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Abstract

Scattering amplitudes in three-dimensional N = 6 Chern–Simons theory
are shown to be non-invariant with respect to the free representation of the
osp(6|4) symmetry generators. At tree and one-loop level these “anomalous”
terms occur only for non-generic, singular configurations of the external mo-
menta and can be used to determine the form of the amplitudes. In particular
we show that the symmetries predict that the one-loop six-point amplitude
is non-vanishing and confirm this by means of an explicit calculation using
generalized unitarity methods. We comment on the implications of this find-
ing for any putative Wilson loop/amplitude duality in N = 6 Chern–Simons
theory.
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1 Introduction

A conformal field theory has no notion of distance. Consequently, two massless parti-
cles moving collinearly cannot be distinguished from each other in such a theory. The
standard formalism for scattering theory, however, distinguishes the different external
particles of an amplitude—even if the particles have no mass. In the conformal four-
dimensional N = 4 super Yang–Mills (SYM) theory this is reflected in the fact that the
standard, free representation of conformal symmetry on scattering amplitudes produces
an anomaly for collinear momentum configurations. In fact, one finds no real quantum
anomaly of the symmetry but rather an anomaly of the representation which can be cured
by deformation terms [1, 2].1 In four dimensions, this superficial violation of conformal
symmetry is closely related to the holomorphic anomaly defined by the equation

∂

∂z̄

1

z
= πδ2(z) . (1.1)

In (3, 1) signature, the massless momenta of scattering amplitudes are conveniently ex-
pressed in terms of two complex conjugate spinors λ and λ̄. These take the place of z
and z̄ in the above equation such that the naive conformal generators (e.g. S̄ = η∂/∂λ̄)
annihilate tree-level amplitudes only up to distributional terms. Switching to (2, 2) sig-
nature, the solution of the masslessness condition p2 = 0 is given by two independent

1Here, and in the following, we consistently refer to the variation of the scattering amplitude with
respect to the free representation of a symmetry generator as the anomaly. We maintain this usage even
when the anomaly may in fact be absorbed into a deformation of the representation of the generator
which preserves the symmetry algebra.
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Signature 3d Signature 4d

(2,1) ∂
∂x

sgnx = 2δ(x) (2,2) ∂
∂x

sgnx = 2δ(x)

λ real λ, λ̃ real

— — (3,1) ∂
∂z̄

1
z

= πδ2(z)

λ, λ̄ complex

Table 1: The conformal anomaly of scattering amplitudes depends on the sig-
nature and dimension. In four dimensions the holomorphic anomaly in (3, 1)
signature is replaced by a sign-anomaly in (2, 2) signature. In three dimensions,
the anomly also takes the sign form.

real spinors λ and λ̃ and the anomaly cannot be phrased in terms of the above complex
equation anymore. In fact, the anomaly does not disappear in (2, 2) signature but it is
harder to see [2]. Rewriting the amplitudes in this signature shows that the anomaly
can be captured in terms of the singularity of a signum function with real argument x
(corresponding to the real λ, λ̃):

∂

∂x
sgnx = 2δ(x), (1.2)

After all, the resulting additional contributions to the invariance equations following
from symmetry seem to be essential for fixing the complete scattering matrix of N = 4
SYM theory.

Certainly one can ask whether there is an analog of this anomaly of the conformal
symmetry representation in dimension number different than four. As the naive sym-
metry representation is still expected to be incompatible with the standard definition
of scattering states, the existence of a similar phenomenon is plausible. In this paper
we study superconformal three-dimensional N = 6 Chern–Simons (SCS) theory, also
called ABJM theory [3], where massless momenta are described by a single real spinor.
Consequently, one cannot expect an anomaly to be of the form of the complex equation
(1.1). We will show, however, that the anomaly in three dimensions takes the form of
(1.2), cf. Table 1. As an application we predict a non-vanishing one-loop amplitude at
six points and verify this result by an explicit unitarity construction. First, however, we
give a brief motivation for the importance of the above anomalies followed by a short
review of scattering amplitudes in ABJM theory.

The emergence of the anomalies indicated above is particularly powerful in the context
of planar scattering amplitudes, where, when combined with other recent developments,
it may optimistically lead to an all-order understanding of these observables. Once
more let us consider the case of N = 4 SYM theory: Its planar S-matrix is known
to possess a dual-conformal symmetry, both at strong [4] and weak [5] coupling, which
combines with the usual superconformal symmetry into a Yangian symmetry algebra [6].
Furthermore it has been understood as originating in the self-T-duality of the AdS/CFT-
dual AdS5×S5 geometry [7]. Under this duality, scattering amplitudes are mapped into
Wilson loops; specifically, it has been shown that MHV amplitudes are dual to bosonic
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Wilson loops [4, 8], while for superamplitudes the dual object is a generalized super-
Wilson loop [9] (closely related objects are light-cone supercorrelation functions [10]).
However, for the reasons mentioned, the discussed symmetries of scattering amplitudes
are anomalous.2 These anomalies, particularly those of the fermionic generators, and
how they relate different tree-level amplitudes has been discussed in [1, 11, 12]. For
MHV-amplitudes/bosonic-Wilson loops, understanding the conformal anomaly provides
strong constraints at all orders in the coupling and allows the complete determination of
the four- and five-point cases [13]. The anomalies of superamplitudes/super-Wilson loops
have been studied at loop level in [12,2,14] and recently, by making use of these anomalies
for the fermionic symmetries, all-order equations relating higher-loop superamplitudes
to lower-loop ones have been found [15].

It is natural to ask whether similar results can be obtained for scattering amplitudes
in three dimensions and particularly for planar amplitudes in N = 6 SCS theory, though
here the picture is still significantly less clear. While so far all attempts to consistently
formulate a self-T-duality for the string background dual to the ABJM theory (cf. [16])
have failed, there are strong indications pointing towards the existence of such a map.
One of them is the discovery of Yangian symmetry of ABJM scattering amplitudes [17]
and particularly its formal rewriting in terms of “dual” coordinates [18]. Furthermore, at
four points the two-loop scattering amplitude was shown to match the two-loop Wilson
loop [19]. In fact, there is a remarkable congruence between the structure of the two-
loop ABJM Wilson loop and the one-loop N = 4 SYM Wilson loop, which extends to
arbitrary number of edges [20] and which parallels a similar relation in the spectrum of
planar anomalous dimensions persisting to all orders in the coupling. On the other hand,
the analogy with the map in N = 4 SYM theory is complicated due to the absence of an
analog of the four dimensional helicity classification of amplitudes: Before comparison to
the Wilson loop, the MHV part of the scattering amplitude has to be stripped off. The
lack of helicity and thus of an MHV scheme in three dimensions is therefore crucial for
understanding a possible analogy.3 It is known that all lightlike polygonal n-point Wilson
loops vanish at one-loop order [21, 22]. Consequently it is interesting to study one-loop
amplitudes at higher points to further understand any possible map. As we will see, the
structure of the anomalous symmetries predicts that the one-loop six-point amplitude is
non-zero, a fact which we confirm by an explicit generalized unitarity calculation. This
poses a puzzle as to what a possible Wilson loop/amplitude map could look like.

After a review of scattering amplitudes in ABJM theory in Section 2, we will dis-
cuss the origin and form of the anomaly for the superconformal symmetry, Section 3.
Applying the resulting anomaly vertex to the six-point amplitude at tree and one-loop
level, Section 4, we will see how this constrains the form of the amplitude and predicts
a non-vanishing result at one loop. In Section 5 we perform an explicit calculation
of the one-loop six-point function using generalized unitarity methods and confirm the

2For the dual Wilson loops the origin of the anomaly is conceptually different and arises from UV
effects. The functional form of the anomalies, however, is closely related.

3To match the ABJM four-point Wilson loop and scattering amplitude at two loops, the tree-level
part of the amplitude was stripped off. Its form is close to the one of the MHV four-point amplitude in
four dimensions while the ABJM six-point tree-level amplitude resembles the four dimensional NMHV
counterpart.
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prediction of the symmetries. We close with a summary and discussion of some open
questions.

Note Added: As this work was being completed we were informed by the authors
of [23] that they had obtained related results for one-loop amplitudes in ABJM and in
particular the same result for the one-loop six-point amplitude. This work will appear
concurrently on the arxiv.

2 Scattering Amplitudes in ABJM Theory

In this section, we we briefly introduce the framework that is relevant to the study of
scattering amplitudes in the N = 6 supersymmetric Chern–Simons theory, or ABJM
theory [3], which was developed in [24,17,18].

Fields and States. The matter content of ABJM theory comprises four complex
scalar fields φA and four complex fermion fields ψaA, A = 1, . . . , 4, which transform in
the (N, N̄) representation of the U(N) × U(N) gauge group. The scalars φA form a
fundamental multiplet of the internal SU(4) R-symmetry group, while the fermions ψA
form an antifundamental multiplet. The Chern–Simons gauge fields Aµ, Âµ transforming
in the (ad,1), (1, ad) representations of the gauge group have no freely propagating
modes and thus cannot appear as external states in scattering amplitudes.4 As both
scalar and fermion particle numbers are conserved, this in particular implies that there
are no scattering amplitudes for odd numbers of particles.

Unlike in four dimensions, there is no helicity degree of freedom for massless states in
three dimensions. Hence, one-particle states are solely labeled by a massless momentum
pµ = γµabλ

aλb, which is conveniently parametrized by a spacetime spinor λ using the
real Dirac gamma matrices γµ. For momenta with positive energy p0 > 0 in Minkowski
signature, λ has to be real. For negative-energy momenta, λ has to be purely imaginary.

Superfields and Superamplitudes. All free on-shell states φA(λ), ψA(λ) can be
combined in a single superfield Φ(λ, η) [17] with the help of a u(3) Graßmann spinor ηA,

Φ(λ, η) = φ4(λ) + ηAψA(λ) + 1
2
εABCη

AηBφC(λ) + 1
6
εABCη

AηBηCψ4(λ) . (2.1)

This choice of superfield splits the internal R-symmetry into a manifest u(3) and a non-
manifest remainder, realized as multiplication and second-order differential operators in
η’s. Its virtue is that the supersymmetry and superconformal generators take the simple
form

QaA = λaηA , Qa
A = λa∂A , SA

a = ηA∂a , SaA = ∂a∂A , (2.2)

where ∂a, ∂A denote derivatives with respect to λa, ηA. When splitting the matter fields
into mutually conjugate components φA, φ̄A, ψA, ψ̄A, it is convenient to use not the

4Nevertheless, the Chern–Simons zero mode will turn out to play a significant role, see the discussion
at the end of Section 5 and in Section 6.
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conjugate superfield Φ̄(λ̄, η̄) itself, but its Graßmann Fourier transform

Φ̄(λ, η) = ψ̄4(λ) + ηAφ̄A(λ) + 1
2
εABCη

AηBψ̄C(λ) + 1
6
εABCη

AηBηC φ̄4(λ) . (2.3)

With the help of the superfields Φ, Φ̄, scattering amplitudes for all possible combina-
tions of n external states combine into a single superamplitude, from which individual
component amplitudes can be extracted as coefficients of the appropriate η-monomials.

In the planar limit N → ∞, scattering amplitudes can be decomposed into color-
ordered amplitudes multiplied by planar color structures. The objects we study in this
work are the color-ordered superamplitudes

An = An(Λ̄1, Λ2, Λ̄3, . . . , Λ̄n−1, Λn) , Λk = (λk, ηk) , (2.4)

where the ordering of the arguments is significant, and the bars signify that the respective
Λk’s parametrize conjugate fields Φ̄. The color decomposition requires that Φ and Φ̄ fields
alternate, and implies invariance up to a sign under cyclic double-shifts,

An(Λ̄3, . . . , Λn, Λ̄1, Λ2) = (−1)n/2−1An(Λ̄1, Λ2, Λ̄3, . . . , Λn) . (2.5)

By convention, conjugate superfields are put in odd arguments of the superamplitude.
The sign is due to the fact that the conjugate field Φ̄ is fermionic. Consequently under
the transformation, “λ”-parity, or its supersymmetric generalization [25], Λ → −Λ the
superamplitude transforms as

An(Λ1, . . . ,−Λi, . . . , Λn) = (−1)iAn(Λ1, . . . , Λi, . . . , Λn) . (2.6)

The color-ordered amplitudes have another symmetry which is due to the reflection
invariance of the fundamental vertices in the Lagrangian. This inversion symmetry is
reflected in the following transformation behavior of the `-loop amplitude:5

A(`)
n (Λ̄1, Λ2, . . . , Λ̄n−1, Λn) = (−)n(n−2)/8+`A(`)

n (Λ̄1, Λn, Λ̄n−1, . . . , Λ2). (2.7)

On-Shell Integration. Below, we will frequently need to integrate over complete sets
of on-shell states. In the superfield language, such integrals take the simple form∫

dΛ f(iΛ̄) g(Λ) , dΛ = d2|3Λ = 1
2
d2λ d3η , (2.8)

where iΛ := (iλ, iη) switches the sign of both the momentum λaλb and the supermomen-
tum λaηA relative to Λ. The integration often needs to include both real and imaginary
λ, that is the domain of integration for λ is R2 ∪ (iR)2. The factor 1/2 accounts for the
double-counting of states due to the Λ → −Λ symmetry. By substituting Λ → iΛ, the
integration over (iR)2 can be converted to an integration over R2 and vice versa:∫

R2∪(iR)2
dΛ f(iΛ̄) g(Λ) =

∫
R2

dΛ
(
f(iΛ̄) g(Λ) + if(Λ̄) g(iΛ)

)
=

∫
(iR)2

dΛ
(
f(iΛ̄) g(Λ) + if(Λ̄) g(iΛ)

)
. (2.9)

5We thank Marco Bianchi, Matias Leoni, Andrea Mauri, Silvia Penati and Alberto Santambrogio for
clarification of the loop dependence.
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This assumes that f(−Λ̄) = −f(Λ̄) and g(−Λ) = g(Λ), which is the case for f and g
being scattering amplitudes, and will always be the case below. Note that the integration
measure dΛ is fermionic.

3 Anomaly Vertex in Three Dimensions

In this section we first rewrite the four-point scattering amplitude of ABJM theory
in such a way that its dependence on a specific sign function becomes explicit. The
argument of this sign function is shown to be the spinor bracket of two neighboring
external particles. The sign thus changes when two particles become collinear. We then
show that this change of sign leads to an anomaly of the conformal symmetry. We
explicitly act with the generator S (2.2) on the four-point amplitude which yields an
anomaly vertex supported on collinear momentum configurations.

Four-Point Amplitude. The four-point superamplitude of ABJM theory reads [17],
see also [24],

A4(1̄, 2, 3̄, 4) =
δ3(P ) δ6(Q)

〈12〉〈23〉
. (3.1)

For positive energies p0 (incoming particles), λ is real, while for negative energies (out-
going particles), λ is purely imaginary. Assuming that particles 1 and 2 carry the same
energy sign, and particles 3 and 4 carry the opposite energy sign, we find

1 = |〈12〉|
∫
dα3 dβ3 δ

2(λ3 − iα3λ1 + iβ3λ2) ,

1 = |〈12〉|
∫
dα4 dβ4 δ

2(λ4 − iα4λ1 + iβ4λ2) . (3.2)

Inserting these identities into the amplitude, the momentum delta function becomes

δ3(P ) = δ3
(
λ1λ1(1− α2

3 − α2
4) + λ2λ2(1− β2

3 − β2
4) + (λ1λ2 + λ2λ1)(α3β3 + α4β4)

)
=

1

|〈12〉|3
δ(1− α2

3 − α2
4) δ(1− β2

3 − β2
4) δ(α3β3 + α4β4) , (3.3)

where the last equality holds as long as λ1 and λ2 are linearly independent. The four-
point amplitude thus can be written as6

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2

∫
dα3 dα4 dβ3 dβ4

1

iα3

·

· δ(1− α2
3 − α2

4) δ(1− β2
3 − β2

4) δ(α3β3 + α4β4)·
· δ2(λ3 − iα3λ1 − iβ3λ2) δ2(λ4 − iα4λ1 − iβ4λ2) . (3.4)

Introducing polar coordinates

α3 = rα sinα , α4 = rα cosα , β3 = rβ sin β , β4 = rβ cos β , (3.5)

6The superscript 1, 2↔ 3, 4 signifies how the four particles are split into incoming (positive energy)
and outgoing (negative energy) particles. Expressions for different energy distributions are given below.
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the radial integrations can be evaluated, leaving behind a Jacobi factor of 1/4:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2

∫
dα dβ

1

4i sinα
δ(sinα sin β + cosα cos β)·

· δ2(λ3 − i sinαλ1 − i sin β λ2) δ2(λ4 − i cosαλ1 − i cos β λ2) . (3.6)

The first delta function localizes at β = α + s1(2− s2)π/2, with s1, s2 = ±1, where

sin β = s1s2 cosα , cos β = −s1s2 sinα . (3.7)

Here we can collect the two signs into one which yields an overall factor of 2:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = − δ6(Q)

|〈12〉|〈12〉2
∑
s=±1

∫ 2π

0

dα
1

2i sinα
·

· δ2(λ3 − i sinαλ1 − is cosαλ2) δ2(λ4 − i cosαλ1 + is sinαλ2) . (3.8)

Moving δ6(Q) under the integral sign, contracting Q once with λ3 and once with λ4, and
expanding λ3,4 in terms of λ1,2 shows that

δ6(Q) = 〈34〉−3 δ3(〈31〉η1 + 〈32〉η2 + 〈34〉η4) δ3(〈41〉η1 + 〈42〉η2 + 〈43〉η3)

= −s〈12〉3 δ3(η3 − i sinα η1 − is cosα η2) δ3(η4 − i cosα η1 + is sinα η2) . (3.9)

The four-point amplitude hence reads

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = sgn(〈12〉)

∑
s=±1

∫ 2π

0

dα
s

2i sinα
·

· δ2|3(Λ3 − i sinαΛ1 − is cosαΛ2) δ2|3(Λ4 − i cosαΛ1 + is sinαΛ2) , (3.10)

where Λk = (λk, ηk). Reverting the direction of integration in one of the two terms under
the sum shows that s accounts for a possible reflection in the rotation of Λ1,2 into Λ3,4:

A1,2↔3,4
4 (1̄, 2, 3̄, 4) = sgn(〈12〉)

∑
s=±1

∫ 2π

0

dα
1

2i sinα
·

· δ2|3(Λ3 − is(sinαΛ1 + cosαΛ2)) δ2|3(Λ4 − i(cosαΛ1 − sinαΛ2)) . (3.11)

In the above derivation, it was assumed that particles 1 and 2 carry the same energy
sign, and particles 3 and 4 carry the opposite energy sign. A similar analysis (carried out
in Appendix A) shows what the amplitude becomes when incoming/outgoing particles
are distributed differently:7

A1,3↔2,4
4 (1̄, 2, 3̄, 4) = i sgnc(〈12〉)

∑
sα,sβ=±1

∫ ∞
−∞

dα
1

4 sinhα
·

· δ2|3(Λ3 − sβ(sα sinhαΛ1 + i coshαΛ2)) δ2|3(Λ4 − isα coshαΛ1 + sinhαΛ2) , (3.12)

7In both cases, 〈12〉 is purely imaginary.
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A1,4↔2,3
4 (1̄, 2, 3̄, 4) = i sgnc(〈12〉)

∑
sα,sβ=±1

∫ ∞
−∞

dα
−sβ

4i coshα
·

· δ2|3(Λ3 − isα coshαΛ1 + sinhαΛ2) δ2|3(Λ4 − sβ(sα sinhαΛ1 + i coshαΛ2)) , (3.13)

Here and for the following it is helpful to introduce generalizations of the sign and
absolute value functions to the real and imaginary axes:

sgnc(x) :=

{
+1 for x ∈ R+, iR+,

−1 for x ∈ R−, iR−.
|x|c :=

{
|Rex| for x ∈ R,
i| Imx| for x ∈ iR.

(3.14)

In conclusion, we can write the four-point amplitude as

Ak1,k2↔k3,k44 (1̄, 2, 3̄, 4) = sgnc(〈12〉)F k1,k2↔k3,k4(1̄, 2, 3̄, 4), (3.15)

where F denotes a function whose explicit parametrization depends on the distribution
of energies.

Anomaly. Looking at the explicit form of (3.11,3.12,3.13), it is immediate that the
action of SA

a =
∑

k η
A
k ∂/∂λ

a
k on the super delta functions produces terms of the form

x δ(x), thus the function F in (3.15) is annihilated. The signum factor, however, produces
a non-vanishing contribution whenever the momenta 1 and 2 are collinear:

SA
a sgnc(〈12〉) = 2εab(η

A
1 λ

b
2 − ηA2 λb1) δc(〈12〉) . (3.16)

Here we consistently define

δc(x) :=

{
δ(Rex) for x ∈ R,
−iδ(Imx) for x ∈ iR,

(3.17)

The anomaly vertex thus takes the form

SA
aA

k1,k2↔k3,k4
4 (1̄, 2, 3̄, 4) = 2εab(η

A
1 λ

b
2 − ηA2 λb1) δc(〈12〉)F k1,k2↔k3,k4(1̄, 2, 3̄, 4), , (3.18)

where F is anomaly free and on the support of δc(〈12〉), all four momenta are collinear.
We believe this expression furnishes the building block for all anomaly contributions of
higher-point and higher-loop amplitudes.

Let us evaluate the vertex for the configuration (1, 2↔ 3, 4) in order to obtain a more
symmetric expression. It is convenient to parametrize the collinear particles in terms of
the massless momentum λ12λ12 = λ1λ1 + λ2λ2. To this end, we use the identity

δ(〈12〉) =

∫
dΛ12dΛ

′dβδ2(λ′)δ
2|3
1 δ

2|3
2 , (3.19)

with

δ
2|3
1 = δ2|3(Λ1 − (sin β Λ12 + cos β Λ′)) ,

δ
2|3
2 = δ2|3(Λ2 − (cos β Λ12 − sin β Λ′)) , (3.20)
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Figure 1: Cut of the tree-level six-point amplitude in the 123 channel

which, after shifting α→ α− β, turns the delta functions in (3.11) into

δ
2|3
3 = δ2|3(Λ3 − is(sinαΛ12 + cosαΛ′)) ,

δ
2|3
4 = δ2|3(Λ4 − i(cosαΛ12 − sinαΛ′)) . (3.21)

Using ηA1 λ
b
2 − ηA2 λb1 = λb12η

′A under δ2(λ′), the anomaly vertex then reads

SA
aA

1,2↔3,4
4 (1̄, 2, 3̄, 4) =

∑
s=±1

∫
dΛ12dΛ

′dα dβ δ2(λ′)
1

i sin(α− β)
εabλ

b
12η
′Aδ

2|3
1 δ

2|3
2 δ

2|3
3 δ

2|3
4 .

(3.22)

4 Conformal Symmetry of the Six-Point Amplitude

Let us now apply the conformal anomaly vertex to six-point amplitudes at tree level and
one loop. The tree-level six-point amplitudes were first calculated by using the super-
conformal symmetries and explicit Feynman diagram calculations in [17]. Subsequently
they were rederived from the orthogonal Graßmannian of [26], and given a perhaps more
congenial form in [25] by means of the three-dimensional analog of the BCFW recursion
relations.

Tree Level. In order to generalize the above anomaly four-vertex S4 = SA4 to higher-
point and to loop amplitudes, we should consider their cuts. The tree-level six-point
amplitude in ABJM has discontinuities due to the poles in the three-particle channels,
e.g. in p123 = p1 + p2 + p3, see Figure 1,

disc123A
(0)
6 (1̄, 2, 3̄, 4, 5̄, 6) = 2i

∫
dΛaA4(1̄, 2, 3̄, a)A4(iā, 4, 5̄, 6). (4.1)

Both four-point amplitudes on the r.h.s. are anomalous, and they will contribute to the
anomaly of the six-point tree-level amplitudes, that is their anomalies in the integral will
give the discontinuities of the six-point anomaly, see Figure 2. In fact, we do not expect
further contributions: An off-shell propagator joining two four-point vertices yields a
rational function. Conversely, in three dimensions, the anomaly arises from derivatives
of step functions.

A simple ansatz to reproduce the anomaly of the above discontinuities reads

SA
(0)
6 (1̄, 2, 3̄, 4, 5̄, 6) = i

∫
dΛaA4(1̄, 2, 3̄, a)S4(iā, 4, 5̄, 6)

+ i

∫
dΛaA4(iā, 2, 3̄, 4)S4(5̄, 6, 1̄, a) + 4 cyclic, (4.2)
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Figure 2: Cut anomaly of the tree-level six-point amplitude in the 123 channel
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Figure 3: Anomaly of the tree-level six-point amplitude

which is graphically represented in Figure 3. It is supported on configurations where
three adjacent momenta are collinear.

One Loop. At one loop we should consider the two-particle cut

disc12A
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6) =

∫
dΛa dΛbA4(1̄, 2, iā, b)A

(0)
6 (ib̄, a, 3̄, 4, 5̄, 6), (4.3)

where the integration is over only positive energies.8 This is the only relevant cut because
all amplitudes have an even number of external particles.9 Furthermore, a single-particle
cut would split off a four-point one-loop amplitude which is known to vanish.10

We can now act with a superconformal generator to find the cut anomaly, for example
in the p12 = p1 + p2 channel, Figure 4,

S disc12A
(1)
6 =

∫
dΛa dΛb S4(1̄, 2, iā, b)A

(0)
6 (ib̄, a, 3̄, 4, 5̄, 6)

+

∫
dΛa dΛb dΛcA4(1̄, 2, iā, b)A4(5̄, 6, ib̄, c)S4(ic̄, a, 3̄, 4)

+

∫
dΛa dΛb dΛcA4(1̄, 2, iā, b)A4(ic̄, a, 3̄, 4)S4(5̄, 6, ib̄, c) . (4.4)

8More precisely, it is restricted to a single connected kinematic region, which parametrizes one of
the disconnected poles in the loop integrand. For p1, p2 having opposite energy signs, the integration is
restricted to either both λa, λb ∈ R, or both λa, λb ∈ iR; for p1, p2 both having positive/negative energy
signs, λa needs to be real/imaginary and λb imaginary/real. In the latter two cases, these restrictions
are actually already enforced by the momentum delta function in the A4(1̄, 2, iā, b) factor.

9An important exception to this rule occurs if we consider the zero-mode of the Chern–Simons field.
We will discuss this at the end of Section 5 and in Section 6.

10Indeed, the one-loop four-point amplitude, reduced to scalar integrals, can only get contributions
from one- and two-mass triangles, bubbles and tadpoles. The one- and two-mass triangle integrals
vanish in three-dimensions, and there are no bubble or tadpole diagrams in the three-dimensional,
finite, superconformal theory.
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Figure 4: Cut anomaly of the one-loop six-point amplitude in the 12 channel
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Figure 5: Anomaly of the one-loop six-point amplitude

Here we have already discarded four similar contributions where two four-vertices were
joined into a two-sided loop with the anomaly vertex attached to one of the external
legs. Such contributions correspond to one-loop corrections of the four-point amplitude
which are zero.

We can easily find an expression for the anomaly of the six-point one-loop expression
that is compatible with the above cuts

SA
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6) =

∫
dΛa dΛb S4(1̄, 2, ā, b)A

(0)
6 (b̄, a, 3̄, 4, 5̄, 6)

−
∫
dΛa dΛb S4(b̄, 2, 3̄, a)A

(0)
6 (ā, 4, 5̄, 6, 1̄, b) + 4 cyclic. (4.5)

The anomaly, see Figure 5, is supported on configurations where two adjacent particles
are collinear. In other words, for a generic configuration of particle momenta there is no
anomaly at one loop.

Discussion. The fact that the one-loop anomaly is singular can be used in connection
with Yangian symmetry to gain some easy insights into the one-loop six-point amplitude.
At six points there exist two independent Yangian (almost) invariant functions which we
call Y1,2.11 They can be constructed by an explicit Feynman diagram calculation and their
Yangian invariance checked [17], or by means of a contour integral over an orthogonal
Graßmannian which is manifestly Yangian invariant. Both approaches involve the two
solutions of a quadratic equation with coefficients depending on the external momenta.
In the Graßmannian approach, after choosing a particular patch, the Yangian invariants

11They are almost invariants in the sense that they are only invariant up to distributional terms.
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depend on the variables csr̄, r̄ = 1, 3, 5, and s = 2, 4, 6, such that

λr̄ +
∑
s

λscsr̄ = 0, and
∑
r̄

csr̄ctr̄ = δst, (4.6)

so that we label the two solutions (c∗±)sr̄. The two Yangian (almost) invariants, in this
approach, correspond to the Graßmannian integrand evaluated on these two solutions,
schematically Y1,2 ≡ Y ({c∗±}sr̄), and explicit expressions can be found in [25]. Signifi-
cantly, in terms of the λi’s, these invariants are simply rational functions as all square
roots can explicitly be performed.

We know that Yangian symmetry is unbroken at tree level except for a codimension-
two anomaly.12 Therefore the tree-level six-point amplitude must be some linear com-
bination of the two invariants. We can fix which linear combination forms the tree
amplitude by demanding the correct behavior of the amplitude under Λ-parity (2.6)
with the odd-numbered legs being fermionic and the even-numbered legs being bosonic,

A
(0)
6 (1̄, 2, 3̄, 4, 5̄, 6) = c6(Y1 + Y2)(1̄, 2, 3̄, 4, 5̄, 6) (4.7)

for some constant c6 depending on the gauge coupling.13 Here, the bars over the labels
on the right-hand side merely signify that the function (Y1 + Y2)(Λk) transforms odd
under sign flips of the respective Λ’s. The other linear combination

(Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄) (4.8)

has exactly the opposite transformation property, as indicated by the distribution of bars
on the labels, and thus cannot appear in the tree-level amplitude.14 Notably, this linear
combination again equals the tree-level amplitude when shifting all labels cyclically by
one,

A
(0)
6 (6̄, 1, 2̄, 3, 4̄, 5) = ic6(Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄). (4.9)

At one-loop order, the loop momentum is still completely constrained by the four-point
anomaly vertex (4.5), and hence the anomaly does not get smeared across all configura-
tions of external momenta, but rather stays distributional, see Figure 5. Consequently,
also the one-loop six-point amplitude has to equal a linear combination of the tree-level
Yangian (almost) invariants, with a prefactor that is constant at least locally. However,
the support of the anomalies at one loop is different than at tree level. Most notably,
the one-loop amplitude has codimension-one anomalies, which are absent at tree level
and in the Yangian (almost) invariants. In conclusion, the one-loop amplitude has to be
a linear combination

A
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6) = c+

6 (1, 2, 3, 4, 5, 6) (Y1 + Y2)(1̄, 2, 3̄, 4, 5̄, 6)

+ c−6 (1̄, 2̄, 3̄, 4̄, 5̄, 6̄) (Y1 − Y2)(1, 2̄, 3, 4̄, 5, 6̄) (4.10)

12As Yangian level-one generator we can use P̂ which is anomaly-free for finite contributions.
13The linear combination can also be fixed by demanding that the amplitude factorizes correctly

into four-point amplitudes with fermionic odd-numbered legs. In the Graßmannian approach it follows
naturally from the cyclic gauge choice.

14Phrased differently, Y1 → (−1)k+1Y2 and Y2 → (−1)k+1Y1 under Λk → −Λk.
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Figure 6: Two internal-leg contribution to tree-level eight-point anomaly
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Figure 7: Proposed anomaly of two-loop six-point amplitude

with coefficients c±6 that are locally constant, but discontinuous on the support of the
codimension-one anomalies—that is they have to be piecewise constants that jump when-
ever two adjacent external particles become collinear. In order to maintain the correct
statistics of the amplitude, c+

6 has to transform bosonic in all labels, and c−6 has to
transform fermionic in all labels, as indicated by the bars over their labels. Thus the
symmetries predict a non-vanishing result for the one-loop six-point amplitude.

Proposal summary. Let us summarize what we have found for the anomalies of the
scattering amplitudes and outline a proposal for the anomalies at higher points and more
loops. The variation of the four-point tree-level amplitude simply gives the distributional,
inhomogeneous term found on the right hand side of equation (3.22). That is, it is directly
given by the anomaly vertex and has support only on the codimension-two surface.15 For
higher point amplitudes we attach the anomaly vertex to subamplitudes along a single
internal leg. We saw this explicitly in the case of the six-point tree-level amplitude, see
Figure 3. At eight points and beyond there are additional possible configurations, where
two anomaly vertex legs are attached to different subamplitudes, see Figure 6. At ten
points, there are in principle configurations where three vertex legs can be attached along
internal lines to three different subamplitudes and at twelve points, all vertex legs can
be attached to internal lines.

At one-loop level we also attach two anomaly vertex legs, but now both with the same
energy and to the same subamplitude. We saw this for the six-point one-loop amplitude,
see Figure 5, where two legs were attached to a tree-level six-point amplitude. This gives
rise to an anomaly that is also purely distributional as it only occurs when two external
legs are collinear. At higher loops more than two legs of the anomaly vertex can be
attached to the same lower-loop subamplitude, see Figure 7, with all legs having the same

15Naively, this anomaly cannot be considered as a deformation of the generator acting on a lower
point amplitude as there is no lower point amplitude. However, see the discussion in Section 6.
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Figure 8: Maximal cuts for the one-loop six-point amplitude in terms of massive
triangles.

energy sign so it is necessary to extend the anomaly vertex into a different kinematic
regime. Moreover, for these loop amplitudes this results in an anomaly for generic
configurations of the external momenta. For example at two-loops, three anomaly vertex
legs can be attached to the same tree-level amplitude and, because of the integrations,
the resulting anomaly will have support for any value of the external momenta. This
is analogous to what happens in N = 4 SYM at one loop where the anomaly becomes
“smeared” by the loop integrations and so the amplitudes are anomalous with respect
to the superconformal symmetries for generic states of the external particles.

5 One-Loop Six-Point Amplitude from Unitarity

In this section we will apply the methods of generalized unitarity which have proved so
useful in N = 4 SYM [27] to N = 6 SCS. In particular, we want to reconstruct the
one-loop six-point superamplitude from tree-level amplitudes by evaluating the maximal
cuts, i.e. triple cuts for the case of three dimensions. We assume16 that an arbitrary n-
point one-loop amplitude, A

(1)
n , can be written as a linear combination of scalar triangle

diagrams, I i3,

A(1)
n =

∑
i

di I3,i (5.1)

and thus we can use the maximal cuts to determine the coefficients di.
All on-shell amplitudes in N = 6 SCS have an even number of legs, which implies

that there are at least two external legs at each corner of the triangle. Expressions for
the massive triangles in an arbitrary number of dimensions can be found in [29]. For
external momenta K1, K2, K3 in D = 3− 2ε the triangle integral evaluates to

I3 =

∫
d3`(

−`2 + iε
)(
−(`+K1)2 + iε

)(
−(`+K1 +K2)2 + iε

)
16Using the standard arguments analogous to those in four dimensions, e.g. [28], it is possible to

show that any three-dimensional CS matter one-loop amplitude can be written as a linear combination
of triangle, bubbles and tadpoles. For a finite, superconformal, and indeed at least at weak coupling
“dual” superconformal, theory such as ABJM there will be no bubble or tadpole scalar integrals and we
can use the scalar triangles as a basis.

15



= −iπ
2

1√
K2

1 − iε
√
K2

2 − iε
√
K2

3 − iε
. (5.2)

Obviously, the minimal number of external legs is six implying that the four-point am-
plitude is uncorrected at one loop. For six points there are two relevant massive triangle
diagrams, see Figure 8,

A
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6) = d1 I3,1 + d2 I3,2. (5.3)

The integral I3,1 has external momenta

K1 = p1 + p2, K2 = p3 + p4, K3 = p5 + p6 (5.4)

and I3,2 correspondingly

K1 = p6 + p1, K2 = p2 + p3, K3 = p4 + p5. (5.5)

The triple cuts correspond to putting all internal propagators on-shell and one must sum
over all such momentum configurations. For six points the sum is thus over products
of tree-level four-point amplitudes, where the sum over internal states can be done by
performing Graßmann integrations over the internal legs as in (2.8).

The coefficient of the first integral, I3,1, is given by the left-hand cut in Figure 8,

d1 =
1

2

∑
sol

∫ ∏
i=a,b,c

d0|3ηi A4(1̄, 2, ib̄, a)A4(3̄, 4, ic̄, b)A4(5̄, 6, iā, c). (5.6)

The on-shell loop momenta, `i, are completely fixed by the delta-functions from the cut
propagators so there is no remaining integration but rather a sum over the two solutions
to the equations17

`2
a = `2 = 0 , `2

b = (`+K1)2 = 0 , `2
c = (`+K1 +K2)2 = 0. (5.7)

We now turn our attention to the Graßmann integration over the delta-functions appear-
ing in the tree-level four point amplitudes∫ ∏

i=a,b,c

d0|3ηi δ
0|6(Θ13 − λbηb + λaηa) δ0|6(Θ35 − λcηc + λbηb) δ0|6(Θ51 − λaηa + λcηc)

=
δ0|6(Q)

〈cb〉3
δ0|3(〈a|x13x35|Θ51〉+ 〈Θ13|x35x51|a〉

)
. (5.8)

17One way to determine ` is to choose `µ = αKµ
1 + βKµ

2 + γKµ
× where Kµ

× = εµνρK1νK2ρ and use
(5.7) to determine α, β and γ. One finds two solutions

α =
(K1 ·K2)K2

2 −K2
1K

2
2 + 2(K1 ·K2)2

2K2
×

, β =
K2

1 (K1 ·K2 +K2
2 )

2K2
×

, γ = s

√
K2

1K
2
2K

2
3

2K2
×

.

where s = ± enumerates the two solutions. Alternatively, one can directly solve the equations for the
corresponding λ’s.
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In this equation we have pulled out an overall factor, δ(6)(Q), of the total supermomentum
Q and we have repeatedly used Schouten’s identity which accounts for the fact that λa
and λb,c appear with different weights. Finally we have used the notation, xjk =

∑k−1
i=j pi

and 〈Θjk| =
∑k−1

i=j ηi〈i|. Thus, including the denominator factors from the four point
amplitudes, we find the coefficient for the cut

d1 =
i

2

∑
s=±

δ3(P ) δ0|6(Q)

〈bc〉3
δ0|3(〈a|x13x35|Θ51〉+ 〈Θ13|x35x51|a〉)

〈12〉〈34〉〈56〉〈b2〉〈c4〉〈a6〉
. (5.9)

The complete contribution to the one-loop six-point amplitude from this scalar amplitude
is thus

d1I3,1 = −iπ
2

c1 δ
3(P )√

−〈12〉2 − iε
√
−〈34〉2 − iε

√
−〈56〉2 − iε

. (5.10)

We can evaluate the square roots carefully to find

√
−x− iε = −i|x|c = −ix sgnc(x) (5.11)

where the generalizations of the absolute value and sign functions were defined in (3.14).
We end up with

d1I3,1 = −π
2

d1

〈12〉〈34〉〈56〉
sgnc〈12〉 sgnc〈34〉 sgnc〈56〉, (5.12)

which is proportional to the shifted tree-level scattering amplitude (4.9) up to some sign
factors,18

d1I3,1 = i
4
πA

(0)
6 (6̄, 1, 2̄, 3, 4̄, 5) sgnc〈12〉 sgnc〈34〉 sgnc〈56〉. (5.13)

In fact, and as discussed in Section 4, the tree-level six-point amplitude of [17] is the
sum of two terms Y1, Y2 related by Λk → −Λk parity transformations. These two terms
are exactly the s = ±1 terms appearing in the cut. Here it is important to note that the
shifted tree-level amplitude A

(0)
6 (6̄, 1, 2̄, 3, 4̄, 5) has the opposite assignment of conjugate

particles compared to the one-loop amplitude A
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6). Superficially this leads

to the wrong sign under any of the transformations Λk → −Λk, which is compensated
by the sign functions involving all of the external λk.

The scalar triangle integral I3,2 is captured by the right-hand cut in Figure 8,

d2 =
1

2

∑
sol

∫ ∏
i=a,b,c

d0|3ηi A4(1̄, b, iā, 6)A4(3̄, c, ib̄, 2)A4(5̄, a, ic̄, 4). (5.14)

The calculation is identical to the previous case and the result is

d2 =
i

2

∑
s=±

δ3(P ) δ0|6(Q)

〈cb〉3
δ0|3(〈a|x62x24|Θ46〉+ 〈Θ62|x24x46|a〉

)
〈61〉〈32〉〈54〉〈6a〉〈2b〉〈4c〉

, (5.15)

18This comparison is done by taking specific values for the external momenta and evaluating various
component amplitudes numerically.
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Figure 9: Cut of the one-loop six-point amplitude in the 123 channel

where the on-shell loop momenta, `2
i = 0, are related by `b = `a −K1 and `c = `b −K2.

Expanding the square roots in the triangle integral we find

d2I3,2 = i
4
πA

(0)
6 (6̄, 1, 2̄, 3, 4̄, 5) sgnc〈61〉 sgnc〈23〉 sgnc〈45〉, (5.16)

Altogether our result for the one-loop six-point amplitudes reads

A
(1)
6 (1̄, 2, 3̄, 4, 5̄, 6) =

π

4
c6(1̄, 2̄, 3̄, 4̄, 5̄, 6̄)A

(0)
6 (6̄, 1, 2̄, 3, 4̄, 5) (5.17)

with the piecewise constant combination of sign functions

c6(1̄, 2̄, 3̄, 4̄, 5̄, 6̄) = sgnc〈12〉 sgnc〈34〉 sgnc〈56〉+ sgnc〈61〉 sgnc〈23〉 sgnc〈45〉. (5.18)

Here the bars over the labels indicate that c6 transforms odd under sign flips of any
λk. The relative plus sign between the two products of sgnc functions follows from the
calculation, however we can also understand it from the symmetries of the amplitudes.
As previously described (2.7), the color ordered six-point superamplitudes are odd/even
functions under an inversion of the color ordering, A(1̄, 2, 3̄, 4, 5̄, 6) = ∓A(1̄, 6, 5̄, 4, 3̄, 2).
While the tree-level amplitude and its cyclically shifted version are odd, the one-loop
amplitude is even under this transformation. Thus the piecewise constant, c6, must be
an odd function under the inversion map, and this requires the relative plus sign between
the two terms.

To conclude, let us analyze the cuts of the above expression. In this regard the near
equality of tree and loop level amplitudes begs for an explanation. How can the one-loop
result have the same set of discontinuities as the corresponding one at tree level when the
cuts are obviously different? In particular, the cut in the three-particle channel at tree
level originates from the splitting into two four-particle trees (4.1). The one-loop result
has the same discontinuity but no apparent splitting into subamplitudes. Taking a closer
look at the origin of the discontinuity one finds that it requires the momentum transfer
in one of the corners of the triangle to be zero. At this point, the four-point amplitude
has a pole which is responsible for the three-particle cut. This pole indicates the zero
mode of the Chern–Simons gauge field. So indeed there is a physical cut for the one-loop
six-point amplitude in the three-particle channel, see Figure 9. Somewhat surprisingly,
this cut agrees precisely with the cut of the cyclically shifted tree-level amplitude up to
some sign factors. The other relevant cuts are in two-particle channels. These are the

18



natural cuts at the one-loop level but are not present at tree level and thus they must
be associated to the additional sign factors which we recall originate in square roots of
“masses”,

√
−m2 =

√
(pi + pi+1)2, occurring in the scalar triangles, whose branch cuts

are just next to the real axis when the two inflowing energies are aligned (positive m2).
It is also quite clear that the sign factors in c6 give rise to the correct codimension-

1 superconformal anomalies discussed in Section 4. The superconformal variations act
as derivatives which turn the sign factors into delta functions supported on collinear
configurations of any two adjacent particles as described previously.

6 Conclusions & Outlook

In this paper we have shown that scattering amplitudes in three-dimensional N = 6 SCS
theory give rise to an anomaly of the (super)conformal symmetry in a fashion similar
to N = 4 SYM theory. As for the four-dimensional theory in (2, 2) signature [2], here
the anomaly arises from sign functions of spinor brackets. These sign factors emerge
when rewriting the four-point amplitude by making use of the different scaling behavior
of bosonic and fermionic delta functions, schematically (cf. Section 3):

1

x2
δ2(x bos)δ3(x ferm) =

x

|x|
δ2(bos)δ3(ferm) = sgn x δ2(bos)δ3(ferm) , (6.1)

where x represents the spinor brackets. While in four dimensions the anomaly can be cap-
tured in terms of a vertex with three legs, we find a corresponding four-vertex S4 = SA4

with support on collinear momentum configurations. We have employed the anomaly
to predict the non-vanishing of the one-loop six-point amplitude: Firstly, there are two
Yangian invariants (up to anomalous contributions) whose linear combinations furnish
the tree-level and one-loop six-point amplitude. Considering the different anomalies of
the tree and one-loop term as well as discrete symmetries of physical amplitudes, shows
that the proportionality factor translating between them is a non-trivial function of the
external momenta. Consequently, the one-loop six-point amplitude is non-trivial19 and
proportional to the tree-level contribution cyclically shifted: A

(1)
6 = c6A

(0)
6 ({i→ i− 1}).

We have confirmed this result by a unitarity construction of the one-loop amplitude us-
ing a triple cut. It is important to note the different structure of the anomaly of the
six-point amplitude at loop level when compared to N = 4 SYM theory. While in four
dimensions the anomaly is only distributional at tree-level and gets smeared in the loop
integration at one loop, the three-dimensional anomaly is still distributional at one loop
and only gets smeared at two loops. As a consequence, the one-loop six-point amplitude
obeys the same symmetry constraints as the tree-level expression up to distributional
terms.

The non-vanishing of the one-loop six-point amplitude is particularly interesting in
the light of a possible duality between scattering amplitudes and Wilson loops in ABJM
theory. As the lightlike hexagon Wilson loop is known to vanish at one-loop order
[21,22], the non-trivial one-loop six-point amplitude poses the puzzle of what a possible

19Note that a non-vanishing result for the one-loop six-point amplitude was also obtained by an
independent Feynman calculation in [23].
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map could look like. A simple solution would be that there is no self-T-duality in
ABJM theory and thus no reason for Wilson loops and scattering amplitudes to match.
In order to look for further hints for either outcome one could start by stripping off
the tree-level contribution and try to compare only scalar loop corrections. The most
interesting question seems to be: Can one define a hexagon Wilson loop that matches
our one-loop result of the six-point amplitude? Relatedly, it may be useful to find the
correct analog of the super-Wilson loop [9, 14, 30] in three dimensions to match with
superamplitudes. A similar question occurs when we wish to consider Wilson loops with
an odd number of edges, which a priori exist and are non-trivial, though they will be
generically complex [21], while there are only amplitudes for even numbers of external
legs if we allow only on-shell scalars and fermions as external particles.

An important point we have not discussed here is whether the breaking of conformal
symmetry can be cured by deformation of the free representation of osp(6|4) on ampli-
tudes. This seems very plausible, in particular with regard to analogous considerations in
N = 4 SYM theory where the conformal generators of the psu(2, 2|4) representation were
deformed to compensate for the anomaly. This is particularly desirable since it renders
the scattering matrix an exact symmetry invariant and thereby recursively relates am-
plitudes with different numbers of legs to each other, e.g. S̄A4d−MHV

n + S̄+
3 A

4d−MHV
n−1 = 0.

Here S̄+
3 denotes the deformation of the generator S̄ corresponding to the three-point

anomaly vertex in four dimensions. The starting point of the four-dimensional recursion
is S̄A4d

4 = 0 being consistent with a three-point amplitude that vanishes for physi-
cal kinematics. Straightforwardly translating this recursion to ABJM theory with only
even-point amplitudes yields

SAn + S+
4 An−2

?
= 0. (6.2)

Here, however, SA4 is non-vanishing as discussed above and the inductive symmetry
would require a non-trivial two-point invariant with SA2 = 0 as a starting point. No-
tably, we can construct a two-point osp(6|4) invariant that renders (6.2) correct for n = 4.
It takes the form A2 = δ2|3(Λ1 ± iΛ2). Provided the algebra of deformed generators still
holds, this gives hope for a construction similar to four dimensions. But is the two-point
invariant really part of the ABJM scattering matrix?

Taking a closer look at the interaction Hamiltonian that induces the scattering matrix,
the vertex with the lowest number of points has three legs and includes the Chern–Simons
field. The Chern–Simons field, however, is not dynamical and should thus not appear
as an external particle in scattering amplitudes. Could the three-vertex still give rise to
a non-vanishing two-point invariant in the scattering matrix such that A2 = A3|pCS=0?
At first sight it seems not clear how to technically investigate this point. The Chern–
Simons field has no on-shell degrees of freedom and is thus not captured by the ordinary
on-shell superspace formulation of scattering amplitudes. Considering the scattering
matrix in terms of oscillators corresponding to field excitations, the same problem arises.
While creation and annihilation operators live on the forward and backward mass shell,
respectively, a priori neither choice seems appropriate to describe the Chern–Simons field.
Can one still introduce a corresponding oscillator? What commutation relations would
this imply? Notably, the zero-mode of the Chern–Simons field already played a special
role in explaining the discontinuity of the one-loop six-point amplitude in Section 5 (cf.
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Figure 9). Its generic role for the unitarity construction of scattering amplitudes seems
yet unclear. A deeper understanding of these issues appears to have the potential for
new insights into the structure of Chern–Simons theories in general.

Obviously, it is very tempting to extend our results for the one-loop six-point am-
plitude to higher numbers of loops and legs. In particular this should shed light on the
general structure of one-loop amplitudes in ABJM theory which is of great importance
for a possible duality to Wilson loops. A starting point could be the investigation of
constraints on generic one-loop amplitudes imposed by symmetry and the form of the
anomaly. It would also be very interesting to see whether a similar anomaly arises in
dimensions greater than four.
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A Mixed Energy Signs

Distributing positive/negative energies (incoming/outgoing particles) in different ways,
the analysis of Section 3 gets slightly modified.

Same Sign on One and Three. If particles 1 and 3 carry the same energy sign, and
particles 2 and 4 carry the opposite energy sign, the identities (3.2) have to be modified
by appropriate factors of i:

1 = i|〈12〉|
∫
dα3 dβ3 δ

2(λ3 − α3λ1 − iβ3λ2) ,

1 = i|〈12〉|
∫
dα4 dβ4 δ

2(λ4 − iα4λ1 − β4λ2) . (A.1)

The momentum conservation delta function becomes

δ3(P ) = δ3
(
λ1λ1(1 + α2

3 − α2
4) + λ2λ2(1− β2

3 + β2
4) + i(λ1λ2 + λ2λ1)(α3β3 + α4β4)

)
=

1

|〈12〉|3
δ(1 + α2

3 − α2
4) δ(1− β2

3 + β2
4) δ(α3β3 + α4β4) , (A.2)

21



such that the amplitude reads

A1,3↔2,4
4 (1, 2, 3, 4) =

δ6(Q)

|〈12〉|〈12〉2

∫
dα3 dα4 dβ3 dβ4

1

α3

·

· δ(1 + α2
3 − α2

4) δ(1− β2
3 + β2

4) δ(α3β3 + α4β4)·
· δ2(λ3 − α3λ1 − iβ3λ2) δ2(λ4 − iα4λ1 − β4λ2) . (A.3)

The first two delta functions are each supported on a pair of hyperbolas in (α3, α4) and
(β3, β4) space. Using the parametrization

α3 = rα sinhα , α4 = rα coshα , β3 = rβ cosh β , β4 = rβ sinh β , (A.4)

where the radial variables rα, rβ take all real values, the radial integrals localize at
rα = ±1, rβ = ±1:

A1,3↔2,4
4 (1, 2, 3, 4) =

δ6(Q)

|〈12〉|〈12〉2
∑

sα,sβ=±1

∫
dα dβ

sα
4 sinhα

δ(sinh(α + β))·

· δ2(λ3 − sα sinhαλ1 − isβ cosh β λ2) δ2(λ4 − isα coshαλ1 − sβ sinh β λ2) . (A.5)

The first delta function localizes the beta integral at β = −α, thus

A1,3↔2,4
4 (1, 2, 3, 4) =

δ6(Q)

|〈12〉|〈12〉2
∑

sα,sβ=±1

∫ ∞
−∞

dα
sα

4 sinhα
·

· δ2(λ3 − sα sinhαλ1 − isβ coshαλ2) δ2(λ4 − isα coshαλ1 + sβ sinhαλ2) . (A.6)

Moving δ6(Q) under the integral sign, contracting Q once with λ3 and once with λ4, and
expanding λ3,4 in terms of λ1,2 shows that

δ6(Q) = 〈34〉−3 δ3(〈31〉η1 + 〈32〉η2 + 〈34〉η4) δ3(〈41〉η1 + 〈42〉η2 + 〈43〉η3)

= −sαsβ〈12〉3 δ3(η3 − sα sinhα η1 − isβ coshα η2)·
· δ3(η4 − isα coshα η1 + sβ sinhα η2) . (A.7)

The four-point amplitude hence reads (〈12〉 is purely imaginary, Im denotes the imaginary
part)

A1,3↔2,4
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
sβ

4 sinhα
·

· δ2|3(Λ3 − sα sinhαΛ1 − isβ coshαΛ2) δ2|3(Λ4 − isα coshαΛ1 + sβ sinhαΛ2) , (A.8)

where again Λ = (λ, η). Reverting the direction of integration in the terms with sβ = −1
gives (3.12):

A1,3↔2,4
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
1

4 sinhα
·

· δ2|3(Λ3 − sβ(sα sinhαΛ1 + i coshαΛ2)) δ2|3(Λ4 − isα coshαΛ1 + sinhαΛ2) . (A.9)

22



Alternatively, reverting the direction of integration in the terms with sα = −1 results in

A1,3↔2,4
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
sαsβ

4 sinhα
·

· δ2|3(Λ3 − sinhαΛ1 − isβ coshαΛ2) δ2|3(Λ4 − sα(i coshαΛ1 − sβ sinhαΛ2)) . (A.10)

Same Sign on One and Four. If the momenta of particles 1 and 4 carry the same
energy sign (opposed to 1 and 3), then the previous derivation up to (A.8) works exactly
the same, up to the following substitutions:

α3 → iα3 , α4 → −iα4 , β3 → −iβ3 , β4 → iβ4 , (A.11)

and accordingly

sinhα→ i coshα , coshα→ −i sinhα , sinh β → i cosh β , cosh β → −i sinh β .
(A.12)

Hence the amplitude in this case reads

A1,4↔2,3
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
sβ

4i coshα
·

· δ2|3(Λ3 − isα coshαΛ1 − sβ sinhαΛ2) δ2|3(Λ4 − sα sinhαΛ1 + isβ coshαΛ2) . (A.13)

Substituting sβ → −sβ and subsequently reverting the direction of integration when
sβ = −1 yields (3.13)

A1,4↔2,3
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
−sβ

4i coshα
·

· δ2|3(Λ3 − isα coshαΛ1 + sinhαΛ2) δ2|3(Λ4 − sβ(sα sinhαΛ1 + i coshαΛ2)) . (A.14)

Alternatively, substituting sβ → −sβ and subsequently reverting the direction of inte-
gration when sα = −1 gives

A1,4↔2,3
4 (1, 2, 3, 4) = −i sgn(Im(〈12〉))

∑
sα,sβ=±1

∫ ∞
−∞

dα
−sβ

4i coshα
·

· δ2|3(Λ3 − sα(i coshαΛ1 − sβ sinhαΛ2)) δ2|3(Λ4 − sinhαΛ1 − isβ coshαΛ2) . (A.15)
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