
Submitted to the Annals of Statistics
arXiv: math.ST/1107.1404

SUPPLEMENT TO “MULTISCALE METHODS FOR
SHAPE CONSTRAINTS IN DECONVOLUTION:

CONFIDENCE STATEMENTS FOR QUALITATIVE
FEATURES”

By Johannes Schmidt-Hieber∗ Axel Munk† and Lutz Dümbgen‡
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Appendix A Proofs of the main theorems. Throughout the ap-
pendix, let

wh =

√
1
2 log ν

h

log log ν
h

, w̃h =
log ν

h

log log ν
h

.

Furthermore, we often use the normalized differential –dξ := (2π)−1dξ

Proof of Theorem 1. In a first step we study convergence of the statis-
tic

T (1)
n = sup

(t,h)∈Bn
wh

∣∣Tt,h − ETt,h
∣∣

Vt,h
√
g(t)

− w̃h.

Note that T
(1)
n is the same as Tn, but ĝn is replaced by the true density g.

We show that there exists a (two-sided) Brownian motion W , such that with

T (2)
n (W ) := sup

(t,h)∈Bn
wh

∣∣ ∫ ψt,h(s)
√
g(s)dWs

∣∣
Vt,h

√
g(t)

− w̃h,

we have

sup
G∈Gc,C,q

∣∣T (1)
n − T (2)

n (W )
∣∣ = oP (rn).(1)

AMS 2000 subject classifications: Primary 62G10; secondary 62G15, 62G20
Keywords and phrases: Brownian motion, convexity, pseudo-differential operators, ill-

posed problems, mode detection, monotonicity, multiscale statistics, shape constraints

1

http://www.imstat.org/aos/
http://arxiv.org/abs/math.ST/1107.1404


2 J. SCHMIDT-HIEBER ET AL.

The main argument is based on the standard version of KMT (cf. [44]). This
is a fairly classical result, but has never been used to describe the asymptotic
distribution of a multiscale statistic, the only exception being Walther [46].
In order to state the result, let us define a Brownian bridge on the index
set [0, 1] as a centered Gaussian process (B(f)){f∈F}, F ⊂ L2([0, 1]) with
covariance structure

Cov
(
B(f), B(g)

)
= 〈f, g〉 − 〈f, 1〉〈g, 1〉.

For F0 := {x 7→ I[0,s](x) : s ∈ [0, 1]}, the process (B(f)){f∈F0} coincides
with the classical definition of a Brownian bridge. If Ui ∼ U [0, 1], i.i.d., the
uniform empirical process on the function class F is defined as

Un(f) =
√
n
( 1

n

n∑
i=1

f(Ui)−
∫
f(x)dx

)
, f ∈ F .

In particular

Tt,h − ETt,h = Un
(
ψt,h ◦G−1

)
,

where G−1 denotes the quantile function of Y . For convenience, we restate
the celebrated KMT inequality for the uniform empirical process.

Theorem 1 (KMT on [0, 1], cf. [44]). There exist versions of Un and a
Brownian bridge B such that for all x

P
(

sup
f∈F0

∣∣Un(f)−B(f)
∣∣ > n−1/2(x+ C log n)

)
< Ke−λx,

where C,K, λ > 0 are universal constants.

However, we need a functional version of KMT. We shall prove this by
using the theorem above in combination with a result due to Koltchinskii
[43], (Theorem 11.4, p. 112) stating that the supremum over a function class
F behaves as the supremum over the symmetric convex hull sc(F), defined
by

sc(F) :=
{ ∞∑
i=1

λifi : fi ∈ F , λi ∈ [−1, 1],
∞∑
i=1

|λi| ≤ 1
}
.

Theorem 2. Assume there exists a version B of a Brownian bridge,
such that for a sequence (δ̃n)n tending to 0,

P∗
(

sup
f∈F
|Un(f)−B(f)| ≥ δ̃n(x+ C log n)

)
≤ Ke−λx,
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where C,K, λ > 0 are constants depending only on F . Then, there exists a
version B̃ of a Brownian bridge, such that

P∗
(

sup
f∈sc(F)

|Un(f)− B̃(f)| ≥ δ̃n(x+ C ′ log n)
)
≤ K ′e−λ′x

for constants C ′,K ′, λ′ > 0.

In Theorem 2, P? refers to the outer measure, however, for the function
class considered in this paper, we have measurability of the corresponding
event and hence may replace P? by P. It is well-known (cf. Giné et al. [17],
p. 172) that{

ρ
∣∣ ρ : R→ R, supp ρ ⊂ [0, 1], ρ(1) = 0, TV(ρ) ≤ 1

}
⊂ sc(F0).(2)

Now, assume that ρ : R → R is such that TV(ρ) + 3|ρ(1)| ≤ 1. Define
ρ̃ = (ρ−ρ(1)I[0,1])/(1−|ρ(1)|) and observe that TV(ρ̃) ≤ 1 and ρ̃(1) = 0. By
(2) there exists λ1, λ2, . . . ∈ R and t1, t2, . . . ∈ [0, 1] such that ρ̃ =

∑
λiI[0,ti]

and
∑
|λi| ≤ 1. Therefore, ρ = (1 − |ρ(1)|)ρ̃ + ρ(1)I[0,1] can be written as

linear combination of indicator functions, such that the sum of the absolute
values of weights is bounded by 1. This shows{

ρ
∣∣ ρ : R→ R, supp ρ ⊂ [0, 1], TV(ρ) + 3|ρ(1)| ≤ 1

}
⊂ sc(F0).

Since TV(ψt,h ◦ G−1) ≤ TV(ψt,h) it follows by Assumption 1 (ii) that the
function class

Fn :=
{
C?V

−1
t,h

√
h ψt,h ◦G−1 : (t, h) ∈ Bn, G ∈ Gc,C,q

}
is a subset of sc(F0) for sufficiently small constant C?. Combining Theorems
1 and 2 shows for δ̃n = n−1/2 that there are constants C ′,K ′, λ′ and a
Brownian bridge (B(f))f∈sc(F0) such that for x > 0, the probability of

{
sup

(t,h)∈Bn, G∈G
C?

√
h
∣∣Un(ψt,h ◦G−1)−B(ψt,h ◦G−1)∣∣

Vt,h
≥ 1√

n
(x+ C ′ log n)

}
is bounded by K ′e−λ

′x. Due to Lemma B.11 (i) and ln ≥ ν/n for sufficiently
large n, we have that wln ≤ wν/n. This readily implies with x = log n that

sup
(t,h)∈Bn, G∈G

wh

∣∣∣∣∣Tt,h − ETt,h
∣∣− ∣∣B(ψt,h ◦G−1)∣∣∣∣∣

Vt,h
√
g(t)

= OP

( 1√
lnn

wν/n log n
)
.
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Now, let us introduce the (general) Brownian motion W (f) as a centered
Gaussian process with covariance E[W (f)W (g)] = 〈f, g〉. In particular,
W (f) = B(f) + (

∫
f)ξ, ξ ∼ N (0, 1) and independent of B, defines a Brow-

nian motion and hence there exists a version of (W (f))f∈sc(F0) such that
B(f) = W (f)− (

∫
f)W (1). We have

sup
(t,h)∈Bn, G∈G

wh

∣∣ ∫ ψt,h(u) dG(u)
∣∣

Vt,h
√
g(t)

≤ c−1 sup
(t,h)∈Bn, G∈G

wh
‖ψt,h‖1

Vt,h
√
g(t)

. sup
h∈[ln,un]

whh
1/2 ≤ wunu1/2n ,

where the second inequality follows from Assumption 1 (ii) and the last
inequality from Lemma B.11 (ii). This implies further

E
[∥∥∥ wh

Vt,h
√
g(t)

[∣∣B(ψt,h ◦G−1)∣∣− ∣∣W (ψt,h ◦G−1)∣∣]∥∥∥
Fn

]
= O(wunu

1/2
n ),

and therefore

sup
G∈G

∣∣∣T (1)
n − sup

(t,h)∈Bn
wh

∣∣W (ψt,h ◦G−1)∣∣
Vt,h

√
g(t)

− w̃h
∣∣∣ = OP (

w1/n log n
√
lnn

+ wunu
1/2
n ),

and

sup
G∈G

∣∣∣T (1)
n − T (2)

n (W )
∣∣∣ = OP (l−1/2n n−1/2w1/n log n+ wunu

1/2
n ).

In the last equality we used that (W
(1)
t )t∈[0,1] = (W (I[0,t](·)))t∈[0,1] and

(Wt)t∈R =
(∫ t

0

I{g>0}(s)√
g(s)

dW
(1)
G(s)

)
t∈R

are (two-sided) standard Brownian motions, proving W (ψt,h ◦ G−1) =∫
ψt,h(s)

√
g(s)dWs and hence (1). Further note that Assumption 1 (iii) to-

gether with Lemma B.10 shows that

sup
G∈G

∣∣∣T (2)
n (W )− sup

(t,h)∈Bn
wh

∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

− w̃h
∣∣∣ = OP (κn).

In a final step let us show that (13) is almost surely bounded. In order to
establish the result, we use Theorem 6.1 and Remark 1 of Dümbgen and
Spokoiny [12]. We set ρ

(
(t, h), (t′, h′)

)
= (|t − t′| + |h − h′|)1/2. Further, let

X(t, h) =
√
hV −1t,h

∫
ψt,h(s)dWs and σ(t, h) = h1/2.
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By assumption, X has continuous sample paths on T and obviously, for
all (t, h), (t′, h′) ∈ T ,

σ2(t, h) ≤ σ2(t′, h′) + ρ2((t, h), (t′, h′)).

Let Z ∼ N (0, 1). Since X(t, h) is a Gaussian process and Vt,h ≥ ‖φt,h‖2,
P(X(t, h) > σ(t, h)η) ≤ P(Z > η) ≤ exp(−η2/2) for any η > 0. Further,
denote by

At,t′,h,h′ :=

∥∥∥∥∥ψt,h
√
h

Vt,h
−
ψt′,h′

√
h
′

Vt′,h′

∥∥∥∥∥
2

.(3)

Because of P(|X(t, h)−X(t′, h′)
∣∣ ≥ At,t′,h,h′η) ≤ 2 exp

(
− η2/2

)
we have by

Lemma B.6 for a universal constant K > 0,

P
(∣∣X(t, h)−X(t′, h′)

∣∣ ≥ ρ((t, h), (t′, h′))η
)
≤ 2 exp

(
− η2/(2K2)

)
.

Finally, we can bound the entropy N ((δu)1/2, {(t, h) ∈ T : h ≤ δ}) similarly
as in [12], p. 145. Therefore, application of Remark 1 in [12] shows that

S := sup
(t,h)∈T

√
1
2 log e

h

∣∣ ∫ ψt,h(s)dWs

∣∣
log
(
e log e

h

)
Vt,h

−

√
log( 1

h) log( eh)

log
(
e log e

h

)
is almost surely bounded from above. Define

S′ := sup
(t,h)∈T

√
1
2 log ν

h

∣∣ ∫ ψt,h(s)dWs

∣∣
log log ν

h Vt,h
−

√
log( 1

h) log( νh)

log log ν
h

.

If e < ν ≤ ee, then

log log ν
h = log

(
log ν
e log ee

he/ log ν

)
≥ log log ν − 1 + log

(
e log e

h

)
implies

log
(
e log e

h

)
log log ν

h

≤ 1

log log ν
+ 1.

Furthermore, log ν/h ≤ (log ν)(log e/h). Suppose now that S′ > 0 (otherwise
S′ is bounded from below by 0). Then, S′ . S and hence S′ is almost surely
bounded. Finally, √

log ν
h

∣∣√log 1
h −

√
log ν

h

∣∣ ≤ log ν.
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Therefore, (13) holds, i.e.

sup
(t,h)∈T

wh

∣∣ ∫ ψt,h(s)dWs

∣∣
Vt,h

− w̃h

is almost surely bounded.

In the last step, it remains to prove that supG∈Gc,C,q |Tn−T
(1)
n | = OP (supG∈G ‖ĝn−

g‖∞ log n/ log log n). For sufficiently large n and because G ∈ G, ĝn ≥ c/2
for all t ∈ [0, 1]. Therefore using Lemma B.11 (i),

sup
G∈G

∣∣Tn − T (1)
n | ≤ sup

(t,h)∈Bn, G∈G
wh

∣∣Tt,h − E[Tt,h]
∣∣

Vt,h
√
g(t)

supG∈G
∥∥ĝn − g∥∥∞
ĝn(t)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

sup
(t,h)∈Bn, G∈G

wh

∣∣Tt,h − E[Tt,h]
∣∣

Vt,h
√
g(t)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

(T (1)
n + sup

h∈[ln,un]
w̃h)

≤
2 supG∈G

∥∥ĝn − g∥∥∞
c

(
T (1)
n +O(

log n

log logn
)
)
.(4)

Since T
(1)
n is a.s. bounded by Theorem 1, the result follows.

Remark 1. Next, we give a proof of Theorem 2. In fact we proof a
slightly stronger version, which does not necessarily require the symbol a to
be elliptic and Vt,h = ‖vt,h‖2. It is only assumed that

(i) Vt,h ≥ ‖vt,h‖2,
(ii) there exists constants cV , CV with 0 < cV ≤ hm+r−1/2Vt,h ≤ CV <∞

(iii) for all (t, h), (t′, h′) ∈ T and whenever h ≤ h′ it holds that hm+r|Vt,h−
Vt′,h′ | ≤ CV (|t− t′|+ |h− h′|)1/2.

As a special case these conditions are satisfied for Vt,h = ‖vt,h‖2 and op(a)
elliptic. This follows directly from Lemmas B.3 and B.5.

Proof of Theorem 2. In order to prove the statements it is sufficient
to check the conditions of Theorem 1. For h > 0 define the symbol

a?t,h(x, ξ) := hma?(xh+ t, h−1ξ).(5)

Under the imposed conditions and by Remark B.1 we may apply Lemma
B.2 for a(t,h) = a?t,h and therefore, uniformly over (t, h) ∈ T and u, u′ ∈ R,

(I) |vt,h(u)| . h−m−r min
(
1, h2

(u−t)2
)
.
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(II) |vt,h(u)− vt,h(u′)| . h−m−r−1|u− u′| and if u, u′ 6= t,

|vt,h(u)−vt,h(u′)| . h1−m−r
|u− u′|

|u′ − t| |u− t|
= h1−m−r

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣.

Using (I), we obtain ‖vt,h‖∞ . h−m−r and ‖vt,h‖1 . h1−m−r. In order
to show that the total variation is of the right order, let us decompose vt,h

further into v
(1)
t,h = vt,hI[t−h,t+h] and v

(2)
t,h = vt,h − v

(1)
t,h . By (II), TV(v

(1)
t,h ) .

h−m−r and

TV(v
(2)
t,h ) . h−m−r + h1−m−r

∫ ∞
t+h

1

(x− t)2
dx . h−m−r.

Since TV(vt,h) ≤ TV(v
(1)
t,h ) + TV(v

(2)
t,h ) . h−m−r, this shows together with

Remark 1 that part (ii) of Assumption 1 is satisfied.
Next, we verify Assumption 1, (iii) with κn = sup(t,h)∈Bn whh

1/2 log(1/h) .

u
1/2
n log3/2 n (cf. Lemma B.11, (ii)), i.e. we show

sup
(t,h)∈Bn, G∈G

wh
TV

(
vt,h(·)[

√
g(·)−

√
g(t)]〈·〉α

)
Vt,h

. u1/2n log3/2 n.

By Lemma B.12, we see that this holds for vt,h replaced by v
(1)
t,h . Therefore,

it remains to prove the statement for v
(2)
t,h . Let us decompose v

(2)
t,h further

into v
(2,1)
t,h = vt,hI[t−1,t+1]∩[t−h,t+h]c and v

(2,2)
t,h = v

(2)
t,h − v

(2,1)
t,h = vt,hI[t−1,t+1]c .

For the remaining part, let u, u′ be such that |u− t| ≥ |u′− t| ≥ h. We have

TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
.
∥∥v(2,1)t,h (·)

[√
g(·)−

√
g(t)

]∥∥
∞

+ TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

])
.(6)

Using (I) and (II) together with the properties of the class G we can bound

the variation
∣∣v(2,1)t,h (u)

[√
g(u)−

√
g(t)

]
− v(2,1)t,h (u′)

[√
g(u′)−

√
g(t)

]∣∣ by∣∣v(2,1)t,h (u)− v(2,1)t,h (u′)
∣∣ · ∣∣√g(u′)−

√
g(t)

∣∣+
∣∣v(2,1)t,h (u)

∣∣ · ∣∣√g(u)−
√
g(u′)

∣∣
. h1−m−r |u−u

′|
|u−t| + h2−m−r |u−u

′|
|u−t|2 . h1−m−r |u−u

′|
|u−t| ≤ h

1−m−r∣∣ ∫ u

u′

1
|x−t|dx

∣∣.
Due to h ≥ ln & 1/n this yields

TV
(
v
(2,1)
t,h (·)[

√
g(·)−

√
g(t)]

)
. h1−m−r + h1−m−r

∫ t+1

t+h

du

|u− t|
. h1−m−r log 1

h . h1−m−r log n
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and with (6) also

TV
(
v
(2,1)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
. h1−m−r log n.(7)

Finally, let us address the total variation term involving v
(2,2)
t,h . Given Gc,C,q

we can choose α such that α > 1/2 and α+ q < 1 (recall that 0 ≤ q < 1/2).
By Lemma B.7, we find that∣∣v(2,2)t,h (u)〈u〉α − v(2,2)t,h (u′)〈u′〉α

∣∣ . h1−m−r
∣∣∣ ∫ u

u′

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣.

Moreover

〈u〉α(1 + |u′|+ |u|)q ≤ (1 + |u′|+ |u|)q+α

≤ (3 + 2|u− t|)q+α ≤ 3 + 2|u− t|q+α

and thus∣∣v(2,2)t,h (u)〈u〉α
∣∣ ∣∣√g(u)−

√
g(u′)

∣∣ . h2−m−r
|u− t|q+α + 1

|u− t|2
|u− u′|.

This allows us to bound the variation by∣∣v(2,2)t,h (u)
[√

g(u)−
√
g(t)

]
〈u〉α − v(2,2)t,h (u′)

[√
g(u′)−

√
g(t)

]
〈u′〉α

∣∣
≤
∣∣v(2,2)t,h (u)〈u〉α

∣∣ ∣∣√g(u)−
√
g(u′)

∣∣+
2√
c

∣∣v(2,2)t,h (u)〈u〉α − v(2,2)t,h (u′)〈u′〉α
∣∣

. h1−m−r
∣∣∣ ∫ u

u′

1

(x− t)2−q−α
+

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣

and therefore we conclude that

TV
(
v
(2,2)
t,h (·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
. h1−m−r + h1−m−r

∫ ∞
t+1

1

(x− t)2−q−α
+

1

(x− t)2−α
+

1

(x− t)2
dx

≤ h1−m−r.

Together with the bound for v
(1)
t,h and (7) this yields Assumption 1, (iii).

Finally, Assumption 1 (iv) follows from Lemma B.5 and Remark 1 due to
φ ∈ Hdr+me ∩Hr+m+1/2, suppφ ⊂ [0, 1] and φ ∈ TV(Ddr+meφ) < ∞. This
shows that Assumption 1 holds for (vt,h, Vt,h).

In the next step, we verify that (t, h) 7→ X(t, h) =
√
hV −1t,h

∫
vt,h(s)dWs

has continuous sample paths. Note that in view of Lemma B.10, it is suffi-
cient to show that there is an α with 1/2 < α < 1 such that

TV
((√

hV −1t,h vt,h −
√
h′V −1t′,h′vt′,h′

)
〈·〉α

)
→ 0,
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whenever (t′, h′)→ (t, h) on the space T . Since Assumption 1 (iv) holds, we
have ∣∣√hV −1t,h −

√
h′V −1t′,h′

∣∣ ≤ √|h− h′|
Vt,h

+ V −1t,h

√
h′|Vt′,h′ − Vt,h|

Vt′,h′
→ 0,

for (t′, h′) → (t, h). By Lemma B.7, TV(vt,h(·)〈·〉α) < ∞. Therefore, it is
sufficient to show that

TV
(
(vt,h − vt′,h′)〈·〉α

)
→ 0, whenever (t′, h′)→ (t, h).(8)

Using (18), we obtain

(Kγ,m
t,h a?t,h)(u)

= vt,h − vt′,h′

= h−m
∫
λµγ
(
s
h

)
F
(

Op(a?t,h)(φ− φ ◦ St′,h′ ◦ S−1t,h )
)
(s)eis(u−t)/h –ds

and by Remark B.1, we can apply Lemma B.2 again (here φ should be
replaced by φ − φ ◦ St′,h′ ◦ S−1t,h ). In order to verify (8), observe that by

Lemma B.7 it is enough to show ‖φ − φ ◦ St′,h′ ◦ S−1t,h ‖Hq
4
→ 0 for some

q > r +m+ 3/2 whenever (t′, h′)→ (t, h) in T . Note that∥∥φ− φ ◦ St′,h′ ◦ S−1t,h∥∥2Hq
4

= 1
h

4∑
j=0

∫
〈s〉2q

∣∣∣F((xjφ) ◦ St,h
)
(s)−F

(
(St,h(·))j(φ ◦ St′,h′)

)
(s)
∣∣∣2ds

≤ 2

h

4∑
j=0

∥∥(xjφ) ◦ St,h − (xjφ) ◦ St′,h′
∥∥2
Hq

+

∫
〈s〉2q

∣∣∣F([(St′,h′(·))j − (St,h(·))j
]
(φ ◦ St′,h′)

)
(s)
∣∣∣2ds(9)

with (St,h(·))j :=
( ·−t
h

)j
. For real numbers a, b we have the identity aj −

bj =
∑k

`=1

(
k
`

)
bk−`(a − b)`. Moreover, we can apply Lemma B.5 for q with

m+ r + 3/2 < q < br +m+ 5/2c (and such a q clearly exists). Thus, with
a = St,h(·), b = St′,h′(·) and St,h − St′,h′ = (h/h′ − 1)St′,h′ − (t′ − t)/h the
r.h.s. of (9) converges to zero if (t′, h′)→ (t, h).

Proof of Theorem 3. By assumption, pR(x, ξ) = aR(x, ξ)|ξ|γ1ιµ1ξ with

aR ∈ Sm1 and m1 + γ1 = m′. Recall that pP (x, ξ) = aP (x)|ξ|mιµξ . Since aP
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is real-valued, Op(aP ) is self-adjoint. Taking the adjoint is a linear operator
and therefore arguing as in (18) yields

F
(

op(p)?(φ ◦ St,h)
)
(s) =|s|mι−µs F

(
aP (φ ◦ St,h)

)
(s)

+ |s|γ1ι−µ1s F
(

Op(a?R)(φ ◦ St,h)
)
(s).

Decompose vt,h = v
(1)
t,h + v

(2)
t,h with

v
(1)
t,h (u) :=

∫
λµm(s)F

(
aP (φ ◦ St,h)

)
(s)eisu –ds

=

∫
λµm
(
s
h

)
F
(
aP (·h+ t)φ

)
(s)eis(u−t)/h –ds

v
(2)
t,h (u) :=

∫
λµ1γ1 (s)F

(
Op(a?R)(φ ◦ St,h)

)
(s)eisu –ds

= h−m1

∫
λµ1γ1
(
s
h

)
F
(

Op(a
(1)
t,h)φ

)
(s)eis(u−t)/h –ds

using similar arguments as in (18) and a
(1)
t,h(x, ξ) := hm1a?R(xh + t, h−1ξ).

For j = 1, 2 we denote by T
(j)
t,h and T

P,(j)
n the statistics Tt,h and TPn with vt,h

replaced by v
(j)
t,h , j = 1, 2, respectively. Recall the definitions of σ and τ and

set

vPt,h(u) := AaP (t)

∫
|s|r+mι−ρ−µs F(φ ◦ St,h)(s)eisu –ds

= Ah−r−maP (t)

∫
|s|r+mι−ρ−µs F(φ)(s)eis(u−t)/h –ds

= AaP (t)Dσ
+D

τ
−φ
(
u−t
h

)
.(10)

Further let

V P
t,h := ‖vPt,h‖2 = |AaP (t)|

∥∥Dr+m
+ φ((·−t)/h)

∥∥
2

= h1/2−r−m|AaP (t)|
∥∥Dr+m

+ φ
∥∥
2
,

and

TP,(1),∞n (W ) := sup
(t,h)∈Bn

wh

∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣
V P
t,h

−
√

2 log ν
h

 .

Note that for the approximation of TPn we can write

TP,∞n (W ) = sup
(t,h)∈Bn

wh

(∣∣ ∫ Re vPt,h(s)dWs

∣∣
V P
t,h

−
√

2 log ν
h

)
.
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Since |TPn −T
P,∞
n (W )| ≤ |TPn −T

P,(1)
n |+|TP,(1)n −TP,(1),∞n (W )|+|TP,(1),∞n (W )−

TP,∞n (W )| it is sufficient to show that there exists a Brownian motion W
such that the terms on the right hand side converge to zero in probability.
This will be done separately, and proofs for the single terms are denoted by
(I), (II) and (III). From (II) and (III) we will be able to conclude the
boundedness of the approximating statistic.

(I): It is easy to see that for a constant K, ‖v(2)t,h‖2 ≤ Kh
1/2−m′−r =: V R

t,h.
By Remark 1 and

∣∣TPn − TP,(1)n

∣∣ ≤ sup
h∈[ln,un]

V R
t,h

V P
t,h

(
sup

(t,h)∈Bn
wh

( |T (2)
t,h − ET (2)

t,h |√
ĝn(t) V R

t,h

−
√

2 log
(
ν
h

))
+ sup
h∈[ln,un]

wh

√
2 log

(
ν
h

))
,

we can apply Theorem 2 where m should be replaced by m′, of course.
Because of um−m

′
n log n→ 0, (I) is proved.

(II): We show that there is a Brownian motion W such that |TP,(1)n −
T
P,(1),∞
n (W )| ≤ |TP,(1)n −T̃ (1)

n |+|T̃ (1)
n −T̃ (1),∞

n (W )|+|T̃ (1),∞
n (W )−TP,(1),∞n (W )|

= oP (1) with

T̃ (1)
n := sup

(t,h)∈Bn
wh

( ∣∣T (1)
t,h − ET (1)

t,h

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
and

T̃ (1),∞
n (W ) := sup

(t,h)∈Bn
wh

(∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
.

Since by Assumption 4, ap ∈ S0 is elliptic and pP ∈ Sm, we find that

|T̃ (1)
n − T̃ (1),∞

n (W )| = oP (1) and

T̃ (1),∞
n (W ) ≤ sup

(t,h)∈T
wh

(∣∣ ∫ Re v
(1)
t,h (s)dWs

∣∣√
ĝn(t) ‖v(1)t,h‖2

−
√

2 log
(
ν
h

))
<∞ a.s.(11)

by applying Theorem 2. Moreover, similar as in (4) and using wh

√
2 log

(
ν
h

)
≥

1,

sup
G∈G

∣∣TP,(1)n − T̃ (1)
n

∣∣ ≤ sup
(t,h)∈Bn

wh

√
2 log

(
ν
h

)∣∣V P
t,h − ‖v

(1)
t,h‖2

∣∣
V P
t,h

(
1 + sup

G∈G
T̃ (1)
n

)
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and ∣∣T̃ (1),∞
n (W )− TP,(1),∞n (W )

∣∣
≤ sup

(t,h)∈Bn
wh

√
2 log

(
ν
h

)∣∣V P
t,h − ‖v

(1)
t,h‖2

∣∣
V P
t,h

(
1 + T̃ (1),∞

n (W )
)
.

To finish the proof for (II) it remains to verify

sup
(t,h)∈Bn

wh

√
2 log

(
ν
h

)‖vPt,h − v(1)t,h‖2
V P
t,h

= o(1),(12)

which will be done below.
(III): By Lemma B.10, we obtain |TP,(1),∞n − TP,∞n | = oP (1) if for some

α > 1/2,

sup
(t,h)∈Bn

wh
TV

(
(vPt,h − v

(1)
t,h )〈·〉α

)
V P
t,h

= o(1).(13)

Let χ be a cut function, i.e. χ ∈ S (the Schwartz space), χ(x) = 1 for

x ∈ [−1, 1] and χ(x) = 0 for x ∈ (−∞,−2] ∪ [2,∞) and define p
(1)
t,h(x, ξ) =

h−1χ(x)(aP (xh+ t)−aP (t)) and p
(2)
t,h(x, ξ) = (xh)−1(1−χ(x))(aP (xh+ t)−

aP (t)). Then, p
(1)
t,h , p

(2)
t,h ∈ S0 and

(
aP (·h + t) − aP (t)

)
φ = hOp(p

(1)
t,h)φ +

hOp(p
(2)
t,h)(xφ). Define the function

dt,h :=

∫
eis(·−t)/h

( 1

F(fε)(− s
h)
−Aι−ρs

∣∣ s
h

∣∣r)ι−µs |s|mF(φ)(s) –ds(14)

and note that

‖dt,h‖22 . h1+2m

∫ 〈
s
h

〉2r+2m−2β0∣∣F(φ)(s)
∣∣2ds . h1+2β?0−2r‖φ‖2Hr+m

with β?0 := β0 ∧ (m+ r). Using (17), we have now the decomposition

v
(1)
t,h − v

P
t,h = hKm,0

t,h p
(1)
t,h + hKm,0

t,h p
(2)
t,h + aP (t)h−mdt,h,(15)

where φ needs to be replaced by xφ in the second term of the right hand
side. By assumption there exists q > m+r+3/2 such that φ ∈ Hq

5 . Since the

assumptions on p
(1)
t,h and p

(2)
t,h of Lemma B.2 can be easily verified, we may
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apply Lemma B.2 to the first two terms on the right hand side of (15). This
yields together with Lemmas B.7, B.8, and B.9, uniformly over (t, h) ∈ T ,

TV
(
(vPt,h − v

(1)
t,h )〈·〉α

)
≤ TV

((
hKm,0

t,h p
(1)
t,h + hKm,0

t,h p
(2)
t,h + aP (t)h−mdt,h

)
〈·〉αI[t−1,t+1]

)
+ TV

(
vPt,h〈·〉αIR\[t−1,t+1]

)
+ TV

(
v
(1)
t,h 〈·〉

αIR\[t−1,t+1]

)
. h1−m−r + hβ

?
0−m−r + h1−r−m.

Since m+ r > 1/2 this implies (13). From the decomposition (15) we obtain

further ‖vPt,h− v
(1)
t,h‖2 . h3/2−m−r + h1/2+β

?
0−m−r and this shows (12). Thus,

the first part of the theorem is proved.
Finally with Lemma B.10 it is easy to check that (11) implies that (27) is

bounded since (12) and (13) also hold with Bn and o(1) replaced by T and
O(1), respectively.

Appendix B Technical results for the proofs of the main theo-
rems. We have the following uniform and continuous embedding of Sobolev
spaces.

Lemma B.1. Let P ⊂ Sm be a symbol class of pseudo-differential oper-
ators. Suppose further that for α ∈ {0, 1}, k ∈ N and finite constants Ck,
depending on k only,

sup
p∈P
|∂kx∂αξ p(x, ξ)| ≤ Ck(1 + |ξ|)m, ∀x, ξ ∈ R.

Then, for any s ∈ R, there exists a finite constant C, depending only on s,m
and maxk≤1+2|s|+2|m|Ck, such that

sup
p∈P
‖Op(p)φ‖Hs−m ≤ C‖φ‖Hs , for all φ ∈ Hs.

Proof. This proof requires some subtle technicalities, appearing in the
theory of pseudo-differential operators. By Theorem 2 in Hwang [42], there
exists a universal constant C1, such that for any symbol a ∈ S0,

‖Op(a)u‖2 ≤ C1 max
α,β∈{0,1}

∥∥∂βx∂αξ a(x, ξ)
∥∥
L∞(R2)

‖u‖2, for all u ∈ L2.(16)

For r ∈ R denote by Op(〈ξ〉r) the pseudo-differential operator with symbol
(x, ξ) 7→ 〈ξ〉r. It is well-known that this symbol is in Sr. Throughout the
remaining proof let

C = C(s,m, max
k≤1+2|s|+2|m|

Ck)
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denote a finite but unspecified constant which may even change from line to
line. In order to prove the result it is sufficient to show that

sup
p∈P

∥∥Op(〈ξ〉s−m) ◦Op(p) ◦Op(〈ξ〉−s)ψ
∥∥
2
≤ C‖ψ‖2, for all ψ ∈ L2

(set φ = 〈D〉−sψ). The composition of two operators with symbols in Sm1

and Sm2 , respectively, is again a pseudo-differential operator and its symbol
is in Sm1+m2 . Therefore, the operator A : P → S0, mapping p ∈ P to the
symbol of Op(〈ξ〉s−m) ◦Op(p) ◦Op(〈ξ〉−s) (which is in S0), is well-defined.
With (16) the lemma is proved, once we have established that

sup
p∈P

max
α,β∈{0,1}

∥∥∂βx∂αξ Ap(x, ξ)∥∥L∞(R2)
≤ C <∞.

It is not difficult to see that Op(p) ◦Op(〈ξ〉−s) = Op(p〈ξ〉−s). By Theorem
4.1 in [40], Ap = 〈ξ〉s−m#(p〈ξ〉−s), where # denotes the Leibniz product,
i.e. for p(1) ∈ Sm1 and p(2) ∈ Sm2 , p(1)#p(2) can be written as an oscillatory
integral (cf. [40, 47]), that is(
p(1)#p(2)

)
(x, ξ) := Os−

∫ ∫
e−iyηp(1)(x, ξ + η)p(2)(x+ y, ξ)dy –dη

:= lim
ε→0

∫ ∫
χ(εy, εη)e−iyηp(1)(x, ξ + η)p(2)(x+ y, ξ)dy –dη,

for any χ in the Schwartz space of rapidly decreasing functions on R2 with
χ(0, 0) = 1. Further for a ∈ Sm and arbitrary l ∈ N, 2l > 1 +m,

Os−
∫ ∫

e−iyηa(y, η)dy –dη

=

∫ ∫
e−iyη〈y〉−2(1− ∂2η)

[
〈η〉−2l(1− ∂2y)la(y, η)

]
dy –dη

and the integrand on the r.h.s. is in L1 (cf. [47], p.235). This can be also
used to show that differentiation and integration commute for oscillatory
integrals,

∂αx ∂
β
ξ Os−

∫ ∫
e−iyηa(x, y, ξ, η)dy –dη = Os−

∫ ∫
e−iyη∂αx ∂

β
ξ a(x, y, ξ, η)dy –dη.

Using Peetre’s inequality, i.e. 〈ξ + η〉s ≤ 2|s|〈ξ〉|s|〈η〉s, we see that for α, β ∈
{0, 1}, p ∈ P, and (x, ξ) fixed, the function (y, η) 7→ ∂βx∂αξ 〈ξ + η〉s−mp(x +

y, ξ)〈ξ〉−s defines a symbol in Ss−m. Hence, for ` ∈ N, 1 < 2`− |s−m| ≤ 2,

α, β ∈ {0, 1}, p ∈ P, we can rewrite ∂βx∂αξ Ap(x, ξ) as∫ ∫
e−iyη〈y〉−2(1− ∂2η)

[
〈η〉−2`(1− ∂2y)`∂βx∂

α
ξ 〈ξ + η〉s−mp(x+ y, ξ)〈ξ〉−s

]
dy –dη.
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With the imposed uniform bound on ∂kx∂
α
ξ p(x, ξ) we obtain, treating the

cases α = 0 and α = 1 separately,

sup
p∈P

∣∣∂βx∂αξ Ap(x, ξ)∣∣
≤ C〈ξ〉m−s

[ ∫ ∣∣(1− ∂2η)〈η〉−2`〈ξ + η〉s−m
∣∣dη

+

∫ ∣∣(1− ∂2η)〈η〉−2`∂ξ〈ξ + η〉s−m
∣∣dη]

≤ C + C〈ξ〉m−s
[ ∫ ∣∣∂2η〈η〉−2`〈ξ + η〉s−m

∣∣dη +

∫ ∣∣∂2η〈η〉−2`∂ξ〈ξ + η〉s−m
∣∣dη]

using Peetre’s inequality again and 2` > 1 + |s−m| for the second estimate.
Since 〈ξ〉q ∈ Sq for q ∈ R, it follows that |∂αξ 〈ξ〉q| . 〈ξ〉q−α, and since 〈.〉 ≥ 1,

∂2η〈η〉−2`〈ξ + η〉s−m .
2∑

k=0

〈η〉−2`−k〈ξ + η〉s−m−2+k . 〈η〉−2`〈ξ + η〉s−m.

Similar for the second term. Application of Peetre’s inequality as above
completes the proof.

Note that for bounded intervals [a, b], partial integration holds
∫ b
a f
′g =

fg|ba−
∫ b
a fg

′ whenever f and g are absolute continuous on [a, b]. As a direct
consequence, we have

∫
R f
′g = −

∫
R fg

′ if f ′ and g′ exist and fg, f ′g, fg′ ∈
L1.

In order to formulate the key estimate for proving Theorems 2 and 3, let
us introduce for fixed φ a generic symbol a(t,h) ∈ Sm and λ = λµγ as in (21):

(Kγ,m
t,h a(t,h))(u) = h−m

∫
λ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s)eis(u−t)/h –ds.(17)

From the context it will be always clear which φ the operator Kγ,m
t,h a(t,h)

refers to. To simplify the expressions we do not indicate the dependence on
φ and fε explicitly.

Remark B.1. Recall (5) and note that if a ∈ Sm then also a?t,h ∈ Sm.
Due to (

Op(a?t,h)φ
)
◦ St,h = h−m Op(a?)(φ ◦ St,h)

we obtain for vt,h in (20) the representation,

vt,h(u) = h−m
∫
λµγ
(
s
h

)
F
(

Op(a?t,h)φ
)
(s)eis(u−t)/h –ds =

(
Kγ,m
t,h a?t,h

)
(u).(18)
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Lemma B.2. For a(t,h) ∈ Sm and γ+m = m let Kγ,m
t,h a(t,h) be as defined

in (17). Work under Assumption 2 and suppose that

(i) φ ∈ Hq
4 with q > m+ r + 3/2,

(ii) γ ∈ {0} ∪ [1,∞), and
(iii) for k ∈ N, α ∈ {0, 1, . . . , 5}, there exist finite constants Ck such that

sup
(t,h)∈T

∣∣∂kx∂αξ a(t,h)(x, ξ)∣∣ ≤ Ck(1 + |ξ|)m, for all x, ξ ∈ R.

Then, there exists a constant C = C(q, r, γ,m,Cl, Cu,maxk≤4q Ck) (Cl
and Cu as in Assumption 2) such that for (t, h) ∈ T ,

(i) |(Kγ,m
t,h a(t,h))(u)| ≤ C‖φ‖Hq

4
h−m−r min

(
1, h2

(u−t)2
)
,

(ii) |(Kγ,m
t,h a(t,h))(u)− (Kγ,m

t,h a(t,h))(u′)| ≤ C‖φ‖Hq
4
h−m−r−1|u− u′| and for

u, u′ 6= t,

|(Kγ,m
t,h a(t,h))(u)− (Kγ,m

t,h a(t,h))(u′)| ≤ C‖φ‖Hq
4

h1−m−r|u− u′|
|u′ − t| |u− t|

= C‖φ‖Hq
4
h1−m−r

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣.

Proof. During this proof, C = C(q, r, γ,m,Cl, Cu,maxk≤4q Ck) denotes
an unspecified constant which may change in every line. The proof relies
essentially on the well-known commutator relation for pseudo-differential
operators, [x,Op(p)] = iOp(∂ξp), with ∂ξp : (x, ξ) 7→ ∂ξp(x, ξ) (cf. Theorem
18.1.6 in [24]). By induction for k ∈ N,

xk Op(a(t,h)) =
k∑
r=0

(
k

r

)
ir Op

(
∂rξa

(t,h)
)
xk−r.(19)

As a preliminary result, let us show that for k = 0, 1, 2 the L1-norms of

〈s〉 Dk
s λ
(
s
h

)
F(Op(a(t,h))φ)(s),(20)

are bounded by C‖φ‖Hq
2
h−r−γ . Using Assumption 2 and Lemma B.1 this

follows immediately for k = 0 and q > r +m+ 3/2 by∫ ∣∣∣〈s〉 λ( sh)F(Op(a(t,h))φ)(s)
∣∣∣ds ≤ C−1l h−r−γ

∥∥〈·〉1+r+γ F(Op(a(t,h))φ)
∥∥
1

≤ Ch−r−γ
∥∥Op(a(t,h))φ

∥∥
Hq−m

≤ Ch−r−γ‖φ‖Hq .(21)
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Now, a(t,h) ∈ Sm implies that for k ∈ N, ∂kξ a
(t,h) ∈ Sm−k ⊂ Sm. Since by

(19), Assumptions (i) and (iii), and Lemma B.1,

‖〈x〉2 Op(a(t,h))φ‖1 . ‖(1 + x4) Op(a(t,h))φ‖2 ≤ C‖φ‖Hm
4
<∞,(22)

we obtain for j ∈ {1, 2},

Dj
sF(Op(a(t,h))φ) = (−i)jF(xj Op(a(t,h))φ)(s)

by interchanging differentiation and integration. Explicit calculations thus
show

Dsλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) =

(
Dsλ

(
s
h

))
F
(

Op(a(t,h))φ
)
(s)

− iλ
(
s
h

)
F
(
xOp(a(t,h))φ

)
(s)

and

D2
sλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) =

(
D2
sλ
(
s
h

))
F
(

Op(a(t,h))φ
)
(s)

− 2i
(
Dsλ

(
s
h

))
F
(
xOp(a(t,h))φ

)
(s)

− λ
(
s
h

)
F
(
x2 Op(a(t,h))φ

)
(s).(23)

To finish the proof of (20) let us distinguish two cases, namely (I) γ ∈
{0} ∪ [2,∞) and (II) γ ∈ (1, 2).

(I): For k = 0, 1, 2, s 6= 0, we see by elementary calculations,
∣∣〈s〉Dk

sλ
(
s
h

)∣∣
≤ Ch−r−γ〈s〉r+γ+1. Using (19) and arguing similar as for (21) we obtain
(replacing φ by xφ or x2φ if necessary) bounds of the L1-norms which are
of the correct order ‖φ‖Hq

4
h−r−γ .

(II): In principal we use the same arguments as in (I) but a singular-
ity appears by expanding the first term on the r.h.s. of (23). In fact, it is
sufficient to show that∫ 1

−1

∣∣∣ D2
s

∣∣ s
h

∣∣γι−µs
F(fε)

(
− s

h

)F(Op(a(t,h))φ
)
(s)
∣∣∣ds

≤ Clh−r−γ
∥∥F(Op(a(t,h))φ

)∥∥
∞

∫ 1

1
|s|γ−2ds

. Clh
−r−γ∥∥Op(a(t,h))φ

∥∥
1
≤ Ch−r−γ‖φ‖Hm

4
,

where the last inequality follows from (22). Since this has the right order
h−r−γ‖φ‖Hq

4
, (20) follows for γ ∈ (1, 2).
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Together (I) and (II) prove (20). Hence, we can apply partial integration
twice and obtain for t 6= u,

(Kγ,m
t,h a(t,h))(u) = − h2−m

(u− t)2

∫
eis(u−t)/h D2

sλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds

(24)

and similarly, first interchanging integration and differentiation,

Du(Kγ,m
t,h a(t,h))(u) = ih−m−1

∫
eis(u−t)/hsλ

(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds

= − ih1−m

(u− t)2

∫
eis(u−t)/hD2

ssλ
(
s
h

)
F
(

Op(a(t,h))φ
)
(s) –ds(25)

(i): The estimates |(Kγ,m
t,h a(t,h))(u)| ≤ C‖φ‖Hq

4
h−m−r and |(Kγ,m

t,h a(t,h))(u)|
≤ C‖φ‖Hq

4
h2−m−r/(u− t)2 follow directly from (21) as well as (24) together

with the L1 bound of (20) for k = 2.
(ii): To prove |(Kγ,m

t,h a(t,h))(u)− (Kγ,m
t,h a(t,h))(u′)| ≤ C‖φ‖Hq

4
h−m−r−1|u−

u′| it is enough to note that |eix−eiy| ≤ |x−y|. The result then follows from
(21) again. For the second bound, see (25). The estimate for the L1-norm of
(20) with k = 2 completes the proof.

Lemma B.3. Work under the assumptions of Theorem 2. If vt,h is given
as in (20), then,

‖vt,h‖2 & h1/2−m−r.

Proof. We only discuss the case γ > 0. If γ = 0 the proof can be done
similarly. It follows from the definition that

‖vt,h‖22 =

∫
1 + |s|2γ

|F(fε)(−s)|2
∣∣F(Op(a?)(φ ◦ St,h)

)
(s)
∣∣2ds

−
∥∥∥F(Op(a?)(φ ◦ St,h)

)
F(fε)(−·)

∥∥∥2
2
.

Since the adjoint is given by a?(x, ξ) = e∂x∂ξa(x, ξ) in the sense of asymptotic
summation, it follows immediately that a?(x, ξ) = a(x, ξ) + r(x, ξ) with r ∈
Sm−1. From this we conclude that Op(a?) is an elliptic pseudo-differential
operator. Because of a? ∈ Sm and ellipticity there exists a so called left
parametrix (a?)−1 ∈ S−m such that Op((a?)−1) Op(a?) = 1 + Op(a′) and
a′ ∈ S−∞, where S−∞ =

⋂
m S

m (cf. Theorem 18.1.9 in Hörmander [24]). In
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particular, a′ ∈ S−1. Moreover, Op((a?)−1) : Hr+γ → Hr+m is a continuous
and linear and therefore bounded operator (cf. Lemma B.1). Introduce the
function Q = (· ∨ 0)2. Furthermore, by convexity, 1 + |s|2γ ≥ 2−γ〈s〉2γ and
there exists a finite constant c > 0 such that∫

1 + |s|2γ

|F(fε)(−s)|2
∣∣F(Op(a?)(φ ◦ St,h)

)
(s)
∣∣2ds

≥ 2−γC2
l

∥∥Op(a?)(φ ◦ St,h)‖2Hr+γ

& ‖Op((a?)−1) Op(a?)(φ ◦ St,h)‖2Hr+m

= ‖(1 + Op(a′))(φ ◦ St,h)‖2Hr+m

≥ Q
(
‖φ ◦ St,h‖Hr+m − ‖Op(a′)(φ ◦ St,h)‖Hr+m

)
≥ Q

(
‖φ ◦ St,h‖Hr+m − c‖φ ◦ St,h‖Hr+m−1

)
≥ h

∫ (
1 +

∣∣ s
h

∣∣2)m+r∣∣F(φ)(s)
∣∣2ds+O(h2(1−r−m))

≥ h1−2(r+m)

∫
|s|2m+2r

∣∣F(φ)(s)
∣∣2ds+O(h2(1−r−m)).

On the other hand, we see immediately that∥∥∥F(Op(a?)(φ ◦ St,h)
)

F(fε)(−·)

∥∥∥2
2
.
∥∥Op(a?)(φ ◦ St,h)

∥∥2
Hr

. ‖φ ◦ St,h‖2Hr+m . h1−2(r+m).

Since φ ∈ L2 and h tends to zero the claim follows.

Lemma B.4 (Dümbgen, Spokoiny [12). , p.145] Suppose that suppψ ⊂
[0, 1] and TV(ψ) <∞. If (t, h), (t′, h′) ∈ T , then∥∥ψ( ·−th )− ψ( ·−t′h′ )∥∥22 ≤ 2 TV(ψ)2

(
|h− h′|+ |t− t′|

)
.

Let dxe be the smallest integer which is not smaller than x.

Lemma B.5. Let 0 ≤ ` ≤ 1/2 and q ≥ 0. Assume that φ ∈ Hdqe ∩Hq+`,
suppφ ⊂ [0, 1] and TV(Ddqeφ) <∞. Then, for h ≤ h′,

‖φ ◦ St,h − φ ◦ St′,h′‖Hq . h−q
√
|t− t′|2` + |h′ − h|.

In particular, for φ ∈ Hdr+me∩Hr+m+1/2, suppφ ⊂ [0, 1] and TV(Ddr+meφ)
<∞, h ≤ h′,

‖vt,h − vt′,h′‖2 . h−r−m
√
|t− t′|+ |h′ − h|.
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Proof. Since∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hq

.
∫
〈s〉2q

∣∣1− eis(t−t′)∣∣2∣∣F(φ( ·h))(s)∣∣2ds+
∥∥φ( ·h)− φ( ·h′ )∥∥2Hq

and |1− eis(t−t′)| ≤ 2 min(|s||t− t′|, 1) ≤ 2 min(|s|`|t− t′|`, 1) ≤ 2|s|`|t− t′|`,
we obtain∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hq . |t− t′|2`h1−2q−2` +

∥∥φ( ·h)− φ( ·h′ )∥∥2Hq

(note that φ ∈ Hq+`). Set k = dqe. Then∥∥φ( ·h)− φ( ·h′ )∥∥2Hq . h1−2q
∥∥φ− φ( hh′ · )∥∥2Hq

. h1−2q
∥∥φ− φ( hh′ · )∥∥22 + h1−2q

∥∥Dk
(
φ− φ

(
h
h′ ·
))∥∥2

2
.

For j ∈ {0, k},∥∥Dj
(
φ− φ

(
h
h′ ·
))∥∥2

2
≤ 2
∥∥φ(j) − φ(j)( hh′ · )∥∥22 + 2

(
1−

(
h
h′

)j)2∥∥φ(j)( hh′ · )∥∥22
. h−1

∥∥φ(j)( ·h)− φ(j)( ·h′ )∥∥22 + |h′ − h| h−1‖φ(j)‖22.

Now, application of Lemma B.4 completes the proof for the first part. The
second claim follows from

‖vt,h − vt′,h′‖22 =

∫
|λ(s)|2

∣∣F(Op(a?)(φ ◦ St,h − φ ◦ St′,h′))
)
(s)
∣∣2ds

.
∥∥φ ◦ St,h − φ ◦ St′,h′∥∥2Hr+m .

Lemma B.6. Let At,t′,h,h′ be defined as in (3) and work under Assump-
tion 1. Then, for a global constant K > 0,

At,t′,h,h′ ≤ K
√
|t− t′|+ |h− h′|.

Proof. Without loss of generality, assume that for fixed (t, h), Vt,h ≥
Vt′,h′ . We can write

At,t′,h,h′ ≤
‖ψt,h

√
h− ψt′,h′

√
h′‖2

Vt,h
+
√
h′‖ψt′,h′‖2

∣∣∣ 1

Vt,h
− 1

Vt′,h′

∣∣∣
≤
‖ψt,h

√
h− ψt′,h′

√
h′‖2

Vt,h
+
√
h′
|Vt,h − Vt′,h′ |

Vt,h
.
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By triangle inequality, ‖ψt,h
√
h− ψt′,h′

√
h′‖2 ≤

√
h′‖ψt,h − ψt′,h′‖2 + |

√
h−√

h′| ‖ψt,h‖2. Thus,

At,t′,h,h′ ≤
√
h′

Vt,h

(
‖ψt,h − ψt′,h′‖2 + |Vt,h − Vt′,h′ |

)
+
√
|h− h′|.

If h′ ≤ h, then the result follows by Assumption 1 (iv) and some elementary
computations. Otherwise we can estimate

√
h′ ≤

√
|h− h′|+

√
h and so

At,t′,h,h′ ≤
√
h

Vt,h

(
‖ψt,h − ψt′,h′‖2 + |Vt,h − Vt′,h′ |

)
+ 5
√
|h− h′|.

Remark 2. For the proofs of the subsequent lemmas, we make often use
of elementary facts related to the function 〈·〉α ∈ Sα with 0 < α < 1. Note
that for t ∈ [0, 1], Du〈u〉α ≤ α〈u〉α−1 ∈ Sα−1, Du〈u〉α ≤ α,

〈u〉α ≤ 1

2
(1 + |u|α) ≤ 1 + |u− t|α, and 〈u〉α−1 ≤ 2|u− t|α−1,(26)

where the last inequality follows from |u− t|1−α〈u〉α−1 ≤ |u|1−α〈u〉α−1 + 1 ≤
2.

Lemma B.7. For (t, h) ∈ T let rt,h be a function satisfying the conclu-
sions of Lemma B.2 for r,m and φ. Assume 1/2 < α < 1. Then, there exists
a constant K independent of (t, h) ∈ T and φ such that

∣∣rt,h(u)〈u〉α − rt,h(u′)〈u′〉α
∣∣ ≤ K‖φ‖Hq

4
h1−m−r

∣∣∣ ∫ u

u′

1

(x− t)2−α
+

1

(x− t)2
dx
∣∣∣,

for all u, u′ 6= t and

TV
(
rt,h〈·〉αI[t−1,t+1]

)
≤ K‖φ‖Hq

4
h−m−r,

TV
(
rt,h〈·〉αIR\[t−1,t+1]

)
≤ K‖φ‖Hq

4
h1−m−r.

Proof. Let C be as in Lemma B.2. In this proof K = K(α,C) denotes
a generic constant which may change from line to line. Without loss of
generality, we may assume that |u − t| ≥ |u′ − t|. Furthermore, the bound
is trivial if u′ ≤ t ≤ u or u ≤ t ≤ u′. Therefore, let us assume further that
u ≥ u′ > t (the case u ≤ u′ < t can be treated similarly). Together with the
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conclusions from Lemma B.2 and Remark 2 this shows that∣∣rt,h(u)〈u〉α − rt,h(u′)〈u′〉α
∣∣

≤
∣∣rt,h(u)

∣∣ ∣∣〈u〉α − 〈u′〉α∣∣+ 〈u′〉α
∣∣rt,h(u)− rt,h(u′)

∣∣
≤ K‖φ‖Hq

4

[
h2−m−r

1

(u− t)2
+ h1−m−r

|u′ − t|α + 1

|u′ − t| |u− t|

]
|u− u′|.

Clearly, the second term in the bracket dominates uniformly over h ∈ (0, 1].
By Taylor expansion

|u− u′|
|u′ − t|1−α |u− t|

=
u− u′

(u− t)α(u′ − t)1−α(u− t)1−α

≤ (u− t)1−α − (u′ − t)1−α

(1− α)(u′ − t)1−α(u− t)1−α
=

∫ u

u′

1

(x− t)2−α
dx.

Hence,

1

|u′ − t| |u− t|
|u− u′| =

∣∣ ∫ u

u′

1

(x− t)2
dx
∣∣

completes the proof for the first part. For the second part decompose rt,hI[t−1,t+1]

in r
(1)
t,h = rt,hI[t−h,t+h] and r

(2)
t,h = rt,hI[t−1,t+1] − r

(1)
t,h . Observe that the con-

clusions of Lemma B.2 imply

TV
(
r
(1)
t,h 〈·〉

α
)
≤ ‖〈·〉αI[t−h,t+h]‖∞TV(r

(1)
t,h ) + TV

(
〈·〉αI[t−h,t+h]

)
‖r(1)t,h‖∞

≤ K‖φ‖Hq
4
h−m−r.

By using the first part of the lemma, we conclude that uniformly in (t, h) ∈
T ,

TV
(
rt,h〈·〉αI[t−1,t+1]

)
≤ TV

(
r
(1)
t,h 〈·〉

α
)

+ TV
(
r
(2)
t,h 〈·〉

α
)

. K‖φ‖Hq
4
(h−m−r + h−m−r)

and also TV
(
rt,h〈·〉αIR\[t−1,t+1]

)
≤ K‖φ‖Hq

4
h1−m−r.

Lemma B.8. Work under Assumptions 2 and 3 and suppose that m+r >
1/2, 〈x〉φ ∈ L1, and φ ∈ Hm+r+1

1 . Let dt,h be as defined in (14). Then, there
exists a constant K independent of (t, h) ∈ T , such that for 1/2 < α < 1,

TV(dt,h〈·〉αI[t−1,t+1]) ≤ Khβ0∧(m+r)−r log
(
1
h

)
.



CONFIDENCE STATEMENTS FOR QUALITATIVE FEATURES 23

Proof. For convenience let β?0 := β0 ∧ (m+ r) and substitute s 7→ −s in
(14), i.e.

dt,h(u) :=

∫
e−is(u−t)/h

( 1

F(fε)(
s
h)
−Aιρs

∣∣ s
h

∣∣r)ιµs |s|mF(φ)(−s) –ds.

Define

Fh(s) :=
1

F(fε)(
s
h)
−Aιρs

∣∣ s
h

∣∣r.
By Assumptions 2 and 3, we can bound the L1-norm of

s 7→ 〈s〉Fh(s)ιµs |s|mF(φ)(−s)(27)

uniformly in (t, h) by
∫
〈s〉〈 sh〉

r−β0 |s|m
∣∣F(φ)(−s)

∣∣ds. Bounding 〈 sh〉
r−β0 by

〈 sh〉
r−β?0 and considering the cases r ≤ β?0 and r > β?0 separately, we find

hβ
?
0−r

∫
〈s〉1+r+m−β?0 |F(φ)(−s)|ds . hβ

?
0−r‖φ‖Hr+m+1 as an upper bound for

(27), uniformly in (t, h) ∈ T . Furthermore,

DsFh(s) = −
DsF(fε)(

s
h)(

F(fε)(
s
h)
)2 −Ariιρ−1s h−1

∣∣ s
h

∣∣r−1
and by Assumptions 2 and 3,∣∣∣sDsFh(s)

∣∣∣ ≤ ∣∣sDsF(fε)(
s
h)
∣∣∣∣∣A2ι2ρs

∣∣ s
h

∣∣2r − 1(
F(fε)(

s
h)
)2 ∣∣∣

+ |A|r
∣∣ s
h

∣∣r∣∣∣−A(ri)−1ιρ+1
s h

∣∣ s
h

∣∣r+1
DsF(fε)

(
s
h

)
− 1
∣∣∣

.
(∣∣ s

h

∣∣〈 s
h

〉r−1
+
∣∣ s
h

∣∣r)〈 s
h

〉−β0 ≤ 2
〈
s
h

〉r−β?0 .
Similarly as above, we can conclude that the L1-norm of

s 7→ DssFh(s)ιµs |s|mF(φ)(−s)

is bounded by const.×hβ?0−r‖φ‖Hr+m+1
1

, uniformly over all (t, h) ∈ T . There-

fore, we have by interchanging differentiation and integration first and par-
tial integration,

Dudt,h(u) =
−i
h

∫
se−is(u−t)/hFh(s)ιµs |s|mF(φ)(−s) –ds

=
−1

u− t

∫
e−is(u−t)/hDssFh(s)ιµs |s|mF(φ)(−s) –ds
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and the second equality holds for u 6= t. Together with (27) this shows that
|dt,h(u)| . hβ

?
0−r and |Dudt,h(u)| . hβ

?
0−r−1 min(1, h/|u− t|). Using Remark

2 we find for the sets A
(1)
t,h := [t− h, t+ h] and A

(2)
t,h := [t− 1, t+ 1] \A(1)

t,h ,

TV(dt,hI[t−1,t+1]) ≤ 2‖dt,h‖∞ +

∫
A

(1)
t,h

|Dudt,h(u)|du+

∫
A

(2)
t,h

|Dudt,h(u)|du

. hβ
?
0−r log

(
1
h

)
.

Thus, TV(dt,h〈·〉αI[t−1,t+1]) . ‖dt,h‖∞ + TV(dt,hI[t−1,t+1]) . hβ
?
0−r log

(
1
h

)
.

Lemma B.9. Work under the assumptions of Theorem 3 and let vPt,h be
defined as in (10). Then, for 1/2 < α < 1,

TV(vPt,h〈·〉αIR\[t−1,t+1]) ≤ Kh1−r−m,

where the constant K does not depend on (t, h).

Proof. The proof uses essentially the same arguments as the proof of
Lemma B.2. Let q := br +m+ 5/2c and recall that by assumption 〈x〉2φ ∈
L1. Decomposing the L1-norm on R into L1([−1, 1]) and L1(R \ [−1, 1]),
using Cauchy-Schwarz inequality, and ‖F(φ)‖∞ ≤ ‖φ‖1, we see that for
j ∈ {0, 1}, the L1-norm of s 7→ Dj

s|s|r+mι−ρ−µs F(φ)(s) is bounded by
const. × (‖φ‖Hq

1
+ ‖φ‖1). Similarly, for k ∈ {0, 1, 2} the L1-norms of s 7→

Dk
s |s|r+m+1ι−ρ−µ+1

s F(φ)(s) are bounded by a multiple of ‖φ‖Hq
2

+ ‖φ‖1.
Hence we have

vPt,h(u) =
Ah1−r−miaP (t)

u− t

∫
eis(u−t)/hDs|s|r+mι−ρ−µs F(φ)(s) –ds

and

Duv
P
t,h(u) =

−Ah1−r−maP (t)

(u− t)2

∫
eis(u−t)/hD2

s |s|r+m+1ι−ρ−µ+1
s F(φ)(s) –ds.

Together with Remark 2 this shows that

TV
(
vPt,h〈·〉αI[t+1,∞)

)
≤ ‖vPt,h〈·〉αI[t+1,∞)‖∞ +

∫ ∞
t+1
|Duv

P
t,h(u)〈·〉α|du

. h1−r−m +

∫ ∞
t+1

h1−r−m

|u− t|2−α
+
h1−r−m

|u− t|2
du . h1−r−m.

Similarly we can bound the total variation on (−∞, t− 1].
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The next lemma extends a well-known bound for functions with compact
support to general càdlàg functions. We found this result useful for estimat-
ing the supremum over a Gaussian process if entropy bounds are difficult.

Lemma B.10. Let (Wt)t∈R denote a two-sided Brownian motion. For
a class of real-valued càdlàg functions F and any α > 1/2 there exists a
constant Cα such that

sup
f∈F

∣∣ ∫ f(s)dWs

∣∣ ≤ Cα sup
s∈[0,1]

|W s| sup
f∈F

TV(〈·〉αf),

where W is a standard Brownian motion on the same probability space.

Proof. The proof consists of two steps. First suppose that
⋃
f∈F supp f ⊂

[0, 1] and assume that the f are of bounded variation. Then, for any f ∈ F ,
there exists a function qf with ‖qf‖∞ ≤ TV(f) and a probability measure Pf
with Pf [0, 1[= 1, such that f(u) =

∫
[0,u] qf (u)Pf (du) for all u ∈ R, because

f is càdlàg and thus f(1) = 0. With probability one,

sup
f∈F

∣∣ ∫ f(s)dWs

∣∣ = sup
f∈F

∣∣∣ ∫ Wsqf (s)Pf (ds)
∣∣∣ ≤ sup

s∈[0,1]
|Ws| sup

f∈F
TV(f).

Now let us consider the general case. If Cα := ‖〈·〉−α‖2 then h(s) =
C−2α 〈s〉−2α is a density of a random variable. Let H be the corresponding
distribution function. Note that(

W t

)
t∈[0,1] =

(∫ t

0

√
h(H−1(s))dWH−1(s)

)
t∈[0,1]

is a standard Brownian motion satisfying dWH(s) =
√
h(s)dWs and thus

with Af = 〈·〉αf,

sup
f∈F

∣∣ ∫ f(s)dWs

∣∣ = Cα sup
f∈F

∣∣ ∫ Af(s)dWH(s)

∣∣
= Cα sup

f∈F

∣∣ ∫ 1

0
Af(H−1(s))dW s

∣∣.
Since TV(Af ◦H−1) = TV(Af) the result follows from the first part.

In the next lemma, we study monotonicity properties of the calibration
weights wh.
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Lemma B.11. For h ∈ (0, 1] and ν > e let wh :=
√

2−1 log(ν/h)/ log log(ν/h).
Then

(i) h 7→ wh is strictly decreasing on
(
0, ν exp(e−2)

]
, and

(ii) h 7→ whh
1/2 is strictly increasing on (0, 1].

Proof. With x = x(h) := log log(ν/h) > 0, we have logwh = − log(2)/2+
x/2−log x. Since the derivative of this w.r.t. x equals 1/2−1/x and is strictly
positive for x > 2, we conclude that logwh is strictly increasing for x(h) ≥ 2,
i.e. h ≤ ν exp(e−2). Moreover, log(whh

1/2) = log(ν/2)/2+x/2− log x−ex/2,
and the derivative of this w.r.t. x > 0 equals 1/2 − 1/x − ex/2 < 0. Thus,
whh

1/2 is strictly increasing in h ∈ (0, 1].

Lemma B.12. Condition (iii) in Assumption 1 is fulfilled with κn =

wunu
1/2
n whenever Condition (ii) of Assumption 1 holds, and for all (t, h) ∈

Bn, suppψt,h ⊂ [t− h, t+ h].

Proof. Let 1/2 < α < 1. Then 〈·〉α : R → R is Lipschitz. Recall that
TV(fg) ≤ ‖f‖∞TV(g) + ‖g‖∞TV(f). Since

⋃
(t,h)∈Bn suppψt,h ⊂ [−1, 2]

is bounded and contains the support of all functions s 7→ ψt,h(s)
[√

g(s) −√
g(t)

]
〈s〉α (indexed in (t, h) ∈ Bn), we obtain uniformly over (t, h) ∈ Bn

and G ∈ G,

TV
(
ψt,h(·)

[√
g(·)−

√
g(t)

]
〈·〉α

)
.
∥∥ψt,h(·)

[√
g(·)−

√
g(t)

]∥∥
∞ + TV

(
ψt,h(·)

[√
g(·)−

√
g(t)

])
Furthermore,

TV
(
ψt,h(·)

[√
g(·)−

√
g(t)

])
≤ ‖ψt,h‖∞TV

([√
g(·)−

√
g(t)

]
I[t−h,t+h](·)

)
+ TV

(
ψt,h

)∥∥[√g(·)−
√
g(t)

]
I[t−h,t+h](·)

∥∥
∞

. Vt,hh
1/2,

where the last inequality follows from Assumption 1 (ii) as well as the prop-
erties of G. With Lemma B.11 (ii) the result follows.

Appendix C Further results on multiscale statistics. The fol-
lowing result shows that multiscale statistics computed over sufficiently rich
index sets Bn are also bounded from below.
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Lemma C.1. Assume that Kn →∞, ψt,h = ψ
( ·−t
h

)
and Vt,h = ‖ψt,h‖2 =√

h‖ψ‖2. Suppose that limj→∞ log(j)|
∫
ψ(s− j)ψ(s)ds| → 0. Then, with wh

and B◦Kn as defined in (10) and (14), respectively,

sup
(t,h)∈B◦Kn

wh

(∣∣ ∫ ψt,h(s)dWs

∣∣
‖ψt,h‖2

−
√

2 log ν
h

)
→ −1

4
, in probability.

Proof. Write K := Kn and let ξj := ‖ψt,h‖−12

∫
ψj/K,1/K(s)dWs for j =

0, . . . ,K−1. Now, (ξj)j is a stationary sequence of centered and standardized
normal random variables. In particular the distribution of (ξj)j does not
depend on K and the covariance decays by assumption at a faster rate than
logarithmically. By Theorem 4.3.3 (ii) in [45] the maximum behaves as the
maximum of K independent standard normal r.v., i.e.

P
(

max(ξ1, . . . , ξK) ≤ aK + bKt
)
→ exp

(
− e−t

)
, for t ∈ R and K →∞,

where

bK :=
1√

2 logK
, and aK =

√
2 logK − log logK + log(4π)√

8 logK
.

Using the tail-equivalence criterion (cf. [41], Proposition 3.3.28), we obtain
further

lim
K→∞

P
(

max(|ξ1|, . . . , |ξK |) ≤ aK + bK(t+ log 2)
)

= exp
(
− e−t

)
, for t ∈ R.

Note that T ◦n := sup(t,h)∈B◦n wh(‖ψt,h‖−12 |
∫
ψt,h(s)dWs| −

√
2 log(ν/h)) has

the same distribution as wK−1 max(|ξ1|, . . . , |ξK |) − wK−1

√
2 log(νK). It is

easy to show that√
log νK =

√
logK +

log ν

2
√

logK
+O

( 1

log3/2K

)
and ∣∣∣ 1

wK−1

− log logK√
1
2 logK

∣∣∣ = O

(
log logK

log3/2K

)
.
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Assume that ηn → 0 and ηn log logK →∞. Then for sufficiently large n,

P
(
T ◦n > −1

4 + ηn
)

= P
(

max(|ξ1|, . . . , |ξK |) >
(
− 1

4 + ηn
)
/wK−1 +

√
2 log νK

)
= P

(
max(|ξ1|, . . . , |ξK |) >(
− 1 + 4ηn

) log logK√
8 logK

+
√

2 logK +
log ν√
2 logK

+O
( log logK

log3/2K

))
≤ P

(
max(|ξ1|, . . . , |ξK |) > aK + bK2ηn log logK

)
→ 0.

Similarly,

P
(
T ◦n ≤ −1

4 − ηn
)
≤ P

(
max(|ξ1|, . . . , |ξK |) ≤ aK − bKηn log logK

)
→ 0.

In order to illustrate the general multiscale statistic discussed in Section
2, let us show in the subsequent example that it is also possible to choose
Bn in order to construct (level-dependent) values for simultaneous wavelet
thresholding.

Example C.1. Observe that d̂j,k = Tk2−j ,2−j and dj,k = ETk2−j ,2−j =∫
ψk2−j ,2−j (s)g(s)ds =

∫
ψ(2js − k)g(s)ds are the (estimated) wavelet coef-

ficients and if j0n and j1n are integers satisfying 2−j1nn log−3 n → ∞ and
j0n →∞, then for α ∈ (0, 1) and

Bn =
{

(k2−j , 2−j)
∣∣ k = 0, 1, . . . , 2j − 1, j0n ≤ j ≤ j1n, j ∈ N

}
,

Theorem 1 yields in a natural way level-dependent thresholds qj,k(α), such
that

lim
n→∞

P
(∣∣d̂j,k − dj,k∣∣ ≤ qj,k(α), for all j, k, with (k2−j , 2−j) ∈ Bn

)
= 1− α.
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