , x4) = δ0(
∑4

n=1 xn), and δ0 is the element x = 0 of the family of functions δx

defined as

δx(y) :=
∫

dh eh−1(x)eh(y). (5)

These functions play the role of Dirac distributions in the non-commutative setting, as∫
d6 y (δx ? f )(y) = f (x), (6)

where d6 y is the standard Lebesgue measure on so(4) ∼ R6.
The combinatorial structure of the GFT action in the metric representation is the same as

in group one, while group convolution is replaced by the ?-product. Using the short notation
ϕ̂1234 := ϕ̂(x1, . . . , x4), we can write the action as

S[̂ϕ] =

∫
[d6xi ]

4ϕ̂1234 ? ϕ̂1234 + λ

∫
[d6xi ]

10 ϕ̂1234 ? ϕ̂4567 ? ϕ̂7389 ? ϕ̂96210, (7)

where it is understood that ?-products relate repeated lower indices as φ̂i ? φ̂i := (̂φ ? φ̂−)(xi),
with φ̂−(x) = φ̂(−x).

In this representation, the Feynman amplitudes of the GFT can be computed by sticking
together with the ?-product the propagator and vertex functions given by

P(x, x ′) =

∫
[dh]

4∏
i=1

δ−xi (x ′

i), V (x, x ′) =

∫ 5∏
`=1

[dh`]
10∏

i=1

(δ−x`
i
? eh`h−1

`′
)(x`′

i ). (8)

The vertex function has 20 Lie algebra variables: two variables x`
i , x`′

i for each of the ten
triangles of a 4-simplex, corresponding to the two tetrahedra `, `′ sharing that triangle. The
vertex function encodes the identification of the bivectors associated with the same triangle in
different tetrahedral frames [5], up to parallel transport between these frames given by the group
elements h`h

−1
`′ ; the sign difference reflects the fact, in an oriented 4-simplex, a triangle inherits

opposite orientations from the two tetrahedra sharing it.
The Feynman amplitudes in this representation are simplicial path integrals for BF theory,

involving an integration over one SO(4) variable hl for each link of the Feynman graph,
equivalently of each tetrahedron of the dual simplicial complex, which is interpreted as parallel
transport between the two 4-simplices sharing that tetrahedron; and a single so(4) variable xt

for each triangle t of the dual simplicial complex:

AG =

∫ ∏
l

dhl

∏
e

[d6xt ] ei
∑

t Tr xt Ht , (9)

dhl is the Haar measure on SO(4) and d6xt is the Lebesgue measure on so(4) ∼ R6. The group

element Ht :=
−→∏

l∈∂ ft
hl is the ordered product of group elements hl on the links on the boundary

of the face (2-cell) ft of the graph dual to the triangle t , giving a measure of the discrete
curvature associated with it. Such a discrete curvature is calculated for a given orientation of
ft , and a given ‘reference’ vertex in its boundary; the final amplitude is independent of this
choice. The exponential corresponds to the product of plane waves

∏
t eHt (xt); its argument∑

t Tr xt Ht is the unconstraint discrete BF action.
Importantly, the expression generalizes naturally [5] to the case of open Feynman diagrams

(GFT transition amplitudes), i.e. simplicial complexes with boundary, to give BF path integrals
with fixed B variables on the boundary, with appropriate boundary terms [50].
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2.2. Imposing the simplicity constraints

This new representation of the Ooguri model for BF theory provides a convenient starting
point for imposing in a geometrically transparent manner the discrete simplicity constraints that
turn BF theory into 4D simplicial gravity. The simplicity conditions of Plebanski gravity [28]
(or the gravitational sector of Holst gravity [29]), thus without any Immirzi parameter,
ensure that the B-field can be expressed in terms of 1-form fields eI as B I J

= eI J K LeI ∧ eJ .
At the discrete level, part of these conditions (in their linearized form [22, 39, 47]) are
implemented by requiring that, for each tetrahedron in the simplicial complex, the four bivectors
B I J

j associated with its four triangles j = 1, . . . , 4, expressed in the reference frame of the
tetrahedron, all lie in the hyperplane orthogonal to some normal vector in R4. Concretely, using
the canonical decomposition of bivectors into self-dual and anti-self-dual su(2)-components
B±iτi with 2B±i

=
1
2ε

i jk B jk + B0i , the conditions are imposed by requiring the existence of
k ∈ SU(2) (∼S3) independent of j such that

∀ j, B+
j = −k B−

j k−1. (10)

Back to GFT, where the role of the discrete B is played by the field variables x j in the
metric representation, the condition (10) can be implemented on the GFT field by defining
the projector ϕ̂ 7→ Ŝk ? ϕ̂, where Ŝk is the function of four so(4)-variables defined in terms
of the non-commutative δ functions (5) as

Ŝk(x1, . . . , x4) =

4∏
j=1

δ−kx−

j k−1(x+
j ). (11)

Such a projector imposes strongly the relations (10) on the field variables, since the non-
commutative δ functions act as the Dirac distribution for the ?-product.

Upon group Fourier transform, one can show that

Ŝk ? ϕ̂ =

∫
SO(4)4

[dg j ]
4 (Skϕ)(g j j) eg1 · · · eg4, (12)

where Sk projects onto fields on the product of four copies of the homogeneous space S3
∼

SO(4)/SO(3)k , SO(3)k being the stabilizer group of k seen as a vector8 of R4; namely, using
the decomposition g = (g−, g+) into self-dual and anti-self-dual components:

(Skϕ)(g) :=
∫

SO(3)4
k

[du j ]
4 ϕ(k−1u j kg−

j , u j g
+
j ).

The case k = 1 reproduces the standard BC projector [19, 20]. This constraint is then imposed
on each GFT field, i.e. on each tetrahedron of the simplicial complex, in its associated frame.
The task of correctly parallel transporting these conditions in the other frame associated with
other tetrahedra and simplices of the simplicial complex is accomplished by propagator and
vertex GFT functions.
8 Thanks to the isomorphism SO(4) = SU(2) × SU(2)/Z2, each element of SO(4) can be represented as g =

(g−, g+), with g±
∈ SU(2). The map SO(4) → SU(2), g 7→ g+(g−)−1, with kernel SO(3) = SU(2)/Z2, realizes

the identification of the homogeneous space S3
∼ SO(4)/SO(3) or the set of normal vectors in R4, and the group

SU(2). Through this identification, the rotation by g = (g−, g+) of a normal vector represented by k ∈ SU(2) is
represented by g+k(g−)−1. The stabilizer group SO(3)k of k is thus the set of g = (g−, g+) ∈ SO(4) such that
g−

= k−1g+k, i.e. of the form g = (k−1uk, u), with u ∈ SU(2).
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The above amounts to, roughly speaking, half of the full simplicity conditions ensuring
geometricity of the bivectors. The other half, often linked to the secondary constraints arising
from the canonical analysis [39, 51], can be shown to be imposed automatically if the closure
condition is imposed on all tetrahedra in the simplicial complex (see, e.g., [47]), and if bivectors
are correctly parallel transported across frames. This condition is imposed on GFT fields already
at the level of the action, via the ‘closure’ projector Ĉ given by (4), dual to the gauge invariance
projector. Thus, it is imposed on every tetrahedron of the simplicial complex. Therefore, we do
not impose further conditions on the bivectors in what follows.

By combining the BC projector Ŝ1 with closure, one can build up the field 9̂ := Ŝ1 ? Ĉ ? ϕ̂,
defining a geometric tetrahedron. However, one immediately notices that, because the two
functions Ŝk and Ĉ do not ?-commute, the product Ŝk ? Ĉ does not act as a projector. This
fact can be shown to be the manifestation of a geometric inconsistency in the way the resulting
model imposes the simplicity constraints.

In fact, given h ∈ SO(4), one has

(eh ? Ŝk)(x) = (̂ShFk ? eh)(x) (13)

with h F k := h+k(h−)−1. This expresses the fact that, after rotation by h, simple bivectors with
respect to the normal k become simple with respect to the rotated normal h F k. Imposing the
simplicity condition everywhere with the same normal k simply misses the fact that, under
rotation h, normals should be rotated as well (which strengthens the relation between the normal
variables and the gauge connection). This means that the simplicity constraints are imposed
non-covariantly by this procedure.

But it is exactly this procedure that defines the usual versions of the BC models. In fact,
combining the interaction term

λ

5!

∫
9̂1234 ? 9̂4567 ? 9̂7389 ? 9̂962 10 ? 9̂10 851, (14)

where 9̂ := Ŝ1 ? Ĉ ? ϕ̂, with the possible kinetic terms

1

2

∫
9̂?2

1234,
1

2

∫
(Ĉ ? ϕ̂)?2

1234 or
1

2

∫
ϕ̂?2

1234 (15)

gives the versions of the BC model derived in [19], [20] or [21], respectively. The existence of
different versions, all differing, in spin foam representations, by edge (tetrahedra) amplitudes
only, is then understood to be due precisely to the non-covariant imposition of the simplicity
constraints (see [50]).

In this metric representation, the GFT Feynman amplitudes of the constrained theories
defined by (14) and (15) take the form of simplicial gravity path integrals, with a measure
weighted by a constrained BF action [5]. A more general version of this calculation is detailed
in the next section, so we do not repeat it here. The spin foam representation is then obtained by
the successive application of the group Fourier transform and of the Peter–Weyl decomposition
to the same amplitudes, and by the integration of all but the representation variables to encode
the dynamics of the quantum simplicial geometry.

One can then analyse the encoding of simplicial geometric conditions in this model directly
from the form of the GFT action, and test the criticisms mentioned in the introduction. Here we
only note that the model couples the bivector variables x across simplices and that the interplay
of simplicity constraints and parallel transport (following the covariance constraint) leads to
further conditions involving both bivector and connection variables. It would be tempting to
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interpret them as a discrete version of the secondary constraints of the canonical theory, but
this cannot be done in a rigorous way at this stage. At the same time, normals to the same
tetrahedron, as seen in different 4-simplices, are not correlated, as they should on geometric
grounds, and this in turn implies a missing geometric condition on connection variables h`—the
one resulting from the requirement that it correctly transports normal vectors across simplices.

We postpone a more detailed discussion of the simplicial geometric aspects to the last
section. But first, we will introduce a modification of the above construction in order to solve
the issue of non-covariant imposition of the simplicity constraints, and thus the consequent lack
of constraints on the discrete connection and of correlations among normal variables. This is the
goal of the next section.

3. Extended GFT formalism

We have seen that some of the problematic issues in the standard formulation of the BC model
have to do with the way normal vectors to each tetrahedron are treated. A simple generalization
of the GFT field on which both the Ooguri and BC models are based leads to an easy solution
of them.

3.1. Tetrahedra normals and gauge covariance

The required step is to promote the would-be normal vector to the tetrahedron to a dynamical
variable k ∈ S3

' SU(2), by adding it as an independent argument to the Ooguri field,
representing the tetrahedron9. Thus, in this extended formalism, GFT are defined in terms of
fields on so(4)4

× SU(2):

ϕ̂k(x1, . . . , x4) := ϕ̂(x1, . . . , x4; k) =

∫
[dg]4 ϕ(g1, . . . , g4; k) eg1(x1)eg2(x2)eg3(x3)eg4(x4).

(16)

In adopting the new field as our basic dynamical variable in a new formulation of quantum
4D BF theory, we still want to impose the local gauge invariance of the simplicial theory, as the
invariance under change of local frame in each tetrahedron. This time, however, the local rota-
tion should simultaneously rotate the bivectors and the normal vectors. In other words, the gauge
invariance condition for the Ooguri field is now replaced by a gauge covariance of the SO(4)

arguments with respect to the normal k, with the overall 5-argument field being invariant:

ϕ(hg1, . . . , hg4; h F k) = ϕ(g1, . . . , g4; k) ∀h ∈ SO(4), (17)

where h F k := h+k(h−)−1 denotes the action of the SO(4)-rotation h := (h−, h+) on the normal
vector10 k ∈ SU(2) ∼ S3.

To express this invariance in the metric representation, let us introduce the family of
functions labeled by h ∈ SO(4), given by a product of four SO(4) plane waves eh(x) :=
eh−(x−)e+

h(x+)11:

Ĉh(x1, . . . , x4) = eh(x1) · · · eh(x4). (18)
9 Obviously, before any geometricity condition is imposed, constraining the bivector variables to be triangle
area bivectors and relating them to the normal vector, any geometric interpretation is to be understood as purely
suggestive.
10 See footnote 8 in section 2.2.
11 Note that these are the same functions used to impose gauge invariance in the Ooguri BF model.
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Upon group Fourier transform, the gauge covariance condition (17) reads

(Ĉh ? ϕ̂h−1Fk)(x1, . . . , x4) = ϕ̂k(x1, . . . , x4) ∀h ∈ SO(4). (19)

This condition is implemented by means of the constraint projector:

Ĉ ϕ̂k :=
∫

dh Ĉh ? ϕ̂h−1Fk. (20)

Two important points must be noted here. First, the SO(4)-rotation invariance (17) of the
extended field induces an invariance under the stabilizer group SO(3)k of the normal k, affecting
only the first four arguments of the GFT field. Upon Peter–Weyl decomposition of the ϕk ,
this means that the field modes are labeled by one normal vector k, four irreducible SO(4)

representations (given by pairs of SU(2) spins Ji = ( j+
i , j−

i ), i = 1, . . . , 4), each of which can
be further decomposed into SO(3)k representations ki ; and a four-valent SO(3)k intertwiner,
labeled by a SU(2) spin j , contracting these representations. In terms of the dual spin network
vertex, the labeling thus corresponds to an SO(4) representation in each link, and a normal
vector k and an SO(3)k intertwiner at the node. We thus obtain, as basis for the Peter–Weyl
decomposition of the GFT field, the functions given in terms of the SU(2) Wigner matrices
D j(g) as

9
(Ji ,ki , j)
mi ,m′

i
(gi; k) =

(
4∏

i=1

D
j+
i

ni mi (g
+
i )D

j−

i

n′

i m
′

i
(g−

i )C
j+
i j−

i ki

ni n′

i pi

)
(ι j)

ki
pi
(k), (21)

where repeated lower indices are summed over. The indices (mi , m ′

i) label tensors in the SO(4)

representation Ji ; C
j+
i j−

i ki

ni n′

i pi
are SU(2) Clebsch–Gordan coefficients and (ι j)

ki
pi
(k) are the matrix

elements of an invariant SO(3)k intertwiner between the four representations ki , labeled by the
intermediate representation j . Using the fact that ϕk(g1, . . . , g4) = ϕ(k̄−1g1, . . . , k̄−1g4), where
k̄ is the SO(4) rotation with self-dual/anti-self-dual decomposition (1, k), one can equivalently
use the basis functions

9
(Ji ,ki , j)
mi ,m′

i
(k̄−1gi; 1) =

(
4∏

i=1

D
j+
i

ni mi (g
+
i )D

j−

i

n′

i m
′

i
(k−1g−

i )C
j+
i j−

i ki

ni n′

i pi

)
(ι j)

ki
pi
, (22)

written in terms of a four-valent SU(2) intertwiner (ι j)
ki independent of the normals.

Such basis functions correspond to (a single vertex of) projected spin networks [23, 42, 49].
The convolution of GFT fields to define generic observables, and thus generic boundary spin
network states at the level of transition amplitudes, will still be defined with respect to the
SO(4) connection. The need for a generalization of the standard gauge invariance condition
on quantum states (Gauss law) in the quantization of Plebanski gravity, and in the presence of
linearized simplicity constraints, which then leads to projected spin network states, has been
argued from a canonical continuum point of view in [55] (see also [39, 40, 47]).

The second point is that, despite this generalization, it is easy to check that the following
action of the invariant (under generalized gauge invariance) field ϕk:

S[ϕk] =
1

2

∫
ϕ2

1234,k −
λ

5!

∫
ϕ1234,k1 ϕ4567,k2 ϕ7389,k3 ϕ962 10,k4 ϕ10 851k5, (23)

where we used the shorthand notation ϕ1234,k := ϕk(g1, . . . , g4), defines the same amplitudes
as the original Ooguri model and thus still corresponds at the perturbative level to quantum
simplicial BF theory.
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3.2. Simplicity constraints and geometricity projector

To obtain a geometric theory in the extended framework, we would like to impose the Plebanski
simplicity constraints on the model (23). Just like in the previous section, one can implement
these constraints by means of the functions Ŝk labeled by k ∈ SU(2), defined in (11), where this
time the label k is coupled to the additional field variable. We thus define a simplicity projector
ϕ̂ 7→ Ŝϕ̂ acting on the extended fields ϕ̂k(x1, . . . , x4) := ϕ̂(x1, . . . , x4; k) as

(̂S ϕ̂)k := Ŝk ? ϕ̂k. (24)

Thus the only modification with respect to the GFT formulations of the BC model is that
now the simplicity projections have to be defined imposing orthogonality of bivectors with
respect to the normal vector that comes as a new argument of the field. This leads, however, to
a very important difference with respect to the previous case.

In fact, remarkably, this simplicity projector commutes with the action of a rotation, in the
sense that, given h ∈ SO(4),

Ĉh ? (̂S ϕ̂)h−1Fk = Ĉh ? Ŝh−1Fk ? ϕ̂h−1Fk = Ŝk ? Ĉh ? ϕ̂h−1Fk = Ŝ(Ĉh ? ϕ̂h−1Fk),

where h−1
F k := h−k(h+)−1 and Ĉh are the functions of so(4)4 defined in (18). The first term

corresponds to the action of a rotation h on the projected field Ŝϕ̂; the last term corresponds to
the projection by Ŝ of the rotated extended field Ĉh ? ϕ̂h−1Fk . The simplicity projector acts on the
rotated field by imposing simplicity with respect to the rotated normal vector. Thus, the equality
just states that rotating by h bivectors that are simple with respect to a normal k gives bivectors
that are simple with respect to the rotated normal h−1

F k.
This commutation property is an important property, because it means that the model

constructed in these terms will not suffer from the ‘lack of covariance’ noted in [5] in the various
versions of the BC model, and that the simplicity constraints are now going to be correctly
imposed in the different frames across the simplicial complex, obtained as a Feynman diagram
of the GFT model in the following section.

This has a further crucial consequence. Simplicity and gauge covariance are encoded
into two projectors Ŝ and Ĉ , defined in (11) and (20), which are now commuting: their
product therefore defines a projector Ĝ = ŜĈ = Ĉ Ŝ, with G2

= 1. Explicitly, in the metric
representation, this projector acts as

(Ĝϕ̂)(x j; k) =

∫
SO(4)

dh

 4∏
j=1

δ−kx−

j k−1(x+
j )

 ? [eh(x1) · · · eh(x4)] ? ϕ(x1, . . . , x4; h−k(h+)−1).

(25)

Upon group Fourier transform, it acts dually on extended group fields as

(Gϕ)(g j; k) =

∫
SO(4)

dh

∏
j

∫
SU(2)

du j

ϕ((h−k−1u j kg−

j , h+u j g
+
j ); h+k(h−)−1). (26)

The geometric nature of the tetrahedron corresponding to the GFT field ϕ̂ is then enforced by
the single projector G that we can call geometricity projector. It is then imposing this projector
on the generalized fields ϕ̂ that one can construct a GFT (and spin foam) model of 4D quantum
gravity based on the (linear) Plebanski formulation of classical gravity, free of the mentioned
problematic features (from the point of view of simplicial geometry) of the usual formulations
of the BC model. This is what we do in the following section.
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4. A revised model for four-dimensional (4D) quantum gravity with no Immirzi parameter

4.1. The GFT model and its Feynman amplitudes

We start from the extended Ooguri model introduced in section 3 and use the geometricity
projector G combining both (extended) closure and simplicity constraints in a single operator.
We define a projected field 9̂ := Ĝϕ̂, representing a geometric (non-commutative) tetrahedron,
whose geometry is characterized by four area bivectors x j and one normal vector k.

The GFT model is defined by the action

S(9̂) =
1

2

∫
[d6xi ]

4

∫
dk 9̂?2

1234,k +
λ

5!

∫
[d6xi ]

10[dka]5

× 9̂1234,ka ? 9̂4567,kb ? 9̂7389,kc ? 9̂962 10,kd ? 9̂10 851,ke, (27)

where d6xi is the Lebesgue measure on so(4) ∼ R6 and dk is the Haar measure on SU(2). It is
understood, just like in the previous sections, that ?-products relate repeated lower indices as
9̂i ? 9̂i := (9̂ ? 9̂−)(xi), with 9̂−(x) = 9̂(−x).

We can immediately note four main features of the model so defined:

Just as in the Ooguri model and in the standard BC model(s), bivector variables associated
with the same triangle in different tetrahedra (fields) within the same 4-simplex, as well
as across different 4-simplices, are identified in the frame of the same 4-simplex, to which
the above writing refers. When expanding the gauge covariance constraint in integral form
and writing explicitly the delta-functions relating the arguments of the fields, one sees that
the same bivector variables are now expressed in the frames associated with the various
tetrahedra, and are related by the discrete connection introduced by covariance constraint
(see also [5, 24, 47, 51]).

Just as in the extended Ooguri model, normal vectors to tetrahedra are coupled only
indirectly in each 4-simplex, through their relation with bivector variables imposed by the
generalized covariance condition and by the simplicity constraints Ŝk . On the other hand,
the normal vectors associated with the same tetrahedron in the two different 4-simplices
sharing it are strictly identified by the kinetic term in the reference frame associated with
the tetrahedron (this becomes apparent when making explicit the form of the interaction
and kinetic functions and writing the generalized closure constraint in integral form).

The use of the generalized geometricity projector Ĝ imposes all the necessary geometric
conditions on the bivector variables in each tetrahedron. Note that the closure of the four
field variables, and hence of the bivectors associated with the four triangles of a tetrahedron,
is recovered by integration over the normals. In fact, such integration makes the insertion
of a closure constraint in front of each field 9̂1234,k in the interaction term redundant, since∫

dkδ(x1 + · · · + x4) ? 9̂(x1, . . . , x4; k) =

∫
dk9̂(x1, . . . , x4; k). (28)

The nature of the operator Ĝ as the product of two commuting projectors leads to a
unique definition of the constrained model. By contrast, the standard BC projector does
not commute with gauge invariance, giving rise to some ambiguities in the form of edge
amplitudes of the spin foam model. Here, for example, the use of the interaction term
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of (27) with any of the kinetic terms:

1

2

∫
9̂?2

1234,k,
1

2

∫
(C F ϕ̂)?2

1234,k,
1

2

∫
(̂Sk F ϕ̂)?2

1234,k or
1

2

∫
ϕ̂?2

1234,k

leads to the same amplitudes upon perturbative expansion. At the same time, it should be
stressed that any of the above choices would lead, strictly speaking, to the definition of a
different field theory, for what concerns the related space of fields, the classical equations
of motion, etc.

The Feynman amplitudes of model (27), in the metric representation, can be computed with the
propagator and vertex functions given by12

P(xi , x ′

i; k, k ′) = δ−xi (x ′

i) δ(k ′k−1) V (x`
i , x`′

i ; k`, k`′)

=

∫ 4∏
`=1

dh`

6∏
i=1

(δ−x`
i
? Sk`

? eh`h−1
`′

? Sk`′
)(x`′

i ), (29)

where Sk(x) := δ−kx−k−1(x+) and dh` is the Haar measure on SO(4). Note that the vertex does
not encode any correlation among normal vectors for different tetrahedra. The propagator,
instead, presents a fifth strand corresponding to the identification of normal vectors in the two
4-simplices sharing the same tetrahedron.

The calculation of the Feynman amplitudes is similar to the topological case [5]. In building
up the diagram, propagator and vertex strands are joined to one another using the ?-product. The
amplitudes are integrals over the bivector and holonomy variables, and the normals. In terms
of the simplicial complex dual to the Feynman graph, bivectors x τ

t are labeled by a couple
{triangle t, tetrahedron τ } with t ⊂ τ ; holonomies hστ are labeled by a couple {4-simplex σ ,
tetrahedron τ } with τ ⊂ σ ; the normals are labeled by tetrahedra as kτ .

Under the integration over the normals and holonomy variables, the amplitude of a closed
graph factorizes into a product of contributionsAt [hστ , kτ ] for each face of the graph, and hence
for each triangle t of the dual simplicial complex, which take the form of a cyclic ?-product:

At [hστ , kτ ] =

∫ Nt∏
j=0

[d6x j
t ] EFNt

j=0 (δx j
t
? Sk j ? eh j j+1)(x j+1

t ). (30)

The integer j ∈ {0, . . . , Nt} labels the tetrahedra sharing the triangle t , or the links of the
boundary of the face ft dual to t in the Feynman graph. The expression is defined for a given
ordering of these tetrahedra, induced by a choice of orientation of ft and a reference point in
its boundary. h j j+1 := h−1

σ j hσ j+1 is the holonomy from the tetrahedron j to the tetrahedron j + 1

through the 4-simplex σ sharing them. By convention we set xN+1 := x0. The variables x j
t ∈

so(4) correspond to the same bivector associated with the triangle t , expressed in the various
reference frames of the tetrahedra j . The measure features both the simplicity constraints for
the bivector at the level of each tetrahedron and the parallel transports of (constrained) bivectors
and normal vectors across simplices, via the discrete connection.

The Feynman amplitude can be written as a simplicial path integral, by first integrating,
in each face contribution At [hστ , kτ ], over all bivectors x j

t save one xt := x0 corresponding
to a ‘reference’ tetrahedron frame j = 0; and by a repeat use of the commutation relation

12 This corresponds to the choice: S(̂ϕ) =
1
2

∫
ϕ̂?2

1234,k + λ
5!

∫
9̂1234,ka ? 9̂4567,kb ? 9̂7389,kc ? 9̂962 10,kd ? 9̂10 851,ke .
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eh ? Sk = ShFk ? eh , with h F k = h+kh−1, to place all the plane waves to the right of the integrand.
We obtain the following expression for the graph amplitude:

AG =

∫ ∏
〈στ 〉

dhστ

∏
t

d6xt

[∫ ∏
τ

dkτ

∏
t

EFNt
j=0 Sh0 j Fk j (xt)

]
? ei

∑
t Tr xt Ht , (31)

where the holonomy h0 j = h01, . . . , h j−1 j parallel-transports the reference tetrahedron 0 to the
tetrahedron j (with h00 = 1) and Ht := h01, . . . , hN0 is the holonomy along the boundary of the
face ft of G dual to the triangle t , calculated from the reference tetrahedron frame. The measures
dhτσ , d6xi and dkτ are, respectively, the Haar measure on SO(4), the Lebesgue measure on
so(4) ∼ R6 and the Haar measure on SU(2). The exponential corresponds to the product of
plane waves

∏
t eHt (xt); its argument

∑
t Trxt Ht is the unconstraint discrete BF action.

This amplitude takes the form of a (non-commutative) simplicial path integral for a
constrained BF theory. The measure features the simplicity of the bivector xt of a triangle in
the frame of all tetrahedra sharing the triangle. Thus, Sh0 j Fk j (xt) imposes the simplicity of xt

with respect to the h0 j F k j , which is the normal to the tetrahedron j parallel-transported to the
reference frame 0. This is the same as requiring the simplicity with respect to k j of the bivector
parallel-transported to the frame of j .

Note that the above amplitude automatically encodes the closure constraint for the bivectors
within each tetrahedron. This is a direct consequence of (extended) gauge invariance and the
integration over the normals. Let us nevertheless check it explicitly by picking a tetrahedron
τ and considering the variables xti , i = 1, . . . , 4, associated with its four boundary triangles,
namely bivectors that expressed the reference tetrahedron frame of each triangle. The closure
constraint says that the sum of the four bivectors, once parallel-transported to the frame of τ ,
is zero; in the non-commutative formalism, it is imposed using the non-commutative delta-
function (5). Using a suitable gauge transformation, we can always suppose that τ is the
reference tetrahedron for triangles ti . By appropriately flipping signs xti 7→ −xti , we can also
assume that the orientations of the faces fti chosen to calculate the holonomies induce the
same orientation of the common link dual to τ . Let us insert the closure constraint δ(

∑
i xti ) :=∫

dg
∏

i eg(xi) on the left of the simplicity functions into the integrand of (31), using the star
product. The term depending on xti in this integrand then becomes∫

dg
4∏

i=1

eg(xi) ?
[

EF
Nti
j=0 Sh0 j Fk j (xti )

]
? ei

∑
i Tr xti Hti =

∫
dg

4∏
i=1

EF
Nti
j=0Sgh0 j Fk j (xti ) ? ei

∑
i Tr xti gHti ,

where the equality follows from the commutation relation (13) between plane waves and
simplicity functions and the definition of star product of plane waves. Now, the dependence upon
g in the integrand can be removed by the change of variables kτ 7→ gkτ , hστ τ 7→ hστ τ g−1, where
στ is the 4-simplex13 to which both τ and its successor in the ordered lists j = 0, . . . , Nti of
tetrahedra sharing ti , belong. This shows that the insertion of the closure constraint is redundant
and hence that such constraints are already implemented in the simplicial path integral.

The integrand of (31), as a function of the bivectors, holonomies and normals, is invariant
under the following gauge transformations, generated by an SO(4) element gτ for each
tetrahedron:

hστ 7→ hστ g−1
τ , kτ 7→ g+

τ kτ (g
−

τ )−1, xt 7→ g−1
τ(t)xt gτ(t), (32)

13 στ is also the 4-simplex dual to the ‘target’ vertex of the oriented link dual to τ .
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where τ(t) is the reference tetrahedron for the triangle t and g±

τ arises from the self-dual/anti-
self-dual decomposition of gτ . This corresponds to SO(4) rotation of the tetrahedral frames.
The integrand is also invariant under rotation of the simplex frames acting only on holonomies
hστ 7→ gσ hστ (all the other variables being expressed in tetrahedral frames). Choosing gτ =

(g+
τ , g−

τ ) := (1, k−1
τ ) as gauge parameters corresponds to the ‘time gauge’, which fixes the

normals to the north pole of S3. This shows that the integrals over the normals kτ drop out
of the amplitude (31). Making explicit the simplicity functions and denoting h̄0 j := h+

0 j(h
−

0 j)
−1,

we obtain

AG =

∫ ∏
〈στ 〉

dhστ

∏
t

d6xt

[∏
t

EFNt
j=0 δ

−h̄0 j x−
t h̄−1

0 j
(x+

t )

]
? ei

∑
t Tr xt Ht . (33)

Note that gauge fixing the normals is only possible for amplitudes of closed graphs; the
amplitude of open graphs, dual to simplicial complexes with boundary, has an explicit
dependence on the normals to the boundary tetrahedra. We illustrate this in the case of the
simplex boundary state in section 4.3.

To summarize, we have written the GFT Feynman amplitudes as simplicial path integrals
with the explicit form of a constrained BF theory, with a clear form of (linear) simplicity
constraints imposed in each tetrahedral frame, with respect to a given normal variable and
correctly parallel-transported across frames by means of the gauge connection. The integration
over the same connection imposes the closure constraint in every tetrahedron; this in turn implies
the remaining (volume) simplicity constraints [22, 47]. The amplitude also encodes constraints
on the connection {hστ }, following from simplicity, giving a specific measure on the space of
connections.

4.2. Spin foam representation of the amplitudes

The same amplitudes can be written in spin foam representation, exploiting the exact duality
between the metric and spin representation of the GFT [5]. This re-writing is obtained by
inverse group Fourier transform—giving the pure lattice gauge theory formulation of the model
involving only group elements [4])—and the Peter–Weyl decomposition of the amplitudes,
leaving only a sum over representation of pure spin foam amplitudes.

For the present model the calculation goes as follows. We first note that, under the
integration of the group elements hστ in (33), each integral over xt takes the form of an inverse
SO(4) Fourier transform formula. Indeed, for a given set of holonomy variables {hστ }, the
functions EFNt

j=0 δ
−h̄0 j x−

t h̄−1
0 j

(x+
t ) inside the brackets, labeled by t , define functions of su(2), which

are the image by non-commutative Fourier transform of some functions Ot on SO(4):

EFNt
j=0 δ

−h̄0 j x−
t h̄−1

0 j
(x+

t ) =

∫
SO(4)

dgOt(g)eg(x).

The inverse Fourier transform formula (see, e.g., [5]) gives

Ot(g) =

∫
d3x EFNt

j=0 δ
−h̄0 j x−

t h̄−1
0 j

(x+
t ) ? eg−1(x). (34)

A quick comparison between this formula and the integrand of (33) leads to the following simple
expression of the graph amplitude in terms of the group functions Ot :

AG =

∫ ∏
τσ

dhτσ

∏
t

Ot(H−1
t ), (35)

where we recall that Ht := h01, . . . , hN0 is the holonomy around the triangle t .
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Let us determine the functions Ot . The plane-wave expansion of the non-commutative
delta-functions gives

EFN
j=0 δ

−h̄0 j x−
t h̄−1

0 j
(x+

t ) =

∫
dg
∫ N∏

j=1

dg j eg
∏N

j=1 h−

0 j g j h
−−1
0 j

(x−) eg
∏N

j=1 h+
0 j g j h

+−1
0 j

(x+)

=

∫ ∏
±

dg±

∫ N∏
j=1

dg j δ(g+g−1
−

)eg−

∏N
j=1 h−

0 j g j h
−−1
0 j

(x−) eg+
∏N

j=1 h+
0 j g j h

+−1
0 j

(x+), (36)

where the integrations are over SU(2). We omitted the t of Nt to simplify the notations. After
the following change of variables:

g− 7→ g−

N∏
j=1

h−

0 j g j h
−−1
0 j , g+ 7→ g+

N∏
j=1

h+
0 j g j h

+−1
0 j , (37)

the expression (36) takes the explicit form of an SO(4) Fourier transform Ôt(x) =∫
dgOt(g)eg(x), where Ot(g) is given by

Ot(g) =

∫ N∏
j=1

dg j δ

g+

 N∏
j=1

h+
0 j g j h

+−1
0 j

−1
N∏

j=1

h−

0 j g j h
−−1
0 j g−1

−

 . (38)

The evaluation of this function for g = H−1
t gives

Ot(H−1
t ) =

∫ N∏
j=1

dg j δ
([

h+
01g1h+

12, . . . , gN h+
N0

]−1
h−

01g1h−

12, . . . , gN h−

N0

)
. (39)

Next, we use the Plancherel decomposition of the SU(2) delta-function in terms of the characters
χ J (g) = Tr D J (g) in the SU(2)-representations labeled by J ∈

1
2N, which also labels the simple

SO(4) representation (J, J ) [17, 44], to write

Ot(H−1
t ) =

∑
J

dJ

∫ N∏
j=1

dg j χ J
([

h+
01g1h+

12, . . . , gN h+
N0

]−1
h−

01g1h−

12, . . . , gN h−

N0

)
, (40)

where dJ = 2J + 1. The integration over each group variables g j in (39), which appears exactly
two times in the argument of each character χ J , is performed using N times the orthogonality
relation of the representation matrices∫

dg D J
mn(g

−1)D J
pq(g) =

1

dJ
δm,qδn,p.

In fact, if we denote χ J
0 := χ J (h+

01(h
−

01)
−1 and, for K = 1, . . . , N :

χ J
K := χ J

([
h+

01g1h+
12, . . . , gK h+

K K +1

]−1
h−

01g1h−

12, . . . , gK h−

K K +1

)
(where by convention N + 1 = 0), one can show, using orthogonality, the following recursion
relations: ∫

dgK χ J
K =

1

dJ
χ J (h+

K K +1(h
−

K K +1)
−1)χ J

K−1. (41)

New Journal of Physics 13 (2011) 125011 (http://www.njp.org/)

http://www.njp.org/


17

We conclude by iteration:

Ot(H−1
t ) =

∑
J

d2
J

d N+1
J

N∏
j=0

χ J (h+
j j+1(h

−

j j+1)
−1), (42)

where N + 1 is the number of tetrahedra sharing the triangle t .
Using the form (35) of the Feynman amplitude (33) and the above expression for the

functions Ot , we finally obtain the spin foam amplitude:

AG =

∑
{Jt }

∏
t

d2
Jt

∏
τ

1∏
t∈∂τ dJt

∏
σ

{10J }σ . (43)

The sum is over the SU(2) spins Jt labeling the triangles of the simplicial complex dual to G
and the products are over the triangles t , the tetrahedra τ and the 4-simplices σ . The 4-simplex
weight {10J }σ is the Barrett–Crane 10 j-symbol [44]:

{10J }σ =

∫ ∏
v

dhv

∏
l=(vv′)

χ Jt (l)(h+
v(h

−

v′)
−1). (44)

In this expression, v label the five vertices and l the ten links of the graph dual to the boundary
of the 4-simplex: a vertex is dual to a boundary tetrahedron, a link l = (vv′) is dual to a triangle
t (l) sharing two tetrahedra. The measure is over SO(4) elements hv := (h+

v, h−

v ).
The model is thus a variant of the BC model with a specific edge amplitude, different

from that of other versions of the BC model [50] (note, in particular, the absence of the
norm of the BC intertwiner from the amplitudes), although identical to that obtained in [21],
whose construction is indeed close to ours regarding both its motivations and techniques
employed.

From both the construction and the detail of the calculation, it should be clear that, while the
appearance of the 10 j-symbol is the direct result of the form of the simplicity constraints chosen
(corresponding to the pure gravity sector of the Holst action or to the Plebanski formulation of
gravity, with linear constraints), most of the information concerning the details of the simplicial
geometry behind the model, in particular the extended closure condition and associated Lorentz
covariance of quantum states, as well as the correlations of normal vectors across simplices, is
now hidden in the edge amplitudes. The reason for this non-transparent form is obviously the
fact that all the geometric variables in which this information is manifest, i.e. bivectors, gauge
connection and normal vectors, have been integrated out.

4.3. Simplex boundary state

Taking the GFT Feynman amplitudes as the definition of a lattice model, we would like to
discuss here the simplex boundary state. The vertex function (29) gives the amplitude for
a single 4-simplex (represented by the vertex graph) with fixed boundary data {x τ

t , x τ ′

t } and
{kτ }: the pair x τ

t , x τ ′

t both corresponds to bivectors associated with the triangle t , expressed in
the frame of the two tetrahedra sharing it. Given ten such pairs, the vertex function encodes
the relations between the bivectors of the same triangle expressed in different tetrahedral
frames: ∫ ∏

τ

dhτ

∏
t=〈ττ ′〉

(δ−xτ
t
? Skτ

? Shττ ′Fkτ ′ ? ehττ ′ )(x τ ′

t ). (45)
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The product is over the triangles of the 4-simplex, each of which is shared by an (ordered) pair
of tetrahedra. hττ ′ = h−1

τ hτ ′ is the parallel transport between τ and τ ′ and Sk(x) := δ−kx−k−1(x+)

are the simplicity functions written in terms of the non-commutative delta-functions (5).
An important remark is in order, here. Without the simplicity functions, the bivectors x τ

t , x τ
t

would be identified up to (a sign and) parallel transport hττ ′ from τ to τ ′, as they should
be classically. However, due to the specific properties of the star product, the presence of
the simplicity functions relaxes this identification. Using the plane wave expansion of Sk , we
indeed have

(δ−xτ
t
? Skτ

? Shττ ′Fkτ ′ ? ehττ ′ )(x τ ′

t ) =

∫
duτ

t duτ
t (δ−xτ

t
? euτ

t hττ ′ uτ ′

t
)(x τ ′

t ), (46)

where the integration of the right-hand side is over the product SO(3)τ × SO(3)τ ′ of stabilizer
groups of the normals kτ and kτ ′ . The fact that the amplitude does not force the complete
identification up to parallel transport of the bivectors across neighboring tetrahedra, also noted
in [21] and argued to be the main shortcoming of the BC model, appears, in our formalism, to
be due to the star product structure and thus the quantization map chosen for the constraints.
As we argue also in the discussion in section 6, such a relaxation of parallel transport could
be purely quantum effects, devoted to disappear in a suitable semi-classical limit. In fact, such
a requirement serves as a guide for the very definition of such a limit, which should reach a
regime in which the star product is approximated by a commutative product. A scale λ > 0
can be introduced in the amplitude via a modification of the group Fourier transform, where
SU(2) group elements are parametrized as g = eλ Ep·Eτ with Ep ∈ R3 and | Ep| < 1/λ, plane waves
are replaced by eλ

g(x) := e
i

λ2 Tr xg, and the star product preserves the parameter [14]

e
i

λ2 Tr xg
?λ e

i
λ2 Tr xg′

= e
i

λ2 Tr xgg′

.

In the limit λ → 0, corresponding to a regime of low curvature, the star product can
be approximated by the standard pointwise product of functions on so(4) ∼ R6. In this
parametrized framework, the parameter λ appears not only in front of the action in the path
integral, making it suitable for defining the semi-classical regime, but also as a deformation
parameter of the product used for the definition and the imposition of the constraints; this
contributes to further quantum corrections, of which the above relaxation of parallel transport
may be a manifestation. This possibility will be studied in more detail elsewhere.

Let us also point out that, if one defines, in the parametrized framework, the su(2)

non-commutative delta-function as δ =
1
λ6

∫
dg eλ

g , then they formally become a true delta-
function on su(2) ∼ R3 in the limit λ → 0. With simplicity functions defined as before Sk(x) =

δ−kx−k−1(x+), this means that, in this limit, the constraints in (45) impose, for each triangle t , the
following condition on the bivector xt := x τ ′

t and the connection:

−x+
t = kτ x−

t kτ ′ = [hττ ′ F kτ ′]x−

t [hττ ′ F kτ ′]−1.

In other words, the normals of the tetrahedra sharing t , expressed in the frame of τ , differ from
an element in the stabilizer group of the x−

t , namely [hττ ′ F kτ ′]k−1
τ ∈ U(1)x+

t
. This expresses the

geometrical fact that the two normals belong the plane co-orthogonal to the bivector xt (namely
orthogonal to his Hodge dual, which defines the plane spanned by the triangle). In time gauge
k = 1, this becomes a condition on the boost part of the parallel transports hττ ′ between adjacent
tetrahedra.

The integration of the amplitude (45) over half of the bivector variables, namely, for each
triangle t = 〈τ, τ ′

〉, the variable x τ ′

t gives a function over the normals and the ten remaining
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variables xt := x τt
t , which are bivectors of the triangle t in its reference tetrahedron τt . The

resulting amplitude takes the form of a discretized (and non-commutative) path integral for
constrained BF theory, for a single 4-simplex, with fixed boundary bivectors:

A(xt; kτ ) =

∫ ∏
t

[
dgt eiTr xt gt ? Skτt

(xt)
]
?

∫ ∏
τ

dhτ

∏
t

Shττ ′Fkτ ′ (xt) δ(hτ gt h
−1
τ ′ ). (47)

In this expression, we made explicit the part of the constraint implementing the linear simplicity
of the bivectors in their reference tetrahedron, and the part (also dependent on the bivectors)
entering the definition of the measure over the connections. Note that the closure constraint for
the bivectors is only implemented after integration over the normals. That a proper spin foam
model should have this form, with the corresponding constraints modifying the measure over
the connections, has been advocated in [39].

5. A model for the topological sector of Plebanski gravity

In this section, we sketch the construction of a GFT model for the so-called topological sector of
Plebanski gravity as a constrained BF theory, where the constraints on the B-field impose that
it can be expressed in terms of 1-forms B I J

= e I
∧ eJ rather than ε I J K LeI ∧ eJ . At the discrete

level, they are implemented by requiring the same condition as in (10), but for the Hodge dual
to B rather than B itself. In terms of B, the condition differs from (10) by a sign: there exists a
k ∈ SU(2), such that ∀ j, B+

j = k B−

j k−1.
This condition is obtained from the BF GFT in its extended formulation, by using an

operator, acting on the extended field (in metric variables) as ϕ̂k 7→ (̂Stopϕ̂)k := Ŝtop
k ? ϕ̂k , where

Ŝtop
k are the functions of four so(4) variables, labeled by an SU(2) element k, defined in terms

of the non-commutative δ functions (5) as

Ŝtop
k (x1, . . . , x4) =

4∏
j=1

δkx−

j k−1(x+
j ). (48)

Upon group Fourier transform,

Ŝtop
k ? ϕ̂k =

∫
SO(4)4

[dg j ]
4 (Stop

k ϕk)(g j) eg1 . . . eg4,

this simplicity operator acts as

(Stop
k ϕk)(g) :=

∏
j

∫
SO(3)4

k

[du j ]
4 ϕk(k

−1u−1
j kg−, u j g

+), (49)

where we used the decomposition g = (g−, g+) into self-dual and anti-self-dual components.
Note that, unlike its analogue in the gravitational sector, the simplicity operator does

not define a projector14. One can, however, check that it commutes with the extended gauge
invariance projector Ĉ in (17). This is because, just like their analogues Ŝk , the simplicity
functions Ŝtop

k satisfy the property that, given h ∈ SO(4),

eh ? Ŝtop
k = Ŝtop

hFk ? eh. (50)

This property allows us to impose the simplicity constraint covariantly.

14 There are ways of imposing such constraints via a projector: for example by acting on the field with Ŝtop
k by right

star multiplication on the components x− and left on the components x+; we will not investigate them in this paper.
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A model can be defined by the action having the same form as (27), but now defined in
terms of fields 9̂ = Ĝ topϕ̂, with Ĝ top

= ŜtopĈ = Ĉ Ŝtop. Just as in the gravitational sector, the
Feynman amplitudes take the form of simplicial path integrals for a constrained BF theory:

AG =

∫ ∏
〈στ 〉

dhστ

∏
t

d6xt

[∏
t

EFNt
j=0 δh̄0 j x−

t h̄−1
0 j

(x+
t )

]
? ei

∑
t Tr xt Ht , (51)

where the notations are the same as those in the previous section: for each triangle t , the integers
j = 0 · · · Nt labels the tetrahedra sharing t , h0 j is the holonomy between the tetrahedra 0 and j
and h̄ := h+(h−)−1. AG is the generic amplitude of the closed graph expressed in time gauge, as
(extended) gauge invariance allows us to remove the dependence upon the normals.

The spin foam expression of the model can be calculated directly from its simplicial path
integral form, following the same route as in section 4.2. Here we will not describe this spin
foam expression in detail. Let us, however, have a look at the action of the simplicity operator
on the Peter–Weyl components on the fields. Gauge invariant fields ϕk expand into projected
spin network vertex functions (21): for k = 1,

9
(Ji ,ki , j)
mi ,m′

i
(gi) =

(
4∏

i=1

D
j+
i

ni mi (g
+
i )D

j−

i

n′

i m
′

i
(g−

i )C
j+
i j−

i ki

ni n′

i pi

)
(ι j)

ki
pi
. (52)

We deduce from the orthogonality relations of the Wigner matrices∫
du D j+

mn(u
−1)D j−

pq (u) =
1

d+
j

δ j+, j−δm,qδn,p

that simplicity (49) projects onto simple representations j+
i = j+

i , just like in the gravitational

sector, and exchanges the indices ni and n′

i in C
j+
i j−

i ki

ni n′

i pi
in the formula (52). Given that the

Clebsh–Gordan coefficients satisfy

C j, j,k
m,n,p = (−1)2 j+kC j, j,k

n,m,p,

we conclude that Stop projects onto the simple SO(4) representation J = ( j, j), does not impose
any restriction on the expansion of ( j, j) into SU(2) irreducible k = 0, . . . , 2 j and acts on
each component (J, k) by multiplication by the phase (−1)2 j+k . The expansion into the SU(2)

representations k is what defines the fusion coefficients characterizing the new models [22] and
in particular the EPR model. In the EPR model, the expansion is restricted to spin 2k = j . The
model obtained here is manifestly different; the action of the simplicity function rather suggests
a form analogous to the Ooguri model, as a sum over SO(4) representations of the products of
(15 j) symbols, where the representations are restricted to be simple.

Thus, by following the same strategy as that in the previous sections, a model for
the topological sector of Plebanski gravity can be proposed in the non-commutative metric
formulation of GFT, where the classical constraints are imposed via non-commutative delta-
functions. Just like in the gravity case, the amplitudes are simplicial path integrals with a clear
geometric content. The resulting spin foam model is manifestly distinct, at least in the full
quantum regime, from the one we would obtain by imposing the constraints on coherent state
parameters [22].

6. Discussion

In this section, we summarize our results and in light of them, re-examine the arguments
against the BC model, by which, from now on, we mean the amplitudes associated with a
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given triangulation as obtained within the generalized GFT formalism presented above, whether
written in the simplicial path integral or in the spin foam representation.

First of all, let us recapitulate the procedure we adopted, and the ingredients we put in.
We started from a GFT formulation of quantum BF theory in four dimensions. The GFT

field represents the quantization of the data associated with a single tetrahedron in a simplicial
decomposition of spacetime (to be generated by the GFT perturbative expansion) in BF theory.
Its arguments represent the corresponding simplicial BF variables. We extended the standard
formalism to the one including, for each tetrahedron, an additional variable valued in S3, in
preparation for the imposition of the geometric constraints that should turn this model into the
one for 4D gravity. We then imposed onto such an extended GFT field an extended covariance
condition affecting both the usual field arguments and the additional S3 variable. This condition
represents the gauge invariance constraint of (simplicial) BF theory, and introduces, when
written in the form of an integral operator acting on a generic GFT field, the bulk gauge
connection of the theory, encoding parallel transport among tetrahedral and simplex frames.
In a geometric theory, this should also encode the closure constraint on the faces of the same
tetrahedron.

After appropriate constraints, in fact, the GFT field should turn into a quantum description
of a (quantum) geometric tetrahedron. The needed (simplicity) constraints can be split (both in
the discrete and in the continuum setting) into two sets: diagonal and cross-diagonal simplicity,
acting at the level of individual tetrahedra, and here imposed in their combined linear form
[22, 47], and ‘volume’ simplicity constraints. The variables on which these constraints have to
be imposed are exactly the Lie algebra elements appearing as arguments of the GFT fields in
the metric representation, as confirmed by the GFT amplitudes written in the simplicial path
integral representation. We then impose the first set of simplicity constraints, as well as the
extended covariance (thus closure), as restrictions on the GFT field. Such restrictions then show
up in the form of (non-commutative) delta-function insertions in the simplicial BF path integral,
at the level of GFT Feynman amplitudes, for all tetrahedra in the associated triangulation, and in
the frames of the tetrahedra, thus result in a covariant imposition of the constraints. Moreover,
we know [22, 47] that the volume simplicity constraints follow automatically when parallel
transport conditions among tetrahedral frames, simplicity and closure conditions hold. In turn,
when all of these conditions hold, assuming non-degeneracy, the set of bivectors define a unique
geometry for the simplicial complex, and thus can be inverted for the set of edge lengths. No
classical geometric condition is thus missing in the construction.

The next step, however, is to quantize these conditions. As mentioned, this process is
necessarily ambiguous and a choice of the quantization map must be made. And as mentioned,
our procedure relies on the non-commutative Fourier transform and on the resulting star product
used to compose the building blocks of the simplicial path integral, including the simplicity
constraints and the parallel transport conditions. Thus we have implicitly used, in the path
integral setting, the Duflo quantization map. Once more, support for this choice, besides the
more abstractly mathematical one, comes from the results of its application to the pure BF
theory [5, 32] as well as to simpler systems [33] (and, more recently, to canonical 3d gravity
with cosmological constant [45]).

In this quantization, the closure condition of bivectors associated with the faces of each
given tetrahedron is not manifest, in contrast to the standard formulation of BF theory, due
to the extended form of gauge covariance. One may then want to include it explicitly, inserting
non-commutative delta-functions at the level of the Feynman amplitudes of the model. However,
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as noted also in [30] and remarked above, it is immediate to see that such an insertion would be
redundant and could be re-absorbed in the integration over the discrete connection. The closure
constraint has indeed already been implemented by this integration.

As we have shown in the previous sections, this quantization procedure also implied a
characteristic interrelation between simplicity constraints and parallel transport, which leads to
the covariant imposition of the first, resulting restrictions on the connection, and a consequent
relaxation of parallel transport conditions. This fact is not affected by the presence or value of
the Immirzi parameter, but once more is a necessary consequence of the quantization chosen.
Actually, it seems to go beyond it and be a feature of the other spin foam models as well. The
result is that the configurations summed over in the simplicial path integral, and thus in the spin
foam model, are not strictu sensu classical geometries, due to unavoidable quantum corrections
(it can also be understood to be a consequence of the specific path integral measure that our
GFT procedure defines).

The end result, in this case, is a simplicial path integral with non-commutative variables,
and in spin variables, a specific version of the BC spin foam amplitudes.

Let us then reconsider the issues concerning the quantum simplicial geometry behind
the BC model, including the one mentioned above, as made manifest in the metric/simplicial
gravity path integral representation. These are:

(a) 4-simplices speak only through face representations, i.e. triangle areas [25];
(b) bivectors associated with the same triangle in different simplices are not identified (after

parallel transport) [21, 22];
(c) normal vectors to the same tetahedron seen in different 4-simplices are uncorrelated

[5, 43];
(d) the simplicity constraints are imposed in a non-covariant fashion [5];
(e) because of this non-covariance, there are missing constraints over the connection

variables [5].

The extended GFT formalism (with linear constraints and no Immirzi parameter) that we
presented were meant exactly to solve the last three problems above, and they do.

The other points refer to the coupling of simplices and to the coupling of tetrahedra
within simplices. The non-commutative metric formulation shows that the bivector variables
associated with the ten triangles in each 4-simplex are correctly identified across different
4-simplices sharing the same tetrahedron (and thus the same triangles), thus addressing the
first issue. The additional coupling of normal vectors, in turn covariantly related to the
bivectors by the simplicity constraints and by the generalized closure relation, ensures that the
correlations among simplices resulting from bivector identifications are not undone by the lack
of correlations of normals or by missing conditions on the discrete connection. Obviously, if
one expands the transition amplitudes by Peter–Weyl into (simple) SO(4) representations and
then integrates out all variables except the representations themselves (interpreted as quantum
numbers for the areas of the triangles), the amplitudes associated with individual 4-simplices
will share only such remaining variables with one another. This simply means that the whole
simplicial geometry behind the model and the exact correlations among geometric variables
(bivectors and normals) in the same tetrahedron as seen by different (neighboring) 4-simplices
have been encoded in a not-at-all-transparent way into the lower-dimensional amplitudes.

As we illustrated in section 4.3, point (b), argued in [21] to be a serious shortcoming of
the BC model, has to do exactly with the relaxation of parallel transport resulting from the
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interplay between simplicity constraints and gauge covariance, due to the properties of the non-
commutative star product. In fact, using the decomposition of the simplicity constraints into
plane waves, the star product allows us to recombine them with the plane wave corresponding
to the unconstraint BF action, into a single effective action for the model. This is the action used
also in [21]. Now, as observed in this work, the equations of motion for action do not force the
complete identification up to parallel transport of the bivectors across neighboring tetrahedra.
Is this a problem or a feature of the model, i.e. of the quantum amplitudes? We argue that it
is a necessary feature (which will be present also in any extension of the same construction
involving the Immirzi parameter), an indication of what quantum geometry may be and not
necessarily the sign of a problem with it. Our view is that the effective action obtained using the
star product should be interpreted as an effective quantum-corrected action indicating properties
of the quantum configurations summed over in the path integral, which indeed should not be
expected to be classical simplicial geometries, in general. As a consequence, the variations of
the same action should not necessarily be interpreted as encoding the classical geometry behind
the model, and their failure to reproduce classical simplicial geometry should not necessarily be
interpreted as indicating that geometric conditions are missing among the ingredients leading to
it. It just indicates how these necessary ingredients are affected by the quantization procedure.
While we leave a detailed analysis of the semi-classical expansion of the amplitudes to future
work, we can already argue that such expansion will involve approximating the star product
with a commutative product, and thus a commutative limit of the equations of motion resulting
from the effective quantum action appearing in the path integral. This is exactly what happens
in the simpler case considered in [33]. In this approximation, the issue with parallel transport of
bivectors disappears and classical simplicial geometry would then be recovered.

In light of the above, the criticisms of (the first reference of) [22], saying that bivectors
are not identified across simplices and that they are in the new models, therefore, can also be
reconsidered. On closer examination, one notices that what is not identified across different
simplices in the BC amplitudes are the coherent state parameters associated with each triangle
in the different 4-simplices, in quantum BF theory, on which a quantum version of the simplicity
constraints is then imposed strongly (i.e. by means of delta-functions) in the FK model (and
in its extension to finite γ ). The point is, however, that the coherent state parameters can
be identified with the continuous bivector variables of BF theory, only in a semi-classical
sense [24], i.e. in the sense of mean values [22] or in the asymptotic regime of the spin
labels [22, 53]. This is confirmed by explicit calculations of the group Fourier transform of
Wigner representation matrices [16, 31, 33], in the coherent state basis, relating the coherent
state parameters with the classical Lie algebra variables (for each SU(2) component). This
gives, for large spins j : D j

EnEn(Ex) ≈ δ (Ex − j En). It is directly the continuous bivector (Lie algebra)
variables, on the other hand, that appear in our simplicial path integral representation of
the amplitudes, and on which the simplicity constraints are imposed, by means of (non-
commutative) delta-functions, as appropriate in a path integral quantization [5, 24, 30]. As for
the identification of bivectors across tetrahedra within a given simplex, the same remark applies
to the FK model (the other available one in the absence of the Immirzi parameter): no strict
identification up to parallel transport is imposed on the Lie algebra B variables and, as shown
in [21], even the identification of coherent state parameters is imposed only in a semiclassical
limit.

We now move on to discuss the other arguments that have been put forward against the
BC model. We do so for the sake of completeness only. We have not dealt directly with them in
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this paper, nor worked in the context in which these concerns were raised. We limit ourselves,
therefore, to reconsider the evidence suggesting these concerns, in light of what we learned from
our results.

As a preliminary step, we note a very general criticism raised [24, 30] against the BC
model, which concerns other spin foam models as well. While the aim is to obtain a quantization
of a classically constrained theory, i.e. the Plebanski formulation of gravity as a constrained BF
theory, it results from a procedure that amounts to first quantizing the classical configurations of
BF theory to get its quantum states (SO(4) spin networks) and then constraining such quantum
states (usually in representation space). However, our metric representation of GFTs and spin
foam models, providing their dual simplicial path integral representation, makes it possible to
follow a more standard path integral procedure and avoid some ambiguities, and to keep under
control which of the constraints are imposed and how, even though it still (necessarily) depends
on a choice of quantization map, as we discussed15.

A popular criticism of the BC model is that it results from imposing the simplicity
constraints ‘too strongly’ at the quantum level [22]. Indeed, when the constraints to be imposed
are second class, as is the case in the presence of Immirzi parameter or for quadratic simplicity
constraints in general, they have to be imposed weakly in the quantum theory. Regarding this,
we note two points. First of all, the model presented above imposes the simplicity constraints
at the level of simplicial path integrals, by means of delta-functions, as is appropriate to do
for both first and second class constraints. The nature of the constraints is manifested in
their relation with other constraints and in the resulting further modification of the quantum
measure. Secondly, while quadratic simplicity constraints are indeed second class, in the pure
gravitational sector of the Holst gravity or in the Plebanski theory with linear constraints, the
constraints are actually first class [41], so that they have to be imposed strongly. The only kind
of ‘weakening’ of constraints that is consistent with the classical theory in our case is the one
following from the non-commutative nature of the bivector variables themselves (whence the
dependence on a quantization map16), which is taken into account by the ?-product and the
associated group Fourier transform.

A related criticism [39, 40] is that the BC model does not seem to impose the secondary
second class constraints that arise in the canonical analysis of the continuum theory [55, 56]
(again when using quadratic simplicity constraints). This criticism applies also to all new spin
foam models [22]. It is difficult to test any spin foam model in this respect, because none
of them is derived following a canonical quantization procedure. Moreover, being based on
a simplicial discretization, the standard canonical reasoning is difficult to apply and discrete
counterparts of continuum secondary constraints are very difficult to define. A variant of this
criticism adapted to the simplicial setting comes from the beautiful analysis of [51], and from
the standard discretization of the simplicity constraints of the classical theory, whether linear
or quadratic [17, 22, 47]. These analyses show that in the canonical setting it is necessary to
impose all simplicity constraints, including the so-called volume or edge simplicity constraints,
on top of the ones we discussed explicitly, and also the so-called ‘gluing constraints’ which are
analogues of secondary continuum constraints, in order to ensure geometricity of the classical

15 The same motivation is shared by the work [30], where however the non-commutativity of bivector variables,
following from their conjugate nature to the non-Abelian discrete connection and consistent with the canonical
phase space of both BF theory and LQG, is neglected.
16 One may also wonder why this quantization prescription is already present in the classical GFT action; this,
however, is simply a confirmation of its interpretation as a ‘third quantization’ formalism [52].
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configurations appearing in the model. This is indeed a reason for concern, and a detailed
analysis is certainly needed in the context of the model we presented and of the other available
spin foam models. However, we emphasize that the non-commutative path integral formulation
of spin foam models, to be developed also for the newer models, allows us to study in a very
direct way which constraints one is imposing in the definition of the spin foam model. Secondly,
it is known [22, 47] that, when imposed at the covariant classical level in all tetrahedra of the
triangulation, the combination of diagonal, off-diagonal and closure constraints is enough to
ensure full geometricity of the degrees of freedom included in the model, modulo degenerate
configurations, if gauge covariance (parallel transport) is also imposed. Thirdly, we have noted
how our covariant imposition of simplicity constraints involving the extra data encoded in
the normals and the generalized form of the closure conditions imply further conditions on
the normal vectors and on the discrete connection variables. The extra conditions affect the
propagation of simplicity constraints from frame to frame across the triangulation and thus
their correct imposition in all tetrahedra, including those lying on different hypersurfaces. Thus
it could be that such extra conditions are equivalent to the canonical secondary constraints.
However, further work is needed to confirm or refute this possibility.

Several criticisms concerned the boundary states of the BC model. Once more, more work
is needed to properly define the boundary Hilbert space of the theory we presented. Still, our
results offer some insight. It has been argued [22, 46] that states of the BC model do not have
enough parameters to correspond to a 3-geometry. In other words, there would be too-restricted
a set of commuting observables and in particular no label for the 3-volume (no intertwiner
degree of freedom). In this respect, we can note that the boundary states of the BC model, as we
have defined it, are given by graphs labeled by SO(4) representations (or Lie algebra elements
(fluxes) [31] or group elements) on their links, subject to simplicity constraints, and one normal
vector k for each node, subject to our generalized gauge invariance condition. They are indeed
projected spin networks as we have noted [23, 39, 40, 42]. A heuristic interpretation of such
a state is as the discrete analogue of canonical wave functions on the extended gravity phase
space, including lapse and shift vector: 9(h, N , N i). The standard states of the BC model,
labeled only by simple representations and by the BC intertwiner, arise after gauge invariance
is imposed and normals are integrated out. However, this integration over normals cannot be
done freely (i.e. on each vertex separately, in the boundary spin network graph) because of
the requirement of covariance, and because normals are correlated across tetrahedra by means
of the discrete connection (also subject to constraints, as we have seen). It would rather seem
that the states of the model, now including the normals, possess all the geometric information
to be expected, while it can of course still be true that particular linear combinations of states
(as resulting, for example, from arbitrary integrations of normal degrees of freedom) do not
correspond to the well-defined boundary data.

Clearly, this state space does not match that of LQG. This is based on SU(2) spin networks,
which are labeled by an arbitrary SU(2) intertwiner and which, while embeddable in a covariant
way in SO(4) using indeed the projected spin network formalism [39, 42, 49], are based on the
Ashtekar connection that requires for its definition the introduction of the Immirzi parameter
[1, 22]. Indeed, the stated failure of the BC model to reproduce the tensorial structure of
the (lattice) graviton propagator [46], on closer examination, could be interpreted simply as
a mismatch between the data encoded in LQG spin networks and used to define both the
background boundary states and the same graviton observables, and the boundary states (and
consequent dynamical data) of the BC model, which, as we have shown, should be taken to be
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the above projected spin networks. However, no such matching can be expected for a theory that
is independent of the Immirzi parameter from the start.

Finally, the inclusion of the Immirzi parameter is the most interesting feature of the new
spin foam models [22]. A generalization of the non-commutative metric formalism presented
here to include the Immirzi parameter is possible and will be presented elsewhere [48], together
with the resulting new model. Still, two general points must be noted. Firstly, one could expect
any new model constructed in this way to reproduce (one of) the new spin foam models only
in a semi-classical approximation, having in mind both our results on the topological sector of
the theory and the construction of the new models based on group coherent states. Secondly,
at present our main reason for wanting the Immirzi parameter in a quantum gravity theory is
because of its necessity in the LQG context. It would be good to have further confirmations,
either at the classical or quantum level, of its importance for capturing the correct physics of a
quantum spacetime.

Lastly, we note that an important open issue is the role that degenerate geometries play in
all spin foam models, including the one we have presented. Not only do they drastically affect
the imposition of simplicity constraints and thus the geometric nature of the configurations
included in them [12, 51], but also they may end up dominating the quantum dynamics on
entropic grounds [26]. It is also crucial to stress, however, as done in [46], that this issue has
to be studied in the context of the computation of physical quantities and that the insertion of
appropriate observables or boundary states can dramatically change the respective weight of
proper and degenerate quantum geometries.

7. Conclusions

We have used the non-commutative metric formulation of group field theories and spin foam
models to define a model of 4D quantum gravity as a constrained BF theory, without the
Immirzi parameter. This involved a generalization of the usual GFT framework to include
both Lie algebra or group elements, associated with triangles in the triangulation, and normal
vectors associated with tetrahedra of the same. The generalization led naturally to projected
spin network states and the associated covariance under Lorentz transformations. The model is
uniquely defined thanks to the projector nature of the generalized geometricity operator we
introduced at the GFT level, encoding both simplicity constraints and (generalized) gauge
covariance. The resulting model, for which we exhibited both a complete simplicial path
integral expression and a spin foam representation, turns out to be a variant of the BC
model, characterized by specific lower-dimensional amplitudes. We also presented a similar
construction for the topological sector of the Holst action, and discussed its relation with the
EPR spin foam model. In light of the above results, we have then re-examined the arguments
against the BC model(s), concluding that it can still be considered a plausible quantization of
4D gravity as far as the encoding of simplicial geometry is concerned and that further work is
needed to either confirm or refute its validity.
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