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Appendix A Proofs of the main theorems. Throughout the ap-

pendix, let
Llog ¥ v
2 g h - 10g 7

Wh = loglog %’ Wh = loglog #°
Furthermore, we often use the normalized differential d@¢ := (27)~td¢

PROOF OF THEOREM 1. In a first step we study convergence of the statis-
tic

qul) = sup wp ‘Tt’h _ ETt’h‘ —

Wy,
(t,h)€Bn Vin v/ 9(1)

Note that Tél) is the same as T,,, but g, is replaced by the true density g.
We show that there exists a (two-sided) Brownian motion W, such that with

| [ Yen(9)Vg(s)dWs|

TAW) = sup wy

I

(t,h)€Bn Vin V9(t)
we have
(1) sup  |T\Y — TP(W)| = op(ry).
GEQC,C,q
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The main argument is based on the standard version of KMT (cf. [44]). This
is a fairly classical result, but has never been used to describe the asymptotic
distribution of a multiscale statistic, the only exception being Walther [46].
In order to state the result, let us define a Brownian bridge on the index
set [0,1] as a centered Gaussian process (B(f))(fery, F C L*([0,1]) with
covariance structure

Cov (B(f), B(9)) = (f,9) — (f: 1){g, 1).

For Fo := {z = Ijgq(z) : s € [0,1]}, the process (B(f)){ser,} coincides
with the classical definition of a Brownian bridge. If U; ~ U[0, 1], i.i.d., the
uniform empirical process on the function class F is defined as

v = v (L300 - [ ), e
=1

In particular
Tip —ETin =Un (10 G™),

where G~! denotes the quantile function of Y. For convenience, we restate
the celebrated KMT inequality for the uniform empirical process.

THEOREM 1 (KMT on [0,1], cf. [44]). There exist versions of U, and a
Brownian bridge B such that for all x

JP’( sup |Un(f) — B(f)| > n_1/2(m+Clogn)> < Ke
feFo

where C, K, A > 0 are universal constants.

However, we need a functional version of KMT. We shall prove this by
using the theorem above in combination with a result due to Koltchinskii
[43], (Theorem 11.4, p. 112) stating that the supremum over a function class
F behaves as the supremum over the symmetric convex hull S¢(F), defined
by

ST(.F) = {Z)\lfl i € Fo N € [—1,1],2 |>\2| < 1}.
i=1 i=1

THEOREM 2. Assume there exists a version B of a Brownian bridge,

such that for a sequence (0,)n tending to 0,

P*(sup U (f) = B(f)| = 8u(x + Clogn) ) < Ke ™,
feF
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where C, K, A > 0 are constants depending only on F. Then, there exists a
version B of a Brownian bridge, such that

]P’*< sup |U,(f) — E(f)] > gn(a: +C’ logn)) < K'e N
fese(F)

for constants C', K', N > 0.

In Theorem 2, P* refers to the outer measure, however, for the function
class considered in this paper, we have measurability of the corresponding
event and hence may replace P* by P. It is well-known (cf. Giné et al. [17],
p. 172) that

2)  {p|p:R—=R, suppp C[0,1], p(1) =0, TV(p) <1} C5c(Fp).

Now, assume that p : R — R is such that TV(p) + 3|p(1)] < 1. Define
p = (p—p(1)l1;)/(1—[p(1)]) and observe that TV (p) < 1 and p(1) = 0. By
(2) there exists A1, A2,... € R and t1,1a,... € [0,1] such that p =3 Aoy,
and > |A\;| < 1. Therefore, p = (1 — [p(1)])p + p(1)I}p1) can be written as
linear combination of indicator functions, such that the sum of the absolute
values of weights is bounded by 1. This shows

{p|p:R—=R, suppp C [0,1], TV(p) + 3|p(1)| <1} C 5¢(Fo).

Since TV (¢, 0 G™1) < TV (¢ 4) it follows by Assumption 1 (ii) that the
function class

Fo = {C*Vt;}\/ﬁ Yino Gt (t,h) € By, G € gc,C,q}

is a subset of 5¢(Fy) for sufficiently small constant Cs. Combining Theorems
1 and 2 shows for 8, = n~1/2 that there are constants C’, K’,\ and a
Brownian bridge (B(f)) fese(r,) such that for x > 0, the probability of

(Y0067~ Blis oG

1
> —(z+ C'logn)
(t.h)€Bn, GEG Vin NG }

is bounded by K’e~*'*. Due to Lemma B.11 (i) and I,, > v/n for sufficiently
large n, we have that w;, < w,,. This readily implies with 2 = logn that

7o —ETua] — Bl 00| (i)
(t,h)esgf Gegwh ‘/;57}1 \/'m - vUp \/mwy/n ogn ).
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Now, let us introduce the (general) Brownian motion W(f) as a centered
Gaussian process with covariance E[W (f)W (g)] = (f,g). In particular,
W(f)=B(f)+ (] /)& & ~N(0,1) and independent of B, defines a Brow-
nian motion and hence there exists a version of (W (f))fess(r,) such that
B(f) = — ([ /)W (1). We have

sup wy | [ Yen(u) dG(u)| <l sp wy Cenll
(t,h)EBn, GEG Vin V(1)  (tLheB, Ge¢  Vin V/9(t)

< sup whh1/2<w u1/2

hE[ln,un]

where the second inequality follows from Assumption 1 (ii) and the last
inequality from Lemma B.11 (ii). This implies further

[H [\B Yo G| = W (en o G| | = Otwa,ulf?),
and therefore
W (4 0 G| wy ), logn
T _ | , _al-o wy ul/2),
[T = e = O g+ wal)

and

D = TOW)| = 01,20 2wy g n + w,, ulf?)

Geg

In the last equality we used that (Wt(l))te[()’l} = (W(Ijo,n()))eefo,) and

£l (s)
(Wt)teR=< ; {>03 1% dW(l) )teR

NI

are (two-51ded ) standard Brownian motions, proving W (¢, o G71) =

[ i n(s)\/g(s)dWy and hence (1). Further note that Assumption 1 (iii) to-
gether with Lemma B.10 shows that

Pi.p(s)dWs
7&2)(W)_(t Z;lpB whlf t;z/fh) ‘
,h)EBy, ,

- @h’ = Op(/ﬁ:n).
Geg

In a final step let us show that (13) is almost surely bounded. In order to
establish the result, we use Theorem 6.1 and Remark 1 of Diimbgen and
Spokoiny [12] We set p((t, ), (¢, ")) = (|t — /| + |h — K'|)}/2. Further, let
X(t,h) = W Yuen(s)dWy and o(t, h) = h/2.
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By assumption, X has continuous sample paths on 7 and obviously, for
all (t,h),(t',h)eT,

a?(t,h) < (', h') + p*((t, h), (', 1))).

Let Z ~ N(0,1). Since X (t,h) is a Gaussian process and Vij, > ||d¢nll2,
P(X(t,h) > o(t,h)n) < P(Z > n) < exp(—n?/2) for any n > 0. Further,
denote by

!
YenVh B Y VR
Vin Vir ne

(3) At,t’,h,h' = H

Because of P(| X (t,h) — X (¢',1')] > At7t/,h7hr77) < 2exp (—n%/2) we have by
Lemma B.6 for a universal constant K > 0,

P(|X (5 h) = X ()] = pl(t h), (¢, W))n) < 2exp (= 0P/ (2K2)).

Finally, we can bound the entropy N ((6u)'/?,{(t,h) € T : h < §}) similarly
as in [12], p. 145. Therefore, application of Remark 1 in [12] shows that

VElog g | [un()aws]  log(})log($)
S := sup -

(t,h)ET log (e log %) Vin log (e log %)

is almost surely bounded from above. Define

/ \/31log ¥ | [ by n(s)dWs| log(3) log(¥)
S':= sup — )

(t,h)ET log log % Vi log log %

If e < v <ef, then

log log ¥ = log (log” log he%@) > loglogv — 1+ log (elog )

implies

log (e log %) < 1

1.
loglogy ~ loglogv +

Furthermore, logv/h < (logv)(loge/h). Suppose now that S’ > 0 (otherwise
S’ is bounded from below by 0). Then, S” < S and hence S’ is almost surely

bounded. Finally,
,/log%‘\/log% — ,/logﬂ <logwv.
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Therefore, (13) holds, i.e.
’ f¢t,h(s)dWs’ ~
sup wp——————— — Wy,
(th)eT Vi

is almost surely bounded.

In the last step, it remains to prove that supgeg, . |Tn—T7(Ll)| = Op(supgeg [|Gn—
9lloo logn/loglogn). For sufficiently large n and because G € G, g, > ¢/2
for all t € [0, 1]. Therefore using Lemma B.11 (i),

‘Tt,h — E[TthH SUPGeg H§n - 9”00

wup|Th-T < s w

GeG (t,h)EBn, GEG Vin /9(t) gn()
2su Tn — Ty — E[T;
< PGeg Hgn QHOO sup w ‘ t,h [ t,hH
c (t,h)EB,, GEG Vt,h g(t)
25upgeg ||9n — 9 _
< €9 H n Hoo (TT(LI) + sup wh)
c he[ln,un]
2supgeg H/g\n - gH logn
4 < 0 (T(M) 4+ O(—=>—)).
(4) - c (T2 (loglogn))
Since T, 79) is a.s. bounded by Theorem 1, the result follows. O

REMARK 1. Next, we give a proof of Theorem 2. In fact we proof a
slightly stronger version, which does not necessarily require the symbol a to
be elliptic and Vi, = ||ve pll2. It is only assumed that

(i) Vi > [Jvenll2,
(ii) there exists constants cy,Cy with 0 < cy < hm+r—1/2Vt’h <Oy <o
(iii) for all (t,h),(t',h') € T and whenever h < h' it holds that h"™*" |V, ), —

Vil < Cy(Jt =] + [l — B)1/2,

As a special case these conditions are satisfied for Vi, = ||vep||2 and op(a)
elliptic. This follows directly from Lemmas B.3 and B.5.

PROOF OF THEOREM 2. In order to prove the statements it is sufficient
to check the conditions of Theorem 1. For h > 0 define the symbol

(5) app(2,€) == h"a*(xh+t,h ).

Under the imposed conditions and by Remark B.1 we may apply Lemma
B.2 for alth) = ayj, and therefore, uniformly over (t,h) € T and u, v € R,

(1) Jvep(w)] < A" min (1, ﬁ)
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(ID) for(0) — v ()] S A" — o] and if u, o’ £ 1,

u — |

U
1
_ / <h1—m—7":h1_m_r/ ——dx]|.
()= ()| S B ], G

Using (I), we obtain [|vtpllec S A" and ||vzplt S A", In order

to show that the total variation is of the right order, let us decompose vy p,
further into vt(l}z = Vg nl—pyqn) and UEZ}Z = Vp — vil}z By (II), TV(USB) <
h™™~" and
TV(u2)) S R 4 B / h L e
’ t4h (T —1t)

Since TV (vyp) < TV(v (1)) + TV(v (2)) < h™™77, this shows together with
Remark 1 that part (i) of Assumption 1 is satisfied.

Next, we verify Assumption 1, (iii) with s, = sup( p)ep, wphY?log(1/h) <
u? log®?n (cf. Lemma B.11, (ii)), i.e. we show

TV (00n() /90 — VIO

sup wp, ) < u,ll/Q log?’/2 n
(t,h)€By, GEG Vin

By Lemma B.12, we see that this holds for v j, replaced by vflh) Therefore,

it remains to prove the statement for v( ) Let us decompose v§ h) further

1 2 2 2 2,1
into vfh ) = U h]l[t Li1)n[t— ht_;’_h]c and v( ) = vgh) — vgh ) = = vt pllp— 1,041

For the remaining part, let u,u’ be such that |lu—t| > \u —t| > h. We have

V(@i OO = Vel 07 5 [oi OO = Vo]
(6) +TV (03 O [Va() = VD))
Using (I) and (II) together with the properties of the class G we can bound
the variation ’v(Q 1) (w) [V g(u) —/9(t)] — vt(?};l)(u’) Vo) — \/g(t)” by
o () = w3 )] - V@) = Vo) + oy ()] - [valw) = Vg ()]

<h1mr|u u|_|_h2—m rlu— U\ hlmr|’u u|§h1mr‘/ = t‘d.CE‘

lu—t| [u—t[? S u

Due to h > 1, 2 1/n this yields

t+1
(21) \/7 F)<h1mr+h1mr/ du

t+h |u—1|
< plomer log% < AT logn
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and with (6) also

(7) ( e [\/7 \/7] %) S R log .

(2,2)

Finally, let us address the total variation term involving Ch . Given G c 4
we can choose a such that & > 1/2 and a+ ¢ < 1 (recall that 0 < ¢ < 1/2).
By Lemma B.7, we find that

o () () = o3 (W) (W) S B

/ u 1 n 1 d
w @0 @2l

Moreover

(1+ /| + fuf)Te
(34 2u— )7 < 3+ 2/u — t[7H*

(@) (14 [u'| + [u)? <
<

and thus
52 ] Vo) - Vo) S e
This allows us to bound the variation by
o157 () [V () = Vo] () = o5 () [V g (') = Vg @)] ()|
shw;wxwﬂ\Jﬂw—VGGM+;@mﬁ<m< — o2 () )|

“ 1 1 1
< pl—m-r d ‘
~ A,@—w%wa+@—w%a+@—w2x
and therefore we conclude that
2,2 o
V (5O [Va0) — Ve ()
& 1 1 1
< hlfmfr hlmr/ d
~ " i @— e  @opre @™

< hl—m—r‘

Together with the bound for vilh) and (7) this yields Assumption 1, (iii).
Finally, Assumption 1 (iv) follows from Lemma B.5 and Remark 1 due to
¢ € HImtmln gr4+m+1/2 supp ¢ € [0,1] and ¢ € TV(D"™1¢) < oo. This
shows that Assumption 1 holds for (v, Vip).
In the next step, we verify that (¢,h) — X(t,h) = \/EVt_hl [ ven(s)dW,
has continuous sample paths. Note that in view of Lemma B.10, it is suffi-
cient to show that there is an o with 1/2 < a < 1 such that

TV ((\/ﬁthhlvt,h — \/ﬁ‘/tzflﬂ’l}t/’h/)<'>a) — 0,
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whenever (¢, h') — (¢, h) on the space 7. Since Assumption 1 (iv) holds, we
have

|h — W] Lyl \F\Vt/h/—%,hléo
Vih th Vir ’

)

VRV - VAV L] <

for (¢,h’) — (t,h). By Lemma B.7, TV (v 4(-)(-)*) < oo. Therefore, it is
sufficient to show that

(8) ™V ((vt,h — U,y,h/)<'>°‘) — 0, whenever (¢, ') — (t,h).
Using (18), we obtain

(K73 ar ) (u)

= Ut h — V¢ w

=h" / N:(£)F(Oplagy) (¢ — ¢ o Sy o0 Spyh)) (s)e* D/ hds

and by Remark B.1, we can apply Lemma B.2 again (here ¢ should be
replaced by ¢ — ¢ o Sy 0 S, }}) In order to verify (8), observe that by

Lemma B.7 it is enough to show |¢ — ¢ o Sy o St_thHq — 0 for some
) 4
G >r+m-+3/2 whenever (t',h') — (t,h) in T. Note that

6= 6 0 Sua o Sl

4 2
= %Z / (27| F((76) 0 Sun) (5) = F((St (1) (& 0 St ) (s)] ds

2
< 7 2@ 0 Sip = (276) o Sy
7=0

O+ [EF(Sew ) = SOV @0 Srar)(s)] ds

with (Spu(s))! = (Tt) For real numbers a,b we have the identity a/ —
b = Zif:l (lz) v*=t(a — b)¢. Moreover, we can apply Lemma B.5 for § with
m+r+3/2<q<|r+m-+5/2] (and such a g clearly exists). Thus, with
a = Sth( ) b= St/ h’( ) and St,h — St/’h/ = (h/hl — I)St/’h/ — (t/ — t)/h the
r.hs. of (9) converges to zero if (t',h') — (¢, h).

O

PROOF OF THEOREM 3. By assumption, pr(z,&) = aR(x,g)\ﬂVngl with
ag € S™ and Ty + 71 = m’. Recall that pp(z,§) = ap(){[™. Since ap
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is real-valued, Op(ap) is self-adjoint. Taking the adjoint is a linear operator
and therefore arguing as in (18) yields

F(op(p)* (¢ 0 Sen))(s) =ls|"es"F(ap(¢ o Sin))(s)
+ s[5 F(Op(ak)(¢ 0 Sin)) (s).

Decompose v; p, = vﬁz + Ut(Q,z with
o) () = / N () (ap (6 0 Sen)) ()™ ds
= [N (D) (aplho+ )0 s)es s
o) = [N (Oplar)(60 Si)) (s)eds

=i [ ()7 (Op(a{ o) (s)ei 0 s

using similar arguments as in (18) and agllz(:c,ﬁ) = W™ ag(xh + t, h1E).

For j = 1,2 we denote by Tt(i) and Tf ') the statistics T; ,, and TP with Vi h
replaced by Ut(,jf37 j = 1,2, respectively. Recall the definitions of ¢ and 7 and
set

vfh(u) := Aap(t) / |s|" T PR (p o th)(s)eis“ds

— AN ap(e) [ s () (s)e e s

(10) = Aap(t)DI DT ¢ (%1).
Further let
Vi o= lvfnlle = [Aap@)[[| D56 ((—=t) /h)||, = B> Aap ()] | D,

and

J Re v (s)dw,
Tf’(l)m(W) = sup wp ‘ bh }—\/QIOg%

P
(t,h)€Bn Vin

Note that for the approximation of T’ we can write

- [ Rev?, (s)dW;
Tr®(W) = sup wh<‘ ‘t/}%t ‘—1/210g% :
t,

(t,h)EBn
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Since | TP ~T > (W)| < |TF =T |+ T =102 (W) |-+ 13 (W) —
TF>°(W)] it is sufficient to show that there exists a Brownian motion W
such that the terms on the right hand side converge to zero in probability.
This will be done separately, and proofs for the single terms are denoted by
(I),(II) and (I1I). From (II) and (I1I) we will be able to conclude the
boundedness of the approximating statistic.

(I): Tt is easy to see that for a constant K, Hvﬁz |2 < Kh'/2=m'—r —. th}zl
By Remark 1 and

TS5 ~ET3)| .
. ]sluean wh( N0 VR 2log (E))

4+ sup wp 210g(%)),
he€[ln,un]

Vil
Ty - TP < sup (
hE[ln,un]

we can apply Theorem 2 where m should be replaced by m’, of course.

Because of u*~™ logn — 0, (I) is proved.
(II): We show that there is a Brownian motion W such that [T},
P,(1 (1 1 1
T30 < PO T T T (W) T~ O (o)

= op(1) with

P(1)

. ‘T 1) T(l)‘
T .= sup ( log (%))
(t,h)€By V gn(t ||UthH2

and

(1)
~ R VAW
T\ (W) == sup wh( [ Revis () ‘ 2log (%))

(t,h)€Bn vV Gn(t) Hvt nll2

Since by Assumption 4, a, € SY is elliptic and pp € S™, we find that
T — T (W)| = op(1) and

(11) TM>(W) < sup
(t,h) ET

(|fRevth dW‘

Van® o3l

by applying Theorem 2. Moreover, similar as in (4) and using wy /2 log (%)
1

log (%)) <00 a.s.

)

o Vi — gl
(S;%E‘TP ,§1>\§ sup  wp 210g(h)tv;i

sup T(V)

(t,h)EBn, ( Geg
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and

}f(l),oo(W) o TP,(l),oo(W)’

< sup wpy/2log (%) ‘ Lh V’}Lvthu }<1+ﬁ§1)»00(W)>.
t,h

(t,h)EBn

To finish the proof for (I7) it remains to verify

v — v
(12) sup wm/QIOg(}”L)Ht’hvp’thzo(l),
h

which will be done below.
(III): By Lemma B.10, we obtain \Tf’(l)’oo — TEP®| = op(1) if for some
a>1/2

13 sup  wp : =o(1).
(13) (t,h)€Bn Vi )

Let x be a cut function, i.e. x € S (the Schwartz space), x(z) = 1 for

€ [—1,1] and x(z) = 0 for x € (—o0, —2] U [2,00) and define pf}f(x,g) =
hix(@)(ap(zh+1) — ap(t) and py) (@, €) = (wh) 11— x(x))(ap(wh+t) -
ap(t)). Then, pgl,z,pg’zlz € 5% and (ap(-h +t) —ap(t))¢ = hOp(pS,Z)(]ﬁ +
hOp(pt h)( x¢). Define the function

(14) iy iz/eis('t)/h(;(fe)l(_z)—ALS’J\Z\T)LS“S\mf<¢)(8)ds

and note that
ldally S B2 [ ()2 ) 5) s S R ol
with 55 := Bo A (m + 7). Using (17), we have now the decomposition
(15) o) — vy = RETp) + kK 4 ap(t)h "y,
where ¢ needs to be replaced by x¢ in the second term of the right hand

side. By assumption there exists ¢ > m-+r+3/2 such that ¢ € HY. Since the

assumptions on pillz and p§2}3 of Lemma B.2 can be easily verified, we may



CONFIDENCE STATEMENTS FOR QUALITATIVE FEATURES 13

apply Lemma B.2 to the first two terms on the right hand side of (15). This
yields together with Lemmas B.7, B.8, and B.9, uniformly over (¢,h) € T,

TV ((vf), — o) ()%

< TV ((hK}) h Piﬁ + hEy pth +ap(t)h " dp) () Tp—1,p41])
(
t

+ TV (Ut,h<> IR\ [t— 1t+1]) + TV (v 1}2() IR\t 1t+1])
Shl_m_r+h’30 m—r hl r—m

Since m +r > 1/2 this implies (13). From the decomposition (15) we obtain
further vah - "’151}2 o < h3/2=m=r 4 p1/2+B5=m=7 and this shows (12). Thus,
the first part of the theorem is proved.

Finally with Lemma B.10 it is easy to check that (11) implies that (27) is
bounded since (12) and (13) also hold with B,, and o(1) replaced by 7 and
O(1), respectively. O

Appendix B Technical results for the proofs of the main theo-
rems. We have the following uniform and continuous embedding of Sobolev
spaces.

LEMMA B.1. Let P C 8™ be a symbol class of pseudo-differential oper-
ators. Suppose further that for a € {0,1}, k € N and finite constants Cy,
depending on k only,

sup 050 p(x, )] < Cr(L+ €)™, Va, £ €R.
pe

Then, for any s € R, there exists a finite constant C, depending only on s, m
and maxXy<i4a(s|+2|m| Ck, such that

sup || Op(p)¢l ggs-—m < Cli@llms,  for all ¢ € H”.
peEP

PROOF. This proof requires some subtle technicalities, appearing in the
theory of pseudo-differential operators. By Theorem 2 in Hwang [42], there
exists a universal constant C1, such that for any symbol a € S°,

(16) | Op(a)ulls < 1 max [[970¢a(a,€)| g lulls, for all w e L2

For r € R denote by Op((£)") the pseudo-differential operator with symbol
(x,&) — (&)". It is well-known that this symbol is in S”. Throughout the
remaining proof let

C =C(s,m, max  Cy)
k<1+2|s|+2|m|
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denote a finite but unspecified constant which may even change from line to
line. In order to prove the result it is sufficient to show that

Sup | Op((€)*™™) 0 Op(p) © OP({€) *)¥||, < Cll¢|l2,  for all ¥ € L?
p

(set ¢ = (D)~*1). The composition of two operators with symbols in S™
and S™2, respectively, is again a pseudo-differential operator and its symbol
is in ™1 ™2 Therefore, the operator A : P — SY mapping p € P to the
symbol of Op({£)*~™) o Op(p) o Op({¢)~*) (which is in SY), is well-defined.
With (16) the lemma is proved, once we have established that
. 5, 105 O S0 <

It is not difficult to see that Op(p) o Op({£)~*) = Op(p(¢)~*). By Theorem
4.1 in [40], Ap = (§)* "#(p(&)~*), where # denotes the Leibniz product,
i.e. for pM) € §™ and p@ e ™2, pM#4p() can be written as an oscillatory
integral (cf. [40, 47]), that is

(PV#p®) (2, €) = Os - / / ey (2, € + )p® (& + y, €)dydy

= lim / / x(ey, en)e”V1pW (z, € + )p@ (z + y, &) dydn,

e—0

for any x in the Schwartz space of rapidly decreasing functions on R? with
x(0,0) = 1. Further for a € S™ and arbitrary [ € N, 2] > 1+ m,

Os — / / e~ Wa(y,n)dydn
/ / TIy) 21— 0) [() (L — ) aly. m)] dydn

and the integrand on the r.h.s. is in L' (cf. [47], p.235). This can be also
used to show that differentiation and integration commute for oscillatory
integrals,

000 05— [ [ (e maydn = 0s— [ [ e mozofae.y. ¢ myn.

Using Peetre’s inequality, i.e. (€ +n) < 2151(¢)lsl(n)®, we see that for a, § €
{0,1}, p € P, and (z,§) fixed, the function (y,n) — 858?(5 + )5 "p(x +
y,&)(&)~° defines a symbol in S*~™. Hence, for £ € N, 1 < 20 — |s —m]| < 2,
a, B € {0,1}, p € P, we can rewrite 358?/1;0(3:,5) as

/ / )AL= ) () (1 = ) OJ0L € + )Tl + y. )(6) ] dydn.
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With the imposed uniform bound on Gf,fﬁgp(x,é’) we obtain, treating the
cases @ = 0 and o = 1 separately,

sup |070¢ Ap(x. €))|

/| 2£<€_’_ns m‘dn
/| 2€8<£+775 m‘dn]
< C+C<5>m‘5[/!8§<n>_2£<£+n>s_m|dn+/\5$<n>_2zag<£+n>s‘m\dn]

using Peetre’s inequality again and 2¢ > 14 |s — m| for the second estimate.
Since (§)? € S7 for ¢ € R, it follows that [9¢(£)9| < (£)97%, and since (.) > 1,

2
873< > 2[ 5_‘_,'7 s m Z —20— k §+ >s m—2+k 5 (,’7>—2€<£+n>s—m.
k=0

Similar for the second term. Application of Peetre’s inequality as above
completes the proof. ]

Note that for bounded intervals [a, b], partial integration holds f; flg =

falb — fab fg' whenever f and g are absolute continuous on [a, b]. As a direct
consequence, we have [, f'g = — [ fg' if f/ and ¢ exist and fg, f'g, fg' €
L.

In order to formulate the key estimate for proving Theorems 2 and 3, let
us introduce for fixed ¢ a generic symbol alt) € §7 and X = Ay as in (21):

a7 (KT () = h—m/)\(}sl)]:(Op(a(t,h))¢)(S)eis(u—t)/hdxs‘

From the context it will be always clear which ¢ the operator K V’h 7 (th)

refers to. To simplify the expressions we do not indicate the dependence on
¢ and f. explicitly.

REMARK B.1. Recall (5) and note that if a € S™ then also aiy € S,
Due to

(Op(as)¢) o Spn = k™™ Op(a*)(¢ o Syp)

we obtain for vy, in (20) the representation,
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LeEMMA B.2.  Fora®M) € §™ and v+ = m let K;’}Zma(t’h) be as defined
n (17). Work under Assumption 2 and suppose that

(i) ¢ € H] withq>m+r+3/2,
(ii) v € {0} U[1,00), and
(iii) for k € N, a € {0,1,...,5}, there exist finite constants Cy, such that

sup ‘8§8§‘a(t’h) (,8)] < Ce(@ +|ED™,  for all z,€ € R.
(t,h)eT

Then, there exists a constant C = C(q,r,~,m, Cj, Cy, maxy<aq Cr) (C
and Cy as in Assumption 2) such that for (t,h) € T,

(i) [(K75 M) ()] < Ol rgh= =" min (1, 5255),
(i) (770 ) = (K376 )| < Cllggh™— a1 and for
u,u’ #t,

|(K%Wa(t,h))(u) _ (K%ma(t’h))(u/” < C|¢| qw
t,h t,h — Hy ’U,/—t’ ’U,—t‘
1 v

=C h M —dzx|.
Jollugh' | [ 2l
Proor. During this proof, C' = C(q,r,~v,m, C}, Cy, maxy<aq C)) denotes
an unspecified constant which may change in every line. The proof relies
essentially on the well-known commutator relation for pseudo-differential

operators, [z, Op(p)] = i Op(0ep), with O¢p : (z,§) — Oep(x,&) (cf. Theorem
18.1.6 in [24]). By induction for k € N,

k

k
k (t,h)y — -7 r (t,h)\, k=1
(19) " Op(a'™")) E <T>z Op (aga )a:

r=0
As a preliminary result, let us show that for £ = 0,1, 2 the L'-norms of
(20) (s) DE A(3)F(Op(a™™)¢)(s),

are bounded by C'|¢[|ggh™""7. Using Assumption 2 and Lemma B.1 this
follows immediately for k =0 and ¢ > r +m + 3/2 by

/‘ % Op(a(th ‘ds<C 1y,—r— «YH (VFHY F(Op(a th H1

< On~" 7 Op(a®)6]
(21) < Ch™")|@l|za-
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Now, at") ¢ §™ implies that for k € N, 8§a(t’h) e Sk < S™ Since by
(19), Assumptions (i) and (iii), and Lemma B.1,

(22)  |l{@)?Op(a™™)glly < [1(1+ 2*) Op(a®M)g||5 < Cll¢ll pgm < o0,
we obtain for j € {1,2},
DIF(Op(a™M)¢) = (—i) F(a? Op(a®™)p)(s)

by interchanging differentiation and integration. Explicit calculations thus
show

DA(3)F(Op(a®™)¢)(s) = (DsA(3))F (Op(al")¢) (s)
— A7) F (= Op(a“ M)g)(s)
and
DIA(£)F(Op(a®M)¢)(s) = (DIA(£)) F (Op(al™™)p)(s)
= 2i(DA(3))F (z Op(a™)¢) (s)
(23) — A(2)F(2* Op(a™)p) (s)

To finish the proof of (20) let us distinguish two cases, namely (I) v €
{0} U[2,00) and (I]) v € (1,2).

(1): For k =0,1,2, s # 0, we see by elementary calculations, } Dk)\( )‘
< Ch~ " {s)m*+1 Using (19) and arguing similar as for (21) we obtain
(replacing ¢ by x¢ or 22¢ if necessary) bounds of the L!'-norms which are
of the correct order ||¢|\th_r_7.

(II): In principal we use the same arguments as in (/) but a singular-
ity appears by expanding the first term on the r.h.s. of (23). In fact, it is
sufficient to show that

1 D2‘§"YLS—# ()
/ WHF(Op(a ")) (s)|ds

1
< | F(Op(at)) | / 15| ~2ds
1
< G| Op(a Mg || < O 1) g

where the last inequality follows from (22). Since this has the right order
"¢l e, (20) follows for « € (1,2).
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Together (I) and (II) prove (20). Hence, we can apply partial integration
twice and obtain for t # wu,

(24)
hZ—W

(KT a®M) () = N oEn / =/ D2X(2) F(Op(aM)¢)(s)ds

and similarly, first interchanging integration and differentiation,
D (Kv;l o h))(u) ] /eis(“_t)/hs)\(‘;)}"( Op(a(t’h))¢) (s)ds

iht—m ,
(25) = — =1 /e“(“_t)/ths)\(fl)]:( Op(a(t’h))qﬁ) (s)ds

(i): The estimates |(K7hma (R (w)] < Cllgllgah™™"" and |(K]}, " abh)) (u)|
< C”‘ZSHHZhQ m=T /(u —t)? follow directly from (21) as well as (24) together
with the L' bound of (20) for k =2.

(i4): To prove |(K7}"altM))(w) — (K" a®M) ()| < C|@] grgh™™ " u —
u'| it is enough to note that |e** —e"| < |x —y|. The result then follows from

(21) again. For the second bound, see (25). The estimate for the L'-norm of
(20) with k& = 2 completes the proof. O

LeEmMA B.3.  Work under the assumptions of Theorem 2. If v p, is given
as in (20), then,

Hvth||2 > h1/2 m—r.

PROOF. We only discuss the case v > 0. If v = 0 the proof can be done
similarly. It follows from the definition that

1+ s>

ol = W’f( Op(a )(@f)ost,h))(s)‘QdS
B H}"(Op( *)(¢ o Sen)) H
F(f) (=) 2

Since the adjoint is given by a*(x, ) = e%%a(x, £) in the sense of asymptotic
summation, it follows immediately that a*(z,&) = a(z,§) + r(z,§) with r €
S™=1  From this we conclude that Op(a*) is an elliptic pseudo-differential
operator. Because of a* € S™ and ellipticity there exists a so called left
parametrix (a*)~' € S7™ such that Op((a*)~!) Op(a*) = 1 + Op(a’) and
a’ € §7°°, where S~ =", S™ (cf. Theorem 18.1.9 in Hérmander [24]). In
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particular, ' € S~!. Moreover, Op((a*)~!) : H™*7 — H"™ is a continuous
and linear and therefore bounded operator (cf. Lemma B.1). Introduce the
function @ = (- Vv 0)2. Furthermore, by convexity, 1 + |s|?Y > 277(s)?7 and
there exists a finite constant ¢ > 0 such that

’]_-1(;“‘}_(013 Yo Sun))(s)|ds

> 277CF|| Op(a*) (¢ © S I7r+4

2 10p((a*)™") Op(a*) (¢ © St.n) I3r+m

= (1 + Op(a’))(¢ 0 Se.p)l[3rsm

> Q(ll¢ 0 Seallgrrem — || OP(@)(d 0 Spp)l| rrsm)
> Q(Il 0 Sellrr+m — clld o Sepllprrsm—1)

> h/ (14 [2[)™ | F(6)(s)[2ds + O(h21=r=m)
> h1—2(r+m) / |S|2m+2r|}-(¢)(8)‘2ds + O(hQ(l_T_m)).

On the other hand, we see immediately that

F(Op(a*)(¢o Sen)) H 2
< || Op(a”)(¢o S .
== ” )l
<|lpo StthHrer < pl—2(r+m)
Since ¢ € L? and h tends to zero the claim follows. O

LEMMA B.4 (Diimbgen, Spokoiny [12). , p.145] Suppose that supp ¢ C
[0,1] and TV (¢)) < co. If (t,h),(t',h') € T, then

[ (5) = v (5)

Let [z] be the smallest integer which is not smaller than x.

\2 <2TV()?(Jh— K|+t —t]).

LEMMA B.5. Let0<{<1/2 and q > 0. Assume that ¢ € HI9I 0 HI+C,
supp ¢ C [0,1] and TV(D!91¢) < co. Then, for h < I,

160 S — 60 Suaellze < hy/|t — /2 + |1 — ]

In particular, for ¢ € HI"*™INH™m+1/2 supp ¢ C [0,1] and TV(DImlg)
< oo, h <M,

v —vpprlla SHT"|E =]+ |W — hl.
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PROOF. Since

|60 e — b0 Supl[5s

< [ - O P E () s+ [o(7)
and |1 — =) < 2min(|s||t — ¢/[,1) < 2min(]s|¢|t
we obtain

N2
*Qb(W)HHq
— 1|4, 1) < 2fs[f[t — ¢,

HQ/)OSth—QSOSt'h'

SIe= PR o) - (o) [
(note that ¢ € HI*%). Set k = [q]. Then

16(:) = @G [za < 127200 = (i 0
SHTe— 65

P)lls +n D 0= o)

For j € {0, k},

1D7 (6 — o ()| < 2|6 — 6D (& )|z +2(0 = (5))?[e (& )]
Sho 1H¢J>(g)—¢><f G|l + 11— | A= 9)3.

Now, application of Lemma B.4 completes the proof for the first part. The
second claim follows from

ven — ve |2 = / IA(s)[2|F(Op(a*) (b o Sep — b o Sum)))(s)| ds
SléoSin— o Suw?

Hr+m .

O
LEMMA B.6.

Let Ay pp be defined as in (3) and work under Assump-
tion 1. Then, for a global constant K > 0

Ay < K/t —t]+|h—W|.

PrOOF. Without loss of generality, assume that for fixed (¢,h), Vip >
Vi nr. We can write

A Wthf Yy VI |2
e bt <

1 1
++Vh v _— =
Vi eenlely = v
Hwth\[ Yy wVh ||2 ﬁIVth Vt’h"
7
t,h

Vin
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By triangle inequality, ||v;,Vh — Yy V|2 < Ve — Ypprlla + VR —
V| (|9 p 2. Thus,

o

)

Appnp <

Ve — Yo wrll2 + Vi — Vt/,h/|) ++/|h— W]

If b’ < h, then the result follows by Assumption 1 (iv) and some elementary
computations. Otherwise we can estimate Vi < |h —R'| + Vvl and so

Vh
v < (e = weello + Vin = Viewl ) +5v/h =W
O

REMARK 2. For the proofs of the subsequent lemmas, we make often use
of elementary facts related to the function (-)* € S with 0 < a < 1. Note
that for t € [0,1], Dy(u)® < a{u)*™t € S D, (u)* < «a,

(26) (W) < (14 u|®) <14+|u—t* and (W) ' <2u—t*1,

N

where the last inequality follows from |u— |1~ (u)*~1 < Jul=*(u)*~1 +1 <
2.

LEMMA B.7. For (t,h) € T let v} be a function satisfying the conclu-

sions of Lemma B.2 for r,m and ¢. Assume 1/2 < a < 1. Then, there exists
a constant K independent of (t,h) € T and ¢ such that

/“ 1 n 1 d
v @@=t T @—p2 ™l

‘rt,h(u)<u)o‘ - rt7h(ul)<u'>°‘| < KHngHZhl_m_r

for all u,u #t and

TV (ren() Le—1,41) < Klgllgah™™ ",
TV (Tt,h<->aHR\[t_1,t+1]) < KH¢HHZh1—m—r_

PROOF. Let C be as in Lemma B.2. In this proof K = K(«,C) denotes
a generic constant which may change from line to line. Without loss of
generality, we may assume that |u — t| > |u’ — ¢|. Furthermore, the bound
is trivial if v’/ <t < w or u < t < /. Therefore, let us assume further that
u > >t (the case u < u' <t can be treated similarly). Together with the
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conclusions from Lemma B.2 and Remark 2 this shows that

‘rt7h(u)<u>°‘ — rt,h(u')<u'>°“

< |ren(u)] [(w)® = @) + @) |rep(u) — rep ()]

1 1-m—r ‘u/_t‘a—i_ 1
+h

I D B _ /
(u— )2 mﬁ%Hu—ﬂhu wl.

< K]\l g [n27

Clearly, the second term in the bracket dominates uniformly over h € (0, 1].
By Taylor expansion

|lu — /| u—u

o/ —t]=e ju—t]  (u—t)(u — ) o (u —t)l-

(u _ t)l—a _ (u/ _ t)l_a _ u 1
ST L, G

e ‘“"‘/

completes the proof for the first part. For the second part decompose ¢ pl};_1 141

in T§1}3 = rtpl[t—nt+n) and 7“152,3 = renlp 101 — 1"151}3 Observe that the con-

clusions of Lemma B.2 imply

Hence,

TV (r$ (0% < 1 Do ismlloo TV + TV ()T pin) 15 oo

) )

< K¢llgh™".

By using the first part of the lemma, we conclude that uniformly in (¢, h) €
T,

TV (ren () Tg—1,441)) < TV (r§1]2< )+ TV (r (2)< %)
< K| g (0 B

and also TV (Tt,h<'>a]IR\[t—1,t+1]) < KHQZ)Hthl_m_r. OJ

LEMMA B.8.  Work under Assumptions 2 and 8 and suppose that m—+r >
1/2, (x)¢ € LY, and ¢ € H" "L, Let dy, be as defined in (14). Then, there
exists a constant K independent of (t,h) € T, such that for 1/2 < a <1,

TV (den () Lp—1,441]) < KRN~ og (%)
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PRrROOF. For convenience let 55 := o A (m +r) and substitute s — —s in
(14), i.e

. 1 r
di (1) = / ezs(ut)/h(w — A" s F () ().
Define

1 o
Fy(s) := ]:(T)(%) —AL?’E} .

By Assumptions 2 and 3, we can bound the L'-norm of
(27) s = () Fn(s)e]s[™ F () (—s)

uniformly in (¢, h) by [(s)(£) %] \m|]~" }ds Bounding (£)7~ by
()" A and considering the cases r < 3} and r > By separately, we find
RI =T [(s) T +m=B5| F($)(—5)|ds < W% ~||@|| ggr+m+1 as an upper bound for
(27), uniformly in (¢,h) € T. Furthermore,

D.F(s) = —2Z UM E)S(EZ Arief R
(F(fI)
and by Assumptions 2 and 3,
1
SD Fp(s)| < |sDsF(fo) (%) A22p‘ |2r_7
| ‘ Dl (f(fe)(i))Q‘

+ |Alr| ]| -
SR +BIE P <2,

Similarly as above, we can conclude that the L'-norm of

AGri) T E D (5) 1

s+ DssFp(s)il|s|" F(¢)(—s)

is bounded by const. x %" ¢|| pr+m+1, uniformly over all (t,h) € T. There-
fore, we have by interchanging differentiation and integration first and par-
tial integration,
Dudea(w) = 5 [ se 0By (5)ek]s1" () (—s)ds
1 ,
_ / =i/ D B ()10 () (—s)ds

u—t
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and the second equality holds for u # t. Together with (27) this shows that
|dip(w)| S %" and | Dydyp(u)| < A% "' min(1, h/|u—t|). Using Remark
2 we find for the sets Al(tl}z == [t — h,t+ h] and AEQ}B =[t—1,t+1] \Aﬁz,

TV (dppIy—1041) < 2lldinlloo + / o 1 Pud g (u)|du + / 2y | Dutle,p (1) du
At,h At,h
<K log (1).

Thus, TV(dip () Ty-1441) S ldinllos + TV(diply—1441) S 20" log (£).
O

LEMMA B.9. Work under the assumptions of Theorem 3 and let vfh be
defined as in (10). Then, for 1/2 < a < 1,

Tv(vfh<'>aﬂR\[t71,t+l]> < Kptmrm,
where the constant K does not depend on (t,h).

PROOF. The proof uses essentially the same arguments as the proof of
Lemma B.2. Let ¢ := |[r + m + 5/2] and recall that by assumption (z)?¢ €
L'. Decomposing the L'-norm on R into L'([-1,1]) and L'(R\ [-1,1]),
using Cauchy-Schwarz inequality, and ||F(¢)||cc < ||@]l1, we see that for
j € {0,1}, the L'-norm of s + DI|s|"T"s""*F(4)(s) is bounded by
const. x (|[¢[| g + [|¢l1). Similarly, for k& € {0,1,2} the L'-norms of s ~

DF|s|rtm+1,7P~F L F(4)(s) are bounded by a multiple of [l g + N9l
Hence we have

AR Miap(t) [ rm, —pm
ofyw = O / DD, 5| P () (s)ds
and
7Ah1—7“—map t is(u— r+m+1 —p—
Dyvi,(u) = CEE ) / e umD/h D2|g|rtmtl, Zom it F () (5)ds.

Together with Remark 2 this shows that

[e.e]

TV (03 () Tt r1,00) < [10F1() Tt1,00) lloo +/ X | Duvi ) (w) ()% du

t+

oo hl—r—m hl—r—m
< hlfrfm +/ + du < hlfrfm'
~ 1 fu— P ju =2

Similarly we can bound the total variation on (—oo,t — 1]. O
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The next lemma extends a well-known bound for functions with compact
support to general cadlag functions. We found this result useful for estimat-
ing the supremum over a Gaussian process if entropy bounds are difficult.

LEMMA B.10. Let (Wi)ier denote a two-sided Brownian motion. For
a class of real-valued cadlag functions F and any o > 1/2 there exists a
constant C,, such that

sup | / F(s)AW,| < Ca sup [T¥s] sup TV(()* ),
feF s€[0,1] feF

where W is a standard Brownian motion on the same probability space.

PROOF. The proof consists of two steps. First suppose that | J feF Supp fcC
[0,1] and assume that the f are of bounded variation. Then, for any f € F,
there exists a function ¢y with ||¢¢||cc < TV(f) and a probability measure Ps
with P¢[0,1[= 1, such that f(u) = f[O,u] qf(u)P¢(du) for all u € R, because
f is cadlag and thus f(1) = 0. With probability one,

sup‘/f(s)dWS’ = sup‘/quJc(s)Pf(ds)‘ < sup |Ws| sup TV(f).
fer fer s€[0,1] fer

Now let us consider the general case. If Cp = ||(:)"%||2 then h(s) =
C2%(s)72% is a density of a random variable. Let H be the corresponding

distribution function. Note that

(W+) tef0,1] — / Vh §))AWp -1 S)>

is a standard Brownian motion satisfying dW H(s) = Vh(s)dW; and thus
with Af = ()7,

te[0,1]

sup ‘ /f(s)dWS‘ =C, ?22' /Af(s)dWH(S)}

feF

1
=C, sup|/ Af(Hil(s))dWS‘.
fer

Since TV(Af o H™') = TV(Af) the result follows from the first part. [

In the next lemma, we study monotonicity properties of the calibration
weights wy,.
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LEMMA B.11.  Forh € (0,1] andv > e let wy, := /27 log(v/h)/loglog(v/h).
Then

(i) h — wy, is strictly decreasing on (0,vexp(e™?)], and
(ii) h v wph/? is strictly increasing on (0, 1].

Proor. With z = z(h) := loglog(v/h) > 0, we have log w;, = —log(2)/2+
x/2—log x. Since the derivative of this w.r.t. z equals 1/2—1/x and is strictly
positive for > 2, we conclude that log wy, is strictly increasing for z(h) > 2,
i.e. h < vexp(e=2). Moreover, log(wyh'/?) = log(v/2)/2+x/2—log z—e* /2,
and the derivative of this w.r.t. z > 0 equals 1/2 — 1/x — e®/2 < 0. Thus,
wp,h'/? is strictly increasing in h € (0,1]. O

LEMMA B.12. Condition (iii) in Assumption 1 is fulfilled with k, =
1/2

Wy, Uy~ whenever Condition (ii) of Assumption 1 holds, and for all (t,h) €
By, supp ¢y C [t — h,t + h].

PROOF. Let 1/2 < o < 1. Then (-)* : R — R is Lipschitz. Recall that
TV(fg) < Ifllec TV(9) + llglloc TV(f). Since Uy pyep, supp¥en C [-1,2]
is bounded and contains the support of all functions s — 1,5 (s [\/7 —

g(t)](s)* (indexed in (t,h) € By), we obtain uniformly over (t,h) € By,
and G € G,

TV (v () [VI0) = Va®] ()
< [eben(c) [\/QT 9| +TV(¢th [\ﬁ \/7]>

Furthermore,

TV (4en() VIO = Vo] ) < [ealloe TV (V0 = Vo@D Le-nern()

+ TV (¢en) || [V9() — g(t)]]l[t hot4h) ( H
S Vinh'?,

] 3

where the last inequality follows from Assumption 1 (ii) as well as the prop-
erties of G. With Lemma B.11 (ii) the result follows. O

Appendix C Further results on multiscale statistics. The fol-
lowing result shows that multiscale statistics computed over sufficiently rich
index sets B,, are also bounded from below.
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LemMA C.1. Assume that K, — 00, ¥y, = Y (5L) and Vi, = [Yenll2 =

Vh|[Y|la. Suppose that lim; e log(5)| [ (s — §)v(s)ds| — 0. Then, with wy,
and B as defined in (10) and (14), respectively,

dWs 1
Sup - Wh M - \/@ — ——, in probability.
(th)eBk, l[%t,nl2 4

PROOF. Write K := K,, and let &; := | p]l5 " JYj/k1/k(s)dWs for j =
0,...,K—1.Now, (&); is a stationary sequence of centered and standardized
normal random variables. In particular the distribution of (§;); does not
depend on K and the covariance decays by assumption at a faster rate than
logarithmically. By Theorem 4.3.3 (ii) in [45] the maximum behaves as the
maximum of K independent standard normal r.v., i.e.

P(max(&,...,f;() <ag +bKt) — exp ( — e_t), for t € R and K — oo,

where
1 loglog K + log(4)
b= ———— and ap = /2log K — .
K= plgr M ©8 /Blog K

Using the tail-equivalence criterion (cf. [41], Proposition 3.3.28), we obtain
further

lim P(max(|&],..., [¢k|) < ak +bi(t+1log2)) =exp(—e "), forteR.
K—o0

Note that T}, := sup( p)epe wi([[Venlls ] [ en(s)dWs| — /2log(v/h)) has
the same distribution as wg—1 max(|&1],. .., [€x|) — wg-14/2log(vK). It is
easy to show that

- log v 1
ViogvK = /log K + i i + O<log3/2K>

and

’ I loglogK‘_O<loglogK>

3/2
Wg-1 /%logK log P K
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Assume that 1, — 0 and 7, loglog K — oo. Then for sufficiently large n,
P(Tp; > —%+mn)
= P(max(él,. - 6 ]) > (= & + 1) /e + /210gVE)
= <maX &l - [Ex]) >
(-

4nn)loglogK \/@‘F log v +O(loglogK))

V8log V2log K log®/? K
< P(max(|§1], o [€k|) > ax + br2ny, loglogK) — 0.
Similarly,

O

In order to illustrate the general multiscale statistic discussed in Section
2, let us show in the subsequent example that it is also possible to choose
B, in order to construct (level-dependent) values for simultaneous wavelet
thresholding.

ExampLE C.1. Observe that c/l\j,k = Tho-io-i and dj = Elyg—j 95 =
[ Vro-io-i(s)g(s)ds = [(27s — k)g(s)ds are the (estimated) wavelet coef-
ficients and if jon and jin are integers satisfying 2 7nnlog 3 n — oo and
Jon — 00, then for o € (0,1) and

Bn:{(k273727])| k:0717-~-72j_17 jOnSijlna jeN }’

Theorem 1 yields in a natural way level-dependent thresholds q; (), such
that

lim P(!djk— di x| < g;x(e), for all j,k, with (kQ_j,Tj)eBn) —1-a

n—o0
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