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Abstract

The charge state distribution of ions of a heavy nuclei species in the stellar plasma environment
in which they were formed by s-process nucleosynthesis is investigated. Our aim is to gain
insight about the atomic inner-shell electron occupation of heavy elements. The vacancy of
the inner shells are of interest when evaluating the role of electronic recombination processes like
nuclear excitation by electron capture in s-process nucleosynthesis. To this end we investigate the
ionization of osmium (Z=76) as a test case in stellar plasma conditions relevant for the formation
of heavy nuclei. For these parameters we derive the ionization states that are formed with the
help of the Saha equation. The potential generated by the plasma electrons and ions is treated
in the framework of the Fermi model including quantum mechanical corrections. The latter is
used to obtain the reduction of the atomic binding energies and the correction of the partition
functions due to the plasma particles. Our results predict free K and nearly free L shells for
osmium for various plasma parameter sets typical for the s-process sites. These findings support
the further study of nuclear excitation by electron capture in stellar plasmas, given that the
former is strongly facilitated when recombination in inner shells is possible.

Zusammenfassung

In dieser Arbeit wird der Ionisierungsgrad von Osmium in einem stellaren Plasma untersucht,
in welchem das Ion zuvor iiber die s-Prozess Nukleosynthese gebildet wurde. Hierdurch soll
die Besetzung der inneren Elektronenschalen fiir schwere Elemente bestimmt werden, die von
grofler Bedeutung fiir die Rolle elektronischer Rekombinationsprozesse wie der Kernanregung
durch Elektroneneinfang fiir hoch angeregte Kerne bei der Entstehung neuer Elemente ist. Die
Ionisierungsgrade des gewéhlten Testions Osmium (Z=76) werden mit Hilfe der Saha Gleichung
fiir diejenigen Parameter berechnet, die das bei s-Prozess Nukleosynthese schwerer Isotope vor-
liegende Plasma am besten beschreiben. Um das Ladungspotential der das Ion umgebenden
Plasmapartikel einzubeziehen, wenden wir ein quantenmechanisch korrigiertes Fermi Modell an.
Mit Hilfe dieses Potentials konnen wir die durch die Plasmapartikel verursachte Verringerung der
Bindungsenergien der gebundenen Elektronen und damit den maximalen Anregungsenergiewert
berechnen, der innerhalb der Zustandssumme fiir das Osmiumion Beriicksichtigung findet. Im
Ergebnis stellen wir fest, dass die K-Schalen und partiell auch die L-Schalen des Osmium fiir die
gewahlten Plasmaparameter unbesetzt sind. Damit zeigen wir die Notwendigkeit weiterer Un-
tersuchung der bei Rekombination in innere Schalen besonders effektiven Kernanregung durch
Elektroneneinfang in stellaren Plasmen.
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1 Introduction

The mechanism of element formation has riddled generations of scientists beginning with the first
half of the twentieth century. It is known by now that the synthesis of all elements heavier than
iron takes place in stars. Since iron is the stable nucleus with the highest binding energy, heavier
elements cannot be produced by exothermal fusion processes of other lighter nuclei. Instead they
are essentially formed by the absorption of neutrons and to a much lesser extent by proton cap-
ture. That neutron capture on heavy nuclei occurs is due to the electrical neutrality of neutrons,
which ensures that the charge of the nuclei presents no barrier for the capture process. The
formed neutron-rich nuclei are unstable and usually undergo 8 decay. Two modes for neutron
capture can be distinguished by its occurrence rate with regard to § decay of the nucleus: the
slow (s-process) and the rapid (r-process) neutron capture process [BBEFH57]. The r-process is
ascribed to explosive conditions as in supernovae, where the neutron flux is so high that many
neutrons can be captured by a nucleus, prior to its decay. The s-process is characterized by a
lower neutron flux over a long period of time, where an unstable nucleus after neutron absorption
decays before another capture process may occur. For a long time following the original hypoth-
esis concerning the s-process, its underlying physical sites were only vaguely defined, since the
conditions—high thermal energy over a long period of time—are too extreme to be replicated
in a laboratory. Meanwhile, much progress has been made, mostly due to astronomical obser-
vations of stars and measurement of their element abundances. However, many questions are
not answered yet, and most studies of the s-process still rely on a variety of assumptions and
approximations.

Among other things, the role played by excited nuclear states in s-process nucleosynthesis has
not fully been clarified. The excitation of nuclear states may modify the decay rates and change
the ratio of the possible nuclear decay channels as presented in Ref. [GMO04, (GMMOT7, [GMM10].
For the low-lying excited states, thermal equilibrium of the nuclear states population can be
assumed. To account for the change in the nuclear cross section, the stellar enhancement factor
(SEF) has been introduced. It gives a value for the ratio of an effective cross section for a ther-
mally equilibrated nucleus and the corresponding Maxwellian averaged ground state cross section
[BBK™00]. Such a convenient treatment is not possible for the high-lying nuclear excited states
close to the neutron threshold, as they are too short lived to allow the assumption of thermo-
dynamic equilibrated conditions. A stellar plasma is the typical physical site where such highly
excited nuclear states are likely to be formed via neutron capture. Such processes were treated
by Bernstein [BBB™] with respect to the study of photon absorption on massive neutron-rich
nuclei in plasma conditions resembling the r-process sites and its influence on the decay rates and
neutron-induced fission. It was shown that immediately after neutron capture, photoabsorption
can lead to a substantial change in the decay channel branching ratio of the compound nucleus.
However, hot dense stellar plasmas exhibit not only a high density of photons, but also a vast
number of (free) electrons, whose inclusion in considerations of absorption, recombination and
decay processes is called for. Recently, the impact of an electron recombination process on highly
excited nuclear states under s-process conditions was considered by Helmrich in Ref. [Helll]. In
detail, nuclear excitation by electron capture (NEEC) occurring on compound nuclei immedi-
ately following neutron absorption was investigated.

NEEC denotes the resonant process of electron capture into a vacancy of the atomic shell with
direct and simultaneous excitation of the nucleus [PSHO6G]. The whole process of NEEC followed
by the deexcitation of the nucleus, with its initial, resonant and final state is displayed in Figure



1 Introduction

The initial state (i) refers to the ion before the occurrence of NEEC, where the nucleus is
in its ground state (G). Additionally, the L-shell is free, so that electron capture can take place.
The resonant state (d) formed via NEEC is depicted in the central picture. The continuum
electron recombines into the L shell transferring its surplus energy to the nucleus that reaches
the excited state E. The last picture then shows the final state (f), where the nucleus deexcites
via photon emission.

Initial state (i) Resonant state (d) Final state (f)
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Figure 1.1: Schematic illustration of nuclear excitation by electron capture. The electron capture
process is depicted on the left hand side of every picture, the nuclear excitation process on the right
hand side. The three pictures depict the three states of the process: the first shows an atom with a free
L-shell and a nucleus in its ground state (initial state i); the second illustrates the capture process with
simultaneous nuclear excitation (resonant state d) and the third corresponds to the final state (f), where
the nucleus has already decayed via photon emission.

The cross section for NEEC on a ground state nucleus in connection with its radiative decay
as a two-step process has been derived by Palffy in [POGJ. Based on this work, a two-step process
cross section has been developed further to account for NEEC on highly excited nuclear states
after s-process neutron capture (and before deexcitation via v decay) under simplified character-
istic stellar plasma conditions by Helmrich [Helll]. Since for an already highly excited nucleus
the even higher lying discrete excitation levels are energetically closer together, even NEEC with
transition energies on the order of tens of keV is supposed to be efficient. In Ref. [Helll] it
was shown that the impact of NEEC can be substantial enough to significantly change the net
decay rates of the compound nucleus. In the absence of NEEC, v decay is more likely to occur
than neutron reemission, such that the formation of heavier isotopes is probable. In contrast,
with NEEC the neutron reemission is enhanced and can even dominate over the v decay. This
suppresses the production of daughter isotopes. The possible impact of this result makes it
worthwhile to address this subject in more detail.

In Ref. [Helll], various simplifying assumptions and approximations were made in order to
obtain a first rough estimate of the effect. However, it is indispensable to investigate the va-
lidity of these assumptions for the results to hold, especially when it comes to properly taking
into account the actual physical conditions of the process. One such assumption is that under
s-process conditions the electron capture occurs into the K- and L-shells of the chosen model iso-
topes ¥70s. The impact of NEEC on s-process nucleosynthesis was estimated in Ref. [Hell1] by
taking into account only recombination in these atomic shells, which present the largest NEEC
cross sections and are thus of greatest relevance.

The aim of this work is now to verify the assumption that the K- and L-shells of the 870Os
isotopes are indeed vacant. This would be true if most osmium were present in ionization states
with less bound electrons than are needed to fill the K- and L-shells. As data for ionization states



of heavy isotopes in dense stellar plasmas is not generally available, we need to derive theoretical
values for the ionization degree. To this end we consider plasma conditions characteristic for
s-process nucleosynthesis and calculate probabilities for various charged states and ionization
stages of osmium with the help of the Saha equation. Additionally, we account for the influence
of the plasma particles on the binding potential via a Fermi model for free electrons modified
by a quantum mechanical correction to account for the discrete bound electron states of the ion.
Since the calculations in Ref. [Helll] were done for 187Os, we also adopt this isotope as our
model ion. As part of a galactic chronometer that uses mass abundance ratios to evaluate the
age of our galaxy, '®7Os is of special interest and is often discussed in the literature. However, as
far as the ionization states of '87Os in an s-process environment are concerned, the data is scarce
and we are only aware of Ref. [T'Y83] that investigated the impact of bound-state 5 decay for
ionized osmium in a nucleosynthesis scenario. This work considers two plasma configuration pa-
rameter sets with few chemical constituents and presents only limited data regarding the osmium
ionization states. Furthermore, the chosen chemical mixtures are not an accurate representative
of the s-process environment. We have therefore used Ref. [TY83] only for a comparison and
double-check of our calculation method.

To make more realistic predictions for the required ionization states we investigate the s-
process conditions in more detail and have a closer look at the processes in the respective stellar
sites. This enables us to determine the most probable plasma configurations and extract the
parameters needed to perform our calculation of the ionization states. The environment of our
osmium ion we show to consist primarily of helium with a large mass-fraction carbon and a
smaller abundance of oxygen. The temperatures range from 0.9 - 108 K to 3 - 10® K. We adopt
not only these parameters but also include two more plasma compositions and an even higher
temperature to account for traditional s-process plasma treatment and to allow a comparison
with literature values.

Our results demonstrate that there is always a vacant place within the L-shell of the osmium
ion. Most likely also the K-shell is free for an electron to be captured in. The investigated
plasma conditions cause the osmium isotope to be highly ionized, leaving only between six and
one bound electron depending on the temperature that we ascribe to the s-process.

This thesis is structured as follows: In chapter [2 we will give an introduction to nucleosynthesis
and explain in more detail the possible impact of NEEC. Additionally, we will address the special
role of '87Os within the nucleosynthesis studies and portray the physical sites of the s-process
nucleosynthesis describing the plasma conditions that we assume in our calculations. Thereafter
we will give detailed information concerning our computation method for the ionization states
under consideration of the plasma effects in chapter Our numerical results will be shown
in chapter [4] where we will calculate the occurring ionization states for the possible plasma
conditions. The work concludes with a summary and outlook of possible future directions of
study.



2 S-Process Nucleosynthesis

In the following we present the frame for our calculations. First we portray the basic nuclear
process. Afterwards we describe the importance of the chosen model isotope and outline the
physical sites in which the respective process takes place. This results in certain plasma conditions
which we need to consider as we proceed with the calculation of the ionization states.

2.1 Neutron Capture Process

Of the various elements in our periodic system, hydrogen was formed shortly after the Big Bang.
Much later, nuclear processes in stars were responsible for the synthesis of all elements heavier
than hydrogen [KBWS89]. Whereas elements up to the iron peak (mass number A from 50 to 65
[I1i07]), who exhibit the highest binding energies per nucleon, are produced via exothermal fusion
processes - mainly in massive stars -, heavier elements are not synthesized by charged particle
reactions (with the exception of the supposedly small effect of proton capture on neutron rich
isotopes) due to the increased Coulomb barrier. The proton rich nuclei repel each other and
fusion is not energetically favorable. Instead heavier elements are produced by neutron capture
with the emission of 7-radiation (n, v) and subsequent [S-decay processes. Depending on the
time scale on which neutron capture occurs, two modes can be distinguished:

e If basically every neutron capture (n, ) that leads to an instable nucleus is followed by
B decay, one speaks of the s(low)-process [BBEH57]. Compared to  decay, the neutron
capture occurs on a slow rate. Inevitably, its path runs along the group of -stable nuclides
whose typical S~ -decay lifetimes range from minutes to years. The neutron flux at s-process
sites amounts to about N,, ~ 10%cm ™3 [IIi07].

e At the other end, the process of neutron capture on a very short time-scale (from seconds to
minutes) under explosive conditions is called r(apid)-process [BBFH57, [KGBATI]. As its
name indicates, here the neutron capture process occurs very fast compared to the S-decay
lifetimes.

The r-process is facilitated by high neutron abundances (N,, ~ 10?*cm~3) and runs close to the
neutron drip line [[li07]. The nuclei absorb neutrons until the neutron flux terminates. Then,
successive 5~ decay leads to the next possible, thus most neutron-rich stable or very long-lived
isobar. This isobar might shield another isobar with higher proton number Z and lesser neutron
number N, which then can only be reached via the s-process (called s-only isobar). The product
of the s-process have more balanced Z and N,, numbers [BBFH57].

In Figure [2.I] we present schematically the neutron capture nucleosynthesis paths. The neu-
tron capture processes start from mainly the abundant iron (Fe) isotope. The s-process continues
smoothly up to the most massive stable nucleus 2°?Bi, where any other neutron capture results
in the occurrence of « decay. The only slight discontinuities appear as magic peaks [BBFH57],
where 8~ decay takes a long time due to a relative stability at the neutron magic numbers
N, = 50 and N, = 82. The completeness of the respective nuclear shell in this cases with
its high binding energy exhibits very small cross sections and prevents further neutron capture
[KBW89]. Consequently those isotopes are the most abundant ones within the s-process, besides
the ones right before the neutron magic number N, = 126, that lies however past the s-process
termination point at bismuth. The abundance peaks at magic numbers are more pronounced for
the isotopes produced via the r-process. There the capture of neutrons stops not only when the
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Figure 2.1: The neutron capture paths of the s- and r-process. Reproduced from [BBFH57].

neutron flux decreases, but also when the binding energy becomes as low as 2 MeV. This is the
case at large distances from the stability line in the A to Z plane after the three identified magic
neutron numbers [BBFH57]. Before another neutron can be added, 5~ decay has to take place,
bringing the isobars closer to the stability line in a staircase pattern. The r-process builds up
heavier isotopes than the s-process, but at an atomic mass number of about 260 the neutrons
induce fission, which leads the resulting isotopes back into the neutron synthesis chain.

During the neutron capture process—right after the neutron absorption—for a very short
time a compound nucleus is formed. In such a situation subsequent NEEC (nuclear excitation
by electron capture) of even only a few keV can have a significant effect and change the net
decay rates of the compound nucleus. To illustrate the possible effect of NEEC, in Figure [2.2]
the normal neutron capture process with the two deexcitation modes neutron reemission and ~y
decay is set in contrast to the scenario of NEEC occurring before deexcitation.

2.2 S-Process

The s-process can be divided into three principal parts: first there is the weak s-process compo-
nent, which leads to isotopes with atomic mass numbers from A = 22 to A = 50. Above A = 205,
the s-process is denoted as its strong component; the mass numbers in between are composed
through the so called main s-process component [[1i07]. The components are also separated by
their different development conditions.

The path of the s-process is not always well-defined. Instead there exist about 15 to 20
significant branching points [I1i07] which reflect the surrounding conditions. A branching point
is a certain isotope starting from which the s-process can continue via two different paths. Two
mechanism influence the course after the branching points. First, higher temperature might
lead to the population of excited nuclear states and in some cases of metastable isomers of the
branching point isotope with longer or shorter half-lifes [GM04, [GMMOQ7]. Whereas the ground
state atom might capture another neutron, the isomer might 8 decay to the (Z + 1)-isotope,
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Figure 2.2: Schematical illustration of the neutron capture process with the subsequent neutron reemis-
sion and -decay modes (left), and neutron capture followed by NEEC before it deexcites via the same
two decay channels (right). Ac stands for the rate with which the compound nucleus is formed (neutron
capture rate), A, denotes the neutron reemission rate, A, the y-decay rate and Anggec the rate for the
occurrence of NEEC. The prime marks a modified rate. The first excitation due to neutron absorption
lifts the nucleus into excitation level (1), the NEEC accounts for the additional excitation from level (1)
to level (2).

starting another s-process path. One example for this constellation is the "Se branch [KKS8S].
Also branchings can occur where the S-decay half-life competes with the neutron capture rate (for
example the ®°Kr branch) depending on whether the neutron flux is high enough for the neutron
capture to happen first [KGBA11]. Consequently the ratio of the elements after the branching
points carry information about the stellar temperature and neutron flux. In the following we
address the formation of the stable isotope '#7Os, which lies on the main s-process path.

2.3 ¥70s and the Os/Re Clock

The '¥70s isotope was primarily chosen as model isotope for the impact of NEEC in nucle-
osynthesis scenarios in [Helll], because of its role as (nearly) s-only isotope that is part of the
Re/Os-clock used for galactic age estimates. The Os/Re clock relies on the long-lived 8"Re
isotope with a half-life of 41.2 Gyr as a timer for the age of the galaxy. The s- and r-formation
paths are depicted in Figure [2.3]

Both 8°W and '®Re act as branching points in the s-process. Neutron capture transforms
them into '8W and '®"Re, while 8 decay instead leads to 8°Re and '86Os, respectively. The
latter continue in the main s-process path, meaning *°Re will capture a neutron proceeding as
186Re, and '85Re accordingly turns into %6Os, which itself as a stable isotope captures another
neutron to become ¥70s and so on. If the neutron capture succeeds, the following processes can
hardly ever lead the isotope chain back to the main s-process path around ¥70s to influence its
abundance. '6W is stable and '®"Re has a half-life of 41.2 Gyr. Both isotopes have a shielding
function towards '®6Re and '87Os, respectively, which are therefore s-only isotopes together with
186(s. Regarding '87Os this notation has limited validity since '8"Re is only close to stable,
and 3 decays with the half-life of 41.2 Gyr. The fraction of ¥7Os abundance that results from
187Re decay can therefore be determined by the total amount minus the s-process component

N, (1870s), which can be computed via the ratio %NSG%OS), where (o) is the Maxwellian

averaged (n,y) cross section at the stellar site.
Essentially, 18"Re is produced via the r-process [BFET96]. Because of its long half-life it con-

stitutes a cosmochronometer, i.e., a galactic clock. The solar system abundance ratio of '8"Re
to 1870s with subtraction of the s-process path abundance of ¥7Os and other slight corrections

10
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Figure 2.3: Sequence of the main s-process path (thick solid green line) including the branching points
185W and '%Re (circles); the thick red dashed arrow symbolizes the possible 8~ decay of 187Re, the thin
dashed arrows the r-process contribution. The small “r” stands for (nearly) r-only nuclei. Reproduced
from [MEM™10].

delivers the age of the galaxy [SUMT™05] or more precisely the time span since supernova explo-
sions of the quickly evolved massive stars where r-process took place. An advantage here is that
rhenium as well as osmium are siderophile elements, meaning they have the strong tendency to
bond with metallic iron. The abundance ratio can therefore be extracted from meteorite samples
[Cla64].

Adjustments to the known half-life of '®"Re have been made in the last decades. Since in a
stellar plasma highly ionized states are most likely, bound-state 5~ decay has to be considered.
In [BEFT96] the lifetime of the fully ionized '#"Re was experimentally determined to be 32.942.0
yr. This work showed that the decay rate of '®"Re is enhanced in stellar interiors, especially
due to the 3~ decay into the first excited bound state of ¥7Os [TY83]. The corresponding
uncertainty of the Os/Re clock was amounted to 2 — 4 Gyr [FMM™10].

Further analysis concerning the pure s-process fraction of '87Os was performed. Especially,
the Maxwell-averaged (n,7y) cross section (o) was shown to be modified by the population of the
low lying excitation levels of ¥7Os due to the equilibrium at stellar conditions. This situation is
accounted for by the so called stellar enhancement factor [BBKT00]. However, the corresponding
change in the neutron capture cross section affects the Re/Os clock to a minor extent (less than
1 Gyr) [FMM™10, SUM™05].

NEEC of '870Os after neutron capture can change the ratio of neutron reemission to deexcitation
via y decay which in turn may influence the measurable abundance of *¥70Os and of '¥¢Os and
therefore the Os/Re clock. In order to give a quantitative estimate of this effect, we need a more
precise picture of the osmium ionization state in the nucleosynthesis plasma and therefore the
plasma condition in which NEEC may occur. We address in the following the s-process sites and
plasma conditions.

2.4 Physical Sites

The assumptions concerning the physical sites that host the s-process have been subject to histor-
ical development. The classical s-process described in Ref. [BBFH57] does not detail about the
neutron sources and assumes a constant neutron density and temperature. Since then progress
has been made due to a variety of data from astronomical observations, the development of
stellar model codes, improved nuclear physics input, especially concerning the research on the

11



2 S-Process Nucleosynthesis

branching points, and the synergy between nuclear physics and other physics areas [KGBATI].
Now the weak component is ascribed to massive stars with mass M > Mg (Mg being the mass
of the sun) whereas low-mass (1.5-3 Mg ) thermally pulsing asymptotic giant branch (TP-AGB)
stars are considered to be responsible for the strong and main component [Son04]. The latter is
of interest for us, since it comprises the formation of 870Os.

From the inside to the outside TP-AGB stars are composed of a compact core, which consists
of carbon and oxygen, a helium burning shell, a thin helium intershell, a hydrogen burning shell
and an extended hydrogen-rich envelope [CSGT09]. A crude schematical sketch - without the
thin He intershell - is shown in Figure Most of the time the H shell burning provides the

C-0O core
He burning shell

H burning shell

H envelope

Figure 2.4: Composition of a TP-AGB star. Reproduced from [AGB12).

energy irradiated by the AGB stars and produces helium. Since the pressure of the H shell
does not suffice to counteract the rise of the temperature through expansion, after a long time
(about 10,000 to 100,000 years) the enriched He shell ignites. Due to the production of 12C
via a triple-a reaction a huge amount of energy is released. This leads to a vast expansion of
the He shell that extincts the H burning in the stretched H shell. During such a quasiexplosive
thermal pulse not only a large amount of 2C is produced but also convection is driven in the
whole intershell [KGBATI]. As a result the He intershell is enriched with C and heavy elements
from the so-far occurred s-process ﬂm After such a pulse the expansion subsides and
the H shell reignites. This scenario repeats itself for several times. After a few thousand years
of this radiatively He burning and a limited number of thermal pulses, the convective envelope
penetrates into the top region of the C-rich He intershell zone mixing material to the surface.
This is historically named third dredge-up [GABT98]. When retreating from the surface a so-
called 13C pocket is left behind, because some protons from the H-rich envelope are brought into
the top layers of the He intershell [KGBATI]. There they are captured by the 2C and initiate
the sequence 2C(p,y)!3Ne(8+,)13C that forms the 3C pocket [[li07], see Figure Due
to the large concentration of '3C within this pocket, a slow but high enough neutron flux can
be provided by the reaction between the '>C and alpha particles to give rise to the s-process
nucleosynthesis [GABT98]. This process starts at a temperature of about T ~ 0.9-10% K. When
it exceeds 2.7-10% K also the 22Ne(a,n)?°Mg reaction - noteworthy only in stars with low metal-
licity - leads to a small neutron burst [CSGT09]. The pocket mass itself is a uniform mixture
of carbon (20 — 25%), helium (73 — 78%) and the product of the 3C(a,n) reaction, namely *¢O

[BS3S).
Based on this scenario, the physical conditions we will adopt for our calculations mainly refer

to the C pocket physical site. It consists mainly of helium and carbon, to a minor extend also
of oxygen. The few protons and heavier elements that were mixed down from the convective

12



2.4 Physical Sites

0'59 T T T T L] L} L} T T T T 0.59

0.58 F ] 4+ \ 4 0.58
_J \ A
057 H-fr R A - :
S .57 |- core 4 =P Y . il Al | o ' 4 0.57
Ea | — formation s 41 PR He/C/O
H | intershell
Esn . - third dredge-up '
£ 5 - 0.56

&as-lzf -
F ﬁ He-free core
-

0.55 - 1F 4 0.55

C/O core
0.54 1 1 1 1 1 1 1 1 1 1 1 0’54
-300 0 300 600 20000 60000 100000 128000 130000
t/year

Figure 2.5: Schematical illustration of the mass region during the time ¢ of two thermal pulses and
their interpulse phase for a low-mass TP-AGB star (more precisely pulses 14 and 15 of a 2 M star
with metallicity 0.01), reproduced from [Her05]. PDCZ stands for pulse-driven convection zones and
symbolizes the thermal pulses. The blue line tags the end of the CO core mass, the red one the end of
the He containing shells, the dotted green one the boundaries of convection and the light green areas the
convection zones. Note the varying timescales and the setting ¢t = 0 for the first considered pulse.

envelope in the third dredge-up as well as the s-process products that were already formed will
be neglected as their abundance is barely noticeable compared to the major components. Two
other constellations are chosen as well to compare the results with those already existing in the
literature (see [TY83]). Our chosen plasma constituent parameters are

a) 78% He, 20% C, 2%0,

b) 73% He, 25% C, 2%0,

¢) 100% He,

d) 75% H, 25% He.

The temperatures we select from T ~ 0.9 - 108 K to T ~ 3 - 10® K for the same reasons.
Additionally we include a temperature of T = 3.48 - 103 K (= xT = 30keV), because this is the
lowest temperature considered in Ref. [Helll] and was widely used in the literature to describe
the s-process conditions according to the classical s-process model (see for example [Tak98]). For
these parameters we can proceed to determine the ionization states of osmium with the help of
the Saha equation.

13



3 Degree of lonization in the Plasma

Since we are considering osmium in a hot and dense environment, where the slow (s-process)
nucleosynthesis is taking place, it is indicated to assume the existence of ionized atoms in (ap-
proximate) thermodynamic equilibrium. The latter is due to a constant high temperature and
density with increased collision rates [Ols61] over a long period of time. Though “chemical” re-
actions occur, the overall equilibrium concentrations of the reactants remain constant due to the
principle of detailed balance, that states that every detailed process is statistically balanced by
its precise reciprocal process [CG68]. Under these conditions the ratio of two neighboring ioniza-
tion stages of a certain atom is described via the Saha-equation, named after Meghnad Saha, an
Indian astrophysicist, who developed the equation in 1920 [Sah2(] starting from thermodynamic
considerations. The Saha equation has the form

3
Nijr1 bija (mi,j+1> 2 ( Xi,j )
= . -exp | — -7/, 3.1

Nij bi,;j mi,; KT 3.1)

with i being the atom species, j its ionization state, n; ; the ion number density, b; ; the partition
function, m; ; the ion mass, x; ; the corrected ionization potential, i the degeneracy parameter,
k the Boltzmann’s constant and T' the temperature [TY83].

In the following, we sketch the derivation of the above equation pursuing the approach presented
in [CGG6Y].

3.1 Derivation of the Saha Equation

We assume thermodynamic equilibrium which includes thermal and chemical equilibrium. For
thermal equilibrium the temperature has to stay constant in time within the considered space.
While the chemical potential g can be described as the tendency of substances to change their
location, chemical composition or state of aggregation [JHOG] the chemical equilibrium refers to
a situation where the driving forces compensate for each other. Every reaction will therefore
proceed with the same rate as its reverse reaction. Applied to the ionization state j of the atom
1, this leads to the equilibrium condition for the process of ionization

Pij = Pij+1 + He, (3.2)

with the subscript e denoting the electron. The chemical potential can be expressed through the
energy E or the Gibbs energy G via

_ OFE
Hij = aN”

oG
BNZ-J-

) (3.3)
TP

S,V

where IN;; describes the number of particles of the species 7 and ionization j, S the entropy and
V' the volume. Statistical mechanics delivers with
1

f(E):ema[iT“}—i—l

(3.4)

a distribution function for an ideal gas obeying Fermi statistics via the negative derivative of
the thermodynamic potential with respect to the chemical potential y. The thermodynamic
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3.1 Derivation of the Saha Equation

potential can be deduced from the Gibbs distribution for a variable number of particles (grand
canonical ensemble) [LLP80]. The Bose-Einstein distribution that describes a system of bosons
is similar to (3.4), but instead of the plus in the denominator a minus sign has to be applied.

To obtain the number dN of elements (fermions or bosons) in thermodynamic equilibrium
having total energies per element between E and dF,

db

dN = @ (3.5)

we need not only the distribution function f(E), but also the number of possible quantum states
db corresponding to the energy range dE [LLP80, [CG68]. Within a discrete energy level the
statistical weight becomes equal to the degree of degeneracy b;, which in the case of an electron
with spin s = % is

bi=0be=25s+1=2. (3.6)

For continuous energy levels, i.e., free particles, we follow the model used by Cox and Giuli
[CGB]|] and constrain the space around the particle to a box of volume L3. The de Broglie
wavelength of the particle is

A= (3.7)

where h is the Planck constant and p the momentum of the particle. The periodic boundary
conditions require for the one-dimensional case that

L=ngy. Apyz MNay:=12.. (3.8)
for every direction (z,y, 2), so that
h
Pay,s = Moy T Ngy».==x1,%£2, ... (3.9)

From equation (3.9)) we get for a box in momentum space the volume

hS
A
containing the quantity of Npox quantum states, respectively nodes of the standing waves ac-
cording to the boundary conditions,

(3.10)

PxPyPz = NgNyMy

Noox = (ng + 1)(ny + 1)(ns + 1). (3.11)

Our box in momentum space is assumed to be extremely large (meaning the values n , , are
large), so that the expansion of our model into space holds for the free particle. Therefore we
can approximate the number of quantum states per unit volume with the quotient of ([3.11)) and

(3.10) as follows:
1 1 1 I3 3
(1 N nx> (1 * ny) (1 + nz> RN (3.12)

This gives us a volume of A3 (called unit cell) per particle in phase space. If we now consider the
phase space volume V - p?dp - dQ2 (confined to the solid angle d©2 and to particles with momenta
between p and dp) the statistical weight of a free particle within this volume, meaning the number
of unit cells it can occupy, can be described by
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3 Degree of Ionization in the Plasma

_ 4mp?dp

db =~

V. (3.13)

According to the Pauli’s principle, electrons can occupy the same quantum state twice, if they
have different spins. Therefore equation (3.13)) has to be multiplied by b, in this case [FMT49].
With this knowledge we can determine the number density (number per volume) of electrons

with energy E, from (3.5):

N o * 4rp? 1
ne = & = / b Lip) =2 / ”psdp . (3.14)
14 0 4 0 h> exp [EE’;“} +1

K

Most stable substances have a negative chemical potential; their resistance to react decreases
with decreasing pressure and with increasing temperature [JH06]. We now focus on non-degenerate
particles, corresponding to the constraint — (-45) > 1 (atoms or ions), of a certain charge state,
corresponding to a specific ionization stage and in a discrete state k [CG6§]. Then equation
reduces to the Maxwell-Boltzmann distribution

Ny = byet/ (WD) g=ek/(5T) (3.15)

where € is the excitation potential. The ratio of two excitation levels k and o delivers the
so-called Boltzmann equation:

% = %’ZG_EM/(KT)’ €ko = € — €o- (3.16)

We are interested in the ionization states. If an atom of species ¢ in ionization state j and
excitation state k (we call this particle 1) is further ionized, the resulting products are a free
electron and the atom in ionization and excitation states j+ 1 and o (in the following denoted as
particle 2). For the atoms and ions (not for the electrons) we assume non-relativistic behavior
due to their higher mass. The corresponding energies are

2
. P
particle 1 : Eijr=7—"—%+¢,k (3.17)
J Qmi,j J
2
particle 2 : Eijt10= ﬁ +€ij+1,0 T 1 — Mec?, (3.18)
i,
electron : E,. (3.19)

In the expression above, m is the particle mass and I; ; denotes the ionization potential, i.e., the
minimum energy required to remove an electron from the ground state of the j-times ionized
atom [VGK94, Bra0g§|. In a slight change to the explanation of Cox and Giuli [CG68] we treat
the electrons relativistically. Since the ionization potentials only involve the binding energies not
the mass loss of the atom, the rest energy of the electron needs to be subtracted from the energy
of particle 2. Consequently F, contains the kinetic and the rest energy of the electron.

If we want to evaluate the number density for the particles 1 and 2 we need to know their
number of possibly occupied quantum states. Those we can derive from the sum over the
statistical weights per excitation level times the weighting factor and therefore are given by
the partition function [LLP80]

bij =Y bijkexp (— 6:;) : (3.20)
k
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3.2 Chemical Potential

Together with the approximation of (3.5 for — (%) > 1 and the condition for chemical equi-
librium ([3.2)) we obtain the following number densities:

pigritue [ Agpidp - 2
particle 1 n;j = b; e ST /0 23 P, Zmi T (3.21)
Lij mec? HMiyj 4 2Cl .
particle 2 Nij+1 = bi,H_le*T?Ze =T e e /0 ];3 pe 2 g iRt (3.22)
The integration results in
B . (2mm; kT)3/?
nij; = bje ot | =53 i, (3.23)
L mee? mige1 (2m0my i1 kT)3/2
iger = bijeie 7o e ( ”;31 ) (3.24)
Now we only need to divide n; j41 by n; ; to obtain the Saha-equation:
3/2 2
T 541 bi,j—i—l mi j+1 Iz',j meC He
= exp | — + -— . 3.25
T, 5 bij < m; ; P kT kT kT ( )

3.2 Chemical Potential

So far the chemical potential is unknown. It is related to the energy of a particle through (3.3).
In the following we ascribe the negative rest mass of the electron to the chemical potential and
define the degeneracy parameter included in (3.1)) according to [TY83] as

2
He — MeC

kT
Consequently the electron number density (3.14]) needed to obtain the chemical potential (thus

the degeneracy parameter) changes its appearance. As F, = y/m2c* + p?c? is the relativistic
energy of the electron we make the notations

n= (3.26)

2 Mo

kT’

p

w:=4/1+
m2c?

and f:=

(3.27)

so that Ej’; = fw, p = meevw? — 1 and 3—5 = & Fquation (3.14]) then transforms into

K T Vw21
8rmicd [ wyw? -1 8rmdcd [ wyvw? —1
Ne = 3 o~ dw = 3 dw. (3.28)
h 1 exp(fw — £%) h 1 exp(B(w —1) —n)

In our consideration, n. identifies the number density not only of the electrons resulting from
the ionization of osmium, but also of the other plasma electrons. Actually the latter are the
only ones of interest, because in all considered cases osmium can be treated as a tiny remainder
whose ionization has no impact on the plasma composition. The plasma composition itself is
determined by lighter elements.

Since both n, and 7 are unknown, we use the charge neutrality of the plasma to get another
expression for ne. For every ion with a certain charge number, the corresponding same number
of electrons are also present in the plasma. All we need to know are the number densities n; ; of
the ions in the plasma. From the given total mass density p and the individual mass fractions
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3 Degree of Ionization in the Plasma

x; we can obtain the atom number densities n; ;, if we know the masses m; ; and the respective
ionization states:

Zmi,jni,j = PT;. (329)
J

We then can assign the charge numbers to the ion densities and calculate the electron number
density via

Zjni,j

J .
.= =l | = 3.30
ne=p S | | = S (3:30)
J

(2]

Whereas the ion masses can safely be approximated by those of the respective neutral atoms,
the ionization states can only be extracted by combining the calculation of the degeneracy pa-
rameter 77 with the evaluation of the Saha-equation in a self-consistent way [TY83]. Practically
one chooses an initial ionization distribution to compute n. from . This result is used
to calculate a first value for 1 with (3.28) which applied to the Saha-equation delivers a new
ionization distribution for equation Qi_T_Oﬁb Now the whole process is repeated iteratively until
the values converge and 7 has a definite value.

3.3 Continuum Depression

The electrons of the plasma not only deliver the degeneracy parameter 7, their distribution also
influences the binding energies of the ions in the plasma via screening effects. These lead to
a diminished Coulomb-interaction between the nucleus and its bound electrons corresponding
to reduced binding energies. In addition, the electrostatic potentials of neighboring ions in the
plasma also lead to a reduction of the binding energies. Combined with the resonance broaden-
ing of atomic states into energy-bands due to the overlap of electron wave functions on adjacent
atoms, these effects are even able to break the binding of outer electrons, a process called pres-
sure ionization [Mor82]. The reduction of the binding energies is also called depression of the
continuum, since it enables the bound electrons to reach the continuum with less energy input.
This continuum depression affects the Saha-equation in two respects: on the one hand it results
in the lowering of the measured or calculated vacuum ionization potential I; ;. On the other hand
it delivers a cut-off value for the summation within the partition function b; ; . An isolated
atom or ion has infinitely many excited levels, whose energies do not exceed the ionization poten-
tial [VGK94]. If this atom is surrounded by other charged particles, the corresponding continuum
lowering counteracts the divergence, since highly excited levels whose energies correspond to or
exceed the lowered ionization potential are treated as unoccupied in favor of the next ioniza-
tion state [CG68]. Again the ion distribution of the plasma is required for the determination of
the continuum depression and the other way around, which demands for a self-consistent solution.

To calculate the continuum depression we basically follow the finite-temperature Thomas-
Fermi model extended by Steward and Pyatt to include neighboring ions, valid for non-degenerate
and non-relativistic electrons [SPJ66]. In a first step, we outline the non-relativistic treatment,
followed, in a second step, by the extension of the model to account for relativistic electrons,
which is our case of interest. In both steps we also introduce a correction to account for the
quantum mechanical behavior of the bound electrons.
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3.3 Continuum Depression

3.3.1 Non-Relativistic Case

Our first aim is to obtain the electrostatic potential of the nucleus. To this end we need to solve
the Poisson equation with the help of the charge distribution of the plasma including the bound
electrons of the respective ion. The nature of the distribution is such that the Poisson equation
can only be solved numerically. To avoid overly long calculation periods we will find analytical
approximations for the charge distribution in the extremal regions close to and far away from the
nucleus. The middle part we keep computing numerically. In the direct proximity of the nucleus
we also modify the charge distribution by adopting a quantum mechanical treatment. With the
resulting potential of the nucleus we then find an expression for the charge distribution of the
plasma particles only. This time the bound electrons of our ion are excluded. By solving the
Poisson equation of this distribution we finally obtain the perturbing potential, that delivers us
the desired continuum depression.

Before we proceed, a few additional assumptions should be made. We consider a point-like
nucleus with positive charge Ze, e being the absolute value of the electron charge, in a homo-
geneous and time-averaged environment consisting of point-like ions and electrons, all at a fixed
temperature 7.

3.3.1.1 Formal Derivation of the Nuclear Potential

Since the charge density is supposed to be spherically symmetric around the nucleus, its electro-
static potential ® can be determined via the Poisson equation as follows [SPJ66, [TY83]:

o= 1 (2= (24 )

%%(r@(r)) = —4re Zjni,j(T) —ne(r) | - (3.31)

Here, ne(r) and n; ;(r) give the local electron and ion number densities as functions of the radial
distance r from the nucleus due to its potential ®(r) in contrast to the expressions and
(3.14). The latter, denoted as n.(oo) and n; ;(co), will be valid as asymptotic densities as r
approaches infinity, for we can assume the electrostatic potential of the nucleus to vanish at
infinity in the supposedly neutral plasma. To obtain the equations for ne(r) and n; ;(r) the
potential energy e®(r) has to be included in the equations and . Thus, we obtain

. _ge®(r) | .
an additional factor of e =7 in n; ;(r), resulting in

n;,;(r)
n;,5(0)

_je®(n)
wT

n;,;(r) =n, ;(c0) =n,;;(c0) e (3.32)

The treatment of ne(r) is slightly more complicated because we stick to the Fermi-Dirac statistics,
distribution (3.4)). For non-relativistic energies it is also useful to rewrite equation (3.14) by

substituting 52— for z and —L—=dp for dz:

mekT
47 (2merT)3/? [ NZ 47 (2merT)3/? e
= dz = Fo.l—). 3.33
(o) [E /0 exp(z — L) 11 [E " (KT) (8:33)

Here we introduce the Fermi-Dirac integral [MVR95]

Fo(t) = /O h exp(z\/gt)ﬂdz' (3.34)
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3 Degree of Ionization in the Plasma

In this manner nq(r) can be expressed as

47T(2meI{T)3/2 6(1)(7’) + e Fn'r‘ ((6@(7’) + He)/(ﬁT))
g Fu ( T ) = (o) = (/R T)) (3:35)

in accordance with Steward and Pyatt [SPJ66]. Taking into account the neutrality of the plasma,
which according to (3.30)) results in the assumption

ne(r) =

D jnij(00) = ne(oo) (3.36)
and delivers through it the value p./(kT), the Poisson equation (3.31) assumes the shape
102 jew(r) For ((e®(r) + pe)/(kT))
1 N —dex) _ in; . . (3.37
FomiG! mz ( T i (00) PGty () (337

To obtain a more compact version of this equation it is reasonable to introduce the dimension-
less quantities [SP.J66]

ed r
with the Debye-length
1
D= — . (3.39)
¢<4we2/nT> S22 4 )i g (o)
0.
The left hand side of equation ([3.37)) transforms as follows:
1 02 1 KTI 0? 1 62
rd =1 1) — . A4
L) = o5 (ay) = e Y+ Do) o) (3.40)

4,

We equate with the right hand side of (3.37) to get
= 17]
T 022 (zy) ST G 1)
.3
Z]nz,]( ) Zjni,j(oo)e_jy
2]

_ For (Y + pe/ (5T)) 4] _
Ty (pe/(RT)) 35 gmi5(00) (5 +1) ij,j(oo)(j +1)

2, ]

| Rutmry) ) Zeinlea) - Ln(eo)

Fop (pe/(£T)) Zﬂnw (00)(j + 1) Zjnm (c0) E]”m(oo)(] +1)

_ Fur (y+pe/(rT)) 1 (e77v)

For o/ (D)) G 1 GH) 340
In the last step we have introduced average values weighted with jn; ;(oo) [TY83],
2> Xinij(o0)
(X) = m (3.42)
i
With the definitions j* := (j) = (j + 1) — 1 and
Y(z)=zy, a:= He (3.43)

kT
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3.3 Continuum Depression

we finally need to solve the Poisson equation of the form

d? x E,. (Y(x)/z+a)) »

—Y(z) = nr — (e WY@/ 3.44

a2’ W =13 For (a) € > (3.44)
to derive the potential of the nucleus ® through Y(x). Since ®(r) — 0 for r — oo and ®(r) — ¢

for 7 — 0, the boundary conditions for Y are Y(z) — 0 for # — oo and Y (z) = yz = <2 % —

D
Zer .
= =:Yp for x — 0.

In order to solve efficiently, we split the charge distribution on the right hand side in
three parts, corresponding to the regions close to the nucleus, far away from the nucleus and in
between. In the central region the distribution has a regular appearance, such that we can treat
the problem numerically. The region close to the nucleus is where the nuclear potential reaches
high values, which suggests an asymptotic analytical treatment to avoid numerical defects. At
the other end, since the charge distribution shows a steep behavior in the part that corresponds to
the region far from the nucleus, we again introduce an approximation. Following this treatment,
we proceed to include a quantum mechanical correction of the charge distribution in order to
solve the Poisson equation.

The approximations used in the next subsections are valid for exp(—£%) > 1 and non-degenerate
free electrons.

3.3.1.2 Expansion Close to the Nucleus

An efficient way to approach the solution of numerically is to expand the quotient of the
two Fermi-Dirac integrals. With at least a partial analytical construction of the Poisson equation
the computing time can significantly be reduced. We consider here the region close to the
nucleus, where the Coulomb potential increases rapidly. Under the assumption Y/z = y > —a
we get [SPJ6G]

71,2

8(H2 4 )2

1+

3/2
For (Y(z)/2 +a) 4 (Y(I) + a) (3.45)

F,(a) - 3ﬁe x

A numerical check confirms the good agreement of both sides of the above equation for high
enough Y (z)/x-values. In this regime the approximation can be safely applied.

For y > —a the Poisson equation converges to the zero-temperature Thomas-Fermi equation

where the density of the bound electrons and those of the free electrons converge as z—%/2 and
/2 respectively [SPJ66]. This implies for y(z),
_ Yo 1/2
y(x) = - +s+0(x°), (3.46)
Y (x) = Yy + sz + O(z%/?), (3.47)

where the constant of the first term Yj is given through the boundary condition and s is another
constant value. The latter is given by the derivative of Y in the point where this approximation
branch merges the numerically computed values of Y corresponding to the central branch. We
choose this point sufficiently close to the nucleus, e.g., x = 107%. Later we can control our
choice by plugging this value into the derived solution of the Poisson equation divided by z,
Y(z)/z = y. The result we set into the right hand side of the Poisson equation (3.44)), once
by using the fraction of the Fermi integrals, once by using (3.45)). The difference should be
conveniently small (e.g. < 1%).
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3 Degree of Ionization in the Plasma

3.3.1.3 Expansion Far From the Nucleus

In the other extreme, at Y/z = y < —a (where the nuclear potential is small), following Stewart
and Pyatt [SPJ66] the expansion reads

Fo. (Y(2)/2 + a) ~ oY @)/ [1 9 82gY (@) feta(y efY(m)/z):| ' (3.48)
For (a)

According to [SPJ66] the right hand side of equation will then become equal to xy =Y.

In fact we can show that the Poisson equation approaches Y for the considered small y,

starting with a Taylor expansion of F,,. (Y (z)/xz + a) = F,.(y + a) and keeping only the first

two terms at y = 0:

T t1/2d¢
717‘ y + /
0

anr
~ Fo(a) w+a)
dy
y=0
T d 1
= Fpr Y24t — :
(a)+/ dyexp(t —a—y)+1 4
y=0
T exp(t — a — y)t'/2dt
- Fnr .
(a)+/(exp(t—a— y) + 1)2 4
" 7 exp(t —a) + 1)t'/2dt 7 t1/2dt
(exp(t —a) + 1) (exp(t —a) + 1)2 Y
0 0
® 1/2d
t t
=F, F,.(a 3.49
rla) +y y/ (exp(t —a) +1)2° (349)
0

The last integral in (3.49)) amounts to maximally 0.005 for all a < —2 and vanishes very fast for
smaller a. It will therefore be neglected. Instead of the term (e™?¥) of equation (3.44) we can
use the approximation e~ /¥ which we expand further, since y < —a:

e Y =T 1 — . (3.50)
Therefore, the Poisson equation behaves as
d? x F,.(a)+Y(z)/zF,-(a) x
—Y(x) ~ —(1-35Y = Y 1+5%) =Y.
Y@~ o (1 =3V @)/2)| = 1Y @)/l 45
(3.51)
Numerical values again confirm this approach. As a solution for (3.51)) we obtain
Y(z)=Ce™", (3.52)
C
y(z) = —e™, (3.53)

with C' a constant. For a fixed value zgy, C' can be obtained from C =Y (zgx) /e~ %, Y (zax) on
the other hand is derived from the numerical solution of the central part of the Poisson equation.
For x5« we take the chosen threshold value, where we start applying this approximation instead
of the numerically calculated values. On such a threshold the values from both methods have
to agree up to the second derivative. We control the validity of zgx later (when we derived the
final function Y (z)) by solving Y (z4x)/zsx and checking if the assumption holds for this
value.
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3.3 Continuum Depression

3.3.1.4 Quantum Mechanical Corrections

Instead of mere simplifying the Fermi model, it might be more useful to investigate its validity in
the region close to the nucleus in general. A not fully ionized ion has an electron shell structure,
whereas the Fermi-model based on the continuously acting potential of the nucleus implies a
continuous electron distribution as well as locally free electrons. Furthermore, according to the
infinite potential at the origin, the model electron density and with it the kinetic-energy density
is supposed to become infinite, as apparent from equation . This is obviously not true
and contradicts what we know from quantum mechanics: the electron density is constant and
the kinetic-energy density zero at the nucleus [AH70]. By far the biggest contribution to the
electron density there (> 87.5%) originates from the K-shell electrons [AH70]. Since we know
the Coulomb form of the nuclear potential, we can apply the corresponding solution of the
Schrédinger equation, use the Hartree approximation for the K-shell wave functions and finally
get an approximate exponential density in the nuclear region [AHT0],

e " ne(00), T <ro. (3.54)

The point 79 has yet to be determined in a self-consistent way as well as the constants A and
B. To apply this exponential number density form to our Poisson equation (3.44]), we use
the dimensionless parameters (3.38]) once again. This—together with the divisor n(co)—only

transforms the yet unknown constants ﬁ — A, B— B, rg = xo.

Thus the Poisson equation takes the form
d2 x
=Y, (z) =
d.’L’Q q (1‘) 1 + ]*

{AefBz _ <e*jy($)/1>] , T < Zg. (355)

Once again we need the numerical solution of the central Poisson equation , this time
also with the included approximation for distances close to the nucleus, to derive the unknown
constants from the merging point. In the following, we denote the combination of both branches
as central or middle or numerical part of Y, leaving the region close to the nucleus to be handled
quantum mechanically. The numerical solution Y (z) can be achieved with the help of the point
Tfx, Where the exponential approximation for large x merges. Since

d d
—v = —
dx () |w:mﬁx dx(

one boundary condition for is the identity Y’ (zgx) = —Y (2fix). The other will be the actual
value of Y (zgx). However, this parameter can only be obtained together with the adjustment of
the other merging constraints at location xy,
d d d? d?
Vam(w0) =Y (20), - Yam(@)|, o = 2V @),Ls 1 Yam @),y = 12V @),
(3.57)
The solutions must therefore be again derived in a self-consistent way. For a start, the numerical
solution Y (z) of the middle part—Poisson equation —has to be treated as dependent also
of this unknown value Y (zsx) and the solution Y, () for the Poisson equation including
quantum mechanical corrections as a function of x and g (Yqm(z,zo)). This implies that A and
B can be fixed except for their dependence on zy. To get A and B we note that

For (Y(xo) /20 + a))
F.. (a)

due to the match of (3.44)) and (3.55) at z¢. The derivatives of the left hand side of (3.58) can

be easily computed:

d
dz

Ce™™)| = —Ce ™™ = —Y (2gy), (3.56)

T=Ttix

AeBro = (3.58)

(A6 = =B ), (e ) = B e ) (3.59)
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3 Degree of Ionization in the Plasma

Since at zg we require a smooth function, the derivatives of Ae=5% can be replaced by those of
F., (Y(z)/z + a)) /Fy(a) there. This enables us to calculate A and B as functions of zg,

For # +a) x0)/xo + a
B(wo) = — % (Fm(a) ) ’ / = (YFn%) ot (3.60)
Alz) = Lo (YFi%;EO +a) / B (3.61)

and emphasizes the xo-dependence of dd—;qu(x), (13.55)).

Fortunately, we also know that the value Y, (0) of our quantum mechanical adjusted Poisson
equation (3.55) has to be equal to Yy. This additional information enables us to determine xg
via

qu(o,.’ﬂo) =Yy =z = qu(x) (362)

and fix A and B. With the value Yym(2¢) = Y (20) the determination of Y'(x) and Y (xgx) can
be completed.

Our considerations result in a distribution for the potential energy of the nucleus in units of
KT, y(z), that is split in three parts, smoothly merging in 2y and zg,. If we denote the solution

of (3.51) as Yapprox and the one of (3.44)) together with (3.47) as Y,um we can formulate

Yom(z)/z for z < xq,
y(x) = { Youm(z)/2 for 79 < = < Tk, (3.63)

Yapprox(ﬂ?)/l‘ for xg, < x.

3.3.1.5 Perturbing Potential

So far we have considered only the potential of the nucleus we are mainly interested in (in our
case osmium), in its plasma environment. Consequently we have included all electrons that
surround the nucleus (plasma electrons and bound electrons of the respective ion), in describing
the plasma. The bound electrons of the ion, however, cannot be attributed to the perturbing
plasma. If we want to evaluate the effect of the perturbing potential ®pe,(r) of the plasma
ions and plasma electrons on our ion, we therefore need an expression that excludes the bound
electrons of the respective ion. In comparison to , the local electron distribution for the
perturbing plasma, hence for the free electrons, is of the form

_ Amn(2merT)?? [ Vz  Ar(2merT)/? He
ne,pert(r> == h3 /y exp(z — (:% ¥ y)) +1 - hd Gnr (ﬁ + yﬁU)
_ Gnr (Me/("iT> + y7 y) _ Gn”‘ (a’ + y7 y)
= ne(0) TNIC) = ne(oo)iFnr @ (3.64)

The integration starts from y, because the kinetic energy of the electrons has to exceed the
potential energy e® for them to be free, leading to z > y. Correspondingly all electrons with
energy smaller than e® are assumed to be bound.

eépcrt

For the dimensionless form of the perturbing potential v := and with the same consid-

erations as in section [3.3.1.1| we obtain the differential equation

1 92 1 [Gnr(a+y,y)

vl ol o e ] Rl (3.65)
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3.3 Continuum Depression

with the boundary condition that v(x) is finite in the origin (r = 0) and its derivative constant
(ag—(;) = 0) [SPJ66]. Furthermore, we require that the perturbing potential is zero at infinity.
This causes v(z) to be negative everywhere else in contrast to the nuclear potential y, which
increases with the smaller the distance to the nucleus (origin), where it diverges. The opposite
behaviors of the two potentials becomes obvious through the signs.

It is noteworthy that S(z), the right hand side of (3.65), does not contain the perturbing
potential v(z) anymore, but only y(z), that we can obtain from ) and ( - Thus the
evaluation of S(z) is already possible. The continuum depression can be regarded as the negative
perturbing potential energy (e®pert = v&1') averaged over the ion orbital from which the electron
is being removed (—xT)[SPJG6]. Except for highly excited orbitals, the substitution —o —
—v(0) is reasonable, since the orbital’s range is close to the nucleus. We also know that v(x)
reaches a constant value at the origin, where its derivative is zero. Thus, the next step must be
to extract v(0). Using the general approach

d2 d !/ / / 1" ! "
Epe) (zv(x)) = @(v(x) + zv'(2)) =V (z) + ' (2) + 20" (2) = 20" (z) + 20" (2), (3.66)

the integration of equation (3.65]) gives the expressions

7)) = / di#8(3) + v(0), (3.67)

/ dt /t d##8(3) + 20(0). (3.68)
0 0

For iterated integrals over a smooth function f(z) the following rule [AS64] can be applied:

jdtnO]ndtn_l...jdmjf(tl)dtl - (n%l)' O/x(z " (3.69)

Here, xS(z) is such a smooth function. Consequently the integral (3.68) transforms as
zv(z) = /(:C —t)tS(t)dt + zv(0) (3.70)
0
leading to the expression

xT

1 xr xr xr 1
v(x) =v(0)+ = |z [ tS@t)dt — [ tS(t)dt | =v(0)+ [ tS(t)dt — — [ t2S(t)dt (3.71)
[roon] [reon=]

T
0

for the perturbation. At infinite distance from the nucleus, v(x) vanishes due to the boundary
conditions. The same is true for the last integral on the right hand side of equation (3.71]) because

of the factor 7" as f t25(t)dt is assumed to be finite (see (3.76])). This enables us to calculate

the perturbing potentlal energy in units of kT directly via

oo

v(0) = — / tS(t)dt, (3.72)

0
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3 Degree of Ionization in the Plasma

whereas the general form for v is

oo x x

v(x) = —/tS(t)dt+/tS(t)dt— l/ztzs(t)dt

T
0 0 0

oo

- _/ts(t)dt— ;/thS(t)dt

T
o0

:7/ ;71525 £)dt + ~ / 25(t)dt. (3.73)
0

xT x

For high values of x, y(z) vanishes exponentially as well as the first and third integral on the
last line in (3.73) due to the close boundaries. This delivers us the approximation

1 oo
v(z) = —= /tZS(t)dt for z — oo. (3.74)
x
0

If we now want to consider only the nucleus with its bound electrons, but without the free plasma
electrons and its ions, we know that only the effective Coulomb potential of the nucleus screened
by its bound electrons will be noticed far from the nucleus [SPJ66, [TY83]. Using dimensionless
quantities, the respective expression is

1 1
yscreened(m) = y(iﬂ) - U({E) ~0— —; -/tQS(t)dt = ; /t25(t)dt, (375)
0 0
giving the net ionic charge Z* from
o e(bscrccncd r 2*62 T 2
yscreened(z)x - T D DKT /t S(t)dt (376)

0

Moreover, given D, T and Z* together with the fixed value v(0), the perturbation v(z) can be
approximated. It turns out that only the ionic state j of the respective ion (= Z*) is of relevance,
regardless of its atomic species i [TY83].

Finally, considering the threefold way to calculate the nuclear potential, the applied quantum
mechanical corrections and the derivation of the perturbing potential as a function of the nuclear
potential, we obtain the continuum depression energy A; as

o0

A, = kT / £S(1)dt, (3.77)

0
which implies the definition of the corrected ionization potential x; ; from (3.1)):
Xij = 1ij — A (3.78)
With this value for the continuum depression, we can calculate the partition functions and

solve the Saha equation for the non-relativistic case. But before that, we first turn to the task
of evaluating the relativistic continuum depression value.
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3.3 Continuum Depression

3.3.2 Relativistic Calculation

After the description of the non-relativistic case, we proceed to include relativistic effects by
considering the electrons as relativistic particles. All other assumptions applied in the non-
relativistic case still hold.

3.3.2.1 Formal Derivation of the Nuclear Potential
In the relativistic form, ne (c0) is consistent with (3.28]),

e x(00) = 8mm3c3 /°° wvw? — 1 duw — 8mm3c3
- h* )i exp(B(w —1) —n) h?

where we have used the notation F; for the relativistic Fermi-Dirac integral. Consequently, the
local electron number density distribution through the additional energy e®(r) reads

3.3 o] 2 _ 1 3.3 P
Pen(r) = 87rrr;cc / wVw — duw — 87r77§cc F <77 L (r))
h 1 exp(B( - =) h KT

Fi(n), (3.79)

w—1)—n
— nea(o0) (n +;:I>((7;“))/(%T)). (3.80)

For the next steps the treatment is parallel to the non-relativistic one. With (3.38)) and (3.43)
we obtain the Poisson equation

d? _z [EM(z)/z+n)
a2 =T F, (1)

— (emdVr(@)/=y | (3.81)

for which the boundary conditions described in section [3.3.1.1] after equation (3.31)), still hold.

As in the non-relativistic case we again split the charge density in three parts to account for
its different behavior in every such region. Only the middle part we treat purely numerical. The
parts close to and far from the nucleus we look at in the following with the aim to get analytically
treatable asymptotics. Afterwards, quantum mechanical considerations are made.

3.3.2.2 Expansion Close to the Nucleus

Following the procedure in the non-relativistic case, in order to save computational time we derive
an asymptotic function for the charge distribution in the region close to the nucleus, meaning
for large values of the nuclear potential. To simplify matters we define o := y + n and expand

B 7 wvw? —1
F(a) = 1/ opBw—T) —a)t 1dw (3.82)

for large . The distribution function of the Fermi gas (exp(8(w —1) —a)+1)~! ranges between
zero (w >> wp) and one (w < wp). A sharp cutoff arises at

wo = = + 1, (3.83)

a
B
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3 Degree of Ionization in the Plasma

where the exponent of (3.82) becomes zero. Thus it is reasonable to split the integral Fy(«)
according to the different behavior on both sides of the cutoff,

wo oo

- wVw? —1 wyvw? — 1
Fr(a>_/cxp(ﬁ(w—l)—a)+1dw+/CXP(ﬂ(w—l)_a)+1

dw (3.84)

wo

wo wo
wvw? — 1 wyvw? — 1
= Vw? — 1dw — d dw.
/w v v /exp(a—ﬁ(w—l))—i—l w+/exp(6(w—1)—a)+1w
1 1 wo
(3.85)
In the last step we have used the identity (see [LLP80])
1 1
-1 .
e +1 e ?+1 (3.86)
Now we substitute as follows:
u:=a—B(w—1) sw=2""141 d—u——ﬁ (3.87)
o B odw ’
d
vim Bw—1)—a ;»w:”;aﬂ, =5 (3.88)
This transforms the second and third integral of (3.85)), leading to
i i d 1
Fr(a):/w\/wz—ldw—/w\/wQ—l e
w=250 41 B exp(u) +1
! 0 (3.89)

dv 1

W=t 41 B exp(v) +1°

+/w\/w271
0

The first integral of equation ([3.89)) gives a contribution of the order (%)3:

i 1, 4 32 1 o? a\*?
/w\/w dw 3(wo ) 3 (52 5) (3.90)
1

The contribution of the other two integrals is significantly smaller.

For the first part of the integrand in the last integral in (3.89) we use the expansion

a2+2(v+5)a+<1+”2+21’>_1f62+(9<ﬁ3>_ (3.91)

wyvw? —1 - — T2
w=2%2 11 B2 g B 2 p2 B 8 a? a?

2
In the calculation we neglect the higher order terms since even _%F has only a marginal
contribution at the assumed large values for «. In addition we have to consider the second part

of the integrand. We use the correlation

O/dvmxp(v) — (1= 27"+ n)C(1+n), (3.92)
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3.3 Continuum Depression

with - - -
dv vdv 2 v2dv 3¢(3)
W og(2 v T - :
/ 1+ exp(v) o8(2), / 1+explv) 127 / 1+ exp(v) 2 (3:93)
0 0 0

where ¢ is the Riemann zeta function and ¢(3) a~ 1.20206... . The combination of both parts,
the first and the second, leads to the expansion of the respective integral,

dv 1

B

2 2 2
a? log(2) N <67762 n 210;(2)) @ (lo;gé?) n 35/;2) n 67;2> .
(3.94)

This leaves the second integral of (3.89)) to be inspected. Again the first part of the integrand is
expanded:

wy/w? — 1 )- (3.95)

o 20B8—u)a 1 u? 2u 152 B3
weizen BB () ot

If for the second part we set the upper boundary of the integral to infinity due to the assumed
large «, in combination with the above expansion we obtain an expression similar to the last

integral of (3.89):

wv w2 —

du T o2 — 1 du 1

—azuyg [3 exp O/w -1 MZ%JA?@XP(U) +1

a? log(2) (21 og(2) w? ) a (log(2) N 3¢(3) w? )
5 .

B 62

B

28 2% 67
(3.96)

To show that the approximation error from the used expansion is negligible, we use the con-
nection [OLBCIO0]

(o)
T(s,z) = /tsfleftdt ~ ST le (3.97)

z

which is valid for large z. We apply this to the neglected integral over u within the boundaries
a and oo of the Fermi distribution times u to the power of n, n being 0, 1 and 2. With
u=a—f(w—1)> 0 our result reads

u™d 1 1
ﬁ/exp u+1 < ﬁ/u exp(— BF(n+1,a)% Ba”efa, (3.98)

which is exponentially small for every occurring n (n = 1,2,3) and justifies our approximation.

The derived expressions for the three integrals of (3.89) combine to

T wvw? — 1 1 o 2 o/ 2 o 72
Fr(a):/exp(ﬁ(w_l)_a)+ldw~§ <5+1> “1 timatam (399)

29



3 Degree of Ionization in the Plasma

We use this expression for F;(a) in the region where it works most accurately: close to the
nucleus where y (correspondingly, the nuclear potential ®, derived from relativistic considera-
tions) is large (e.g. y > 35 in the considered plasma environment). The function Y;(z) is derived

in this case via (3.81)).

3.3.2.3 Expansion Far From the Nucleus

For the opposite direction—far from the nucleus—where y is small, the expansion goes analog
to the non-relativistic treatment:

wvw? — 1dw
exp(B(w—1)—(n+y)) +1

oo

B+~ [

= F.(n) + /w\/ w? — ldwi 1

dy exp(B(w —1) — (n+y)) +1

y=0

_ Ooexp(ﬂ(w —1) = (n+y)wvw? - 1dw
=& +/ (exp(B(w — 1) — (n+y)) + 1)2

Vi (exp(B(w — 1) = n) + Dwvw? — 1dw
— o / (exp(Blw 1) — ) + 17

7 wvw? — 1dw
1

(exp(B(w — 1) —n) +1)?

= F.(n) +yFr(n) — y/ wVw? — 1dw

(exp(B(w —1) —n) +1)*

(3.100)

The last integral in the expression above is less than 0.0001 for all 7 < —2 and vanishes very fast
for even smaller 7. Thus, similar to the non-relativistic Poisson equation we obtain

a2 ~_C [EmAY(@)/zEm) () e
Tl m s | P 1] = Sow/e = (3.101)
and
Yi(z) = Ce™®, (3.102)
yr(2) = %e’x, (3.103)

with C = Y, (2, gx)/e” " for a fixed value z, sx. Again we calculate Y (2, fx) from the numer-
ical solution of the Poisson equation (including here the approximation in the nucleus region,
too) after choosing the merging point z, fy.

3.3.2.4 Quantum Mechanical Corrections

Within the relativistic treatment a correction to the Fermi model is indispensable. While the
non-relativistic Poisson equation was solvable even without the quantum mechanical corrections,
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3.3 Continuum Depression

here this is no longer possible. The local electron density becomes singular to the extent that
it cannot be integrated [AH70]. In order to circumvent this problem, we include the quantum
mechanical considerations that correct the behavior of the electron density at the origin as done
before in section [B.3.1.41 We will restrict ourselves to the non-relativistic correction in the
following. The relativistic treatment of the quantum mechanical correction is expected to have a
small effect on the ionization states of osmium and is numerically cumbersome. A full approach
can be found in [AH70].

The construction of the applied quantum mechanical correction is absolutely parallel to the
one depicted in section @ leading to Y; qm. It altogether results in

Vigm(@)/z  for x < a0,
yr(x) = Yr,num(z)/x for Tr,0 <z< Ly fix, (3104)
K,approx(m)/x fOI‘ xr,ﬁx < x,

where Y} approx denotes the solution of (3.102) and Y} approx is given by (3.81) with the Fermi
integral expression (3.99) for high y.

3.3.2.5 Perturbing Potential

To get the perturbing potential v, of the free plasma electrons, we once again have to constrain
the local electron number density to electrons whose kinetic energies exceed the energy needed
to overcome the nuclear potential. The lower boundary of the integral therefore needs to be in
accordance with the condition f(w—1)=y = w= % + 1 (kinetic energy equals the potential
energy of the nucleus) [TY83]:

n (r) = Smmec? /°° wyw? -1 dw = 87Tm203G n+y,y)
empert W Jipy exp(Bw —1) = (n+y)) +1 W ’
Gr(n+y,9)
r(00) —————= 3.105
e, ( ) FT (77) ( )
Now the Poisson equation for the perturbing potential can be formulated as
19 1L [Gr(n+yy) iv
2 (av,) = e~ =: S.(x), 3.106
L o) = A [SEED ()| 5,0 (3.100)

with the initial conditions that v, should be finite and its derivative constant at the origin. At
infinite distance from the nucleus, v, should again become zero, leading all its other values to be
negative. Since S;(x) is dependent on y,(x), we compute Sy (x) with the help of equation (3.104)).

Also in this case an approximation of G, (n+ y,y) is desirable. Furthermore, it would be
advantageous if we could follow the procedure we applied to the last integral in (3.89). To this
end we make the substitution

Y y du

Y
u=w—1-= = w=1+u+=, —=1-—=, 3.107
8 B dw T8 (3.107)
that gives a lower boundary of zero for the integral:
T d
Gr(n+y,y) = /wvw2—1 — (3.108)
u;:l-&-u-&-% exp(ﬂu - TI) +1

0
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3 Degree of Ionization in the Plasma

The similarity between the right hand side of this equation and the already expanded integral in
3.89) is now obvious. Thus we follow the procedure in section [3.3.2.2] that begins with equation
3.91)). First we expand the first part of the integrand:

w:1+u+% 52 B 2 8 ?

wyv w2 —1

We neglect terms of the order of 2, for we consider G,. (7 + y,y) in a region close to the nucleus,
where its potential energy y (in terms of kT') is high. Including the second part of the integrand
we obtain integrals of the form

d =0,1,2 11
/exp Gu—n w, n=0,1,2, (3.110)
0

which have definite values. In combination with the above expansion, we obtain

/82

1
Gt yy) ~ LU —0+2Y (Uo+U1) + (U + 201+ 5Uo) ~

p? B

which we apply within S, (z) for large values of y (e.g. y > 100) to save computational time.

=, (3.111)

After performing the relativistic calculation of the nuclear potential and considering the ex-
pansion used in the derivation of the perturbing potential as a function of the nuclear potential,
finally, the continuum depression for the relativistic treatment (see [TY83]) reads

oo
A, = kTv(0) = —mT/tSr(t)dt. (3.112)
0
Our corrected ionization potential needed as input for the Saha equation then is given by

Xi7j = Ii,j - A (3113)

rj:

With this, we have now everything we need to calculate the partition functions and we can
proceed to solve the Saha equation. Our numerical results for osmium in different plasma envi-
ronments are described in the next chapter.
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4 Numerical Results for Os

The aim of our calculations is to check the validity of the assumption in [Helll] that the K-shell
or the L-shell of the osmium isotope in the plasma are free. This would be the case if the osmium
isotope is highly enough ionized for those shells to be unoccupied by bound electrons. In this
chapter we proceed to calculate the degree of ionization for osmium in the characteristic plasma
environments described in section and present our numerical results.

4.1 Self-Consistent Method

We have chosen our test case as the plasma composition a) of section with mass fractions
xHe = 0.78 (78% He), xc = 0.20 (20% C), and zo = 0.02 (2%0), together with a temperature of
T = 3-10% K, which is comparatively high for the s-process. By means of this example we detail
step by step our calculations. However, before that, we explain the additional approximations
that will be used.

4.1.1 Approximations Within the Saha Equation

Due to the high mass of the nucleons compared to those of the electrons, we can use the atom
masses instead of the ion masses, as we already pointed out at the end of section Thus,

the quotient (M> * in the Saha equation (3.1) becomes equal to one. Also the ion number

m

densities of equatfon (13.29) in section can now be calculated easier via
s
Somy =" (4.1)
J

m;

Still, the ionization distribution needed for the sum in this equation calls for a self-consistent
method. A good approximation is to act on the assumption that the plasma ions (H-, He, C-,0-
ions) are fully ionized. For the assumed temperatures the available energy (xT') ranges between
7.756 keV and 30 keV. The uncorrected ionization potentials of the considered four plasma ion
species ¢ are of the order of maximally 1 keV. Corrections due to the continuum lowering even
enhance the ionization. Thus, we can safely assume a full ionization of H, He, C and O. The ion
number densities n; ; then simply derive from

N5 =Ny = pl'i. (42)

m;
Additionally, we can specify the average ionization of the plasma as defined by equation (3.42])

I =S (4.3)

We now consider the partition function b; j, more precisely its components (see equation
(3-20])): the statistical weight b; ;1 and the excitation energies ¢; ;. For both parameters we
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follow the schematic model constructed by Takahashi and Yokoi in Appendix B of Ref. [TY83].
They make the simplification to assume single-particle electrons filling up the orbits of the re-
spective ion according to the serial order of the principal quantum number and of the orbital
quantum number. We now denote the ground state outer principal quantum numbers with n
(not to be mistaken for the number density) and the outer orbital quantum number with {. The
number of electrons in [ we call N. According to [TY83] the statistical weight is then calculated
via

By(I,N) for k=0,
bi,j,k = Bl(n,l,N) fOI‘ ]{i = 1, (44)
Bsy(n,l,N,k) for k>0,
with
@+
Bo(l, N) = NI(2(20 +1) = N)I (45)
(2n?)!
B N) = — Bo(l,N 4.
1L N) = o anz 2z — vy~ Pol M) (4.6)
—1)(2n?)!
Ba(n,1,N, k) = 2n+k—1)(2n) (4.7)

Qe +N -2 —228 - N+ 1)I'

By applying the hydrogen-like model formula to the outer bound excited electron, we obtain for
the excitation energies

0 fork=0orj= 2, (48)
Chak = Ii,j - % for k& # 0, ] # Zz '

Here, I; ; is the uncorrected ionization potential; as in section equations , ,
and , Z; denotes the proton number of the atom ¢ and Ry denotes the Rydberg unit
of energy, Ry = 13.60569253 ¢V [MTNOS8]. The cut-off integer for the summation within the
partition function is calculated as the highest value for k for which ¢; ;1 is still smaller than the
respective value x; ; = I; j — A;.

4.1.2 Detailed Calculation For One Configuration

Let our plasma now consist of 78% helium, 20% carbon and 2% oxygen, corresponding to the
mass fractions xg. = 0.78, xc = 0.20, and zo = 0.02. This correlates to the composition of the
carbon pocket in the intershell of a TP-AGB star, where the s-process of heavy elements like
osmium take place, see section As mass density we consider p = 103g/cm3, and as temper-
ature we assume 7 = 3-10% K. In the temperature range of the s-process between 0.9-10% K and
3-108 K, this corresponds to the upper limit but follows former assumptions in the literature for
the classical s-process model.

Before we can solve the Saha equation we first need to calculate the degeneracy parameter 7,
respectively a, i.e., the chemical potential, and the continuum depression, by following the steps
outlined in section [3.3l

4.1.2.1 Chemical Potential

To get the chemical potential and thus the degeneracy parameter as derived in section we
calculate the electron density of the plasma (3.30) with the help of (4.2)):

. Tq THe Trc o 32 _3
e = i = Zi— = p(2 6—— +8——) =3.00964 - 10 . 4.9
n Pizj]n P; m; p( p— + o + mo) cm (4.9)
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4.1 Self-Consistent Method

As a next step we find the value n by equalizing n. from above with n.(n) from equation (3.28]).
We obtain
n=—4.51221. (4.10)

For the non-relativistic case we need a (= £%) instead of 7. Therefore, we equalize n, =

3.00964 - 1032cm ™3 and ne(oco, a) from equation (3.33)) with the result

a = 4.41916. (4.11)

With n and a we are now able to address the continuum depression.

4.1.2.2 Continuum Depression

We calculate the continuum depression for our model configuration for both relativistic and non-
relativistic cases. A comparison shows a noticeable energy difference. For the other considered
plasma configurations we will restrict ourselves to the generally valid relativistic treatment and
present only the final results.

Non-Relativistic Case

To begin with, we calculate the parameters that characterize our plasma. The average ioniza-
tion of the plasma is

j* =2.91971, (4.12)

and its Debye-length amounts to round 66% of the Bohr radius
D =3.48002 - 10~ 'm. (4.13)
Our next aim is to derive the nuclear potential ®, or rather y = ziT), for the osmium ion in the

plasma. The boundary condition of the Poisson equation (3.44) for x — 0 reads

Ze?
Yo = 2y(2)|s=0 = — = 0.121644. (4.14)

To solve the Poisson equation we split the expression of the fraction FF(iy(z)a) in three intervals.

For y < 35 we consider the exact ratio, while for other y we use the approximation in
to save computational time. The discrepancy amounts to less than 5% at y = 35, which is
good enough for our purpose—considering that even for higher values of y we do not obtain a
better agreement between the approximation and the exact ratio. With this expression we solve
the Poisson equation in a self-consistent way to get Y (z), i.e., we use a loop to calculate the
interdependent parameters: the slope C of Y (x) in the point zgy, where instead of the numer-
ical solution we start to apply Yapprox(z) = Ce™* for higher y, and the value of the boundary
condition of the differential equation that Yum(zsx) = —Ynum’(zgx) due to the validity of this
condition for Yapprox(ax). We choose zax = 8, where the approximation holds with only
3.77-107° discrepancy. The slope there is C' = 0.128537 and the value of the boundary condition
Youm (76 ) = 4.312-107°. Additionally, we merge the asymptotic expression at x = 0.0001,
whose slope s is thus determined to be s = —0.183388.

In the following, we denote the resulting solution Y (x) with Yy, where nr specifies the non-
relativistic case and the ~ stands for the treatment without quantum mechanical corrections.

The quantum mechanical corrected solution is derived in a similar way, with two differences.
On the one hand, for small y we apply the quantum mechanical asymptotic expression (3.55)
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4 Numerical Results for Os

instead of the linear approximation in . On the other hand, we must also find the corre-
sponding merging point z as described in section The three interdependent parameters
have to be aligned. Again a computational loop solves this problem self-consistently. Corre-
spondingly, we denote the solution of the Poisson equation (equation multiplied by z)
with Y5, and show its behavior as a function of = (the radius in units of the Debye-length) in
Figure The difference compared to the uncorrected version Yo is only visible for an ex-

an

0.12
0.10
0.08
0.06
0.04

0.02

| L L | | X:r/D
2 4 6 8 10

Figure 4.1: Non-relativistic solution Yy, of the Poisson equation (3.44]) calculated using plasma mass
fractions xge = 0.78, zc = 0.20, xo = 0.02 for an osmium ion in a stellar plasma at T = 3 - 10% K.

cerpt close to the origin, as shown in Figure for the radius in units of the Debye-length
x € [0,0.05].

The results Yy, and Y, divided by x (to get y) can then be plugged into the expression of
S(x) in equation (3.65). With the help of equation (3.76) the net ionic charge of osmium in the
considered plasma calculated via the Fermi model can be obtained,

~. DrT Ty
A /tzS(t)dt:72.6354, (4.15)
0
. DkT [
7" == / t2S(t)dt = 72.968. (4.16)
0

The uncorrected and corrected version show a difference of % bound electrons. Both models
agree that less than four bound electrons are left in the osmium atomic shells. This result will
be compared with the result from the Saha equation.

As a further interesting result, we can “count” the innermost electrons, i.e., the electrons,
who fill the ion’s orbits between the assumed point-like nucleus at £ = 0 and the derived value
xg = 0.0358098. In this region the quantum mechanical solution of the Poisson equation is
effective. We denote this number with N, ,, and calculate it by multiplying the corresponding
volume with the electron number density, which in the quantum mechanical case is given by
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4.1 Self-Consistent Method
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Figure 4.2: Comparison between the non-relativistic solution of the Poisson equation with (Y, thick

blue line) and without (Yar, thin violet line) including the quantum mechanical correction.

Ae~BY. Without the quantum mechanical correction the local electron density of the bound
state electrons is derived essentially in the same way as the perturbing density Gy, (see section
3.3.1.5). However, instead of accounting for electrons whose kinetic energy exceeds the nuclear
potential energy, we now only include those with kinetic energy less than the nuclear potential
energy (z < y). The Fermi integral for this case is then Hy,,(y+a,y) = Fiu(y+a) — Gu(y+a,y).
The results, for which we convert r to « (r = Dz, dr = Ddz), show the difference between the
uncorrected and the corrected treatment:

Ne,nr = Vﬁnr(r) = 47‘(’1)‘3 / ne(OO) Hnr(an(l’)/I +a, an(l')/l')

r?da = 0.459432, (4.17)

For(a)
0
o
Nenr = Vg (r) = 4rD3 / ne(o0)Ae™ BYur(@)/2 3245 — 0, (4.18)
0

Effectively, the uncorrected version shows about half an electron in the innermost region of the
osmium ion’s orbits, where the corrected version sees none. Such discrepancies are bound to
occur since the Fermi model is not appropriate for describing bound state electrons. The differ-
ence between quantities calculated with and without the quantum mechanical correction is even
bigger here than the one for the effective charge of the ion —, implying that the error
gets slightly corrected with growing distance to the nucleus.

Finally, with equation (3.77]) we compute the continuum depression for our osmium ion in the
considered plasma environment once uncorrected, once with the quantum mechanical correction,
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4 Numerical Results for Os

which accounts for an additional lowering of about 10 eV:

Aj= nT/tS‘(t)dt = 2441.22¢V, (4.19)
0
Aj = KT / tS(t)dt = 2451.26eV. (4.20)

0

Since the uncorrected ionization potentials of osmium range from 8.73 eV to 83.78 keV [Spel2],
already the pressure ionization would account for an ionization of j = 46. Together with the
energy k1 = 28.293 keV, an ionization in the region of j = 74 should occur. The more accurate
average ionization degree of osmium will be obtained by solving the Saha equation, but before
that we derive the relativistic result for the continuum depression.

Relativistic Case

With the same parameter j*, D, and Yy and the method described in section |3.3.2|and above
for the non-relativistic, quantum mechanical corrected case, we derive the solution Y,.(x) of the
Poisson equation . Again we choose xgx = 8 as the point where we merge the exponential
form of Y,.(z) due to the expansion far from the nucleus (see section to the numerical
results for the central region. The self-consistent calculation gives x¢ = 0.0359729 as transit
point for the quantum mechanical solution . If we divide our solution by = we get the y,
as in equation , i.e., the nuclear potential energy in units of xkT'.

We plug y, in the expression of G, (the approximation (3.111) we use for y,. > 58 =~ 100)
to receive S, (x) as in (3.106). Again we are able to determine the effective ionic charge of the
osmium ion as calculated from the Fermi model according to (3.76)):

o0

/tQST(t)dt = 73.2026. (4.21)

0

7 _ DkT

T 62

This corresponds to 2.7974 bound electrons. In the region x < xy we find 0 bound electrons,
which we computed as in (4.18)), only with Y;(z) instead of Yy, ().

From our relativistic calculation a continuum depression of

oo

A; = kT / £S5, (t)dt = 2478.71eV (4.22)
0

arises. This again accounts for 46 electrons already ionized due to pressure ionization.

Comparison Between the Non-Relativistic and Relativistic Case

In our comparison, we only use the quantum mechanical corrected version for the non-relativistic
case. The differences between the corrected and the uncorrected treatment were shown already
in section 4.1.2.2
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4.1 Self-Consistent Method

The solutions we receive from the relativistic and corrected non-relativistic Poisson equation,
Y:(z) and Yy, (), are so similar that the plots of both functions appear to be identical. We refer
to Figure [£I] The following table summarizes the results that characterize the non-relativistic
and the relativistic calculation concerning the continuum depression.

Calculation Mode A; [eV] Z* N, o
nr 2451.26  72.968  9.18107°7  0.0358098
r 247871 73.2026 21.85-10797  0.0359729

Table 4.1: Comparison between the non-relativistic (nr) and the relativistic (r) calculation concerning
the continuum depression Aj, the effective charge of the ion Z*, the number of the bound electrons
between the nucleus and zo and the merging point xo, where the quantum mechanical modification
meets the purely numerical form of Y (z), Y;-(z) respectively.

The merging points xy are close together. In both cases there are effectively zero bound
electrons between the nucleus and zg, which was expected, since we have used the same quantum
mechanical correction, i.e., have fitted the same form of function to the purely numerical central
part of Y. The values z( of the non-relativistic (nr) and the relativistic (r) case correspond to the
radii 7,0 = 1.24619 - 102 m and Tnr,0 = 1.25186 10712 m, respectively. Using the simple Bohr
atomic model and the Bohr radius ag, the radius ascribed to the K-shell of the hydrogen-like
osmium ion is ag

rk = = 6.96286 - 10713, (4.23)

which is smaller than both radii rn; 0 and 7, 0. We can therefore safely assume that the K-shells
of the osmium ions are unoccupied. Furthermore, even the L-shells will only be partly occupied.
The effective ion charges Z* show a discrepancy of less than % bound electrons, that are absent in
the relativistic case. The biggest difference appears in the continuum depression with a difference
of 27.45 eV, showing that the plasma electrons call for a relativistic treatment even though the
thermal energy kT = 25.852 keV is 20 times less than the rest energy of the electron.

4.1.2.3 lonization State

With the ionization potentials from [Spel2], the schematic shell configurations as described
in the degeneracy parameter and the calculated continuum depression, we have every
ingredient to solve the Saha equation . In a recurrence loop we do so for every ionization
state j from 1 to Z = Zos and set the value for the number density of the neutral atom nos o to
one. The results are collected and summed over, and out of these values the ionization number
fractions, i.e. the individual results for a certain j divided by their sum, are calculated. We list
our results in Table and illustrate them in Figure

Ionization State j < 70 71 72 73 74 75 76
nr: nos (%) ~0 0.038 0477 2.676 22.183 50.286 24.338
r: nops (%) ~0 0.026 0.360 2.221 20.226 50.377 26.788

Table 4.2: Distribution of the relative osmium ion number densities (in %) as function of the ionization
degree j for the non-relativistic and relativistic calculation. The used plasma configuration is the same

as in Figures Fi;fland @
For both calculation modes—mnon-relativistic and relativistic—we have about 25% bare os-

mium nuclei. Over half have only one bound electron left, about one fifth still have two bound
electrons. The rest accounts for around 3%. Corresponding to the higher continuum depression,
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Figure 4.3: Ionization states of osmium in percent as resulting from the Saha equation for the model
plasma configuration a) from at T = 3-10% K. Red dots stand for the relativistic, blue dots for the
non-relativistic calculation. The abscissa shows the number of bound electrons, where 0 refers to a fully
ionized osmium ion.

in the relativistic computation method the ionization degree is higher than the one derived from
the non-relativistic method (j, > jur)-

The averaged ionization degrees are

Jor = 74.9521, (4.24)
e = 75.0093. (4.25)

Compared to those derived from the Fermi model (see and (4.21))), the values calculated
here via the Saha equation are about two ionization degrees higher. This discrepancy can be
explained by the fact that the Fermi model cannot properly describe bound states. The results
delivered by the Saha equation, on the other hand, treat the ionization process in the plasma
accurately and provide the correct results.

For the other plasma and temperature configurations we restrict ourselves to the relativistic
computation method since it is of more general validity.

4.1.3 Results For All Configurations

We have performed the calculation for all specified plasma configurations, each case for the
extremal temperatures, 7 = 0.9 - 108 K and T' = 3.48 - 10® K. The resulting relative osmium ion
number densities for T = 0.9 - 10® K are distributed between j = 66 and j = 74, whereas for
T = 3.48 - 108 K they range from j = 71 to j = 76. The values in percent are listed in Tables

A3 and (4]

We note that plasma composition b) (73% He, 25% C, 2%O0) gives the highest ionization
degrees, whereas an osmium ion in composition d) would be significantly less ionized. This is
illustrated by the averaged ionization states shown in Table
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4.1 Self-Consistent Method

Ionization State j 66 67 68 69 70 71 72 73 74

p a): nos %] 0.139 1.275 6.377 19.107 29.133 26.722 13.418 3.448 0.342
p b): nos (%] 0.137 1.259 6.319 19.010 29.099 26.797 13.509 3.485 0.347
p c): nos [%] 0.151 1.359 6.665 19.585 29.286 26.345 12.974 3.270 0.320
p d): nos [%] 1.116  5.923 17.1656 29.808 26.339 14.002 4.075 0.607 0.035

Table 4.3: Distribution of the relative osmium ion number densities in percent as a function of the
ionization degree j for a plasma temperature T = 0.9 - 108 K and four different plasma (p) compositions

a), b), ¢), d), as described in section

Tonization State j 71 72 73 74 75 76

p a): nos (%] 0.006 0.108 0.824 12.662 51.472 34.928
p b): nos [%] 0.006 0.107 0.821 12.642 51.458 34.965
pc): nos (%) 0.005 0.089 0.673 10.281 60.960 27.992
p d): nos (%) 0.061 0.588 2.584 22.802 53.223 20.739

Table 4.4: Distribution of the relative osmium ion number densities in percent as a function of the
ionization degree j for a plasma temperature T' = 3.48 - 103 K and four different plasma compositions p
a), pb), p ¢), p d), as described in section

We are interested in analyzing if the K- and L-shells of the osmium ions are vacant (so that
free electrons can recombine in these shells). Our results confirm such free shells for the higher
considered temperature 7 = 3.48 - 10% K. There, in general, only one bound electron remains,
which is not enough to fill even one of both shells. The situation seems to be different for the
lower limit of the possible s-process temperatures (T = 0.9-10% K). For the plasma configurations
a), b) and c) there are in average nearly six bound electrons, for the configuration d) even nearly
seven. However, a few stellar plasma environment considerations are due here. First of all, we
need to refer to section [2:4] where we described that the s-process proceeds within the C-pocket
of the He intershell. This means that configuration d), with its high hydrogen content, is most
unlikely. Then, we point out that the considered '87Os is a rather heavy isotope that cannot be
produced at the beginning of the s-process. Indeed, it is possible that during the third dredge-
up such heavy isotopes are mixed below into the building C-pocket, so that only few neutron
captures are required to form '87Os. But since lighter nuclei are more abundant, this is not
very likely. More probable is that our considered ion forms late in time, when the C-pocket has
already heated up, close to the next thermal pulse or to the start of stationary He-burning. The
best description of the neutron capture process on '#”Os must therefore be the one calculated
in section at T = 3-10% K, where j = 75.0093 and the K-shell as well as the L-shell
are most likely free. Even for the other constellations there is a high probability for vacant K-
and L-shells. In every case there are effectively zero bound electrons between the nucleus and
the merging point xg. Since the merging quantum mechanical solution was derived from the
K-shell wave function, this indicates a free K-shell. We can also assume that the few remaining
bound electrons are in highly excited states due to the high thermal energy and the continuum
depression, which enhances the probability to find a completely or almost completely vacant
L-shell, too. Even in their ground state the osmium ions would always have a vacant state in the
L-shell. This result confirms the assumption in Ref. [Helll] that effective NEEC of an osmium
ion in a stellar plasma under s-process conditions is possible. In the following we double-check
our calculation.
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4.2 Comparison With Values From the Literature

In Ref. [TY83] also osmium ions in s-process plasma configurations were addressed and their
ionization states calculated for various temperatures and two plasma compositions, corresponding
to our plasma configurations ¢) and d), see section The latter we included solely because of
their usage in the literature for the classical s-process model. According to what we have shown
in section the plasma configurations of Ref. [T'Y83] deviate from the supposedly realistic
s-process environment and have therefore only limited validity. However, we can use the data
given to double-check our calculation method. For the temperatures considered in our work only
plasma configuration c) was treated in Ref. [TY83] which therefore delivers our comparison case
for T = 3 -10% K. Their results for the osmium ionization states were presented graphically.
For this reason, we are forced to reproduce their ionization distribution on the basis of their
calculation method. Ref. [T'Y83] gave a numerical approximation for the continuum depression,
derived from the finite temperature Fermi model, as a function of the temperature, the plasma
electron number density and the ionization state j of the ion in question. They also assumed
fully ionized He ions and the mass density p = 103g/cm®. Applying their method we receive their
ionization distribution as confirmed by a comparison between Figure (reproduced results)
and Figure 7 in Appendix B of [TY83]. In a next step we calculate the ionization distribution
using our method presented in chapter [3|with a rigorous treatment of the continuum depression
(see section . Our results are illustrated as well in Figure and show a very good
agreement.

percent
50} o

40

30/

@
1 2 3 4

® ®- bound €lectrons
5 6

Figure 4.4: Relative abundances of Os ionic states (ion number densities in percent) in a pure helium
plasma at temperature T' = 3 - 10% K and mass density p = 10%g/cm®. Blue dots (concealed by the
red ones) result from the numerical approximation of the continuum depression described in [TY83], red
dots illustrate our results. The abscissa shows the number of bound electrons.

As can be seen, there is no noticeable difference between both results. Only the Table

reveals deviations of less than 2/100 percent. This good agreement confirms the validity of our
results.

42



Plasma Configuration a) b) c) d)

Ts=09: j 70.2877 70.2944 70.3109 69.3145
Tg=348: j 75.2027 75.2033 75.1608 74.9074

Table 4.5: Average ionization state of the osmium ion for two different plasma temperatures, T' = 0.9-108
K and T = 3.48 - 10% K, and four different plasma compositions a), b), ¢), d), as described in section
Ty gives the temperature in units of 10® K.

Tonization State j 71 72 73 74 75 76
[TY83]: nos [%] 0.027 0.370 2.257 20.376 50.362 26.607
Here: nos [%] 0.027 0.368 2.254 20.379 50.379 26.590

[TY83]-Here [%]  0.000 0.002 0.003 -0.003 -0.017  0.017

Table 4.6: Relative abundances of Os ionic states (ion number densities in percent) in a pure helium
plasma at temperature T = 3-10% K and mass density p = 103g/cm3. We compare our results with the
ones of Takahashi and Yokoi in [TY83].
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Summary and Outlook

Summary

The aim of this thesis has been to investigate whether the atomic K- and L-shells of a heavy ion in
a stellar plasma under s-process conditions are unoccupied. This goal was formulated within the
framework of an investigation on the impact of nuclear excitation by electron capture (NEEC)
on highly excited nuclear states directly after neutron capture. Especially the L-shell electron
capture has a noticeable effect on the nuclear decay modes ratio, followed to a lesser extent by
capture into the K-shell. It was therefore essential to know if the electron can be captured into
the K- and L-shells of the respective isotope. To this end we have adopted osmium as a model
ion and calculated its ionization states in the corresponding plasma with the help of the Saha
equation.

To obtain plasma configurations which constitute a realistic environment for the respective
process we have investigated the stellar development that leads to the formation of s-process
isotopes. We have identified the C pocket as the most likely physical site with is main components
helium, carbon and osmium and temperatures between 0.9 - 108 K and 3 - 108 K. These plasma
conditions we have adopted for our calculation. We have also chosen two additional plasma
compositions and an even higher temperature of 3.48 - 10% K to cover traditional assumptions of
s-process sites and allow for a comparison with values from the literature. With the obtained
parameters for four plasma configurations and the mentioned temperatures we have calculated
the ionization states via the Saha equation. The detailed step-by-step calculation has been
presented for one model case.

The surrounding particles of the plasma had to be taken into account. They cause a reduction
of the binding energies for the bound electrons of the osmium ion, even leading to additional
pressure ionization. This so-called continuum depression we have handled within a Fermi model,
partly adjusted to account for quantum mechanical features in the vicinity of the considered
nucleus. Within this model, various approximations have been implemented to effectively com-
pute the nuclear potential. Especially the regions close to and very far from the nucleus needed
special considerations. The nuclear potential we have used to calculate the influence of the per-
turbing potential of the plasma particles in a self-consistent way, finally leading to the value for
the continuum depression energy. By subtracting this energy from the laboratory value for the
ionization potentials of osmium we have also obtained the cut-off energy for the considered exci-
tation energies. Only those excitation states which not compete against ionization are included
in the partition functions of the Saha equation.

With the evaluated ingredients we finally have obtained ionization distributions for osmium
that bear comparison with the literature and show clearly that there are not enough bound
electrons left to fill the K- and L-shells of the ions. The average bound electron number ranges
between one and a maximum of seven. The unoccupied states provide the condition for effective
NEEC to occur which therefore seems to stay a subject for continuing research.
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Outlook

The present calculation offers some possibilities for refinement. Instead of applying the same
quantum mechanical correction in the relativistic as in the non-relativistic case, a fully relativis-
tic treatment might increase the accuracy of the results. The same is true for taking into account
a more detailed composition of the plasma and including even the rare components.

In the framework of NEEC there is also room for further investigation. So far we have studied
the occupation of the K- and L-shells of osmium to see whether NEEC in those shells is possible
as proposed in Ref. [Helll]. Another unverified assumption there was that if capture occurs
into the L-shell, the K-shell or even orbitals of the L-shell would be fully occupied. With our
calculation we showed the opposite. There is a high probability for the K-shell to be free in any
case. The effect of the free underlying shell on the decay modes should therefore be investigated.
Furthermore, the few remaining bound electrons might partly occupy the L-shell and couple
to the captured electron. Such coupling has not been considered so far, since in Ref. [Helll]
only completely occupied orbitals with total angular momentum zero were assumed. The impact
of NEEC on nucleosynthesis scenarios for various electronic configurations can be investigated.
This opens an ample field for further studies.
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