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Abstract. We provide a short overview of some recent results on the application of group
Fourier transform to quantum mechanics and quantum gravity. We close by pointing out some
future research directions.

1. Introduction
The group Fourier transform is an integral transform from functions on a Lie group to functions
on a non-commutative dual space. It was first formulated for functions on SO(3) [1,2], later
generalized to SU(2) [2-4] and other Lie groups [5, 6], and is based on the quantum group
structure of Drinfel’d double of the group [7,8]. The transform provides a unitarily equivalent
representation of quantum systems with a Lie group configuration space in terms of non-
commutative algebra of functions on the classical dual space, the dual of the Lie algebra.
As such, it has proven useful in several different ways. Most importantly, it provides a clear
connection between the quantum system and the corresponding classical one, allowing for a
better physical insight into the system. In the case of quantum gravity models this has turned
out to be particularly helpful in unraveling the geometrical content of the models, because the
dual variables have an intuitive interpretation as classical geometrical quantities.

We will first review the general formulation of the group Fourier transform, and then mention
its recent applications to quantum mechanics on SO(3), and to Loop Quantum Gravity and spin
foam models. We will close by pointing out some future reseach directions.

2. Group Fourier transform

Let G be a (finite dimensional) Lie group, and g*the dual of the Lie algebra g of G. The
group Fourier transform is an isometry between L?(G,dg) and a non-commutative function
space L2(g*,dX) defined in the following way [6]: We choose a function E : T*G = G x g* —
U(1), (9,X) — E4(X), the non-commutative plane wave, such that we may decompose the
delta distribution on G in terms of the Fourier modes in g* as f 27rh X ).

Here dX the Lebesgue measure on g*, d = dimg, k € R, is a deformatlon parameter Wthh
determines the physical dimensions on G, and A is the Planck constant. We then define a non-
commutative *—product via the relation Ey(X) % Ep(X) = Egp(X). The »-product is extended
to functlons on g* through linearity by deﬁmng the group Fourier transform of ¢ € L?(G,dg) as
H(X fg kldg E,(X)¢(g), where dg is the (left invariant) Haar measure on G. Due to above

Published under licence by IOP Publishing Ltd 1



Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing
Journal of Physics: Conference Series 360 (2012) 012052 doi:10.1088/1742-6596/360/1/012052

properties, the inverse transform is obtained as ¢(g) = fg (2‘;);) E (X) #(X). We denote the

image of L*(G,dg) under the transform as L2(g*,dX), since by requiring E,-1(X) = E4(X) the
transform is an isometry from L%(G,dg) to L2(g*,dX), i.e.,

i S [ 4K =
a0 5010 = | Gaat0 00 1)

Accordingly, we obtain a unitarily equivalent non-commutative dual representation of fields
living on G via the group Fourier transform.

The choice for the explicit form of the non-commutative plane waves E,(X) is not obvious.
Typically the plane waves are of the form E,(X) = exp(iy.; Zi(g) - X*), where Z;(g) are
some coordinates on the group manifold. In particular, [1,2,9, 10] use the coordinates
Z'(g) = —% tr(go") for SO(3), where the trace is taken in the fundamental spin—%—representation
and ¢° are the Pauli matrices. For SU(2) the construction must be modified, as for example
in [2-4], since the above coordinates are two-to-one in this case, Z'(g~!) = Z/(—g). In [2,3] an
extra parameter was introduced to make the transform one-to-one for SU(2). For an exponential
Lie group the canonical choice for coordinate functions Z* on G can be obtained from the inverse
of the exponential map exp : g ~ R? — G, Z — exp Z, for a portion of g containing the origin,
where the exponential map is one-to-one. With this choice we have the natural inner product

: g x g* — R to use for the plane waves E,(X) = exp(iZ(g) - X).!

The non-commutative variables X &€ g* can be seen to correspond to the classical dual
cotangent space Varlables in the way of deformation quantization: The canonical Lie derivative
operators X, = —il E,, where L; are Lie derlvatlves with respect to a basis in the Lie algebra,

satisfy the commutation relations [XZ, X il = =iz Cij Xk, where ¢ Jk are the structure constants
of g. These commutators correctly reflect the classical Poisson algebra of the phase space 7*G
arising from the symplectic structure of the cotangent bundle. If as usual we have £;F.(X) =
iz X;, then the non-commutative plane wave is the generating function for *-polynomials of
coordinates of the non-commutative dual space, X;, --- X, Fy(X) = Eg(X) x Xi) - % X,
and we recover the Lie algebraic commutation relations for the non-commutative coordinates
(X, Xjle = Xix X — X% X; = zﬁckak Here we see that the quantity (h/k) controls the non-
commutativity, but it is ="', which is the deformation parameter associated to the x-product in
this case, since h plays a distinct role [10]. In particular, k£ determines the physical dimensions
of the group, present even in the classical theory, whereas /i is the parameter controlling the
quantum fluctuations. Therefore there are two distinct limits of a quantum theory with the phase
space 7*G to be considered, the classical limit 7 — 0 and the commutative limit x~' — 0. In
the commutative limit the Lie algebra commutators vanish, and the group coincides essentially
with the tangent space g ~ R? at the unit element.

3. Phase space path integral for quantum mechanics on SO(3)

Taking advantage of the group Fourier transform, we obtain a dual non-commutative
representation of quantum mechanics on G in terms of a set of states {|X) | X € g*} by
setting (g|X) := E4(X), where Dirac notation is used. These states constitute a basis with
respect to the non-commutative *-product [6,10]. We may then write down the first order
phase space path integral. As usual, we have a Hamiltonian operator H generating the time-
evolution of the system. Then, the propagator for the quantum system in G-basis reads

(g V]g,t) = (g'|e" "'t H/h]g> We then introduce time-splitting (¢ — t) = eN and insert

1 In fact, since the x-product may be defined only under integration, we only need G to be weakly exponential,
i.e., the image of the exponential map to be dense in G. (See [11] and references therein for details on exponential
Lie groups.) If this is not the case, it may be possible to generalize to several coordinate patches as in [3].
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resolutions of identity 1 = Ig kg |g)(g| and 1 = fg* % |X) % (X] for each timestep. To
obtain the path integral, we take the limits ¢ — 0, N — oo, while eN = (¢ —t). For the
path integral to satisfy the Schrédinger equation, only the linear order in e must be taken
into account [12], and we may approximate (Xj|e /" g.) ~ e~ Hx(95:X0)/R & (X |gs), where
(g|H|X) =: (9| X) % H,(g, X). Further, using the properties of the plane waves, we arrive at the
discrete timestep expression for the path integral

N— N— . N—
(¢ ,t'|g,t) = lim Hl/ kdgy, Hl/ X exp v Z:le EVk X, — H, (2)
T —0 |+ Jg o Jor (27h)d h p € & ’

N—o0 =0

where Vi, := Z(g;'gk+1), Hyr = Hy(gk, Xi), Z'(g) are the coordinates on G used in the
plane waves, and H,(g,X) = [w(—id%)] " H.(g,X) is the quantum corrected Hamiltonian
for the system [6]. Here w(Z(g))d?Z = dg, where d?Z is the Lebesgue measure on the
coordinates Z°!. These quantum corrections to the classical Hamiltonian, which are due to
the non-commutative structure of the phase space, are crucial for the propagator to satisfy the
Schrodinger equation [10].

For the special case of G = R? with the coordinates Z*(g) obtained via the inverse exponential
map (2) agrees with the usual expressions for the first order path integral. In [10] the stationary
phase approximation was studied for SO(3) with coordinates Z%(g) = —(i/2) tr(go?) and found
to yield the correct classical equations of motion in the limit 2 — 0. This further confirms the
identification of the non-commutative dual variables as corresponding to the classical canonically
conjugate variables. Also, it was shown that for the case of a free particle on SO(3) the
quantum corrections agree with the well-established results [12-14]. In the limit K — oo the
path integral coincides with the one for G = R? as the diameter of the group becomes infinite.
Thus the first order path integral facilitates access to semi-classical as well as ‘semi-commutative’
approximations for quantum systems on Lie groups.

4. Non-commutative metric variables for quantum gravity
The group Fourier transform has recently provided a better insight into the geometrical content
of quantum gravity models. The configuration space of Loop Quantum Gravity (LQG), for
example, which corresponds to a graph I' representing the quantum geometry of a spatial slice
of spacetime, is SO(3)¥ /SO(3)V, where E and V are the numbers of edges and vertices in I' [15].
Here the SO(3)¥ part corresponds to parallel transports along the edges of the embedded graph,
and SO(3)V corresponds to local gauge transformations at the vertices?. From the canonical
analysis of LQG it can be seen that the dual variables to the parallel transports along edges of I'
taking values in SO(3) are area bivectors valued in s0(3) associated to faces dual to the edges of
I'. In [16] the group Fourier transform for SO(3) was used to formulate the metric representation
for the LQG state space L?(SO(3)¥/S0O(3)V). In this case the non-commutative variables of
the dual space L2((s0(3)*)¥) to L?(SO(3)¥) correspond to these area bivectors. Integrating out
the gauge degrees of freedom imposes geometrical closure constraints on the bivectors, so that
the faces bound polyhedra dual to the vertices of I'. Therefore the non-commutative metric
representation obtained via the group Fourier transform provides a precise connection between
LQG and simplicial geometry.

Group field theories are quantum field theoretical models with field arguments taking values
in Lie groups, which give a covariant path integral formulation of quantum gravity as a sum over

2 Usually the group SU(2), the double cover of SO(3), is used for the group variables associated to the edges of the
graph. However, we will restrict to SO(3), since the construction of the non-commutative metric representation
for LQG has been carried out only in this case. The generalization to SU(2) should be straightforward by using
one of the already existing transforms for SU(2).
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spin foam geometries. (See e.g. [17,18] for further details.) Using the group Fourier transform, a
metric representation for 3d group field theory, the Boulatov model, which corresponds to a path
integral quantization of discrete 3d BF theory, was formulated in [5,9,19]. (For spin foam models
the corresponding non-commutative methods were considered in [20], and the relation between
group field theory models and deformed x-Poincaré symmetry via group Fourier transform was
also considered in [21].) Importantly, the non-commutative metric representation led to the
realization of diffeomorphism symmetry in the colored 3d model [22], which however due to
the deformed coproduct of the symmetry algebra still needs to be properly implemented on the
quantum level in the framework of braided quantum field theory [23] as pointed out in [9,19].
Another important feature of the metric representation is that the simplicity constraints on the
bivector variables, taking the 4d BF theory to general relativity, can be imposed directly and in
a geometrically clear way on the classical phase space variables [24, 25].

5. Future directions

The group Fourier transform was recently generalized [6] to other Lie groups besides copies of
SO(3) and SU(2), which opens up the possibility for formulating the non-commutative metric
representation of 4d Lorenzian spin foam models. This should allow for a host of developments
in the 4d case, as it has done in the 3d case. In particular, the metric representation should
allow for a convenient imposition of the simplicity constraints at the level of the classical phase
space variables, and a better understanding of the geometrical symmetries of the models. Also,
the study of the semi-classical limit of the models is expected to be greatly facilitated by the
non-commutative methods, since no excursion to the elaborate representation theory and special
functions is necessary. In addition to these interesting possibilities, the commutative limit can
also be used to develop convenient approximations to the full model. A pursuit in this direction
of research is currently under way.
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