Recognition between a short unstructured peptide and a partially folded fragment leads to the thioredoxin fold sharing native-like dynamics

Andrés Binolfi, ${ }^{2}$ Claudio O. Fernández, ${ }^{2,4}$ Mauricio P. Sica, ${ }^{3}$ José M. Delfino, ${ }^{1 *}$ and Javier Santos ${ }^{1,3^{*}}$
${ }^{1}$ Departmento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
${ }^{2}$ Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
${ }^{3}$ Department of Science and Technology, University of Quilmes, Roque Sáenz Peña 352, B1876XD Bernal, Buenos Aires, Argentina
${ }^{4}$ Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany and DFG Research Center for the Molecular Physiology of the Brain (CMPB), Göttingen, Germany

Figure S1. Reaction of complex TRX1-93/TRX94108 formation followed by real-time NMR. Intensities of ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ cross-peaks for residues, measured from ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HET-SOFAST experiments run under the experimental conditions indicated in Figure 1 were plotted as a function of reaction time $(\mathrm{t}=0$ being the time when mixing of peptide and fragment occurs). After global regression analysis by fitting one exponential component to each kinetics, the curves were plotted corresponding to residues: 4,12 , $13,14,15,17,19,21,23,25,29,30,35,41,45,47,51,56,57,59,65,69,70,73,78,79,80,86,88$,
and 93. These residues were selected to follow the progress of their cross-peak intensities along the reaction time, because they are well resolved in the final spectrum.

Figure S2. Comparison of chemical shifts for the reduced form of fragment ${ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ TRX1-93 (500 $\mu \mathrm{M}$) in complex with peptide ${ }^{12} \mathrm{C} /{ }^{14} \mathrm{~N}$ TRX94-108 (1.5 mM) (○), and wild-type $\operatorname{TRX}(\bullet) .{ }^{15} \mathrm{~N}(\mathbf{A}),{ }^{1} \mathrm{H}$ amide (B). The mean-weighted ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ chemical shifts difference (MWCS in ppm) as a function of residue number is plotted in (C). Normalized MWCS was calculated as follows: $M W C S=\left[\Delta \mathrm{H}^{2}+(\Delta \mathrm{N} / 5)^{2}\right]^{1 / 2}$,
where $\Delta \mathrm{H}$ and $\Delta \mathrm{N}$ are the chemical shifts differences between the complex and wild-type TRX. The buffer was 20 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, pH 7.3 at $20^{\circ} \mathrm{C}$.

Figure S3. $\mathrm{C} \alpha(\mathbf{A})$ and $\mathrm{C} \beta(\mathbf{B})$ secondary shifts for full-length TRX (black) and the complex TRX1-93/94-108 (red). Chemical shifts values for full-length TRX were those reported by Chandrasekhar et al.
${ }^{1}$. The plots show that the secondary shifts of both protein species (up to residue 93) are very similar, indicating that the structural features of the complex strongly resemble those of the full-length protein. The slightly different offset between both datasets ($\sim 0.5 \mathrm{ppm}$) likely arises from the different solution conditions in both studies and/or the reference compounds used: DSS in this work and tetra methyl silane (TMS) and NH_{3} in Chandrasekhar et al. ${ }^{1}$.

Figure S4. Amino acid residues that change their chemical shifts upon titration of ${ }^{15} \mathrm{~N}$ uniformly labeled fragment TRX1-93 with unlabeled peptide TRX94-108. For cross-peaks corresponding to residues I4, F27, W31, C35, A39, I41, V91, G92 and A93, the mean-weighted ${ }^{1} \mathrm{H}^{-15} \mathrm{~N}$ chemical shifts (in ppm) were calculated as ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ MWCS $=\left[\Delta \mathrm{H}^{2}+(\Delta \mathrm{N} / 5)^{2}\right]^{1 / 2}$, where $\Delta \mathrm{H}$ and $\Delta \mathrm{N}$ are the differences in chemical shift observed for ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ relative to the minimal peptide/fragment assayed ($0.5: 1$). Dialyzed fragment ${ }^{15} \mathrm{~N}$-TRX1-93 (100 $\mu \mathrm{M}$, final concentration) was mixed with peptide TRX94-108 (at peptide/fragment molar ratios of $0.5: 1,1: 1,2: 1,3: 1,3.5: 1) .{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ - HSQC spectra were acquired after at least 16 h of incubation at room temperature.

Figure S5. Simulation of two coupled binding equilibria between fragment TRX1-93 (P) and peptide TRX94-108 (L). The systems $\mathrm{P}+\mathrm{L} \leftrightarrow \mathrm{PL}$ and $\mathrm{PL}+\mathrm{L} \leftrightarrow \mathrm{PL}_{2}$-governed by dissociation constants K_{1} and K_{2}, respectively- were simulated to yield the concentrations (relative to total fragment concentration P_{T}) of species PL (circles), PL_{2} (squares) and their sum (triangles) in equilibrium for a value of K_{1} of 1 $\mu \mathrm{M}$ and K_{2} values of 50 (blue), 100 (black) and $200 \mu \mathrm{M}$ (red). Total fragment P_{T} concentration was set to $100 \mu \mathrm{M}$, and peptide L_{T} varies up to $350 \mu \mathrm{M}$. In titration experiments, the peak height signal (inset to Figure 7) is assumed to follow a dependence on $[\mathrm{PL}]+\left[\mathrm{PL}_{2}\right]$, whereas the MWCS signal (Figure S4) would depend exclusively on $\left[\mathrm{PL}_{2}\right]$.

Figure S6. Regions of different transversal relaxation between the complex and full-length TRX. R_{2} values for residues 43-50 (helix $\alpha 3$) and 74-89 (the β hairpin at the C-terminus of the fragment) are higher for the complex than for full-length TRX. The accessible surface area (calculated with a probe radius of $1.4 \AA$) for these residues in the fragment TRX1-93 (extracted from the PDB ID=2TRX) is shown in yellow. A ribbon diagram of peptide TRX94-108 is shown in orange.

Figure S7. Far-UV CD spectra of isolated fragment TRX1-93. Fragment concentrations were 98, 73, 49,25 , and $10 \mu \mathrm{M}$. Samples were prepared in 20 mM TrisHCl buffer, $100 \mathrm{mM} \mathrm{NaCl}, 1.0 \mathrm{mM} \mathrm{DTT}, \mathrm{pH}$ 7.3 and spectra were acquired at $20^{\circ} \mathrm{C}$. In addition, the spectrum of the complex TRX1-93/TRX94-108 is shown as a reference. In this case, fragment concentration was $30 \mu \mathrm{M}$ and a $3: 1$ peptide to fragment molar ratio was used.

Table S1. Complexes derived from E. coli thioredoxin (TRX).

Complexes	Structural characterization	Enzymic activity	Dissociation constant $K_{\text {d }}$	References
	method and redox state	\% of wild type TRX	$\boldsymbol{\mu} \mathbf{M}$ (temperature in ${ }^{\circ} \mathrm{C}$)	
		(substrate)	method	
1-37/37-108	Secondary and tertiary structure:	0.1\% (insulin)	6.5 (25), IT	2-4
	47% and 35%, respectively; by CD.	15-20\% (DTNB, TRXR)	4.0 (20), fluorescence quenching	
	Probably oxidized			
	Full-structured; by CD,	1\% (insulin)	0.1 (20), sedimentation equilibrium	4, 5
	fluorescence and NMR.	1\% (DTNB, TRXR)	0.049 (20), fluorescence quenching	
	Probably oxidized			
1-93/94-108	Full-structured; by CD	7.1 \% (Di-FTC-insulin)	12 (25), near-UV CD titration	7,8 and this work
	and fluorescence.		2 (25), ITC	
	Reduced		1.5 ± 1 (20) NMR titration	
			>150 (20), at or near the active site,	

The N - and C - terminal fragments are depicted in cyan and orange, respectively. Abbreviations used are: CD, circular dichroism; Di-FTC-insulin, di-fluoresceinthiocarbamyl-insulin; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); ITC, isothermal titration calorimetry; TRXR, thioredoxin reductase.

Table S2. NMR peak assignments for TRX1-93. ${ }^{15} \mathrm{~N}$ and ${ }^{1} \mathrm{H}$ amide chemical shifts for the reduced form of fragment ${ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ TRX1-93 $(500 \mu \mathrm{M})$, in complex with peptide ${ }^{12} \mathrm{C} /{ }^{14} \mathrm{~N}$ TRX94-108 (1.5 mM) at $20^{\circ} \mathrm{C}, 20 \mathrm{mM}$ Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, pH 7.3 .

Residue	${ }^{15} \mathrm{~N} \delta$ (ppm)	H $\mathbf{~ (p p m) ~}$	Residue	${ }^{15} \mathrm{~N} \delta$ (ppm)	H $\mathbf{~ (p p m) ~}$	Residue	${ }^{15} \mathrm{~N} \delta$ (ppm)	H $\mathbf{~ (p p m) ~}$
Asp2	-----	----	Gly33	-----	----	Pro64	---	----
Lys3	118.7	8.39	Pro34	-----	----	Gly65	112.6	10.27
Ile4	121.2	7.35	Cys 35	115.2	8.00	Thr66	118.9	7.87
Ile5	125.7	8.26	Lys36	120.1	7.86	Ala67	124.1	9.78
His6	125.7	8.85	Met37	116.4	7.55	Pro68	-----	----
Leu7	124.6	8.93	Ile38	122.7	8.29	Lys69	117.2	7.40
Thr8	108.1	8.18	Ala39	124.1	7.33	Tyr70	114.8	7.32
Asp9	119.7	8.21	Pro40	-----	----	Gly71	107.9	7.51
Asp10	116.4	8.24	Ile41	117.4	6.78	Ile72	119.2	7.15
Ser11	118.0	8.30	Leu42	119.2	7.88	Arg73	128.1	8.65
Phe 12	125.3	7.69	Asp43	118.7	7.35	Gly74	108.4	7.66
Asp13	117.3	8.74	Glu44	118.1	7.22	Ile75	114.4	8.17
Thr 14	112.4	7.81	Ile45	120.7	8.53	Pro76	---	----
Asp15	118.8	8.46	Ala46	122.1	8.65	Thr77	118.8	7.88
Val16	112.8	7.59	Asp47	115.0	7.16	Leu78	125.8	8.92
Leu17	116.3	7.00	Glu48	120.7	8.66		21.	9.09
Lys 18	115.1	7.41	Tyr49	115.3	8.77	9	121.8	9.
Ala19	122.4	6.61	Gln50	121.2	7.07	Leu80	124.7	8.90
Asp20	121.4	8.57	Gly51	115.7	9.28	Phe81	128.1	9.99
Gly21	108.7	8.18	Lys52	117.9	8.21	Lys82	117.0	8.78
Ala22	123.1	8.49	Leu53	119.5	7.86	Asn83	124.1	9.44
Ile23	120.9	9.17	Thr54	123.5	8.12	Gly84	104.5	9.65
Leu24	130.5	9.23	Val55	129.9	9.99	Glu85	118.6	7.84
Val25	126.6	9.79	Ala56	129.6	9.34	Val86	122.7	8.83
Asp26	125.8	8.87	Lys57	118.2	8.66	Ala87	133.4	9.63
Phe27	127.9	8.57	Leu58	123.6	9.00	Ala88	117.5	7.77
Trp28	120.0	8.31	Asn59	126.7	9.13	Thr89	115.4	8.62
Ala29	117.0	7.05	Ile60	122.5	8.60	Lys90	126.9	9.10
Glu30	123.8	9.00	Asp61	122.1	7.68	Val91	126.6	8.65
Trp31	111.0	6.64	Gln62	116.2	7.39	Gly92	113.3	8.28
Cys 32	122.7	6.60	Asn63	115.3	7.41	Ala93	127.3	7.53

Table S2. Time course of complex TRX1-93/TRX94-108 formation followed by real-time NMR. The evolution of the intensity of ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ backbone cross-peaks corresponding to 30 selected residues is shown here (for the full graphics, see Figure S2). Each kinetic curve could be accounted for by one exponential component. Non-linear fitting was performed with QtiPlot software, using the scaled Levenberg-Marquardt algorithm. Values for the kinetic constants together with their standard errors are shown below.

Residue	$\boldsymbol{k}\left(\mathbf{m i n}^{-1}\right)$	Residue $\boldsymbol{k}\left(\mathbf{m i n}^{-1}\right)$	
I4	0.0099 ± 0.0038	D47	0.0454 ± 0.0141
F12	0.0073 ± 0.0048	G51	0.0068 ± 0.0044
D13	0.0198 ± 0.0052	A56	0.0078 ± 0.0031
T14	0.0188 ± 0.0047	A57	0.0278 ± 0.0093
D15	0.0214 ± 0.0071	N59	0.0128 ± 0.0050
L17	0.0125 ± 0.0028	G65	0.0169 ± 0.0040
A19	0.0191 ± 0.0065	K69	0.0136 ± 0.0030
G21	0.0275 ± 0.0072	Y70	0.0086 ± 0.0032
I23	0.0110 ± 0.0050	R73	0.0133 ± 0.0027
V25	0.0138 ± 0.0048	L78	0.0109 ± 0.0047
A29	0.0289 ± 0.0109	L79	0.0190 ± 0.0065
E30	0.0326 ± 0.0092	L80	0.0182 ± 0.0048
C35	0.0136 ± 0.0040	V86	0.0149 ± 0.0047
I41	0.0129 ± 0.0040	L88	0.0122 ± 0.0030
I45	0.0052 ± 0.0020	A93	0.0089 ± 0.0024

References

1. Chandrasekhar K, Campbell AP, Jeng MF, Holmgren A, and Dyson HJ. Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. J Biomol NMR 1994; 4: 411-432.
2. Ghoshal AK, Swaminathan CP, Thomas CJ, Surolia A, and Varadarajan R. Thermodynamic and kinetic analysis of the Escherichia coli thioredoxin- C^{\prime} fragment complementation system. Biochem J 1999; 339 (Pt 3): 721-727.
3. Holmgren A. Thioredoxin-C': Reconstitution of an active form of Escherichia coli thioredoxin from two noncovalently linked cyanogen bromide peptide fragments. FEBS Lett 1972; 24: 351354.
4. Yang XM, Georgescu RE, Li JH, Yu WF, Haierhan, and Tasayco ML. Recognition between disordered polypeptide chains from cleavage of an alpha/beta domain: self-versus non-selfassociation. Pac Symp Biocomput 1999; 590-600.
5. Tasayco ML, Fuchs J, Yang XM, Dyalram D, and Georgescu RE. Interaction between two discontiguous chain segments from the beta-sheet of Escherichia coli thioredoxin suggests an initiation site for folding. Biochemistry 2000; 39: 10613-10618.
6. Slaby I, and Holmgren A. Structure and enzymatic functions of thioredoxin refolded by complementation of two tryptic peptide fragments. Biochemistry 1979; 18: 5584-5591.
7. Santos J, Marino-Buslje C, Kleinman C, Ermacora MR, and Delfino JM. Consolidation of the thioredoxin fold by peptide recognition: interaction between E. coli thioredoxin fragments 1-93 and 94-108. Biochemistry 2007; 46: 5148-5159.
8. Santos J, Sica MP, Buslje CM, Garrote AM, Ermacora MR, and Delfino JM. Structural selection of a native fold by peptide recognition. Insights into the thioredoxin folding mechanism. Biochemistry 2009; 48: 595-607.
