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Denoising by frame thresholding is one of the most basic and efficient methods for
recovering a discrete signal or image from data that are corrupted by additive Gaussian
white noise. The basic idea is to select a frame of analyzing elements that separates
the data in few large coefficients due to the signal and many small coefficients mainly
due to the noise εn . Removing all data coefficients being in magnitude below a certain
threshold yields a reconstruction of the original signal. In order to properly balance the
amount of noise to be removed and the relevant signal features to be kept, a precise
understanding of the statistical properties of thresholding is important. For that purpose
we derive the asymptotic distribution of maxω∈Ωn |〈φn

ω,εn〉| for a wide class of redundant
frames (φn

ω: ω ∈ Ωn). Based on our theoretical results we give a rationale for universal
extreme value thresholding techniques yielding asymptotically sharp confidence regions
and smoothness estimates corresponding to prescribed significance levels. The results cover
many frames used in imaging and signal recovery applications, such as redundant wavelet
systems, curvelet frames, or unions of bases. We show that ‘generically’ a standard Gumbel
law results as it is known from the case of orthonormal wavelet bases. However, for
specific highly redundant frames other limiting laws may occur. We indeed verify that
the translation invariant wavelet transform shows a different asymptotic behaviour.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of estimating a d-signal or image un from noisy observations

Vn(k) = un(k) + εn(k), for k ∈ In := {0, . . . ,n − 1}d with d ∈ N. (1.1)

Here εn(k) ∼ N(0, σ 2) are independent normally distributed random variables (the noise), n is the level of discretization,
and σ 2 is the variance of the data (the noise level). The signal un is assumed to be a discrete approximation of some
underlying continuous domain signal obtained by discretizing a function u : [0,1]d → R. One may think of the entries of un

as point samples un(k) = u(k/n) on an equidistant grid. However, in some situations it may be more realistic to consider
other discretization models. Area samples, for example, are more appropriate in many imaging applications. In this paper
we will not pursue this topic further, because most of the presented results do not crucially depend on the particular
discretization model as long as un can be associated with a function u∗

n : [0,1]d → R (some kind of abstract interpolation)
which, in a suitable way, tends to u as n → ∞.

* Corresponding author.
E-mail address: markus.haltmeier@uibk.ac.at (M. Haltmeier).
1063-5203/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.acha.2013.07.004

http://dx.doi.org/10.1016/j.acha.2013.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:markus.haltmeier@uibk.ac.at
http://dx.doi.org/10.1016/j.acha.2013.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2013.07.004&domain=pdf


M. Haltmeier, A. Munk / Appl. Comput. Harmon. Anal. 36 (2014) 434–460 435
The aim of denoising is to estimate the unknown signal un := (un(k): k ∈ In) ∈ R
In from the data Vn := (Vn(k): k ∈ In) ∈

R
In . The particular estimation procedure we will analyze in detail is soft-thresholding in frames and overcomplete dictio-

naries. We stress, however, that a similar analysis also applies to different thresholding methods, such as block-thresholding
techniques (as considered, for example, in [1–4]).

1.1. Wavelet soft-thresholding

In order to motivate our results for thresholding for general frames we start by one dimensional wavelet soft-
thresholding. For that purpose, let (ψn

j,k: ( j,k) ∈ Ωn) denote an orthonormal wavelet basis of R
n , where n = 2 J is the

number of data points and

Ωn := {
( j,k): j ∈ {0, . . . , J − 1} and k ∈ {

0, . . . ,2 j − 1
}}

the index set of the wavelet basis. Wavelet soft-thresholding is by now a standard method for signal and image denoising
(see, for example, [5–13] for surveys and some original references). It consists of the following three basic steps:

(1) Compute all empirical wavelet coefficients Yn( j,k) = 〈ψn
j,k, Vn〉 of the given noisy data with respect to the considered

orthonormal wavelet basis.
(2) For some threshold Tn ∈ (0,∞), depending on the noise level and the number of data points, apply the nonlinear

soft-thresholding function

S(·, Tn) :R →R : y 	→ S(y, Tn) :=
{

y + Tn if y � −Tn

y − Tn if y � Tn

0 otherwise
(1.2)

to each wavelet coefficient of the data. The resulting thresholded coefficients S(Yn( j,k), T ) are then considered as
estimates for the wavelet coefficients of un . Notice, that the soft-thresholding function can be written in the compact
form S(y, Tn) = sign(y)(|y| − Tn)+ . Further, it sets all coefficients being in magnitude smaller than Tn to zero and
shrinks the remaining coefficients towards zero by the value Tn .

(3) The desired estimate for the signal un is then defined by the wavelet series of the thresholded empirical coefficients
S(Yn( j,k), T ),

ûn =
J∑

j=0

2 j−1∑
k=0

S
(
Yn( j,k), Tn

)
ψn

j,k. (1.3)

Every step in the above procedure can be computed in O(n) operation counts and hence the overall procedure of
wavelet soft-thresholding is linear in the number n of unknown parameters (see [8,12,14]). It is thus not only conceptually
simple but also allows for fast numerical implementation. Even simple linear spectral denoising techniques using the FFT
algorithm have a numerical complexity of O(n log n) floating point operations. Besides these practical advantages, wavelet
soft-thresholding also obeys certain theoretical optimality properties. It yields to an almost optimal mean square error
simultaneously over a wide range of function spaces (including Sobolev and Besov spaces) and, at the same time, has a
smoothing effect with respect to any of the norms in these spaces. Hence soft-thresholding automatically adapts to the
unknown smoothness of the desired signal [7,15].

Any particular choice of the thresholding parameter Tn is a tradeoff between signal approximation and noise reduction:
A large threshold removes much of the noise but also removes parts of the signal. Hence a reasonable threshold choice
should be as small as possible under the side constrained that a significant amount of the noise is removed. The smaller the
actual threshold is taken, the more emphasis is given on signal representation and the less emphasis on noise reduction.
A commonly used threshold is the so called universal threshold Tn = σ

√
2 log n as proposed in the seminal work [7], where

the following result is shown.

Theorem 1.1 (Denoising property of wavelet soft-thresholding). (See [7].) Suppose that Dn are consistent with an underlying orthonor-
mal wavelet basis D on [0,1] having m times continuously differentiable elements and m vanishing moments, that un(k) = u(k/n),
for k = 0, . . . ,n − 1, denote point samples of a function u : [0,1] → R and that ûn are constructed by (1.3) with the universal thresh-
old Tn = σ

√
2 log n. Then, there exists a special smooth interpolation of ûn producing a function u∗

n : [0,1] → R. Further, there are
universal constants (πn)n ⊂ (0,1) with πn → 1 as n = 2 J → ∞, such that for any Besov space Br

p,q which embeds continuously into
C[0,1] (hence r > 1/p) and for which D is an unconditional basis (hence r < m),

P
{∥∥u∗

n

∥∥
Br

p,q
� c

(
Br

p,q,D
)‖u‖Br

p,q
; ∀u ∈ Br

p,q

}
� πn, (1.4)

for constants c(Br
p,q,D) depending on Br

p,q and D but neither on u nor on n.
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Theorem 1.1 states that the estimate u∗
n is, with probability tending to one, simultaneously as smooth as u for all

smoothness spaces Br
p,q . This result can be derived from the denoising property (see [7,11,16] and also Section 3.2)

P
{

max
( j,k)∈Ωn

∣∣〈ψn
j,k, εn

〉∣∣ � σ
√

2 log n
}

� πn → 1 as n → ∞. (1.5)

For an orthonormal basis, the noise coefficients 〈ψn
j,k, εn〉 ∼ N(0, σ 2) are independently distributed. Hence Eq. (1.5) is a

consequence from standard extreme value results for independent normally distributed random vectors [17,18]. Extreme
value theory also implies the limiting Gumbel law

lim
n→∞ P

{
max
ω∈Ωn

∣∣〈φn
ω,εn

〉∣∣ � σ
√

2 log n + σ
2z − log log n − logπ

2
√

2 log n

}
= exp

(−e−z), (1.6)

uniformly in z ∈ R. This even allows to exactly characterize all thresholding sequences Tn yielding a denoising property like
(1.5) with Tn in place of σ

√
2 log n.

In the case that a redundant frame is considered instead of an orthonormal wavelet basis, then the empirical coefficients
are no more linear independent and limiting result like (1.6) are much harder to come up with. In this paper we verify that
a similar distributional result as in (1.6) holds for a wide class of redundant frames with n replaced by the number of frame
elements. This class is shown to include non-orthogonal wavelets, curvelet frames and unions of bases (see Theorems 4.4,
4.7 and 4.12). Roughly speaking, the reason is, that the redundancy is of these frames weak enough that it asymptotically
vanishes in a statistical sense and the system behaves as an independent system. However, we also an important example
(in the form of the translational wavelet system; see Theorem 4.9) which shows that highly redundant systems may show
a different asymptotic behaviour.

Our work is motivated by the well known observation that the universal threshold sigma σ
√

2 log n often is found to
be too large in applications, hence including too few coefficients into the final estimator (see [12,15,19]). This recently has
initiated further research on refined thresholding methods and we would like to shed some light on this phenomenon for
a large class of frame systems by providing a refined asymptotics as in (1.6) in addition to results of the type (1.5). We also
provide a selective review on current thresholding methodology where we focus on the link between statistical extreme
value theory and thresholding techniques.

1.2. Frame soft-thresholding: Main results

For any n ∈ N, let Dn = (φn
ω: ω ∈ Ωn) denote a frame of RIn , where Ωn is a finite index set, that consists of normalized

frame elements (that is, ‖φn
ω‖ = 1 holds for all ω ∈ Ωn) and has frame bounds an � bn (compare Section 2.1). Our main

results concerning thresholding estimation in the frame Dn will hold for asymptotically stable frames, which are defined as
follows.

Definition 1.2 (Asymptotically stable frames). We say that a family of frames (Dn)n∈N with normalized frame elements is
asymptotically stable, if the following assertions hold true:

(i) For some ρ ∈ (0,1), we have |{(ω,ω′) ∈ Ω2
n : |〈φn

ω,φn
ω′ 〉| � ρ}| = o(

|Ωn|√
log |Ωn| ) as n → ∞.

(ii) The upper frame bounds bn are uniformly bounded, that is, B := sup{bn: n ∈ N} < ∞.

The following Theorem 1.3 is the key to most results of this paper. It states, that after proper normalization the distribu-
tion of maxω∈Ωn |〈φn

ω, εn〉| converges to the Gumbel distribution – provided that the frames are asymptotically stable.

Theorem 1.3 (Limiting distribution for asymptotically stable frames). Assume that (Dn)n∈N is an asymptotically stable family of frames,
and let (εn)n∈N be a sequence of random vectors in R

In with independent N(0, σ 2)-distributed entries. Then, for every z ∈ R,

lim
n→∞ P

{
max
ω∈Ωn

∣∣〈φn
ω,εn

〉∣∣ � σ
√

2 log |Ωn| + σ
2z − log log |Ωn| − logπ

2
√

2 log |Ωn|
}

= exp
(−e−z). (1.7)

The function z 	→ exp(−e−z) is known as the Gumbel distribution.

Proof. See Section 3.1. �
In the case that Dn are orthonormal bases, results similar to the one of Theorem 1.3 follow from standard extreme value

results (see, for example, [17,18]) and are well known in the wavelet community (see, for example, [7,11,12]). However,
neither the convergence of the maxima including absolute values (which is the actually relevant case) nor the use of redun-
dant systems are covered by these results. In Section 4 we shall verify that many redundant frames, such as non-orthogonal
wavelet frames, curvelets and unions of bases, are asymptotically stable and hence the limiting Gumbel law of Theorem 1.3



M. Haltmeier, A. Munk / Appl. Comput. Harmon. Anal. 36 (2014) 434–460 437
can be applied. Based on this limiting extreme value distribution we provide an exact characterisation of all thresholds Tn
satisfying a denoising property similar to the one of (1.5) for general frame thresholding; see Section 3 for details.

Suppose that (αn)n∈N is a sequence in (0,1) converging to α ∈ [0,1), let zn satisfy exp(−e−zn ) = αn and let un denote
the wavelet soft-thresholding estimate with the threshold

Tn = σ
√

2 log |Ωn| + σ
2zn − log log |Ωn| − logπ

2
√

2 log |Ωn|
. (1.8)

According to Theorem 1.3, the probability that un is contained in Rn = {ūn: maxω∈Ωn |〈φ j,k, Vn − ūn〉|} tends to 1 − α as
n → ∞. Hence the sets Rn define asymptotically sharp confidence regions around the given data for any significance level α;
see Section 3.3 for details.

The proof of Theorem 1.3 relies on new extreme value results for dependent chi-square distributed random variables
(with one degree of freedom) which we establish in Appendix A. In the field of statistical extreme value theory, the following
definition is common.

Definition 1.4 (Gumbel type). A sequence (Mn)n∈N of real valued random variables is said to be of Gumbel type (or to be
of extreme value type I), if there are real valued normalizing sequences (an)n∈N and (bn)n∈N , such that the limit P{Mn �
anz + bn} → exp(−e−z) as n → ∞ holds pointwise for all z ∈ R (and therefore uniformly).

Using the notion just introduced, Theorem 1.3 states that maxω∈Ωn |〈φn
ω, εn〉| is of Gumbel type, with normalizing se-

quences σa(χ, |Ωn|) and σb(χ, |Ωn|), where

a
(
χ, |Ωn|

) := 1√
2 log |Ωn|

, (1.9)

b
(
χ, |Ωn|

) := √
2 log |Ωn| − log log |Ωn| + logπ

2
√

2 log |Ωn|
. (1.10)

As shown in Theorem 3.3, the maxima of 〈φn
ω, εn〉 without taking absolute values are also of Gumbel type. We emphasize,

however, that the corresponding normalizing sequences differ from those required for the maxima with absolute values.
Indeed, maxω∈Ωn |〈φn

ω, εn〉| behaves as the maximum of 2|Ωn| (opposed to |Ωn|) independent standard normally distributed
random variables; compare with Remark A.6. The different fluctuation behaviour of the maxima with and without absolute
values is not resembled by Eq. (1.5), which is exactly the same for the maxima with and without absolute values. Only in a
refined distributional limit (1.7) this difference becomes visible. Moreover, in the case that the frames Dn are redundant, no
result similar to Theorem 1.3 is known at all.

Asymptotical stability typically fails for frames without an underlying infinite dimensional frame. A prototype for such a
family is the dyadic translation invariant wavelet transform (see Section 4.1.4). In this case, the redundancy of the translation
invariant wavelet system increases boundlessly with increasing n, which implies that the corresponding upper frame bounds
tend to infinity as n → ∞. We indeed prove the following counterexample if condition (ii) in Definition 1.2 fails to hold.

Theorem 1.5 (Tighter bound for translation invariant wavelet systems). Suppose that (ψn
ω)ω∈Ωn is a discrete translation invariant

wavelet system with unit norm elements generated by a mother wavelet ψ that is continuously differentiable, and let (εn)n∈N be a
sequence of random vectors in R

In with independent N(0, σ 2)-distributed entries. Then, for some constant c > 0 and all z ∈ R we
have

lim inf
n→∞ P

{
max
ω∈Ωn

∣∣〈ψn
ω,εn

〉∣∣ �
√

2 log n + z + log(c/π)√
2 log n

}
� exp

(−e−z).
Proof. This follows from Theorem 4.9, that we proof in Appendix B.2. �

Theorem 1.5 shows that the maximum of the translation invariant wavelet coefficients is strictly smaller (in a distri-
butional sense; see Section 4.1.4) than the maximum of an asymptotically stable frame with |Ωn| = n log n elements and
therefore the result of Theorem 1.3 does not hold for a translation invariant wavelet system. Moreover, Theorem 1.5 shows
that there exists a thresholding sequence being strictly smaller than

√
2 log |Ωn| yields asymptotic smoothness; see Sec-

tion 4.1.4 for details. This also reveals the necessity of a detailed extreme value analysis of the empirical noise coefficients
in the case of redundant frames.

1.3. Outline

In the following Section 2 we introduce some notation used throughout this paper. In particular, we define the soft-
thresholding estimator in redundant frames. The core part of this paper is Section 3, where we proof the asymptotic
distribution of the frame coefficients claimed in Theorem 1.3. This result is then applied to define extreme value based
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thresholding rules and corresponding sharp confidence regions. Moreover, in this section we show that the resulting thresh-
olding estimators satisfy both, oracle inequalities for the mean square error and smoothness estimates for a wide class of
smoothness measures. Our proofs require new facts from statistical extreme value theory for the maxima of absolute val-
ues of dependent normal random variables that we derive in Appendix A. Finally, in Section 4 we discuss in detail several
examples, including, non-orthogonal frames, biorthogonal wavelets, curvelets and unions of bases in detail.

2. Thresholding in redundant frames

For the following recall the model (1.1) and write εn = (εn(k): k ∈ In) ∈ R
In for the noise vector in (1.1). We assume

throughout that the variance σ 2 of the noise is given. Fast and efficient methods for estimating the variance are well
known (see, for example, [20–23] for d = 1 and [24] for d � 2).

Throughout this paper all estimates for the signal un are based on thresholding the coefficients of the given data Vn
with respect to prescribed frames of analyzing elements.

2.1. Frames

In the sequel Dn := (φn
ω: ω ∈ Ωn) ⊂ R

In denotes a frame of R
In , with Ωn being a finite index set. Hence there exist

constants 0 < an � bn < ∞, such that(∀un ∈R
In

)
an‖un‖2 �

∑
ω∈Ωn

∣∣〈φn
ω, un

〉∣∣2 � bn‖un‖2. (2.1)

(Here ‖ · ‖ is the Euclidean norm on R
In and 〈·,·〉 the corresponding inner product.) The largest and smallest numbers an

and bn , respectively, that satisfy (2.1) are referred to as frame bounds. Notice that in a finite dimensional setting any family
that spans the whole space is a frame.

We further denote by Φn :RIn → R
Ωn the operator that maps the signal un ∈ R

In to the analyzing coefficients with
respect to the given frame,

(∀ω ∈ Ωn) (Φnun)(ω) := 〈
φn

ω, un
〉
.

The mapping Φn is named the analysis operator, its adjoint Φ∗
n the synthesis operator, and Φ∗

nΦn the frame operator corre-
sponding to Dn .

The frame property (2.1) implies that the frame operator Φ∗
nΦn :RIn → R

In is an invertible linear mapping. Hence, for
any ω ∈ Ωn , the elements

φ̃n
ω := (

Φ∗
nΦn

)−1
φn

ω

are well defined and the family (φ̃n
ω: ω ∈ Ωn) is again a frame of R

In . It is called the dual frame and has frame bounds
1/bn � 1/an .

Finally, we denote by Φ+
n := (Φ∗

nΦn)−1Φ∗
n the pseudoinverse of the analysis operator Φn . Due to linearity and the

definitions of the pseudoinverse and the dual frame elements, we have the identities

(∀un ∈R
In ) un = Φ+

n Φnun =
∑

ω∈Ωn

〈
φn

ω, un
〉
φ̃n

ω. (2.2)

In particular, the mapping Φ+
n is the synthesis operator corresponding to the dual frame. Eq. (2.2) provides a simple rep-

resentation of the given signal in terms of its analyzing coefficients. This serves as basis of thresholding estimators defined
and studied in the following subsection. For further details on frames see, for example, [12,25].

Remark 2.1 (Thresholding in a subspace). It is not essential at all, that Dn is a frame of the whole image space R
In . In fact,

in typical thresholding applications, such as in wavelet denoising, the space R
In naturally decomposes into a low resolution

space having small fixed dimension and a detail space having large dimension that increases with n. The soft-thresholding
procedure is then only applied to the signal part in the detail space and hence it is sufficient to assume that Dn is a frame
therein. In order to avoid unessential technical complication we present our results for the case of frames of the whole
image space. In the concrete applications presented in Section 4 the thresholding will indeed only be performed in some
subspace; all results carry over to such a situation in a straightforward manner.

2.2. Thresholding estimation

By applying Φn to both sides of (1.1), the original denoising problem in the signal space R
In is transferred into the

denoising problem

Yn(ω) = xn(ω) + (Φnεn)(ω), for ω ∈ Ωn, (2.3)
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in the possibly higher dimensional coefficient space R
Ωn . Here and in the following we denote by

Yn(ω) := 〈
φn

ω, Vn
〉

and xn(ω) := 〈
φn

ω, un
〉
, (2.4)

the coefficients of the data Vn and the signal un with respect to the given frame. The following elementary Lemma 2.2
states that the noise term in (2.3) is again a centred normal vector but has possibly non-vanishing covariances. Indeed it
implies that the entries of Φnεn are not uncorrelated and hence not independent, unless Dn is an orthogonal basis.

Lemma 2.2 (Covariance matrix). Let εn be a random vector in the image space R
In with independent N(0, σ 2)-distributed entries.

Then Φnεn is a centred normal vector in R
Ωn and the covariance matrix of Φnεn has entries Cov(Φnεn(ω),Φnεn(ω′)) = σ 2〈φn

ω,φn
ω′ 〉.

Proof. As the sum of normal random variables with zero mean, the random variables (Φnεn)(ω) = ∑
k∈In

φn
ω(k)εn(k) are

again normally distributed with zero mean. In particular, we have Cov(Φnεn(ω),Φnεn(ω′)) = E(Φnεn(ω)Φnεn(ω′)). Hence
the claim follows from the linearity of the expectation value and the independence of εn(k). �

Recall the soft-thresholding function S(y, Tn) = sign(y)(|y| − Tn)+ defined by Eq. (1.2). The thresholding estimators
we consider apply S(·, Tn) to each coefficient of Yn in (2.3) to define an estimator for the parameter xn . In order to get
an estimate for the signal un one must map the coefficient estimate back to the original signal domain. This is usually
implemented by applying the dual synthesis operator (compare with Eq. (2.2)).

Definition 2.3 (Frame thresholding). Consider the data models (1.1) and (2.3) and let Tn > 0 be a given thresholding parame-
ter.

(a) The soft-thresholding estimator for xn ∈ R
Ωn using the threshold Tn is defined by

x̂n = S(Yn, Tn) := (
S
(
Yn(ω), Tn

)
: ω ∈ Ωn

) ∈R
Ωn . (2.5)

(b) The soft-thresholding estimator for un with respect to the frame Dn using the threshold Tn is defined by

ûn = Φ+
n ◦ S(Φn Vn, Tn) =

∑
ω∈Ωn

S
(〈
φn

ω, Vn
〉
, Tn

)
φ̃n

ω. (2.6)

Hence the frame soft-thresholding estimator ûn is simply the composition of analysis with Φn , component-wise threshold-
ing, and dual synthesis with Φ+

n .

If Dn is an overcomplete frame, then Φn has infinitely many left inverses, and the pseudoinverse used in Definition 2.3
is a particular one. In principle one could use other left inverses for defining the soft-thresholding estimator (2.6). Since, in
general, S(Yn, Tn) /∈ Ran(Φn) is outside the range of Φn , the use of a different left inverse will result in a different estimator.
The special choice Φ+

n has the advantage that for many frames used in practical applications, the dual synthesis operator
is known explicitly and, more importantly, that fast algorithms are available for its computation (typically algorithms using
only O(|In| log |In|) or even O(|In|) floating point operations [12]).

Remark 2.4 (Thresholding variations). Instead of the soft thresholding function S(·, Tn) several other nonlinear thresholding
methods have been proposed and used. Prominent examples are the hard thresholding function z 	→ zχ{|z|�Tn} and the
nonnegative garrote z 	→ z max{1 − T 2

n /z2,0} of [26,27]. Strictly taken, the smoothness estimates derived in Section 3.5 only
hold for thresholding functions F (·, Tn) satisfying the shrinkage property |F (y ± Tn, Tn)| � |y| for all y ∈ R. This property
is, for example, not satisfied by the nonnegative garrote. In this case, however, similar estimates may be derived under
additional assumptions on the signals of interest. Other prominent denoising techniques are based on block-thresholding
(see, for example, [1,2,28,29]). In this case, the derivation of sharp smoothness estimates requires extreme value results for
dependent χ2-distributed random variables (with more than one degree of freedom). Such an extreme value analysis seems
possible but is beyond the scope of this paper. Our given results can be seen as the first step towards a more general theory.

Remark 2.5 (Multiple selections). Be aware, that we allow certain elements φn
ω to be contained more than once in the

frame Dn . Hence we may have |{φn
ω: ω ∈ Ωn}| < |Ωn|. Such multiple selections often arises naturally for frames that are the

union of several bases having some elements in common. A standard example is the wavelet cycle spinning procedure of [6],
where the underlying frame is the union of several shifted orthonormal wavelet bases (see Section 4.1.3). Multiple selections
of frame elements also affect the pseudoinverse and finally the soft-thresholding estimator. Hence, if (φn

ω: ω ∈ Ωn) and
(ψn

λ : λ ∈ Λn) denote two frames composed by the same frame elements, {φn
ω: ω ∈ Ωn} = {ψn

λ : λ ∈ Λn}, but having different
cardinalities |Ωn| �= |Λn|, then the soft-thresholding estimators corresponding to these frames differ from each other.
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Fig. 1. Left: Signal un (superposition of two sine waves) and data Vn = un + εn from Example 2.6. Right: Coefficients of the signal and the data with respect
to the sine basis.

2.3. Rationale behind thresholding estimation

We conclude this section by commenting on the underlying rationale behind thresholding estimation and situations
where it is expected to produce good results.

The basic assumption underlying thresholding estimation is that the frame operator separates the data into large coeffi-
cients due to the signal and small coefficients mainly due to the noise. For additive noise models Vn = un + εn both issues
can be studied separately. In this case, one requires that for some threshold Tn (which finally judges between signal and
noise) the following two conditions are satisfied:

(1) Coherence between signal and frame: The signal un is well represented by few large coefficients having |〈φn
ω, un〉| > Tn .

(2) Incoherence between noise and frame: With high probability, all noise coefficients with respect to the frame Dn satisfy
|〈φn

ω, εn〉| � Tn .

In the following sections we shall see that item (2) can be analyzed in a unified way for asymptotically stable frames.
Item (1), however, is more an approximation issue rather than an estimation issue. Given a frame, it, of course, cannot be
satisfied for every un ∈ R

n . The choice of a ‘good frame’ depends on the specific application at hand and in particular on
the type of signals that are expected. The better the signals of interest are represented by a few but large frame coefficients,
the better the denoising result will be. The richer the analyzing family is, the more signals can be expected to be recovered
properly. The price to pay must be, of course, a higher computational cost.

The following two simple examples demonstrate how the use of redundant frames may significantly improve the perfor-
mance of the thresholding estimation.

Example 2.6 (Thresholding in the sine basis). We consider the discrete signal un ∈R
n defined by un(k) = 5

√
2/16 sin(πω1k/n)+

5
√

2/16 sin(πω2k/n), which is a superposition of two sine waves having frequencies ω1 = 150 and ω2 = 380, respectively,
and amplitudes 5

√
2/16 � 0.45. The left image in Fig. 1 shows the signal un and the noisy data Vn = un + εn obtained

by adding Gaussian white noise of variance equal to one to the signal. Apparently, there seems little hope to recover un

from the data Vn in the original signal domain. Almost like a miracle, the situation changes drastically after computing
the coefficients with respect to the sine basis (n−1/2 sin(πωk/n): ω = 1, . . . ,n). Now, the signal and the noise are clearly
separated as can be seen from the right image in Fig. 1. Obviously we will get an almost perfect reconstruction by simply
removing all coefficients below a proper threshold.

Example 2.7 (Thresholding in a redundant sine frame). The signal in Example 2.6 is a combination of sine waves with integer
frequencies covered by the sine frame. However, in practical application the signal may also have non-integer frequencies.
In order to investigate this issue, we now consider the signal u′

n(k) = 5
√

2/16 sin(πω′
1k/n) + 5

√
2/16 sin(πω2k/n) having

frequencies ω′
1 = 150.5 and ω2 = 380 (hence ω′

1 is a slight perturbation of the frequency ω1 considered in Example 2.6).
The new signal u′

n is not a sparse linear combination of elements of the sine basis. As a matter of fact, the energy of the first
sine wave is spread over many coefficients and thus submerges in the noise. Indeed, as can be seen from the left image in
Fig. 2, the low frequency coefficient disappears. However, by taking the two times redundant frame (n−1/2 sin(πωk/n): ω =
{1/2,1, . . . ,n}) instead of the sine basis, the coefficient due to frequency ω′

1 appears again in the transformed domain.
Moreover, as can be seen from Fig. 3 the reconstruction by thresholding the coefficients with respect to the overcomplete
sine frame is almost perfect, whereas the reconstruction by thresholding the basis coefficients is useless.

In Examples 2.6 and 2.7 the threshold choice is not a very delicate issue since the signal and the noise are separated
very clearly in the transformed domain. Indeed as can be seen from the right plots in Figs. 1 and 2 there is a quite wide
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Fig. 2. Left: Coefficients of the signal u′
n and the data V ′

n = u′
n + εn from Example 2.7 with respect the sine basis. Right: Coefficients of the same signal and

data with respect to the two times oversampled sine frame.

Fig. 3. Left: Signal u′
n , and the reconstructions from the data V ′

n = u′
n + εn by soft-thresholding in the sine basis and in the overcomplete sine frame,

respectively. Only the first 64 components are plotted. Right: Sine wave 5
√

2/16 sin(πω′
1k/n) and residuals of the two reconstructions. As can be seen,

thresholding in the sine frame almost perfectly recovers the signal un , whereas the result of thresholding in the sine basis is useless (the residual is almost
equal to the displayed sine wave of frequency ω′

1).

range of thresholds that would yield an almost noise free estimate close to the original signal. However, if the signal also
contains important coefficients of moderate size, then the choice of a good threshold is crucial and difficult. This is typically
the case for image denoising using wavelets or curvelet frames: Natural images are approximately sparse in these frames
but almost never strictly sparse. The particular threshold choice now will always be a tradeoff between noise removal and
signal representation and becomes a delicate issue. In order to develop rationale threshold choices, a precise understanding
of the distribution of |〈φn

ω, εn〉| is helpful. This is the subject of our following considerations.

3. Extreme value analysis of frame thresholding

Now we turn back to the denoising problem (1.1). After application of the analysis operator Φn corresponding to the
normalized frame D = (φn

ω: ω ∈ Ωn) our aim is to estimate the vector xn ∈ R
Ωn from given noisy coefficients (compare

with Eq. (2.3))

Yn(ω) = xn(ω) + (Φnεn)(ω), for ω ∈ Ωn.

Here Φnεn is the transformed noise vector which is normally distributed, has zero mean and covariance matrix κn(ω,ω′) =
σ 2〈φn

ω,φn
ω′ 〉; see Lemma 2.2. In this section we shall analyze in detail the component-wise soft-thresholding estimator x̂n =

S(Yn, Tn) defined by (2.5). We will start by computing the extreme value distribution of Φnεn claimed in Theorem 1.3. Based
on the limiting law will then introduce extreme value thresholding techniques that will be shown to provide asymptotically
sharp confidence regions.

3.1. Proof of Theorem 1.3

The main aim of this subsection is to verify Theorem 1.3, which states that the distribution of the maxima of the noise
coefficients Φnεn(ω) are of Gumbel type with explicitly given normalization constants. The proof of Theorem 1.3 will be
a consequence of Lemmas 3.1 and 3.2 to be derived in the following. The main Lemma 3.1 relies itself on a new extreme
value result that we establish in Appendix A.
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Lemma 3.1. Let (ξn)n∈N be a sequence of normal random vectors in R
Ωn with covariance matrices κn having ones in the diagonal.

Assume additionally, that the following hold:

(i) For every δ ∈ (0,1), |{(ω,ω′) ∈ Ω2
n : |κn(ω,ω′)| � δ}| = O(|Ωn|) as n → ∞.

(ii) For some ρ ∈ (0,1), |{(ω,ω′) ∈ Ω2
n : |κn(ω,ω′)| � ρ}| = o(|Ωn|/√log |Ωn|) as n → ∞.

(iii) B := sup{∑ω′∈Ωn
|κn(ω,ω′)|2: n ∈ N and ω ∈ Ωn} < ∞.

Then, ‖ξn‖∞ is of Gumbel type (see Definition 1.4) with normalization constants a(χ, |Ωn|) and b(χ, |Ωn|) defined by (1.9) and (1.10).

Proof. Let (ξn)n∈N be a sequence of normal random vectors satisfying conditions (i)–(iii). According to Theorem A.8 it is
sufficient to show that

Rn :=
∑
ω �=ω′

∣∣κn
(
ω,ω′)∣∣( log |Ωn|

|Ωn|2
)1/(1+|κn(ω,ω′)|)

→ 0 as n → ∞.

This will be done by splitting the sum Rn into three parts and showing that each of them tends to zero as n → ∞. For that
purpose, let δ ∈ (0,1/3) be any small number, let ρ ∈ (0,1) be as in condition (ii) and define

Λn(1) := {(
ω,ω′) ∈ Ω2

n : ω �= ω′ and
∣∣κn

(
ω,ω′)∣∣ � ρ

}
,

Λn(2) := {(
ω,ω′) ∈ Ω2

n : δ �
∣∣κn

(
ω,ω′)∣∣ < ρ

}
,

Λn(3) := {(
ω,ω′) ∈ Ω2

n :
∣∣κn

(
ω,ω′)∣∣ < δ

}
.

We further write Rn = Rn(1) + Rn(2) + Rn(3) with

Rn(i) :=
∑

(ω,ω′)∈Λn(i)

∣∣κn
(
ω,ω′)∣∣( log |Ωn|

|Ωn|2
)1/(1+|κn(ω,ω′)|)

for i ∈ {1,2,3}.

It remains to verify that any of the terms Rn(i) converges to zero as n → ∞.

• Since any ξn is a normal random vector with zero mean and unit variance, we have |κn(ω,ω′)| � 1 for any index
pair (ω,ω′) ∈ Ω2

n , which yields the inequality Rn(1) � |Λn(1)|√log |Ωn|/|Ωn|. By condition (ii) we have |Λn(1)| =
o(|Ωn|/√log |Ωn|) which shows that Rn(1) → 0 as n → ∞.

• To estimate the second sum Rn(2), recall that by definition of the set Λn(2), we have |κn(ω,ω′)| � ρ for any pair of
indices (ω,ω′) ∈ Λn(2). Moreover, recall that by condition (i) we further have |Λn(2)| =O(|Ωn|). Hence we obtain

Rn(2) �
∣∣Λn(2)

∣∣( log |Ωn|
|Ωn|2

)1/(1+ρ)

= (
log |Ωn|

)1/(1+ρ)O
(|Ωn|1−2/(1+ρ)

)
.

Since by assumption ρ < 1, the inequality 1 − 2/(1 + ρ) < 0 holds which implies that we have Rn(2) → 0 as n → ∞.
• It remains to estimate the final sum Rn(3). The Cauchy–Schwarz inequality, condition (iii), and the estimate

|κn(ω,ω′)| � δ yield

Rn(3)2 �
∑

(ω,ω′)∈Λn(3)

∣∣κn(ω,ω′)
∣∣2 ∑

(ω,ω′)∈Λn(3)

(
log |Ωn|
|Ωn|2

)2/(1+δ)

� B|Ωn|
(

log |Ωn|
|Ωn|2

)2/(1+δ)

|Ωn|2 = (
log |Ωn|

)2/(1+δ)O
(|Ωn|3−4/(1+δ)

)
.

Now, by assumption the inequality δ < 1/3 holds and hence we have 4/(1 + δ) > 3. This implies that also Rn(3) tends
to zero as n → ∞.

In summary, we have verified that Rn(i) → 0 as n → ∞ for every i ∈ {1,2,3}. Hence their sum Rn converges to zero,
too. The claimed distributional convergence results now follows from Theorem A.8 and concludes the proof. �

We next state a simple auxiliary lemma that bounds the number of inner products 〈φn
ω,φn

ω′ 〉 being bounded away from
zero.

Lemma 3.2. For any n let (φn
ω: ω ∈ Ωn) be a family of normalized vectors in R

In , such that the upper frame bounds bn are uniformly
bounded. Then, for every δ > 0, we have∣∣{(ω,ω′) ∈ Ω2

n :
∣∣〈φn

ω,φn
ω′

〉∣∣ � δ
}∣∣ = O

(|Ωn|
)
. (3.1)
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Proof. To verify (3.1) it is sufficient to find, for every given δ > 0, some constant K ∈N such that

(∀n ∈N)(∀ω ∈ Ωn)
∣∣{ω′ ∈ Ωn:

∣∣〈φn
ω,φn

ω′
〉∣∣ � δ

}∣∣ � K . (3.2)

Indeed, if (3.2) holds then summing over all ω ∈ Ωn yields (3.1).
To show (3.2) we assume to the contrary that there is some δ > 0 such that for all m ∈ N there exists some n(m) ∈ N and

some ω ∈ Ωn(m) such that the set Λm = {ω′ ∈ Ωn(m): |〈φn(m)
ω ,φ

n(m)

ω′ 〉| � δ} contains more then m elements. By assumption

we have the equality ‖φn(m)
ω ‖ = 1 for all ω ∈ Ωn . Together with assumption (ii) this implies

B = B
∥∥φ

n(m)
ω

∥∥2 �
∑

ω′∈Ωn(m)

∣∣〈φn(m)
ω ,φ

n(m)

ω′
〉∣∣2 �

∑
ω′∈ΛM

∣∣〈φn(m)
ω ,φ

n(m)

ω′
〉∣∣2 � mδ.

Since the last estimate should hold for all m ∈ N and we have B < ∞ by assumption, this obviously gives is a contradic-
tion. �
Proof of Theorem 1.3. Theorem 1.3 is now an immediate consequence of the above results: Lemma 2.2 and Lemma 3.2
show that the sequence of normalized frame coefficients (Φnεn/σ )n∈N satisfies conditions (i)–(iii) of Lemma 3.1. Hence
Lemma 3.1 applied to the random vectors ξn = Φnεn/σ shows the assertion. �

We conclude this subsection by stating an extreme value result for the maximum without the absolute values. Although
we do not need this result further, the distributional limit is interesting in its own.

Theorem 3.3 (Limiting Gumbel law without absolute values). Assume that the frames Dn are asymptotically stable and let (εn)n∈N
be a sequence of random vectors in R

In having independent N(0,1)-distributed entries. Then, the random sequence of the maxima
max(Φnεn) := max{〈φn

ω, εn〉: ω ∈ Ωn} is of Gumbel type with normalization constants

a
(
N, |Ωn|

) := 1√
2 log |Ωn|

, (3.3)

b
(
N, |Ωn|

) := √
2 log |Ωn| − log log |Ωn| + log(4π)

2
√

2 log |Ωn|
. (3.4)

Proof. The proof is analogous to the proof of Theorem 1.3 and uses the extreme value result of Theorem A.4 for dependent
normal random vectors instead of the one of Theorem A.8 for absolute values of dependent normal random vectors. �
3.2. Universal threshold: Qualitative denoising property

In the case that the family Dn = (φn
ω: ω ∈ Ωn) is an orthonormal basis it is well known that the thresholding sequence

Tn = σ
√

2 log |Ωn| satisfies the asymptotic denoising property (see, for example, [7,11,12] and also Section 1.1 in the intro-
duction), that is,

lim
n→∞ P

{‖Φnεn‖∞ � Tn
} = 1. (3.5)

Eq. (3.5) implies that the estimates obtained with the threshold σ
√

2 log |Ωn| are, with probabilities tending to one, at least
as smooth as un . Hence the relation (3.5) is often used as theoretical justification for using the universal threshold choice
σ

√
2 log |Ωn| originally proposed by Donoho and Johnstone (see [7,8]). The following Proposition 3.4 states that the same

denoising property indeed holds true for any normalized frame. Actually it proves much more: First, we verify (3.5) for
a wide class of thresholds including the Donoho–Johnstone threshold. Second, we show that this class in fact includes all
thresholds that satisfy the denoising property (3.5) – provided that the frames are asymptotically stable. Our results can be
seen as a generalization and a refinement of [7, Theorem 4.1] from the basis case to the possibly redundant frame case.

Proposition 3.4 (Thresholds yielding the denoising property). Assume that Dn are frames of RIn having normalized frame elements
and analysis operators Φn, and let (εn)n∈N be a sequence of noise vectors in R

In with independent N(0, σ 2)-distributed entries.

(a) If (Dn)n∈N is asymptotically stable, then a sequence (Tn)n∈N of thresholds satisfies (3.5) if and only if it has the form

Tn := σ
√

2 log |Ωn| + σ
2zn − log log |Ωn| − logπ

2
√

2 log |Ωn|
with lim

n→∞ zn = ∞. (3.6)

(b) If (Dn)n∈N is not necessarily asymptotically stable, then still any sequence (Tn)n∈N ⊂ (0,∞) of the form (3.6) satisfies the asymp-
totic denoising property (3.5).
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Proof. (a) Theorem 1.3 immediately implies that a sequence (Tn)n∈N satisfies (3.5) if and only if it has the form

Tn = σ
√

2 log |Ωn| + σ
2zn − log log |Ωn| − logπ

2
√

2 log |Ωn|
for some sequence (zn)n∈N with zn → ∞.

(b) Now let Dn be any sequence of frames that is not necessarily asymptotically stable. Further, let ηn be a sequence
of random vectors with independent N(0, σ 2)-distributed entries. Since Φnεn is a random vector with possibly dependent
N(0, σ 2)-distributed entries, Lemma A.9 implies that

P
{‖Φnεn‖∞ � Tn

}
� P

{‖ηn‖∞ � Tn
}
.

By item (a) we already know that P{‖ηn‖∞ � Tn} → 1 as n → ∞, for any sequence of thresholds satisfying (3.6), and hence
the same must hold true for P{‖Φnεn‖∞ � Tn}. �

According to Proposition 3.4, any sequence (zn)n∈N with limn→∞ zn = ∞ defines a sequence of thresholds (3.6) that
satisfies the asymptotic denoising property. In particular, by taking 2zn = log log |Ωn| + logπ the thresholds in (3.6) reduce
to the universal threshold σ

√
2 log |Ωn| of Donoho and Johnstone. Proposition 3.4 further shows that the asymptotic relation

Tn ∼ σ
√

2 log |Ωn| alone is not sufficient for the denoising property (3.5) to hold and that second order approximations
have to be considered. One may call a thresholding sequence (Tn)n smaller than (T ′

n)n , if (T ′
n − Tn)Tn → ∞ for n → ∞. The

smaller the thresholding sequence is taken, the slower the convergence of P{‖Φnεn‖∞ � Tn} will be, and hence this just
yields a different compromise between noise reduction and signal approximation.

3.3. Extreme value threshold: Sharp confidence regions

For the following notice that the soft-thresholding estimate x̂n = S(Yn, Tn) with thresholding parameter Tn is an element
of the ‖ · ‖∞-ball

R(Yn, Tn) := {
x̄n ∈ R

Ωn : ‖x̄n − Yn‖∞ � Tn
}

(3.7)

around the given data Yn . Our aim is to select the thresholding value Tn in such a way, that R(Yn, Tn) is an asymptotically
sharp confidence region corresponding to some prescribed significance level α, in the sense that the probability that we
have xn ∈ R(Yn, Tn) tends to 1 − α as n → ∞. By definition, xn ∈ R(Yn, Tn) if and only if ‖xn − Yn‖∞ � Tn . The data model
Yn = xn + Φnεn thus implies that

P
{

xn ∈ R(Yn, Tn); ∀xn ∈ Ran(Φn)
} = P

{‖Φnεn‖∞ � Tn
}
. (3.8)

Here and in similar situations, P{xn ∈ R(Yn, Tn); ∀xn ∈ Ran(Φn)} denotes the probability of the intersection of all the events
{xn ∈ R(Yn, Tn)} taken over all xn ∈ Ran(Φn).

Now assume that the frames are asymptotically stable. Then Theorem 1.3 states that the probabilities in Eq. (3.8) with
Tn = σa(χ, |Ωn|)z + σb(χ, |Ωn|) tend to the Gumbel distribution exp(−exp(−z)). This suggests the following threshold
choice based on the quantiles of the limiting Gumbel distribution.

Definition 3.5 (Extreme value threshold). Let (αn)n∈N ∈ (0,1) be any sequence of significance levels, denote by z(αn) =
− log log(1/(1 − αn)) the αn-quantile of the Gumbel distribution, and set

T
(
αn, |Ωn|

) := σ
√

2 log |Ωn| + σ
2z(αn) − log log |Ωn| − logπ

2
√

2 log |Ωn|
. (3.9)

We then name T (αn, |Ωn|) the sequence of extreme value threshold (EVT) corresponding to the significance levels αn .

The following Theorem 3.6 states that the EVTs defined by Eq. (3.9) indeed define asymptotically sharp confidence
regions. Actually it is mere a corollary of the extreme value result derived in Theorem 1.3.

Theorem 3.6 (Asymptotically sharp confidence regions). Let (Dn)n∈N be an asymptotically stable family of frames in R
In and let

(αn)n∈N be a sequence of numbers in (0,1) converging to some α ∈ [0,1). Then, with the extreme value thresholds T (αn, |Ωn|)
defined in Eq. (3.9), we have

lim
n→∞ P

{
xn ∈ R

(
Yn, T

(
αn, |Ωn|

)); ∀xn ∈ Ran(Φn)
} = 1 − α. (3.10)

Hence, the sets R(Yn, T (αn, |Ωn|)) defined in (3.7) are asymptotically sharp confidence regions with significance level α.
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Fig. 4. Top: Rescaled distribution of ‖Φnεn‖∞ and the Gumbel distribution for n = 128 (left), n = 512 (middle) and n = 1024 (right). Bottom: Q–Q plot of
those distributions.

Proof. According to (3.8) it is sufficient to show that P{‖Φnεn‖∞ � T (αn, |Ωn|)} → 1 − α as n → ∞. Theorem 1.3 and
the definition of the thresholds in (3.9) imply that the probability of the event {‖Φnεn‖∞ � T (αn, |Ωn|)} converges to
exp(−exp(−z(α))) as n → ∞. Since the quantile z(α) is defined as the solution of exp(−exp(−z)) = 1 − α this yields
Eq. (3.10). �
Corollary 3.7. Let (Dn)n∈N be any family of frames (not necessarily asymptotic stable) having normalized elements, and consider the
data model Yn = xn + Φnεn with noise vectors εn having possibly dependent N(0, σ 2)-distributed entries. Then, it still holds that

lim inf
n→∞ P

{
xn ∈ R

(
Yn, T

(
αn, |Ωn|

)); ∀xn ∈ Ran(Φn)
}

� 1 − α. (3.11)

Proof. This follows from Theorem 3.6 and Lemma A.9. �
Notice, that in Corollary 3.7 the sets R(Yn, T (αn, |Ωn|)) are not necessarily asymptotically sharp confidence regions, in the

sense that inequality (3.11) may be strict. Actually, we believe that asymptotical stability of the frames Dn is close to being
necessary for the sets R(Yn, T (αn, |Ωn|)) defining asymptotically sharp confidence regions. For specific highly redundant
dictionaries where asymptotic stability fails to hold (such as the translation invariant wavelet frame; see Section 4.1.4) we
expect that P{‖Φnεn‖∞ � σanz + σbn} still converges to the Gumbel distribution – however with normalization sequences
an and bn being strictly smaller than σa(χ, |Ωn|) and σb(χ, |Ωn|). If this is the case, then the smaller thresholds Tn =
σanz(αn) + σbn again define sharp confidence regions. Surprisingly, results on the distributional convergence of ‖Φnεn‖∞
or even of max(Φnεn) for redundant frames are almost nonexistent.

3.4. Rate of approximation

Strictly taken, Theorem 3.6 only claims that the ‖ · ‖∞-balls R(Yn, T (αn, |Ωn|)) turn into confidence regions in the limit
n → ∞, but it does not directly give any result for finite n. Sometimes it is argued that, even in the independent case
without taking absolute values, the rate of convergence of P{max(Φnεn) � T } to the Gumbel distribution is known to be
rather slow (see, for example, [18, Section 2.4]). Another option could be to derive non-asymptotic coverage probabilities
along the lines of [30], however at the price of typically quite conservative confidence bands.

Nevertheless, numerical simulations clearly demonstrate, that even for moderate n, the approximation of P{‖Φnεn‖∞ �
σa(χ, |Ωn|)z +σb(χ, |Ωn|)} with the limiting Gumbel distribution is quite good. This even holds true for redundant frames
as can be seen from Fig. 4, where the distribution functions of the rescaled maxima of the coefficients with respect to the
two times oversampled sine frame of Example 2.7 are compared with the limiting Gumbel distribution. The top line in Fig. 4
displays the normalized empirical distributions of ‖Φnεn‖∞ for signal lengths of n = 128, n = 512 and n = 1024 (computed
from 10 000 realizations in each case) and the limiting Gumbel distribution. As can be seen, there is only a small difference
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between those functions. The bottom line in Fig. 4 shows a Q–Q plot (quantile against quantile) of those distributions and
again indicates that the quantiles of the rescaled maximum for finite n are quite well approximated by the ones of the
limiting Gumbel distribution.

3.5. Smoothness estimates

We have just seen that the xn is contained in the confidence regions R(Yn, T (αn, |Ωn|)) around the data Yn with prob-
ability tending to 1 − α. Moreover, by definition, the soft-thresholding estimate x̂n = S(Yn, T (αn, |Ωn|)) is contained in
R(Yn, T (αn, |Ωn|)), too. The following theorem shows that the soft-thresholding estimate is indeed the smoothest element
in this confidence region, with smoothness measured in terms of a wide class of functionals.

Theorem 3.8 (Smoothness estimates). Let (Jn)n∈N be a family of functionals Jn :RΩn →R∪ {∞} having the property that

Jn(xn) � Jn(x̄n) whenever
∣∣xn(ω)

∣∣ �
∣∣x̄n(ω)

∣∣ for all ω ∈ Ωn. (3.12)

Moreover, consider the data model Yn = xn +Φnεn, where (εn)n∈N is a sequence of random vectors with N(0, σ 2)-distributed entries,
let (αn)n∈N be a sequence in (0,1) converging to some α ∈ [0,1), and denote x̂n := S(Yn, T (αn, |Ωn|)). Then,

lim inf
n→∞ P

{
Jn(x̂n) � Jn(xn); ∀xn ∈ Ran(Φn)

}
� 1 − α. (3.13)

Hence, the soft-thresholding estimate x̂n is at least as smooth as the original parameter xn, with probability tending to 1−α as n → ∞,
where smoothness is measured in terms of any family of functionals Jn satisfying (3.12).

Proof. The definition of the soft-thresholding function implies that x̂n is an element of the confidence region R(Yn,

T (αn, |Ωn|)) and that for every other element x̄n contained in this confidence region we have |x̂n(ω)| � |x̄n(ω)| for all
ω ∈ Ωn . By Corollary 3.7 the true parameter xn is contained in R(Yn, T (αn, |Ωn|)), too, with a probability tending to 1 − α.
We conclude that

lim inf
n→∞ P

{∣∣x̂n(ω)
∣∣ �

∣∣xn(ω)
∣∣; ω ∈ Ωn; ∀xn ∈ Ran(Φn)

}
� 1 − α. (3.14)

Assumption (3.12) on component-wise monotonicity of the functionals Jn now implies that the event {|x̂n(ω)| �
|xn(ω)|; ∀ω ∈ Ωn; ∀xn ∈ Ran(Φn)} is contained in the event {Jn(x̂n) � Jn(xn); ∀xn ∈ Ran(Φn)}. Together with (3.14) this
yields (3.13). �
Remark 3.9 (Shrinkage property). The proof of Theorem 3.8 uses two main ingredients: First, soft-thresholding selects that
element in R(Yn, T (αn, |Ωn|)) which has minimal component-wise magnitudes and second, the true coefficient x̂n is con-
tained in the set R(Yn, T (αn, |Ωn|)) with probability tending to 1 − α. The former property is often referred to as the
shrinkage property of soft-thresholding and has already been used in [7] for deriving smoothness estimates for orthogonal
wavelet soft-thresholding. The second property relies on our extreme value result derived in Theorem 1.3. Notice, that the
weaker result P{Jn(x̂n) � Jn(xn)} → 0 using the threshold σ

√
2 log |Ωn| is well known; compare [16]. However, the proof

of Theorem 3.8 reveals that for asymptotically stable frames the considered thresholds T (αn, |Ωn|) are close to being the
smallest ones yielding smoothness estimates of the form (3.13). For strongly redundant frames, however, where asymptotic
stability fails to hold, smaller thresholds yielding the same smoothness bounds can exist. In Theorem 4.9 we show that this
is indeed the case for the dyadic discrete translation invariant wavelet system.

Basic but important examples for functionals satisfying the component-wise monotonicity property (3.12) are powers of
weighted �2-norms,

‖xn‖2 :=
√ ∑

ω∈Ωn

c(ω)
∣∣xn(ω)

∣∣2
for some c(·) > 0.

In the case of wavelet and Fourier frames, these norms of the coefficients provide norm equivalents to Sobolev norms
in the original signal domain (assuming an appropriate discretization model u 	→ un). Sobolev norms are definitely the
most basic smoothness measures of functions. More general and also practically relevant classes of smoothness measures
are Besov norms. Assume for the moment that Dn is a wavelet frame where the index set has the multiresolution form
Ωn = {(λ,k): λ ∈ Λn and k ∈ Dλ} for some index sets Λn and Dλ corresponding to scale/resolution and scale dependent
location, respectively. In this case one takes the functional Jn as one of the weighted �p,q-norms

‖xn‖p,q := q

√ ∑
λ∈Λn

c(λ)
∥∥xn(λ, ·)∥∥q

p for some c(·) > 0.

These norms again satisfy the monotonicity property (3.12) and moreover yield to norm equivalents of Besov norms for
properly chosen weights c(λ); see Section 4.1. Such weighted (p,q)-norms are also reasonable in combination with other
multiresolution systems, such as the curvelet frame (see Section 4.2).
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3.6. Risk estimates

Although the main focus in this work is on confidence regions and smoothness estimates, in the following Proposi-
tion 3.10 we shall verify that using the EVTs of Definition 3.5 yields risk estimates similar to the oracle inequalities of [8].
The following result is non-standard regarding two aspects: First, it allows arbitrary frames instead of orthonormal bases.
Second, and more importantly, it considers our more general class of extreme value thresholds instead of the universal
threshold σ

√
2 log |Ωn|.

Proposition 3.10 (Oracle inequality). Let Dn = (φn
ω: ω ∈ Ωn) be a frame in R

In with corresponding analysis operator Φn. Moreover,
let ûn = Φ+

n ◦ S(Φn(Vn), T ) denote the soft-thresholding estimator in (2.6) corresponding to the extreme value thresholds Tn =
T (αn, |Ωn|) defined by Eq. (3.9), and assume for simplicity that T (αn, |Ωn|) � σ

√
2 log |Ωn|. Then, we have

E
(‖un − ûn‖2) � σ 2

an

(
log

(
1/(1 − αn)

)√
π log |Ωn| +

(
1 + 2 log |Ωn|

) ∑
ω∈Ωn

min

{
1,

|〈φn
ω, un〉|2
σ 2

})
. (3.15)

Here an is the lower frame bound of DN ; see Eq. (2.1).

Proof. See Appendix B.1. �
4. Examples from signal and image denoising

In this section we verify that many important frames used for thresholding in signal and image processing are asymp-
totically stable and thus covered by the results of the previous section. These examples include redundant wavelet systems
and curvelet frames. We also consider an important example, where our basic asymptotic stability fails to hold; namely the
discrete translation invariant wavelet frame. Actually, we show that not even the result of Theorem 1.3 (and thus all of its
implications) holds in this case. This indicates that the stated conditions are close to being necessary for the asymptotical
distributional law of Theorem 1.3. Further, we derive confidence regions and smoothness estimates for the translation in-
variant wavelet transform that significantly improve over simple application of Proposition 3.4, item (b) (and also the main
result of [31]).

4.1. Redundant and non-redundant wavelet denoising

In the following we consider one dimensional wavelet denoising. The generalization to higher dimensional wavelet de-
noising is straightforward. We shall discuss thresholding in biorthogonal wavelet bases, certain overcomplete wavelet frames
(using the so called cycle spinning procedure), and fully translation invariant wavelet systems. Before considering those
particular examples, we collect some notation and present basic facts about biorthogonal wavelets (which include the or-
thogonal ones) that we need for the application of our general results.

4.1.1. Biorthogonal wavelet bases
One dimensional wavelets are generated by dilating and translating a single function, the so called mother wavelet. The

distinguished feature of wavelet systems is that various classical smoothness measures (Triebel, Sobolev and Besov norms)
can be characterized by simple norms in the wavelet domain. In the following, for the sake of simplicity, we only consider
real valued periodic wavelets on the interval [0,1]. Moreover, we restrict ourselves to compactly supported biorthogonal
wavelets that arise from a multiresolution decomposition.

Denote by Ω the set of all index pairs of the form ( j,k) with j ∈ N and k ∈ {0, . . . ,2 j − 1}. The index j is refereed
to as resolution or scale index and k to as the discrete location index. Moreover, let φ,ψ ∈ L2(R) denote the father and
mother wavelet, respectively, which are assumed to be compactly supported and to have unit norm with respect to ‖ · ‖2,
the Euclidean norm on L2(0,1). For any ( j,k) ∈ Ω one then defines (periodic) wavelets ψ j,k and (periodic) scaling functions
φ j,k on [0,1] by(∀t ∈ [0,1]) ψ j,k(t) = 2 j/2

∑
m∈Z

ψ
(
2 j(t − m) − k

)
, φ j,k(t) = 2 j/2

∑
m∈Z

φ
(
2 j(t − m) − k

)
.

The wavelet and the scaling coefficients of some signal u ∈ L2(0,1) are then simply the inner products of u with the
wavelets ψ j,k and the scaling functions φ j,k , respectively. We further write W,V : L2(0,1) → �2(Ω) for the mappings that
take the signal u ∈ L2(0,1) to the inner products (Wu)( j,k) := 〈ψ j,k, u〉 and (Vu)( j,k) := 〈φ j,k, u〉, respectively.

In order to get a (biorthogonal) wavelet basis one has to impose some completeness condition and some connections
between the wavelets and the scaling functions. Such assumptions are most naturally formulated in the multiresolution
framework (below already adapted to the periodic setting). Hence, in the following we assume the existence of subspaces
V j and W j of L2(0,1), referred to as scaling and detail spaces, respectively, meeting the following requirements:
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• For every j ∈N, the following mappings are bijections:

V j →R
2 j

: u 	→ (〈φ j,k, u〉: k ∈ {
0, . . . ,2 j − 1

})
,

W j →R
2 j

: u 	→ (〈ψ j,k, u〉: k ∈ {
0, . . . ,2 j − 1

})
.

• For every j ∈N, we have the multiresolution decomposition V j = V j−1 ⊕W j−1.
• The union

⋃
j∈N V j is dense in L2(0,1).

Repeated application of the multiresolution decomposition yields the decomposition of the signal space into the sum of
the scaling space V0 and the wavelet space W := ⊕

j�0 W j . Moreover, the above conditions imply that there is a stable
one to one correspondence between any element in W and its inner product with respect to D := (ψ j,k: ( j,k) ∈ Ω).
Moreover, the multiresolution decomposition serves as the basis of both, discretization and fast implementation. Notice that
the construction of compactly supported orthogonal and biorthogonal wavelets is non-trivial and such systems have been
constructed for the first time in [32,33]. By now such wavelet systems are well known; a detailed construction of orthogonal
and biorthogonal wavelet systems together with many interesting details may be found in [12,14,34].

Remark 4.1 (Biorthogonal basis). If the spaces V j and W j are orthogonal to each other, then D is an orthonormal wavelet
basis and V j and W j are spanned by the scaling and wavelet functions, respectively. However, we do not require orthogo-
nality in the following. In this more general case, the scaling and wavelet spaces are spanned by certain dual systems (or
biorthogonal bases; thus the name). Biorthogonal wavelets are often preferred to strictly orthogonal ones since they allow
more freedom to adapt them to a particular application in mind. Especially, opposed to orthogonal wavelets, biorthogonal
wavelets can at the same time be smooth, symmetric and compactly supported.

Remark 4.2 (Computing the wavelet transform). The multiresolution decomposition V j = V j−1 ⊕ W j−1 is the basis for fast
computation of the wavelet transform. Given the scaling coefficients at some scale L > 0, the scaling and wavelet coefficients
at scale L − 1 can be computed by cyclic convolution of the given scaling coefficients with a certain discrete filter pair.
Repeated application of this procedure eventually yields all scaling and all wavelet coefficients at scales below L. In the case
of biorthogonal wavelets, the multiresolution decomposition can be inverted again by repeated application of convolution
with a different pair of reconstruction filters.

Throughout the following we assume that a discrete signal un ∈ R
n is given, where the discretization number n = 2 J

is an integer power of some maximal level of resolution. One then interprets the components of the discrete signal as the
scaling coefficients of some underlying continuous domain signal, that is,

(∀k ∈ {0, . . . ,n − 1}) un(k) = (Vu)( J ,k) = 〈φ J ,k, u〉.
Obviously there are infinitely many continuous domain signals yielding to the same scaling coefficients. However, according
to the made assumptions, there exists a unique element in the scaling space V J having scaling coefficients un . This element
will be denoted as u∗

n ∈ V J .
The wavelet coefficients of the discrete signal are then simply defined as the wavelet coefficients of the continuous

domain signal with indices in

Ωn := {
( j,k): j ∈ {0, . . . , J − 1} and k ∈ {

0, . . . ,2 j − 1
}}

.

According to the multiresolution decomposition, these coefficients depend only on the discrete signal and can also be
written as discrete inner products

(∀un ∈R
n)(∀( j,k) ∈ Ωn

) 〈
ψn

j,k, un
〉 := 〈ψ j,k, u〉.

This serves as definition of both, the discrete wavelets ψn
j,k ∈R

n and the wavelet coefficients of un . Finally we define Dn as

the family of all discrete wavelets ψn
j,k and denote by Wn :Rn → R

Ωn the corresponding analysis operator, which we refer
to as the discrete wavelet transform.

Remark 4.3 (Numerical computation). The discrete wavelet transform is computed by repeated application of the multireso-
lution decomposition, yielding to all discrete wavelet coefficients and the scaling coefficient u1 = 〈φ0,0, u〉; see Remark 4.2.
Since the discrete filters usually have small support, the wavelet transform can be computed using only O(n) operation
counts and the same holds true for recovering un from those coefficients. Notice that the discrete wavelets are never com-
puted explicitly in the multiresolution algorithm. We defined them in order to verify our general framework. Finally, we
stress again that the wavelet coefficients of un coincide with the one of u up to scale log(n/2).
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4.1.2. Biorthogonal basis denoising
Now consider the denoising problem (1.1), which simple reads Vn = un + εn . The wavelet soft-thresholding procedure is

usually only applied to coefficients above some scale; compare with Remark 2.1. For simplicity we shall consider the case
where all wavelet coefficients are thresholded but not the scaling coefficient. Hence, the wavelet soft-thresholding estimator
(for the wavelet part of un) is defined by

ûn = W−1
n ◦ S(Wn Vn, T ).

Thanks to the multiresolution algorithm, the wavelet soft-thresholding estimator can be computed with only O(n) operation
counts.

We measure smoothness of the considered estimates in terms of Besov norms. To that end, assume that the mother
wavelet has sufficiently many vanishing moments and is sufficiently smooth. Then, for given norm parameters p, q � 1 and
given smoothness parameter r � 0 one defines

‖x‖p,q,r = q

√∑
j∈N

2 jsq
∥∥x( j, ·)∥∥q

p with s = r + 1

2
− 1

p

for any x ∈ �2(Ω) and with ‖ · ‖p denoting the usual �p-norm taken for fixed scale j ∈ N. It is then clear that any of these
norms satisfies the component-wise monotony property (3.12). We further write ‖u‖Br

p,q
:= ‖Wu‖p,q,r for the corresponding

norm of some u ∈ L2(0,1) and finally denote by Br
p,q the set of all signals having finite norm ‖u‖Br

p,q
< ∞. The pair

(Br
p,q,‖ · ‖Br

p,q
) is a Banach space and referred to as Besov space. The given definitions provide norm equivalents of ‖ · ‖Br

p,q

to the definition of Besov norms in classical analysis, as long as the mother wavelet has m > r vanishing moments and is m
times continuously differentiable.

Theorem 4.4 (Soft-thresholding in wavelet bases). The discrete wavelet bases Dn = (ψn
j,k: ( j,k) ∈ Ωn) are asymptotically stable. In

particular, the following hold:

(a) Distribution: Let εn be a sequence of noise vectors in R
n with independent N(0, σ 2)-distributed entries. Then, the sequence

‖Wnεn‖∞ is of Gumbel type with normalization constants σa(χ,n), σb(χ,n) defined by (1.9), (1.10).
(b) Confidence regions: Let (αn)n∈N ⊂ (0,1) be a sequence of significance levels converging to some α ∈ [0,1) and let T (αn,n)

denote the corresponding EVTs defined in (3.9). Then,

lim
n→∞ P

{∥∥Wn(un − Vn)
∥∥∞ � T (αn,n); ∀un ∈R

In
} = 1 − α.

(c) Smoothness: Let û∗
n denote the soft-thresholding estimator using the extreme value thresholds T (αn,n). If the considered mother

wavelet has m > r vanishing moments and is m times continuously differentiable, then

lim inf
n→∞ P

{∥∥û∗
n

∥∥
Br

p,q
� ‖u‖Br

p,q
; ∀u ∈ Br

p,q

}
� 1 − α.

Proof. By definition, for any n ∈ N and pair of any indices ( j,k), ( j′,k′), the inner products 〈ψn
j,k,ψ

n
j′,k′ 〉 of the discrete

wavelets coincide with the inner product 〈ψ j,k,ψ j′,k′ 〉 of the continuous domain wavelets. Since the family (ψ j,k: ( j,k) ∈ Ω)

is a Riesz basis with normalized elements this immediately yields condition (ii) required in Definition 1.2 for asymptotically
stable frames.

Condition (i) of Definition 1.2 is satisfied since all |〈ψ j,k,ψ j′,k′ 〉| are bounded away from one. To see that this holds true,
it is sufficient to consider the case where ψ(2 jt − k) and ψ(2 j′t − k′) are both supported in the interval (0,1) and satisfy
j′ � j. Application of the substitution rule yields

∣∣〈ψ j,k,ψ j′,k′ 〉∣∣ = 2 j/2+ j′/2
∣∣∣∣
∫
R

ψ
(
2 jt − k

)
ψ

(
2 j′t − k′)dt

∣∣∣∣
= 2( j− j′)/2

∣∣∣∣
∫
R

ψ
(
2 j− j′t − k + 2 j− j′k

)
ψ(t)dt

∣∣∣∣ = ∣∣〈ψ j− j′,k−2 j− j′k,ψ〉∣∣.
Because all wavelets have unit norm, the Cauchy–Schwarz inequality shows |〈ψ j− j′,k−2 j− j′k,ψ〉| < 1. The upper frame bound

implies that
∑

( j,k)∈Ωn
|〈ψ j,k,ψ〉|2 < ∞, and hence the sequence (〈ψ j,k,ψ〉: ( j,k) ∈ Ωn) in particular converges to zero. As

a consequence, the numbers |〈ψ j,k,ψ j′,k′ 〉| are uniformly bounded by some constant ρ < 1.
The other claims in items (a)–(c) then follow from the asymptotic stability of the frames Dn and the general results

derived the previous section. Actually, the first two items are just restatements of Theorems 1.3 and 3.6 adapted to the
wavelet setting. For item (c) note that the norms ‖ · ‖p,q,r satisfy the component-wise monotony property (3.12) and there-
fore Theorem 3.8 yields
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lim inf
n→∞ P

{‖x̂n‖p,q,r � ‖Wnun‖p,q,r; ∀u ∈ Br
p,q

}
� 1 − α with x̂n := S

(
Vn, T (αn, |Ωn|)

)
.

By definition we have ‖x̂n‖p,q,r = ‖û∗
n‖Br

p,q
and the inequality ‖Wnun‖p,q,r � ‖u‖Br

p,q
for all n which finally yields item (c)

and concludes the proof. �
4.1.3. Cycle spinning

A mayor drawback of thresholding in a wavelet basis is its missing translation invariance. This typically causes visually
disturbing Gibbs-like artifacts near discontinuities at non-dyadic locations. One way to significantly reduce these artifacts is
via so called cycle spinning (see [6]). The idea there is to reduce the artifacts by averaging several estimates obtained by
denoising shifted copies of the noisy data.

Let Dn = (ψn
j,k: ( j,k) ∈ Ωn) be an orthonormal wavelet basis and denote by Tm :Rn → R

n the cyclic translation operator,
defined by (Tmun)(k) = un(k − m) for un ∈ R

n and all k,m ∈ {0, . . . ,n − 1}. Cycle spinning then averages the wavelet soft-
thresholding estimates of the translated data Tmun over all shifts m = 0, . . . , M − 1, where M is some prescribed number of
considered translations. Hence, one defines

ûn,M := 1

M

M−1∑
m=0

T−mW∗
n ◦ S(WnTm Vn, T ). (4.1)

The following elementary Lemma 4.5 states that the cycle spinning estimator (4.1) is equal to the soft-thresholding estimator
defined by Eq. (2.6) corresponding to the overcomplete wavelet frame

Dn,M := (
T−mψ j,k: ( j,k,m) ∈ Ωn,M

)
with Ωn,M := Ωn × {0, . . . , M − 1}. (4.2)

Hence wavelet cycle spinning fits into the general framework of soft-thresholding introduced in Section 2.

Lemma 4.5. Let Dn,M be the overcomplete wavelet frame defined in (4.2) and denote by Wn,M :Rn →R
nM the corresponding analysis

operator. Then, the cycle spinning estimator (4.1) has the representations

ûn,M = 1

M
W∗

n,M ◦ S(Wn,M Vn, T ) = W+
n,M ◦ S(Wn,M Vn, T ). (4.3)

Hence the cycle spinning estimator equals the soft-thresholding estimator corresponding to the redundant wavelet frame Dn,M .

Proof. The first identity in (4.3) immediately follows from (4.2) and (4.1). Next we verify the second equality. Since the
decimated wavelet transform Wn and the translation operators Tm are isometries, we have

‖Wn,M un‖2 =
M−1∑
m=0

‖WnTmun‖2 = M‖un‖2

whenever un are the scaling coefficients of a member u of the wavelet space W . Hence Dn,M is a tight frame with frame
bound equals M . This implies that the dual synthesis operator W+

n,M corresponding to the cycle spinning frame is simply

given by W+
n,M = W∗

n,M/M , which yields the second equality in (4.3). �
In the following we will show that redundant cycle spinning frame is asymptotic stable and thus allows the application of

our general results. Strictly taken, these conditions do not hold for the frame Dn,M , since some of the elements Tmψ j,k occur
more than once in Dn,M . In particular, the cardinality of the set {Tmψ j,k: ( j,k,m) ∈ Ωn,M} is strictly less than |Ωn,M | = nM;
the exact number of different frame elements is computed in the following Lemma 4.6. Asymptotic stability will then be
satisfied for the frame that contains every element Tmψ j,k exactly once.

Lemma 4.6. For any M � n, the number of different elements of the frame Dn,M defined in (4.2) is given by∣∣{Tmψ j,k: ( j,k,m) ∈ Ωn,M
}∣∣ = n�log2 M� + M

(
2�log2 n/M� − 1

)
. (4.4)

Proof. The definition of the wavelet basis implies that ψ j,k = Tn2− jkψ j,0 for very ( j,k) ∈ Ωn and hence the periodicity of
ψ j,0 implies that

Tmψ j,k = Tm+n2− jkψ j,0 = ψ j,k+m2 j/n

whenever m2 j/n is an integer number. This shows that for every given scale index j ∈ {0, . . . , log2 n − 1}, there are exactly
min{n, M2 j} different wavelets. One concludes that
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∣∣{Tmψ j,k: ( j,k,m) ∈ Ωn,M
}∣∣ = n

∣∣{ j: n/M � 2 j � n/2
}∣∣ + M

∑
M2 j<n

2 j

= n

(
log2 n −

⌈
log2

n

M

⌉)
+ M

�log2 n/M�−1∑
j=0

2 j .

This shows Eq. (4.4). �
In the following we shall for simplicity assume that M , the number of shifts in the cycle spin procedure, is an integer

power of two. In this case, Eq. (4.4) simplifies to∣∣{Tmψ j,k: ( j,k,m) ∈ Ωn,M
}∣∣ = n log2(M) + n − M. (4.5)

Note that this is significantly smaller (at least for large M) than the naive bound Mn given by the cardinality of Ωn,M .

Theorem 4.7 (Soft-thresholding using cycle spinning). Let M be any fixed integer power of two, denote by Dn,M = (Tmψ j,k: ( j,k,m) ∈
Ωn,M) the overcomplete wavelet cycle spinning frame and by Wn,M the corresponding analysis operator. Then the following assertions
hold true:

(a) Distribution: Let (εn)n∈N be a sequence of noise vectors in R
n with independent N(0, σ 2)-distributed entries. Then, the sequence

‖Wn,Mεn‖∞ is of Gumbel type with normalization constants σa(χ,n) (defined by (1.9)) and σbM(χ,n), where

bM(χ,n) := √
2 log n + − log log n − logπ + 2 log log2(M)

2
√

2 log n
.

(b) Confidence regions: Let αn ∈ (0,1) be a sequence of significance levels converging to some α ∈ [0,1) and let T (αn, |Dn,M |)
denote the corresponding EVTs defined in (3.9). Then,

lim
n→∞ P

{∥∥Wn,M(un − Vn)
∥∥∞ � T

(
αn, |Dn,M |); ∀un ∈R

In
} = 1 − α.

(Here by some abuse of notation |Dn,M | denotes the number of different elements in that frame, see (4.5).) The same holds true if
we replace T (αn, |Dn,M |) by

T M(αn,n) := −σa(χ,n) log log
(
1/(1 − αn)

) + σbM(χ,n). (4.6)

(c) Smoothness: Let û∗
n,M denote the soft-thresholding estimator using either T (αn, |Dn|) or Tn,M(αn) as threshold. If the considered

mother wavelet has m > r vanishing moments and is m times continuously differentiable, then

lim inf
n→∞ P

{∥∥û∗
n,M

∥∥
Br

p,q
� ‖u‖Br

p,q
; ∀u ∈ Br

p,q

}
� 1 − α.

Proof. By using the characterization of the cycle spinning estimator in Lemma 4.5 and the cardinality computed in
Lemma 4.6, the proof follows the lines of the proof of Theorem 4.4. Again, one simply uses the fact that the discrete inner
products coincide with continuous ones of functions forming an infinite dimensional frame. However, notice the change
of the normalization sequences in item (a) which is also used for the threshold Tn,M(αn). As easy to verify we have the
asymptotic relation

a(χ,n)z + bM(χ,n) = √
2 log n + 2z − log log n − logπ + 2 log log2(M)

2
√

2 log n

= a
(
χ, |Dn,M |)z + b

(
χ, |Dn,M |) + o(1/

√
2 log n).

From basic extreme value theory it follows that we can replace the sequence a(χ, |Dn,M |)z + b(χ, |Dn,M |) by the one
considered in item (a) and for the threshold Tn,M(αn). �
Remark 4.8. This alternative form (4.6) for the EVTs for cycle spinning denoising has been introduced to allow a better
comparison with the EVTs used in the basis case. It fact, it can be seen that the extreme value thresholds T M(αn,n) for
the redundant wavelet frame Dn,M simply increase by the additive constant (log log2 M)/

√
2 log n when compared to the

extreme value threshold T (αn,n) for the non-redundant wavelet frame.

The sharp confidence regions of Theorem 4.7 require M to be a fixed number. In the fully translation invariant transform,
to be discussed next, one takes M = n dependent on the discretization level. This effects a strong dependence of large scale
coefficients and that the distributional limit of item (a) in Theorem 4.7 will not longer hold true.
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4.1.4. Fully translation invariant denoising
Translation invariant wavelet denoising introduced in [6,35–37] is similar to cycle spinning denoising. However, now

one takes the whole range of M = n integer shifts instead of taking it as a fixed number independent of n. That is, the
translation invariant wavelet estimator is defined by

ûn,n := 1

n

n−1∑
m=0

T−mW∗
n ◦ S(WnTm Vn, T ). (4.7)

Lemma 4.5 implies that ûn,n equals the soft-thresholding estimator W+
n,nS(Wn,n Vn, T ) where Wn,n denotes the analysis

operator corresponding to the translation invariant wavelet frame

Dn,n = (
Tmψn

j,k: ( j,k) ∈ Ωn and m ∈ {0, . . . ,n − 1}).
Eq. (4.5) shows that the translation invariant wavelet frame contains n log2 n different elements. Further, from the proof of
this lemma it follows that Dn,n is a tight frame with frame bound equals n. After removing multiple elements in Dn,n ,
the resulting frame is non-tight but still has upper frame bounds bn = n tending to infinity as n → ∞. One concludes that
condition (ii) fails to hold for the translation invariant wavelet transform. The increasing frame bounds somehow reflect the
increasing redundancy and dependency of the coarse scale wavelets with increasing n.

One might conjecture that still the distribution result of Theorem 4.7 holds true with M replaced by n. However, we shall
show that this is not the case. Intuitively, the increasing correlation of the coarse scale wavelets with increasing n causes
the maximum ‖Wn,nεn‖∞ to be in probability smaller than the maximum of n log2 n independent coefficients. Although
the sets if Theorem 4.7 are still confidence regions (as follows from Sidak’s Lemma A.9), they are no longer sharp and
the considered thresholds are unnecessarily large. The following theorem gives a much smaller radius for these confidence
regions; in particular this significantly improves [31, Theorem 4.4].

Theorem 4.9 (Translation invariant soft-thresholding). Assume that the mother wavelet ψ is continuously differentiable, which implies
that (ψ̄ ∗ψ)(t) = 1−c2t2/2+o(t2) for some constant c. (Here ∗ denotes the circular convolution and ψ̄(s) := ψ(−s).) Further denote
by Wn,n the corresponding discrete translation invariant wavelet transform.

Then, the following assertions hold true:

(a) Distribution: Let (εn)n∈N be a sequence of noise vectors in R
In with independent N(0, σ 2)-distributed entries. Then, for every

z ∈R,

lim inf
n→∞ P

{∥∥Wn,nεn
∥∥∞ �

√
2 log n + z + log(c/π)√

2 log n

}
� exp

(−e−z). (4.8)

(b) Confidence regions: Let αn ∈ (0,1) be a sequence converging to some α ∈ [0,1). Then, we have

lim inf
n→∞ P

{∥∥Wn,n(un − Vn)
∥∥∞ � Tn(αn); ∀un ∈R

In
}

� 1 − α,

when using the thresholds Tn(αn) := σ
√

2 log n + σ(2 log n)−1/2 log log(1/(1 − αn)) + log(c/π).
(c) Smoothness: Let û∗

n,n denote the soft-thresholding estimator using the threshold Tn(αn) defined in item (b). If the considered
mother wavelet has m > r vanishing moments and is m times continuously differentiable, then

lim inf
n→∞ P

{∥∥û∗
n,n

∥∥
Br

p,q
� ‖u‖Br

p,q
; ∀u ∈ Br

p,q

}
� 1 − α.

Proof. The key to all results is the distribution bound given item (a). Its proof is somehow technical and is presented in Ap-
pendix B.2. The other claims follow from item (a) combined with the results of the previous sections (namely Theorems 1.3,
3.6 and 3.8), and are verified as the corresponding statements in the proof of Theorem 4.4. �
Remark 4.10. Consider a sequence of standardized normal vectors ηn each of them having Mn(log n)r independent entries,
where M is some fixed integer and r � 0 some fixed nonnegative number. From Proposition A.5 we know that ‖ηn‖∞ is of
Gumbel type with normalization sequences a(χ, Mn(log n)r) and b(χ, Mn(log n)r). One easily verifies that

a
(
χ, Mn(log n)r)z + b

(
χ, Mn(log n)r) = √

2 log n + (−1/2 + r) log logn + log(M/
√

π)√
2 log n

+ o(1/
√

2 log n). (4.9)

This allows to compare the bound in (4.8) with the asymptotic distribution of a certain number of independent random
variables. Indeed, comparing (4.8) with (4.9) we can conclude, that Wn,nεn less or equal in probability than the maximum
of Mn

√
log n independent normally distributed random variables with M := [c√π ]. Hence (4.8) improves the primitive

bound obtained from the distribution of n logn independent coefficients by a factor
√

log n/c.
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Remark 4.11. It is a difficult task to compute the asymptotic distribution of the translation invariant wavelet coefficients
exactly. This is due to the fact that for coarse scales the coefficients get increasingly correlated, whereas on the fine scales
the correlations remain bounded away from σ 2. No appropriate tools for asymptotic extreme value analysis of such mixed
type random fields seem to exist. Nevertheless, we believe that the maxima of the translation invariant wavelet coefficients
are of Gumbel type but with even smaller normalization constants than the ones used in (4.8). In particular, it may even
turn out that the threshold σ

√
2 log n provides the denoising property for the translation invariant system.

4.2. Curvelet thresholding

Second generation curvelets (introduced in [38–40]) are functions ψ j,�,k in R
2 depending on a scale index j ∈ N, an

orientation parameter � ∈ {0, . . . ,4 ·2� j/2�−1} and a location parameter k ∈ Z
2. They are known to provide an almost optimal

sparse approximation of piecewise C2 functions with piecewise C2 boundaries (as shown in [38]); this class of functions
usually serves as accurate cartoon model for natural images. The main curvelet property yielding this approximation result
is the increasing anisotropy at finer scales. This feature also distinguishes them from standard wavelets in higher dimension.

There exists other related function systems with similar properties. The cone adapted shearlet frame (introduced in
[41–43]) is very similar to the curvelet frame and shares its optimality when approximating piecewise C2 images with
piecewise C2 boundaries, see [44]. Yet another closely related function system are the contourlets introduced by Do and
Vetterli [45,46]. For simplicity we focus on the curvelets; similar statements could be made for the shearlet and contourlet
frames.

4.2.1. Discrete curvelet frames
The discrete curvelet transform computes inner products of un ∈ R

n×n with discrete curvelets ψn
j,�,k ∈ R

n×n . As for the
wavelet transform, the elements ψn

j,�,k are not computed explicitly and defined implicitly by the transform algorithm. Dif-
ferent implementations of the continuous curvelet transform give rise to different discrete frame elements ψn

j,�,k . Current
implementations of the curvelet transform are computed in the Fourier domain. Below we shall focus on the wrapping based
implementation of the curvelet transform introduced in [47]. This transform is an isometry which makes the computation
of its pseudoinverse particularly simple.

Let n = 2 J be an integer power of two with J denoting the maximal scale index. The discrete curvelets and the discrete
curvelet transform are composed of the following ingredients:

• First, define Λn as the set of all pairs ( j, �) satisfying j ∈ {0, . . . , log2 n − 2} and � ∈ {0, . . . ,4 · 2� j/2� − 1}. The index sets
of the discrete curvelets is defined by

Ωn := (
( j, �,k): ( j, �) ∈ Λn and k ∈ D j,�

)
,

where D j,� = {0, . . . , K j,�;1 − 1} × {0, . . . , K j,�;2 − 1} for certain given numbers K j,�;1 ∼ 2 j and K j,�;2 ∼ 2 j/2. One refers
to j as scale index, � as the orientation index, and k the location index.

• Next, one constructs smooth nonnegative window functions w j,� :R2 →R satisfying the identity

(∀z ∈R
2) J−2∑

j=0

4·2� j/2�−1∑
�=0

∣∣w j,�(z)
∣∣2 = 1.

The functions w j,� are essentially obtained by anisotropic scaling and shearing a single window function; see [47] for a
detailed construction.

• For any index triple ( j, �,k) ∈ Ωn the discrete curvelet at scale j, having orientation �/2� j/2� and location k =
(k1/K j,�;1,k2/K j,�;2) is defined by its Fourier representation

(
Fnψ

n
j,�,k

)
(m) = w j,�(m)

c j,�
e−2π i(m1k1/K j,�;1−m2k2/K j,�;2). (4.10)

Here the coefficients c j,� are chosen in such a way that ‖ψn
j,�,k‖ = 1 and Fn denotes the discrete Fourier transform.

• Finally, one defines the curvelet frame Dn = (ψn
j,�,k: ( j, �,k) ∈ Ωn) and denotes by Cn :Rn×n → R

Ωn the corresponding
analysis operator, which has been named digital curvelet transform via wrapping in [47]. In the following we will
refer to Cn simply as discrete curvelet transform. We emphasize again that the implementation of the discrete curvelet
transform does not require to compute the curvelets ψn

j,�,k explicitly.

Implementations of the discrete curvelet transform and its pseudoinverse using O(n2 log n) operation counts are freely
available at http://curvelet.org. Although this implementation does not use normalized frame elements, the constants c j,�
can easily be computed after the actual curvelet transformation and applied for normalizing the curvelet coefficients prior
to denoising. The denoising demo fdct_wrapping_demo_denoise.m included in the curvelet software package in fact
computes the norms of the discrete curvelets and uses them for proper scaling of the chosen thresholds.

http://curvelet.org
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4.2.2. Curvelet denoising
We now consider our denoising problem (1.1), which, after taking the discrete curvelet transform, simply reads Yn =

xn + Cnεn . As usual, the estimator we consider is soft-thresholding x̂n = S(Yn, T ) of the curvelet coefficients.
Similar to the wavelet case, we measure smoothness in terms of the weighted (p,q)-norms, depending on certain norm

parameters p,q � 1 and a parameter r � 0 describing the degree of smoothness. More precisely, we define

‖xn‖p,q,r := q

√∑
j,�

2 jsq
∥∥xn( j, �, ·)∥∥q

p with s = r + 3

2

(
1

2
− 1

p

)
.

These types of norms applied to the continuous domain curvelet coefficients have been defined and studied in [48]. In that
paper also relations between these norms and classical Besov norms have been derived.

Theorem 4.12 (Curvelet soft-thresholding). The discrete curvelet frames Dn = (ψn
j,�,k: ( j, �,k) ∈ Ωn) defined by Eq. (4.10) are asymp-

totically stable. In particular, the following assertions hold true:

(a) Distribution: Let εn be a sequence of noise vectors in R
In with independent N(0, σ 2)-distributed entries. Then, for every z ∈R,

lim
n→∞ P

{
‖Cnεn‖∞ � σ

√
2 log |Ωn| + σ

2z − log log |Ωn| − logπ

2
√

2 log |Ωn|
}

= exp
(−e−z).

(b) Confidence regions: Let αn ∈ (0,1) be a sequence of significance levels converging to some α ∈ [0,1) and let T (αn, |Ωn|) denote
the corresponding EVTs defined in (3.9). Then,

lim
n→∞ P

{∥∥Cn(un − Vn)
∥∥∞ � T

(
αn, |Ωn|

); un ∈R
In
} = 1 − α.

(c) Smoothness: Let x̂n denote the soft-thresholding estimate using the extreme value threshold T (αn, |Ωn|). Then, with any of the
norms defined above, we have

lim inf
n→∞ P

{‖x̂n‖p,q,r � ‖Cnun‖p,q,r; un ∈R
In

}
� 1 − α.

Proof. All frame elements are normalized due to the chosen scaling. Moreover, as shown in [47, Proposition 6.1], the discrete
curvelet frame Dn is faithful to an underlying infinite dimensional curvelet frame obtained by periodizing the curvelets on
the continuous domain R

2. This immediately yields condition (ii). Moreover, along the lines of [39] (which uses a slightly
different curvelet system) one easily shows that the inner products satisfy

〈
ψn

j,�,k,ψ
n
j′,�′,k′

〉
� ρ < 1

for some constant ρ < 1 independent of n and all indices. This obviously implies condition (i). All claims in items (a)–(c)
then follow from Theorems 1.3, 3.6 and 3.8 derived in the previous section. �
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Appendix A. Extremes of normal random vectors

Let (Ωn)n∈N be a sequence of finite index sets with monotonically increasing cardinalities |Ωn| satisfying limn→∞ |Ωn| =
∞. Moreover, for every n ∈ N, let ξn := (ξn(ω): ω ∈ Ωn) be given standardized normal random vectors, which means that
ξn(ω) ∼ N(0,1) for every n ∈ N and ω ∈ Ωn . We are mainly interested in random vectors with dependent entries, in which
case Cov(ξn(ω), ξn(ω′)) �= 0 for at least some pairs (ω,ω′) ∈ Ω2

n with ω �= ω′ .
As the main result of this section we derive the asymptotic distribution of ‖ξn‖∞ for a sequence ξn of dependent normal

vectors whose covariances satisfy a certain summability condition (see Theorem A.8). Whereas similar results are known
for max(ξn), to the best of our knowledge, such kind of results are new for ‖ξn‖∞ . Since |ξn(ω)|2 ∼ χ2 is chi-squared
distributed with one degree of freedom, our results can also be interpreted as new results for the asymptotic extreme value
theory of dependent χ2-distributed random vectors.
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A.1. Maxima of normal vectors

We will start by reviewing and slightly refining the main results from statistical extreme value theory for maxima of
normal vectors as we require them in this paper.

The most basic extreme value result deals with the case where the components of ξn are independent. In this case it is
well known, that, after rescaling, max(ξn) converges to the Gumbel distribution as n → ∞.

Proposition A.1. Let (ξn)n∈N be a sequence of standardized normal random vectors in R
Ωn with independent entries. Then the maxima

max(ξn) are of Gumbel type (see Definition 1.4) with normalization sequences a(|Ωn|,n), b(|Ωn|,n) defined by (3.3), (3.4).

Proof. See [18, Theorem 1.5.3]. �
If the entries of ξn are dependent, then the result of Proposition A.1 does not necessarily hold true. There is, however, a

simple and sufficient criterion on the covariances Cov(ξn(ω), ξn(ω′)) of a sequence of dependent normal vectors such that
the maxima still are of Gumbel type with the same normalization sequences. This criterion is an immediate consequence
of the so called normal comparison lemma or Berman’s inequality (see [18, Theorem 4.2.1]). For later purpose, where we
study ‖ξn‖∞ instead of max(ξn), we require a quite recent improvement of this important inequality which is due to Li and
Shao [49]. The standard form of the normal comparison lemma [18, Theorem 4.2.1] has already been applied for redundant
wavelet systems in [31,50], which however, only yields results for maxima of ξn without taking absolute values. We stress
again, that taking absolute values slightly change the constants in contrast to relations (1.5).

Lemma A.2. Let ηn, ξn be standardized normal random vectors in R
Ωn , denote its covariances by κηn (ω,ω′) := Cov(ηn(ω),ηn(ω′)),

κξn (ω,ω′) := Cov(ξn(ω), ξn(ω′)), and set ρn(ω,ω′) := max{|κηn (ω,ω′)|, |κξn (ω,ω′)|}. Then, for all Tn ∈ R,

P
{

max(ηn) � Tn
} − P

{
max(ξn) � Tn

}
� 1

4π

∑
ω �=ω′

(
arcsin

(
κηn

(
ω,ω′)) − arcsin

(
κξn

(
ω,ω′)))

+ exp

( −T 2
n

1 + ρn(ω,ω′)

)
.

Here z+ = max{z,0} denotes the positive part of some real number z ∈ R and arcsin denotes the inverse mapping of sin :
[−π/2,π/2] → [−1,1].

Proof. See [49, Theorem 2.1]. �
In the special case where ηn has independent entries, Lemma A.2 has the following immediate consequence given in

Lemma A.3. This allows to extend Proposition A.1 to certain sequences of dependent random vectors by comparing them
with independent ones.

Lemma A.3. Let ηn, ξn be standardized normal random vectors in R
Ωn . Assume that the entries of ηn are independent, and let κn

denote the covariance matrix of ξn defined by κn(ω,ω′) := Cov(ξn(ω), ξn(ω′)). Then, for all Tn ∈ R,

∣∣P{
max(ηn) � Tn

} − P
{

max(ξn) � Tn
}∣∣ � 1

8

∑
ω �=ω′

∣∣κn
(
ω,ω′)∣∣ exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

. (A.1)

Proof. See [49, Corollary 2.2]. �
Lemmas A.2 and A.3 are significant improvements of the standard versions of the normal comparison lemma [18, Sec-

tion 4] due to the absence of a singular factor (1 − |ρn(ω,ω′)|2)−1/2 that is contained in earlier versions. It is in fact the
absence of this singular term that we require for deriving an inequality similar to the one in Lemma A.3 that compares the
distributions of ‖ηn‖∞ and ‖ξn‖∞ for two normal vectors ηn and ξn .

Theorem A.4. Let (ξn)n∈N be a sequence of standardized normal random vectors in R
Ωn having covariance matrices κn ∈ R

Ωn×Ωn

satisfying

lim
n→∞

∑
ω �=ω′

∣∣κn
(
ω,ω′)∣∣( log |Ωn|

|Ωn|2
)1/(1+|κn(ω,ω′)|)

= 0. (A.2)

Then, the maxima max(ξn) are of Gumbel type (see Definition 1.4) with normalization constants a(N, |Ωn|), b(N, |Ωn|) defined by
(3.3), (3.4).
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Proof. Fix some z ∈ R and define Tn := a(N, |Ωn|)z + b(N, |Ωn|). Then, the definitions of the normalization sequences
a(N, |Ωn|) and b(N, |Ωn|) imply that T 2

n = 2 log |Ωn| − log log |Ωn| + O(1) as n → ∞. Hence there is some constant C > 0
and some index n0 ∈N, such that for all n � n0, we have

exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

� C exp

(
− log(|Ωn|2/ log |Ωn|)

1 + |κn(ω,ω′)|
)

= C

(
log |Ωn|
|Ωn|2

)1/(1+|κn(ω,ω′)|)
.

Now let Eq. (A.2) be satisfied and let (ηn)n∈N be a sequence of standardized normal vectors with independent entries. Then,
the triangle inequality, Lemma A.3, and the estimate just established imply

∣∣P{
max(ξn) � Tn

}∣∣ �
∣∣P{

max(ηn) � Tn
}∣∣ + C

8

∑
ω �=ω′

∣∣κn
(
ω,ω′)∣∣( log |Ωn|

|Ωn|2
)1/(1+|κn(ω,ω′)|)

.

Hence the claim follows from Proposition A.1 and assumption (A.2). �
A.2. Maxima of absolute values

In the following we derive results similar to Proposition A.1 and Theorem A.4 for ‖ξn‖∞ in place of max(ξn). The first
auxiliary result, Proposition A.5, deals with the independent case. It is easy to establish but nevertheless seems to be much
less known than the corresponding result in the normal case. We include a short proof based on the known extreme value
distribution of independent χ2-distributed random variables. The second and main result in this section, Theorem A.8, deals
with the dependent case. It is a new contribution and based on a novel inequality for comparing the distributions of ‖ηn‖∞
and ‖ξn‖∞ (given in Lemma A.7).

Proposition A.5. Let (ξn)n∈N be a sequence of standardized normal vectors in R
Ωn having independent entries. Then ‖ξn‖∞ is of

Gumbel type (see Definition 1.4) with normalization sequences a(χ, |Ωn|), b(χ, |Ωn|) defined by (1.9), (1.10).

Proof. Since ξn(ω) is standard normally distributed for any ω ∈ Ωn , the random variables |ξn(ω)|2 are χ2-distributed with
one degree of freedom. The χ2-distribution is in turn a member of the family of Gamma distributions Fβ,γ corresponding
to β = γ = 1/2. The asymptotic extreme value distribution of the Gamma distribution Fβ,γ is known (see [51, p. 156]) and
implies

lim
n→∞ P

{‖ξn‖2∞ � 2z + 2 log |Ωn| − log log |Ωn| − logπ
} = exp

(−e−z). (A.3)

Moreover, a Taylor series approximation shows√
2z + 2 log |Ωn| − log log |Ωn| − logπ = a

(
χ, |Ωn|

)
z + b

(
χ, |Ωn|) + o

(
a
(
χ, |Ωn|

))
as n → ∞. (A.4)

Any o(a(χ, |Ωn|)) term can be omitted when computing extreme value distributions (see [18, Theorem 1.2.3]), and hence
Eqs. (A.3) and (A.4) imply the desired result. �
Remark A.6. The sequence b(χ, |Ωn|) used for normalizing the maximum ‖ξn‖∞ in Proposition A.5 is different from the
sequence b(N, |Ωn|) used for the normalization of max(ξn) in Proposition A.1. Indeed, as easily verified,

b
(
N,2|Ωn|

) = b
(
χ, |Ωn|

) + o
(
a
(
N,2|Ωn|

))
.

Again, the o(a(N,2|Ωn|)) term can be omitted in the extreme value distribution and hence ‖ξn‖∞ behaves equal to the max-
imum of 2|Ωn| (opposed to |Ωn|) independent standard normally distributed random variables. Using different arguments,
this has already been observed in [11, Section 8.3].

If the entries of ξn are not independent, then the result of Proposition A.5 does not necessarily hold true. If, however,
the correlations of ξn are sufficiently small, then, as in the normal case, we will show that the same Gumbel law still holds.
This result follows again from a comparison inequality, now between the distributions of ‖ξn‖∞ and ‖ηn‖∞ with some
reference normal vector ηn , to be derived in the following Lemma A.7. For the sake of simplicity we assume that the vector
ηn has independent entries; in an analogous manner a similar result could be derived for comparing two dependent random
vectors.

Lemma A.7. Let ηn, ξn be standardized normal random vectors in R
Ωn . Assume that the entries of ηn are independent and denote by

κn ∈R
Ωn×Ωn the covariance matrix of ξn, having entries κn(ω,ω′) := Cov(ξn(ω), ξn(ω′)). Then, for all Tn ∈R,

∣∣P{‖ηn‖∞ � Tn
} − P

{‖ξn‖∞ � Tn
}∣∣ � 1

4

∑
ω �=ω′

∣∣κn
(
ω,ω′)∣∣exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

. (A.5)
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Proof. The proof uses the normal comparison lemma (Lemma A.2) of Li and Shao applied to the strongly dependent random
vectors Yn := (ηn,−ηn) and Xn := (ξn,−ξn) in place of ηn and ξn . To that end, we first note that obviously {|ξn| � Tn} =
{Xn < Tn} and {|ηn| � Tn} = {Yn < Tn}. Moreover, the covariance matrices of Yn and Xn are block matrices of the form

Cov(Yn) =
(

In −In

−In In

)
and Cov(Xn) =

(
κn −κn

−κn κn

)
,

where κn = Cov(ξn) denotes the covariance matrix of ξn and In = Cov(Yn) is the identity matrix in R
Ωn×Ωn . Now applying

Lemma A.2 with Yn and Xn in place of ηn and ξn yields

P
{‖ηn‖∞ � Tn

} − P
{‖ξn‖∞ � Tn

}
= P

{
max(ηn,−ηn) � Tn

} − P
{

max(ξn,−ξn) � Tn
}

� 1

2π

∑
ω �=ω′

((−arcsin
(
κn

(
ω,ω′)))

+ + (
arcsin

(
κn

(
ω,ω′)))

+
)

exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

= 1

2π

∑
ω �=ω′

∣∣arcsin
(−κn

(
ω,ω′))∣∣ exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

.

Here for the first estimate we used that the two sums over the diagonal blocks give the same value, that the same is
the case for the two off-diagonal blocks, that all terms having ω = ω′ cancel and that Cov(Xn)(ω,ω′) = 0 for ω �= ω′ .
Interchanging the roles of ξn and ηn yields the same estimate for P{‖ξn‖∞ � Tn} − P{‖ηn‖∞ � Tn} and hence implies

∣∣P{‖ηn‖∞ � Tn
} − P

{‖ξn‖∞ � Tn
}∣∣ � 1

2π

∑
ω �=ω′

∣∣arcsin
(
κn

(
ω,ω′))∣∣ exp

(
− T 2

n

1 + |κn(ω,ω′)|
)

. (A.6)

Finally, the estimate |arcsin y| � |y| · π/2 for y ∈ [−1,1] and inequality (A.6) imply the claimed inequality (A.5). �
The following theorem is the main result of this section and the key for most results established in this paper.

Theorem A.8. Let (ξn)n∈N be a sequence of standardized normal vectors in R
Ωn having covariance matrices κn ∈ R

Ωn×Ωn satisfying
Eq. (A.2). Then ‖ξn‖∞ is of Gumbel type (see Definition 1.4) with normalization constants a(χ, |Ωn|), b(χ, |Ωn|) defined by (1.9),
(1.10).

Proof. This is analogous to the proof of Theorem A.4. Instead of Proposition A.1 and Lemma A.3 one now uses Proposi-
tion A.5 and Lemma A.7. �

Eq. (A.2) provides a sufficient condition for the extreme value results of Theorems A.4 and A.8 to hold. However, given
a sequence (ξn)n∈N of normal vectors with covariance matrices κn , it is not completely obvious whether or not (A.2) is
satisfied. In Section 3 we verified that (A.2) indeed holds in the case where ξn = 〈φn

ω, εn〉 are coefficients of standardized
normal random vectors εn having independent entries with respect to an asymptotically stable family of frames (φn

ω: ω ∈
Ωn).

Occasionally we will make use of the following classical result due to Sidak [52] for bounding the maximum of the
magnitudes of dependent random vectors by the maximum of the magnitudes of independent ones.

Lemma A.9 (Sidak’s inequality). Let ηn, ξn be standardized normal random vectors in R
Ωn and assume that the entries of ηn are

independent. Then,

(∀T ∈R) P
{‖ξn‖∞ � T

}
� P

{‖ηn‖∞ � T
}
. (A.7)

Proof. See [52, Corollary 1]. �
Note that a similar result also holds for the maxima without the absolute values, which bounds the probability

P{max(ξn) � T } of dependent standardized normal vectors from below by the probability P{max(ηn) � T } of independent
ones. This one-sided estimate, however, requires the covariances of ξn being nonnegative. It is known as Slepian’s lemma
and has first been derived in [53]. Interestingly, Slepian’s lemma immediately follows from the normal comparison lemma
(Lemma A.2), whereas this seems not to be the case for Sidak’s two sided inequality.
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Appendix B. Remaining proofs

B.1. Proof of Proposition 3.10

As already noted in [12, p. 558], for the universal thresholds σ
√

2 log |Ωn| this result easily follows by adapting the
original proof of [8] (see also [11, Section 8.3] and [12, Theorem 11.7]) from the orthonormal case to the frame case.
Indeed, as shown below a similar proof can be made for the extreme value thresholds Tn = T (αn, |Ωn|) defined by Eq. (3.9).

After rescaling we may assume without loss of generality that σ = 1. Recall that the dual frame (φ̃n
ω: ω ∈ Ωn) has upper

frame bound 1/an , that Φ+
n Φn = Id is the identity on R

In , and that ΦnΦ+
n = PRan(Φn) equals the orthogonal projection onto

the range Ran(Φn) ⊂ R
Ωn of the analysis operator Φn :RIn → R

Ωn . Moreover, we define the parameter xn = Φnun and the
data Yn = Φn Vn as in (2.4). Then we can estimate

E
(∥∥un − Φ+

n ◦ S
(
Φn Vn, T

(
αn, |Ωn|

))∥∥2) = E
(∥∥Φ+

n xn − Φ+
n ◦ S

(
Φn Vn, T

(
αn, |Ωn|

))∥∥2)
= E

(∥∥Φ+
n ΦnΦ

+
n

(
xn − S

(
Yn, T

(
αn, |Ωn|

)))∥∥2)
� 1

an
E
(∥∥PRan(Φn)

(
xn − S

(
Yn, T

(
αn, |Ωn|

)))∥∥2)
= 1

an

∑
ω∈Ωn

E
(∣∣xn(ω) − S

(
Yn(ω), T

(
αn, |Ωn|

))∣∣2)
.

Now we can proceed similar to [8] (see also [11,12]) to estimate the mean square errors E(|xn(ω)− S(Yn(ω), T (αn, |Ωn|))|2)
of one dimensional soft-thresholding.

To that end we use the risk estimate of [11, Section 2.7] for one dimensional soft-thresholding, which states the follow-
ing: If y ∼ N(μ,1) is a normal random variable with mean μ ∈ R and unit variance, then

(∀T > 0) E
(∣∣μ − S(y, T )

∣∣2) � e−T 2/2 + min
{

1 + T 2,μ2}. (B.1)

For our purpose we apply the risk estimate (B.1) with threshold T = T (αn, |Ωn|). The definition of the threshold T (αn, |Ωn|)
in (3.9) immediately yields the estimate

T (αn, |Ωn|)2

2
� log |Ωn| − log log

(
1/(1 − αn)

) − log log |Ωn| + logπ

2
.

Inserting these estimates in (B.1) applied with the random variables y = Yn(ω) having mean values μ = xn(ω) and using
the assumption T (αn, |Ωn|) �

√
2 log |Ωn| yields

E
(∣∣xn(ω) − S

(
Yn(ω), T

(
αn, |Ωn|

))∣∣2) � log(1/(1 − αn))
√

π log |Ωn|
|Ωn| + (

1 + 2 log |Ωn|
)

min
{

1,
∣∣xn(ω)

∣∣2}
.

Finally, summing over all ω ∈ Ωn shows (3.15).

B.2. Proof of Theorem 4.9

Let η = (η(t): t ∈ [0,1]) denote a white noise process on [0,1] and consider the periodic continuous domain wavelets
ψ j,b(t) = 2 j/2ψ(2 j(t − b)). We then define the random vectors Xn as inner products

(∀ j = 0, . . . , log n − 1)
(∀� = 0, . . . ,2 jn − 1

)
Xn( j, �) := 〈ψ j,2 j�/n, η〉.

Hence the random variables Xn( j, �) are coefficients of the white noise process η with respect to a discrete wavelet trans-
form, that is oversampled by factor n at every scale. Comparing this with the definition of the translation invariant wavelet
transform we see that the translation invariant wavelet coefficients Wn,nεn are a subset of the elements of Xn . Hence we
have

(∀T > 0) P
{‖Wn,nεn‖∞ � T

}
� P

{‖Xn‖∞ � T
}
. (B.2)

We proceed by computing the correlations of Xn( j, �) for some fixed scale index. Since η is a white noise process,
the definition of Xn and some elementary manipulations shows that, for all j ∈ {0, . . . , log n − 1} and all indices �, �′ ∈
{0, . . . ,2 jn − 1}, we have

Cov
(

Xn( j, �), Xn
(

j, �′)) = 〈ψ j,�,ψ j,�′ 〉 = 2 j
∫
R

ψ
(
2 jt − �/n

)
ψ

(
2 jt − �′/n

)
dt

= 2 j
∫

ψ
(
2 jt

)
ψ

(
2 jt − (

�′ − �
)
/n

)
dt =

∫
ψ(−t)ψ

((
� − �′)/n − t

)
dt = (ψ̄ ∗ ψ)

((
� − �′)/n

)
.

R R
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Next we construct a random vector Yn with the same index set and pointwise smaller correlations. To that end, for every
given j, we group the index set {0, . . . ,2 jn − 1} into 2 j blocks B j,k = {kn, . . . , (k + 1)n − 1} for any k ∈ {0, . . . ,2 j − 1}. We
denote κ := ψ̄ ∗ ψ and define the matrix

κ̄n
(
( j, �),

(
j′, �′)) :=

{
κ((� − �′)/n) if j = j′ and (�, �′) ∈ ⋃

k B j,k × B j,k

0 otherwise.

Hence we have κ̄n(( j, �), ( j′, �′)) = Cov(Xn( j, �), Xn( j′, �′)) if j = j′ and the indices �, �′ are in the same block B j,k , and the
correlations of κ̄n are zero otherwise. Moreover κ̄n is obviously symmetric and positive semi-definite and hence there exists
a standardized normal random vector Yn whose covariance matrix is given by κ̄n . By construction of κ̄n , the covariances
|Cov(Xn( j, �), Xn( j, �′))| pointwise dominate the covariances |κ̄n(( j, �), ( j′, �′))|. Hence, Lemma A.9 implies

(∀T > 0) P
{‖Xn‖∞ � T

}
� P

{‖Yn‖∞ � T
}
. (B.3)

Inspecting Eqs. (B.2) and (B.3) shows that it remains to compute the asymptotic distribution of ‖Yn‖∞ .
To that end recall that Cov(Xn( j, �), Xn( j, �′)) = κ((� − �′)/n) are densely sampled values of the autocorrelation function

of the mother wavelet. This in particular implies that any block in Yn has the same distribution. Moreover, due to the
independence of the blocks this yields

P
{‖Yn‖∞ � T

} = P
{

max
∣∣Yn(0, �): � = 0, . . . ,n − 1

∣∣ � T
}n

= (
1 − P

{
max

∣∣Yn(0, �): � = 0, . . . ,n − 1
∣∣ > T

})n

= (
1 − P

{
max

∣∣〈ψ0,�/n, η〉∣∣: � = 0, . . . ,n − 1
}

> T
)n

= (
1 − P

{
max

∣∣X(�/n)
∣∣: � = 0, . . . ,n − 1

}
> T

)n
.

Here X = {X(t): t ∈ [0,1]} is defined by X(t) := 〈ψ0,t , η〉. One easily verifies that X is a mean square differentiable normal
process having covariance function κ(t). Moreover the vector Yn(0, �) = X(�/n) consist of n equidistant values of that pro-
cess inside the unit interval. Hence for any sequence of thresholds Tn that tends to infinity as n → ∞ in a sufficiently slowly
manner, one has the asymptotic relations (which follow from standard result of continuous extreme value theory [18])

P
{

max
{∣∣X(�/n)

∣∣: � = 0, . . . ,n − 1
}

> Tn
} ∼ P

{
max

{∣∣X(t)
∣∣: t ∈ [0,1]} > Tn

}
,

P
{

max
{∣∣X(t)

∣∣: t ∈ [0,1]} > Tn
} ∼ 2P

{
max

{
X(t): t ∈ [0,1]} > Tn

}
,

P
{

max
{

X(t): t ∈ [0,1]} > Tn
} ∼ c/(2π)exp

(−T 2
n /2

)
.

Now fix any z ∈ R and define the sequence Tn := (2(log n + z + 2 log(c/π)))1/2. Then the definition of Tn immediately yields
exp(−T 2

n /2) = π/(cn)exp(−z). Consequently, by collecting the above estimates, we have

lim
n→∞ P

{‖Yn‖∞ � Tn
} = lim

n→∞

(
1 − c

π
e−T 2

n /2
)n

= lim
n→∞

(
1 − e−z

n

)n

= exp
(−e−z).

Finally, a simple Taylor series approximation of the square root shows the asymptotic relation

Tn = √
2 log n + x + log(c/π)√

2 log n
+ o(1/

√
2 log n).

Recalling, for the last time, that o(1/an) terms can be omitted in the rescaling of extreme value distributions finally shows

P
{
‖Yn‖∞ �

√
2 log n + x + log(c/π)√

2 log n

}
→ exp

(−e−z),
and concludes the proof.
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