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Abstract Primordial germ cells (PGCs) are induced in the
epiblast early in mammalian development. They develop
their specific fate separate from somatic cells by the gener-
ation of a unique transcriptional profile and by epigenetic
modifications of histones and DNA. PGCs are related to
pluripotent cells in many respects, both on a molecular and a
cell biological level. Mimicking their in vivo development,
PGCs can be derived in culture from pluripotent cells. Vice
versa, PGCs can be converted in vitro into pluripotent
embryonic germ cells. Recent evidence indicates that the
derivation of pluripotent embryonic stem cells from
explanted inner cell mass cells may pass through a germ
cell-like state, but that this intermediate is not obligatory. In
this review, we discuss PGC development and its relevance
to pluripotency in mammalian embryos. We outline possi-
bilities and problems connected to the application of in
vitro-derived germ cells in reproductive medicine.
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Introduction

Germ cells are unique cells present in vertebrates during
almost the entire life span. Their task is to carry the genetic
material safely into the next generation. For that, they develop
separately from all other cells of the body, and probably their
genomes undergo particularly critical quality controls. In this

review, we concentrate on the mouse as a model system,
which was most intensely studied in terms of cell biological,
genetic, and molecular aspects. It can be assumed that the
principal findings for mice apply also to other mammalian
species including humans, while lower vertebrates like fishes
and some amphibians differ significantly in early mechanisms
of germ line development.

Primordial germ cells (PGCs) arise early in embryogen-
esis and develop further in the genital ridge at midgestation,
whereas the male and female gametes are only formed after
birth. The germ cell cycle is finished by the fusion of an
oocyte with a spermatozoon, giving rise to a diploid one-cell
embryo [1]. During the first cell divisions of a mouse
embryo, there is no separate development of somatic cells
from the germline. Only at the onset of gastrulation a
small set of PGC progenitors is induced in the epiblast in
response to instructive bone morphogenetic protein (BMP)
signals [2–4]. The first bona fide germ cells, the PGCs,
leave the epiblast with the extraembryonic mesoderm at
the posterior primitive streak, and thus, in mice, a group of
around 40 PGCs locates at the base of the allantois. From
here, the PGCs migrate within the definitive endoderm of
the prospective hindgut during early organogenesis, exit
from the hindgut endoderm, and migrate via the dorsal
mesentery towards the genital ridges. Here, they accumulate
in the gonad anlagen, and ovaries and testes become mor-
phologically distinguishable around midgestation [5–8].
Murine PGC precursor cells in the epiblast divide very
rapidly with a doubling time of 5–7 h, comparable to their
surrounding cells [9–11]. However, they slow down drasti-
cally to a regular 16-h cell cycle after translocation from the
epiblast to the extraembryonic mesoderm. Thus, PGC
numbers increase to around 250 at embryonic day (E)9.5,
to 1,000 at E10.5, and to 26,000 in the gonad primordia at
E13.5 [11]. Massive cell biological and molecular changes
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occur in PGCs after their induction and before gonad for-
mation. They affect the developmental potential, the cell
cycle, the transcriptional program, and the epigenetic setup
of the chromatin.

The specification of primordial germ cells

Once induced in the epiblast, PGC precursors start to
express the transcriptional regulator Blimp1 (Prdm1) and
subsequently Prdm14, two essential genes for PGC devel-
opment [12, 13]. A major function of Blimp1 in PGCs is the
transcriptional repression of typical somatic genes like Hox,
Snail, and others [10]. It also controls the reduction of the
doubling time via downregulation of c-Myc [14]. Both
Blimp1 and Prdm14 are required for the activation of the
pluripotency marker Sox2, which had been suppressed in
the early epiblast (Fig. 1). Its renewed transcription indicates
the reacquisition of potential pluripotency [13, 15]. With the
program orchestrated by the two PRDM genes, the unique
germ cell fate of the PGCs is established, and they are
usually considered to be specified [15]. This implies that
they are clearly bearing the characteristics of germ cells, and
will continue as such, if no further influences will affect
their fate. However, in order to secure this fate against
external cues, a further fixation of the identity is necessary.
This is achieved by epigenetic modifications of the chroma-
tin and of the DNA, introducing inheritable marks that
guarantee the commitment to a germ cell fate (Fig. 2a).

The epigenetics of primordial germ cells

PGCs arrest their cell cycle in the G2 phase and stall Pol II-
mediated de novo transcription relatively early after their

specification for about 36 h [16]. It seems that this phase is
used for initiation of significant changes in the epigenetic
status. The repressive histone mark H3K9me2 now
decreases progressively and becomes effectively removed.
This genome-wide effect correlates with the Prdm14-
dependent downregulation of the histone methyltransferases
GLP, which together with G9a is critical for H3K9 dime-
thylation [17, 18]. In parallel, expression of the histone
demethylase Jmdm2a is maintained [16, 19]. The down-
regulation of the methyltransferases and the maintenance of
the demethylase explain the gradual loss of H3K9me2 over
time. A different suppressive histone mark, H3K27me3, is
introduced by the polycomb repressive complex 2 (PRC2).
PRC2 consists of the core components Ezh2, Eed, and Suz12,
all of which are present in PGCs [20]. The replacement of one
inhibitory modification by another changes the molecular
configurations at the affected loci. H3K9me2 recruits het-
erochromatin protein 1 and causes DNA methylation,
whereas H3K27me3 is a histone mark conferring more
plasticity [21, 22]. PGCs have significant levels of both
the activating H3K4me3 and the repressive H3K27me3
modification, and therefore, they might in principle gener-
ate bivalent loci, i.e., configurations which are often located
on developmentally critical promoter regions, and can be
quickly activated in response to differentiation stimuli [23].
In PGCs, they may facilitate the epigenetic resetting of the
chromatin in preparation for future differentiation steps in
the genital ridges. Further histone modifications occur later,
in parallel to the demethylation of DNA [24]. They com-
prise a transient loss of H3K9me3 and H3K27me3, where-
as the histone variants H4/H2AR3me2s and H3K9ac are
persistently lost.

In addition to the modification of histones, significant
changes of DNA methylation patterns are introduced in
migratory and post-migratory PGCs (Fig. 2a) [8, 16, 25,
26]. Genome-wide DNA demethylation occurs passively
by repressing the DNA methyltransferases and results in a
gradual loss of 5mC with every cell division [17, 18]. In
addition, methyl groups can also be removed from DNA
directly, e.g., by employing the cytidine deaminase Aid
[27]. The critical mechanism for genome-wide DNA
demethylation in PGCs is DNA repair through the base
excision repair (BER) pathway [28]. Only later, also
repetitive regions and transposable elements become in
part demethylated, while they remain highly methylated
and silenced in somatic cells. Imprinting of genes is
erased and becomes reestablished after sex determination
to adjust the dosage according to the sex of the cells [26,
29]. Finally, the X chromosome reactivation in female
PGCs, which was initiated already during migration, is
completed [8, 30, 31]. Taken together, the extensive
remodeling of the chromatin in PGCs reprograms the
epigenome in preparation for totipotency [24, 25].

Fig. 1 PGCs reacquire potential pluripotency. PGCs (arrowhead) are
the only cells in the developing embryo that co-express pluripotency
markers Oct4 (in red) and Sox2 (in green). Arrow points to Sox2-
expressing neural tube cells. The picture represents a cross section of
an E9.0 embryo
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The conversion of germ cells into pluripotent stem cells

Early PGCs of both murine and human origin have the
potential to undergo reprogramming to become pluripotent
embryonic germ cells (EGCs) in vitro [32–34]. This process
requires signaling of three growth factors, namely basic
fibroblast growth factor (bFGF), stem cell factor (SCF),
and leukemia inhibitory factor (LIF), all of which are essen-
tial for proliferation and/or survival of PGCs. The first 24 h
of bFGF treatment are necessary and sufficient for the
inhibition of further PGC differentiation and to start reprog-
ramming to the EGC state [35]. In murine cells, this
involves suppression of Blimp1, and consequently, the upre-
gulation of its target genes, such as the pluripotency markers

c-Myc, Klf4, and also Dhx38. Whereas LIF/Stat3 signaling
is replaceable with bFGF during the first days of PGC
conversion, it is essential to maintain the self-renewal of
EGCs once pluripotency is established. Several other sig-
naling pathways have also been reported to be involved in
the conversion process. AKT signaling can promote the
derivation of EGCs from cultured PGCs, partially by the
inhibitory phosphorylation of GSK-3 [36]. Similarly, the
conversion can be accelerated by addition of two inhibitors
(2i) that block GSK3 and ERK signaling pathways [37].
Deficiencies in p53 and PTEN, two critical tumor suppres-
sor genes, are associated with an increase of the potential for
EGC derivation [36, 38, 39]. Chromatin modifiers like
trichostatin A can inhibit histone deacetylases and boost

Fig. 2 Reciprocal relationship of PGCs and ESCs. a BMP4-induced
PGCs (red dots) in the epiblast start epigenetic reprogramming by the
erasure of DNA methylation and also changes in histone modifications
while migrating in the hindgut endoderm. PGCs become transiently
arrested in G2 phase of the cell cycle, and once they arrive in the
genital ridges, an active DNA demethylation occurs via base excision
repair-mediated mechanism. As a result, PGCs reset their genome and
become ready for future gametogenesis. Modified from [28, 61]. b
Germ cell differentiation in vitro from ESCs recapitulates embryonic

PGC development [72]. Undifferentiated pluripotent ES cells, the in
vitro counterparts of ICM cells, differentiate into EpiLCs and are then
further induced mainly by BMPs to PGCLCs. Epigenetic reprogram-
ming and cell cycle dynamics in PGCLCs are similar to that of native
PGCs. c Blimp1-positive PGC-like precursors in the ICM outgrowth
(red dots) give rise to ESCs under conventional LIF/serum conditions
[83]. Alternatively, non-PGC-like cells in the outgrowth (blue dots) can
directly establish ESC colonies when grown under LIF/2i conditions
without germ cell-like intermediates
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the derivation of EGCs without using bFGF [40]. Notewor-
thy, the complete pluripotency circuit is not established in
PGCs, although Oct4, Sox2, and Nanog are expressed
[41, 42]. Again, the key difference seems to be the presence
of Blimp1 and, therefore, the suppression of other
pluripotency-related genes like Klf4 and c-Myc [43]. Early
during reprogramming to EGCs, Blimp1 expression is lost,
the pluripotency circuit becomes dominant, and EGCs can
be established in culture [40, 44]. The possibility to generate
pluripotent stem cells from human fetal gonads was first
described in 1998, simultaneously with the first isolations of
pluripotent human embryonic stem cells (ESCs) [34, 45].

Increasing evidence indicates the possibility that also
postnatal testicular cells can reacquire pluripotency, sharing
this characteristic with their embryonic PGC ancestors. In
testes, a unipotent stem cell population, the spermatogonial
stem cells (SSCs), functions as the origin for the differenti-
ation of spermatozoa. SSCs are dominated by a spermato-
gonial transcription program and express low levels of core
pluripotency genes such as Oct4, Klf4, Myc, and Rex-1, but
no appreciable levels of Sox2 and Nanog [46, 47]. Under
appropriate growth conditions, pluripotent stem cells, pre-
viously designated among others germline-derived pluripo-
tent stem cells (gPSCs), can be derived from the SSCs of
neonatal or adult mice, and possibly also humans [46–54].
Importantly, the in vitro reprogramming of SSCs to gPSCs
is independent of the transfer of exogenous, pluripotency-
related genes [48]. The whole issue of testis-derived plurip-
otent stem cells of human origin is still under debate [55,
56]. However, there is generally no serious doubt that they
will be available in a not so far future [56]. Major activities
focus on such human testis-derived pluripotent stem cells,
obtainable from biopsies and without gene transfer, since
they may open a realistic perspective for medical applica-
tions [57, 58]. However, human gPSCs will require the
availability of healthy testes with an intact spermatogenesis
program. Therefore, they are unlikely to be of use for the
generation of patient-specific germ cells applicable in repro-
ductive medicine.

The conversion of pluripotent stem cells into PGCs
and gametes

The generation of PGCs and/or gametes in culture would
facilitate the access to cells resembling the rare PGCs of
early stages. It may be a prerequisite for the dissection of the
various cell biological and molecular steps of PGC devel-
opment. It would also allow for the first time to study human
PGC development in more detail [59]. Several attempts
were undertaken to derive PGCs or later stages of germ
cells from murine or human pluripotent cells, in particular
from ESCs or epiblast stem cells (EpiSCs; reviewed in [60,

61]). The differentiation efficiency of murine ESCs towards
germ cells initially turned out to be quite low, the underlying
molecular mechanisms did not become clear, and the puta-
tive cellular intermediates could not be characterized. In
some cases, fully differentiated male haploid germ cells
were obtained and successfully applied for fertilization.
However, offspring died prematurely in embryonic or post-
natal stages [62–65]. Human PGC-like cells could be
obtained from pluripotent ESCs or induced pluripotent cells
(iPSCs; for review, see [66, 67]), applying the right growth
conditions, including also co-culture with human fetal
gonadal cells [59]. Haploid gamete development required
genetic manipulations, in particular the modulation of genes
of the DAZ gene family [68–70].

In the embryo, PGCs derive from the epiblast cells, all of
which have the potential to differentiate to PGCs in response
to BMP signaling [2]. Therefore, EpiSCs, the self-renewing
in vitro counterparts of the epiblast, were considered as a
starting point for in vitro PGC generation. While self-
renewing in culture, EpiSCs delineated PGC precursors
recognizable by the expression of a Blimp1–GFP reporter
gene [71]. These precursors could differentiate into commit-
ted PGCs, expressing typical marker genes including Oct4,
SSEA1, Prdm14, Nanos3, Dnd1, and Stella. Indeed, cul-
tured EpiSCs were continuously fluctuating between self-
renewing and differentiating states (Blimp1−/Oct4+ versus
Blimp1+/Oct4+), and the latter could proceed to a germline-
committed state (Blimp1+/Oct4+/Stella+). The differentia-
tion was BMP4-dependent. Epigenetic reprogramming was
indicated by a downregulation of H3K9me2 and GLP and
the upregulation of H3K27me3, similar to nascent PGCs.
These Stella+ cells could de-differentiate to EGCs under
appropriate growth conditions, or proliferate and express
Mvh and Sycp3 if co-cultured with E12.5 female gonadal
cells, and occasionally differentiated further to oocyte-like
structures. In general, the efficiency of germ cell derivation
from EpiSCs was relatively low, with less than one oocyte
per 3,000 plated Stella+ cells, and the underlying molecular
mechanism was not evident.

Following closely the in vivo development of PGCs,
Hayashi et al. [72] established a robust method to derive
functional germ cells from murine ESCs via epiblast-like
intermediates (Fig. 2b). First, ESCs were cultured in serum-
and feeder-free conditions in the presence of LIF and two
inhibitors (LIF/2i conditions), which lead to uniform ESCs
resembling the cells of the inner cell mass (ICM) or the
preimplantation epiblast [73]. Upon LIF/2i withdrawal
and addition of growth factors (activin and bFGF), a
differentiation toward an epiblast-like state was induced.
These intermediates, designated epiblast-like cells
(EpiLCs), were explicitly different from EpiSCs in terms
of gene expression profile and resembled more closely
embryonic cells of the pre-implantation epiblast. The
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EpiLCs were further induced to PGCs by BMP4, LIF, SCF,
BMP8b, and EGF in floating condition. Six days after induc-
tion AP-, Blimp1-, and Stella-positive PGC-like cells
(PGCLCs) emerged at the periphery of the cell aggregates
with a relatively high efficiency. Like specified native PGCs,
these committed PGCLCs manifested genetic and epigenet-
ic signatures and cell cycle dynamics similar to those of
E9.5 PGCs [16]. In order to test the developmental poten-
tial of PGCLCs, they were transplanted into testes of
infertile mice. Here, they differentiated into sperm, which
could fertilize oocytes, and give rise to a healthy offspring.
It is not clear yet if this differentiation protocol involves
also BER-mediated DNA demethylation as would be the
case for native PGCs. Additionally, the potential of this
protocol to induce female differentiation from ES cells
would be of interest. Global gene expression analysis
revealed that PGCLC induction from ES cells is a repro-
ducible, directional, and progressive process. This novel
protocol for in vitro differentiation recapitulates the in vivo
specification and epigenetic reprogramming of germ cell
and manifests several steps of PGC development. In the
future, this paradigm will be useful to derive high numbers
of germ cells and study the dynamics of their genetic and
epigenetic status. In general, in vitro differentiation of germ
cells from pluripotent stem cells is feasible. It involves a
multistep procedure including induction, genetic and epige-
netic reprogramming, and alteration in cell cycle of PGCs,

as well as mitosis versus meiosis decision making and
maturation of gametes. Progression through the initial steps
is paved in vitro using a right inducing cocktail of growth
factors, while fulfilling gametogenesis requires an appropri-
ate microenvironment, which can possibly be provided by
gonadal cells in co-culture.

Is pluripotency achieved via a germ cell-like
intermediate?

Although ESCs have raised a tremendous amount of atten-
tion during the last decades, the in vivo origin of ESCs
remained a point of discussion [74, 75]. It has recently
become clear that ESCs originate only from a small subset
of cells in the ICM, when cultured under standard conditions
in serum and LIF supplement medium [76]. Several lines of
evidence provoked the hypothesis that ESCs might derive
from PGC-like cells present in the ICM outgrowth. First,
explanted cells from the ICM transiently express PGC-
related genes, including Blimp1, Prdm14, Stella, Fragilis,
Lin28, c-kit, and Mvh [75, 77, 78]. Second, specified PGCs
are the only cells in the early embryo that maintain (Oct4
and Nanog) or reacquire (Sox2) the expression of
pluripotency-associated genes. Third, PGCs can be induced
to reprogram to pluripotency in vitro, and resulting EGCs
are in most respects indistinguishable from ESCs. Fourth,

Fig. 3 The application of human pluripotent stem cells for reproduc-
tive medicine. Pluripotent human cells can be derived from the inner
cell mass of early embryos under activin/FGF conditions (ESC), from
fetal gonads under LIF/FGF conditions (EGC), from somatic cells
using three or four transcription factors (iPSC), and possibly from
adult testis biopsies gPSC, although the latter has only been shown in
the mouse model so far. As discussed in the text, only the somatic cells

offer a perspective for the derivation of patient-specific PGCs, the
subsequent differentiation into oocytes or spermatozoa in vitro, and
their use for fertilization. However, many hurdles have to be taken
before this method would be applicable in the clinic, including vector-
free induction of pluripotency and a stringent quality control of the
culture conditions with regard to mutation accumulation, epigenetic
aberrations, and genomic integrity
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the development of both pluripotent ESCs and PGCs
requires BMP signaling [79–82]. Fifth, gPSCs can be
derived from unipotent SSCs of the adult mouse testis [48].

Recently, Chu et al. used a Blimp1-reporter mouse line in
combination with single cell gene expression profiling to
look systematically for a potential link between PGCs and
ESCs (Fig. 2c) [83]. They detected genetically marked
Blimp1-positive PGC precursors in the outgrowth of in
vitro-cultured blastocysts, which gave rise to the majority
of pluripotent ESCs in the presence of LIF and serum. The
culture of Blimp1-negative, and therefore non-PGC-related
cells from the ICM on the other hand, required LIF/2i
conditions for the establishment of ESCs (Fig. 2c). These
striking results indicate that not Blimp1 expression as such
is the key prerequisite for the generation of ESCs from the
ICM of the mouse. The 2i factors seem to allow a more
direct generation of ESCs by blocking differentiation into
the extraembryonic endoderm lineage or possibly by
suppressing a somatic program [76]. Thus, depending on
the culture condition, ESCs can be established with or
without a germ cell-like intermediate. With this information
in mind, it would be interesting to ask if also the generation
of iPSCs from fibroblasts might pass through a germ cell-
like state. Indeed, it was found that the PGC markers
Blimp1, Stella, and Fragilis start to express earlier after viral
transduction than pluripotency markers [77]. However, fur-
ther work is needed to fully understand the significance of
this observation.

In vitro made patient-specific germ cells in reproductive
medicine?

The extensive possibilities for a reciprocal conversion of
cell types in vitro may raise questions about potential
applications in reproductive medicine. Is it realistic to
envision in vitro made, patient-specific spermatozoa or
oocytes for infertility treatment? Theoretically, it is con-
ceivable to connect the described in vitro methods to
derive patient-specific pluripotent cells, differentiate
them into PGCs, generate gametes, perform in vitro
fertilization, and retransfer human embryos to a natural
or surrogate mother (Fig. 3). Such a use of in vitro-
generated gametes for medical purposes would obvious-
ly raise a number of ethical issues. Pluripotent cells
which could be approved as a source for human germ
cells are currently not available for several reasons.
Firstly, human ESCs and EGCs are generated from parts
of embryos, the inner cell mass and fetal gonad, respec-
tively, and are therefore unacceptable for medical appli-
cations. Secondly, iPSCs are generated by gene transfer
and, therefore, cannot be approved for therapeutic pur-
poses. Thirdly, the derivation of pluripotent gPSCs has

so far not been successfull from human testis biopsies
[55, 56]. If they would become available, they might
represent an acceptable alternative for therapeutic pur-
poses, most probably, however, excluding the generation
of patient-specific germ cells. In any case, the genera-
tion of gametes from pluripotent cells requires extensive
culturing and passaging in culture, where they would be
exposed to a whole battery of highly effective factors
and agents with non-overseeable influences. Most prob-
ably, the last steps of gametogenesis would require
gonad material to create a suitable developmental niche.
Such a complex in vitro scenario is only vaguely con-
trollable, with multiple possibilities for mutations, DNA
damage, and chromosomal aberrations. To consider such
cells for use in reproductive medicine and, thus, with
consequences for following generations would trespass
ethical standards in an unprecedented dimension and
would be legally unacceptable in most countries.

Conclusion

PGCs are considered unipotent, since they can only give rise
to the gametes. At the same time, they are the only cells of
the body which will finally generate a totipotent cell, when
the haploid gametes fuse to form the one-cell embryo. ESCs
and EpiSCs are pluripotent stem cells derived from the
murine epiblast briefly before and after implantation,
respectively. Derivation of ESCs from the ICM is a process
that involves a germ cell-like intermediate, although it can
be bypassed in appropriate growth conditions [83]. Early
PGCs are the only embryonic cells, and SSCs are the only
postnatal cells which reacquire the potential for pluripotency
and can give rise to self-renewing pluripotent stem cells,
EGCs, and gPSCs, respectively. Among the extensive
developmental possibilities of all pluripotent stem cells is
also the capacity to differentiate into PGCs. The close
developmental relationship between peri-implantation cells
from the embryo and pluripotent stem cells may be the
reason that they can be converted from one into the other
by using appropriate growth factors, cytokines, or small
chemical inhibitors. Thus, ESCs can develop into PGCs,
PGCs into EGCs, and EpiSCs into either ESCs or PGCs
[32, 33, 71, 84, 85]. Through the forced expression of only
four critical genes, it is possible to convert basically any
somatic cell into a pluripotent iPS cell and then again derive
a large variety of differentiated cells, including PGCs, by the
modulation of growth conditions [66, 86]. All these exten-
sive possibilities are based on major modulations of the
transcriptome and the epigenome. Understanding these will
establish the basis for a novel level of knowledge in stem
and germ cell biology and may or may not open a perspec-
tive to molecular medicine.
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