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Introduction

Potassium channels are necessary for many physiological pro-
cesses, including cell excitability and secretion mechanisms.
They are a diverse protein class with more than 75 different
types, which can be split into four families: voltage-dependent
(Kv), calcium-activated (KCa), inward rectifier (Kir), and two-pore
(K2P) potassium channels.[1, 2] Voltage-dependent potassium
channels are the largest family with 12 members identified to
date (Kv1–12) and further subdivisions within each Kv type. In
agreement with their broad expression and importance, their
dysfunction accounts for a wide range of human pathologies.
For example, in the brain, mutations in KCNA1, the gene en-
coding Kv1.1, are associated with episodic ataxia of type 1,[3]

whereas dysfunction of Kv1.2 is associated with cerebellar
ataxia.[4]

Some of the Kv1.x subtypes form heteromultimers, with the
Kv1.1 and Kv1.2 combination being one of the most abundant
in both the central and peripheral nervous system (CNS and
PNS, respectively).[5–7] More importantly, they have been found
to specifically co-localize at myelin-protected juxtaparanodal
regions of the nodes of Ranvier of nerve axons,[8–11] where they
control axon excitability and ensure saltatory conduction.[12]

Nonetheless, in demyelinating diseases such as multiple sclero-
sis (MS), these channels are exposed and nerve conduction is

impaired.[13] Recently, 4-aminopyridine (INN: fampridine), a non-
selective potassium channel inhibitor, has been approved as
the first and only medication to improve the ability to walk in

Two voltage-dependent potassium channels, Kv1.1 (KCNA1)
and Kv1.2 (KCNA2), are found to co-localize at the juxtaparano-
dal region of axons throughout the nervous system and are
known to co-assemble in heteromultimeric channels, most
likely in the form of the concatemer Kv1.1–1.2(3). Loss of the
myelin sheath, as is observed in multiple sclerosis, uncovers
the juxtaparanodal region of nodes of Ranvier in myelinated
axons leading to potassium conductance, resulting in loss of
nerve conduction. The selective blocking of these Kv channels
is therefore a promising approach to restore nerve conduction
and function. In the present study, we searched for novel in-
hibitors of Kv1.1–1.2(3) by combining a virtual screening proto-
col and electrophysiological measurements on a concatemer
Kv1.1–1.2(3) stably expressed in Chinese hamster ovary K1
(CHO-K1) cells. The combined use of four popular virtual
screening approaches (eHiTS, FlexX, Glide, and Autodock-Vina)

led to the identification of several compounds as potential in-
hibitors of the Kv1.1–1.2(3) channel. From 89 electrophysiologi-
cally evaluated compounds, 14 novel compounds were found
to inhibit the current carried by Kv1.1–1.2(3) channels by more
than 80 % at 10 mm. Accordingly, the IC50 values calculated
from concentration–response curve titrations ranged from 0.6
to 6 mm. Two of these compounds exhibited at least 30-fold
higher potency in inhibition of Kv1.1–1.2(3) than they showed
in inhibition of a set of cardiac ion channels (hERG, Nav1.5,
and Cav1.2), resulting in a profile of selectivity and cardiac
safety. The results presented herein provide a promising basis
for the development of novel selective ion channel inhibitors,
with a dramatically lower demand in terms of experimental
time, effort, and cost than a sole high-throughput screening
approach of large compound libraries.
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those suffering from MS.[1, 2] Unfortunately, its low potency
(Kv1.1 IC50 : 170 mm; Kv1.2 IC50 : 230 mm) and poor channel spe-
cificity (Kv1.4, Kv4.2) raise issues, particularly in regard to car-
diac safety. Therefore, the search for more selective blockers,
and the development of proper strategies for the study of
drug–channel interactions, are highly desirable from a clinical
perspective. Supporting Information table S3 lists activity and
references to a few other Kv1.1 and Kv1.2 blockers.

The ratio of subunits forming the Kv1.1–1.2 heteromultimer
in the CNS is postulated to be one Kv1.1 for every three Kv1.2
a-subunits, as inferred by sensitivity to specific toxins and bio-
physical profiles. For pharmacological studies, a concatenated
construct for a hKv1.1–1.2(3) tetramer was transfected, stably
expressed in Chinese hamster ovary K1 (CHO-K1) cells, and vali-
dated against the pre-existing hKv1.1(4) and hKv1.2(4) cell lines
by means of whole-cell patch clamping, using classical tools
such as tetraethylammonium (TEA) and scorpion toxin (tityus-
toxin-Ka) (data not shown).

Importantly, potassium channels are among the few chan-
nels for which structural insight has been gained through crys-
tallography.[14, 15] Functional potassium channels comprise four
polypeptide chains assembled in a structure with a central
pore. Each of these four proteins comprises six transmembrane
domains, and of these, two transmembrane domains (S5 and
S6) contribute to the formation of the central pore. The other
transmembrane domains play a role in modulation of the ac-
tivity of the central pore, for example, through the detection
of changes in membrane potential and the translation of such
changes to modifications in conductance state. The central
pore region consists of a solvated cavity ~10 � in diameter
and a narrow region that is referred to as the selectivity filter.
In studies of KcsA and Kv1.5, the inner cavities were used suc-
cessfully as target sites in structure-based virtual screening
(SBVS).[16–18] Furthermore, modeling and mutagenesis studies
confirm that the inner cavity is a binding site for small ionic
molecules.[19–21] Also, the extracellular entrance of the selectivi-
ty filter has been shown to be a target site for inhibitors of po-
tassium channel KcsA[22, 23] and was successfully used for drug
discovery using molecular docking.[16] Based on these results,
we chose to use a combination of blind docking[24, 25] and con-
ventional site-directed molecular docking of known ligands to
localize putative inhibitor binding sites for Kv1.1–1.2(3).

Virtual screening has emerged as a key methodology in
computer-aided drug design. Molecular docking is a virtual
screening technique that scores compounds in a known or
predicted binding site. Most docking schemes have been de-
veloped to work on well-defined binding pockets such as en-
zymatic active sites, where docking poses can be compared
with specific pharmacophores. How well these programs per-
form on a putative binding site such as the inner cavity of a po-
tassium channel remained unclear. We tested four popular mo-
lecular docking approaches (eHiTS, FlexX, Glide, and Autodock-
Vina) for their ability to distinguish between compounds
known to be active or inactive against Kv1.1–1.2(3).

A commonly used strategy for the improvement of predic-
tions based on molecular docking is the application of consen-
sus scoring (CS). CS involves combining multiple scores to give

a new score with a putatively enhanced discrimination rate be-
tween active and inactive compounds. The theory behind CS is
that the greater the number of independent algorithms identi-
fying a certain substance as active, the higher the likelihood
that the compound is a true positive. Enhancement of the en-
richment using CS has been demonstrated in several publica-
tions.[26–28]

Our CS approach is based on individual scoring function
sub-terms. It involves a training step, where the most predic-
tive sub-terms of different scoring functions are determined
and used for calculation of a consensus score. Different meth-
ods of combination of these sub-terms were evaluated. The
consensus scheme was optimized for a single target, that is,
the inner cavity of KV1.1–1.2(3). The combination with the high-
est predicted enrichment was applied in a virtual high-
throughput screen containing ~10 million compounds. A
subset of 89 top scoring compounds were purchased and as-
sayed by automated patch clamp to assess the achieved en-
richment of the applied CS approach.

The aim of the current study was to benchmark, optimize,
and employ molecular docking based techniques for a specific
target (Kv1.1–1.2(3)) in order to find novel and potent inhibitors,
thereby decreasing both experimental effort and cost of re-
search. Moreover, to eliminate any cardiac liability, all identified
hits were assayed against cardiac channels known to be in-
volved in the cardiac action potential.

Results

For the benchmark, an in-house compound library was provid-
ed from Xention (http://www.xention.com). This library con-
tains activity data for 2675 active and inactive compounds.
Owing to the total lack of pharmacological modulators of the
Kv1.1–1.2, we mined Xention’s database which contains thou-
sands of compounds with a known pharmacological profile on
channels belonging to the same family, in particular Kv1.3 and
Kv1.5. The fraction of active compounds in this library is 32 %.

Blind docking

Possible binding sites were detected by blind docking of the
entire test library using Vina. In the blind docking setup, the
whole protein structure was defined as the target site. Taking
the fourfold symmetry of the receptor into account, blind
docking established five distinct putative binding sites. Two
separate sites (MEM1 and MEM2) were found at the protein–
lipid surface of the transmembrane region. Further binding
sites were discovered at the intra- (Vint) and extracellular (Vext)
surfaces of the voltage sensing domains as well as the inner
cavity (CAV). The outer mouth of the selectivity filter was not
occupied. The benchmark library was docked to each of these
binding sites separately. Additionally, the extracellular site of
the selectivity filter was defined as a target site (SFext). Within
the inner cavity, we used three different locations and sizes of
active sites in order to gain further insight into possible bind-
ing modes. First, the whole cavity was defined as the receptor
(CAV). Secondly, a narrow target site was defined around the
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inner entrance of the selectivity filter (SFcav). Finally, the region
surrounding the intracellular pore entrance was defined as
a binding site (CAVext).

The sites defined in blind docking were used as individual
target sites. All compounds were docked into the individual
binding sites, and the separation between active and inactive
compounds was determined using receiver-operating charac-
teristic (ROC) curves. With the exception of the SFcav, the rank-
ings for all target sites resulted in significant enrichment of
active compounds (Figure 1 a). The narrowness of site SFcav led
to a systematic exclusion of larger compounds, which explains
the low enrichment observed. The highest enrichment was ob-
served for the extracellular pore entry (CAVext), followed by CAV
(Figure 1 b) and Vext. Among the binding sites CAV, CAVext, and
Vext, the mean scores were lowest for binding site CAV. Lower
scores were gained only at transmembrane site MEM1 and for
the blind docking in total (Figure 2). However, under physio-

logical conditions, the compounds at MEM1 would have to
compete with lipid molecules at the protein–lipid interface.
Therefore, this binding site was discarded, and we focused on
the binding site CAV for the subsequent steps.

Benchmark and optimization

The compound library was further docked to the inner cavity
(CAV) using eHiTS, FlexX, and Glide. Of 2675 total compounds,
2099 (including 473 active compounds) were successfully
docked by all programs and were therefore included in further
analysis. None of these programs enriched active compounds
as significantly as Vina. The area under the ROC curve (AROC)
was 0.7 for Vina and less than 0.55 for each of the other ap-
proaches, represented by the FlexX-Total, eHiTS-Score, and
Glide-gscore (Table 1). Furthermore, consensus scoring using
the total scores of each program did not provide improved en-
richment (Figure 1 b). The highest enrichment from consensus
scoring using the main scores of all approaches was 0.61 by
rank-to-rank. However, taking into account individual scoring
function sub-terms from the different programs, a broad range
of enrichment was revealed. The sub-terms leading to the

Figure 2. Average Vina Scores over the AROC of different putative binding
sites. Error bars reflect the standard deviation of the scores.

Table 1. AROC and BEDROC values with respect to docking scores and
individual scoring function terms as well as their Pearson correlation with
compound mass.

Score PCC[a] AROC BEDROC

Rank-to-rank[b] – 0.76 0.70
Rank-to-number[b] – 0.75 0.69
Rank-to-max[b] – 0.73 0.69
Mass 1.00 0.74 0.52
Vina Score �0.82 0.70 0.51
FlexX Lipo �0.77 0.70 0.59
eHiTS Strain �0.73 0.73 0.58
Glide Evdw �0.67 0.74 0.68
Glide Emodel �0.61 0.71 0.58
eHiTS Energy �0.46 0.61 0.33
Glide Gscore �0.20 0.54 0.32
eHiTS Score 0.01 0.50 0.17
FlexX Totale 0.12 0.44 0.11

[a] Pearson correlation coefficients between compound mass and docking
sub-score. [b] Consensus scores of the sub-scores Vina Score, FlexX Lipo,
eHiTS Strain, and Glide Evdw.

Figure 1. ROC curves a) with respect to different putative binding sites based on Vina Scores; b) ROC curves with respect to the inner cavity of the main
scores; and c) scoring function sub-terms, as well as the ROC curves from the respective consensus scores. ROC curves of random distributions are expected
in the grey area around the diagonal dashed lines. A perfect ranking corresponds to the red dashed lines.
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highest AROC values for the individual programs were the Lipo
term (0.70) for FlexX, the Evdw term (0.74) for Glide, and the
eHiTS term Strain (0.73) (Table 1). In the case of Vina, it was not
possible to check sub-terms as only the final score was provid-
ed.

The use of consensus scoring methods using the Vina score
in combination with the sub-terms Lipo (FlexX), Strain (eHiTS),
and Evdw (Glide) led to a slightly enhanced enrichment in
terms of AROC, and a significant enhancement of the Boltz-
mann-enhanced discrimination of the ROC curve (BEDROC) as
described by Truchon et al.[29] (Table 1). The BEDROC metric is
more sensitive to changes in initial enrichment as described in
the methods section. The corresponding ROC curves are
shown in Figure 1 c. The consensus approaches increased the
AROC value by 2–5 % and the BEDROC value by 17–20 %, with
respect to the average AROC/BEDROC values of the individual
terms used for the consensus. As indicated by the increase in
BEDROC values, all three consensus approaches led to a signifi-
cant enrichment in the top 8 % of a ranked list of compounds.
We found a strong dependence of enrichment on compound
mass, indicating a higher activity on average for larger com-
pounds. However, the rankings according to the three shown
consensus schemes were superior to all individual scores and
sub-terms.

High-throughput virtual screening and electrophysiology

As described in the methods section, two implementations of
the consensus scheme rank-to-max were used in a high-
throughput approach, resulting in two compound sets: A and
B. The compounds in set A are based on prediction of a con-
sensus score that was generated using Vina, FlexX, and Glide.
The set B compounds are additionally based on the Strain
term from eHiTS and additional filtering according to drug-like
properties. A subset of 89 compounds from the top 200 scor-
ing compounds of either set A or B were purchased, with the
final selection based solely on commercial availability.

Electrophysiological measurements confirmed 14 total com-
pounds exhibiting greater than 80 % inhibition of Kv1.1–1.2(3)

when tested at a concentration of 10 mm. The fractions of the
identified active compounds in set A and B are 21 % and 11 %
(Table 2). The original ranks for the 14 hits, as well as the ranks
within the subset of compounds available at Enamine, are pro-
vided in the Supporting Information. One active compound
was shared between both sets. Assuming a uniform distribu-
tion of active compounds within the first 200 compounds of

each list, the number of active compounds can be estimated
to be between 11 and 39 % for set A and between 3.9 and
25 % for set B, with a confidence interval of 95 %. IC50 values
for these 14 compounds lie between 0.58 and 6 mm. The 14
compounds were evaluated against three important cardiac
ion channels: Nav1.5, Cav1.2, and hERG. The experiments
reveal a pronounced selectivity for Kv1.1–1.2(3) over the cardiac
channels (Table 3). Notably, compounds 1 and 2 were at least
30-fold more active toward Kv1.1–1.2(3) over the other chan-
nels.

Analysis of novel active compounds

Chemical structures of the 14 active substances are shown in
Figure 3. Physiological properties that are relevant for an esti-
mation of their drug-like qualities are listed in Table 3. These
data were calculated using the Molsoft drug-likeness and mo-
lecular property estimator (http://www.molsoft.com/mprop).
The drug-likeness model score predicts drug-like properties
using Molsoft’s chemical fingerprints. Values between 0 and 2
indicate very drug-like molecules, although values as low as
�1 are frequently reached by drug-like molecules. Non-drug-
like molecules usually give values between �3 and �0.5. The
distributions of drug-like and non-drug-like molecules are
shown on the Molsoft website.[2]

All 14 compounds share a carboxyl group close to their geo-
metric center. Compounds 8, 9, and 12 share a Tanimoto simi-
larity greater than 0.8 and have a common 4-(1,2,3,4-tetrahy-
droisoquinoline-2-sulfonyl)benzamide motif, which is also seen
in compound 11. The similarity of 11 to the former compounds
is 0.7 at maximum. These compounds can be regarded as one
structural cluster. A second cluster comprises compounds 4, 6,
10, and 13 which each contain a 3-formylbenzene-1-sulfona-
mide group. Compounds 1 and 2, which are highly selective
for Kv1.1–1.2(3), are not contained in either of these clusters.
Twelve compounds contain a sulfur atom, and in 10 cases this
takes the form of a sulfonyl group. The molecular weight of
the 14 active compounds lies between 420 and 500 Da. The Ta-
nimoto similarity between the 14 active compounds and the
known active compounds from the training set was 0.56 at
maximum.

Discussion and Conclusions

In this study, we sketched and validated a possible virtual
screening protocol using molecular docking as the main tech-
nique. Four widely used molecular docking approaches have
been tested for their ability to find known active inhibitors of
Kv1.1–1.2(3). In this study, Autodock-Vina led to the best enrich-
ment. Furthermore, we found that using sub-scores from the
scoring functions of the individual molecular docking pro-
grams can lead to pronounced enrichments of inhibitor iden-
tification, even if no enrichment is gained using the main scor-
ing function. Subsequent analysis indicated that the enrich-
ment can be further enhanced by combining these sub-scores
into consensus scores. These results underpin the importance
of adjustment of the scoring and ranking procedures in a mo-

Table 2. Number and fraction of active compounds (+ 80 % inhibition at
10 mm) from implementations A and B.

Set A Set B Total

Total 16 829 1285 16 829
Screened 33 74 89
Active 7 8 14
Fraction [%][a] 21 11 17

[a] Fraction of active compounds in the screened subset.
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lecular docking calculation for successful virtual screening cal-
culations. The combination of blind docking with conventional
docking calculations, as well as the experimental evaluation of

our predictions, support the hypothesis that inhibitors bind
within the inner cavity of Kv1.1–1.2(3).

Figure 3. Structures of the 14 confirmed novel Kv1.1–1.2(3) active compounds. Larger repeated motifs are highlighted.

Table 3. Molecular properties and drug-like scores of the active compounds. IC50 values of the 14 active compounds toward Kv1.1–1.2(3) (primary target)
and Nav1.5, Cav1.2, and hERG (from the cardiac safety panel).

ID Set[a] W[b]

[Da]
A[c] D[c] Log P[d] PSA[e]

[�2]
Vol[f]

[�3]
DL[g] Kv1.1–1.2(3) Nav1.5 Cav1.2 hERG

AV[h] SD n AV[h] SD n AV[h] AV[h] SD n

1 A 492 6 2 2.64 84 489 0.63 0.71 0.19 3 27.92 4.17 4 + 30 + 30 0 3
2 A 485 6 0 3.28 65 466 0.18 0.79 0.03 3 + 30 0 3 + 30 + 30 0 3
3 A 493 4 2 3.91 73 494 �0.67 1.41 0.24 3 24.07 10.27 3 10.44 13.26 3.97 4
4 A 482 6 1 4.34 76 482 0.42 1.62 0.48 4 28.38 2.81 3 3.3 8.05 3.53 5
5 A 427 2 2 2.76 53 432 1.00 2.98 0.35 4 25.73 7.40 3 + 30 + 30 0 4
6 A 492 7 2 3.56 105 449 �0.15 4.07 0.23 3 + 30 0 3 15.5 + 30 0 3
7 A,B 471 5 1 4.29 67 437 0.08 1.53 0.37 3 + 30 0 3 11.43 + 30 0 3
8 B 490 5 0 5.57 56 472 0.11 0.58 0.11 3 + 30 0 4 2.87 7.33 4.75 3
9 B 468 5 0 5.32 57 439 �0.32 0.93 0.48 3 29.39 1.06 3 1.55 8.62 2.74 3
10 B 495 4 0 3.89 65 464 0.37 1.66 0.21 4 + 30 0 4 2.52 9.46 1.23 3
11 B 477 6 0 5.59 60 445 0.27 2.71 0.64 6 22.73 9.22 4 3.85 8.43 1.88 3
12 B 480 5 0 5.09 57 445 �0.27 3.70 0.60 4 + 30 0 3 4.74 8.93 2.05 3
13 B 480 5 1 4.38 74 458 0.40 3.77 1.07 3 24.80 9.00 3 9.61 + 30 0 4
14 B 475 6 1 2.74 81 448 0.07 5.94 0.67 4 + 30 0 4 12.27 + 30 0 3

[a] Implementation that suggested the compound. [b] Molecular weight. [c] Number of hydrogen bond acceptors (A) and donors (D). [d] Partition coeffi-
cient. [e] Polar surface area. [f] Molecular volume. [g] Molsoft’s drug-likeness model score. [h] Concentration that produces 50 % inhibition of the respective
channel Kv1.1–1.2(3), Nav1.5, Cav1.2, and hERG, respective standard deviation (SD), and number of evaluations (n). No SD or n are given for Cav1.2 results,
which were obtained using Flexstation. Molecular properties were calculated with the Molsoft molecular properties calculator.
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Using an adjusted consensus molecular docking approach,
we identified several novel, potent, and selective non-peptide
Kv1.1–1.2(3) inhibitors. Compounds 1 and 2 represent potential
lead structures for the development of novel compounds that
could selectively inhibit the ion flux mediated by Kv1.1–1.2(3)

in vivo. Electrophysiological measurements confirmed a hit
rate at or above 17 % when the relatively stringent hit criteria
of greater than 80 % channel inhibition at 10 mm was applied.
Four compounds (1, 2, 8, and 9) bind in the sub-micromolar
range. Compounds 1 and 2 exhibit at least 30-fold greater in-
hibition potency toward Kv1.1–1.2(3) than they show against
a small panel of cardiac selectivity targets (Nav1.5, Cav1.2, and
hERG), therefore meeting some of the basic cardiac safety re-
quirements. Evaluation against other unrelated targets was
beyond the scope of this research, but further medicinal
chemistry could produce a library of similar compounds to aid
in the development of a structure–activity relationship for the
most active molecules, 1 and 2. This library could be used to
elucidate key binding features from compounds 1 and 2 to
guide the development of a novel series of Kv1.1–1.2(3) inhibi-
tors. Neither compound 1 nor 2 has previously been reported
in the literature to have any biological activity. Furthermore,
there are no references associated with either of these com-
pounds in SciFinder or Reaxys.

The high specificity, as well as the low similarity of these hit
molecules to known active compounds from the training set,
indicates that this approach makes proper use of the structural
characteristics of Kv1.1–1.2(3) in the resulting selection process
for the identification of novel structures. The drug-likeness
model scores between �0.7 and 1 indicate that the 14 active
compounds bear greater similarity to marketed drugs relative
to non-drugs, in agreement with the fact that all compounds
originate from the ZINC[30] clean drug-like subset.

Both implementations A and B identified a similar number
of inhibitors with greater than 80 % inhibition at 10 mm con-
centration. However, set B (74 compounds) was approximately
double the size of set A (33 compounds). The fraction of active
compounds was therefore nearly twice as high in A than in B.
This suggests that the enrichment of active compounds is
higher when the consensus scoring is applied in parallel rather
than sequentially, corresponding to a situation wherein each
molecular docking algorithm is applied to each compound. Al-
though such an extensive screen would require substantially
more computational time, this may prove to be the most effi-
cient approach, though the influence of successive filtering ac-
cording to size and solubility applied after the consensus scor-
ing procedure only in case B must be taken into account. Nev-
ertheless, we show here that when the whole library was
tested with only one docking program and subsequent con-
sensus scoring was applied to a smaller library of top-ranked
compounds, an improvement in enrichment of two to three
orders of magnitude was achieved compared to a random se-
lection of compounds.[31–34] Because the consensus approach
that we used in this study was trained on a library of known
active and inactive compounds, this approach cannot be im-
mediately transferred to other targets. However, it may be
a reasonable starting point for ion channels that have structur-

al and functional similarity to Kv1.2. Our optimization only tar-
gets the scoring and the ranking stages of molecular docking
and does not affect the sampling stage. Further improvement
might be possible when all three stages are included in the
training process.

Finally, the present study shows that when structural infor-
mation is available, the combination of in silico screening and
automated patch clamp may lead to significant acceleration in
the ion channel drug discovery process.

Experimental Section

Receptor structure

The crystal structure of Kv1.2 (PDB: 2A79) served as template for
modeling of the target structure.[15] Loops that are not present in
the crystal structure were added using the MODELLER software.[35]

For Glide, the protein structure was optimized with MacroModel
(OPLS2005 force field), and the Protein Preparation Wizard was
used to optimize hydrogen bonding networks of the protein.

Ligand libraries

Experimental data for 811 active and 1864 inactive compounds
was provided by Xention Ltd. The Marvin toolkit was used for
drawing and displaying chemical structures. Marvin’s calculator
plug-ins were used for 3D structure prediction, protonation, and
energy minimization.[36] For Glide docking, libraries were additional-
ly preprocessed by the software LigPrep from the Maestro suite to
assign atomic partial charges[37] and define possible tautomeriza-
tion states, stereoisomers, and protonation in a pH range of 5.5–
8.0.

FlexX

FlexX[38] uses an incremental approach for flexible docking of li-
gands. Initially, the base fragment of a ligand is chosen automati-
cally and placed into the active site. Next, the ligands are incre-
mentally reconstructed. During this reconstruction process, new
fragments are fit to the base in all possible conformations. The
best of these placements, as defined by the scoring function, are
used for the next reconstruction step. The receptor input files for
FlexX were generated using an in-house Python[39] script defining
all atoms of the inner cavity within a cylinder of 10.5 � around the
fourfold symmetry axis as the active site. High-throughput screen-
ing was performed using FlexX (version 3.1.4). Standard parameters
were used for weights of the scoring function and the number of
intermediate solutions for each fragment.

Glide

Glide 5.5[37, 40, 41] performs a gradual guided progression solution
space search by an initial rough estimate of the ligand conforma-
tion and a subsequent torsionally flexible energy optimization on
a non-bonded potential grid based on the OPLS-AA force field. The
best candidates, as defined by the scoring function, are further re-
fined by Monte Carlo sampling of the ligand pose. Glide’s scoring
function is a combination of empirical and force-field-based terms.
Intermolecular interactions were precalculated on a grid represent-
ing the extracellular half of the receptor and were centered on se-
lected residues in the binding site in such a way as to enable
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access to total available space in the inner cavity and include long
range interactions up to 20 �. Receptor flexibility was derived by in
place temporary alanine mutations and van der Waals (vdW) radii
scaling. The 20 000 ligands selected with FlexX screening were
docked with full flexibility on the grid. For each ligand, ten poses
were generated and subsequently clustered (RMSD<0.5 �).

eHiTS

eHiTS[42, 43] takes individual compounds from a large library and cal-
culates the optimal conformation that each of these ligands can
adopt in a targeted protein cavity. The program then calculates
a score for each structure according to the geometries of the
ligand and the complementarities of “surface points” on the recep-
tor and ligand. Complementary surface points receive a positive
score, whereas repulsive surface points receive a penalty score. Ad-
ditional terms are used in the final scoring function to further re-
flect all factors involved in binding, such as steric clashes, depth of
the cavity, solvation, conformational strain energy of the ligand, in-
tramolecular interactions in the ligand, and entropy loss due to
“frozen” rotatable bonds. The approach involves breaking ligands
into rigid fragments and their connecting flexible chains and then
docking each rigid fragment to every possible place in the cavity.

Vina

AutoDock Vina (version 1.0.2)—hereafter termed Vina—uses an
iterative local search algorithm and several runs starting from
random conformations. For the local search, a quasi-Newton
method is used. Significant minima are then combined and used
for structure refinement and clustering.[44] Input files were generat-
ed using the AutoDock plug-in[45] for PyMOL.[46] For blind docking,
a cubic box containing the complete Kv1.2 transmembrane
domain was used. Ligand clusters were defined manually by visual
inspection. For targeted docking, rectangular boxes with edge
lengths between 1.2 and 3.4 nm around the center of the individu-
al ligand clusters were used. High-throughput docking was per-
formed using 20 000 compounds from the FlexX calculation with
the inner cavity as the target site.

Combination methods

Molecular docking calculations were performed with all programs
individually. Scores were standardized using Z-scores prior to con-
sensus scoring. The following consensus scoring methods were
used for the generation of a ranked list :

* rank2number: Compounds were ranked according to the mean
of scores from the different scoring functions.

* rank2rank: Compound rankings were calculated according to
the single scoring functions, then compounds were ranked ac-
cording to the mean of their ranks.

* rank2max: Compounds were ranked according to the maximum
of all scores from the different scoring functions.

Quality evaluation: AROC and BEDROC

The quality of the predictions was evaluated by comparing the
predictions of the individual programs with the experimental data
in the benchmark library. The predictions were illustrated using
ROC curves and were quantified using the area under the ROC

curve (AROC) as well as the Boltzmann-enhanced discrimination of
the ROC curve (BEDROC), as described by Truchon et al.[29] AROC is
a commonly used metric to evaluate docking applications. The ad-
vantage of the BEDROC metric is that it discriminates between
early and late recognition of true positives. In this study, a weight-
ing factor of a= 20 was used for all evaluations, corresponding to
80 % of the score come from the top 8 % of the list. Both the
AROC and the BEDROC metric provide values between 0 and 1.

High-throughput screening

The inner cavity was considered the most promising target site for
a virtual screen, which was applied in two steps. The “clean drug-
like” subset of the ZINC database from 2009-11-13, containing
9 497 542 entries, was screened.[30] Initially, the whole database was
docked to the inner cavity of the Kv1.2 model using FlexX. The
best 20 000 compounds, according to the Lipo term from FlexX,
were evaluated in the other programs as well (Glide, eHiTS, and
Vina). The prediction of novel Kv1.1–1.2(3) active compounds was
based on two slightly different implementations of the CS ap-
proach:

A) The top 20 000 structures, according to Lipo were docked with
Vina and Glide. The rank-to-max consensus method was applied
using FlexX’s Lipo-Score, the Evdw term from Glide, and the pre-
dicted binding free energy from Vina. Only compounds commer-
cially available from Enamine Sales (http://www.enamine.net/)
were taken into further consideration. The 200 top-ranked com-
pounds, according to the CS scheme rank-to-max, were selected.

B) The library of 20 000 compounds was prefiltered to remove com-
pounds that did not fit the drug-like filter of the OpenEye FILTER
software.[47] From 20 000 molecules, 1906 were retained and
screened using eHiTS. Ligand dockings were evaluated using
SPROUT (version 6.3) and MAESTRO. The rank-to-max consensus
method was applied using the sub-score Strain from eHiTS in addi-
tion to sub-scores from FlexX, Glide, and Vina, which were also
used for the previous implementation. The top 200 compounds,
according to the CS scheme rank-to-max and based on availability
from Enamine Sales, were selected.

A combined list of compounds from both A and B was generated.
The list was filtered to remove compounds with log P values great-
er than 4.0, in order to ensure sufficient solubility. A total of 89
compounds were purchased from Enamine Sales. The final library
of purchased compounds contained 33 ligands predicted by A and
74 compounds predicted by B ; 18 compounds were common to
both A and B. The final criterion for the acquisition of the 89 com-
pounds was commercial availability.

Electrophysiology

The Kv1.1–1.2(3) channel concatemer was stably expressed in CHO-
K1 cells, characterized using conventional patch clamping tech-
nique, and adapted to an automated patch clamp device
(QPatch16; Sophion, Denmark).

Creation of a human Kv1.1–1.2(3) expression plasmid

The DNA sequence for hKv1.1 and hKv1.2, corresponding to Gen-
Bank Accession Numbers NM 000217 and NM 004974, respectively,
were cloned by polymerase chain reaction (PCR) from human ge-
nomic cDNA using the proof reading polymerase Pfu (Stratagene).
All genes were cloned into the pcDNA3.1 vector. Kv1.2–pcDNA3.1
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was cut with Hind III and Bam HI restriction enzymes and used as
the acceptor for the PCR product of Kv1.1–pcDNA with primers 5’-
TTT TTA AGC TTG CCA TGA CGG TGA TGT CTG GGA G-3’ and 5’-TTT
GGA TCC GAT TTC TAA GGT TGA TCG TCG TCC GAA GTT TAA GGT
CTC CTT TTG TGT ATC AAC ATC GGT CAG TAG CTT GC-3’ to create
Kv1.1–Kv1.2–pcDNA3.1. Similarly, Kv1.2–pcDNA3.1 was cut with
Hind III and Bam HI restriction enzymes and used as the acceptor
for the PCR product of Kv1.2–pcDNA with primers 5’-TTT TTA AGC
TTG CCA TGA CAG TGG CCA CCG GAG AC-3’ and 5’-TTT TTG GAT
CCG ATT TCT AAG GTT GAT CGT CCG AAG TTT AAG GTC TCC TTT
TGT GTA CGA CAT CAG TTA ACA TTT TGG-3’ to create Kv1.2–Kv1.2–
pcDNA3.1.

The hKv1.1–1.2(3) construct was made by PCR of Kv1.2–pcDNA3.1
with the primers 5’-TAG GCT ATG GAG ACA TGG TTC CGA C-3’ and
5’-TTT TTT AAG CTT AAT CTC GAG TGT GCT TCT ACC AAA ATT CAG
AGT TTC TTT CTG CGT GTC GAC ATC AGT TAA CAT TTT GG-3’. This
produced a construct containing Age I (5’) and a Hind III (3’) site.
The section between these sites was removed and ligated into the
Age I (5’)- and Hind III (3’)-cut Kv1.1–Kv1.2–pcDNA3.1. This construct
was then ligated with Kv1.2–Kv1.2–pcDNA3.1 to create hKv1.1–
1.2(3)–pcDNA3.1. Constructs were transformed into Escherichia coli
XL-10 Gold (Stratagene) cells for sequencing, which confirmed all
of the constructs.

Transfection and dilution cloning of CHO-K1 with hKv1.1–1.2(3)

CHO-K1 cells (European Collection of Cell Culture: ECACC) were
maintained in F12-Ham supplemented with 2 mm glutamine
growth media (Invitrogen) with 10 % HyClone fetalclone II bovine
serum (FBS) and incubated at 37 8C in 5 % CO2. Cells were trans-
fected using the cationic lipid reagent Lipofectamine 2000 (Invitro-
gen), following the manufacturer’s protocols. After transfection,
Geneticin (Invitrogen) was introduced and used for positive selec-
tion. The dilution cloning method was used where cell suspensions
were diluted to a concentration in that only a single cell would
occupy one well of a 96-well plate (Greiner Bio One). Single clonal
populations were visualized and submitted for cell line validation.

Cell line validation by electrophysiology

Whole-cell patch clamp electrophysiological recordings were car-
ried out using an EPC-9 amplifier controlled by Pulse software
(v8.54, HEKA, Germany). The external bathing solution contained
(in mm): 140 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES, 10 glucose,
23.5 sucrose, pH 7.4. Patch pipettes were filled with an electrode
solution of composition (in mm): 100 K-glucanate, 20 KCl, 1 MgCl2,
1 CaCl2, 10 HEPES, 11 EGTA, 5 ATP-Na2, and 2 glutathione, pH 7.2.
All experiments were conducted at room temperature (22–24 8C).
Cells were held at a voltage of �80 mV. Half activation voltages
were calculated using the peak current achieved by stepping the
voltage for a duration of 500 ms from �60 mV in 10 mV incre-
ments every 10 s to + 110 mV. For pharmacological experiments,
cells were subjected to a voltage step to + 30 mV for a duration of
500 ms every 15 s.

Adaptation to the automated patch clamp device

The CHO-Kv1.1–1.2(3) cells were then adapted for an automated
patch clamp assay. We used the QPatch16 device (Sophion). Each
disposable QPlate contains 16 individual patch clamp positions, al-
lowing up to 16 parallel experiments. Cells were detached from
T175 culture flasks with 0.05 % trypsin/EDTA solution and kept in

serum-free medium (excel 302) in an onboard stirred “cell hotel”.
Before testing, the cells were automatically transferred to a mini-
centrifuge, pelleted, resuspended in the external solution as de-
tailed above, and washed before being applied to each well of the
Qplate. Gigaseals were formed by gradually increasing the suction
and, after a short period of seal stabilization, the whole cell config-
uration was obtained upon execution of a combined suction/volt-
age protocol. Cell culture conditions were studied for optimal ex-
pression and patchability. The Kv1.1–1.2(3) current biophysic was
similar to observed values from manual experiments. Patching suc-
cess was above average (90 %) for an automated patch clamp plat-
form and overall, the currents were stable for at least 30 min (maxi-
mum length of an experiment) with an average amplitude ~2 nA
using the following extracellular solution (in mm): 150 NaCl, 10 KCl,
3 CaCl2, 1 MgCl2, 10 HEPES (pH 7.4) ; and intracellular solution (in
mm): 20 KF, 90 KCl, 5 Na-ATP, 10 NaCl, 10 EGTA, 1 MgCl2, and
10 HEPES (pH 7.2).

In the single point experiments, each test compound was prepared
from a 10 mm/100 % DMSO mother solution and applied at a final
concentration of 10 mm, whereas adequate dilutions were per-
formed for the four-points IC50 experiments (0.3, 1, 3, and 10 mm).
Compounds were applied via a four-way pipetting robot through
integrated glass-coated microfluidic flow channels. All experiments
were performed at room temperature.

All whole-cell recordings were taken using a 500 ms depolarizing
voltage step from a holding potential of �80 mV to + 30 mV, ap-
plied every 15 s. Data were acquired and analyzed using the So-
phion Qpatch assay software (Sophion).

Cardiac safety evaluation

Stable transfected cell lines expressing the cardiac ion channels of
interest were used on the Qpatch or on the Flexstation (Molecular
Devices) using standard protocols. The former machine was used
to measure Nav1.5 or hERG currents, whereas the calcium signal
(fluo-4) resulting from the Cav1.2 channel activity was evaluated
on the latter. Stock solutions (10 mm in DMSO) were prepared and
diluted to reach the final concentrations immediately prior to the
experiments.

Briefly, For Nav1.5 and hERG, four- and three-points IC50 experi-
ments, respectively, were performed on the QPatch (at least n = 3).
For each completed experiment, a fit of the data points (% of cur-
rent inhibition) was obtained with the Boltzmann equation, and
the calculated values of IC50 from each experiment were averaged.
For the multi-cell Flexstation experiments, the averaged percent in-
hibitions of fluorescence at each concentrations (n = 3) were used
to construct the concentration–response curves and to estimate
the IC50 values.

Spectral data

Purity verification was provided by Enamine Sales. Experimental
conditions were as follows: PMR instrument specifications: Bruker
AVANCE DRX 500, Varian UNITYplus 400; LC–MS instrument specifi-
cations: Agilent 1100 Series LC–MSD system with diode-array de-
tector. Agilent LC–MSD SL mass spectrometer. All LC–MS data were
obtained using positive/negative mode switching. Columns:
Zorbax SB-C18 1.8 mm 4.6 � 15 mm Rapid Resolution cartridge (PN
821975–932); ionization mode: atmospheric pressure chemical ion-
ization (APCI) ; scan range: m/z 80–1000.
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(AROC), Boltzmann-enhanced discrimination of the ROC curve
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dock-Vina (Vina).
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Identification of Selective Inhibitors of
the Potassium Channel Kv1.1–1.2(3) by
High-Throughput Virtual Screening
and Automated Patch Clamp

Show me some ID: Lead compounds as
potassium channel Kv1.1–1.2(3) inhibitors
were identified by structure-based vir-
tual screening and automated patch
clamp. The inner cavity of Kv1.1–1.2(3)

was subjected to a target-specific and
consensus-based molecular docking ap-
proach, and 14 active compounds (IC50 :
0.6–6 mm) were identified. Two of these
are at least 30-fold more potent against
Kv1.1-1.2(3) than toward a set of cardiac
ion channels (hERG, Nav1.5, and Cav1.2),
yielding a profile of selectivity and
cardiac safety.
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