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Model for Magnetization Transfer 

To obtain the expression for the HYPER-BIPO-NOE buildup, we use a three-spin system to 

derive the analytical solution for signal intensity evolution in a competitive binding experiment. 

  

We consider a competitive binding experiment of two ligands to a protein,  
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To estimate the signal intensities observed in a NMR experiment, we use one spin for ligand 

1, ligand 2 and protein, respectively. Further, we assume that exchange is fast compared to 

chemical shift and compared to spin relaxation, and that consequently, the system is kinetically 

at equilibrium at all times. 

The vector of signal intensities is 
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Here, L1 is unbound ligand 1, L2 is unbound ligand 2, PL1 is the protein when bound to 

ligand 1, L1P is ligand 1 when bound to protein, PL2 is protein when bound to ligand 2, L2P is 

ligand 2 when bound to protein, and P is unbound protein. 

The relaxation matrix is given by 
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The terms ρ are auto-relaxation rate constants for the respective species. σ1 is the cross-

relaxation rate constant between ligand 1 and protein, and σ2 the cross-relaxation rate constant 

between ligand 2 and protein. 

The kinetic matrix is 
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Quantities in square brackets are concentrations, which are constant, since the system is 

kinetically in equilibrium state. Using the above definitions, the time evolution of signal intensity 

is given by 

 ( )

0·K R tI Ie   (S.6) 

Loosely following,
[1]

 since exchange is on a faster time scale than spin relaxation, Equation  

S.6 can be simplified by finding a matrix V that diagonalizes K. An explicit solution is 
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with 

 1 1 2 1 2[L1] [L2]a koff koff kon kon     (S.8) 

 2 1 2 1 2[L1] [L2]a koff koff kon kon     (S.9) 
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Using Equation S.7, it is found that K has three eigenvalues that are equal to zero, such that 
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By the same transformation, R is not diagonalized: 
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in which RA is a 3×3 block, RB a 3×4 block, RC a 4×3 block, and RD a 4×4 block. 

Equation S.6 becomes 
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The matrix exponential in Equation S.13 would be simplified by a second transformation 

that block diagonalizes † †K R into a 3×3 and a 4×4 block. Analogous to the treatment in,
[2]

 but 

with higher dimensionality, we consider †R  as a small perturbation on †K . As in perturbation 

theory,
[2]

 we write 
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ζ is a parameter to keep track of the order, and the matrices W are the corrections to the 

eigenvectors of †K . By definition, the matrices D are block diagonal, and the diagonal block 

elements of W are chosen to be 0. The first order correction is found by comparing the terms in ζ 

on both sides of Equation S.14. 

 
† † †( ) ( )R K W WK D     (S.15) 

Writing every matrix in block form 
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The result shows that  

 A AD R , B DD R  (S.17) 

and 

 
, , ,/Ai j Bi j j jW R  ,

, , ,/Bi j Ci j i iW R   (S.18)(S.19) 
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If the elements in Λ are much larger than the elements of R, the first order correction W to 

the eigenvectors is negligible. Therefore, to first order approximation of eigenvalues and zero 

order correction of eigenvectors, 
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with 

 
1

1..3,1..3)(AR V RV  (S.21) 

the 3x3 matrix taken from the top left corner of 1V RV , and  

Then, Equation S.13 becomes 
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To calculate the NMR signal under fast exchange, it is necessary to sum the signals for the 

bound and free form of each species, since those appear at the same chemical shift. The 

summation can be accomplished by a transformation 

 J C I   (S.23) 
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and 
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In J, only the first three elements are of interest, designating the NMR signal from ligand 1, 

ligand 2, and protein, respectively. The last four elements simply remain to complete the basis. 

Using Equation S.22, 
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To calculate the matrix product in Equation S.26, it is convenient to write the constituents in 

block form: 
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The property that the upper right block of 3x4 elements in Equations S.27 and S.28 is equal 

to zero appears non-trivial, but can be verified explicitly from Equations S.7 and S.24. Then, 
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For obtaining the first three elements of J, it is only necessary to consider the upper row of 

blocks in Equation S.29: 
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From Equations S.7 and S.24, it can further be found that in the basis that was used, 

fortuitously  
1 1 1
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The explicit form of M obtained using Equations S.7 and S.24 are 
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Since the system is kinetically in the steady state, 

 1 1[PL1] [P][L1]koff kon  (S.35) 

and 

 2 2[PL2] [P][L2]koff kon  (S.36) 
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Consequently, M can be written in terms of concentrations 
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It may further be useful to define the parameters that describe the concentration fraction of 

species that are bound or unbound: 
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Then, Equation S.37 simplifies to 
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From Equation S.45, it can be seen most clearly that the evolution of NMR signal in 

Equation S.32 is governed by rate constants, which consist of the auto- and cross-relaxation rates 

of the individual species weighted by the corresponding concentration fractions. 

 

Solution of simplified equations 

Since magnetization of the hyperpolarized ligand L1 is much larger than the magnetization 

transferred to L2, back-transfer of magnetization can be ignored. Then, M becomes 
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The elements of M are, 

 1 1 L1 1 L1Pr pf pb    (S.47) 
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In this form, the analytical solutions to Equation 1 are considerably simplified, such that 
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Equations S.54 and S.55 are valid in the absence of radio-frequency pulses. For 

experimental measurement of IL1 and IL2, however, a RF pulse with flip angle α converts a 

fraction sin(α) of the total longitudinal magnetization into a coherence for detection. A fraction 

β=cos(α) of the longitudinal magnetization is preserved for following scans. Additionally, 

depending on the conditions for sample injection prior to the NMR experiment, mixing between 

the sample inside and outside the active coil region can result in a factor β' that is larger than 

β.
[8a]

 The experimental signal intensities of the k
th

 scan then become:  
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  (S.57) 

where βi' is the fraction of polarization preserved in scan i. The additional terms containing α and 

β', which are introduced due to the experiment, cancel if considering the relative HYPER-BIPO-

NOE signal intensity 

 L2,rel L2 L1/s s s  (S.58) 

If Equation S.58 is expanded for small times t, a quadratic dependence 

 * ** 2 2

L2,rel 1 2 1 2 1 2

1
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2
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is found. Further, in the limit that rP >> r1, r2 and r1 ≈ r2, Equation S.59 can be simplified to 

 
* **

1 2 1 2 1

P 1 PL1 2 PL2

2
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·t pb p
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s
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
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
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 
   (S.60) 

predicting a linear dependence of the signal on time, which also holds for longer times. 

 

Calculation of Transferred Magnetization 

To validate the model, numerical calculations were carried out using Equations S.3–S.6 

(“7×7 matrix”), as well as using Equations 1–3 from the text (“3×3 matrix”). These calculations 
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were compared with results by Equations S.54–S.58 (“Formula”) and Equation 4 (“Linear”), and 

results are shown in Figures S1-S2. 

Primary parameters used for approximation 

Total concentrations 

cL1 = 448 μM, cL2 = 329 μM, cP = 19 μM 

Kinetic parameters for the binding of ligand 1 or 2 to protein 

kon1 = kon2 = 1×10
8
 M

-1
·s

-1
 = 100 μM

-1
·s

-1
, koff1 = 300 s

-1
, koff2 = 400 s

-1
 

Auto relaxation rates of protein and protein bound ligands 

ρP = ρPL1 = ρPL2 = ρL1P = ρL2P = 8 s
-1

 

Auto relaxation rates of free ligands 

ρ1 = ρ2 = 0.25 s
-1

 

Cross relaxation rates between ligand 1 or 2 and protein 

σ1 = σ 2 = -1.4 s
-1

 

 

Derived parameters 

Equilibrium concentrations 

[L1] = 436 μM, [L2] = 322 μM, [PL1] = 12.2 μM, [PL2] = 6.75 μM, [P] = 0.0838 μM 

Dissociation constants for binding of ligand 1 and 2 to protein 

KD1 = 3 μM, KD2 = 4 μM 

Fractions of free and bound ligand 

pb1 = 0.027, pb2 = 0.021, pf1 = 0.97, pf2 = 0.98 

Fractions of free and bound protein 

p = 0.0044, p1 = 0.64, p2 = 0.36 

Apparent auto relaxation rates for ligand and protein 

r1 = 0.46 s
-1

, r2 = 0.41 s
-1

, rP = 8 s
-1

 

Apparent cross relaxation rates between ligand 1 or 2 and protein 

σ 1* = -0.038 s
-1

, σ 1** = -0.90 s
-1

, σ 2* = -0.029 s
-1

, σ 2** = -0.50 s
-1
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Supplementary Figures 

 

 

Figure S1: Simulated signal intensities of L2 with the 7×7 evolution matrix (green), 3×3 

evolution matrix (violet) and Equations S.54–S.58 (blue). In the 7×7 evolution matrix method, 

sL1 = IL1 + IL1P, sL2 = IL2 + IL2P. The lower panel shows the difference from the 7×7 evolution 

matrix method. 

 

 

 
Figure S2: Simulated signal intensities of L2 relative to the signal intensity of L1 with the 7×7 

evolution matrix (green), 3×3 evolution matrix (violet), Equations S.54–S.58 (blue) and Equation 

(4) (yellow). The lower panel shows the difference from the calculation using the 7×7 evolution 

matrix. 
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Figure S3: Buildup of the calculated (unfilled symbols) and experimental (filled symbols) signal 

integrals for the best pair which is described in the main text. The calculated peak integrals were 

calculated with our home written program. The integrals of peaks of ligand 2 were normalized as 

described in the caption of Figure 3d).  

 

 

 

Figure S4: Structures of PKA complexes with ligand 1 (left) and ligand 2 (right). The protein 

residues within 3Å distance from the ligands are shown. 
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Figure S5: Correlation plot of experimental and calculated normalized peak integrals. 

 

 
 

Figure S6: The INPHARMA buildup curve was measured by small flip angle pulses. The 

polarized sample was transferred from the polarizer to the home-built sample injector for a 

transfer time (tt). The sample was injected from the injection loop to a 5 mm NMR tube, which 

was preinstalled in a 400 MHz NMR spectrometer. NMR experiment was triggered after an 

injection time (ti) of 445 ms. After injection and sample mixing, a waiting time of 2 s in single 

scan experiments (Figure 2), and 400 ms in small flip angle excitation experiments (Figure 3) 

allowed for sample stabilization (ts) and NOE transfer. During the stabilization times, 

presaturation was applied for 400 ms at the resonance frequency of DMSO at 2.68 ppm. The 

carrier frequency was set to the resonance frequency of water. The water resonance was 

selectively excited by EBURP2 shaped π/2 pulses of 20 ms duration, and dephased by 
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randomized pulsed field gradients Gx, Gy or Gz (25..35 G/cm, 1 ms). This solvent suppression 

scheme was sufficiently selective, since the resonance frequency difference between water and 

the nearest protons of interest was 250 Hz. After a hard π/2 pulse or 20.7° (αx) pulse, 4096 data 

points were collected over 320 ms. Time interval between acquisitions was 0.4 s. The NMR data 

was processed using the TOPSPIN 3.0 program (Bruker Biospin). 

 

 

  
RMSD values [Å] 

 for all structures 

RMSD values [Å] 

for the best pair 

 
Superimposed 

atoms 
Ligand 1 Ligand 2 Ligand 1 Ligand 2 

all 

residues 

bb
a
 + ligand 1.96 ± 0.21 2.10 ± 0.20 2.15 1.62 

heavy
b
 + ligand 2.67 ± 0.22 2.81 ± 0.27 2.88 2.14 

binding 

site 

residues 

bb + ligand 1.41 ± 0.28 1.09 ± 0.14 1.33 0.68 

heavy + ligand 1.68 ± 0.22 1.51 ± 0.18 1.71 1.04 

Table S1: RMSD values for the PKA-ligand complex structures. 

a
 backbone atoms 

b
 all atoms except hydrogens 
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