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Abstract. The idea of black-hole lattices as models for the large-scale structure
of the universe has been under scrutiny for several decades, and some of the
properties of these systems have been elucidated recently in the context of the
problem of cosmological backreaction. The complete, three-dimensional and
fully relativistic evolution of these system has, however, never been tackled.
We explicitly construct the first of these solutions by numerically integrating
Einstein’s equation in the case of an eight-black-hole lattice with the topology of
S3.

PACS numbers: 04.25.dg, 04.20.Ex, 98.80.Jk

1. Introduction

The vast amount of large-scale cosmological data collected in recent decades have
shaped a generally coherent picture of our universe [1], where the thermodynamics
and nucleosynthesis in the early universe, the generation of the seeds of cosmic
structure and their subsequent evolution all fit together in a simple framework based
on remarkably few principles. This success, however, comes at the price of accepting
the existence of a dark sector, i.e. two fluids, dark matter [2] and dark energy [3, 4],
which have rather peculiar physical properties, have an uncertain collocation within
the Standard Model, and have never been observed in terrestrial laboratories despite
accounting for over 95% of the energy density of the universe.

Whilst this result could very well point to the existence of new physical
constituents or principles, the possibility that the current way we model the
inhomogeneous universe be too elementary (a possibility that was advanced for the
first time in [5]) has now resurfaced [6]. In particular, the question of the extent to
which cosmic inhomogeneities can dress the value of the cosmological parameters is
under scrutiny in a variety of approaches [7, 8, 9, 10].
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An interesting class of models that has been studied for some time is that of
regular lattices of black holes [11, 12] ‡. These representations of our universe avoid the
issues related to the behavior of relativistic fluids (and, in particular, the corresponding
singularities); one could argue that they also represent a more realistic picture of our
universe, composed of a collection of pointlike objects surrounded by vacuum rather
than a homogeneous and isotropic fluid with small-scale perturbations.

Collections of black holes also have the added benefit to be one of numerical
relativity’s routine application areas [13], from which formalisms, tools and practices
can be readily imported. In this work, we construct the initial data and simulate the
evolution of a special sort of black hole lattices, those with extrinsic curvature that
is initially zero. In section 2, we illustrate how to construct exact initial data for a
generic black-hole lattice based on the usual York-Lichnerowicz framework [14, 15].
We then discuss a coordinate transformation that simplifies the numerical treatment
in section 2.2, illustrate the details of the evolution in section 3, interpret the results
and contrast them to the homogeneous and isotropic class in 4, and finally conclude
in section 5.

2. Constructing a periodic black-hole lattice

Given the standard 3+1 split of the metric tensor into the spatial metric γij and
extrinsic curvature Kij , initial data for the gravitational field can be generated by
solving the Hamiltonian and momentum constraints, which in vacuum read:

R+K2 −KijK
ij = 16πGρ (1)

DjK
j
i −DjK = 8πGji (2)

where R is the scalar curvature of the spatial metric and Di represents the covariant
derivative associated with γij ; ρ = nanbTab and ji = −γijnkTjk represent the energy
and momentum density respectively.

Let us assume that ji vanishes. A powerful scheme to generate solutions of this
system is the conformal transverse-traceless framework, which entails the introduction
of a conformal transformation in the spatial metric, along with the separation of the
extrinsic curvature into its trace K and traceless part Aij :

γij = ψ4 γ̃ij (3)

Kij =
K

3
γij +Aij (4)

In terms of these, the constraints take the form:

∆̃ψ − R̃

8
ψ − K2

12
ψ5 +

1

8
ÃijÃ

ijψ−7 = −2πGψ5 ρ (5)

D̃iÃ
ij − 2

3
ψ6γ̃ijD̃iK = 0 (6)

∆̃ being the laplacian operator of the conformal metric γ̃ij , and Ãij being related to

Aij by Ãij = ψ2Aij . §

‡ Notice that the usual definition of a black hole in an asymptotically-flat spacetime is inapplicable
to these spaces. Here, by black hole we denote a spacetime region surrounded by a marginally
outer-trapped tube (MOTT).
§ A different scaling of ρ is preferable if we want to solve the initial value problem for some types of
matter, but this plays no role in our argument.



Evolution of a periodic eight-black-hole lattice in numerical relativity 3

Figure 1. The elementary cell of a periodic 3-space containing a number of
punctures and corresponding inner boundaries, e.g. in the shape of spherical
surfaces Si.

Let us focus on the Hamiltonian constraint. We would like to solve this equation
with periodic boundary conditions. We also allow for matter content in form of
ordinary matter ρ as well as in “punctures”, i.e. singularities in ψ of the form mi/2r,
mi > 0. It can be easily proven, then, that unlike in the asymptotically-flat case, if
we set both Kij and R to zero, then this is a slice of Minkowski spacetime.

Let us first integrate both sides of equation 5 over the fundamental cell D (which,
for the sake of illustration, we will assume cubical) of the desired lattice, with small
balls around the punctures excised at the surfaces Si (see Figure 1). The volume
integral of ∆̃ψ can then be turned into a surface integral on the Si alone, as ∆̃ψ
identically vanishes on the periodic boundary. We thus obtain:∫

D

(
R̃

8
ψ +

1

12
K2 ψ5 − 1

8
ψ−7 Ãij Ãij

)√
γ̃ d3x

= 2πG

(∫
D

ρψ5
√
γ̃ d3x+ ΣNi=1mi

)
. (7)

On the right hand side, which is manifestly positive, we have the total energy content
of the cell both in form of a continuous distribution as well as in the punctures. If we
set both R̃ and K to zero, the equation becomes impossible to satisfy unless the matter
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content vanishes as well. Thus, for non-zero mi, there are at least two possibilities: a
non–zero extrinsic curvature K or a non-zero and positive spatial scalar curvature R̃.

In this work we concentrate on the second case, setting K to vanish. In this
case the momentum constraint is trivally satisfied and the Hamiltonian constraint
remains linear in ψ, which allows for constructing multiple–black-hole solutions by
superposition.

We would like the conformal metric γ̃ to be periodic just like the physical one.
The simplest way to ensure that it admits a discrete symmetry is to assume that it is a
constant curvature metric. Note that if we did not allow singularities of ψ, this ansatz
would not be restrictive at all: no matter which metric γ̃ we used for the constuction,
we can always divide our base three-manifold, equipped with the physical metric, by
the discrete symmetry group obtaining a manifold without a boundary. Without the
singularities of the conformal factor the resulting manifold remains compact and the
standard Yamabe theorem holds [16]: the physical metric is conformaly equivalent to
a constant curvature metric. Thus it can also be constructed by the Lichnerowicz-
York method starting from a constant curvature metric on the base 3–manifold. The
matter is more difficult if we allow asymptoticaly flat ends. We will thus assume from
now on that γ̃ is of constant curvature. Since the integral of R̃ is positive, γ̃ must be
the metric of a round 3-sphere. This condition limits both the metric tensor form and
the topology of the lattice.

Let us note that a similar reasoning applies to the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) models: the Hamiltonian constraint in this class reads

R

8
+
K2

12
= 2πGρ. (8)

Since the RHS, representing the matter content, is manifestly positive, then either
we must have non–vanishing Hubble parameter K, or positive curvature R (or both).
Thus if we assume K = 0 then there is a strong restriction concerning the metric
tensor and the topology of the constant time slice.

2.1. Punctures on a 3–sphere

Following [17] ‖, we consider puncture–like solutions of the Hamiltonian constraint
when γ̃ij and R̃ are the metric tensor γSij and the scalar curvature of S3:

∆̃ψ − R̃

8
ψ = 0 (9)

We fix coordinates on S3 such that:

γS = dλ2 + sin2 λ
(
dθ2 + sin2 θ dϕ2

)
(10)

Let us imagine that the sphere is embedded in R4 with the equation
(
X1
)2

+
(
X2
)2

+(
X3
)2

+
(
X4
)2

= 1; a bar over a capital letter denotes a vector in this space.
Equation (9) has no regular solutions, but it is straightforward to find its solutions

with a puncture–type singularity:

ψ(λ) =
A

sinλ/2
. (11)

‖ The analysis of this initial-data construction in the context of the backreaction problem has also
recently appeared in [18]
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or in Cartesian coordinates

ψ(X̄) = A

√
2

1− X̄ · N̄
, (12)

N̄ = (0, 0, 0, 1) (13)

We can easily superimpose N such punctures centered at chosen locations
N̄i ∈ S3:

ψ(X̄) =

N∑
i=1

Ai
sinλi/2

=
∑
i

Ai

√
2

1− X̄ · N̄i
(14)

The parameters Ai > 0 measure the singular part of the solution at the points N̄i:
the leading part behaves like 2Ai/λi.

Notice that, if one seeks only the regular arrangements of black holes on S3,
there are only six possible values of N , corresponding to the six regular tessellations
of the three-sphere: N = 5, 8, 16, 24, 120, 600. In the following, we concentrate on the
8–vertex, 16-cell solution, where the puncture locations are given by:

N̄1 = (1, 0, 0, 0) , (15)

N̄2 = (−1, 0, 0, 0) , (16)

N̄3 = (0, 1, 0, 0), (17)

N̄4 = (0,−1, 0, 0), (18)

N̄5 = (0, 0, 1, 0) , (19)

N̄6 = (0, 0,−1, 0) , (20)

N̄7 = (0, 0, 0, 1), (21)

N̄8 = (0, 0, 0,−1). (22)

and all Ai = 1. The configuration has obviously the symmetry of a 16–cell. In
particular, it has a discrete group of symmetries generated by π/2 rotations around
all pairs of axes of R4 and reflections about all four hyperplanes perpendicular to axes.
The elementary cell in this pattern is cubical in shape, i.e. it has 6 faces, 8 edges and
8 vertices, at which exactly 4 edges meet. All edges lie on great circles of S3 and their
length is equal to 168.343.

2.2. Stereographic projection of S3

Since it is easier to perform the evolution of asymptoticaly-flat data as opposed to
data on a sphere, we employ the stereographic projection from the top of the sphere
into R3, given by

xi =
2Xi

1−X4
(23)

where i runs from 1 to 3. It is well known that the projection is a conformal mapping
in the sense that

γSij =
(
|~x|2/4 + 1

)−2
δij (24)

or

γSij =

(
sin

λ

2

)−4

δij =

(
2

1− cosλ

)2

δij (25)
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where δij is the flat metric. The physical metric (14) projected down to R3 takes the
form of

ψ4 γSij = (A1)
4
ψ̃4 δij (26)

ψ̃(~x) = 1 +

N∑
i=2

2Ai
√

1 + |~ni|2/4
A1

· 1

|~x− ~ni|
(27)

Thus the potential consist of N − 1 punctures of 1/r type. Note that the physical
metric involves the (scale–setting) factor (A1)4. We can absorb it by introducing new,
rescaled coordinates ~y = (A1)2 ~x. The projected conformal factor takes now the form
of

ψ̃(~y) = 1 +

N∑
i=2

2AiA1

√
1 + | ~Ni|2

4∣∣∣~y − ~Ni
∣∣∣ = (28)

= 1 +

N∑
i=2

mi

2
∣∣∣~y − ~Ni

∣∣∣ (29)

with rescaled positions of the punctures ~Ni = (A1)2 ~ni. The mass parameters of the
punctures take the form of

mi = 4AiA1

√
1 +
| ~Ni|2

4
. (30)

They have the dimension of mass, but do not correspond exacly to the ADM mass of
the individual punctures measured at their infinities. The latter, corresponding to the
infinity of the black hole N̄1, is equal to

MADM
1 =

N∑
i=2

mi = 4A1

N∑
i=2

Ai

√
1 +
| ~Ni|2

4
. (31)

It can also be expressed in terms of the original solution ψ:

MADM
1 = 4A1

N∑
i=1

Ai

√
2

1− N̄i · N̄1
, (32)

analogous relations hold for other black holes.
If we project the 8–vertex solution 15 down to R3, it becomes an asymptoticaly

flat configuration described by (29) with 7 punctures at points

~N2 = (0, 0, 0) , (33)

~N3 = (2, 0, 0), (34)

~N4 = (−2, 0, 0), (35)

~N5 = (0, 2, 0) , (36)

~N6 = (0,−2, 0) , (37)

~N7 = (0, 0, 2), (38)

~N8 = (0, 0,−2). (39)

and with mass parameters m2 = 4 and m3, . . . ,m7 = 4
√

2. The vertices, edges and
apparent horizons projected to R3 are presented on Figure 2.
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Figure 2. Initial apparent horizons and elementary cells for the 8-black-hole
configuration, projected to R3. Note that the 8 cubical lattice cells are isometric
after the conformal rescaling.



Evolution of a periodic eight-black-hole lattice in numerical relativity 8

3. Evolution

We perform the three-dimensional evolution of this initial-data set using the Einstein
Toolkit [19]; in particular, we use the McLachlan code [20, 21] to perform a
finite-difference evolution of the Einstein’s equation with adaptive-mesh-refinement
capabilities provided by Carpet [22]. We have also made use of AHFinderDirect [23]
for the horizon search.

Details of the evolution scheme can be found in Appendix A; the numerical error
analysis is performed in Appendix B. We evolve the initial data presented in section
in a cubic box of side 40M (here and in the following, we will adopt M = m2/4 as
the unit of mass, length and time), with a spacing ∆0 = 1M . We refine the grid at
the seven black-hole locations using eight concentric grids for each location, down to
a resolution of ∆8 = ∆0/2

8 = 0.00390625M .
The eight initial apparent horizons have been shown in Figure 2 ¶. Notice that,

due to the stereographic projection, the large horizon initially at a radius of 20M
is inner trapped, rather than outer trapped, i.e. it is the expansion of the ingoing
null normal that vanishes while the expansion of the outer normal is positive. It is
therefore not a common apparent horizon of the sort usually encountered in binary
mergers. This has an interesting side effect: the outer boundary conditions are causally
disconnected from the region enclosed by this horizon.

We find that the horizons at (±2, 0, 0), (0,±2, 0) and (0, 0,±2) take approximately
130M to merge to the small horizon at the origin, and approximately 170M to merge
to the larger, inner-trapped one, as illustrated in Figure 4 (the asymmetry here is due
to the non-uniform numerical slicing). The evolution of the apparent horizons of the
two black holes at the origin and on the positive x axis are shown in Figure 3, while
their mean coordinate radii and masses are plotted in Figures 5 and 6.

From the cosmological standpoint, we are particularly interested in the scaling of
lengths with proper time. There are at least two candidate quantities for measuring
the scaling of distances in this system: the (minimal) proper distance between near-
neighbour horizons and the proper length of each cell’s edges. Note that these
estimates need not agree with each other, since the expansion rate may well be different
at different points.

In order to calculate proper lengths as functions of proper time, we restrict our
attention to the 1+1 subspace spanned by a reprentative curve in time, and obtain
the proper time and the location of gaussian observers with the following relations:

τ(t, xin) =

∫ t

0

α(t′, xin)dt′ (40)

xig(t, xn) = xig(t−∆t, xn)−
∫ t

t−∆t

βi(t′, xig(t−∆t, xn))dt′ (41)

We can invert these to obtain the numerical coordinates xin ≡ xin(τ, xg) and t ≡
t(τ, xg).

The proper distance between horizons, as a function of proper time, is then given
by:

D(τ) =

∫
γτ

[
(−α2(τ, `) + β2(τ, `))(∂`t)

2 + βi(τ, `)∂`t∂`x
i + γij(τ, `)∂`x

i∂`x
j
]1/2

d`

¶ We really only track the horizons corresponding to the black holes at the origin, at infinity, and
on the positive x-axis. The locations and shapes of the remaining five horizons, included in the plots
for clarity, are obtained by symmetry arguments.
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Figure 3. Section of the eight apparent horizons on the z = 0 plane, at times
t = (0, 20, 40, 60, 80, 100)M . The bottom plot is a zoomed-in version of the seven
central horizons only.
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and on that of the second merger at t = 167M (bottom).
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(0,0,0), (2,2,2) and infinity, as a function of coordinate time.
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Figure 7. Several measures of scaling in the eight-black-hole universe, plotted
against two possible identifications of the corresponding FLRW model, as a
function of proper time τ . All the quantities have been renormalized to their
respective values at τ = 0.

(42)

where γτ is the shortest constant-τ geodesic, parametrized by `, connecting two
horizons. We measure this quantity for the two outer-trapped surfaces initially at
(0,0,0) and (2,0,0), the geodesic lying on the x-axis for symmetry reasons. This
quantity is plotted in Figure 7.

Similarly, the proper length of a lattice edge is given by equation 42, where now
γτ is the constant-τ geodesic, parametrized by `, connecting the two vertices. It is easy
to work out the initial shape of the cells, illustrated in Figure 2. The initial locations
of the 16 vertices are given by (±2/3,±2/3,±2/3) and (±2,±2,±2). For simplicity, we
choose to focus on the edge connecting (2/3,2/3,2/3) to (2,2,2), which, for symmetry
reasons, always lies along the x = y = z diagonal. The proper distance is also shown
in Figure 7. The numerical locations of the two vertices during the evolution is shown
in Figure 8, along with a few other representative points on the geodesic and the
constant-τ lines.

In the next section, we will constrast these results with the large-scale dynamics
of a perfectly homogeneous and isotropic universe. However, let us notice here in
passing that the interest of this toy model goes beyond the cosmological application.
In particular, it provides an interesting example of overlapping apparent horizons
within the framework of a BSSN evolution.
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Figure 8. Coordinates of gaussian observers and constant-τ lines on the
x = y = z diagonal, for points initially located between the two vertices at
(2/3,2/3,2/3) and (2,2,2).

4. Comparison with the FLRW class

The comparison of the configuration with an FLRW model requires solving Ellis’
”fitting problem” [5], i.e. determining the parameters characterizing the reference
FLRW model which our configuration resembles most closely. There are infinitely
many ways to do this; we will sketch below the procedure we will use in this paper
based on the quantities measured in section 3.

Due to the symmetry group of our configuration, the reference FLRW model will
be a closed model (k = 1), with spatial slices of spherical topology. The matter content
will be represented by dust. The primary variable describing any FLRW model is the
scale factor, representing the scaling of lengths in time. It is therefore necessary to
identify some measure of length to track during the evolution of this lattice universe.
We require this variable to be non-local, thereby capturing the large-scale, average
behaviour of the universe rather than the local physics at a single, arbitrarily chosen
point. The total volume of the configuration, which is the most obvious parameter for
a closed universe, is obviously infinite and therefore of no use for our purpose.

The problem of the size measurement is a bit simplified by the discrete symmetry
of the model. It seems reasonable to choose the variable in a way which is consistent
with the cell structure of the black hole lattice. The first obvious choice would be to use
the geodesic distance s(t) between the marginally outer-trapped surfaces (MOTSs),
also known as apparent horizons, of two neighbouring black holes. Recall that a MOTS
is a closed two–surface whose null expansion vanishes in one direction, see [24]. We
have observed that the behavior of this quantity for small times varies considerably
from the behavior of the size parameter of a closed FLRW, see Figure 7. In particular,
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the derivative of s(t) does not vanish at t = 0, but rather approaches the limiting value
ṡ(0) = −2, despite the configuration being momentarily static and symmetric with
respect to time reflections. This striking phenomenon can be explained by the fact
that the black hole MOTSs at t = 0 are all bifurcation surfaces of the horizons. One
can check that in our coordinates the corresponding MOTSs seem to approach each
other at approximately the speed of light even at the moment of maximal expansion
(see Appendix C). This makes s(t) an unsuitable size parameter for the purpose of
FLRW fitting.

Our second choice for the size variable was the geodesic length of the individual
cell’s edge, i.e. the geodesic distance between the two vertices of an individual cube,
also used in [18]. The edges lie relatively far from the punctures, and thus from the
potentially problematic black hole region, at all times. Hence we can hope they are
resolved quite well during the simulation. We fit the size aeff(t) of the reference round
sphere by demanding that the length of the edge d(t) match exactly the length of the
corresponding edge of the cubical tiling of the round sphere. At the same time this

fitting gives the effective Ricci curvature R
(3)

eff
as the curvature of the corresponding

FLRW sphere:

R
(3)

eff
=

6

a2
eff
. (43)

At first sight, it may seem quite strange that the effective Ricci curvature is not
given by any kind of average, over a domain in the constant time slice, of the local
values of the curvature. Keep in mind however that in the FLRW model due to high
symmetry the value of the (constant) Ricci curvature is directly related to infintely
many other parameters characterizing the geometry, for example the relation of the
volume and area of balls spheres, the angle deficits, the geodesic focusing at any point,
and so on. Since the geometry of the discrete models is not homogeneous, these simple
relations are lost. Nevertheless it is not a priori clear which of those parameters we
should regard as a convenient inhomogeneous generalization of the R(3) appearing in

the Friedmann equation. The definition of R
(3)

eff
we propose here is based on rescaling

the value of the Ricci curvature of a unit 3-sphere by the ratio of the size of the lattice
edges. As we shall see, it provides, together with a complementary definition of the
effective energy, an excellent fit for the dynamics of the inhomogeneous lattice until
up the time of t ≈ 80, when we start losing resolution (mostly due to an outgoing shift
vector that makes the system rapidly shrink in coordinate size).

The configuration is at rest at t = 0, so we can assume that ȧeff(0) = 0 and use
the Hamiltonian constraint to obtain the effective energy density ρeff

0 =
8π

3
ρeff −

R
(3)

eff
6
. (44)

It is instructive to compare the effective total mass, obtained as the product of ρeff with
the volume of the FLRW sphere, with the total matter content of our configuration:

Meff = ρeff 2π2a3
eff = 378.78, M = 8MADM = 303.53 (45)

Clearly the effective mass is around 25% larger than the sum of ADM masses of the
individual black holes. This is consistent with the expected effects of the nonlinearity
of gravitation, as the strong gravitational fields gravitate themselves. It also agrees
quite well with [18], where the fit with the corresponding FLRW model is based on
imposing the equality of the total masses and the lengths of the edges are used for
comparison instead.
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5. Conclusions

We have discussed the construction of the initial data corresponding to periodic lattices
of black holes using the Lichnerowicz–York construction. We have shown that just
like in FLRW models there is a link between, on one hand, the curvature of the
underlying constant-curvature metric (and thus also the topology of the spatial slice)
and, on the other hand, the matter content and the Hubble parameter. In particular,
it follows that it is not possible to find a flat, rectangular lattice of black holes without
a momentary expansion or contraction.

We then recalled the construction of periodic lattices of black holes on an S3

sphere with vanishing extrinsic curvature, originally introduced in [17]. We focused
on the symmetric eight-black-hole configuration and showed that it can be conformally
projected to an asymptoticaly-flat seven-black-hole configuration with different mass
parameters. We have discussed briefly its basic properties and then showed the results
of the numerical evolution of this system. The main goal was the comparison with
the time evolution of a dust filled closed FLRW model, evolved from the maximal
expansion moment until the recollapse.

We proposed two methods of measuring the effective size of the configuration: the
geodesic distance between the horizons of two neighboring black holes and the geodesic
length of the edge of a single cell. The first one turned out to behave very differently
from the size parameter of FLRW, as its derivative did not seem to vanish even at
the initial slice. We explained this unusual behavior by noting that, at the maximum
expansion, each mariginally outer trapped surface is a bifurcation surface where two
distinct horizons intersect. The edge length, on the other hand, calculated in normal
coordinates and in proper time, seems to follow very closely the evolution of a closed
FLRW if we fit its size, the curvature and mass in an appropriate way. Despite our
configuration being very far from homogeneity, the effective size obeys the Friedmann
equation to a remarkable degree up to times of t ≈ 80, which is approximately 30%
of the recollapse time of the FLRW. After that time our simulation is simply unable
to resolve the system. The only observable backreaction (or coarse–graining) effect
in our simulation seems to lie in the effective total mass of the system, which turns
out to be 25% larger that the sum of masses of the individual black holes. In other
words, the eight-black-hole lattice does mimic a closed FLRW dust model, but one
whose total mass is substantially larger than that due to the black holes alone.

It is of course not clear to what extent these results will hold if we consider other
types of models (flat or open, with a positive initial expansion) or if we drop the
assumption of existence of a large group of discrete symmetries. Note that at first
sight the symmetry assumption may look like an innocent ansatz whose only purpose
is to simplify the geometry of the problem. Nevertheless it is important to understand
that it is in fact quite restrictive. In particular it prohibits many types of interactions
between the matter inhomogeneities, such as two black hole mergers or interactions
via low-` spherical harmonic modes. Configurations which do not have that kind of
symmetry may potentialy exhibit many other effects of backreaction.
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Appendix A. Evolution system

In order to solve Einstein’s equation, we use the McLachlan code, which implements
a finite-difference discretization of the BSSN formulation [25, 26, 27].

(∂t − βl∂l)W = − 1

3
αK +

1

3
∂iβ

i (A.1)

(∂t − βl∂l)K = −DiD
iα+ α(ÃijÃ

ij +
1

3
K2) (A.2)

(∂t − βl∂l)γ̃ij = − 2αÃij + 2γ̃i(j∂k)β
i − 2

3
γ̃ij∂kβ

k (A.3)

(∂t − βl∂l)Ãij = W 2(−DiDjα+ aRij)
TF (A.4)

+ α(KÃij − 2ÃikÃ
k
j ) (A.5)

+ 2Ãk(i∂j)β
k − 2

3
Aij∂kβ

k (A.6)

(∂t − βl∂l)Γ̃i = γ̃jkβi∂jβk +
1

3
γ̃ij∂j∂kβk − Γ̃j∂jβ

i (A.7)

+
2

3
Γ̃i∂jβ

j − 2Ãij∂jα (A.8)

+ 2α(Γ̃ijkÃ
jk − 3Ãjk∂k lnW − 2

3
γ̃ij∂jK) (A.9)

where γij = Wγ̃ij is the three-metric, Kij = K
3 γij +WÃij is the extrinsic curvature,

and W = det γ−1/6 and Γ̃i = −∂j γ̃ij are auxiliary variables. The gauge variables are
evolved according to:

(∂t − βi∂i)α = − 2αK (A.10)

(∂t − βi∂i)βj =
3

4
Bj (A.11)

(∂t − βi∂i)Bj = − (∂t − βi∂i)Γ̃j − ηBj (A.12)

with η = 1.
We use fourth-order finite-differencing. An important difference with standard

black-hole evolutions is that we choose α = 1 everywhere as the initial condition,
because a precollapsed lapse α = ψ−2 leads to a vast collapsed region at the center
of the domain, which unnecessarily slows down the proper-time evolution of the black
holes.

Appendix B. Numerical error on the proper distance estimate

Estimating the numerical error associated with a three-dimensional, complex
simulation is notoriously difficult. Additionally, our scheme for computing the proper
distance does not only involve finite differencing and AMR operations, but also a
number of post-processing steps, in particular reslicing 1+1 spaces in terms of gaussian
observers (which involves using 40 and 41 to obtain the gaussian coordinates, and then
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Figure B1. Convergence study for the edge proper length. Dc(τ), Dm(τ), and
Df(τ) are the edge proper lengths for the coarse, medium and fine resolution
respectively. The factors Fi represent i-th order scaling of the error with the
lattice spacing.

an interpolation in both time and space) and integrating the line element to obtain a
proper distance.

In order to quantify the cumulative error of this procedure, we evolve the same
initial data at two additional resolutions, corresponding to a spacing of ∆0 = 2M
and ∆ = 4M on the coarsest grid, and compare the edge proper length to obtain an
order of magnitude and a scaling for the numerical error on this quantity. The result
is shown in Figure B1: the error scales like the second power of the lattice spacing
up until t ∼ 40M , degrading afterwards. The order of magnitude is below 1M by
t = 80M (or about 0.6% of the proper distance); this seems like a reasonable number
to represent the numerics-related error bar on the proper distance.

Appendix C. Geodesic distance between the horizons

In this appendix we will argue that the minimal surfaces around the punctures at t = 0
are all bifurcation surfaces, i.e. they give rise to two MOTTs, one propagating towards
the asymptotically flat end of the manifold and the other in the other direction. Let
Σ0 be the t = 0 Consider the evolution of the initial data near t = 0 with gauge
conditions α = 1 and βi = 0 at Σ0, as we have chosen on our initial hypersurface for
the numerical evolution.
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Figure C1. Minimal surface D as a subsurface of Σ0 and its normals.
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Figure C2. Two neighboring minimal surfaces at t = 0 as bifurcation surfaces.
The outward–moving horizons (solid line) seem to expand with approximately
light speed.

We define two null normals to D given by l =
√

2
2 (T +R) and k =

√
2

2 (T −R),
see Figure C1. It is easy to see that the expansion of both null normals θl and θk

vanishes. The reason for that is the fact that D is minimal, therefore the expansion
with respect to R vanishes, and that the initial data is time–symmetric (Kij = 0), so
the expansion in T direction is zero as well.

The behavior of the horizon is determined by the continuation equation for a
MOTT, which gives the condition under which a variation of a MOTS preserves the
vanishing of one of the null expansions, see [28, 24]. Let now n = nl l + nk k be the
variation vector field. Since both null expansions vanish, we may continue the MOTS
by imposing either the condition θl = 0 or θk = 0. In the first case the continuation
equation reads (

∆− 2ωADA −
(
R
2

+DAω
A − ωA ωA

))
nk − nl |σl|2 = 0. (C.1)

∆ denotes here the Laplace operator on D, ωA = ∇Aka la, σl is the shear of l and R
is the scalar curvature of D.

It turns out that both the surface D itself and the physical 3-metric γ in its
vicinity are almost exactly spherically symmetric. The reason is that D lies relatively
close to the pucture p, at radius r ≈ 0.21 in the R3 variables, small comparing to
the distance of 2 between the punctures. The round 3-sphere metric γS is of course
spherically symmetric around the puncture. The conformal factor ψ is dominated in
this region by the singularity at the origin and the sum of 6 terms coming from other
punctures. The latter is not exactly spherically symmetric, but the non–spherical
contributions from those 6 terms cancel out to a great degree due to their symmetric
alignment. Therefore the relative variation of ψ in angular variables at that place is



Evolution of a periodic eight-black-hole lattice in numerical relativity 19

150

160

170

180

190

200

210

220

230

240

250

0 10 20 30 40 50 60 70 80

D
h
o
r
(τ

)/
M

τ /M

Figure C3. The proper distance between near-neighbour horizons as a function
of proper time. The straight line has a slope of -2.

only of the order of 10−5. All deviations from spherical symmetry are thus of very
small order of magnitude, so in the first approximation we may neglect all terms in
(C.1) which break the spherical symmetry of γ, i.e. those containing the vector field
ω and the tensor field σl

+. The resulting equation now reads(
∆− R

2

)
nk = 0. (C.2)

The solution is straightforward: nk = 0 and nl being an arbitrary function. This
obviously corresponds to the continuation of the MOTT along the null vector field
l. The same argument shows that we may continue the other MOTT along k. Both
MOTTs are thus in very good approximation isolated horizons.

It is now clear why the derivative of geodesic distance between MOTSs does
not vanish despite the configuration being time reflection symmetric. MOTTs of two
neighboring black holes, when viewed in either Gaussian or numerical coordinates,
seem to expand almost exactly at the light speed (equal to 1 in simulation units).
This by no means contradicts the time reflection symmetry of the inital data, as
the horizon expanding in the future direction is accompanied by another one which
expands in the past direction, see Figure C2. Figure C3, showing the distance between
horizons along with the expected initial slope of -2, provides support to the analysis
above.
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