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We investigate the effects of light cone caustics on the propagation of linear scalar fields in generic

four-dimensional spacetimes. In particular, we analyze the singular structure of relevant Green functions.

As expected from general theorems, Green functions associated with wave equations are globally singular

along a large class of null geodesics. Despite this, the ‘‘nature’’ of the singularity on a given geodesic does

not necessarily remain fixed. It can change character on encountering caustics of the light cone. These

changes are studied by first deriving global Green functions for scalar fields propagating on smooth plane

wave spacetimes. We then use Penrose limits to argue that there is a sense in which the ‘‘leading order

singular behavior’’ of a (typically unknown) Green function associated with a generic spacetime can

always be understood using a (known) Green function associated with an appropriate plane wave

spacetime. This correspondence is used to derive a simple rule describing how Green functions change

their singular structure near some reference null geodesic. Such changes depend only on the multiplicities

of the conjugate points encountered along the reference geodesic. Using �ðp; p0Þ to denote a suitable

generalization of Synge’s world function, conjugate points with multiplicity 1 convert Green function

singularities involving �ð�Þ into singularities involving �1=�� (and vice versa). Conjugate points with

multiplicity 2 may be viewed as having the effect of two successive passes through conjugate points with

multiplicity 1. Separately, we provide an extensive review of plane wave geometry that may be of

independent interest. Explicit forms for bitensors such as Synge’s function, the van Vleck determinant,

and the parallel and Jacobi propagators are derived almost everywhere for all nonsingular four-

dimensional plane waves. The asymptotic behaviors of various objects near caustics are also discussed.
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I. INTRODUCTION

Disturbances in physical fields generically propagate
throughout the causal future of that initial disturbance.
The character of this propagation is well understood for
points that are sufficiently close to said disturbance. More
specifically, there exist fairly straightforward procedures to
construct Green functions1 for linear (or linearized) wave
equations in regions which are sufficiently small that,
roughly speaking, characteristic rays starting at one point
do not cross each other at any other point. What occurs
outside of these regions—where characteristics intersect
(or ‘‘almost intersect’’) each other—is considerably more
complicated.

To be specific, consider linear hyperbolic equations
whose principal part is the d’Alembertian associated with
a spacetime metric gab. Suppressing possible indices on
the field � and source �, let

L� ¼ ðgabrarb þ � � �Þ� ¼ �4��; (1.1)

where ra is the natural derivative operator associated with
gab. The omitted part of L in this equation may be any first-
order linear differential operator. Equations satisfied by
Klein-Gordon fields, electromagnetic vector potentials,
and linearized perturbations of Einstein’s equation all fall
into this class (for certain gauge choices).
Considerable insight into (1.1) may be obtained by

constructing an associated Green function. If the points p
and p0 are sufficiently close, the retarded Green function is
known to have the form2 [2,3] (again suppressing indices)

Gretðp; p0Þ ¼ �ðp � p0Þ
� ½Uðp; p0Þ�ð�ðp; p0ÞÞ
þV ðp; p0Þ�ð��ðp; p0ÞÞ� (1.2)

in four spacetime dimensions. Here, �ðp � p0Þ is defined
to equal unity if p is in the causal future of p0, and zero
otherwise.� and � are the one-dimensional Heaviside and
Dirac distributions, respectively. �ðp; p0Þ ¼ �ðp0; pÞ de-
notes Synge’s world function, a two-point scalar equal
to one-half of the squared geodesic distance between its

*harte@aei.mpg.de
†tdrivas2@jhu.edu
1The term ‘‘Green function’’ as used here coincides with the

standard definition of a fundamental solution. For the model
equation (1.1), a Green function is any solution to LGðp; p0Þ ¼
�4�I�ðp; p0Þ, where I denotes an appropriate identity operator
(needed for nonscalar fields) and �ðp; p0Þ the Dirac distribution.
By contrast, some authors define Green functions somewhat
more restrictively. See, e.g., [1].

2Distributions like �ðp � p0Þ�ð�Þ appearing here are not
a priori, well defined. They are to be interpreted as, e.g.,
lim�!0þ�ðp � p0Þ�ð�þ �Þ. See Sec. 4.1 of [2].
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arguments [2–4]. The bitensorsUðp; p0Þ andV ðp; p0Þ are
more complicated to define, although explicit procedures
to compute them are known [2,3].

The interpretation of (1.2) is very simple. It implies that
disturbances at a point p0 are initially propagated
‘‘sharply’’ along future-directed null geodesics [where
�ð�; p0Þ ¼ 0] with an influence proportional to Uð�; p0Þ.
At least for fields where the differential operator L has no
first-order component, Uð�; p0Þ is closely related to the
expansion of the congruence of geodesics emanating
from p0. As might have been expected, the importance of
the �ð�Þ term in the retarded Green function is related to
the focusing of null geodesics in the sense expected from
geometric optics. Apart from this, the second line of (1.2)
indicates that there may also be contributions to field
disturbances—known as a ‘‘tail’’—that propagate along
all future-directed timelike geodesics emanating from p0
[where �ð�; p0Þ< 0].

This description of wave propagation cannot usually be
applied throughout an entire spacetime. The Hadamard
form (1.2) for the retarded Green function is guaranteed
to be valid only in convex geodesic domains [2]. Indeed,
the standard definition of � breaks down when, e.g., pairs
of points can be connected by more than one geodesic (or
by none). It is the purpose of this paper to discuss global
properties of Green functions in curved spacetimes. In
particular, we focus on changes in Green functions arising
from the presence of light cone caustics.

Some insight into global wave propagation may be
gained from general theorems on the propagation of
singularities in wave equations (see, e.g., Corollary 5 on
p. 121 of [5]). Roughly speaking, these state that singu-
larities are globally propagated along null geodesics. In
particular, the fact that Gretð�; p0Þ is initially singular
along all future-directed null geodesics emanating from
p0 implies that it remains singular as these geodesics are
extended arbitrarily far into the future of p0 [even though
Eq. (1.2) does not necessarily hold in the distant future].
Standard propagation-of-singularities theorems do not,
however, describe the specific ‘‘character’’ of the singu-
larity on a given null geodesic. Generically, the singular
structure of Gretð�; p0Þ can exhibit qualitative changes
when passing each caustic associated with the future light
cone of p0.

It is clear from (1.2) that retarded Green functions
initially contain a term involving �ð�Þ. Recent computa-
tions of retarded Green functions for linear scalar fields in
Nariai [6] and Schwarzschild [7] spacetimes have demon-
strated that there is a sense in which such terms are
replaced by different singular distributions after each en-
counter with a caustic of the light cone. Following a null
geodesic forward in time from a source point p0, the
singular structure of Gretð�; p0Þ appeared to ‘‘oscillate’’ in
the repeating 4-fold pattern [modulo an appropriate exten-
sion of the (positive) prefactorUðp; p0Þ appearing in (1.2)]

�ð�Þ ! pv

�
1

��

�
! ��ð�Þ ! �pv

�
1

��

�
! � � � : (1.3)

Here, ‘‘pv’’ denotes the Cauchy principal value.
Ori heuristically argued [8] that this phenomenon should

be generic for waves propagating through ‘‘astigmatic
caustics’’ where light rays are focused in only one trans-
verse direction. Such caustics are associated with conju-
gate points of multiplicity 1. Furthermore, Ori claims that
the effect of ‘‘stronger’’ anastigmatic caustics associated
with multiplicity 2 conjugate points should have an effect
equivalent to two passes through astigmatic caustics. If
all caustics in a particular geometry are anastigmatic—
displaying perfect focusing—this reasoning would imply
that the associated Green functions display the 2-fold
pattern of singular structures

�ð�Þ ! ��ð�Þ ! � � � : (1.4)

Such patterns have indeed been observed in scalar Green
functions for both the Einstein static universe and the
Bertotti-Robinson spacetime [9].
There is a vast literature on wave propagation through

caustics in various contexts. A significant body of work
has applied catastrophe theory to classify shapes of stable
caustic surfaces in different contexts [10–13]. Addi-
tionally, the behavior of wave fields near caustics has
been discussed in, e.g., [13,14]. It is known from this
work that there is a sense in which individual Fourier
modes of a field experience a phase change of �=2 on
passing through an astigmatic caustic [associated with the
4-fold pattern (1.3)]. One might therefore expect four
passes through astigmatic caustics to return a Green func-
tion to its ‘‘original form.’’ Stronger anastigmatic caustics
associated with the pattern (1.4) effectively add a phase of
2ð�=2Þ ¼ � to each Fourier mode. Two passes through
such caustics might therefore be expected to return a Green
function to its original form.
Despite this type of frequency-domain argument, the

simple ‘‘position-space’’ patterns (1.3) and (1.4) do not
appear to have been systematically derived before except
in a few special cases. One problem is finding an appro-
priately precise statement of the result. The usual definition
of� breaks down once caustics arise, so even the meanings
of the patterns (1.3) and (1.4) are not immediately clear in
general spacetimes. Additionally, one can only hope that
there is a sense in which such patterns hold ‘‘near’’ null
geodesics where the singular portion of a Green function
might be meaningfully disentangled from its remainder. It
is not immediately clear how to precisely formulate a
notion of this type.
The physical interpretation of the patterns (1.3) and (1.4)

has also been somewhat mysterious. How, for example, can
a sharp distribution like �ð�Þ instantaneously jump into the
much more ‘‘spread out’’ pvð1=��Þ? Additionally, one
may question how a causal Green function could extend
into regions where �> 0 [as it does when the singular
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structure of a Green function involves pvð1=��Þ]. Naively,
this might appear to imply that disturbances in fields can
propagate to points that are causally disconnected from
that disturbance.

This paper starts by investigating and resolving all of
these issues in four-dimensional plane wave spacetimes.
Retarded and advanced Green functions associated with
massless scalar fields propagating in smooth plane wave
spacetimes are derived explicitly. These geometries might
be thought of as modeling gravitational waves emitted
from some moderately distant astrophysical system.
Certain characteristics of plane wave spacetimes are not,
however, particularly realistic. More relevant are some of
their mathematical properties:

(i) Appropriately adjusting the amplitude and polariza-
tion profile of a plane wave geometry allows the
construction of examples with any number and com-
bination of astigmatic and anastigmatic caustics.
This is accomplished in a spacetime with topology
R4 and a metric whose coordinate components can
be made globally smooth.

(ii) Green functions associated with massless minimally
coupled scalar fields or Maxwell fields are known to
have nonzero tails V ðp; p0Þ in almost every four-
dimensional spacetime. Essentially the only non-
trivial counterexamples are plane wave spacetimes
[2,15].

(iii) Although generic plane wave spacetimes fail
to be (globally) geodesically convex, there is a
natural definition for �ðp; p0Þ that holds almost
everywhere.

(iv) The geodesic structure of plane wave spacetimes is
understood essentially in its entirety. This allows
�ðp; p0Þ and Uðp; p0Þ to be computed explicitly.

Most importantly, we choose to work in plane wave
spacetimes due to the existence of a procedure known as
the Penrose limit [16–18]. This provides a sense in which
the geometry near any given null geodesic in an arbitrary
spacetime looks like the geometry of an appropriate plane
wave spacetime. The Penrose limit preserves various prop-
erties of the original spacetime [18–20], in particular, the
conjugate point structure of the chosen (or ‘‘reference’’)
geodesic.

We use Penrose limits to argue that most of the ‘‘leading
order’’ singular behavior of Green functions associated
with wave propagation in arbitrary spacetimes may be
understood using knowledge of Green functions in appro-
priate plane wave spacetimes. This singular structure natu-
rally splits into two components. One portion is associated
with the appearance of conjugate points on the reference
geodesic with which the Penrose limit is performed. The
effects of such points are, in a sense, determined quasilo-
cally. They affect Green functions near the reference geo-
desic in a way that depends only on their multiplicities.
Furthermore, the effects of conjugate points propagate into

their future along the reference geodesic. In most cases, the
singular structures that result from the appearance of con-
jugate points have either the 4- or 2-fold patterns (1.3) or
(1.4). There do, however, exist finely tuned examples that
fall into neither category because there are a mixture of
astigmatic and anastigmatic caustics.
It is important to emphasize that despite this result,

Green functions are not quasilocal objects. In general, it
is not possible for all of a Green function’s singular struc-
ture to be determined near some null geodesic using only
knowledge of the geometry near that geodesic. ‘‘Nonlocal
singularities’’ can be introduced near a reference geodesic
when nonconjugate pairs of points on that geodesic are also
connected by other null geodesics.3 We show that the
effects of such intersections on a Green function are ‘‘non-
propagating.’’ There is sense in which their associated
singularities are confined to regions near the intersection
points. Using the Penrose limit, singularities of this type
correspond to isolated structures in plane wave Green
functions occurring at locations which cannot be predicted
from any given set of initial data. Plane wave spacetimes
are not globally hyperbolic, so their Green functions can-
not be uniquely specified in terms of any initial data set.
This lack of uniqueness is, indeed, necessary if plane wave
Green functions are to consistently capture certain charac-
teristics of generic Green functions with intrinsically non-
local components.
This paper is organized into three main parts. Sections II

and III define the plane wave geometry and provide an
extensive discussion of its geometrical properties. While
much of the material in these sections has been noted
before [18,21–26], some appears to be new (e.g., the
behavior of various geometric objects near caustics).
Only a few key results from Sec. III are needed to under-
stand the majority of Sec. IV, where explicit global Green
functions are constructed for all smooth four-dimensional
plane wave spacetimes. Section V finally shows that
knowledge of plane wave Green functions is sufficient to
understand the leading order singular structure of Green
functions in arbitrary spacetimes. Appendix A describes
various properties of two matrices central to describing the
geometry of plane wave spacetimes. Appendix B estab-
lishes that the Green function obtained for plane wave
spacetimes is a well-defined distribution.
Notation.—In this paper, abstract indices are represen-

ted using letters taken from the beginning of the Latin

3A simple example of this phenomenon is provided by the
spacetime of a straight cosmic string [11]. These geometries can
be described by the metric ds2 ¼ �dt2 þ dz2 þ d�2 þ
ðk�Þ2d�2 with t, z 2 R, � > 0, and � 2 ½0; 2�Þ. They are
locally flat, and therefore admit no conjugate points along any
geodesic. Cosmic string spacetimes do, however, possess an
angular defect (if k � 1) that forces some pairs of points on
opposite sides of the string to be connected by more than one
geodesic.
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alphabet: a; b; . . . . Four-dimensional coordinate indices
are represented using Greek characters, while indices re-
ferring only to the spatial coordinates x1, x2 or X1, X2

introduced below are denoted by i; j; . . . . Where appropri-
ate, units are used in which G ¼ c ¼ 1. Our sign conven-
tions follow those of Wald [27]: The metric signature is
chosen to be (�þþþ), the Riemann tensor is defined
such that 2r½arb�!c ¼ Rabc

d!d for any 1-form !a, and

the Ricci tensor satisfies Rab ¼ Racb
c. Spacetime points on

a manifold M are generally denoted by p, p0, etc.
Coordinates associated with (say) p0 are themselves
primed. We often find occasion to abuse notation in various
ways that should be understandable from the context. For
example, we often identify a function of spacetime points
with the equivalent function acting on coordinates: e.g.,
fðpÞ ¼ fðu; v; x1; x2Þ in a global chart ðu; v; x1; x2Þ: M !
R4. We also make extensive use of elementary vector and
matrix notation to denote the spatial coordinate compo-
nents of various tensors: e.g., x⊺ ¼ ðx1 x2Þ, ðABÞij ¼
AikBkj, etc. The majority of this paper is concerned with

plane wave spacetimes. In Sec. V, more general spacetimes
are considered as well. Quantities associated with these
geometries are often distinguished by the presence of a
check mark. Ametric that does not describe a plane wave is
often denoted by �gab, for example.

II. PLANE WAVE SPACETIMES IN GENERAL

A. pp waves

A pp wave is a spacetime which may be physically
interpreted as a (not necessarily vacuum) gravitational
wave with parallel rays orthogonal to a family of planar
wave fronts. While definitions in the literature vary
slightly, pp waves are often prescribed as a manifold M
together with a metric gab which everywhere admits a
nonzero null vector field ‘a satisfying ra‘

b ¼ 0 (where
ra is the Levi-Civita connection associated with gab).
‘a is interpreted as the direction of wave propagation.
Since it is covariantly constant, it must be Killing. This
implies that the wave propagates without distortion. It is
also clear that the integral curves of ‘a—the characteristic
rays of the gravitational wave—form a null geodesic con-
gruence that is nonexpanding, shear free, and twist free.
This implies that there is a sense in which such rays remain
‘‘parallel’’ to each other. They are also orthogonal to a
family of planar 2-surfaces that may be interpreted as wave
fronts.

A large class of pp-wave metrics in four dimensions can
be written as [21,28–30]

ds2 ¼ �2dudvþHðu;xÞdu2 þ jdxj2; (2.1)

where jdxj2 denotes ðdx1Þ2 þ ðdx2Þ2. We assume for sim-
plicity that the coordinates ðu; v;xÞ ¼ ðu; v; x1; x2Þ can
take any values in R4. The unconstrained function
Hðu;xÞ ¼ Hðu; x1; x2Þ fixes the wave form and its

polarization. Note that @=@v is both null and covariantly
constant. It may therefore be identified with the direction
of wave propagation ‘a:

‘a ¼
�
@

@v

�
a
: (2.2)

Surfaces spanned by the spatial coordinates x1 and x2 (at
fixed u, v) are wave fronts transverse to the direction of
propagation. They are spacelike surfaces with topology R2

and an induced metric that is everywhere flat: The wave
fronts are 2-planes. Furthermore, note that ‘a ¼ �rau.
The u coordinate may be viewed as labeling the phase of
the gravitational wave.
All nonvanishing coordinate components of the

Riemann tensor may be obtained from

Ruiuj ¼ �1
2@i@jHðu;xÞ; (2.3)

where @i :¼ @=@xi and i ¼ 1, 2. The Ricci tensor can have
at most one nonzero component:

Ruu ¼ �1
2r2Hðu;xÞ: (2.4)

Here, r2 denotes the two-dimensional Euclidean
Laplacian acting on the coordinates ðx1; x2Þ. It follows
that any pp wave satisfying the vacuum Einstein equation
Rab ¼ 0 has a wave form Hðu;xÞ that is harmonic in the
spatial coordinates. The sum of any two harmonic func-
tions is itself harmonic, so there is a sense in which vacuum
pp-wave metrics propagating in the same direction remain
vacuum under linear superposition.
Note that it follows from (2.1) and (2.4) that the Ricci

scalar gabRab vanishes in all pp-wave spacetimes. More
generally, all locally constructed curvature scalars vanish
in these geometries. Spacetimes with this property—of
which the pp waves are a special case—are known to be
members of the Kundt class [31] (The converse is not true:
There do exist Kundt metrics with nonvanishing curvature
scalars.) Geometries with vanishing curvature scalars are
the gravitational analogs of ‘‘null’’ electromagnetic fields
Fab satisfying FabF

ab ¼ �abcdFabFcd ¼ � � � ¼ 0. Some
of the simplest nontrivial examples of null electromagnetic
fields are plane waves propagating in flat spacetime.
Similarly, some of the simplest nontrivial geometries
with vanishing curvature scalars are plane wave space-
times. These are a subclass of pp-wave spacetimes.

B. Plane waves

Plane wave spacetimes are special pp waves where
the curvature components R�	
� depend only on the

‘‘phase coordinate’’ u. The wave amplitude and polariza-
tion can then be said to remain constant on each planar
wave front formed by varying x1, x2 while holding fixed u
and v.
It follows from (2.3) that plane waves arise if the profile

functionHðu;xÞ is at most quadratic in the spatial variables
x. A coordinate transformation may be used to eliminate
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any components ofH independent of or linear in x1 and x2.
The metric of a general plane wave spacetime can therefore
be written in the Brinkmann form

ds2 ¼ �2dudvþHijðuÞxixjdu2 þ jdxj2: (2.5)

Here, HijðuÞ is an arbitrary symmetric 2� 2 matrix that

specifies the wave’s amplitude and polarization profile.
Except in Sec. V, the metric (2.5) is assumed to hold
throughout this paper. We restrict attention to nonsingular
plane waves where ðu; v;xÞ 2 R4 and HijðuÞ is a collec-

tion of smooth functions from R to R.
It is convenient later to have a special notation for

constant-phase surfaces associated with (2.5). For any
u0 2 R, let Su0 denote the u ¼ u0 hyperplane

Su0 :¼ fp0 2 M: uðp0Þ ¼ u0g: (2.6)

It follows from (2.3) that the Riemann tensor on one
of these hypersurfaces is entirely determined by the
components

Ruiuj ¼ �HijðuÞ: (2.7)

Furthermore,

Ruu ¼ �TrHðuÞ; (2.8)

where Tr denotes the ordinary trace of the 2� 2 matrix
ðHÞij ¼ Hij.

It follows that the vacuum Einstein equation Rab ¼ 0 is
satisfied if and only if Hij is trace-free. The metric of any

purely gravitational plane wave can therefore be put into
the form

ds2 ¼ �2dudvþ fhþðuÞ½ðx1Þ2 � ðx2Þ2�
þ 2h�ðuÞx1x2gdu2 þ jdxj2; (2.9)

where hþðuÞ and h�ðuÞ are arbitrary functions represent-
ing wave forms for the two polarization states of the
gravitational wave. If these functions are proportional,
the wave is said to be linearly polarized. A coordinate
rotation can then be used to eliminate h�ðuÞ in favor of
rescaling hþðuÞ.

It is interesting to note that there is a sense in which
metrics with the form (2.9) satisfy all generally covariant
field equations that can be constructed purely from the
metric and its derivatives [32]. Ricci-flat plane wave space-
times therefore provide a model for plane-symmetric
gravitational radiation in general relativity as well as
many alternative theories of gravity.

In this paper, we do not restrict the discussion only to
vacuum plane waves. One interesting class of nonvacuum
plane waves are those that are conformally flat. Such
geometries must have Riemann tensors that are ‘‘pure
trace.’’ It follows from the inspection of (2.5) and (2.8)
that the metric of a conformally flat plane wave can always
be put into the form

ds2 ¼ �2dudv� h2ðuÞjxj2du2 þ jdxj2 (2.10)

for some function hðuÞ. There is at most one nonzero Ricci
component in these coordinates:

Ruu ¼ 2h2ðuÞ: (2.11)

If Einstein’s equation Rab � 1
2 gabR ¼ 8�Tab is imposed,

the null energy condition holds for the stress-energy
tensor Tab if and only if h2ðuÞ � 0. This condition also
implies the weak, dominant, and strong energy
conditions.
Conformally flat plane wave spacetimes satisfying

h2ðuÞ � 0 may be interpreted as the gravitational fields
associated with plane electromagnetic waves in Einstein-
Maxwell theory. In general, the stress-energy tensor of an
electromagnetic field Fab is

Tab ¼ 1

4�

�
FacFb

c � 1

4
gabFcdF

cd

�
: (2.12)

Inserting this into Einstein’s equation and using (2.11), it is
easily observed that the plane wave geometry (2.10) may
be associated with the electromagnetic plane wave

Fab ¼ 2hðuÞr½aurb�x1: (2.13)

This electromagnetic field is a solution to the
vacuum Maxwell equations. It also satisfies FabF

ab ¼
�abcdF

abFcd ¼ 0. The electric and magnetic fields seen
by any observer are therefore equal in magnitude and
orthogonal:

EaE
a ¼ BaB

a; EaB
a ¼ 0: (2.14)

Note, however, that (2.13) is but one possible Fab that
could be associated with a given hðuÞ. Other possibilities
exist.
Although we make little use of it, it should be mentioned

that plane waves are often described in the literature in
terms of Rosen coordinates ðU;V;XÞ instead of the
Brinkmann coordinates ðu; v;xÞ used in (2.5). The metric
then takes the form

ds2 ¼ �2dUdV þH ijðUÞdXidXj: (2.15)

The 2� 2 matrix H ijðUÞ appearing here depends non-

algebraically and nonuniquely on HijðuÞ. Consider, in

particular, the transformation

u ¼ U; (2.16a)

v ¼ V þ 1
2
_Ek
iðUÞEkjðUÞXiXj; (2.16b)

xi ¼ Ei
jðUÞXj; (2.16c)

where the matrix Ei
jðUÞ is a nontrivial solution to the

differential equation

€EðUÞ ¼ HðUÞEðUÞ: (2.17)

We also require that
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_E ⊺E ¼ ð _E⊺EÞ⊺: (2.18)

Applying (2.16) to the Brinkmann line element (2.5) with
these restrictions on E, one finds the Rosen line element
(2.15) with

H ðUÞ ¼ E⊺ðUÞEðUÞ: (2.19)

Rosen coordinates have the advantage of being more
closely related than Brinkmann coordinates to intuition for
gravitational waves built up from linearizing Einstein’s
equation about Minkowski spacetime in transverse-
traceless gauge. Some properties of a plane wave’s geo-
desics and symmetries are also more easily expressed in
terms of Rosen coordinates. Unfortunately, the metric
(2.15) does not generally cover the entire spacetime.
Rosen coordinates generically develop singularities that
are not present in Brinkmann coordinates. There is also a
considerable degree of ‘‘gauge freedom’’ in H ij [i.e.,

there are many allowed solutions to (2.17) for a givenHij].

III. GEOMETRIC PROPERTIES OF PLANE
WAVE SPACETIMES

Before discussing wave propagation in some back-
ground spacetime, it is important to understand the geo-
metry of that background. This section discusses the
symmetries of plane wave spacetimes as well as their
geodesic and causal structures. Bitensors such as Synge’s
function, the van Vleck determinant, and the parallel
propagator are computed explicitly. Emphasis is placed
on the focusing of geodesics and the asymptotic behavior
of various bitensors near light cone caustics. These topics
are all important for the understanding of Green functions
associated with wave equations like (1.2).

A recurring object in the geometry of plane wave space-
times is the matrix differential equation (2.17). This may be
viewed as a generalized oscillator equation where the wave
profile HðUÞ acts like (the negative of) a ‘‘squared fre-
quency matrix.’’ It is useful to describe all solutions by a
linear combination of two particular solutions Aðu; u0Þ and
Bðu; u0Þ. We choose to define these matrices to be solutions
of

@2uAðu; u0Þ ¼ HðuÞAðu; u0Þ; (3.1a)

@2uBðu; u0Þ ¼ HðuÞBðu; u0Þ; (3.1b)

satisfying the boundary conditions

½A� ¼ ½@uB� ¼ �; ½B� ¼ ½@uA� ¼ 0: (3.2)

Here, � denotes the 2� 2 identity matrix and ½�� indicates
the coincidence limit u ! u0. Aðu; u0Þ and Bðu; u0Þ are
assumed to be matrices of functions that are smooth
throughout R� R. Some of their properties are discussed
in Appendix A.

We demonstrate below thatAðu; u0Þ andBðu; u0Þmay be
used not only to describe the transformation between

Rosen and Brinkmann coordinates, but also to compute
the spatial coordinate components of geodesics and Jacobi
fields. Additionally, these matrices can be used to identify
conjugate points, explicitly compute various bitensors, and
construct Killing fields.
As an important example, consider a geodesic passing

through two points p and p0. It is shown in Sec. III C that
these points are conjugate along the given geodesic if and
only if—abusing notation somewhat—their Brinkmann
wave front coordinates u ¼ uðpÞ and u0 ¼ uðp0Þ satisfy

detBðu; u0Þ ¼ 0 (3.3)

and u � u0. This means that there exists a nontrivial Jacobi
field along the chosen geodesic which vanishes at both p
and p0. Defining the multiplicity of a conjugate pair as the
number of nontrivial linearly independent Jacobi fields
which vanish at these points (i.e., the number of focused
directions), the multiplicity of p and p0 is easily read off as
the nullity of Bðu; u0Þ. In the four spacetime dimensions
considered here, the multiplicity cannot exceed two. If the
pair ðp; p0Þ is conjugate with multiplicity 1, the set of all
null geodesics emanating from p0 and passing through the
constant-u surface Su is shown in Sec. III E to form a one-
dimensional curve on Su [recall (2.6)]. This represents
astigmatic focusing. Conjugate points with multiplicity 2
momentarily focus bundles of null geodesics to a single
point. This represents anastigmatic focusing.
Note that (3.3) does not depend on any details of the

geodesic under consideration. It is purely a relation be-
tween pairs of u coordinates. Geometrically, it may be
interpreted as distinguishing certain pairs ðSu; Su0 Þ of
hyperplanes associated with two different phases of the
gravitational wave. We call these ‘‘conjugate hyper-
planes.’’ They play a central role in the geometry of plane
wave spacetimes.
It is convenient to denote the set of all solutions to

detBð�; u0Þ ¼ 0 by Tðu0Þ. Wewrite the individual elements4

of Tðu0Þ as �nðu0Þ 2 R n fu0g:
Tðu0Þ ¼[

n

�nðu0Þ: (3.4)

Here, the n are nonzero integers that order the elements of
Tðu0Þ (if any). By convention, we set n > 0 if �nðu0Þ> u0
and n < 0 otherwise. See Fig. 1 and further discussion in
Secs. III B and III C.
Given some preferred phase coordinate u0, Tðu0Þ natu-

rally divides the spacetime into a collection of simply

4Conjugate points always occur discretely in plane wave
spacetimes. In more general Lorentzian metrics, it is possible
for there to exist continuous sections of a geodesic that are
conjugate to one particular point on that geodesic [33,34].
This is, however, only possible along spacelike geodesics. For
plane wave spacetimes, the appearance of conjugate points along
spacelike and causal geodesics is governed by the same equa-
tion. Tðu0Þ is therefore a countable set for every u0 2 R.
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connected open sets N nðu0Þ and their bounding hyper-
planes S�nðu0Þ. Define the region N 0ðu0Þ to be

N 0ðu0Þ :¼ fp 2 M : uðpÞ 2 ð��1ðu0Þ; �þ1ðu0ÞÞg (3.5)

if ��1ðu0Þ both exist in Tðu0Þ. If these elements do not exist,
the appropriate end point(s) of the interval in the definition
of N 0ðu0Þ is to be replaced by �1. If, say, �þ1ðu0Þ and
�þ2ðu0Þ exist,

N 1 :¼ fp 2 M : uðpÞ 2 ð�1; �2Þg: (3.6)

Similarly,

N �1 :¼ fp 2 M : uðpÞ 2 ð��2; ��1Þg (3.7)

if ��1ðu0Þ and ��2ðu0Þ both exist. In general, N nðu0Þ
represents the region between the nth hyperplane conju-
gate to Su0 and the ‘‘next one.’’ See Fig. 1.

The regionN 0ðu0Þ is a convex normal neighborhood of
every point p0 for which u0 ¼ uðp0Þ. It is, however, shown
in Sec. III B that all points in the open set

N ðu0Þ :¼ [
n

N nðu0Þ (3.8)

are connected to p0 by exactly one geodesic. In this sense,
N ðu0Þ is a ‘‘generalized normal neighborhood’’ of p0.
Note, however, that this set is not path connected unless
Tðu0Þ is the empty set [in which case N ðu0Þ ¼
N 0ðu0Þ ¼ M]. The geodesic connecting p0 to a generic
point inN ðu0Þ need not lie entirely inN ðu0Þ. In general, it
will pass through some of the S�nðu0Þ. These hypersurfaces

are not contained in N ðu0Þ. Note that the portion of the
spacetime not contained in N ðu0Þ,

M nN ðu0Þ ¼ [
n

S�nðu0Þ; (3.9)

has zero volume.

A. Symmetries

Plane wave spacetimes possess at least five linearly
independent Killing vectors. One of these is clearly ‘a ¼
ð@=@vÞa. The others have the form�

xi _�iðuÞ @

@v
þ�iðuÞ @

@xi

�
a

(3.10)

in terms of the Brinkmann coordinates ðu; v;xÞ. Here,
�iðuÞ ¼ �iðuÞ is any solution to

€�ðuÞ ¼ HðuÞ�ðuÞ: (3.11)

This equation prescribes a total of four linearly indepen-
dent Killing fields in addition to ‘a. Even more Killing
fields may be found in certain special cases. Note that
(3.11) is very closely related to the modified oscillator
equation (2.17). In terms of the matrices A and B defined
by (3.1) and (3.2), the general solution is

� ðuÞ ¼ Aðu; u0Þ�ðu0Þ þ Bðu; u0Þ _�ðu0Þ: (3.12)

The parameters u0, �ðu0Þ, and _�ðu0Þ appearing in this
equation may be varied arbitrarily.
Various types of non-Killing symmetries exist in generic

plane wave spacetimes. For example, the vector field
�a :¼ u‘a is always a (proper) affine collineation.5 There
is also a proper homothety c a given by

c a ¼
�
2v

@

@v
þ xi

@

@xi

�
a
: (3.13)

This satisfies Lc gab ¼ 2gab. More extensive discussions

of the symmetries of plane wave spacetimes may be found
in [35,36].

B. Geodesics

The geodesic structure of plane wave spacetimes is
relatively straightforward to determine, yet still exhibits a
number of nontrivial features. First recall that the vector
field ‘a ¼ ð@=@vÞa is Killing. The quantity ‘a _z

a is there-
fore conserved along any affinely parametrized geodesic
with tangent _za.

FIG. 1. Fixing any u0 2 R, a plane wave spacetime naturally
divides into a set of 3-surfaces S�nðu0Þ and open 4-volumes

N nðu0Þ in between them. Every point in Su0 is connected to
every point in N nðu0Þ by exactly one geodesic. Such points are
never conjugate. Points in Su0 can be connected to points in
S�nðu0Þ by either an infinite number of geodesics or by none. In

the former case, both points are conjugate along every connect-
ing geodesic. This justifies the description of ðSu0 ; S�nðu0ÞÞ as a

pair of conjugate hyperplanes.

5Affine collineations generate a family of diffeomorphisms
that preserve all geodesics and their affine parameters. A vector
field �a is an affine collineation if and only ifraL�gbc ¼ 0 [29].
A homothety c a is a special type of affine collineation satisfying
Lc gab ¼ ðconstÞ � gab. Its associated diffeomorphisms pre-
serve the metric up to changes in scale. A proper homothety is
a homothety that is not Killing. A proper affine collineation is an
affine collineation that is not a homothety (and not Killing).
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If ‘a _z
a ¼ 0 for a particular geodesic, that geodesic

remains in a single constant-u hypersurface. In the
Brinkmann coordinates where (2.5) holds, the coordinate
components of such a geodesic satisfy

d

ds
_z�ðsÞ ¼ 0 (3.14)

for all � ¼ u, v, x1, and x2. Any geodesic lying on a
surface of constant phase u therefore appears to be a
(Euclidean) straight line in the coordinates ðv;xÞ. It is
also clear that there exists exactly one geodesic connecting
any pair of points with the same u coordinates. The hyper-
surfaces Su defined by (2.6) are therefore totally geodesic.

Geodesics are more complicated when ‘a _z
a � 0. In

these cases, the affine parameter of a geodesic may always
be rescaled such that ‘a _z

a ¼ �1. Choosing the origin of
this parameter appropriately then allows it to be identified
with the coordinate u. Doing this, the spatial components
ziðsÞ ¼ ziðuÞ of a geodesic are easily shown to satisfy

€zðuÞ ¼ HðuÞzðuÞ: (3.15)

This equation is identical to (3.11) and very similar to
(2.17). As in (3.12), any possible zðuÞ can be written in
terms of the matrices A and B introduced above:

z ðuÞ ¼ Aðu; u0Þzðu0Þ þ Bðu; u0Þ _zðu0Þ: (3.16)

The v component of any geodesic is most easily found
using the conservation law associated with the homothety
c a given by (3.13). In general, affine collineations—of
which homotheties (and Killing fields) are special cases—
are associated with conserved quantities of the form

_z ac
a � 1

2s _z
a _zbLcgab (3.17)

for any affinely parametrized geodesic with tangent _zaðsÞ
[37]. Using this for a geodesic with initial coordinates
ðu0; v0; z0Þ and initial spatial velocity _z0,

zvðuÞ ¼ v0 þ "ðu� u0Þ þ 1
2½zðuÞ � _zðuÞ � z0 � _z0�: (3.18)

Here, s has again been identified with u and the constant "
is defined by

" ¼ �1
2 _z�ðuÞ _z�ðuÞ: (3.19)

All geodesics not confined to the hyperplane Su0 have
spatial coordinates which evolve via (3.16). The evolution
of their v coordinates is easily found by combining (3.16)
and (3.18).

Given any two distinct points on a particular geodesic
whereB�1ðu; u0Þ exists, (3.16) may be used to solve for the
spatial velocity in terms of the starting and ending points
x ¼ zðuÞ and x0 ¼ zðu0Þ:

_z0 ¼ B�1ðx�Ax0Þ; (3.20a)

_z ¼ @uAx0 þ @uBB
�1ðx�Ax0Þ: (3.20b)

Using (3.18), the v coordinate of such a geodesic is given
by

zvðuÞ ¼ v0 þ "ðu� u0Þ þ 1
2½x⊺@uAx0

þ ðx⊺@uB� x0⊺ÞB�1ðx�Ax0Þ�: (3.21)

The constant " is unconstrained. It follows that two points
p and p0 are connected by exactly one geodesic whenever
detBðu; u0Þ � 0. It was mentioned above that pairs of
points are also connected by exactly one geodesic when
u ¼ u0. Recalling (3.8) and the surrounding discussion,
there therefore exists exactly one geodesic connecting
any point p 2 N ðu0Þ to any point p0 with phase coordi-
nate u0 ¼ uðp0Þ.
In all other cases, p and p0 lie on conjugate hyperplanes.

The rank of the 2� 2 matrix Bðu; u0Þ is then strictly less
than 2. If a particular pair of hyperplanes is fixed together
with spatial coordinates x0 on one of them, it follows from
(3.16) that the space of all possible x that can be reached by
geodesics with initial spatial coordinates x0 has a dimen-
sion less than 2. This implies that almost all points on
conjugate hyperplanes are geodesically disconnected
(although they are always connected by continuous non-
geodesic curves).
Suppose, however, that two points lying on conjugate

hyperplanes are known to be connected by one particular
geodesic. If the initial data for this geodesic are modified
by adding to its initial spatial velocity any nonzero vector
in the null space ofB, it follows from (3.16) that the spatial
end points of this new geodesic will be the same as those of
the original geodesic. Spacetime points that lie on conju-
gate hyperplanes and are connected by at least one geode-
sic are therefore connected by an infinite number of
geodesics. See Fig. 2.

FIG. 2. Schematic illustration of geodesic focusing in a plane
wave spacetime. Three u coordinates conjugate to u0 are indi-
cated together with the projection of three geodesics onto the
x1-u coordinate plane. The focusing here is assumed to act (at
least) in the x1 direction. The regions N 0ðu0Þ and N 1ðu0Þ are
also illustrated. See Figs. 3 and 4 for a different projection.
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To summarize, all distinct pairs of points that do not lie
on conjugate hyperplanes are connected by exactly one
geodesic. Almost all points lying on conjugate hyperplanes
fail to be connected by any geodesics. The remainder are
connected by an infinite number of geodesics. More dis-
cussion may be found in Sec. III E.

C. Conjugate points and Jacobi propagators

In general, plane waves satisfying standard energy con-
ditions focus geodesics. It is evident from the above dis-
cussion that, as claimed, pairs of points satisfying (3.3)
must be conjugate along any geodesic connecting them.
We now show that all conjugate points are of this form.
Furthermore, we establish that the matrices A and B
coincide with the spatial components of Jacobi propagators
Aa

a0 and Ba
a0 (when the associated geodesic satisfies

‘a _z
a � 0 and the affine parameter is identified with u).

The full Jacobi propagators are known to be useful for
computing ‘‘generalized Killing fields’’ which have found
application in understanding the motion of extended matter
distributions [38–43]. Although they will not be used later,
we provide explicit forms for the full Jacobi propagators in
terms of their spatial components A and B.

By definition, two points p and p0 lying on a particular
geodesic are said to be conjugate if there exists a nontrivial
Jacobi field on that geodesic which vanishes at both p and
p0 (see, e.g., [27]). The multiplicity of a conjugate pair is
defined to be the number of linearly independent Jacobi
fields with this property. In general, the presence of con-
jugate points indicates that a family of geodesics starting at
one point later intersect (or come arbitrarily close to inter-
secting). The multiplicity of a conjugate pair indicates the
number of transverse directions that are so focused.

Consider an affinely parametrized geodesic zðsÞ as
above. By definition, Jacobi fields 
aðsÞ on this curve
satisfy

D2
a

ds2
� Rbcd

a
b _zc _zd ¼ 0; (3.22)

where D=ds denotes a covariant derivative in the direction
_za. The Jacobi equation is linear, so its general solution has
the form


aðsÞ ¼ Aa
b0 ðs; s0Þ
b0 ðs0Þ þ Ba

b0 ðs; s0Þ
D

ds0

b0 ðs0Þ; (3.23)

for some bitensors Aa
b0 ðs; s0Þ and Ba

b0 ðs; s0Þ that depend
only on the spacetime metric and the chosen geodesic.
These are called Jacobi propagators. They are solutions to

0 ¼ D2

ds2
Aa

a0 � Rbcd
aAb

a0 _z
c _zd; (3.24a)

¼ D2

ds2
Ba

a0 � Rbcd
aBb

a0 _z
c _zd; (3.24b)

with the boundary conditions

�
DAa

a0

ds

�
¼ ½Ba

a0 � ¼ 0; (3.25a)

½Aa
a0 � ¼

�
DBa

a0

ds

�
¼ �a

a0 : (3.25b)

If s and s0 are not too widely separated, Aa
a0 ðs; s0Þ and

Ba
a0 ðs; s0Þ may be written explicitly in terms of Synge’s

function �ðp; p0Þ and its first two derivatives [38]. Our
main interest lies in geometric properties of plane waves
outside of the normal neighborhood where the traditional
derivation of such formulas breaks down. We therefore
consign ourselves for now to somewhat less explicit com-
ments on the Jacobi propagators that hold globally. It is
shown in Sec. III D that Synge’s function may, in fact, be
usefully extended beyond the normal neighborhood. It is,
however, more convenient to express � in terms of the
Jacobi propagators rather than writing the Jacobi propaga-
tors in terms of �.
First note that for geodesics confined to a single

constant-u hypersurface, the Jacobi propagators are
simply

A�
�0 ¼ �

�
�0 ; B�

�0 ¼ ðs� s0Þ��
�0 (3.26)

in the Brinkmann coordinates where the metric takes
the form (2.5). It is therefore clear that there can be
no conjugate points along any geodesic satisfying
‘a _z

a ¼ 0.
Now consider a geodesic where ‘a _z

a � 0. As before,
we may identify its affine parameter with u. Doing so,
it is apparent from the inspection of (3.22) that _zaðuÞ
and ðu� u0Þ _zaðuÞ are both Jacobi fields. This means
that

Aa
a0 ðu; u0Þ _za

0 ðu0Þ ¼ _zaðuÞ; (3.27a)

Ba
a0 ðu; u0Þ _za

0 ðu0Þ ¼ ðu� u0Þ _zaðuÞ: (3.27b)

Also note that the restriction of any affine collineation
(such as a Killing vector) to a particular geodesic is a
Jacobi field on that geodesic. This means, for example,
that the covariantly constant null vector ‘a associated
with the direction of propagation of a generic plane
wave spacetime can be used to generate Jacobi fields.
So can ðu� u0Þ‘a. Hence,

Aa
a0 ðu; u0Þ‘a

0 ðzðu0ÞÞ ¼ ‘aðzðuÞÞ; (3.28a)

Ba
a0 ðu; u0Þ‘a

0 ðzðu0ÞÞ ¼ ðu� u0Þ‘aðzðuÞÞ: (3.28b)

Furthermore, application of (2.3) and (3.24) shows that

0 ¼ @2uð‘aAa
a0 Þ ¼ @2uð‘aBa

a0 Þ; (3.29a)

¼ @2uð _zaAa
a0 Þ ¼ @2uð _zaBa

a0 Þ: (3.29b)

Using the coincidence limits (3.25) of Aa
a0 and Ba

a0 , the

appropriate solutions to these differential equations are
seen to be
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‘aA
a
a0 ðu; u0Þ ¼ ‘a0 ; (3.30a)

‘aB
a
a0 ðu; u0Þ ¼ ðu� u0Þ‘a0 ; (3.30b)

_zaA
a
a0 ðu; u0Þ ¼ _za0 ; (3.30c)

_zaB
a
a0 ðu; u0Þ ¼ ðu� u0Þ _za0 : (3.30d)

Also note that the components Ai
i0 and Bi

i0 in Brinkmann

coordinates coincide with the matrices A and B defined by
(3.1) and (3.2).

If two points zðuÞ and zðu0Þ (with u � u0) are conjugate
on a particular geodesic, there must exist nonzero vectors


a0 at zðu0Þ such that

Ba
a0 ðu; u0Þ
a0 ¼ 0: (3.31)

Contracting this with ‘a and _za while using (3.30) shows
that

‘a0

a0 ¼ _za0


a0 ¼ 0: (3.32)

Applying (3.30) again then shows that (3.31) can always be
replaced by the weaker condition

Bi
�0 ðu; u0Þ
�0 ¼ 0: (3.33)

Using (3.28) and (3.32) further demonstrates that distinct
points zðuÞ and zðu0Þ in plane wave spacetimes are con-
jugate if and only if u and u0 satisfy (3.3). As claimed at the
beginning of Sec. III, all conjugate points may be identified
by finding the zeros of detBðu; u0Þ.

For completeness, we now write down all coordinate
components of the Jacobi propagators using the eigenvec-
tor equations (3.27), (3.28), and (3.30). Applying the rela-
tions involving ‘a,

A�
v0 ¼ �

�
v ; B�

v0 ¼ ðu� u0Þ��
v ; (3.34a)

Au
�0 ¼ �u0

�0 ; Bu
�0 ¼ ðu� u0Þ�u0

�0 : (3.34b)

Using (3.18),

Ai
u0 ¼ ð _z�A _z0Þi; (3.35a)

Av
i0 ¼ ð _z⊺A� _z0Þi0 ; (3.35b)

Av
u0 ¼ 1

2½ðx⊺Hx� x0⊺H0x0Þ þ j _z0j2 þ j _zj2 � 2 _z⊺A _z0�;
(3.35c)

and

Bi
u0 ¼ ½ðu� u0Þ _z�B _z0�i; (3.36a)

Bv
i0 ¼ ½ _z⊺B� ðu� u0Þ _z0�i0 ; (3.36b)

Bv
u0 ¼ 1

2ðu� u0Þ½ðx⊺Hx� x0⊺H0x0Þ þ j _z0j2
þ j _zj2 � 2 _z⊺B _z0�: (3.36c)

Although the Jacobi propagators are defined along a
particular geodesic, they are easily reinterpreted as biten-
sors on spacetime for all pairs of points p and p0 that do not
lie on conjugate hyperplanes. This may be done explicitly
by using (3.20) to replace _z and _z0 with x, x0,A, andB. It is

then straightforward to build vector fields on spacetime
equal to Jacobi fields along all geodesics emanating from
some preferred origin. Fixing that origin, the resulting
fields form a 20-dimensional vector space. They can be
interpreted as ‘‘generalized affine collineations’’ associ-
ated with the chosen origin [40]. A certain ten-dimensional
subset generalizes the Killing fields (and includes any real
Killing fields that may exist).

D. Bitensors

Two-point tensors (or bitensors) are useful for, among
other things, the evaluation of Green functions in curved
spacetimes. Foremost among these is Synge’s world func-
tion �ðp; p0Þ ¼ �ðp0; pÞ, which is equal to one-half of the
squared geodesic distance between its arguments. This is
typically defined only in those regions where p and p0 can
be connected by exactly one geodesic. More generally, it is
possible to define a closely related two-point scalar
�zðs; s0Þ associated with a particular geodesic zðsÞ:

�zðs; s0Þ :¼ 1

2
ðs0 � sÞ

Z s0

s
gabðzðtÞÞ _zaðtÞ _zbðtÞdt: (3.37)

If the geodesic in this equation is the only geodesic con-
necting two points zðsÞ and zðs0Þ, the ordinary world func-
tion is related via

�ðzðsÞ; zðs0ÞÞ ¼ �zðs; s0Þ: (3.38)

Section III B establishes the fact that distinct points in
plane wave spacetimes are connected by exactly one geo-
desic as long as they do not lie on conjugate hyperplanes.
Equation (3.38) may therefore be used to define Synge’s
function for all pairs of points that do not lie on conjugate
hyperplanes.
The definition (3.37) for �z is straightforward to evalu-

ate explicitly in the general plane wave metric (2.5) along
any geodesic satisfying ‘a _z

a ¼ �1 (with, once again, s
identified with u). Integrating by parts and using (3.15)
gives

�zðu; u0Þ ¼ 1
2ðu� u0Þðz � _z� 2zvÞjuu0 : (3.39)

Removing the _z appearing here using (3.20) and substitut-
ing the result into (3.38),

�ðp; p0Þ ¼ 1
2ðu� u0Þ½�2ðv� v0Þ þ x⊺@uAx0

þ ðx⊺@uB� x0⊺ÞB�1ðx�Ax0Þ�: (3.40)

@uA may be eliminated from this equation using (A2) and
the symmetry of @uBB

�1 established in Appendix A:

�ðp; p0Þ ¼ 1
2ðu� u0Þ½�2ðv� v0Þ þ x⊺@uBB

�1x

þ x0⊺B�1Ax0 � 2x0⊺B�1x�: (3.41)

Both of these relations are valid as long as u =2 Tðu0Þ and
u � u0. If u ¼ u0, Synge’s function reduces to the
Euclidean expression
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�ðp; p0Þ ¼ 1
2jx� x0j2: (3.42)

Note that unless x and x0 are chosen in a very particular
way, � diverges as u ! �nðu0Þ 2 Tðu0Þ. This is a manifes-
tation of the aforementioned fact that most pairs of points
on conjugate hyperplanes cannot be connected by any
geodesics.

The (scalarized) van Vleck determinant�ðp; p0Þ is often
defined6 in terms of �ðp; p0Þ via

�ðp; p0Þ ¼ � det½�r�r�0�ðp; p0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðpÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðp0Þp ; (3.43)

where gðpÞ :¼ detg�	ðpÞ. This is a biscalar with coinci-

dence limit ½�� ¼ 1. It is closely related to the expansion
of the congruence of geodesics emanating from p0 [3].
Inserting (2.5) and (3.41) into (3.43) shows that

�ðp; p0Þ ¼ detð@i@i0�Þ ¼ ðu� u0Þ2
detBðu; u0Þ (3.44)

wherever � is defined. It is evident from (3.3) that �ð�; p0Þ
is unbounded near any hyperplane conjugate to Su0 3 p0.
This is related to the well-known fact that the expansion of
a congruence of geodesics emitted from a particular source
point diverges when approaching a point that is conjugate
to that source [27].

Recall that Bðu; u0Þ has been assumed to remain every-
where finite [which follows from assuming that HðuÞ is
sufficiently well behaved]. Using this together with (3.43)
shows that �ð�; p0Þ can never pass through zero. It may
switch signs, however. It is shown in Sec. III E that this
occurs only when passing through conjugate hyperplanes
with multiplicity 1.

The parallel propagator gaa0 ðp; p0Þ is another important

bitensor. Although this is not required to construct the
scalar Green functions discussed in most of this paper, it
does appear in Green functions associated with electro-
magnetic fields and metric perturbations [3]. We therefore
include it for completeness. gaa0 ðp; p0Þ satisfies

D

ds
gaa0 ðzðsÞ; zðs0ÞÞ ¼ 0 (3.45)

along any geodesic zðsÞ connecting its two arguments. It
also has the coincidence limit ½gaa0 � ¼ �a

a0 . As the name

implies, gaa0 ðp; p0Þ parallel transports vectors from p0 to p
(or covectors from p to p0) when there is a unique geodesic
connecting these points.

If p and p0 are connected by a single geodesic with
tangent _zaðuÞ, it is clear that ‘a and _za are both left and
right eigenvectors of gaa0 ðp; p0Þ:

‘ag
a
a0 ¼ ‘a0 ; gaa0‘

a0 ¼ ‘a; (3.46a)

_zag
a
a0 ¼ _za0 ; gaa0 _z

a0 ¼ _za: (3.46b)

Applying the first of these equations demonstrates that

gu�0 ¼ �u0
�0 ; g�v0 ¼ �

�
v : (3.47)

A direct calculation using (3.45) also shows that

gii0 ¼ �i
i0 : (3.48)

The remaining components of the parallel propagator are

giu0 ¼ ð _z� _z0Þi; gvi0 ¼ ð _z� _z0Þi0 ; (3.49a)

gvu0 ¼ 1
2½ðx⊺Hx� x0⊺H0x0Þ þ j _z� _z0j2�: (3.49b)

Applying (3.20) removes any reference to geodesic veloc-
ities in these equations:

giu0 ¼ gvi

¼ ½ð@uB� �ÞB�1ðx�Ax0Þ þ @uAx0�i; (3.50a)

gvu0 ¼ 1
2½ðx⊺Hx� x0⊺H0x0Þ þ jgiu0 j2�: (3.50b)

E. Effects of caustics

Essentially all difficulties related to deriving Green
functions in plane wave spacetimes arise from the poor
behavior of various bitensors near conjugate hyperplanes.
This is, in turn, a consequence of geodesic nonuniqueness
in these regions. We now discuss the structure of geodesics
and the asymptotic forms of �ðp; p0Þ and �ðp; p0Þ near
conjugate hyperplanes. Both of these topics depend on
knowledge of the spatial Jacobi propagators Aðu; u0Þ and
Bðu; u0Þ near conjugate hyperplanes.

1. A and B near conjugate hyperplanes

It is simplest to discuss the behavior of the spatial Jacobi
propagators near conjugate hyperplanes associated with
degenerate (multiplicity 2) conjugate points. Consider a
particular �nðu0Þ 2 Tðu0Þ where

B̂ nðu0Þ :¼ Bð�nðu0Þ; u0Þ ¼ 0: (3.51)

It follows from (A2) that Ânðu0Þ :¼ Að�nðu0Þ; u0Þ andd@uBnðu0Þ :¼ @uBðu; u0Þju¼�nðu0Þ are both invertible [even

though B̂nðu0Þ is not]. Furthermore,

d@uB n ¼ ðÂ�1
n Þ⊺ � 0: (3.52)

Using these expressions to expand Bðu; u0Þ when u is
near �n,

B ðu; u0Þ � ðu� �nÞðÂ�1
n Þ⊺: (3.53)

6It is also common to define the van Vleck determinant as the
solution to a certain ‘‘transport equation’’ along the geodesic
connecting its arguments [2,3]. Unfortunately, �ðp; p0Þ becomes
unbounded near conjugate hyperplanes. It is not clear how to
unambiguously extend the solution of a differential equation
through these singularities, so we adopt the definition (3.43)
instead.
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The � symbol is used here to denote a relation that holds
asymptotically as u ! �n. To leading order, the determi-
nant of Bðu; u0Þ in this limit is

detBðu; u0Þ � ðu� �nÞ2
detÂn

: (3.54)

Its inverse is clearly

B�1ðu; u0Þ � ðu� �nÞ�1Â⊺
n: (3.55)

Now consider a different �n 2 Tðu0Þ associated with a

nondegenerate (multiplicity 1) conjugate point. B̂n is then
nonzero and has matrix rank 1. Using the matrix determi-
nant lemma [44] together with (A2), the Jacobi propagators
at ð�nðu0Þ; u0Þ are easily seen to satisfy

detÂn detd@uBn ¼ 1þ Trðd@uA⊺
nB̂nÞ: (3.56)

We shall only consider cases where

Tr ðd@uA⊺
nB̂nÞ � �1: (3.57)

This is a technical condition which we use to ensure thatd@uBn is invertible. There do exist plane waves where (3.57)
is violated, but these examples must be very finely tuned.

Applying the matrix determinant lemma gives an ap-
proximation for the determinant of Bðu; u0Þ when u is near
�n. To lowest nontrivial order,

detBðu; u0Þ � ðu� �nÞTr½B̂nðd@uBnÞ�1� detd@uBn: (3.58)

The inverse of Bðu; u0Þ in the limit u ! �n follows from
the Sherman-Morrison formula [44]:

B�1ðu; u0Þ � ðu� �nÞ�1ðd@uBnÞ�1

�
�� B̂nðd@uBnÞ�1

Tr½B̂nðd@uBnÞ�1�
�
:

(3.59)

Assumption (3.57) implies that d@uBn has matrix rank 2.

B̂n has rank 1 for the nondegenerate case considered here,

so B̂nðd@uBnÞ�1 must also have rank 1. It is shown in

Appendix A that B̂nðd@uBnÞ�1 is also symmetric. As a
result, it possesses one nonzero eigenvalue and a nonvan-
ishing trace. The matrix in parentheses in (3.59) is there-
fore a two-dimensional projection operator. It is symmetric
with eigenvalues 0 and 1. There therefore exists a unit
vector q̂n satisfying�

�� B̂nðd@uBnÞ�1

Tr½B̂nðd@uBnÞ�1�
�
q̂n ¼ q̂n: (3.60)

This is unique up to a sign. In terms of q̂n,

B�1ðu; u0Þ � ðu� �nÞ�1ðd@uBnÞ�1ðq̂n � q̂nÞ: (3.61)

Equation (3.60) may be used to see that q̂n is in the (left)

null space of B̂n:

q̂ ⊺
nB̂n ¼ 0: (3.62)

Using (A2), the u derivative of B on a nondegenerate
conjugate hyperplane is given by

d@uB n ¼ ðÂ�1
n Þ⊺ð�þ d@uA⊺

nB̂nÞ: (3.63)

This may be substituted into (3.58) and (3.59) in order to
provide explicit approximations for the inverse and deter-
minant of Bðu; u0Þ near a nondegenerate conjugate hyper-

plane in terms of Ân, d@uAn, and B̂n. Equations (3.54) and
(3.55) serve the same purpose for degenerate conjugate
points.
B may be interpreted as a ‘‘focusing matrix.’’ Near

degenerate conjugate points, (3.55) implies that B�1 di-
verges in both spatial directions. In the case of a non-
degenerate conjugate point, (3.61) illustrates how B�1

diverges in only ‘‘one direction.’’ This distinction is closely
related to the behavior of geodesics near conjugate points
with different multiplicities.

2. Geodesics on conjugate hyperplanes

It is shown in Sec. III B that pairs of points on conjugate
hyperplanes are connected either by an infinite number of
geodesics or by none. This is a consequence of the fact that
all geodesics—timelike, spacelike, or null—emanating
from a single point and reaching a conjugate hyperplane
are focused down to a one- or two-dimensional region on
that three-dimensional surface. The null geodesics are
focused to either a point or a line. We now demonstrate
that the latter case occurs on nondegenerate conjugate
hyperplanes and is an example of astigmatic focusing.
Scenarios where all null geodesics momentarily focus to
a single point occur only on degenerate conjugate hyper-
planes. This is anastigmatic focusing.
Consider a point p0 and a constant-u hyperplane S�nðu0Þ

that is conjugate to Su0 . Suppose that the conjugate points

associated with this pair are degenerate, so B̂n ¼
Bð�n; u0Þ ¼ 0. It then follows from (3.16) that all geodesics
(of any type) emanating from a particular point p0 with
spatial coordinates x0 are focused to

x ¼ Ânðu0Þx0 (3.64)

as they pass through S�nðu0Þ. Use of (3.16), (3.18), and (3.52)
then shows that the v coordinates of all geodesics are
given by

v0 þ "ð�n � u0Þ þ 1
2x

0⊺Â⊺
n
d@uAnx

0 (3.65)

on S�n . The only free parameter here is ", which is defined

by (3.19). The set of all geodesics emanating from p0 are
therefore focused down to a line on S�n . Null geodesics are

all characterized by " ¼ 0, and are therefore focused
down to a single point. See Fig. 3. Almost the entire null
cone of a point p0 is focused to a point on every degenerate
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hyperplane conjugate to Su0 . The lone exception is the null
geodesic generated by ‘a. This lies entirely in Su0 , so it
never passes through any conjugate hyperplanes.

The situation is slightly more complicated for nonde-

generate conjugate points. In these cases, B̂n can be written
as the outer product of two nonzero vectors:

B̂ n ¼ p̂n � m̂n: (3.66)

There is no loss of generality in supposing that jp̂nj2 ¼ 1.
Substitution of (3.66) into (3.16) shows that the spatial
components of all geodesics starting at x0 lie on the line

x ¼ Ânx
0 þ tp̂n (3.67)

as they pass through S�n . The parameter t ¼ m̂n � _z0 ap-
pearing in this equation can be any real number.
Combining (3.66) with (3.62) shows that

p̂ n � q̂n ¼ 0; (3.68)

where q̂n is defined by (3.60). In this sense, a plane wave
may be thought of as focusing geodesics in the direction
q̂n.

Equations (3.60) and (3.68) imply that p̂n is an eigen-

vector of B̂nðd@uBnÞ�1. In particular,

B̂
⊺
np̂n ¼ Tr½B̂nðd@uBnÞ�1�ðd@uBnÞ⊺p̂n: (3.69)

Using this together with (3.16), (3.18), (3.67), and (A2), the
v coordinates of geodesics starting at a single point and
passing through a nondegenerate conjugate hyperplane S�n
satisfy

v0 þ "ð�n � u0Þ þ 1
2x

0⊺Â⊺
n
d@uAnx

0 þ tp̂⊺
n
d@uAnx

0

þ 1
2t
2 Tr½B̂nðd@uBnÞ�1��1: (3.70)

There are two free parameters here: " and t. For null
geodesics, " vanishes. The intersection of S�nðu0Þ with

the light cone of a point p0 is therefore a one-dimensional
curve. It is a parabola in the coordinates ðv;xÞ. See Fig. 4.

3. Bitensors near conjugate hyperplanes

The bitensors discussed in Sec. III D are not defined if
their arguments lie on conjugate hyperplanes. Despite this,
expansions for Bðu; u0Þ obtained above may be used to
understand how �ðp; p0Þ and �ðp; p0Þ behave near conju-
gate hyperplanes.
First consider �ðp; p0Þ if the u coordinate of p is close

(but not equal) to some �nðu0Þ 2 Tðu0Þ associated with
degenerate conjugate points. In this region, the unbounded
matrix B�1ðu; u0Þ almost always dominates in (3.40).
Using that equation together with (3.52) and (3.55),

�ðp; p0Þ � � 1

2

�
�n � u0

�n � u

�
jx� Ânx

0j2: (3.71)

As before, Ân :¼ Að�n; u0Þ. It follows that � diverges as
one approaches a degenerate conjugate hyperplane except

if the approach is at the special spatial coordinates x ¼
Ânx

0. Recalling (3.64), these are the coordinates to which
all geodesics emanating from p0 are focused to on S�n .

The behavior of the van Vleck determinant near a de-
generate conjugate hyperplane is easily found using (3.44)
and (3.54):

FIG. 3. A collection of null geodesics emanating from a point
on Su0 (the lower plane) and focusing back to a single point on a
conjugate hyperplane S�nðu0Þ with multiplicity 2 (the upper

plane). One spatial coordinate has been suppressed.

FIG. 4. A collection of null geodesics emanating from a point
on Su0 (the lower plane) and focusing to a parabola on a
conjugate hyperplane S�nðu0Þ with multiplicity 1 (the upper

plane). One spatial coordinate aligned with p̂nðu0Þ is displayed.
The other [aligned with q̂nðu0Þ] is suppressed.
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�ðp; p0Þ �
�
�n � u0

�n � u

�
2
detÂn: (3.72)

detÂn cannot vanish, so� always diverges like ð�n � uÞ�2

as u ! �n. Also note that the van Vleck determinant
retains its sign before and after the singularity.

Similar equations may be derived if �n is associated with
a nondegenerate conjugate point. First note that in this
case, (3.62) and (A2), and the symmetry of Bð@uBÞ�1

imply that

ðq̂n � q̂nÞÂn ¼ ðq̂n � q̂nÞ½ðd@uBnÞ�1�⊺; (3.73)

where q̂n is defined by (3.60). Using this identity together
with (3.40) and (3.61) establishes that

�ðp; p0Þ � � 1

2

�
�n � u0

�n � u

�
½q̂n � ðx� Ânx

0Þ�2: (3.74)

It is clear from this equation and (3.68) that � diverges as
u ! �n unless x satisfies (3.67). This is analogous to what
occurred in the case of the degenerate point: � diverges as
one attempts to approach pairs of points that are not con-
nected by any geodesics.

The behavior of the van Vleck determinant near a non-
degenerate conjugate point is easily determined using
(3.44) and (3.58):

�ðp; p0Þ � � ð�n � uÞ�1ð�n � u0Þ2
Tr½B̂nðd@uBnÞ�1� detðd@uBnÞ

: (3.75)

Note that this diverges more slowly as u ! �n than in the
case of degenerate conjugate hyperplanes (as expected due
to the weaker focusing). It is also evident that � switches
sign after passing through a nondegenerate conjugate
hyperplane.

F. Causal structure

Plane wave spacetimes are not globally hyperbolic [45].
This is easily confirmed by considering two points p and p0
that are conjugate along some causal geodesic with initial
spatial velocity _z0. As argued in Sec. III B, such points are
connected by an infinite number of geodesics. Indeed, they
are connected by an infinite number of causal geodesics. p
and p0 are conjugate on all of them.

This may be seen by considering a causal geodesic
connecting two points p and p0. Suppose that uðpÞ ¼
�nðu0Þ. If the affine parameter of the connecting geodesic
is identified with u, consider a new geodesic (with the same
affine parameter) where the initial data are shifted such that

_z 0 ! _z0 þ t�; (3.76)

" ! "þ t

2

�
z0 � �� z � ðd@uBn�Þ

�n � u0

�
: (3.77)

Here, � is any vector satisfying B̂n� ¼ 0 and t 2 R. "
denotes the constant defined by (3.19). It is easily verified
that the resulting geodesic still passes through p and p0.
Indeed, varying t produces a 1-parameter family of
geodesics passing through these points. It is clear that t
may be increased without bound in at least one direction
while retaining the causal nature of the geodesics (implied
by " � 0). There therefore exist causal geodesics connect-
ing p and p0 with arbitrarily large initial velocities.
Recall that Bðu; u0Þ has maximal rank when u =2 Tðu0Þ.

It then follows from (3.16) and the unboundedness of
j _z0j that there exist causal geodesics connecting p and p0
that reach arbitrarily large values of jxj between these
points. If p is in the future of p0, ðcausal past of pÞ \
ðcausal future of p0Þ is therefore unbounded. Global hy-
perbolicity requires that all such sets be compact, so plane
waves with conjugate points cannot be globally hyperbolic.
One consequence of this is that causally connected

points can fail to be connected by any causal geodesics.
Certain pairs of points connected by spacelike geodesics
(and not by any other types of geodesic) may also be
connected by accelerated curves that are everywhere
causal. Avez and Seifert have shown that this cannot
happen in globally hyperbolic spacetimes [46,47].
To see that this does indeed occur in plane wave space-

times, consider two points p and p0 that do not lie on
conjugate hyperplanes. Suppose that u > u0, and that there
exists exactly one �nðu0Þ 2 Tðu0Þ that lies between u and
u0. The discussion in Sec. III B implies that p and p0 are
connected by a unique geodesic. That geodesic is spacelike
whenever

�ðp; p0Þ> 0: (3.78)

Choose a third point p00, where u00 � �n lies between u
and u0. Consider a curve constructed by stitching together
the unique geodesic connecting p0 to p00 with the unique
geodesic connecting p00 to p. We now show that it is
possible to choose p00 such that, despite (3.78), both of
these geodesics are causal:

�ðp0; p00Þ 	 0; �ðp00; pÞ 	 0: (3.79)

Suppose for definiteness that u00 ¼ �n � � for some
� > 0. If the x00 are not spatial coordinates to which geo-
desics starting at x0 must focus to as u ! �n, the expan-
sions (3.71) and (3.74) show that �ðp0; p00Þ can be made
arbitrarily negative by choosing � to be sufficiently small.
Essentially any geodesic from p0 to p00 can therefore be
made timelike by placing u00 sufficiently close to (but less
than) �n. One then needs to choose v00 and x00 such that
�ðp00; pÞ 	 0. v00 is entirely free, while x00 is only con-
strained not to equal (3.64) or (3.67) (with x ! x00). These
parameters can always be adjusted to ensure that the
geodesic from p00 to p is causal. It follows that all pairs
of points separated by exactly one conjugate hyperplane
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are causally connected. This is true despite that some such
pairs are not connected by any causal geodesics.

This argument may be extended to points separated by
multiple conjugate hyperplanes using curves constructed
by stitching together increasing numbers of geodesic
segments. The result is the same: Any two points separated
by at least one conjugate hyperplane are in causal contact.
More discussion of causality in plane wave—and more
generally, pp-wave—spacetimes may be found in [48].

G. Examples

We now illustrate the concepts just discussed by consid-
ering three examples of plane wave spacetimes.

1. Symmetric electromagnetic plane wave

The simplest nontrivial plane wave spacetime is a sym-
metric conformally flat geometry whose associated stress-
energy tensor satisfies the weak energy condition.
Following the discussion in Sec. II B, the profile HðuÞ of
such a wave is given by HðuÞ ¼ �h2� for some constant
h2 > 0. Rescaling the u and v coordinates, there is no loss
of generality in setting h ¼ 1:

H ¼ ��: (3.80)

Hence,

ds2 ¼ �2dudv� jxj2du2 þ jdxj2: (3.81)

Recalling (2.13), this metric may be interpreted as the
geometry associated with the electromagnetic field

Fab ¼ 2r½aurb�x1: (3.82)

A timelike geodesic observer at the spatial origin x ¼ 0
and with the unit 4-velocity

_z a ¼ 1ffiffiffi
2

p
�
@

@u
þ @

@v

�
a

(3.83)

would view Fab as being composed of crossed electric and
magnetic fields with constant (and equal) magnitude lying
in the x1-x2 plane:

Ea :¼ Fab _z
b ¼ � 1ffiffiffi

2
p ðdx1Þa; (3.84a)

Ba :¼ � 1

2
�abcd _zbFcd ¼ � 1ffiffiffi

2
p

�
@

@x2

�
a
: (3.84b)

Also note that Fab is covariantly constant everywhere.
Regardless of interpretation, it follows from (3.1) and

(3.2) that the spatial components of the Jacobi propagators
are

Aðu; u0Þ ¼ � cosðu� u0Þ; (3.85a)

Bðu; u0Þ ¼ � sinðu� u0Þ: (3.85b)

It is evident from (3.3) that the conjugate hyperplanes are
equally spaced and occur at the u coordinates

�nðu0Þ ¼ u0 þ n�; (3.86)

where n is any nonzero integer. In these spacetimes, there
are an infinite number of conjugate points along any
(inextendible) geodesic satisfying ‘a _z

a � 0. All of these
conjugate points have multiplicity 2. Regardless of initial
velocity, all geodesics with initial spatial coordinates zðu0Þ
on Su0 have spatial coordinates ð�1Þnzðu0Þ on S�nðu0Þ.
The van Vleck determinant is easily computed using

(3.44) and (3.85):

�ðp; p0Þ ¼
� ðu� u0Þ
sinðu� u0Þ

�
2
: (3.87)

As expected from the discussion in Sec. III E, �ðp; p0Þ
is positive everywhere it is defined and diverges like
ð�n � uÞ�2 if u ! �nðu0Þ.
For reference, Synge’s function may be computed using

(3.40) and (3.85):

� ¼ 1
2ðu� u0Þ½�2ðv� v0Þ þ cotðu� u0Þðjxj2
þ jx0j2 � 2x � x0 secðu� u0ÞÞ�: (3.88)

In terms of the Rosen coordinates ðU;V;XÞ discussed at
the end of Sec. II B, the metric of a homogeneous con-
formally flat plane wave may be written in the form (2.15)
with, e.g.,

H ðUÞ ¼ A⊺ðU;U0ÞAðU;U0Þ ¼ �cos2ðU�U0Þ: (3.89)

Here, U0 is interpreted as an arbitrary parameter. It is
evident that (no matter the choice of U0), there exist values
of U where H ðUÞ ¼ 0. The Rosen metric is singular at
these points even though the Brinkmann metric (3.81) is
everywhere well defined.

2. Symmetric gravitational plane wave

The simplest example of a plane wave admitting non-
degenerate conjugate points is the linearly polarized and
symmetric gravitational wave described by

HðuÞ ¼ 1 0

0 �1

 !
: (3.90)

This has vanishing trace, so the resulting spacetime sat-
isfies the vacuum Einstein equation. The geometry repre-
sents a ‘‘pure’’ gravitational wave.
It is easily verified that

Aðu; u0Þ ¼ coshðu� u0Þ 0

0 cosðu� u0Þ

 !
; (3.91)

and

Bðu; u0Þ ¼ sinhðu� u0Þ 0

0 sinðu� u0Þ

 !
: (3.92)

The conjugate hyperplanes are again given by (3.86).
Unlike in the previous example, however, the associated
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conjugate points all have multiplicity 1: Focusing occurs
only in the x2 direction.

The van Vleck determinant for this spacetime is

�ðp; p0Þ ¼ ðu� u0Þ2
sinðu� u0Þ sinhðu� u0Þ : (3.93)

Following the general trends derived in Sec. III E, �ðp; p0Þ
diverges like ð�n � uÞ�1 if u ! �nðu0Þ, a slower growth
than occurs in the degenerate example (3.87). It is also
clear that the van Vleck determinant switches sign on
passing through each conjugate hyperplane in this
example.

A plane wave spacetime with HðuÞ given by (3.90) may
be written in Rosen coordinates (2.15) using, e.g.,

H ðUÞ ¼ cosh2ðU�U0Þ 0

0 cos2ðU�U0Þ

 !
: (3.94)

Once again, the Rosen coordinates become singular while
the Brinkmann coordinates do not.

3. A more realistic example

Although very simple, neither (3.89) nor (3.94) look very
much like ‘‘ordinary’’ oscillating waves. Consider instead
a linearly polarized vacuum plane wave with the profile

HðuÞ ¼ h

2

1 0

0 �1

 !
cosu: (3.95)

Here, 0< h< 1 is a constant. In this case, Aðu; u0Þ and
Bðu; u0Þ are linear combinations of Mathieu functions.

Properties of these functions are not particularly well
known, so it is instructive to consider perturbative solutions
when h 
 1. One such solution of (2.17) is

EðUÞ ¼ �� h

2

1 0

0 �1

 !
cosUþOðh2Þ: (3.96)

Substituting this into (2.15) and (2.19), the metric may be
written in Rosen coordinates as

ds2 ¼ �2dUdV þ jdXj2
� h½ðdX1Þ2 � ðdX2Þ2� cosUþOðh2Þ: (3.97)

This can be recognized as the line element of a polarized
monochromatic gravitational plane wave as one would
expect from linearized general relativity in transverse-
traceless gauge.

Continuing to assume that h is small, the spatial Jacobi
propagators are approximately given by

Aðu; u0Þ ¼ �� h

2

1 0

0 �1

 !
� ½ðcosu� cosu0Þ þ ðu� u0Þ sinu0� þOðh2Þ

(3.98)

and

Bðu; u0Þ ¼ ðu� u0Þ�þ h
1 0

0 �1

 !�
ðsinu� sinu0Þ

� 1

2
ðu� u0Þðcosuþ cosu0Þ

�
þOðh2Þ: (3.99)

Hence,

detBðu; u0Þ ¼ ðu� u0Þ2 þOðh2Þ (3.100)

and

�ðp; p0Þ ¼ 1þOðh2Þ: (3.101)

It follows that there are no conjugate points in this
approximation.
Exact solutions for A and B in terms of Mathieu func-

tions display much more interesting behavior. Conjugate
points occur generically. Indeed, detBðu; u0Þ is an approxi-
mately sinusoidal function of u:

detBðu; u0Þ � ðconstÞ � ½1� cos	ðhÞðu� u0Þ�: (3.102)

This heuristic approximation rapidly improves as h ! 0.
See Fig. 5 for a case where it starts to break down
(h ¼ 2=3). The period of the oscillations in detB is deter-
mined by the Mathieu characteristic exponent 	ðhÞ and is
always greater than 2�. It is roughly given by

2�

	ðhÞ � 2:82�

h
(3.103)

if h is not too large (the relative error in this estimate for the
period is approximately 10% if h ¼ 2=3). As illustrated in
Fig. 5, conjugate points generically (but not universally)
occur in closely spaced pairs separated by roughly
2�=	ðhÞ. Such points have multiplicity 1. It is possible
for there to exist conjugate points of multiplicity 2—which
do not occur in pairs—although this requires finely tuned
values of h.

2 4 6 8
u

5

10

15

det B u , 0

FIG. 5. detBðu; 0Þ for a plane wave spacetime with HðuÞ given
by (3.95) and h ¼ 2=3. The zeros correspond to locations of
conjugate hyperplanes. They occur in closely spaced pairs
separated by approximately 3:8�. Note that HðuÞ has the shorter
period 2�.
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IV. GREEN FUNCTIONS IN PLANE
WAVE SPACETIMES

Consider a massless scalar field � propagating (without
gravitational backreaction) in a plane wave spacetime.
Allowing for a scalar charge density �, such a field satisfies
the wave equation

� 4�� ¼ rara� ¼ ½�2@u@v �HijðuÞxixj@2v þr2��:

(4.1)

Significant insight into the solutions of this equation may
be obtained by computing an associated Green function
Gðp; p0Þ. Green functions are defined here to be any dis-
tributional solutions to the wave equation with (zeroth-
order) sources localized to a single spacetime point:

raraGðp; p0Þ ¼ �4��ðp; p0Þ: (4.2)

There are, of course, many solutions to this equation. Any
one of them may be used to obtain some solution

��ðpÞ :¼
Z

�ðp0ÞGðp; p0ÞdV0 (4.3)

to (4.1) (at least if � satisfies certain constraints). More
general solutions can be built by adding to �� an appro-

priate homogeneous solution �0 satisfying rara�0 ¼ 0.
Alternatively, appropriate Green functions together with
initial data may be used to convert the wave equation into a
Kirchhoff-type integral equation [2,3].

If p and p0 are sufficiently close, one particular solution
to (4.2) is the ‘‘retarded7 solution’’ (1.2) [2,3]. The biten-
sors Uðp; p0Þ and V ðp; p0Þ appearing in that formula are
known for the four-dimensional plane wave spacetimes
considered here [2,15]. In such cases, the tail of the
Green function V ðp; p0Þ vanishes and the direct portion
Uðp; p0Þ is determined by the van Vleck determinant
described in Sec. III D:

U ðp; p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp; p0Þ

q
: (4.4)

It follows that

Gretðp; p0Þ ¼ �ðp � p0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp; p0Þ

q
�ð�ðp; p0ÞÞ: (4.5)

The advanced solution Gadvðp; p0Þ is the same with the
obvious replacement �ðp � p0Þ ! �ðp0 � pÞ. We mainly
focus on the ‘‘symmetric Green function’’

GSðp; p0Þ :¼ 1
2½Gretðp; p0Þ þGadvðp; p0Þ�; (4.6)

from which the advanced and retarded solutions are easily
extracted. If p and p0 are sufficiently close, it is clear from
(4.5) that

GSðp; p0Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp; p0Þ

q
�ð�ðp; p0ÞÞ: (4.7)

At least for short distances, (4.5) implies that disturban-
ces in� are propagated only on—and not inside—the light
cones of those disturbances. Signals from sources that turn
on and off sharply are themselves sharp. This ‘‘Huygens’
principle’’ is a very special property of massless scalar
fields in four-dimensional plane wave spacetimes. In al-
most all other cases, retarded Green functions have support
inside the light cone [i.e., V ðp; p0Þ � 0 in (1.2)] [2,15].
Even for massless scalar fields in plane wave spacetimes,
Huygens’ principle is not necessarily valid globally. It is
shown below that the appropriate extension of (4.5) fails to
be everywhere sharp if there exist nondegenerate (i.e.,
multiplicity 1) conjugate hyperplanes.
It is evident from the discussion in Sec. III E that the

form (4.7) for the symmetric Green function becomes
problematic if p and p0 are too widely separated. If a plane
wave spacetime admits conjugate hyperplanes, there exist
pairs of points for which the bitensors �ðp; p0Þ and
�ðp; p0Þ appearing in that formula fail to be defined. One
can therefore expect (4.5) to be valid only for p in a
neighborhood of p0 that does not intersect any hyperplanes
conjugate to Su0 . The largest such neighborhood is the set
N 0ðu0Þ defined by (3.5) and illustrated in Fig. 1.
Equations (4.5) and (4.7) are indeed valid solutions to
(4.2) throughout

fp; p0 2 M : p 2 N 0ðuðp0ÞÞg: (4.8)

Our strategy for constructing a global Green function
GSð�; p0Þ first demands that (4.7) hold throughout the
‘‘zeroth normal neighborhood’’ N 0ðu0Þ. Section IVA
then derives similar formulas in all of the remaining
N nðu0Þ [where �ð�; p0Þ and �ð�; p0Þ remain well defined].
The result involves two free parameters for each n and is a
valid solution to (4.2) throughout the generalized normal
neighborhood N ðu0Þ. Section IVB demonstrates how to
extend this solution through the conjugate hyperplanes that
separate the disjoint components N nðu0Þ of N ðu0Þ.
Enforcing the wave equation on conjugate hyperplanes
relates the various free parameters to each other in a simple
way. This fixes the singularity structure of GSð�; p0Þ along
almost all null geodesics passing through p0.
It is important to emphasize that our construction pro-

duces only one of many possible Green functions. We
essentially state that a solution to (4.2) is known in some
region and extend this using ‘‘initial data’’ on the boundary
of that region. Here, the relevant boundaries are hyper-
surfaces of constant u. Even in flat spacetime, initial data
imposed in this way do not yield a unique solution to a
wave equation. Unlike flat spacetime, however, plane wave
geometries do not admit appropriate Cauchy surfaces that

7Notions of ‘‘advanced’’ and ‘‘retarded’’ used here are quasi-
local. They refer only to the causal properties of a solution when
its arguments are sufficiently close together. No claims are made
regarding the behavior of, e.g.,Gret at infinity [where expressions
like (1.2) are not valid]. Additionally, it should be noted that
we derive particular solutions that look retarded or advanced
when their arguments remain close. They are not unique. See
Sec. IVC 3.
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can be used instead of constant-u hypersurfaces. As ex-
plained in Sec. III F, plane waves are not globally hyper-
bolic. That the Green function we construct fails to be
unique is shown in Sec. V to provide an important freedom
if the leading order singularity structure of Green functions
in generic spacetimes is to be determined by plane wave
Green functions.

A. Green functions in the generalized
normal neighborhood

Outside of the normal neighborhood (4.8), the symmet-
ric Green function GSðp; p0Þ must be a solution to the
homogeneous wave equation

raraGSðp; p0Þ ¼ 0: (4.9)

Although the Hadamard form (4.7) breaks down outside of
(4.8), one might still consider a ‘‘Hadamard-like’’ ansatz

GSðp; p0Þ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ðp; p0Þj

q
gnð�ðp; p0ÞÞ (4.10)

for all p 2 N nðu0Þ and p0 2 M. Here, gnð�Þ is some as-
yet undetermined distribution (for n � 0). Recall that the
bitensors �ðp; p0Þ and�ðp; p0Þ appearing in (4.10) are well
defined throughout the region where that equation is valid.
Also note that, as shown in Sec. III D, �ðp; p0Þ is finite and
nonzero everywhere it is defined. This biscalar may be
negative, however, which necessitates the absolute value
appearing in (4.10).

Substituting (4.10) into (4.9) yields the ordinary differ-
ential equation

�
d2gn
d�2

þ 2
dgn
d�

¼ 0: (4.11)

The general distributional solution of this is

gnð�Þ ¼ �n�ð�Þ þ pvð�n=�Þ þ �n; (4.12)

where �n, �n, and �n are arbitrary constants and pv
denotes the Cauchy principal value. The term involving
�n is not interesting, so we discard it at this point.8

It follows that for any p 2 N nðu0Þ (with n possibly
vanishing),

GSðp;p0Þ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�ðp;p0Þj

q
½�n�ð�ðp;p0ÞÞþpvð�n=�ðp;p0ÞÞ�:

(4.13)

Comparison with (4.7) shows that

�0 ¼ 1; �0 ¼ 0: (4.14)

Equation (4.13) provides a class of possible forms for
GSðp; p0Þ for all p in the generalized normal neighborhood
N ðu0Þ. The coefficients �n, �n are undetermined at this
point (for n � 0), which reflects the fact that the wave
equation (4.2) has been not been solved everywhere. In
particular, it has not been solved on the conjugate hyper-
planes S�n separating the disconnected components of N .

Demanding that the wave equation be solved everywhere
provides algebraic matching conditions that relate ð�n; �nÞ
to ð�nþ1; �nþ1Þ or ð�n�1; �n�1Þ. Using (4.14) as initial
data, these matching conditions provide a unique prescrip-
tion for all �n, �n.

B. Green functions on conjugate hyperplanes

Demanding that the wave equation (4.2) be satisfied on a
boundary @N n first requires defining what could possibly
be meant by GSðp; p0Þ in such regions. Roughly speaking,
one would like to define objects that behave like, e.g.,ffiffiffiffiffiffiffi

j�j
p

�ð�Þ�ðu� �nÞ; (4.15a)

pv

� ffiffiffiffiffiffiffij�jp
�

�
�ðu� �nÞ: (4.15b)

�ðp; p0Þ and �ðp; p0Þ are both ill behaved as u ! �n,
so it is not obvious that there is any way to define distri-
butions of this type. Nevertheless, appropriate distributions
may be guessed that are well defined everywhere and
‘‘look like’’ (4.15) for all u away from conjugate hyper-
planes (where the meaning of those expressions is
unambiguous).
To be more precise, we must now treat Green functions

properly as distributions. They are linear functionals acting
on an appropriate space of test functions.9 Specifically,
GSðp; p0Þ takes as input a source point p0 2 M as well as
a test function’ðpÞ : M ! R that is in the spaceC1

0 ðMÞ of
smooth scalar functions with compact support:

GS : C1
0 ðMÞ �M ! R: (4.16)

Given any test function ’ 2 C1
0 ðMÞ, the action of the

Green function at p0 is denoted by

hGSðp; p0Þ; ’ðpÞi: (4.17)

It is also common to write this asZ
GSðp; p0Þ’ðpÞdV; (4.18)

which is the notation we have already been using.

8The term involving �n adds to the Green function something
which depends only on u and u0. All distributions in these
variables are solutions to the homogeneous equation (4.9) and
may therefore be freely added or removed from a particular
Green function.

9Not every linear functional on test functions is a distribution.
There must additionally be a certain sense in which the func-
tional is continuous with respect to sequences of test functions.
Equivalently, it must be possible to bound the action of a
distribution on an arbitrary test function using certain seminorm
estimates. See, e.g., Appendix B or [49].

ABRAHAM I. HARTE AND THEODORE D. DRIVAS PHYSICAL REVIEW D 85, 124039 (2012)

124039-18



Differential equations like (4.2) are really a type
of shorthand notation. For every ’ 2 C1

0 ðMÞ and every

p0 2 M,

hGSðp; p0Þ;rara’ðpÞi ¼ �4�’ðp0Þ: (4.19)

Arguments given above already imply that this equation is
satisfied by (4.13) if the support of ’ lies entirely in
N ðu0Þ. Equivalently, (4.13) is valid as long as ’ does
not pass through any hyperplanes conjugate to Su0 .

We now proceed by providing an ansatz for
hGSðp; p0Þ; ’ðpÞi that applies for test functions with sup-
ports that do not lie entirely in N ðu0Þ. By linearity, it
suffices to consider test functions ’n (with n � 0) whose
supports intersect at most one conjugate hyperplane, spe-
cifically S�nðu0Þ. Denote byT nðu0Þ a connected open neigh-
borhood of the hyperplane S�nðu0Þ that does not intersect any
other conjugate hyperplanes (or, for technical reasons, Su0).
One could choose, for example,

T 2 ¼ N 1 [N 2 [ S�2 (4.20)

if �2 exists. Regardless, use the notation ’n to denote test
functions in T n:

’n 2 C1
0 ðT nðu0ÞÞ: (4.21)

The action of GSð�; p0Þ on a general test function ’ 2
C1
0 ðMÞ may be obtained by summing its action on various

’n and, perhaps, on a test function with support only inN .

We now introduce two new functionals G]
n�ðp; p0Þ and

G[
n�ðp; p0Þ that act on arbitrary ’n 2 C1

0 ðT nðu0ÞÞ:

G]
n�

:¼ lim
�!0þ

ffiffiffiffiffiffiffi
j�j

p
�ð�Þ�ð�ðu� �nÞ � �Þ; (4.22a)

G[
n�

:¼ lim
�!0þ

pv

� ffiffiffiffiffiffiffij�jp
�

�
�ð�ðu� �nÞ � �Þ: (4.22b)

The ] notation on G]
n� indicates that this functional is

related to the ‘‘sharp’’ propagation of signals associated
with � functions. The 1=�-like behavior of G[

n� is, by

comparison, rather ‘‘flat.’’ The n� subscripts on

G]
n�ðp; p0Þ and G[

n�ðp; p0Þ denote support either in the

future (þ ) or past (� ) of the nth hyperplane S�nðu0Þ
conjugate to Su0 3 p0.

The explicit coordinate representations of G]
n�ðp; p0Þ

and G[
n�ðp; p0Þ are

hG]
n� ; ’ni ¼ � lim

�!0þ

Z �1

�n��
du

Z
R2

d2x

� ffiffiffiffiffiffiffij�jp
ju� u0j

�
� ’nðu; v0 þ �;xÞ; (4.23)

and

hG[
n� ; ’ni ¼ � lim

�!0þ

Z �1

�n��
du

Z
R2

d2x
Z 1

0
d���1

� ffiffiffiffiffiffiffij�jp
u� u0

�
� ½’nðu; v0 þ �þ �;xÞ
� ’nðu; v0 þ ���;xÞ�: (4.24)

Here, the function �ðu; u0;x;x0Þ is defined to be the value
of v� v0 which ensures that p is connected to p0 via a null
geodesic:

�ðu; v0 þ �ðu; u0;x;x0Þ;x; u0; v0;x0Þ ¼ 0: (4.25)

Referring to (3.41), �ðu; u0;x;x0Þ is given by

� ¼ 1
2½x⊺@uBB

�1xþ x0⊺B�1Ax0 � 2x0⊺B�1x� (4.26)

in terms of the matrices Aðu; u0Þ and Bðu; u0Þ defined by

(3.1) and (3.2). It is shown in Appendix B thatG]
n� andG[

n�

are well-defined distributions: All integrals in (4.23) and
(4.24) converge and appropriate seminorm estimates may
be derived.
Given the form (4.13) for GS as it would act on test

functions confined to N n, (4.22) can be used to guess a
natural extension valid for all test functions ’n 2
C1
0 ðT nðu0ÞÞ. Suppose that
hGS; ’ni ¼ 1

2ð�n�1hG]
n� ; ’ni þ �nhG]

nþ ; ’ni
þ �n�1hG[

n� ; ’ni þ �nhG[
nþ ; ’niÞ (4.27)

if n > 0. The same expression holds with the replacements

ð�n�1; �n�1; �n; �nÞ ! ð�n; �n; �nþ1; �nþ1Þ (4.28)

if n < 0. It is clear from (4.13) and (4.22) that the form
(4.27) forGS satisfies the wave equation (4.19) if ’n has no
support on S�nðu0Þ. For more general test functions,

hGS;rara’ni � 0 unless the �n and �n are related in a

particular way. We now compute hG]
n� ;rara’ni and

hG[
n� ;rara’ni in order to derive these relations.

Letting

�’ :¼ ’nðu; v0 þ �ðu; u0;x;x0Þ;xÞ; (4.29)

�’ 0 :¼ @v’nðu; v0 þ �ðu; u0;x;x0Þ;xÞ; (4.30)

note thatffiffiffiffiffiffiffij�jp
ju� u0j r

ara’nðu; v0 þ �;xÞ

¼ �2@u

� ffiffiffiffiffiffiffij�jp
ju� u0j �’

0
�
þr2

� ffiffiffiffiffiffiffij�jp
ju� u0j �’

�
� 2@i

� ffiffiffiffiffiffiffij�jp
ju� u0j �’

0@i�
�
: (4.31)

This is easily verified using direct computation together
with (3.1), (3.44), (4.26), and (A4) and the symmetry of the
matrices @uAA�1 and @uBB

�1 established in Appendix A.
Substitution into (4.23) shows that
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hG]
n� ;rara’ni¼�2 lim

u!��n

Z
R2
d2x

� ffiffiffiffiffiffiffij�jp
ju�u0j

�
�@v’nðu;v0 þ�ðu;u0;x;x0Þ;xÞ: (4.32)

This measures the degree to which G]
n� fails to satisfy the

wave equation.
Using (4.24), the equivalent expression for the 1=�-type

distribution G[
n� is

hG[
n� ;rara’ni ¼ �2 lim

u!��n

Z
R2

d2x
Z 1

0
d���1

� ffiffiffiffiffiffiffij�jp
ju� u0j

�
� ½@v’nðu; v0 þ �þ�;xÞ
� @v’nðu; v0 þ �� �;xÞ�: (4.33)

Evaluating hGS;rara’ni requires simplifying these two
expressions and then applying (4.27). The result depends
on the multiplicity of the conjugate points associated with
�n, and requires the expansions derived in Sec. III E.

1. Degenerate conjugate points

First consider the case where the conjugate hyperplanes
associated with some �nðu0Þ 2 Tðu0Þ are related to degen-
erate (multiplicity 2) conjugate points. Applying (3.41) and
(3.71) to (4.26) then shows that for all p 2 T nðu0Þ,

�ðu;u0;x;x0Þ¼�1

2

jx�Ânx
0j2

�n�u
þ�nðu;u0;x;x0Þ: (4.34)

Here, Ânðu0Þ ¼ Að�nðu0Þ; u0Þ and �nðu; u0;x;x0Þ is a func-
tion that is well behaved in all of its arguments.

Substituting (4.34) into (4.32) and using (3.72) together
with the change of variables

x ! �x :¼ x� Ânx
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp (4.35)

yields

hG]
n� ;rara’ni ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detÂnj

q Z
R2

d2 �x

� @v’n

�
�n; v

0 � 1

2
j �xj2 þ �n; Ânx

0
�
:

(4.36)

Transforming into polar coordinates in the usual way, the
integral on the right-hand side of this equation may be
evaluated explicitly:

hG]
n� ;rara’ni¼�4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetÂnj

q
�’nð�n;v0 þ�nð�n;u0;Ânx

0;x0Þ;Ânx
0Þ:

(4.37)

The discussion in Sec. III E may be used to show that the
argument of’n appearing here is the point to which all null
geodesics starting at p0 focus to on S�nðu0Þ.

Using similar arguments together with (4.33), the wave
operator acting on the 1=� part of the Green function
produces

hG[
n� ;rara’ni ¼ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detÂnj

q Z 1

0
d���1

� ½’nð�n; v0 þ �n þ �; Ânx
0Þ

� ’nð�n; v0 þ �n ��; Ânx
0Þ�: (4.38)

This depends on ’n at all points on S�nðu0Þ that are con-

nected to p0 by geodesics of any type. It is not proportional
to hG]

n� ;rara’ni as given by (4.37).

Substituting (4.27), (4.37), and (4.38) into (4.19) shows
that the wave equation can be satisfied on a degenerate
conjugate hyperplane S�nðu0Þ if and only if

�n ¼ ��n�1; �n ¼ ��n�1 (4.39)

when n > 0 or

�n ¼ ��nþ1; �n ¼ ��nþ1 (4.40)

when n < 0. If these relations are satisfied for a particular
n,raraGSðp; p0Þ ¼ 0 throughoutT nðu0Þ. They imply that
Green functions tend to switch sign on passing through
degenerate conjugate hyperplanes.

2. Nondegenerate conjugate points

The nondegenerate (multiplicity 1) case is treated simi-
larly. Choose a particular �nðu0Þ 2 Tðu0Þ associated with
nondegenerate conjugate points. Equation (3.74) then im-
plies that if u is sufficiently close to �nðu0Þ, �ðu; u0;x;x0Þ
has the form

�ðu; u0;x;x0Þ ¼ � 1

2

½q̂n � ðx� Ânx
0Þ�2

�n � u
þ �nðu; u0;x;x0Þ;

(4.41)

where �nðu; u0;x;x0Þ is smooth. Recall that the unit vector
q̂n is associated with �nðu0Þ as a solution to the eigenvector
problem (3.60).
The form of � near a simple conjugate hyperplane

suggests the coordinate transformation x ! ~x, where

~x1 :¼ q̂n � ðx� Ânx
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp ; (4.42a)

~x2 :¼ p̂n � ðx� Ânx
0Þ: (4.42b)

Here, p̂n is a unit vector satisfying p̂n � q̂n ¼ 0. The signs
of p̂n and q̂n are to be chosen such that the ordered pair of
coordinates ð~x1; ~x2Þ has the same orientation as ðx1; x2Þ.
Using (3.75) and (4.32),
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hG]
n� ;rara’ni
¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jTr½B̂nðd@uBnÞ�1�detðd@uBnÞj
q
�
Z
R2
d2~x@v’n

�
�n;v

0 �1

2
ð~x1Þ2þ�n;Ânx

0 þ p̂n~x
2

�
:

(4.43)

Similar simplifications of (4.33) result in

hG[
n� ;rara’ni
¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jTr½B̂nðd@uBnÞ�1�detðd@uBnÞj
q
�
Z
R2
d2~x@v’

�
�n;v

0 �1

2
ð~x1Þ2þ�n;Ânx

0 þ p̂n~x
2

�
:

(4.44)

Substituting these two equations into (4.27), one sees
that GSðp; p0Þ satisfies the wave equation throughout

T nðu0Þ when

�n ¼ ���n�1; �n ¼ �n�1

�
; (4.45)

if n > 0 or

�n ¼ ��nþ1; �n ¼ ��nþ1

�
(4.46)

if n < 0. Unlike in the degenerate case, these relations
show that the qualitative character of a plane wave Green
function changes on passing through a nondegenerate con-
jugate hyperplane. It switches from having a �ð�Þ-type
singularity to a 1=�-type singularity (or vice versa).

C. A global solution

We now have a recipe for constructing a global Green
function associated with the massless scalar wave equation
(4.1). Fixing p0, suppose that �1ðu0Þ and ��1ðu0Þ both exist.
The symmetric Green function can then be written as

GS ¼ 1

2
lim
�!0þ

ffiffiffiffiffiffiffi
j�j

p �
lim
��!0þ

�ð�þ ��Þ�ðu� ��1 � �Þ�ð�1 � �� uÞ þ
�
�1�ð�Þ þ pv

�
�1

�

��
�ðu� �1 � �Þ�ð�2 � �� uÞ

þ
�
��1�ð�Þ þ pv

�
��1

�

��
�ðu� ��2 � �Þ�ð��1 � �� uÞ þ � � �

�
: (4.47)

If �2ðu0Þ or ��2ðu0Þ does not exist, it is to be replaced by
�1 here. Note that the three groups of step functions
displayed in this equation confine various terms to
N 0ðu0Þ, N 1ðu0Þ, and N �1ðu0Þ [recall Fig. 1 and the
discussion surrounding (3.5) for definitions of these re-
gions]. Terms in N nðu0Þ (with jnj> 1) are also under-
stood to be present if �nðu0Þ exists. Roughly speaking, the
limit � ! 0 ensures that �ðp; p0Þ and �ðp; p0Þ are only
evaluated in regions where they are well defined. The limit
�� ! 0 present in the first term of (4.47) takes into account
footnote 2. It is necessary because �ð�Þ is ill defined in the
coincidence limit p ! p0 (where ra� ! 0).

The coefficients �n and �n appearing in (4.47) are
determined by the multiplicities of the various �nðu0Þ 2
Tðu0Þ. �0 ¼ 1 and �0 ¼ 0 are used as initial conditions for
the matching equations (4.39), (4.40), (4.45), and (4.46)
that fix �n and �n when n � 0. Given some particular n,
either �n ¼ �1 and �n ¼ 0 or �n ¼ �1=� and �n ¼ 0.

Consider an ‘‘observer’’ moving on some (not neces-
sarily causal) curve starting at p0. After passing through a
hyperplane S�nðu0Þ conjugate to Su0 , the matching conditions

(4.39), (4.40), (4.45), and (4.46) imply that such an ob-
server would see GSð�; p0Þ change according to the rules

(modulo an overall factor of
ffiffiffiffiffiffiffij�jp

):
(i) If the conjugate pair ðS�nðu0Þ; Su0 Þ is associated with

nondegenerate (multiplicity 1) conjugate points and
S�nðu0Þ is traversed in a direction of increasing u,

either

� �ð�Þ ! �pv

�
1

��

�
(4.48)

or

� pv

�
1

��

�
! ��ð�Þ: (4.49)

Signs on the right-hand sides of both of these re-
placement rules are reversed if traversing S�nðu0Þ in a

direction of decreasing u.
(ii) When the conjugate pair ðS�nðu0Þ; Su0 Þ has multi-

plicity 2, the form of the Green function switches
sign:

� �ð�Þ ! ��ð�Þ; (4.50)

� pv

�
1

��

�
! �pv

�
1

��

�
: (4.51)

This is equivalent to the effect of two passes
through distinct conjugate hyperplanes with
multiplicity 1.

When these rules are satisfied, Eq. (4.47) for GS is
everywhere a solution to (4.1). Retarded and advanced
Green functions may easily be constructed from GS. For
example,
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Gret ¼ lim
�!0þ

ffiffiffiffiffiffiffi
j�j

p �
lim
��!0þ

�ð�þ ��Þ�ðu� u0Þ�ð�1 � �� uÞ

þ X
n�1

�
�n�ð�Þ þ pv

�
�n

�

��
��ðu� �n � �Þ�ð�nþ1 � u� �Þ

�
: (4.52)

This is a global solution to (4.1). It looks like a retarded
Green function for p near p0, but it is not the only solution
with this property. See footnote 7 and Sec. IVC3.

1. Examples

The simplest nontrivial examples of Green functions in
specific plane wave spacetimes occur when all conjugate
points are degenerate. In these cases, one finds from (4.39)
and (4.40) that �n ¼ ð�1Þn and �n ¼ 0. The retarded
Green function is therefore given by

Gretðp; p0Þ ¼ ð�1Þn
ffiffiffiffiffiffiffi
j�j

p
�ð�Þ (4.53)

when p 2 N nðu0Þ and uðpÞ> uðp0Þ. The form of this
Green function changes sign on each pass through a con-
jugate hyperplane. The singular structure of Gret (or GS or
Gadv) follows the 2-fold pattern (1.4) when all conjugate
points are degenerate.

Conjugate points associated with conformally flat plane
waves are always degenerate, so their retarded Green
functions are given by (4.53). In the symmetric case where
the wave amplitude hðuÞ in (2.10) remains constant, it is
shown in Sec. III G that there exist an infinite number of
degenerate conjugate hyperplanes (for any u0) at locations
given by (3.86). Using (3.87), the retarded Green function
for such a spacetime is

Gretðp; p0Þ ¼ �ðu� u0Þ
� ðu� u0Þ
sinðu� u0Þ

�
�ð�Þ (4.54)

if h ¼ 1 and u� u0 � n� (for all nonzero integers n).
Equation (3.88) provides an explicit coordinate expression
for � in this case.

If all conjugate points in a particular plane wave space-
time are nondegenerate, the scalar Green function has the
repeating 4-fold singularity structure (1.3) rather than the
2-fold structure (1.4) found in the purely degenerate case.
Applying (4.45) and (4.46) to (4.52) for some p 2 N nðu0Þ,
uðpÞ> uðp0Þ,

Gretðp; p0Þ ¼
ffiffiffiffiffiffiffi
j�j

p � ð�1Þn=2�ð�Þ if n even;

ð�1Þðn�1Þ=2pvð1=��Þ if n odd:

(4.55)

This is, in a sense, the ‘‘physically generic’’ form for
retarded Green functions in plane wave spacetimes. It is

not correct if there exist degenerate conjugate hyper-
planes,10 although such structures tend to be ‘‘fragile.’’
Consider, for example, a plane wave that initially possesses
a degenerate conjugate hyperplane. If such a spacetime is
perturbed by slightly changing HijðuÞ, the original degen-
erate hyperplane tends—but is not guaranteed—to split
into two closely spaced nondegenerate conjugate hyper-
planes. Passing through one nondegenerate hyperplane
might therefore be viewed as physically equivalent to
quickly passing through two nondegenerate conjugate hy-
perplanes. Indeed, we have found that two passes through
nondegenerate hyperplanes has the same effect on a scalar
Green function as one pass through a degenerate conjugate
hyperplane.
As a simple example of the 4-fold singularity structure

exhibited in (4.55), consider a symmetric gravitational
plane wave where the wave profile HijðuÞ is given by

(3.90). Such spacetimes have an infinite number of non-
degenerate conjugate hyperplanes at the locations (3.86).
The retarded Green function in this case is explicitly

Gretðp;p0Þ¼
�

u�u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijsinðu�u0Þjsinhðu�u0Þp �

�
8<:ð�1Þn=2�ð�Þ if neven;

ð�1Þðn�1Þ=2pvð1=��Þ if nodd: (4.56)

It is assumed here that u > u0. Also note that n is given by

n ¼ bðu� u0Þ=�c; (4.57)

where b�c denotes the floor function. A coordinate expres-
sion for the � appearing here may be found by substituting
(3.91) and (3.92) into (3.40).

2. Some comments

Before moving on, recall that two questions are posed in
the Introduction regarding the qualitative way in which a
Green function may change its singular structure. First,
how can a very localized distribution like �ð�Þ ‘‘smoothly
transition’’ into something as apparently spread out as
pvð1=�Þ? In plane wave Green functions, this change
occurs on u ¼ const hyperplanes. Furthermore, the discus-
sion in Sec. III E implies that j�j ! 1 on almost all (but
not quite all) approaches to such surfaces. This means that
like �ð�Þ, pvð1=�Þ vanishes almost everywhere when ap-
proaching a conjugate hyperplane where it might transition
into a � function.
It is also asked in the Introduction how a retarded Green

function can involve a term proportional to pvð1=�Þ when

10Degenerate and nondegenerate conjugate hyperplanes may
exist in the same spacetime. Examples of this may be found by
fine-tuning the parameter h appearing in (3.95). The singular
structure of the Green function in such cases deviates from the
simple patterns (1.3) and (1.4). Rules (4.48), (4.49), (4.50), and
(4.51) must then be applied on a case-by-case basis.
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�ðp; p0Þ> 0 traditionally implies that the points p and p0
are not in causal contact. In plane wave spacetimes,
�ðp; p0Þ> 0 implies that the (only) geodesic connecting
p and p0 is spacelike. Despite this, the discussion of
Sec. III F implies that such points are still in causal contact
as long as there exists at least one hyperplane conjugate to
Suðp0Þ that cuts through the geodesic segment connecting p

and p0. It is only in this case that our Green function can
have support in regions where �ðp; p0Þ> 0. All of the
support of Gretð�; p0Þ is therefore in causal contact with p0.

A somewhat weaker version of this argument holds in
any spacetime (including those that are not plane waves).
Consider a null geodesic satisfying zðs0Þ ¼ p0 and
zðsÞ ¼ p. It follows from theorem 9.3.8 of [27] that if there
exists at least one point conjugate to p0 on the geodesic
segment between p0 and p, these two points may be con-
nected by timelike curves. When this condition holds, it
follows that p is in the chronological past or future of p0.
Furthermore, there exists an open neighborhood of every
point in the chronological past or future of p0 that remains
entirely in this set. It follows that an open neighborhood of
p lies entirely in causal contact with p0 if p is connected to
p0 by a null geodesic segment with at least one point
conjugate to p0.

For plane wave spacetimes, this argument guarantees
that two points p and p0 satisfying �ðp; p0Þ> 0 and sepa-
rated by at least one hyperplane conjugate to Suðp0Þ are in

causal contact at least if � is sufficiently small. It is a
special property of plane wave spacetimes that this result
continues to hold even when � is large.

In Sec. V, we show that some features of Green functions
in generic spacetimes very near null geodesics are captured
by appropriate plane wave Green functions. After a con-
jugate point, there is a sense in which a generic Green
function may again be nonzero when �> 0. Here, � is
interpreted as the world function of an associated plane
wave spacetime. It acts like a coordinate for an infinitesi-
mal region around the reference null geodesic. The argu-
ment above guarantees that terms like pv½1=�ð�; p0Þ�
appearing in (say) retarded Green functions on generic
spacetimes remain in causal contact with p0 near the
reference geodesic.

3. Nonuniqueness of plane wave Green functions

Recall that we have constructed a ‘‘retarded Green
function’’ Gretðp; p0Þ by demanding that it solve (4.2)
everywhere and that it be equal to (4.5) for all p 2
N 0ðu0Þ. Other distributions also satisfy these constraints.
One may consider, e.g.,

Gretðp; p0Þ þ �ðp; p0Þ; (4.60)

where �ðp; p0Þ is some solution to rara�ðp; p0Þ ¼ 0 that
vanishes when u < �1ðu0Þ. Any object of this form may
reasonably be interpreted as a retarded Green function.
Indeed, one might only require that rara�ðp; p0Þ ¼ 0

and that �ðp; p0Þ vanish when u < u0þ (something
positive).
Nontrivial distributions �ðp; p0Þ always exist. Consider,

for example, anything which depends purely on u and u0
and that vanishes when, say, u < �1ðu0Þ. As another possi-
bility, suppose that �ðp; p0Þ is, for fixed p0, concentrated on
a constant-u hypersurface Stðu0Þ. One such example is

�ðp; p0Þ ¼ �ðtðu0Þ � uÞ�ðx;x0Þ; (4.61)

where �ðx;x0Þ is harmonic at least in its first argument:
r2�ðx;x0Þ ¼ 0.

V. GREEN FUNCTIONS IN
GENERAL SPACETIMES

Up to this point, we have focused on the propagation of
(test) scalar fields � on plane wave backgrounds. As out-
lined in the Introduction, plane wave spacetimes have a
number of mathematically attractive features. They are not,
however, physically realistic on large scales. Plane wave
geometries are not asymptotically flat, nor even globally
hyperbolic. Despite this, one might hope that there is a
sense in which our results remain ‘‘essentially correct’’ for
physically realistic plane waves where the metric is ade-
quately approximated by (2.5) only in some finite region.11

We now argue for a significantly stronger result: The
singular behavior of Green functions in generic spacetimes
is, to leading order, equivalent to the singular behavior of
Green functions in appropriate plane wave spacetimes.
This is similar to a statement proposed in [24].
The correspondence with plane wave spacetimes is

motivated by two observations. First, general theorems
regarding the propagation of singularities imply that the
singular supports of generic Green functions lie on null
geodesics [5]. Second, there is a sense in which the
geometry near a null geodesic in any spacetime is
equivalent—via what is known as a Penrose limit—to the
geometry of an appropriate plane wave spacetime [16–18].
Furthermore, one might suppose that the behavior of a
generic Green function near its singular support (i.e.,
near a null geodesic) could be at least partially understood
using the geometry of that region. It would then appear to
follow that some aspects of the singular structure of a

Green function in a generic spacetime ð �M; �gabÞ near an
affinely parametrized null geodesic �zðuÞ might be under-
stood by computing a Green function associated with a

plane wave spacetime ðM;gabÞ obtained from ð �M; �gabÞ and
�zðuÞ using a Penrose limit.

11A somewhat more realistic model of a simple gravitational
wave is a pp wave where the profile function Hðu;xÞ appearing
in (2.1) is quadratic in x in some finite region and subquadratic
as jxj ! 1. Geometries of this type are discussed in, e.g.,
[30,50]. Their causal properties do not display the pathologies
of pure plane wave spacetimes.
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Before establishing that this line of reasoning is correct,
we first provide a review of Penrose limits in Sec. VA. An
appropriate notion of a Green function’s ‘‘leading order
singular behavior’’ is then defined in Sec. VB. Near a
given null geodesic, it is argued that this structure is
reproduced by a Green function associated with an appro-
priate plane wave spacetime. The results of Sec. IV are
then applied to determine the singular structure of Green
functions for scalar fields propagating in arbitrary four-
dimensional spacetimes. Lastly, a similar argument is pro-
vided in Sec. VC for the behavior of Green functions
associated with wave equations involving fields of nonzero
tensor rank.

A. Penrose limits

As formulated in [17], the Penrose limit takes as input a

null geodesic �zðuÞ in a spacetime ð �M; �gabÞ, and uses this to
construct a null generalization of a Fermi normal coordi-
nate system12 ðu; �v; �xÞ. Assume for simplicity that the
reference geodesic �zðuÞ is defined for all u 2 R and that
�gab is smooth along this curve. Next, construct a tetrad
fea�ðuÞ; eai ðuÞg on �zðuÞ that is parallel propagated along �zðuÞ
with respect to �gab. Let the first element of this tetrad be the
null tangent to the reference geodesic:

eaþðuÞ ¼
d�zðuÞ
du

: (5.1)

Let the second element ea�ðuÞ of the tetrad also be null, and
suppose that it satisfies �gabe

aþeb� ¼ �1. The final two
elements eai ðuÞ of the tetrad are to be spacelike and ortho-
normal. They are orthogonal to the two null vectors eaþðuÞ
and ea�ðuÞ:

�g abe
aþebi ¼ �gabe

a�ebi ¼ 0: (5.2)

Given some point p 2 �M sufficiently near the reference
geodesic �zðuÞ, identify a u coordinate associated with p by
solving the equation

ea�ðuÞ �ra ��ð�zðuÞ; pÞ ¼ 0: (5.3)

Here, ��ðp; p0Þ denotes Synge’s function in the spacetime

ð �M; �gabÞ. Once u ¼ uðpÞ has been fixed using (5.3), the
remaining three coordinates of p are determined by defin-
ing the tetrad components of the ‘‘separation vector’’

� �ra ��ð�zðuðpÞÞ; pÞ to be the coordinates �vðpÞ and �xðpÞ:
� �ra �� ¼ �vea� þ �xieai : (5.4)

Inverting this relation,

�vðpÞ :¼ eaþðuðpÞÞ �ra ��ð�zðuðpÞÞ; pÞ; (5.5a)

�xið �pÞ :¼ ��ijeaj ðuðpÞÞ �ra ��ð�zðuðpÞÞ; pÞ: (5.5b)

Together, these equations and (5.3) define a Fermi-like
coordinate system ðu; �v; �xÞ near the reference geodesic
�zðuÞ. Given any u0 2 R, the point �zðu0Þ has coordinates
u ¼ u0 and �v ¼ �x ¼ 0 in this chart.
The Penrose limit involves a 1-parameter family of

transformations on the components �g �� �	 of the metric in

the coordinates ðu; �v; �xÞ. Consider, in particular, the sub-
stitutions

u ! u; �v ! v :¼ 
�2 �v; �x ! x :¼ 
�1 �x (5.6)

for any 
 > 0. In the limit 
 ! 0, this transformation can
be interpreted as ‘‘zooming up’’ on the reference geodesic
�zðuÞ and then boosting along it by a similar factor. All
components �g�	 of the metric in the coordinate system

ðu; v;xÞ vanish as 
 ! 0. Expanding the line element in
powers of 
, the first nonvanishing term is proportional to

2 [17]:

d�s2 ¼ 
2½�2dudv� �RþiþjðuÞxixjdu2 þ jdxj2� þOð
3Þ:
(5.7)

Here, �RþiþjðuÞ denotes the appropriate tetrad components

of the Riemann tensor on the reference geodesic:

�RþiþjðuÞ :¼ �Rabcdð�zðuÞÞeaþðuÞebi ðuÞecþðuÞedj ðuÞ: (5.8)

Comparing (2.5) and (5.7), it is clear that

g�	 :¼ lim

!0


�2 �g�	 (5.9)

is—regardless of the original geometry—the metric of a
plane wave spacetime in Brinkmann coordinates with the
amplitude and polarization profile

HijðuÞ ¼ � �RþiþjðuÞ: (5.10)

In this sense, the geometry near any13 null geodesic is
equivalent to that of an appropriate plane wave spacetime.
For any choice of reference geodesic, the Penrose limit

preserves various properties of the original spacetime

ð �M; �gabÞ in the associated plane wave spacetime ðM;gabÞ
[18–20]. For example, conformally flat spacetimes are al-
ways mapped to conformally flat plane waves. Similarly,
vacuum (Ricci-flat) spacetimes are always mapped to vac-
uum plane waves. In general, the number of linearly inde-
pendent Killing fields cannot decrease after taking a
Penrose limit.
For every u 2 R, the Penrose limit maps the point

�zðu0Þ 2 �M on the reference geodesic into a point with
Brinkmann coordinates u ¼ u0 and v ¼ x ¼ 0 in the

12A check mark is omitted on the symbol u because this
coordinate is not rescaled in (5.6).

13If the reference geodesic intersects a singularity and therefore
cannot be extended to infinitely large values of its affine pa-
rameter, one can still perform a Penrose limit. The only differ-
ence is that the resulting plane wave spacetime is slightly
different from the type described in Secs. II and III. In such
cases, the coordinate u would no longer take all values in R and
HijðuÞ may be unbounded for finite u.
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associated plane wave spacetime. This implies that the

reference curve—which is a null geodesic in ð �M; �gabÞ—is
mapped into a null geodesic in ðM;gabÞ.

Crucially, the conjugate point structure of �zðuÞ is iden-
tical in both the original and plane wave spacetimes. If
�zðu0Þ and �zðu00Þ are two points that are conjugate along the

reference geodesic in the original spacetime ð �M; �gabÞ, the
hyperplanes Su0 and Su00 are conjugate in the associated
plane wave spacetime ðM;gabÞ. The multiplicities of the
conjugate pairs ð�zðu0Þ; �zðu00ÞÞ and ðSu0 ; Su00 Þ are identical.
See Fig. 6.

It is also important to note the effect of a Penrose limit
on a smooth curve in the original spacetime which inter-
sects the reference geodesic at, say, �zðu0Þ. It is straightfor-
ward to show from (5.6) that all such trajectories (which
are not infinitesimal deformations of the reference geode-
sic) are mapped to the u ¼ u0 hyperplane Su0 . They are
geodesics with respect to the plane wave metric gab and are
therefore straight lines in the coordinates ðv;xÞ which pass
through v ¼ x ¼ 0. Any curves which are null or timelike
at the intersection point �zðu0Þ (and some that are spacelike
there) are mapped to the null geodesic with Brinkmann
coordinates u ¼ u0 and x ¼ 0. See Fig. 7.

B. Singular structure of generic scalar Green functions

We now consider a Green function �Gðp; p0Þ associated
with the scalar wave equation

�L �� ¼ �4� �� (5.11)

in an arbitrary spacetime ð �M; �gabÞ. As in (1.1), the principal
part of the linear differential operator �L is to be given by

�gab �ra
�rb. Unlike in the plane wave field equation (4.1), we

allow for additional terms involving at most one derivative
(so fields with, e.g., mass or nonminimal coupling to the
curvature may be considered). Any Green function asso-
ciated with (5.11) is required to satisfy

h �Gðp; p0Þ; �Ly �’ðpÞi ¼ �4� �’ðp0Þ (5.12)

for all test functions �’ 2 C1
0 ð �MÞ. Here, �Ly denotes the

adjoint of �L.
Penrose limits can be thought of as zooming in on a

particular null geodesic �zðuÞ. It follows that a plane wave
Green functionGðp; p0Þ could only be expected to describe
the action of a generic Green function �Gðp; p0Þ near �zðuÞ.
A more precise statement of this form is that we would

like to consider the action of �Gðp; p0Þ on test functions
’ðu; v;xÞ 2 C1

0 ðR4Þ that are fixed in the scaled coordi-

nates ðu; v;xÞ related to the Fermi-like coordinates
ðu; �v; �xÞ via (5.6). Given some ’, define a 1-parameter
family of test functions �’
 such that

�’
ðu; �v; �xÞ :¼ ’ðu; 
�2 �v; 
�1 �xÞ (5.13)

for all 
 > 0. Test functions of this type always remain
near �zðuÞ when 
 is sufficiently small.

The action of any smooth function—call it �V ðpÞ—on a
test function �’
 of the form (5.13) is given by

FIG. 6. Schematic illustrating that Penrose limits map conju-
gate points to conjugate points. The inset shows the reference
null geodesic in the spacetime ð �M; �gabÞ along with a number of
nearby geodesics. The points �zðu0Þ and �zðu00Þ are conjugate on the
reference geodesic. They are mapped to the conjugate hyper-
planes Su0 and Su00 in the associated plane wave spacetime.

FIG. 7. The effect of a Penrose limit on a null curve which
intersects the reference geodesic at the points �zðu0Þ and �zðu00Þ.
Such a curve is mapped to null geodesics on the hyperplanes Su0
and Su00 . Note that one continuous curve in the original spacetime
ð �M; �gabÞ is mapped into two disconnected curves in the associ-
ated plane wave spacetime ðM; gabÞ.
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h �V ; �’
i ¼
Z

dud �vd2 �x �V ðu; �v; �xÞ �’
ðu; �v; �xÞ

¼ 
4
Z

dudvd2x �V ðu; 
2v; 
xÞ’ðu; v;xÞ:
(5.14)

This clearly scales like 
4 as 
 ! 0. One would therefore

expect any tail terms in �Gðp; p0Þ to scale like 
4 when
acting on test functions �’
.

Portions of h �Gðp; p0Þ; �’
ðpÞi depending on parts of
�Gðp; p0Þ which are singular on �zðuÞ decrease more slowly
than 
4 in the Penrose limit 
 ! 0. Consider, for example,
Synge’s function ��ðp; p0Þ for pairs of points that are suffi-
ciently close that the standard definition of this object
remains well defined. Then the definition (3.37) and the
Penrose limit metric gab given by (5.9) suggest that

�� 
�2 ��: (5.15)

Hence,

�ð ��Þ � 
�2�ð�Þ; pv

�
1

��

�
� 
�2pv

�
1

�

�
: (5.16)

These are the most singular terms that one would expect to

find in �Gðp; p0Þ. It is therefore reasonable to expect that

h �G; �’
i scales like 
4
�2 ¼ 
2 as 
 ! 0.
We now use this heuristic argument as motivation to

define the leading order singular portion of a generic scalar

Green function �Gðp; p0Þ. For any p0 ¼ �zðu0Þ 2 �M lying on
the reference geodesic and any test function �’
 that is, as
described above, fixed in the scaled coordinates ðu; v;xÞ,
define a linear operator Gðp; p0Þ by

hGðp; p0Þ; ’ðpÞi :¼ lim

!0


�2h �Gðp; p0Þ; �’
ðpÞi: (5.17)

The Hadamard form (4.5) and the estimates (5.16) guar-
antee that this limit exists at least for test functions
whose supports lie sufficiently close to p0. We assume,
however, that the limit exists for all test functions of the
form (5.13).

The notation in (5.17) suggests that Gðp; p0Þ is a Green
function in an appropriate plane wave spacetime. To estab-
lish that this is indeed the case, consider families of test
functions generated by gabrarb’, where gab is the in-
verse of the Penrose limit metric (5.9) and ra is the
associated covariant derivative operator. Substitution into
(5.17) and use of (5.12) shows that

hG; gabrarb’i ¼ lim

!0

h �G; �Ly �’
i ¼ �4�’ðp0Þ (5.18)

for all’ 2 C1
0 ðR4Þ. Comparison with (4.19) shows that the

operator Gðp; p0Þ is a Green function for a scalar field
propagating on a plane wave spacetime with metric (5.9).
It follows that appropriate components of generic Green
functions behave like plane wave Green functions near null
geodesics. Properties of plane wave Green functions de-
rived in Sec. IV may therefore be used to understand some

aspects of scalar Green functions in more general
spacetimes.

To summarize, fix a background spacetime ð �M; �gabÞ in
which a scalar field �� propagates according to (5.11). Fix a

point p0 2 �M corresponding to the location of some small

disturbance in ��. The effect of such a disturbance may now
be followed in a neighborhood of some affinely parame-
trized null geodesic �zðuÞ which passes through p0 ¼ �zðu0Þ.
Perform a Penrose limit using �zðuÞ and the metric �gab. Such
a limit requires a choice of tetrad fea�ðuÞ; eai ðuÞg along the
reference geodesic. This is to be constructed using the
prescription described in Sec. VA. Defining a Fermi-like
coordinate system ðu; �v; �xÞ and performing the scaling
(5.6) produces [via (5.9)] a plane wave metric in
Brinkmann coordinates with the wave profile (5.10).

The (say) retarded Green function �Gretðp; p0Þ associated
with (5.12) is related to the retarded plane wave Green
function Gretðp; p0Þ constructed in Sec. IVC. For any test
function ’ 2 C1

0 ðR4Þ, (5.13) may be rewritten as

lim

!0


�2h �Gret; �’
i ¼ hGret; ’i þ h�; ’i: (5.19)

Here, �ðp; p0Þ is an appropriate solution to the homoge-
neous wave equation

h�; gabrarb’i ¼ 0 (5.20)

associated with the plane wave spacetime. �ð�; p0Þ vanishes
in the Penrose limit of any normal neighborhood of p0 [as
computed in the original spacetime ð �M; �gabÞ], but need not
vanish globally. We return to this point shortly.
For the moment, consider only the first term on the right-

hand side of (5.19). It is clear from the discussion in
Sec. IVC that, fixing p0, Gretð�; p0Þ is proportional either
to �ð�Þ or pvð1=�Þ. It can switch between these two
possibilities and also switch sign. If there is nothing in
�ð�; p0Þ that remains singular on curves where�ð�; p0Þ ¼ 0,
such terms provide a precise sense in which generic re-

tarded Green functions �Gretðp; p0Þ have singularities that
look like either �ð�Þ or pvð1=�Þ near null geodesics
[where �ð�; p0Þ ¼ 0]. It is simple to determine which of
these forms is appropriate by considering the points con-
jugate to p0 along �zðuÞ. These may be found by first using

(5.10) to construct HðuÞ from �Rabc
dð�zðuÞÞ. HðuÞ can then

be used to compute the matrixBðu; u0Þ defined by (3.1) and
(3.2). A point �zð�nÞ is conjugate to �zðu0Þ ¼ p0 if and only if
detBð�n; u0Þ ¼ 0. The multiplicity of such a conjugate pair
is equal to the nullity of Bð�n; u0Þ.
The discrete set of points conjugate to �zðu0Þ on �zðuÞ

generically divide the reference geodesic into a number
of regions corresponding to the N nðu0Þ defined at the
beginning of Sec. III (recall Fig. 1). Equations (4.48),
(4.49), (4.50), and (4.51) may be used to find the leading

order singular structure of �Gretð�; p0Þ in each of these
regions using only the multiplicities of intervening con-
jugate points.
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This argument takes into account only the contribution

to �Gretðp; p0Þ from the first term on the right-hand side of
(5.19). In general, the second term on the right-hand side
of this equation may also be important. It could be
required if, as described in the Introduction, null geo-
desics emanating from p0 later intersect �zðuÞ at a point
that is not conjugate to p0. Such phenomena introduce
new singularities in a neighborhood of the reference
geodesic whose locations cannot be predicted using only
the limited geometric information preserved in the
Penrose limit. As illustrated in Fig. 7, Penrose limits
map any null geodesic in the full spacetime which
intersects the reference geodesic at, say, �zðu0Þ into a null
geodesic in the plane wave spacetime confined to the
hyperplane Su0 . One might therefore expect to take into
account the singularities transported by such geodesics
using an appropriate �ðp; p0Þ in (5.19) that is singular
when u ¼ u0, v 2 R, and x ¼ 0. If there is a surface full
of null geodesics that transversely intersect the reference
geodesic, an appropriate �ðp; p0Þ might be singular
throughout Su0 . It is not, however, clear precisely what
form �ðp; p0Þ should take.

As a very simple model for this phenomenon, consider
the field

�ðpÞ ¼ �ð�ðp; p0ÞÞ þ ��ð�ðp; p00ÞÞ (5.21)

in flat spacetime with � an arbitrary constant and
�ðp0; p00Þ � 0. For p different from p0 and p00, this satisfies
the homogeneous equation rara� ¼ 0. It might be
viewed as approximating a Green function in curved space-
time near some small segment of a null geodesic emanating
from p0. The term proportional to � schematically repre-
sents the effect of a transversely intersecting null geodesic
not associated with a conjugate point.

Consider a null geodesic starting at p0 and construct a
Fermi-like coordinate system ðu; �v; �xÞ as described above.
Adjusting the origin of the u coordinate appropriately,
�ðpÞ has the explicit form
�ðu; �v; �xÞ ¼ �ð�u �vþ 1

2j �xj2Þ þ ��ð�ðu� u00Þð �v� �v00Þ
þ 1

2j �x� �x00j2Þ: (5.22)

If the light cone of p00 intersects the reference geodesic
somewhere, �v00 � 0. Scaling the coordinates as in (5.6)
then results in

� ¼ 
�2�ð�uvþ 1
2jxj2Þ þ ��ððu� u00Þ �v00 þ 1

2j �x00j2Þ:
(5.23)

It is clear that the second term of this equation becomes
negligible as 
 ! 0. This suggests—but does not prove—
that transverse intersections of the light cone not associated
with conjugate points do not survive the Penrose limit at all
[i.e., � ¼ 0 in (5.19)]. It is possible that a different result
might arise if, e.g., the intersection point were conjugate

along some of the connecting geodesics, but not along the
reference geodesic.
We can only conclude that there might exist cases where

� � 0 in (5.19). If so, the singular support of � necessarily
extends to jvj ! 1. Such singularities appear quite differ-
ent from those associated with Gretðp; p0Þ. There is a sense
in which they are ‘‘frozen’’ at specific affine times on the
reference geodesic.
Examples.—We now discuss some consequences of the

above results. General statements are made regarding
Green functions associated with conformally flat space-
times and an important class of vacuum spacetimes. Some
more specific examples are also mentioned briefly.
The simplest general statement following from the argu-

ment of Sec. VB concerns scalar Green functions in space-
times whose metrics are conformally flat. As noted above,
all Penrose limits of conformally flat spacetimes are con-
formally flat plane waves. Furthermore, all conformally flat
plane waves have metrics gab with the form (2.10). It is
evident from this together with (2.5), (3.1), (3.2), and (3.3)
that all conjugate points in such spacetimes have multi-
plicity 2. The plane wave Green function Gretðp; p0Þ is
therefore given by (4.53). Via (5.19), a similar structure

also appears in the Green function �Gretðp; p0Þ associated
with the full spacetime ð �M; �gabÞ. This provides the sense in
which the 2-fold singular structure (1.4) is present in
retarded scalar Green functions associated with all con-
formally flat spacetimes.
For null geodesics passing through a vacuum (Ricci-flat)

region of some spacetime ð �M; �gabÞ, the associated Penrose
limit is a vacuum plane wave with the metric (2.9). The
wave profile in such a case satisfies

TrHðuÞ ¼ �ij �Rþiþjð�zðuÞÞ ¼ 0: (5.24)

If

�Rþiþjð�zðuÞÞ ¼ hðuÞ �Hij (5.25)

for some constant matrix �H, the resulting plane wave is
said to be linearly polarized. An appropriate rotation of the
spatial components eai ðuÞ of the tetrad used to perform the
Penrose limit can then be used to set

�H ¼ � 1 0

0 �1

 !
: (5.26)

It follows that the hðuÞ appearing in (5.25) can be identified
(up to a sign) with the hþðuÞ in (2.9). If hðuÞ is either
entirely non-negative or entirely nonpositive, it is clear
from (3.1), (3.2), and (3.3) that any conjugate points which
may exist must have multiplicity 1. Gretðp; p0Þ then has the
form (4.55). It follows from (5.19) that in the vacuum case
where the Riemann tensor along the reference geodesic has
the form (5.25) and the hðuÞ appearing in that equation
does not pass through zero (but may sometimes equal
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zero), �Gretðp; p0Þ contains the repeating 4-fold pattern of
singular structures (1.3).

Many of the explicit computations of four-dimensional
Green functions found in the literature fall into one of
the two classes of spacetimes just described. In the
conformally flat case, scalar Green functions have been
computed in both the Einstein static universe and
Bertotti-Robinson spacetimes [9]. As expected from our
argument using Penrose limits, the singular structures of
retarded Green functions associated with both of these
spacetimes have been found to have a 2-fold pattern with
the form (1.4).

Another important example in the literature is
the retarded scalar Green function associated with
Schwarzschild spacetime. All Penrose limits of
Schwarzschild14 have the form (5.25) with hðuÞ � 0
[18,25]. We therefore predict that retarded Green func-
tions in Schwarzschild possess the 4-fold singular struc-
ture (1.3). This is indeed what was observed in the
explicit computations carried out in [7].

More generally, we may consider scalar Green functions
associated with all Kerr spacetimes. Penrose limits of Kerr
(and all other Petrov type D spacetimes) are discussed in
[25]. It is easily shown from this that Penrose limits of Kerr
result in wave profiles with the form (5.25). For a reference
geodesic with specific angular momentum lz about the
symmetry axis and Carter constant q, it is shown in [25]
that

hðuÞ ¼ 3M½ða� lzÞ2 þ q�
½r2ðuÞ þ a2cos2�ðuÞ�5=2 : (5.27)

Here, M and aM are the mass and angular momentum
associated with the Kerr background. rðuÞ and �ðuÞ are the
Boyer-Lindquist coordinates of the reference geodesic at
the affine time u. It is clear that hðuÞ cannot change sign, so
we predict that retarded scalar Green functions in Kerr
spacetime contain the 4-fold singular structure (1.3).

C. Tensor Green functions

Thus far, we have considered only Green functions
associated with the propagation of scalar fields. It is
straightforward to partially extend our results to also allow
for fields with nonzero tensor rank. In particular, we now
show that the leading order singular structure of tensor
Green functions in arbitrary spacetimes can be understood
using appropriate plane wave Green functions. No attempt
is made, however, to also derive the form of those plane
wave Green functions as we have done in the scalar case.

As an example, consider a field �Aa propagating on a

spacetime ð �M; �gabÞ and satisfying

�L �Aa ¼ �4��a: (5.28)

Here �L is any second-order linear differential operator
whose principal part is equal to the d’Alembertian

�gab �ra
�rb. The wave equation (5.28) is naturally associated

with Green functions �Ga
a0 ðp; p0Þ satisfying

h �Ga
a0 ðp; p0Þ; �Ly �’aðpÞi ¼ �4� �’a0 ðp0Þ (5.29)

for all smooth vector fields �’aðpÞ with compact support.

Now choose a point p0 2 �M and consider the behavior

of Ga
a0 ð�; p0Þ near a null geodesic �zðuÞ passing through

p0 ¼ �zðu0Þ. As above, we choose a tetrad and construct a
Fermi-like coordinate system ðu; �v; �xÞ in a neighborhood
of �zðuÞ. It is also useful to consider the scaled coordinates
ðu; v;xÞ defined by (5.6).
We now seek an analog of (5.17). This requires choosing

an appropriate family of test functions similar to (5.13).
Given an arbitrary test function ’�ðu; v;xÞ in the plane
wave spacetime which results from the Penrose limit of

ð �M; �gabÞ and �zðuÞ, reverse the coordinate transformation
(5.6) to obtain

�’u

ðu; �v; �xÞ :¼ ’uðu; 
�2 �v; 
�1 �xÞ (5.30a)

�’ �v

ðu; �v; �xÞ :¼ 
2’vðu; 
�2 �v; 
�1 �xÞ (5.30b)

�’
�i

ðu; �v; �xÞ :¼ 
’iðu; 
�2 �v; 
�1 �xÞ (5.30c)

in the unscaled coordinates ðu; �v; �xÞ. Similarly, choose
some covector v�0 which remains fixed (for all 
 > 0) in

the scaled coordinates ðu; v;xÞ. Then define

hG�
�0
; ’�v�0 i :¼ lim


!0

�2h �G ��

��0
; �’ ��


 v ��0 i: (5.31)

Considering test functions of the form g	�r	r�’
�, where

g�	 denotes the Penrose limit metric (5.9), it is straightfor-

ward to show using (5.29) that

hG�
�0
; v�0g	�r	r�’

�i ¼ �4�’�0 ðp0Þv�0 : (5.32)

It follows that the operator G�
�0 ðp; p0Þ is, as the notation

suggests, a Green function associated with the plane wave

spacetime obtained by taking a Penrose limit with ð �M; �gabÞ
and �zðuÞ.
This argument carries through essentially without

change for Green functions associated with all higher-
rank tensor fields. We have thus established that there is
a sense in which the leading order singular behavior of all
tensor wave equations can be understood by considering
appropriate plane wave Green functions.

VI. DISCUSSION

This paper discusses the transport of disturbances in
scalar fields propagating on curved spacetimes. In particu-
lar, we study how light cone caustics affect the character of
singularities appearing in the relevant Green functions.

14Some null geodesics of Schwarzschild intersect the central
singularity. The associated Penrose limits are then singular plane
waves. Before this point, however, all discussion above remains
valid.
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This problem is addressed in two steps. First, explicit
Green functions are obtained for massless scalar fields
propagating on all nonsingular four-dimensional plane
wave spacetimes. We then show in Sec. V that Penrose
limits provide a sense in which certain aspects of these
solutions are universal: The leading order singular struc-
ture of scalar Green functions associated with essentially
all four-dimensional spacetimes can be described by ap-
propriate plane wave Green functions.

The plane wave Green functions we obtain are summa-
rized in Sec. IVC. They are globally defined and fully
explicit [up to the calculation of the 2� 2 matrices A and
B defined by (3.1) and (3.2)]. Almost everywhere, plane
wave Green functions are found to have a Hadamard-like
component. Using � and � to denote Synge’s function and
the van Vleck determinant (which are well defined almost
everywhere in plane wave spacetimes), we find that there
exist Green functions that switch between the forms

� ffiffiffiffiffiffiffij�jp
�ð�Þ and � ffiffiffiffiffiffiffij�jp

pvð1=��Þ after each pass through
a conjugate hyperplane.

As described in Sec. VB, there is a sense in which (say)

retarded Green functions �Gretð�; p0Þ satisfying (5.12) in
generic spacetimes contain similar Hadamard-like terms
near any future-directed null geodesic emanating from p0.
Fixing some point p on such a null geodesic (that is not
conjugate to p0), precisely which Hadamard form is ap-
propriate depends only on the pattern of multiplicities of
all points conjugate to p0 that lie between p0 and p.
Following Eqs. (4.48), (4.49), (4.50), and (4.51), crossing
a nondegenerate (multiplicity 1) conjugate point is found

to change a Green function involving
ffiffiffiffiffiffiffij�jp

�ð�Þ into one

involving
ffiffiffiffiffiffiffij�jp

pvð1=��Þ. Conversely, nondegenerate con-
jugate points transform Green functions proportional toffiffiffiffiffiffiffij�jp

pvð1=��Þ into ones proportional to � ffiffiffiffiffiffiffij�jp
�ð�Þ.

One pass through a conjugate point with multiplicity
2 is seen to have the same effect as two passes through
conjugate points with multiplicity 1. This merely reverses

signs:
ffiffiffiffiffiffiffij�jp

�ð�Þ ! � ffiffiffiffiffiffiffij�jp
�ð�Þ or

ffiffiffiffiffiffiffij�jp
pvð1=��Þ !

� ffiffiffiffiffiffiffij�jp
pvð1=��Þ.

In this way, we have derived and made significantly
more precise Ori’s comments [8] regarding changes in
the singularity structure of Green functions due to light
cone caustics. The result is a simple universal rule that is—
unlike most results regarding caustics—naturally stated in
terms of distributions on the spacetime manifold (as op-
posed to statements involving Fourier transforms).

It is interesting to note that the object � appearing in the
leading order singular structure of a generic Green function
�Gret is not the world function �� associated with the space-

time ð �M; �gabÞ. �� is typically ill defined when its arguments
are widely separated.� is, instead, the world function of an
appropriate plane wave spacetime obtained via a Penrose
limit. This is well defined almost everywhere. Similar
comments also apply to the van Vleck determinant �,

which effectively measures the ‘‘strength’’ of the leading
order singular terms appearing in a generic retarded Green
function. Explicit forms for both � and � are easily
computed in arbitrary spacetimes using the results of
Secs. III D and VA.
The rules we derive for changes in a Green function’s

singular structure have a simple heuristic interpretation.
One might think of degenerate conjugate points as events
where bundles of light rays are perfectly focused in every
direction. Sharp solutions involving �ð�Þ might therefore
be expected to remain sharp after passing through a degen-
erate conjugate point. Similarly, more diffuse solutions like
pvð1=�Þ might be expected to remain diffuse in such an
encounter. Conjugate points with multiplicity 1 are differ-
ent. They focus null geodesics in only one transverse
direction. It is therefore reasonable to expect sharp solu-
tions like �ð�Þ to be ‘‘blurred out’’ by such structures.
Somewhat less intuitive is that the nature of this blurring is
always such that another pass through a nondegenerate
conjugate point ‘‘resharpens’’ the field back into a form
involving �ð�Þ.
An important special case of this work concerns the

behavior of retarded Green functions associated with scalar
fields in the Kerr spacetime. All conjugate points appearing
on null geodesics of Kerr are nondegenerate. Scalar Green
functions in Kerr therefore change the singularity structure
according to the 4-fold pattern (1.3). This result includes as
a special case the 4-fold behavior observed by Dolan and
Ottewill [7] in Schwarzschild Green functions.
The problem of wave propagation in curved spacetime is

a very general one with many applications. Our results may
therefore be useful in a number of fields. One possible
application concerns the computation of self-forces: What
is the force exerted by a small object on itself in a curved
spacetime? One may assume that the total field is the
retarded solution and find the force that this exerts on a
given body. In generic spacetimes, the result depends on
the object’s past history at least via the tail term V ðp; p0Þ
appearing in (1.2). It has, however, been less clear pre-
cisely how light cone caustics in the distant past contribute
to an object’s self-field (see, e.g., [6,7,51] for some related
discussion). More generally, it is important to understand
‘‘how much’’ of a charge’s past history influences its
current self-field. Our results may be useful in answering
this question.
Other applications could exist even in systems where

the spacetime curvature is negligible. Wave equations on
curved spacetimes are mathematically equivalent to vari-
ous physically different problems in flat spacetime. For
example, one might use the same equations to describe the
propagation of acoustic waves in a moving fluid or elec-
tromagnetic waves in certain classes of permeable materi-
als [52,53]. It would be interesting to translate the results of
this paper to more readily apply to problems such as these.
The physical meaning of the Penrose limit would be
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particularly interesting to understand in some of these
‘‘analog gravity’’ systems.

There are two additional ways in which this work could
be extended. Most obviously, it would be extremely useful
to generalize our results to apply to wave equations involv-
ing tensor fields with nonzero rank. The singularity struc-
ture of disturbances in, e.g., electromagnetic fields and
metric perturbations could then be understood in a rela-
tively simple way. We carry out one portion of this task in
Sec. VC, where Penrose limits are used to relate generic
tensor Green functions to appropriate plane wave Green
functions. Although there does not appear to be any sig-
nificant obstacle to doing so, we have not made any attempt
to compute plane wave Green functions for higher-rank
tensor fields in this paper. A complete discussion of the
leading order singularity structure of tensor Green func-
tions must therefore wait for later work.

It might also be interesting to extend our work to higher
numbers of dimensions. In the four-dimensional case con-
sidered here, the rules describing how Green functions
transition between different singular structures suggest
that passing through a conjugate point with multiplicity 2
is equivalent to two passes through conjugate points with
multiplicity 1. While it appears likely that such a rule
generalizes for larger multiplicities, it would be interesting
to verify this directly. Is one pass through a conjugate point
with multiplicity n � 1 in a spacetime with dimension
d � nþ 2 equivalent to n passes through conjugate points
with multiplicity 1? Questions related to higher dimensions
are perhaps not only of mathematical interest. Higher-
dimensional plane wave spacetimes and Penrose limits
have found extensive use in string theory and related sub-
jects [18,54–56].
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APPENDIX A: PROPERTIES OF Aðu; u0Þ
AND Bðu; u0Þ

The 2� 2 matrices Aðu; u0Þ and Bðu; u0Þ defined by
(3.1) and (3.2) play a central role in the geometry of plane
wave spacetimes. This Appendix briefly reviews some of
their most important properties.

First note that any two solutions CðuÞ and DðuÞ to the
modified oscillator equation (2.17) satisfy

@uðC⊺@uD� @uC
⊺DÞ ¼ 0: (A1)

This is a simple application of Abel’s identity. Using the
boundary conditions (3.2) with the identifications
CðuÞ ! Aðu; u0Þ and DðuÞ ! Bðu; u0Þ, it follows that

A ⊺@uB� @uA
⊺B ¼ �: (A2)

In general, A and B are not symmetric matrices. Simple
combinations of them are, however, symmetric. Applying
(A1) with C, D ! A demonstrates thatA⊺@uA is one such
example:

A ⊺@uA ¼ ðA⊺@uAÞ⊺: (A3)

Right multiplying this equation with A�1 and left multi-
plying with ðA�1Þ⊺ shows that @uAA�1 and its inverse are
also symmetric (wherever they exist). All of these com-
ments continue to hold with the replacement A ! B.
Using these observations together with (A2) further

shows that almost everywhere,

BA⊺ ¼ ð@uBB�1 � @uAA�1Þ�1: (A4)

The right-hand side of this equation is symmetric, so BA⊺

must be symmetric as well.
A similar argument shows that the symmetry condition

(2.18) on the matrix EðUÞ involved in the transformation
between Rosen and Brinkmann coordinates is automati-
cally satisfied for all U if it satisfied for any U. It also
follows that _EE�1 is symmetric wherever it exists.
A and B can be computed by directly solving the

differential equations (3.1) with the boundary conditions
(3.2). Alternatively, both matrices may be found by inte-
grating any single EðuÞ satisfying (2.17) and (2.18). Use of
(2.19) and (A1) withC ! E andD ! B demonstrates that

B ðu; u0Þ ¼
Z u

u0
du00EðuÞH �1ðu00ÞE⊺ðu0Þ (A5)

as long asH �1ð�Þ is defined throughout the interval ðu; u0Þ.
The same assumption also leads to a formula for A:

A ðu; u0Þ ¼ �þ
Z u

u0
du00EðuÞH �1ðu00Þ½ _Eðu00Þ � _Eðu0Þ�⊺:

(A6)

Similar equations may be derived for u and u0 arbitrarily
separated by considering a number of different E matrices
which are invertible in a suitable set of overlapping inter-
vals. One interesting consequence of (A5) is that

B ðu; u0Þ ¼ �B⊺ðu0; uÞ: (A7)

APPENDIX B: DISTRIBUTIONAL CHARACTER
OF G]

n� AND G[
n�

It is not a priori clear that the functionals G]
n�ðp; p0Þ and

G[
n�ðp; p0Þ used in the ansatz (4.27) for the scalar Green

function are well defined. From their definitions (4.23) and
(4.24), these objects take as input an ‘‘observation point’’
p0 ¼ ðu0; v0;x0Þ 2 R4 and any test function ’nðpÞ ¼
’nðu; v;xÞ that is smooth and with compact support in
the set T nðp0Þ defined in Sec. IVB.
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By definition, a linear form hG]
n�ðp; p0Þ; ’nðpÞi is a

distribution if and only if, for every fixed p0 and every
compact subset ! 
 T nðu0Þ, there exist seminorm esti-
mates of the form

jhG]
n� ; ’!ij 	 C!

X
j�j	N!

supj@�’!j (B1)

for all ’! with supp’! 
 ! [49]. � denotes a multi-index
and j�j its order. The non-negative numbers C! and N!

depend only on the region !, and not on any details of the
test function. Estimates of this type are straightforward if
! does not pass through the hyperplane S�nðu0Þ conjugate to
Su0 . More generally, one must consider separately the
possible multiplicities the conjugate pair ðS�nðu0Þ; Su0 Þ.

It is simplest to derive estimates like (B1) by choosing
finite (nonzero) numbers u!, x!, and v! such that the
compact rectangular region defined by

ju� �nðu0Þj< u!; jv� v0j< v!; (B2a)

jx� Ânx
0j< x!; (B2b)

entirely encloses ! 
 T nðu0Þ. As in Sec. III E, Ânðu0Þ :¼
Að�nðu0Þ; u0Þ. It is also convenient to introduce the1-norm
k � k! in !:

k � k! :¼ sup
!
j � j: (B3)

1. Degenerate conjugate points

Suppose that �nðu0Þ is associated with conjugate points
of multiplicity 2. Choose an arbitrary compact region
! 
 T nðu0Þ and finite numbers u!, x!, and v! that define
a rectangular region (B2) which encloses !.

Consider the definition (4.23) for hG]
n� ; ’!i when

supp’! 
 !. This consists of an integral over the coor-
dinates u and x. It is clear that the integrand vanishes

whenever jx� Ânx
0j> x!. If, however, ’! has support

sufficiently close to S�n , a sharper bound may be placed on

the maximum value of jx� Ânx
0j that needs to be consid-

ered by using v!. This is because the function
�ðu; u0;x;x0Þ defined by (4.26) has the form (4.34) in this
region. It follows that the integrand vanishes when���������n � 1

2

jx� Ânx
0j2

�n � u

��������>v!: (B4)

This is implied by the stronger condition

jx� Ânx
0j2 > 2j�n � ujðv! þ k�nk!Þ: (B5)

It follows that the spatial support of the integrand in (4.23)

shrinks at least as fast as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp

as u ! �n.
Without loss of generality, we may choose v! to be

sufficiently large that, e.g.,

v! > k�nk!: (B6)

The spatial integral in (4.23) may therefore be limited to

j �xj< 2
ffiffiffiffiffiffi
v!

p
; (B7)

where �x is defined by (4.35). Using �x as an integration
variable, (4.23) changes to

hG]
n� ; ’!i :¼ � lim

�!0þ

Z �n�u!

�n��
du

�
Z
j �xj<2

ffiffiffiffiffi
v!

p d2 �x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð�n � uÞ2�jp
ju� u0j

�
� ’!ðu; v0 þ �;xÞ: (B8)

It follows from (3.72) that the integrand in this equation is
everywhere bounded. Hence,

jhG]
n� ; ’!ij 	 4�u!v!

					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�n � uÞ2j�jp
ju� u0j

					
!

supj’!j<1:

(B9)

Although � is, in general, unbounded in !, this argu-

ment shows that hG]
n� ; ’!i is always finite. All integrals in

its definition converge. Furthermore, they converge abso-
lutely. The order of integration does not matter in (4.23).

This establishes that the G]
n� are well-defined linear func-

tionals. They are also distributions. Equation (B9) provides
a seminorm estimate of the form (B1) with N! ¼ 0 and

C! ¼ 4�u!v!

					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�n � uÞ2j�jp
ju� u0j

					
!

: (B10)

N! and C! depend, as required, only on ! (and not on the
test function ’!).
Establishing similar bounds for the functionals G[

n� is

more complicated. Although it is again useful to change
the integration variable x to �x in the definition (4.24), this
leaves a result where neither the integrand nor the integra-
tion volume are bounded.
The first simplification arises by using (4.34) and (B6) to

deduce that the integrand in (4.24) vanishes when, e.g.,

j �xj> 0; �> 1
2j �xj2 þ 2v!; (B11)

or

j �xj> 2
ffiffiffiffiffiffi
v!

p
; �< 1

2j �xj2 � 2v!: (B12)

Additionally, it is clear from (4.35) and (B2) that the
integrand also vanishes when

j �xj> x!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp : (B13)

We shall assume that x! has been chosen to be sufficiently
large that

x! >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6u!v!

p
; (B14)

so
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x!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp >
ffiffiffiffiffiffiffiffiffi
6v!

p
: (B15)

The factor of 6 here is a fairly arbitrary number. Any other choice greater than 4 could also be used.
These considerations suggest that (4.24) should be split into two parts:

hG[
n� ; ’!i ¼ � lim

�!0þ

Z �n�u!

�n��
du

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�n � uÞ2j�jp
u� u0

��Z
j �xj<

ffiffiffiffiffiffiffi
6v!

p d2 �x
Z 5v!

0
d�

Z 1

�1
d	@v’!ðu; v0 þ �þ 	�;xÞ

�
Z j �xj<x!=

ffiffiffiffiffiffiffiffiffiffiffi
j�n�uj

p

j �xj>
ffiffiffiffiffiffiffi
6v!

p d2 �x
Z ð1=2Þj �xj2þ2v!

ð1=2Þj �xj2�2v!

d�

�
’!ðu; v0 þ �� �;xÞ

�

��
: (B16)

Both integrands here are manifestly bounded. The integral
on the top line is also carried out over a finite volume. It is
therefore trivial to provide a bound for it. The integral on
the lower line must be bounded somewhat more carefully.
The final result is that

jhG[
n� ; ’!ij 	 4�v!

					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu� �nÞ2j�j

p
u� u0

					
!

� ð15u!v! supj@v’!j þ �! supj’!jÞ;
(B17)

where

�! :¼ 2
Z u!

0
d �u

Z x!=
ffiffiffiffiffiffiffiffiffi
4 �uv!

pffiffiffiffiffiffi
3=2

p d�r �r ln

�
�r2 þ 1

�r2 � 1

�
: (B18)

Noting that

0< �r ln

�
�r2 þ 1

�r2 � 1

�
< 2 (B19)

in the relevant range, a straightforward integration shows
that �! <1. It follows that the linear functional hG[

n� ; ’!i
is always finite. It is bounded by the seminorm estimate
(B17), so G[

n� is a distribution.

2. Nondegenerate conjugate points

Suppose now that �nðu0Þ is associated with conjugate
points of multiplicity 1 and choose a compact region
! 
 T nðu0Þ in the same manner as in the previous case.
Using (4.41), the integrand of (4.23) is easily seen to vanish
when ���������n � 1

2

½q̂n � ðx� Ânx
0Þ�2

�n � u

��������>v!: (B20)

Introducing the variables ð~x1; ~x2Þ defined by (4.42), this
inequality is implied by the stronger condition

ð~x1Þ2 > 2ðv! þ k�nk!Þ: (B21)

Also note that the integrand of (4.23) vanishes when

j~x2j> x!: (B22)

We assume that the parameters u!, v!, and x! are
chosen such that (B6) holds. It then follows that (4.23)
can be rewritten as

hG]
n� ; ’!i :¼ � lim

�!0þ

Z �n�u!

�n��
du

Z
j~x1j<2

ffiffiffiffiffi
v!

p d~x1

�
Z
j~x2j<x!

d~x2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð�n � uÞ�jp

ju� u0j
�

� ’!ðu; v0 þ �;xÞ: (B23)

It follows from (3.75) that the integrand in this equation is
everywhere bounded. This means that

jhG]
n� ; ’!ij 	 8u!x!

ffiffiffiffiffiffi
v!

p 					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð�n � uÞ�jp
ju� u0j

					
!

supj’!j<1:

(B24)

Again, we see that all integrals in the definition of G]
n�

converge. Equation (B24) provides a seminorm estimate of
the form (B1), so this operator is, as claimed, a distribution
near nondegenerate conjugate hyperplanes.
We now establish similar bounds for the functionals

Gn� . Using (4.41) and (B6) we find that the integrand in
(4.24) vanishes when

j~x1j> 0; �> 1
2j~x1j2 þ 2v!; (B25)

or

j~x1j> 2
ffiffiffiffiffiffi
v!

p
; �< 1

2j~x1j2 � 2v!: (B26)

This integrand also vanishes when

j~x1j> x!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�n � ujp or j~x2j> x!: (B27)

We assume again that the (B14) holds, so (B15) is true.
Equation (4.24) can then be rewritten as
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hG[
n� ; ’!i ¼ � lim

�!0þ

Z �n�u!

�n��
du

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijð�n � uÞ�jp
u� u0

�Z
j~x2j<x!

d~x2
�Z

j~x1j<
ffiffiffiffiffiffiffi
6v!

p d~x1
Z 5v!

0
d�

Z 1

�1
d	@v’!ðu; v0 þ �þ 	�;xÞ

�
Z j~x1j<x!=

ffiffiffiffiffiffiffiffiffiffiffi
j�n�uj

p

j~x1j>
ffiffiffiffiffiffiffi
6v!

p d~x1
Z ð1=2Þj~x1j2þ2v!

ð1=2Þj~x1j2�2v!

d�

�
’!ðu; v0 þ �� �;xÞ

�

��
: (B28)

This implies the bound

jhG[
n� ;’!ij	8x!

ffiffiffiffiffiffi
v!

p 					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðu��nÞ�j

p
u�u0

					
!

ð5 ffiffiffi
6

p
u!v! supj@v’!jþ	! supj’!jÞ; (B29)

where

	! :¼
Z u!

0
d �u

Z x!=
ffiffiffiffiffiffiffiffiffi
4 �uv!

pffiffiffiffiffiffi
3=2

p d�r ln

�
�r2 þ 1

�r2 � 1

�
: (B30)

The integrand in this equation is bounded from above by 2 (and from below by 0), so 	! <1. It follows that the linear
functional G[

n� is a distribution near nondegenerate conjugate hyperplanes.
Together, the results of this Appendix establish the fact that for any nonzero integer n such that �nðu0Þ 2 Tðu0Þ,

G]
n�ðp; p0Þ and G[

n�ðp; p0Þ are well-defined distributions throughout T nðu0Þ.
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[54] D. Amati and C. Klimčı̀k, Phys. Lett. B 219, 443 (1989).
[55] G. T. Horowitz and A. R. Steif, Phys. Rev. Lett. 64, 260

(1990).
[56] D. Berenstein, J.M. Maldacena, and H. Nastase, J. High

Energy Phys. 04 (2002) 013.

ABRAHAM I. HARTE AND THEODORE D. DRIVAS PHYSICAL REVIEW D 85, 124039 (2012)

124039-34

http://dx.doi.org/10.1088/0264-9381/8/3/010
http://dx.doi.org/10.1088/0264-9381/8/3/010
http://dx.doi.org/10.1088/0264-9381/27/24/245011
http://dx.doi.org/10.1088/0264-9381/27/24/245011
http://dx.doi.org/10.1063/1.525160
http://dx.doi.org/10.1063/1.525160
http://dx.doi.org/10.1098/rspa.1970.0020
http://dx.doi.org/10.1088/0264-9381/25/23/235020
http://dx.doi.org/10.1088/0264-9381/25/20/205008
http://dx.doi.org/10.1088/0264-9381/26/15/155015
http://dx.doi.org/10.1088/0264-9381/29/5/055012
http://dx.doi.org/10.1098/rsta.1974.0046
http://dx.doi.org/10.1103/RevModPhys.37.215
http://dx.doi.org/10.5802/aif.144
http://dx.doi.org/10.1088/1126-6708/2002/12/043
http://dx.doi.org/10.1088/1126-6708/2002/12/043
http://dx.doi.org/10.1023/A:1022962017685
http://dx.doi.org/10.1023/A:1022962017685
http://dx.doi.org/10.1088/0264-9381/28/14/145025
http://dx.doi.org/10.1088/0264-9381/28/14/145025
http://dx.doi.org/10.1016/0370-2693(89)91092-7
http://dx.doi.org/10.1103/PhysRevLett.64.260
http://dx.doi.org/10.1103/PhysRevLett.64.260
http://dx.doi.org/10.1088/1126-6708/2002/04/013
http://dx.doi.org/10.1088/1126-6708/2002/04/013

