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Butterfly genome reveals promiscuous exchange of
mimicry adaptations among species
The Heliconius Genome Consortium*

The evolutionary importance of hybridization and introgression has
long been debated1. Hybrids are usually rare and unfit, but even
infrequent hybridization can aid adaptation by transferring bene-
ficial traits between species. Here we use genomic tools to investigate
introgression in Heliconius, a rapidly radiating genus of neotropical
butterflies widely used in studies of ecology, behaviour, mimicry and
speciation2–5. We sequenced the genome of Heliconius melpomene
and compared it with other taxa to investigate chromosomal evolu-
tion in Lepidoptera and gene flow among multiple Heliconius
species and races. Among 12,669 predicted genes, biologically
important expansions of families of chemosensory and Hox
genes are particularly noteworthy. Chromosomal organization
has remained broadly conserved since the Cretaceous period, when
butterflies split from the Bombyx (silkmoth) lineage. Using
genomic resequencing, we show hybrid exchange of genes between
three co-mimics, Heliconius melpomene, Heliconius timareta and
Heliconius elevatus, especially at two genomic regions that control
mimicry pattern. We infer that closely related Heliconius species
exchange protective colour-pattern genes promiscuously, implying
that hybridization has an important role in adaptive radiation.

The butterfly genus Heliconius (Nymphalidae: Heliconiinae) is
associated with a suite of derived life-history and ecological traits,
including pollen feeding, extended lifespan, augmented ultraviolet
colour vision, ‘trap-lining’ foraging behaviour, gregarious roosting and
complex mating behaviours, and provides outstanding opportunities for
genomic studies of adaptive radiation and speciation4,6. The genus is best
known for the hundreds of races with different colour patterns seen
among its 43 species, with repeated examples of both convergent evolu-
tion among distantly related species and divergent evolution between
closely related taxa3. Geographic mosaics of multiple colour-pattern
races, such as in Heliconius melpomene (Fig. 1), converge to similar
mosaics in other species, and this led to the hypothesis of mimicry2.
Heliconius are unpalatable to vertebrate predators and Müllerian
mimicry of warning colour patterns enables species to share the cost
of educating predators3. As a result of its dual role in mimicry and mate
selection, divergence in wing pattern is also associated with speciation
and adaptive radiation3,5. A particularly recent radiation is the
melpomene–silvaniform clade, in which mimetic patterns often seem
to be polyphyletic (Fig. 1a). Most species in this clade occasionally
hybridize in the wild with other clade members7. Gene genealogies at
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Figure 1 | Distribution, mimicry and phylogenetic relationships of
sequenced taxa. a, Phylogenetic relationship of sequenced species and
subspecies in the melpomene–silvaniform clade of Heliconius. Heliconius
elevatus falls in the silvaniform clade, but it mimics colour patterns of
melpomene–timareta clade taxa. Most other silvaniforms mimic unrelated
ithomiine butterflies24. b, Geographic distribution of postman and rayed

H. melpomene races studied here (blue, yellow and purple), and the entire
distribution of H. melpomene (grey). The H. timareta races investigated have
limited distributions (red) indicated by arrows and mimic sympatric races of
H. melpomene. Heliconius elevatus and the other silvaniform species are
distributed widely across the Amazon basin (Supplementary Information,
section 22).

*Lists of participants and their affiliations appear at the end of the paper.
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a small number of loci indicate introgression between species8, and
one non-mimetic species, Heliconius heurippa, has a hybrid origin9.
Adaptive introgression of mimicry loci is therefore a plausible
explanation for parallel evolution of multiple mimetic patterns in the
melpomene–silvaniform clade.

A Heliconius melpomene melpomene stock from Darién, Panama
(Fig. 1), was inbred through five generations of sib mating. We
sequenced a single male to 338 coverage (after quality filtering) using
combined 454 and Illumina technologies (Supplementary Informa-
tion, sections 1–8). The complete draft genome assembly, which is
269 megabases (Mb) in size, consists of 3,807 scaffolds with an N50
of 277 kb and contains 12,669 predicted protein-coding genes.
Restriction-site-associated DNA (RAD) linkage mapping was used
to assign and order 83% of the sequenced genome onto the 21 chro-
mosomes (Supplementary Information, section 4). These data permit
a considerably improved genome-wide chromosomal synteny com-
parison with the silkmoth Bombyx mori10,11.

Using 6,010 orthologues identified between H. melpomene and
B. mori, we found that 11 of 21 H. melpomene linkage groups show
homology to single B. mori chromosomes and that ten linkage groups
have major contributions from two B. mori chromosomes (Fig. 2a and
Supplementary Information, section 8), revealing several previously
unidentified chromosomal fusions. These fusions on the Heliconius
lineage most probably occurred after divergence from the sister genus
Eueides4, which has the lepidopteran modal karyotype of n 5 31 (ref. 12).
Three chromosomal fusions are evident in Bombyx (B. mori chromo-
somes 11, 23 and 24; Fig. 2a), as required for evolution of the Bombyx
n 5 28 karyotype from the ancestral n 5 31 karyotype. Heliconius and
Bombyx lineages diverged in the Cretaceous, more than 100 million
years ago11, so the gross chromosomal structures of Lepidoptera
genomes have remained highly conserved compared with those of flies
or vertebrates13,14. By contrast, small-scale rearrangements were
frequent. In the comparison with Bombyx, we estimate there to be
0.05–0.13 breaks per megabase per million years, and in that with
Danaus plexippus (Monarch butterfly), we estimate there to be
0.04–0.29 breaks per megabase per million years. Although lower than
previously suggested for Lepidoptera15, these rates are comparable to
those in Drosophila (Supplementary Information, section 8).

The origin of butterflies was associated with a switch from nocturnal
to diurnal behaviour, and a corresponding increase in visual commun-
ication16. Heliconius have increased visual complexity through
expression of a duplicate ultraviolet opsin6, in addition to the long-
wavelength-, blue- and ultraviolet-sensitive opsins in Bombyx. We
might therefore predict reduced complexity of olfactory genes, but
in fact Heliconius and Danaus17 genomes have more chemosensory
genes than any other insect genome: 33 and 34, respectively
(Supplementary Information, section 9). For comparison, there are
24 in Bombyx and 3–4 in Drosophila18. Lineage-specific expansions
of chemosensory genes were evident in both Danaus and Heliconius
(Fig. 2b). By contrast, all three lepidopteran genomes have similar
numbers of odorant binding proteins and olfactory receptors
(Supplementary Information, section 9). Hox genes are involved in
body plan development and show strong conservation across animals.
We identified four additional Hox genes located between the canonical
Hox genes pb and zen, orthologous to shx genes in B. mori19 (Sup-
plementary Information, section 10). These Hox gene duplications
in the butterflies and Bombyx have a common origin and are inde-
pendent of the two tandem duplications known in dipterans (zen2
and bcd). Immunity-related gene families are similar across all three
lepidopterans (Supplementary Information, section 11), whereas there
are extensive duplications and losses within dipterans20.

The Heliconius reference genome allowed us to perform rigorous
tests for introgression among melpomene–silvaniform clade species.
We used RAD resequencing to reconstruct a robust phylogenetic tree
based on 84 individuals of H. melpomene and its relatives, sampling on
average 12 Mb, or 4%, of the genome (Fig. 1a and Supplementary
Information, sections 12–18). We then tested for introgression between
the sympatric co-mimetic postman butterfly races of Heliconius
melpomene amaryllis and H. timareta ssp. nov. (Fig. 1) in Peru, using
‘ABBA/BABA’ single nucleotide sites and Patterson’s D-statistics
(Fig. 3a), originally developed to test for admixture between
Neanderthals and modern humans21,22 (Supplementary Information,
section 12). Genome-wide, we found an excess of ABBA sites, giving a
significantly positive Patterson’s D of 0.037 6 0.003 (two-tailed Z-test
for D 5 0, P 5 1 3 10240), indicating greater genome-wide introgres-
sion between the sympatric mimetic taxa H. melpomene amaryllis and
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Figure 2 | Comparative analysis of synteny and expansion of the
chemosensory genes. a, Maps of the 21 Heliconius chromosomes (colour) and
of the 28 Bombyx chromosomes (grey) based on positions of 6,010 orthologue
pairs demonstrate highly conserved synteny and a shared n 5 31 ancestor

(Supplementary Information, section 8). Dotted lines within chromosomes
indicate major chromosomal fusions. b, Maximum-likelihood tree showing
expansions of chemosensory protein (CSP) genes in the two butterfly genomes.
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H. timareta ssp. nov. than between H. melpomene aglaope and
H. timareta ssp. nov., which do not overlap spatially (Fig. 1b). On the
basis of these D-statistics, we estimate that 2–5% of the genome was
exchanged21 between H. timareta and H. melpomene amaryllis, to the
exclusion of H. melpomene aglaope. (Supplementary Information,
section 12). Exchange was not random. Of the 21 chromosomes, 11
have significantly positive D-statistics, and the strongest signals of
introgression were found on the two chromosomes containing known
mimicry loci B/D and N/Yb (Fig. 3b and Supplementary Information,
section 15).

Perhaps the best-known case of Müllerian mimicry is the geo-
graphic mosaic of ,30 bold postman and rayed colour-pattern races
of H. melpomene (Fig. 1b and Supplementary Information, section 22),
which mimic a near-identical colour-pattern mosaic in Heliconius
erato (Fig. 1a), among other Heliconius species. Mimicry variation is
mostly controlled by a few loci with strong effects. Mimetic pattern
differences between the postman H. m. amaryllis and the rayed
H. m. aglaope races studied here (Fig. 1a) are controlled by the B/D
(red pattern) and N/Yb (yellow pattern) loci23,24. These loci are located
on the two chromosomes that show the highest D-statistics in our
RAD analysis (Fig. 3b). To test whether mimicry loci might be intro-
gressed between co-mimetic H. timareta and H. melpomene7 (Fig. 1a),
we resequenced the colour-pattern regions B/D (0.7 Mb) and N/Yb
(1.2 Mb), and 1.8 Mb of unlinked regions across the genome, from both
postman and ray-patterned H. melpomene and H. timareta from Peru
and Colombia, and six silvaniform outgroup taxa (Fig. 1a and
Supplementary Information, section 12). To test for introgression at
the B/D mimicry locus, we compared rayed H. m. aglaope and postman
H. m. amaryllis as the ingroup with postman H. timareta ssp. nov.
(Fig. 3a) and found large, significant peaks of shared, fixed ABBA
nucleotide sites combined with an almost complete lack of BABA sites
(Fig. 4b). This provides evidence that blocks of shared sequence vari-
ation in the B/D region were exchanged between postman H. timareta
and postman H. melpomene in the genomic region known to determine
red mimicry patterns between races of H. melpomene23,24 (Fig. 4a).

For a reciprocal test, we used the same H. melpomene races as the
ingroup to compare with rayed Heliconius timareta florencia at the

B/D region. In this case, correspondingly large and significant peaks of
BABA nucleotide sites are accompanied by an almost complete
absence of ABBA sites (Fig. 4c), indicating that variation at the same
mimicry locus was also shared between rayed H. timareta and rayed
H. melpomene. Equivalent results in the N/Yb colour-pattern region,
controlling yellow colour-pattern differences, are in the expected
directions for introgression and are highly significant for the test using
postman H. timareta ssp. nov. (P 5 6 3 10234), but are not significant
in rayed H. t. florencia (P 5 0.13; Supplementary Information, section
17). By contrast, hardly any ABBA or BABA sites are present in either
comparison across 1.8 Mb in 55 genomic scaffolds that are unlinked to
the colour-pattern regions (Supplementary Information, section 21).
These concordant but reciprocal patterns of fixed ABBA and BABA
substitutions occur almost exclusively within large genomic blocks at
two different colour-pattern loci (449 and 99 sites for B/D and N/Yb,
respectively; Fig. 4b, c and Supplementary Information, section 17).
These patterns would be very hard to explain in terms of convergent
functional-site evolution or random coalescent fluctuations. Instead,
our results imply that derived colour-pattern elements have intro-
gressed recently between both rayed and postman forms of
H. timareta and H. melpomene.

To test whether colour-pattern loci might be shared more broadly
across the clade, we used sliding-window phylogenetic analyses along
the colour-pattern regions. For regions flanking and unlinked to
colour-pattern loci, tree topologies are similar to the predominant
signal recovered from the genome as a whole (Supplementary
Information, section 18). Races of H. melpomene and H. timareta each
form separate monophyletic sister groups and both are separated from
the more distantly related silvaniform species (Fig. 4d). By contrast,
topologies within the region of peak ABBA/BABA differences group
individuals by colour pattern, and the species themselves become poly-
phyletic (Fig. 4e, f and Supplementary Information, sections 19 and
20). Remarkably, the rayed H. elevatus, a member of the silvaniform
clade according to genome average relationships (Fig. 1a and
Supplementary Information, section 18), groups with rayed races of
unrelated H. melpomene and H. timareta in small sections within
both B/D and N/Yb colour-pattern loci (Fig. 4e and Supplementary
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Information, sections 19 and 20). These results are again most readily
explained by introgression and fixation of mimicry genes.

We have developed a de novo reference genome sequence that will
facilitate evolutionary and ecological studies in this key group of
butterflies. We have demonstrated repeated exchange of large
(,100-kb) adaptive regions among multiple species in a recent radi-
ation. Our genome-scale analysis provides considerably greater power
than previous tests of introgression8,25–27. Our evidence suggests that
H. elevatus, like H. heurippa9, was formed during a hybrid speciation
event. The main genomic signal from this rayed species places it closest
to Heliconius pardalinus butleri (Fig. 1a), but colour-pattern genomic
regions resemble those of rayed races of H. melpomene (Fig. 4e and
Supplementary Information, sections 18–21). Colour pattern is
important in mating behaviour in Heliconius5, and the transfer of
mimetic pattern may have enabled the divergent sibling species
H. elevatus to coexist with H. pardalinus across the Amazon basin.
Although it was long suspected that introgression might be important
in evolutionary radiations1, our results from the most diverse terrestrial

biome on the planet suggest that adaptive introgression is more per-
vasive than previously realized.

The annotated genome version 1.1 is available on the Heliconius
Genome Consortium’s genome browser at http://butterflygenome.
org/ and this version will also be included in the next release of
ENSEMBL Genomes. A full description of methods can be found in
Supplementary Information.
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Figure 4 | Evidence for adaptive introgression at the B/D mimicry locus.
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Fig. 3a) along B/D for two comparisons. Excesses of ABBA in b and BABA in
c are highly significant (two-tailed Z-tests for D 5 0; D 5 0.90 6 0.13,
P 5 5 3 10214 and D 5 20.91 6 0.10, P 5 9 3 10224, respectively), indicating

introgression. d, e, f, Genealogical change along B/D investigated with
maximum likelihood based on 50-kb windows. Three representative tree
topologies are shown. Topology A, the species tree, is found within the white
windows. In topologies B (dark green window) and C (light green windows)
taxa group by colour pattern rather than by species. Within striped windows,
H. melpomene and/or H. timareta are paraphyletic but the taxa do not group by
colour pattern. Support is shown for nodes with .50% bootstrap support
(Supplementary Information, section 19). bp, base pair.
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