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We present an analysis of the Unruh effect from the perspective of the general boundary formu-
lation of the quantum field theory of a massive scalar field in Minkowski and Rindler spacetimes.
We underline the difficulty in identifying the Minkowski vacuum state with a superposition of mul-
tiparticle states defined in the double Rindler wedge. However, in contrast to this "global" version
of the Unruh effect we show that a "local" version of it arises when comparing expectation values
of observables quantized with the Feynman quantization prescription that have compact support
restricted to one of the Rindler wedges. We find that even this notion of local Unruh effect does
not exist when the same observables are quantized according to the Berezin-Toeplitz quantization
scheme.

PACS numbers: 11.10.-z, 04.62.+v

I. INTRODUCTION

In his seminal paper [1] Oeckl proposed an axiomatic framework for the quantum theory that allows to formulate
quantum field theory on general spacetime regions with general boundaries. This new formulation, named the General
Boundary Formulation (GBF), assumes as an important ingredient (a particular version of) the mathematical frame-
work of Topological Quantum Field Theory [1–4]. In particular the set of axioms that defines the GBF implements
an assignment of algebraic structures to geometrical structures and guaranties the consistency of such an assignment.
The physical interpretation relies on a generalization of the Born’s rule to extract probabilities from the algebraic
structures (in particular amplitudes and observable amplitudes discussed below).

The main motivation at the basis of the development of the GBF is the desire to render the formulation of quantum
theory compatible with the symmetries of general relativity, in view of a possible future formulation of a quantum
theory of gravity. From such perspective the GBF appears to be particularly advantageous with respect to the
standard formulation of quantum theory since it does not require a spacetime metric for its formulation. Indeed the
axioms of the GBF necessitate only a topological structure, and not a metric one. Moreover, it is worth noting that
no (space)time notion enters in the definition of the generalized Born’s rule. See [5] and [6] for more details on the
relevance of the GBF for the problem of quantum gravity.

Although, as said, the spacetime background metric does not play any fundamental role in the GBF, evidently a
general boundary quantum theory can be implemented for studying the dynamics of fields defined on a spacetime with
a definite metric background. In that case the versatility of the GBF makes it possible to consider not only initial and
final data on Cauchy surfaces as in the standard approach to quantum field theory but also the dynamics that take
place in more general regions; the main interest will be represented by compact spacetime regions, namely regions
whose boundaries have spacelike as well as timelike parts. A certain numbers of results, [7–14], have been obtained
by applying the GBF for fields in Minkowski space and curved spaces, among which we cite a new perspective on
properties of the standard S-matrix (in particular the crossing symmetry, that becomes a derived property within
the GBF) and the proposals of new quantization schemes that allow a generalization of the standard S-matrix. In
particular in Anti-de Sitter space, where the lack of temporal asymptotic regions obstructs the application of the
traditional S-matrix techniques, involving temporal asymptotic in and out states, spatial asymptotic states have been
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rigorously defined within the GBF of a scalar quantum field theory and the corresponding amplitude that has been
computed for these states can then be interpreted as a generalization of the standard S-matrix [15].

In this paper our main motivation is to consider from the GBF perspective the so called Unruh effect for a quantum
scalar field. Usually the Unruh effect is understood as a particular relation between the notions of particle state in
Minkowski and in Rindler spacetime. Rindler space is the spacetime naturally associated with uniformly accelerated
observers and is isomorphic to a submanifold of Minkowski spacetime called the Rindler wedge. Then, the Unruh
effect can be stated as follows: linearly uniformly accelerated observers perceive the Minkowski vacuum state (i.e.
the no-particle state of inertial observers) as a mixed particle state described by a density matrix at temperature1

T = a/(2πkB), a being the constant acceleration of the observer and kB the Boltzmann constant. This effect was
proposed by Unruh in 1976 [16] and has received a considerably amount of attention in literature because of its relation
to other effects, like the particle creation from black holes (the so called Hawking effect) and cosmological horizons,
and also because of recent proposals aimed at an experimental detection of the Unruh effect, see [17] for a review.

It is important to remark that the Unruh effect is a quantum field theory result that is derived by comparing the
quantizations of a field in Minkowski and Rindler spacetime. We will refer to it as the global Unruh effect in order
to distinguish it from a local notion of the effect defined later. The global Unruh effect is claimed to coincide with
but must in fact be distinguished from the result that an uniformly accelerated Unruh-DeWitt detector responds
as if submersed in a thermal bath when interacting with a quantum field in the Minkowski vacuum state [16]. In
particular, the global Unruh effect is claimed to shed light on the relation between the quantum properties of the
Minkowski vacuum state and the notion of particle in Rindler space: Indeed, the vacuum state in Minkowski is claimed
to correspond to an entangled state between the modes of the field defined in the left and right Rindler wedges. Then
tracing out the degrees of freedom in one of the wedges leads to a density operator describing a mixed thermal state
at the Unruh temperature [16–22]. In the first part of this article, by comparing the general boundary quantum field
theories in Minkowski and Rindler spacetimes, we point out the existence of an obstacle that prevents the acceptance
of the previous sentence, at least in its full generality. As Belisnkii et al. showed in [23–26] the global properties of the
field in the two spacetimes prevent the identification of the Minkowski vacuum state with states in Rindler spacetime.
We recover the same obstruction to the global Unruh effect evidenced in these works by comparing the algebraic
structures that define the general boundary quantum field theories of a free massive scalar field in Minkowski and
Rindler spacetimes. In the second part of this paper the GBF quantization prescriptions for observables presented
in [27], and further studied in [28], are applied to compute expectation values of local observables with compact
support in a spacetime region contained in the right Rindler wedge. The result obtained suggests a notion of the
Unruh effect different from the global one, that we call local Unruh effect. In particular the expression local Unruh
effect stems from the coincidence of expectation values of local observables (i.e. observables with compact spacetime
support) obtained in two different settings: in the first setting expectation values are computed on the vacuum state
in Minkowski spacetime and in the second setting they are computed on a mixed state in Rindler spacetime2.

The paper is structured as follows: In Sec. II we present a compact review of the GBF by specifying the two
different representations so far implemented within the GBF, namely the Schrödinger representation in which the
quantum states of the field are wave functionals of field configurations and the holomorphic representation where
the states are holomorphic functions on germs of solutions to the field equations. In Sec. III A and Sec. III B we
formulate the general boundary quantum field theory on Minkowski and Rindler spacetimes respectively for a massive
Klein-Gordon field both in the Schrödinger and holomorphic representations. In Sec. IV we show that for the massive
Klein-Gordon field the quantum field theory on Minkowski space and the one on Rindler space are inherently different
and cannot be compared directly, thus invalidating the global Unruh effect. Nevertheless, in Sec. V we recover a
version of the Unruh effect, that we call local Unruh effect, as the fact that for observables quantized according to the
Feynman quantization prescription that are just defined on the interior of the right Rindler wedge expectation values
in the Minkowski vacuum coincide with those calculated for a certain mixed state of the quantum theory in Rindler
space. Finally, we summarize our conclusions and outlook in Sec. VI.

II. THE GENERAL BOUNDARY FORMULATION OF QUANTUM FIELD THEORY

This section presents a short review of the two representations in which the general axioms of [1] where implemented
following the much more elaborate introduction given in [30]. These are the Schrödinger-Feynman representation [1]
and the holomorphic representation [3]. We introduce the main structures that will be used in the rest of the paper,

1 We set c = ~ = 1.
2 This result is similar in some technical aspects to the one of Unruh and Weiss [29].
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such as state spaces and amplitude maps for both representations.
As usual we start from an action S[φ] =

´

M
dNxL(φ, ∂φ, x) which is considered to describe a linear real scalar

field theory in a spacetime region M of an N -dimensional Lorentzian manifold (M, g). Denoting the boundary3 of
the region M with Σ, we associate with this hypersurface the space LΣ of solutions of the Euler-Lagrange equations
(derived from the action S[φ]) defined in a neighborhood of Σ.4 The symplectic potential on Σ results to be

(θΣ)φ(X) :=

ˆ

Σ

dN−1σX(x(σ))

(

nµ δL
δ∂µφ

)

(x(σ)), (1)

where nµ is the unit normal vector to Σ. For every two elements of the space LΣ there is the bilinear map [·, ·]Σ :
LΣ × LΣ → R defined such that [ξ, η]Σ := (θΣ)ξ(η) and the symplectic structure, that is the anti-symmetric bilinear
map ωΣ : LΣ × LΣ → R given by ωΣ(ξ, η) := 1

2 [ξ, η]Σ − 1
2 [η, ξ]Σ. The last ingredient for the quantum theory we

need to specify is a complex structure JΣ represented by the linear map JΣ : LΣ → LΣ such that J2
Σ = −id and

ωΣ(JΣ·, JΣ·) = ωΣ(·, ·). Remark, that all ingredients but the complex structure JΣ are classical data uniquely defined
by specifying the action.

These basic ingredients can now be used in different ways to specify the Hilbert spaces associated with the boundary
hypersurface Σ. In the following subsection we introduce the two representations developed so far within the GBF,
namely the Schrödinger representation, usually associated with the Feynman path integral quantization prescription,
and the holomorphic representation.

A. The Schödinger-Feynman representation

In this representation quantum states are represented by wave functionals of field configurations. For its implemen-
tation it is convenient to introduce subspaces of the space LΣ of solutions in a neighborhood of the hypersurface Σ.
We start be defining what plays the role of the "space of momentum", denoted by MΣ ⊂ LΣ,

MΣ := {η ∈ LΣ : [ξ, η] = 0 ∀ξ ∈ LΣ}. (2)

It can be shown that MΣ is a Lagrangian subspace of LΣ.5 Next, we consider the quotient space QΣ := LΣ/MΣ

which corresponds the space of all field configurations on Σ. We denote the quotient map LΣ → QΣ by qΣ. The last
ingredient needed for the Schrödinger representation is the bilinear map

ΩΣ :QΣ ×QΣ → C,

(ϕ, ϕ′) 7→ 2ωΣ(jΣ(ϕ), JΣjΣ(ϕ
′))− i[jΣ(ϕ), ϕ

′]Σ, (3)

where jΣ is the unique linear map QΣ → LΣ such that qΣ ◦ jΣ = idQΣ
. Notice that the symplectic potential [·, ·]Σ is

equivalently seen as a map from LΣ ×QΣ to the complex numbers. The Hilbert space HS
Σ (the superscript S refers

to the Schrödinger representation) is now defined as the closure of the set of all coherent states

KS
ξ (ϕ) = exp

(

ΩΣ(qΣ(ξ), ϕ) + i[ξ, ϕ]Σ − 1

2
ΩΣ(qΣ(ξ), qΣ(ξ))−

i

2
[ξ, ξ]Σ − 1

2
ΩΣ(ϕ, ϕ))

)

, (4)

with respect to the inner product

〈KS
ξ ,K

S
ξ′〉 :=

ˆ

QΣ

DϕKS
ξ (ϕ)K

S
ξ′(ϕ), (5)

where the bar denotes complex conjugation. The vacuum state KS
0 is then defined as the coherent state with ξ = 0.

So far we have defined the kinematical aspects and we now pass to the dynamical ones. Within the GBF the
dynamics are encoded in an amplitude map ρM : HS

Σ → C associated with the spacetime regionM . In the Schrödinger

3 Notice that whether the boundary hypersurface Σ is a Cauchy surface (or a disjoint union of Cauchy surfaces) has no bearing on the
following treatment.

4 More precisely it is the space of germs of solutions at Σ which is the set of all equivalence classes of solutions where two solutions are
equivalent if there exists a neighborhood of Σ such that the two solutions coincide in this whole neighborhood.

5 It is this subspace MΣ that defines the Schrödinger polarization of the prequantum Hilbert space constructed from LΣ, see [30] for
details.
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representation for a state ψS ∈ HS
Σ, the amplitude ρM is defined in terms of the Feynman path integral prescription

formally given by [28] (recall that Σ is the boundary of M)

ρM (ψS) := NM

ˆ

LM

DφψS(qΣ(φ))e
iS[φ], (6)

where LM is the set of all field configurations in M that solve the Euler-Lagrange equations and with "Dφ" we have
denoted an hypothetical translation-invariant measure on LM . As well known, in general no such measure exists in
mathematical rigor. NM is the normalization constant defined as

NM :=

ˆ

L0

M

Dφ eiS[φ], (7)

where L0
M is the set of all field configurations in M that are zero on Σ. It is then possible, applying the generalized

Born’s rule [1, 31], to extract probabilities for the amplitude map ρM .

B. The holomorphic representation

From the complex structure JΣ we define the symmetric bilinear form gΣ : LΣ × LΣ → R as

gΣ(ξ, η) := 2ωΣ(ξ, JΣη) ∀ξ, η ∈ LΣ, (8)

and assume that this form is positive definite. Next, we introduce the sesquilinear form

{ξ, η}Σ := gΣ(ξ, η) + 2iωΣ(ξ, η) ∀ξ, η ∈ LΣ. (9)

The completion of LΣ with the inner product {·, ·}Σ turns it into a complex Hilbert space. The Hilbert space
Hh

Σ = H2(LΣ, dνΣ),
6 namely the set of square integrable holomorphic functions on LΣ, is the closure of the set of all

coherent states [3]

Kh
ξ (φ) := e

1

2
{ξ,φ}, (10)

where ξ ∈ LΣ and the closure is taken with respect to the inner product

〈Kh
ξ ,K

h
ξ′〉 :=

ˆ

LΣ

dνΣ(φ)Kh
ξ (φ)K

h
ξ′(φ), (11)

where dνΣ can be represented formally as dνΣ(φ) = dµΣ(φ)e
1

4
gΣ(φ,φ) with a certain translation invariant measure

dµΣ. The amplitude map for a state ψh is defined as

ρM (ψh) :=

ˆ

LM̃

dνM̃ (φ)ψh(φ) , (12)

where LM̃ ⊆ LΣ is the set of all global solutions onM mapped to LΣ by just considering the solutions in a neighborhood
of Σ.7 The measure dνM̃ is a Gaussian probability measure constructed from the metric gΣ [3].8

Independent of the representation the amplitude for coherent states turns out to be9

ρM (Kξ) = exp

(

1

2
gΣ(ξ

R, ξR)− 1

2
gΣ(ξ

I , ξI)− i

2
gΣ(ξ

R, ξI)

)

, (13)

where ξR, ξI ∈ LM̃ and ξ = ξR + JΣξ
I .

6 To make this mathematically precise one actually has to construct Hh
Σ = H2(L̂Σ, dνΣ) where L̂Σ is a certain extension of LΣ. For more

details about the construction of L̂Σ and dνΣ we refer the reader to [3].
7 More precisely, global solutions are mapped to the corresponding germs at Σ.
8 Again, we refer the reader to [3] where the constructions are given that make all the objects used here well defined.
9 See equation (31) of [28] for normalized coherent states and equation (43) in [3]
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III. GBF IN MINKOWSKI AND RINDLER SPACETIMES

We start with the action for the real massive Klein-Gordon field on 1 + 1-dimensional Minkowski spacetime M =
(R2, η = diag(1,−1)) which is given by

S[φ] =
1

2

ˆ

d2x
(

ηµν∂µφ∂νφ−m2φ2
)

. (14)

The resulting symplectic potential for a spacetime region M with boundary hypersurface Σ is

(θΣ)ξ(φ) =
ǫ

2

ˆ

Σ

dσ ξ(x(σ)) (nµ∂µφ) (x(σ)) ,

with nµ the normalized hypersurface normal vector field pointing inside the regionM and ǫ = +1/−1 if Σ is everywhere
spacelike/timelike respectively10. The derivative ζ := d

dσΣ(σ) of the embedding function Σ(σ) is normalized as
ηµνζµζν = 1.

A. Minkowski spacetime

We want to investigate the GBF in a region M ⊂ M bounded by the disjoint union of two spacelike hypersurfaces
represented by two equal time hyperplanes (this corresponds to the standard setting), which we denote as Σ1,2 : {t =
t1,2}, i.e. M = R× [t1, t2]. Then the boundary of the region M corresponds to the disjoint union Σ := Σ1 ∪ Σ2 (the
bar denotes the inverted orientation). The set of solutions in the neighborhood of Σ decomposes in a direct sum as
LΣ = LΣ1

⊕ LΣ2
where LΣ1

and LΣ2
are the sets of solutions in the neighborhood of Σ1 and Σ2 respectively each

equipped with the corresponding symplectic form ωΣ1
respectively ωΣ2

and a complex structure JΣ1
respectively JΣ2

.

The inversion of the orientation is implemented by the identification [φ, φ′]Σ2
= −[φ, φ′]Σ2

and JΣ2
= −JΣ2

. The
corresponding Hilbert space associated with Σ is given by the tensor product HΣ = HΣ1

⊗HΣ2
, where HΣ1

and HΣ2

are the Hilbert spaces associated with the hypersurface Σ1 and Σ2 respectively and the inversion of the orientation
translates to the level of the Hilbert spaces by the map ι : HΣ2

→ HΣ2
, ψ 7→ ψ as can be seen from the definition of

the coherent states in section II.
In order to provide an explicit expression to the structures introduced in the previous section we expand the scalar

field in a complete basis of solutions of the equation of motion,

φ(x, t) =

ˆ

dp (φ(p)ψp(x, t) + c.c.) , (15)

where ψp(x, t) are chosen to be the eigenfunctions of the boost generator, namely the boost modes11 12

ψp(x, t) =
1

23/2π

ˆ ∞

−∞

dq exp (im(x sinh q − t cosh q)− ipq) = e−iωt 1

23/2π

ˆ ∞

−∞

dq exp (imx sinh q − ipq) , (16)

where we have introduced the operator ω =
√

−∂2x +m2. These modes are normalized as

ωΣi
(ψp, ψp′) = δ(p− p′), ωΣi

(ψp, ψp′) = ωΣi
(ψp, ψp′) = 0. (17)

The Hilbert space Hi of the quantum theory, associated to a hyperplane Σi (i = 1, 2) is defined by the vacuum state
written in the Schrödinger representation as

KS
0,Σi

(ϕi) = N exp

(

−1

2

ˆ

dxϕi(x)(ωϕi)(x)

)

(i = 1, 2), (18)

10 We stick here to the conventions used in [3] and earlier publicatons.
11 It is assumed that an infinitely small imaginary part is added to t. Moreover, the integral over p in (15) must be extended from −∞ to

+∞.
12 Usually the expansion is given in the basis of plane wave solutions. However, it turns out to be more convenient for our purposes to use

the boost modes.
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N being a normalization constant and ϕi ∈ QΣi
are the boundary field configurations on the hypersurface Σi, namely

ϕi(x) = φ(x, t)
∣

∣

t=ti
. This vacuum state corresponds to the standard Minkowski vacuum state13, whose GBF expression

has been given in [10], and it is uniquely defined by the complex structure [32]

JΣi
=

∂t
√

−∂2t
, (19)

which defines a unitary complex structure on LΣ in the sense that it is compatible with the dynamics of the field. The
boost modes (16) are eigenfunctions of this complex structure, i.e. JΣi

ψp = −iψp. The structures introduced in the
previous section, namely the symplectic form ωΣi

(·, ·), the metric gΣi
(·, ·) and the inner product {·, ·}Σi

, evaluated for
two solutions φ, φ′ ∈ LΣi

(i = 1, 2) take the form

ωΣi
(φ, φ′) =

i

2

ˆ ∞

−∞

dp
(

φ(p)φ′(p)− φ(p)φ′(p)
)

, (20)

gΣi
(φ, φ′) =

ˆ ∞

−∞

dp
(

φ(p)φ′(p) + φ(p)φ′(p)
)

, (21)

{φ, φ′}Σi
= gΣi

(φ, φ′) + 2iωΣi
(φ, φ′) = 2

ˆ ∞

−∞

dp φ(p)φ′(p). (22)

The dense subset of the Hilbert space associate to Σi, defined by the coherent states, as well as the amplitude map
associated to the region M are implementable in terms of the above quantities.

B. Rindler spacetime

For the quantization of the scalar field in Rindler spacetime we consider again the action in equation (14) but
restricted to the right wedge of Minkowski space, namely R := {x ∈ M : x2 ≤ 0, x > 0}, which is covered by the
Rindler coordinates (ρ, η) such that ρ ∈ R

+ and η ∈ R. The relation between the Cartesian coordinates (x, t) and
the Rindler ones is t = ρ sinh η and x = ρ sinh η, and the metric of Rindler space results to be ds2 = ρ2dη2 − dρ2. We
consider the region R ⊂ R bounded by the disjoint union of two equal-Rindler-time hyperplanes ΣR

1,2 : {η = η1,2}, i.e.

R = R+ × [η1, η2]. In order to repeat the construct of the quantum theory implemented in Minkowski spacetime, we
start by expanding the field in a complete set of solutions of the equation of motion,

φR(ρ, η) =

ˆ ∞

0

dp
(

φR(p)φRp (ρ, η) + c.c.
)

, (23)

where the Fulling modes [33] φRp read

φRp (ρ, η) =
(sinh(pπ))1/2

π
Kip(mρ)e

−ipη, p > 0, (24)

Kip is the modified Bessel function of the second kind, also known as Macdonald function [34]. The modes (24) are
normalized as

ωΣR
i
(φRp , φ

R
p′) = δ(p− p′), ωΣR

i
(φRp , φ

R
p′) = ωΣi

(φRp , φ
R
p′) = 0. (25)

The Hilbert space associated with the hypersurface ΣR
i (i = 1, 2) is characterized by the following vacuum state in

the Schrödinger representation, expressed in terms of the boundary field configuration ϕi,

KS
0,ΣR

i
(ϕi) = N exp

(

−1

2

ˆ

dρ

ρ
ϕi(ρ)(ωϕi)(ρ)

)

(i = 1, 2), (26)

where ω now denotes the operator ω =
√

(ρ∂ρ)2 −m2 and N is a normalization factor. This vacuum state is in
correspondence with the following complex structure, defined by the derivative with respect to the Rindler time

13 In fact, the standard plane wave basis and the basis of the boost modes are related by a unitary transformation.
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coordinate η,

JΣR
i
=

∂η
√

−∂2η
, (27)

and the Fulling modes (24) are eigenfunctions of this complex structure: JΣR
i
φRp = −iφRp . The algebraic structures

defined on the hypersurface ΣR
i , considered for two solutions φR, ψR ∈ LΣR

i
result to be

ωΣR
i
(φR, ψR) =

i

2

ˆ ∞

0

dp
(

φR(p)ψR(p)− φR(p)ψR(p)
)

, (28)

gΣR
i
(φR, ψR) =

ˆ ∞

0

dp
(

φR(p)ψR(p) + φR(p)ψR(p)
)

, (29)

{

φR, ψR
}

ΣR
i

= gΣR
i
(φR, ψR) + 2iωΣR

i
(φR, ψR) = 2

ˆ ∞

0

dp φR(p)ψR(p). (30)

It is important to notice that in order for the quantum theory to be well defined the following condition must be
imposed on the field in Rindler space: φR(ρ = 0, η) = 0. Indeed the complex structure (27) is well defined except in
the origin of Minkowski spacetime as can be seen by expressing (27) in terms of the Cartesian coordinates (x, t),

JΣR
i
=

x∂t + t∂x
√

−(x∂t + t∂x)2
. (31)

The relevance of such a condition in the derivation of the Unruh effect has been emphasized, and discussed both in
the canonical and algebraic approach to quantum field theory, by Belinskii et al. in [23–26, 35]. This condition plays
indeed a fundamental role in the attempt to compare the quantum theories in Minkowski and Rindler spacetimes, as
will be discussed in the next section.

IV. COMPARISON OF MINKOWSKI AND RINDLER QUANTIZATION - THERE IS NO GLOBAL

UNRUH EFFECT

The Unruh effect can be expressed as the statement that an uniformly accelerated observer perceives the Minkowski
vacuum state as a mixed thermal state at a temperature proportional to its acceleration. Such a claim relies on a
comparison between the quantization of the field considered in Minkowski and in Rindler spacetimes; Rindler space
being the spacetime naturally associated with an accelerated observer. The quantization scheme proposed by Unruh
to implement such a comparison rests on the properties of particular linear combinations of the boost modes, known
as the Unruh modes:

Rp(x, t) =
1

√

2 sinh(pπ)

(

epπ/2 ψp(x, t)− e−pπ/2 ψ−p(x, t)
)

, (32)

Lp(x, t) =
1

√

2 sinh(pπ)

(

epπ/2 ψ−p(x, t)− e−pπ/2 ψp(x, t)
)

, (33)

with p > 0, whose normalization is determined by the one of the boost modes (17). The key property of the
Unruh modes is their behavior when evaluated in the right and left wedge of Minkowski spacetime14: the modes
Rp(x, t) (respectively Lp(x, t)) vanish for (x, t) ∈ L (respectively (x, t) ∈ R) and moreover Rp(x, t) coincide with the
Fulling modes (24) in R. Equations (32) and (33) are then interpreted as Bogolubov transformations connecting
the expansion of the field in the basis of the boost modes and the one in the Unruh modes. The existence of such
a Bogolubov transformation allows to relate the corresponding annihilation and creation operators defined within
the canonical approach for the two quantization schemes and consequently the quantum states defined between the
quantum theories. By inverting relations (32) and (33) and substituting in the expansion of the field in the basis of
the boost modes provides an expression of the field in terms of the Unruh modes. Then, the restriction of the field to
the right Rindler wedge allows a direct comparison, via the Bogolubov transformation, to the expansion of the field
in Rindler spacetime in the basis of the Fulling modes.

14 The left wedge of Minkowski spacetime is the reflection of the right wedge with respect to the origin, namely L : {x ∈ M : x2 ≤ 0, x < 0}.
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In particular, the expectation value of the canonical operator corresponding to the Rindler particle number operator,
evaluated on the Minkowski vacuum state, is shown to be that of a thermal bath of Rindler particles. In their review
[17] Crispino et al. provide the following definition (end of Section II.B): «The Unruh effect is defined in this review
as the fact that the usual vacuum state for QFT in Minkowski spacetime restricted to the right Rindler wedge is a
thermal state [...]». In the following we will refer to this result as global Unruh effect, because it relies on the properties
of particle states and number particle operator which have a global nature15.

However the derivation of the global Unruh effect has been criticized [35] in virtue of the existence of the boundary
condition mentioned at the end of the preceding section. We will not repeat here the arguments presented in the cited
papers but limit ourself to a few considerations. First, we notice that the correct expansion of the field in Minkowski
spacetime in terms of the Unruh modes reads

φ(x, t) = lim
ǫ→0

ˆ ∞

ǫ

dp (r(p)Rp(x, t) + l(p)Lp(x, t) + c.c.) + lim
ǫ→0

ˆ ǫ

−ǫ

dp (φ(p)ψp(x, t) + c.c.) , (34)

which does not coincide with the expansion of the field in the basis of the Fulling modes for the world points located
inside the right Rindler wedge, i.e. for (x, t) ∈ R. The difference is due to presence of the last term in the r.h.s. of
(34): for (x, t) 6= (0, 0) the integral vanishes in the limit ǫ → 0 because the boost modes take finite values16, but for
(x, t) = (0, 0) the contribution of this term cannot be neglected since the boost modes reduce to a delta function, as

can be seen from expression (16), i.e. ψp(0, 0) = δ(p)/
√
2. The importance of this term is evident when considering

the algebraic structures needed for the implementation of the GBF. For simplicity and without loss of generality, we
consider the hyperplane Σ0 at t = 0 and the structures (20), (21) and (22) defined on it. When restricting Σ0 to the
right wedge R, by using (34) we obtain (we denote such restriction with the superscript (R))

ω
(R)
Σ0

(φ, φ′) = ωΣR
0

(φR, φR
′
) + lim

ǫ→0
i

ˆ ǫ

0

dp
cosh(pπ)

sinh(pπ)

[

φ(p)φ(p)′ − φ(p)φ′(p)
]

, (35)

where ΣR
0 is the semi-hyperplane η = 0 (η being the Rindler time) corresponding to the intersection Σ0∩R. Analogue

expressions are obtained for the restriction of (21) and (22). From (35) we notice that the restriction to R of the
symplectic structure defined in Minkowski spacetime coincides with the symplectic structure in Rindler spacetime
only if the second term in (35) vanishes, and for that we must impose φ(p) = 0 for p = 0. However, requiring such
a condition implies imposing the vanishing of the field at the left edge of the right wedge, namely at the origin of
Minkowski spacetime. While this is a built-in boundary condition the field in Rindler has to satisfy17, there is no
reason to require the same condition for the field in Minkowski. Indeed imposing such condition translates in the
exclusion of the zero boost mode from the set of modes on which the field is expanded, namely in the suppression
of the second term in (34). But the remaining expression will then represent the expansion of a different field in
Minkowski spacetime, namely a field that satisfies a zero boundary condition at (x, t) = (0, 0). The appearance of
this condition is a consequence of the fact that the basis of the boost modes is not anymore complete without the zero
boost mode. The consequence of this fact at the quantum level manifests in the loss of the translational invariance of
the Minkowski vacuum state, see [35] for a detailed discussion on this point.

The claim that the Minkowski vacuum state can be written as an entangled state composed by multiparticle states
defined in the left and right wedges is consequently not acceptable. For example Unruh and Wald [18] provide the
following equality

|0M 〉 =
∏

j

Nj

∞
∑

nj=0

e−πnjωj/a|nj ,L〉 ⊗ |nj ,R〉, (36)

where |0M 〉 is the vacuum state in Minkowski space, Nj = (1 − exp(−2πωj/a))
1/2, and |nj ,L〉, |nj ,R〉 represent the

state with nj particles in the mode j in the left, right wedge L and R respectively. From (36) it is then possible to

15 In the canonical approach particle states are determined by the action of the creation and annihilation operators whose definition
involves the values that the field takes over a (non compact) Cauchy surface. In the GBF treatment, particle states are elements of the
Hilbert space associated with the hypersurface under consideration and the construction of such a Hilbert space depends on the field
configurations on this hypersurface, i.e. it depends on the global properties of the elements of the space LΣ.

16 We are here assuming that |φ(p)| < ∞ in the limit p→ 0.
17 This is usual decay condition at infinity for the field in Rindler spacetime since the origin of Minkowski spacetime corresponds to spatial

infinity from the point of view of a uniformly accelerated observer.
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obtain a reduced density matrix by tracing over the degrees of freedom in the left wedge,

̺(R) =
∏

j

N2
j

∞
∑

nj=0

e−2πnjωj/a|nj ,R〉 ⊗ 〈nj ,R|. (37)

This reduced density matrix is interpreted as representing the restriction of the Minkowski vacuum to the region R.
As already mentioned, the left and right hand side of formulas (36) and (37) refer to states that belong to unitarily
inequivalent quantum theories and are consequently not mathematically well-defined.

However, inspired by some results derived within the algebraic approach to quantum field theory18, in the next
section we present a result, obtained within the GBF, that suggests the existence of a relation between the Minkowski
vacuum state and a particular mixed state of the quantum theory in Rindler spacetime (a relation that can be
considered as the main insight of the Unruh effect). To be more precise, we compute the expectation value of a Weyl
observable defined on a compact spacetime region in the interior of the right Rindler wedge in two different contexts:
first on the vacuum state in Minkowski spacetime and then on a mixed state in Rindler space, whose form represents
the analogue of the r.h.s of (37) in the GBF language. It turns out that these two expectation values are equal when
the observables are quantized according to the Feynman quantization prescription and we refer to that equality as
the local Unruh effect.

V. THE RELATION BETWEEN OPERATOR AMPLITUDES ON MINKOWSKI AND RINDLER

SPACE - LOCAL UNRUH EFFECT

In this section, we make explicit what we mean with the expression local Unruh effect. This notion indicates
the coincidence of the expectation values of local observables computed in Minkowski and Rindler spacetimes. The
observables we consider have been called Weyl observables in [28] and are given by exponential of linear functional of
the field,

F (φ) = exp

(

i

ˆ

d2xµ(x)φ(x)

)

, (38)

in our case µ(x) is assumed to have compact support in the interior of the right wedge R and (38) is consequently a
well defined observable in both Minkowski and Rindler spacetime. The interest for looking at the Weyl observables
is twofold: first, consistent quantization schemes have been established within the GBF, and second, general results
concerning expectation values of these observables have been obtained in [28]. Here we consider the Feynman and
Berezin-Toeplitz quantizations of (38) and compute for the corresponding quantum observables two different expec-
tation values: one on the vacuum state in Minkowski spacetime and the other on a particular mixed state in Rindler
spacetime.

In the GBF, as in algebraic quantum field theory, quantum observables OM are associated with a spacetime region
M . They are defined by a linear map, called observable map or observable amplitude, from (a dense subspace of)
the Hilbert space associated with the boundary of the region to the complex numbers, OM : HΣ → C, Σ being
the boundary of the region M . A set of axioms establishes the properties of this map, in particular the spacetime
composition of observables. The specific form of the observable map depends on the quantization scheme adopted.
In the following two sections the Feynman and Berezin-Toeplitz quantization schemes combined with the Schrödinger
and holomorphic representations are used for the Weyl observable in the settings specified above.

In the Feynman quantization prescription the observable map associated with an observable OM evaluated on a
state ψS ∈ HS

Σ in the Schrödinger representation takes the form

ρOM

M (ψS) =

ˆ

LM

DφψS(qΣ(φ))OM (φ)eiS(φ). (39)

For the Berezin-Toeplitz quantization scheme we have, for a state ψh ∈ Hh
Σ in the holomorphic representation,

ρ◭OM◮

M (ψh) =

ˆ

LM̃

ψh(ξ)OM (ξ)dνM̃ (ξ), (40)

18 We refer in particular to Fell’s theorem [36] and the work of Verch [37].
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where ξ ∈ LΣ and LM̃ is the space of solutions of the equation of motion, defined in a neighborhood of the boundary
hypersurface Σ that admit a well defined extension in the interior of the region M . dνM̃ (ξ) is a suitable measure on
LM̃ and we refer to [3, 27, 28] for details concerning the definition of such structures. In [28] Oeckl was able to quantify
the difference between the observable maps computed in the Feynman quantization scheme and the one computed in
the Berezin-Toeplitz quantization scheme. The result is presented in two propositions, in particular Proposition 4.3
and Proposition 4.7 of the cited paper, where the amplitude of a Weyl observable is derived for the two quantization
prescriptions. We reproduce in the following formulas the statements of these propositions: For a coherent state Kτ

we have

ρFM (Kτ ) = ρM (Kτ )F (τ̂ ) exp

(

i

2

ˆ

d2xµ(x)ηD(x)− 1

2
gΣ(ηD, ηD)

)

, (41)

from the Feynman quantization (where τ̂ is a complex solution of the equation of motion determined by the coherent
state Kτ and ηD ∈ JΣLM̃ , Σ being the boundary of the region M) and

ρ◭F◮

M (Kτ ) = ρM (Kτ )F (τ̂ ) exp (−gΣ(ηD, ηD)) , (42)

from the Berezin-Toeplitz quantization.

A. Expectation values in the Schrödinger representation

1. Observable maps from Feynman quantization

Consider the spacetime region M defined in Sec. III A in Minkowski spacetime. We start by computing the
observable amplitude ρFM : HΣ1

⊗ HΣ2
→ C for the Weyl observable (38) on the quantum state, in the Schrödinger

representation, given by the tensor product of two copies of the vacuum state (18), namely KS
0,Σ1

⊗KS
0,Σ2

. Using the

expression in equation (41) we arrive at

ρFM (KS
0,Σ1

⊗KS
0,Σ2

) = exp

(

i

2

ˆ

d2xd2x′ µ(x)GM
F (x, x′)µ(x′)

)

. (43)

where GM
F is the Feynman propagator in Minkowski spacetime, which is evaluated only in the interior of the right

Rindler wedge since the field µ(x) has support there. The explicit form of the Feynman propagator can be obtained
in terms of the expression of the boost modes (16) in the right Rindler wedge, namely [38]

ψk(x, t)
∣

∣

(x,t)∈
◦

R
=

1

π
√
2
exp

(

πk

2
− i

k

2
ln

(

x+ t

x− t

))

Kik(m
√

x2 − t2), (44)

where
◦

R denotes the interior of the right Rindler wedge. Then the Feynman propagator reads

GM
F (x, x′)

∣

∣

x,x′∈
◦

R
= i

ˆ ∞

0

dk

π2

{

cosh(πk) cos

(

k

2

(

ln

(

x+ t

x− t

)

− ln

(

x′ + t′

x′ − t′

)))

− iθ(t′ − t) sinh(πk) sin

(

k

2

(

ln

(

x′ + t′

x′ − t′

)

− ln

(

x+ t

x− t

)))

−iθ(t′ − t) sinh(πk) sin

(

k

2

(

ln

(

x+ t

x− t

)

− ln

(

x′ + t′

x′ − t′

)))}

Kik(m
√

x2 − t2)Kik(m
√

x′2 − t′2).

(45)

Now, consider the region R defined in Sec. III B in Rindler spacetime. The evaluation of the observable map is now
performed on the mixed state D ∈ HΣR

1

⊗H
Σ

R

2

given by expression

D =
∏

i

N2
i

∞
∑

ni=0

e−2πniki/a

(ni)!(2ki)ni
ψni

⊗ ψni
, (46)
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where ψni
is the state with ni particles defined in HΣR

i
, (i = 1, 2),19 and Ni = (1 − exp(−2πki/a))

1/2. This state

corresponds to the reduced density matrix (37) in the GBF framework. From now on we set a = 1. Since, for the
observable map evaluated on coherent states we can use the general result in equation (41)20 it is convenient to express
the mixed state (46) in terms of coherent states21 ; the observable map in the region R for the state D then reads

ρFR(D) =
∏

i

N2
i

∞
∑

ni=0

e−2πniki

(ni)!(2ki)ni
N−2

ˆ

dξ1 dξ1 dξ2 dξ2 ρ
F
R(K

S
ξ1 ⊗KS

ξ2
)

exp

(

−1

2

ˆ

dk

2k
|ξ1(k)|2

)

(ξ1(ki))
ni exp

(

−1

2

ˆ

dk

2k
|ξ2(k)|2

)

(ξ2(ki))
ni , (47)

where the terms in the second line come from the scalar product of the ni-particle states appearing in (46) and the

coherent states KS
ξ1

and KS
ξ2

respectively, see Sec. II.B of [10]. The observable map ρFR(K
S
ξ1

⊗KS
ξ2
) has been shown

to satisfy a factorization property, see Proposition 4.3 of [28], which corresponds to the amplitude map of the theory
with a source field interaction [39],

ρFR(K
S
ξ1 ⊗KS

ξ2
) = ρR(K

S
ξ1 ⊗KS

ξ2
) exp

(
ˆ

d2x ξ̂(x)µ(x)

)

exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

, (48)

where we are now using x as global notation for the Rindler coordinates (η, ρ). The first term in the r.h.s. of (48) is

the free amplitude map (6) for the state KS
ξ1

⊗KS
ξ2

,

ρR(K
S
ξ1 ⊗KS

ξ2
) = exp

(
ˆ ∞

0

dk

2k

(

ξ1(2)ξ2(k)−
1

2
|ξ1(k)|2 −

1

2
|ξ2(k)|2

))

. (49)

ξ̂(x) is a complex solution of the equation of motion determined by the two coherent states KS
ξ1

and KS
ξ2

,

ξ̂(x) = i

ˆ ∞

0

dk
(

φRk (x) ξ1(k) + φRk (x) ξ2(k)
)

, (50)

where φRk (ρ, η) are the Fulling modes (24). Finally, GR
F (x, x′) appearing in the last term of (48) is the Feynman

propagator in Rindler spacetime and in the region R it reads22

GR
F (ρ, η, ρ′, η′) = i

ˆ ∞

0

dk

π2

(

θ(η′ − η)e−ik(η′−η) + θ(η − η′)e−ik(η−η′)
)

Kik(mρ)Kik(mρ
′) sinh(πk). (51)

We now have at our disposal all the ingredients to compute the integrals in (47). It is convenient to proceed by
expressing the powers of the modes ξ1,2(ki) in (47) in terms of functional derivatives,

(ξ1(ki))
ni (ξ2(ki))

ni = (2ki)
2ni

δni

δα(ki)ni

δni

δβ(ki)ni
exp

(
ˆ

dk

2k

(

β(k)ξ1(k) + α(k)ξ2(k)
)

)
∣

∣

∣

∣

α=β=0

. (52)

19 Notice that the factor (2ki)ni appearing in the denominator of (46) comes from the normalization of the ni-particle state,

ˆ

Dϕψk1,...,kn
(ϕ)ψk′

1
,...,k′

n
(ϕ) =

1

n!

∑

σ∈Sn

n
∏

i=1

ki δ(ki − k′σ(i)),

where the sum runs over all permutations σ of n elements.
20 See also [39] for the expression of amplitude maps in terms of modes expansion.
21 An important property satisfied by coherent states is the completeness relation expressed by the resolution of the identity operator id

which, in a bra ket notation, takes the form

N−1
ˆ

dξ dξ |KS
ξ 〉〈KS

ξ | = id, with N =

ˆ

dξ dξ exp

(

−

ˆ

dk

2k
|ξ(k)|2

)

.

22 The general expression of the Feynman propagator for fields in (a wide class of) curved spacetimes has been obtained in [39], to which
we refer also for details concerning the calculation presented here.
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Substituting this in (47), the integrals are evaluated by the following shift of integration variables:

ξ1 → ξ1 + β + µ1, ξ1 → ξ1 + α, (53)

ξ2 → ξ2 + α, ξ2 → ξ2 + ξ1 + µ2, (54)

where µ1(k) = i
´

dx2 2k φRk (x)µ(x) and µ2(k) = i
´

dx2 2kφRk (x)µ(x). We arrive at

ρFR(D) =
∏

i

N2
i

∞
∑

ni=0

e−2πniki

(ni)!
(2ki)

ni
δni

δα(ki)ni

δni

δβ(ki)ni
exp

(
ˆ

dk

2k
(β(k)µ1(k) + α(k)µ2(k) + α(k)β(k))

) ∣

∣

∣

∣

α=β=0

× exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

,

=
∏

i

N2
i

∞
∑

ni=0

e−2πniki

(ni)!

δni

δα(ki)ni
(α(ki) + µ1(ki))

ni exp

(
ˆ

dk

2k
α(k)µ2(k)

)
∣

∣

∣

∣

α=0

× exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

, (55)

To compute the derivative with respect to α we use Rodrighues’ formula, see 8.970.1 of [34], and obtain

ρFR(D) =
∏

i

N2
i

∞
∑

ni=0

e−2πnikiLni

(

−µ1(ki)µ2(ki)

2ki

)

exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

, (56)

where Lni
is the Laguerre polynomial of order ni. According to formula 8.975.1 of [34], the sum over ni gives

ρFR(D) =
∏

i

exp

(

µ1(ki)µ2(ki)

2ki

e−πki

2 sinh(πki)

)

exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

. (57)

Finally, the substitution of the expression of the quantities µ1(ki) and µ2(ki) leads to

ρFR(D) = exp

(

i

2

ˆ

d2xd2x′ µ(x)

[

i

ˆ

dk φRk (x)φ
R
k (x

′)
e−πk

sinh(πk)
+GR

F (x, x′)

]

µ(x′)

)

. (58)

Noticing that only the symmetric component of the first term in the square bracket contributes to the integral and
using (24) and (51), a straightforward calculation shows that the sum in the square bracket coincides with the Feynman
propagator in Minkowski spacetime evaluated in the right Rindler wedge (45); and so do the observable maps (43)
and (58). This coincidence of the observable maps computed in Minkowski spacetime on the vacuum state and in
Rindler spacetime on the mixed state (46) for the same local observable supports the notion of the local Unruh effect.
In the next section we present the same calculation performed according to the Berezin-Toeplitz quantization (40) of
the Weyl observable.

2. Observable maps from Berezin-Toeplitz quantization

By examining the expressions (41) and (42) one can see that the difference between the observable maps of a
Weyl observable in the two quantization schemes amounts to the last terms. Moreover it can be shown that the last
exponential in (41) corresponds to the last one in (48), and consequently we have that

− gΣ(ηD, ηD) = −
ˆ

d2xd2x′ µ(x)ℑ(GF (x, x
′))µ(x′). (59)

Hence, in Minkowski spacetime the observable map (42) on the vacuum state evaluated in the Berezin-Toeplitz
quantization scheme in the spacetime region M , is given by

ρ◭F◮

M (ψ0 ⊗ ψ0) = exp

(

−
ˆ

d2xd2x′ µ(x)ℑ(GM
F (x, x′))µ(x′)

)

. (60)
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In Rindler spacetime the observable map (42), in the same quantization scheme in the spacetime region R, takes the
form

ρ◭F◮

R (D) = exp

(

−
ˆ

d2xd2x′ µ(x)

[

1

2

ˆ

dk φRk (x)φ
R
k (x

′)
e−πk

sinh(πk)
+ ℑ

(

GR
F (x, x

′)
)

]

µ(x′)

)

. (61)

As in (58) only the symmetric part of the terms in the square bracket contribute to the integral and the situation is
similar to the one in the preceding section apart from the factor 1/2 appearing in (61). It is precisely this factor that
prevents the coincidence of (60) and (61). We conclude that the Berezin-Toeplitz prescription for the quantization of
observables gives no ground for the local Unruh effect.

B. Expectation values in the holomorphic representation

In this section we present the computation of the observable maps (41) and (42) for quantum states in the holo-
morphic representation23. First we notice that in Minkowski spacetime (41) for the vacuum state reduces to the same
result obtained in Sec. VA1, namely expression (43); this is a consequence of the equivalence between the Schrödin-
ger and holomorphic quantizations shown in [30]. We now consider the same observable map in Rindler spacetime
on the mixed thermal state in the holomorphic representation corresponding to the state (46) in the Schrödinger
representation. For later convenience we write this state in terms of derivatives of coherent states,

Dh =
∏

k

N2
k

∞
∑

n=0

e−2πnk 2
n

n!

δn

δξ1(k)n
δn

δξ2(k)n
Kh

ξ1 ⊗Kh
ξ2

∣

∣

∣

∣

∣

ξ1=ξ2=0

(62)

where Kh
ξ1

∈ Hh
Σ1

and Kh
ξ2

∈ Hh
Σ2

are the coherent states in the holomorphic representation defined by ξi ∈ LΣR
i

(i = 1, 2). ConsequentlyDh is a mixed state in Hh
Σ1

⊗Hh
Σ2

. The corresponding observable map for the Weyl observable

(38) reads

ρFR(D
h) =

∏

k

N2
k

∞
∑

n=0

e−2πnk 2
n

n!

δn

δξ1(k)n
δn

δξ2(k)n
ρFR(K

h
ξ1 ⊗Kh

ξ2
)

∣

∣

∣

∣

∣

ξ1=ξ2=0

. (63)

We now specify the three terms appearing in the expression (41) for the observable map ρFR(K
h
ξ1

⊗Kh
ξ2
):

• the free amplitude ρR(K
h
ξ1

⊗Kh
ξ2
) can be computed using (13), where in the present context ξR = ξ1 + ξ2 and

ξI = ξ1 − ξ2, leading to

ρR(K
h
ξ1 ⊗Kh

ξ2
) = exp

(

1

2

ˆ ∞

0

dk ξ1(k)ξ2(k)

)

, (64)

• the Weyl observable evaluated on the complex solution ξ̂ given in this case by24

ξ̂(x) = ξR(x) − iξI(x) =
1√
2

ˆ ∞

0

dk
(

φRk (x)ξ1(k) + φRk (x)ξ2(k)
)

, (65)

• the last term in the r.h.s of (41) coincides with the last term in the r.h.s. of (48).

23 In [30] a one-to-one relation was established between the Schrödinger and the holomorphic representation in terms of an isomorphism
between the corresponding Hilbert spaces. Thus, by using this result it will be possible to obtain the amplitude and observable maps
in the holomorphic representation starting from those obtained in the Schrödinger representation. We shall elaborate on this elsewhere
and follow here a different strategy: We start with the mixed state (62) and compute the observable map of the Weyl observable with
the prescription suited for the holomorphic representation.

24 As in the previous section x is used as global notation for the Rindler coordinates (ρ, η).
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The observable map (63) can then be written as

ρFR(D
h) =

∏

k

N2
k

∞
∑

n=0

e−2πnk 2
n

n!

δn

δξ1(k)n
δn

δξ2(k)n

× exp

(

1

2
ξ1(k)ξ2(k) +

i√
2

ˆ

d2xµ(x)
(

φRk (x)ξ1(k) + φRk (x)ξ2(k)
)

)∣

∣

∣

∣

ξ1=ξ2=0

× exp

(

i

2

ˆ

d2xd2x′ µ(x)GR
F (x, x′)µ(x′)

)

. (66)

We proceed by evaluating the first line in the r.h.s. of (66) by applying the general Leibniz rule

dn

dγn
f(γ)g(γ) =

n
∑

k=0

(

n

k

)

dn−k

dγn−k
f(γ)

dk

dγk
g(γ), (67)

and using the relation

∞
∑

k=0

(k + s)!

k!s!
e−2πkp =

1

(1− e−2πp)s+1
, (68)

which we proof in the appendix. We obtain

N2
k

∞
∑

n=0

e−2πnk 2
n

n!

δn

δξ1(k)n
δn

δξ2(k)n
exp

(

1

2
ξ1(k)ξ2(k)

)

exp

(

i√
2

ˆ

d2xµ(x)
(

φRk (x)ξ1(k) + φRk (x)ξ2(k)
)

)

∣

∣

∣

∣

∣

ξ1=ξ2=0

= N2
k

∞
∑

n=0

e−2πnk

(

−
ˆ

d2xd2x′ µ(x)µ(x′)φRk (x)φ
R
k (x

′)

)n
1

n!

∞
∑

j=0

(j + n)!

j!n!
e−2πkj

= exp

(

− e−πk

2 sinh(πk)

ˆ

d2xd2x′ µ(x)µ(x′)φRk (x)φ
R
k (x

′)

)

. (69)

Hence, substituting in (66) we obtain after some rearrangements

ρFR(D
h) = exp

(

i

2

ˆ

d2xd2x′ µ(x)

[

i

ˆ

dk φRk (x)φ
R
k (x

′)
e−πk

sinh(πk)
+GR

F (x, x′)

]

µ(x′)

)

, (70)

which coincides with expression (58). Consequently, (70) equals the observable map computed in Minkowski spacetime
on the vacuum state, and we recover the local Unruh effect for quantum states in the holomorphic representation.

As already noticed the difference between the Berezin-Toeplitz quantization and the Feynman one amounts to the
last terms in (41) and (42). These terms are independent of the representation chosen for the quantum states, and so
we are reduced to the same situation as in Sec. (VA2): no local Unruh effect appears adopting the Berezin-Toeplitz
prescription for quantizing local observables.

VI. CONCLUSIONS AND OUTLOOK

We have applied the general boundary formulation of quantum field theory to quantize a massive scalar field in
Minkowski and Rindler spacetimes. By comparing the two quantum theories we were able to study the Unruh effect
from a GBF perspective. Our results are the following: (1) we recover the same difficulty to establish a direct
relation between quantum states in Minkowski spacetime restricted to the right Rindler wedge and Rindler spacetime
first obtained in [23]; indeed, the two quantum theories turn out to be unitary inequivalent because of the different
boundary conditions the field has to satisfy; (2) nevertheless, we show that the expectation value of Weyl observables
with compact spacetime support in the interior of the right Rindler wedge, computed in the Minkowski vacuum state
coincides with the one calculated in a appropriately chosen mixed state in Rindler, if the observables are quantized
according to the Feynman path integral prescription. Furthermore, we showed that this does not hold in the Berezin-
Toeplitz quantization. Thus, for the Schrödinger-Feynman quantization scheme, these results suggest to distinguish
between two notions of the Unruh effect indicated here with the adjectives global and local. The global Unruh effect
can be summarized by equation (36) which turns out to be unacceptable because of the inequivalence of the theories
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mentioned above. In contrast, the local Unruh effect is concerned with expectation values of local observables for
both theories.

The derivation of the local Unruh effect is of immediate relevance for the GBF program. It represents a concrete
application of the quantization of observables and the opportunity to compare the Feynman and Berezin-Toeplitz
schemes in a specific context. Moreover the computation of observable maps involved the use of mixed states for the
first time within the GBF.

It should be noted that the spacetime regions considered for the evaluation of the observable maps are the standard
ones bounded by two equal (Minkowski and Rindler) time hyperplanes. Of course the versatility of GBF enables to
quantize the field and to compute expectation values in more general regions. Although the main focus is represented
by compact spacetime regions, inspired by previous results obtained applying the GBF in Minkowski and curved
spacetime, an interesting region is represented by the one bounded by one connected and timelike boundary. In
particular, it is possible to apply the GBF for a field defined in a region of Rindler spacetime bounded by one
hyperbola of constant Rindler spatial coordinate ρ. The origin of Minkowski spacetime lies outside this region and the
comparison of the quantum field theory defined there and the one in Minkowski will then avoid the difficulty inherent
with the behavior of the field in (x, t) = (x, 0).

Furthermore, the analysis of the properties of the Minkowski and Rindler quantum theories can be the basis for
solving an open question within the GBF. The hyperplane t = 0 in Minkowski spacetime is the union of the two
semi-hyperplanes ηR = 0 and ηL = 0 in the right and left Rindler wedge respectively. However the Hilbert space
associated to the hypersurface t = 0 is not the tensor product of the Hilbert spaces associated with ηR = 0 and
ηL = 0, due to the additional boundary condition at the origin. In order to compare the different Hilbert spaces one
possibility would be to consider hypersurfaces with boundaries: in the present context the hyperplane t = 0 for x ≥ 0
(x ≤ 0), namely with a boundary in the origin of Minkowski spacetime. However it is still not clear within the GBF
which algebraic structure should be associated with an hypersurface with boundaries [40]. The solution of such a
question is of paramount importance from the perspective of what we call here the global Unruh effect, as well as for
more general contexts.

VII. APPENDIX

Here we prove the identity

∞
∑

k=0

(k + n)!

k!n!
e−2πkp/a =

1

(1 − e−2πp/a)n+1
, (71)

We start by remarking that with

f(n) :=

∞
∑

k=0

(k + n)!

k!n!
e−2πkp/a (72)

we have

f(n+ 1) =

(

1− 1

n+ 1

a

2π

d

dp

)

f(n) . (73)

For s = 0 we find

f(0) =
1

1− e−2πp/a
. (74)

So we start the induction step with the ansatz

f(n) =
1

(1 − e−2πp/a)n+1
(75)

and find

f(n+ 1) =

(

1− 1

n+ 1

a

2π

d

dp

)

1

(1 − e−2πp/a)n+1
=

1

(1− e−2πp/a)n+1
+

e−2πp/a

(1− e−2πp/a)n+2
=

1

(1 − e−2πp/a)n+2
(76)

which proves that the ansatz was correct. 2
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