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Synaptic vesicle fusion is mediated by the vesicular SNARE synap-
tobrevin 2 (syb) and the plasma membrane SNAREs SNAP-25A (SN25) 
and syntaxin 1A (syx). Binding of syb to a 1:1 syx:SN25 acceptor com-
plex forms a SNARE complex consisting of a four-helix bundle held 
together by 16 layers (numbered -7 to +8) of interacting amino acids (1). 
The SNARE complex alone is sufficient for mediating fusion in vitro  
(2), the prevalent model being that directional N-to-C terminal zippering 
of a trans SNARE complex pulls opposing membranes together. Once 
contact has been established, fusion is thought to proceed via a symmet-
rical stalk intermediate that expands to form a hemifusion diaphragm (3) 
(Fig. 1A). An expanding pore formed within the diaphragm then com-
pletes fusion. Some studies have reported the involvement of some of 
these intermediates (4) while others have attempted to arrest them by 
disrupting SNARE assembly (5); however, key questions remain unan-
swered, including what is the nature of the relevant docking interaction 
that leads to fusion and, just as important, how does the assembly of the 
SNARE complex give rise to docking and other intermediates that occur 
thereafter. 

To address these questions, we pursued a minimalist approach in 
which docking and fusion is recapitulated with purified SNAREs recon-
stituted in liposomes. Previously, a transient docking state was inferred 
when using liposomes containing a syx:SN25 acceptor complex that is 
stabilized by a C-terminal syb fragment (ΔN syb 49-96, hereby denoted 

ΔN syb) (Fig. 1B) (6). This “ΔN com-
plex” contains a free binding site for 
syb at the N terminus, accelerating syb 
trans binding and preventing dead end 
2:1 syx:SN25 complexes (7). Docking 
of large SNARE-liposomes (radii ~40-
100 nm, Fig. 1C) had a longer lifetime 
than smaller ones (radii ~15-25 nm), a 
finding we attribute to reduced curva-
ture stress (8, 9) of the large liposomes 
which approaches that of giant lipo-
somes (Fig. 1C inset). We confirmed 
this behavior in fluorescence resonance 
energy transfer (FRET)-based lipid-
mixing assays. Here, a pronounced lag 
phase was observed with large lipo-
somes, suggesting lower curvature 
delays the initiation of fusion once 
contact of membranes has been estab-
lished (Fig. 1D). 

To monitor trans SNARE complex 
binding and ΔN syb displacement the 
experiments were repeated with fluor-
ophore-labeled versions of full-length 
syb (syb28A488) and ΔN syb (ΔN syb 
49-9679A488). Accordingly, SNARE 
complex zippering began without delay 
at the very N terminus (Fig. 1E) but 
ΔN syb displacement slowed down 
further zippering toward the C-terminal 
end (fig. S2). However, this delay orig-
inated only from the displacement of 
ΔN syb’s first N-terminal layers 
whereas the remaining C-terminal half 
of ΔN syb dissociated rapidly thereaf-
ter, allowing zippering to proceed (fig. 
S3). Based on these findings, we rea-
soned that the delay between trans 
SNARE binding and the initiation of 
lipid-mixing, caused first by ΔN syb 

displacement and then more prominently by the low membrane curva-
ture stress of the large liposomes used here (Fig. 1D), opens a time win-
dow to identify intermediate states of the membranes on their way to 
fusion by EM (EM). 

We found many docked liposomes during the lag phase by negative 
stain (Fig. 2A) and cryo-EM (Fig. 2, B-D) and distinguished docked 
membranes with both minimal (Fig. 2B) and extended docking zones 
(Fig. 2, C and D). Because none of these interactions implicate any lipid-
mixing and occur during the lipid-mixing lag phase where SNARE as-
sembly takes place, we hypothesized that these docked states are gener-
ated by partial complex zippering on their way to fusion. Surprisingly, 
we also identified a small number of liposomes containing only one 
bilayer in between the two lumina (Fig. 2E), the ultrastructural signature 
of an extended hemifusion diaphragm (Fig. 2F). Hemifusion (like dock-
ing) was SNARE-dependent, an important distinction given that even 
misfolded proteins can mediate hemifusion (10) (fig. S4). However, we 
were unable to distinguish small differences in the counting of docking 
and hemifusion by EM, preventing us from making definite conclusions 
about the reaction sequence. 

To clarify this question, we resorted to alternative biophysical assays 
and used a combination of fluorescence cross-correlation spectroscopy 
(FCCS) and FRET to follow the evolution of docking (6). FCCS-FRET 
revealed an initial and instantaneous accumulation of docking (without 
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Cellular membrane fusion is thought to proceed through intermediates including 
docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion 
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and other fusion intermediates is unknown. Using a cell-free reaction we identified 
intermediates visually and then arrested the SNARE fusion machinery when fusion 
was about to begin. Partial and directional assembly of SNAREs tightly docked 
bilayers, but efficient fusion and an extended form of hemifusion required assembly 
beyond the core complex to the membrane-connecting linkers. We propose that 
straining of lipids at the edges of an extended docking zone initiates fusion. 

 o
n 

Ju
ne

 1
4,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org/content/early/recent
http://www.sciencemag.org/


 
 

/ http://www.sciencemag.org/content/early/recent / 31 May 2012 / Page 2/ 10.1126/science.1221976 
 

2 

fusion) followed by a plateau (Fig. 2G), suggesting that all docked states 
observed by EM are transient intermediates and are part of the same 
pathway. This finding appeared initially to contradict the observation 
that many docked liposomes were still seen by EM after lipid-mixing 
was completed (fig. S4), but we note that FCCS-FRET does not detect 
docking between liposomes that have already docked and fused previ-
ously. We therefore postulate that docked liposomes at the end of the 
reaction have already fused at least once but contain insufficient 
SNAREs for additional cycles of fusion. Although one SNARE complex 
is sufficient for fusing small liposomes (11), it appears that more com-
plexes are required for fusing larger ones (see further below). 

To monitor the evolution of hemifusion, we measured lipid-mixing 
in the inner leaflet of a merging bilayer (12, 13) and compared it to the 
expected value when full-fusion (i.e., no hemifusion) conditions are 
assumed (Fig. 2H and S5). Inner leaflet lipid-mixing begins to diverge 
after ~3-5 min from the expected value (Fig. 2H), meaning that hemifu-
sion begins to develop mainly after the lag phase and that it arises se-
quentially from docked intermediates identified by EM. Surprisingly, 
inner leaflet lipid-mixing remained below the expected value throughout 
the rest of the reaction, indicating that hemifusion accumulates and be-
comes kinetically trapped, in agreement with the appearance of hemi-
fused liposomes with extended diaphragms seen at the end of the 
reaction by EM (fig. S4). 

To pinpoint the regions of the SNARE complex responsible for tight 
docking, extended hemifusion and fusion, we sought to arrest intermedi-
ates by perturbing SNARE assembly at the transition between the four-
helix bundle and the membrane-connecting linker, a region with a criti-
cal role in fusion (5, 14, 15). To this end, we made a single deletion at 
position 84 of syb (syb Δ84) that disrupts the last +8 layer of the bundle, 
(inset of Fig. 4C). Syb Δ84 was unable to fuse large liposomes, although 
it partially induced lipid-mixing on small ones, a result consistent with 
our earlier supposition that large liposomes require more energy (and 
therefore more SNARE complexes) to fuse (Fig. 3A). We confirmed that 
syb Δ84 displaced the ΔN syb fragment from the ΔN complex (fig. S6), 
suggesting it could assemble into SNARE complexes and dock lipo-
somes but not fuse them. This was confirmed by FCCS-FRET (Fig. 3B) 
and EM where almost all liposomes were seen arrested at the tightly 
docked state with extremely rare sightings of hemifusion (Fig. 3, C and 
D). 

Several key conclusions can be derived from this analysis: 1) tight 
docking is a result of partial complex assembly which does not exceed 
layer +7, validating our hypothesis that tightly docked liposomes are a 
result of partial zippering; 2) assembly beyond the +7 layer of the 
SNARE complex is essential for generating extended hemifusion and 
fusion; 3) in line with directional N-to-C terminal assembly (16), the 
tight bilayer arrangement with extended contact zones represents an 
intermediate state that was stalled on its way to fusion. Further support-
ing this conclusion, lipid-mixing by syb Δ84 can be partially restored by 
increasing curvature, suggesting that large liposomes would otherwise 
fuse were it not for its higher energy barrier; 4) because bilayers are 
tightly held together with no resolvable space in between, complexes are 
arrested in trans and are probably distantly distributed along the vertex 
ring as described in yeast vacuoles (17); and 5) lipids at the edges of the 
extended docking zone are highly strained where splaying of lipid tails 
or stalks are likely to initiate fusion (3, 18). 

We took advantage of this “docking mutant” and tested if the Ca2+ 
sensor synaptotagmin (syt), which might stabilize fusion intermediates 
by bending bilayers (19), can assist SNAREs in the conversion from 
docking to hemifusion/fusion, but found it could restore neither, con-
sistent with the view that syt operates upstream of complex assembly 
(20) (fig. S7). We therefore turned to our mutational analysis by explor-
ing single and double deletions further downstream of syb in the linker 
region (inset of Fig. 4C), ensuring complete assembly of the core four-

helix bundle (see fig. S8 for characterization of syb linker mutants). 
Fusion and extended hemifusion was restored for all three mutants test-
ed, albeit with lower efficiency than wild-type syb (Fig. 4 and fig. S8C), 
confirming that hemifusion is preceded by tight docking and showing 
that efficient fusion requires zippering of the linker in agreement with 
the crystal structure of the full SNARE complex (21). Additionally, the 
hemifusion/fusion ratio was unaffected (Fig. 4B), indicating no in-
volvement of the linkers in the transition from hemifusion to fusion, 
although this may be the role of the transmembrane domain (TMD) (22, 
23). 

Based on our findings, we can assign approximate regions responsi-
ble for the generation of docking, extended hemifusion and fusion by 
directional and full assembly of the SNARE complex (Fig. 4C). Our 
conclusion that membrane merging begins after assembly of the core 
complex contrasts to a recent study that used myricetin to stall a partially 
zippered complex and arrest a topologically-undefined hemifusion state 
(24). However, myricetin also binds to acyl chains (25) and may increase 
membrane fusogenicity or leakiness. Our finding that extended hemifu-
sion accumulates suggests it is a kinetically trapped intermediate result-
ing from a high-energy barrier for pore opening, a state that has been 
observed in cortical granules (26). Nevertheless, additional factors, for 
instance specific lipid requirements, may lower that barrier and make the 
extended hemifusion conformation a viable intermediate as suggested by 
studies of giant liposomes and simulations (27, 28), although it is still 
not clear whether a localized rather than an extended form of hemifusion 
may also be a biologically relevant intermediate (see fig. S9 for a discus-
sion). 

Our findings question the routinely made assumption that fusion 
must start from a symmetrical toroidal stalk. Instead, the SNARE fusion 
machinery seems to work by pulling the membranes as tightly as possi-
ble which strains the edges of an extended docking zone. Such a mecha-
nism shares some similarities with what appears to occur in vacuoles 
(17) and observed with greater detail in simulations (27, 29, 30). Our 
work now suggests that the tight pulling mechanism is a conserved fea-
ture of SNARE-mediated fusion. 
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Fig. 2. Ultrastructural and biophysical identification of 
docking and hemifusion. (A) Negative stain EM 
depicting liposomes engaged in docking taken at ~3 
min after mixing. Bar = 200 nm. Docked liposomes 
with minimal (B) and extensive (C-D) contact zones 
were observed by cryo-EM ~1-2 min after mixing. (E-
F) Hemifused liposomes were identified by an 
extended diaphragm consisting of a single bilayer 
(arrow). Bar = 50 nm except in (F) where bar = 20 
nm. (G) Discrimination of docking and fusion by 
FCCS-FRET. Cross-correlation between labeled 
liposomes (reflecting both fused and docked 
liposomes, red) were subtracted from changes in 
fluorescence lifetime (reflecting fused liposomes, 
black) to reveal the evolution of docked liposomes 
(blue). Data are mean +/− SD (N ≥ 5). (H) Total 
(black) and inner leaflet (red) lipid-mixing measured 
and compared to the expected inner leaflet lipid-
mixing (cross-shaded region). Hemifusion begins to 
form after ~3-4 min and accumulates thereafter. Bars 
represent 95% confidence intervals (N ≥ 3). 

Fig. 1. (A) A symmetrical toroidal stalk (top) and 
an expanded hemifusion diaphragm (bottom) are 
thought to be intermediates in the SNARE-
mediated fusion pathway. (B) The ΔN complex is 
necessary for promoting fast N-terminal binding for 
trans SNARE complex formation. (C) Size 
distributions of small (solid) and large (dashed) 
liposomes reconstituted with syb determined by 
light scattering (see fig. S1 for characterization of 
the reconstitution). Inset: schematic showing 
liposome size dependence (for a single component 
system) of the elastic bending energy of a lipid in 
the outer monolayer (8). (D) Large liposomes 
(dash) exhibit a prolonged lag phase in lipid-mixing 
compared to small liposomes (solid) at the same 
SNARE density. (E) Fluorescence anisotropy of 
large liposomes containing syb 28A488 (top panel) 
and ΔN syb 49-9679A488 complex (bottom panel) 
were added to large liposomes containing their 
respective non-labeled SNARE binding partners, 
revealing that formation of trans SNARE 
complexes and ΔN syb displacement begin without 
delay. Note that anisotropy likely decreases when 
ΔN syb displacement has already initiated without 
the fragment being fully removed. 
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Fig. 4. Full assembly of the core SNARE complex 
restores hemifusion and the linkers are needed for 
efficiently completing fusion. (A) Comparative 
lipid-mixing of linker deletion mutants depicting a 
decrease in fusion in large liposomes. (B) Inner 
leaflet lipid-mixing as a proportion of expected 
assuming full-fusion conditions for wild-type syb 
and linker deletion mutants. Values were taken 1 
hour after mixing and bars represent 95% 
confidence intervals (N ≥ 3). (C) Ribbon structure 
(21) of the fully assembled SNARE complex 
showing the interacting layers (black lines, +8 
layer indicated) of the four-helix bundle, the linker 
and TMD and the proposed regions which give 
rise to docking, extended hemifusion and fusion. 
Dashed lines indicate borders of regions that are 
based on other studies (22, 23) or on biochemical 
characterization. Inset: deleted amino acids used 
for mutation analysis. 

Fig. 3. Disruption of the C-terminal +8 
layer of the SNARE complex arrests a 
tightly docked intermediate. (A) 
Comparative lipid-mixing of wild-type syb 
(black) and syb Δ84 (red) according to the 
depicted liposome size combinations 
(location of ΔN complex is indicated in 
light blue), showing curvature affects the 
ability of syb Δ84 to mediate fusion. 
Traces were normalized to wild-type syb 
which was set arbitrarily to 1. (B) FCCS-
FRET analysis of large syb Δ84 liposomes 
showing accumulation of docking. Data 
are mean +/− SD (N ≥ 5). (C) Examples of 
cryo-EM images of syb Δ84 and ΔN 
complex large liposomes depicting the 
arrest at the tightly docked state. The 
edges of an extended docking zone 
results in straining of lipids (arrow). Bar = 
20 nm. (D) Counting of docking of syb Δ84 
and ΔN complex liposomes observed by 
cryo-EM after 1 hour, confirming the vast 
majority of liposomes were arrested in the 
tightly docked state. Control was 
performed in the presence of excess 
soluble syb 1-96 showing that docking was 
SNARE-dependent. 
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