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How semantic biases in simple adjacencies
affect learning a complex structure

with non-adjacencies in AGL:
a statistical account
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A major theoretical debate in language acquisition research regards the learnability of hierarchical
structures. The artificial grammar learning methodology is increasingly influential in approaching
this question. Studies using an artificial centre-embedded AnBn grammar without semantics draw
conflicting conclusions. This study investigates the facilitating effect of distributional biases in
simple AB adjacencies in the input sample—caused in natural languages, among others, by semantic
biases—on learning a centre-embedded structure. A mathematical simulation of the linguistic input
and the learning, comparing various distributional biases in AB pairs, suggests that strong distribu-
tional biases might help us to grasp the complex AnBn hierarchical structure in a later stage. This
theoretical investigation might contribute to our understanding of how distributional features of
the input—including those caused by semantic variation—help learning complex structures in
natural languages.
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1. INTRODUCTION
Recursion has been argued to be a crucial property of
human language [1]. However, hierarchical recursive
structures with non-adjacent dependencies are known
to be difficult to process, even for native speakers
[2–5]. More generally, the learnability of recursive non-
linear hierarchical structures is subject to a long running
debate in language research. The rat the cat the dog chased
killed ate the malt [6] is a typical hierarchical sentence
with two centre-embedded sub-clauses. Formally,
these phrase structure grammars [7] are more complex
than linear grammars that can be implemented with a
simple finite-state system. In particular, centre embed-
ding structures entail long distances between related
dependencies (e.g. rat and malt), causing processing
and learning difficulties. This raises the question as to
how humans learn and can use these structures after all.

Fitch and colleagues [7,8] proposed that the capa-
bility of mastering supra-regular hierarchical structures
was critical to distinguish human and non-human pri-
mates, indicating a possible innate faculty for complex
language in humans. This proposition has boosted a
renewed interest in processing and learning complex
hierarchical grammars, especially supra-regular gram-
mars, in the formal hierarchy of grammars proposed
r for correspondence (poletiek@fsw.leidenuniv.nl).
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by Chomsky [9]. A new approach to the question
of learnability of hierarchical structures, comes from
experimental studies using artificial grammars and the
artificial grammar learning (AGL) paradigm [7,10–15].

In the classical AGL paradigm [16–18], the gram-
mar learning process is studied in a controlled
laboratory environment in which participants are first
exposed to exemplars of an artificial grammar. After
the training phase, participants are informed that the
strings they studied obeyed an underlying grammar.
Finally, in the test phase, participants give grammatical-
ity judgements about new strings similar to those
studied during training, being either grammatical or
not. The proportion of correct judgements is an indi-
cation of how much of the grammar has been learned.
Typically, participants perform above chance, often
without having any explicit knowledge of the grammar
[17]. In the early period of this paradigm, these artificial
grammars typically are simple finite-state systems with a
limited number of symbols (e.g. five letters) generating
sequences of these symbols. By manipulating various
aspects of the experimental setting separately (e.g. the
grammatical rules, the training input sample, learning
conditions and instructions), controlled tests can be
performed of specific influences, possibly at play in the
natural situation [12].

Whereas during the first decades of the AGL para-
digm, mostly regular grammars were used, the focus
has shifted recently towards grammars with more hier-
archical complexity [10,19–21]. The results with
This journal is q 2012 The Royal Society
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Figure 1. Artificial centre-embedded AnBn grammar G used in
Lai & Poletiek [20]. Artificial syntactical categories A and B
contain six non-words. The context-free grammar G refers
to itself at state S1, S2 and S3, inserting a grammatical string

within a grammatical string, to form a new grammatical string.

Semantic biases in AGL F. H. Poletiek and J. Lai 2047

 on June 12, 2012rstb.royalsocietypublishing.orgDownloaded from 
artificial grammars are inconclusive, however, as to
whether and how this complex type of structures can
be learned by induction from stimulus exemplars only.
Friederici and colleagues [19,22] carried out functional
magnetic resonance imaging (fMRI) research into the
neural basis of processing hierarchical structures. Sig-
nificantly greater blood flow was observed in Broca’s
area during processing of hierarchical strings genera-
ted by a context-free grammar than of linear strings
generated by a finite-state grammar, supporting the
possibility that a specific neural circuit is engaged by
this type of complex structures.

However, subsequent critical studies argued that
only superficial learning of the centre-embedding
structure had been demonstrated in the fMRI results.
These studies [10,13] showed that the specific
hierarchical mapping of dependent words in centre-
embedded constructions (like mapping rat on ate, cat
on killed and dog on chased in ‘The rat the cat the dog
chased killed ate the malt’), being an essential character-
istic of centre-embedded structures, had not yet been
demonstrated in AGL research. The critical exper-
iments suggested that what is learned in these tasks
is merely a simple counting mechanism keeping track
of the number of levels of recursion, but with no
knowledge of the hierarchical pattern of correspon-
dences between interdependent elements in non-
adjacent positions. Going back to natural language,
learners would understand that an equal number of
subject noun phrases and verb phrases are needed
for a sentence like ‘The rat the cat the dog chased killed
ate the malt’ to be acceptable. However, each parti-
cular subject noun would not be mapped on one
particular verb as prescribed by the hierarchical centre-
embedding rule, and the meaning of the sentence
possibly misunderstood. Similarly, in the AGL
paradigm, the counting could be demonstrated exper-
imentally, but not the hierarchical mapping rule. When
the test materials required detection of the hierarchical
mapping pattern of non-adjacent elements in an artificial
grammar task, participants failed to learn [10].

Recently, however, positive results have been
reported. In one study [21], hierarchical structures in
an artificial grammar could be learned in the presence
of prosodic cues. Participants encoded the centre-
embedded structure when the stimulus strings were
naturally spoken, and pauses were added that marked
the boundaries of the embedded clauses. In a more
recent AGL study in our laboratory [20], hierarchical
learning was also found, under two conditions of
exposure. First, learning was facilitated when the
input exemplars were presented ‘starting small’, i.e. in
increasing order of complexity (first the exemplars with-
out embeddings, followed by one level of embedding
items, etc.). Second, elaborate training with short
sequences containing no embedded clauses was a prere-
quisite for any learning of the centre-embedded
structure. Hence, learning hierarchical structures from
exemplars might not only depend on structural com-
plexity of the grammar, but also on conditions of
exposure, and non-linguistic features of the training
sample.

The focus of this paper is on the information pre-
sent in the very first training sample of exemplars
Phil. Trans. R. Soc. B (2012)
presented to the learner, and on how these early
simple sequences without embeddings, can enhance
eventual learning of a structure with embeddings.
After having summarized the experimental results by
Lai & Poletiek [20], we will propose a statistical frame-
work for AGL. Within this framework, the effect of
distributional biases in the training sample on learning
of a hierarchical pattern is investigated. We explore the
hypothesis that better learning occurs for strongly
biased distributions of early simple input sequences.
Importantly, we propose that these distributional
biases may be used as proxy for semantic variation in
the linguistic input. Finally, this hypothesis is tested
in a mathematical model with simulated data, for an
artificial language with centre-embedded structure.
2. THE IMPORTANCE OF SIMPLE STRUCTURES
FOR LEARNING COMPLEX ONES
Research on the learnability of centre-embedded struc-
tures with artificial materials typically uses an AnBn

grammar with two word categories A and B, basic
rules producing specific AB pairs, and a centre-embed-
ding operation that inserts a grammatical AB pair within
a grammatical AB pair (etc.) to form a new grammatical
sequence. In this manner, an infinitely productive
system generates an unbounded number of sequences
(n being unbounded) with a sequence of ‘A’s followed
by an equal number of ‘B’s, each A mapping on one par-
ticular B in the sequence, according to the centre-
embedding rule. Following previous AGL studies
[22], De Vries et al. [10] and Lai & Poletiek [20] used
six one-syllable non-words as category A words (words
A1–A6), and six non-words as category B words
(B1–B6) (figure 1).

Phonetic cues indicated category membership of a
non-word, and grammatical mapping between A and
B words: category A syllables contained the vowels
-e/-i, i.e. fbe, bi, de, di, ge, gig, whereas category B
contained -o/-u, i.e. fpo, pu, to, tu, ko, kug. The map-
ping rule to connect A syllables with a counterpart in

http://rstb.royalsocietypublishing.org/
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Figure 2. (a) Performance in an AGL task after exposure to
training items with 0, 1 and 2 levels of embedding [20]. (b)
Performance in an AGL task after exposure to training items

with 1 and 2 levels of embedding [20].
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category B was based on the consonants of both sylla-
bles: A syllables with b as a first consonant could be
paired with B words with a p in first position, A
words with d could be mapped on B words with t,
and A words with g on B non-words with k (i.e. fbe/
bi-po/pug, fde/di-to/tug and fge/gi-ko/kug). For
example, be po and de be po tu are grammatical
sequences; ge di po ku is ungrammatical, because di
po violates the pairing rule.

In an adapted version of the typical AGL procedure,
Lai & Poletiek [20] compared a group of participants
exposed to sequences of grammar G with zero, one
and two levels of embedding, with a group exposed
to sequences with the more complex sequences only,
i.e. sequences with one and two levels of embedding.
The training items were presented in blocks with
items having an equal number of levels of embedding.
In the condition with zero level of embedding
items, four blocks with zero levels of embedding were
followed by four blocks with one level of embedd-
ing items and four blocks with two levels of
embedding items (figure 2a). In the condition without
the zero level of embedding items, only two times four
blocks were presented (figure 2b). In addition, the start-
ing small regimen was compared with a random
ordering (all items being presented in blocks as well,
but in a random order). As can be seen in figure 2a,b
(displaying the accuracy of grammaticality judgements
(with d0)), starting small substantially helped learning
a centre-embedded AnBn grammar, but only when, in
the first stage of exposure to the language, participants
had the opportunity to learn the simple AB structures
without embeddings [20].
Phil. Trans. R. Soc. B (2012)
The results suggest that information about the gram-
mar present in the basic structures is crucial to learn the
more complex parts of the grammar later on. This raises
the question of what information in the first subset of
simple items makes them so crucially helpful for learn-
ing. In the study of Lai & Poletiek, the information the
learner can infer from what he or she is presented with
is simply which AB pairs are grammatical and which
are not, ungrammatical pairs having a probability of
zero to occur in the input, and grammatical unique
AB pairs occurring with probabilities 1/12—since
the grammar generates twelve grammatical pairs of
non-words (see figure 1). Hence, in statistical terms,
the learner infers from the early input a dichotomous
distribution of AB sequences with probability either
zero or non-zero, corresponding to ungrammatical
and grammatical pairs, respectively. This distribution
of adjacencies, in turn, may support the learning of
positional structure of ‘A’s and ‘B’s in sequences with
higher levels of embedding, by facilitating recognition
of non-adjacent but legally associated AB pairs that
were encoded as adjacencies in the first stage of learning.
For example, when a learner is presented with be gi ko
pu, prior knowledge about the adjacent pairs be pu
and gi ko being grammatical might facilitate associat-
ing the ‘A’s and ‘B’s—now distant—in the complex
embedded sequence. In summary, the study of Lai
and Poletiek point to the importance of both a starting
small-training regimen and robust learning of the
grammaticality status of adjacent dependencies.

These conclusions, however, rely on the assumption
that the to-be-learned AnBn grammar (in which A and
B represent word categories) specifies grammatical
(for example be pu) and ungrammatical (for example,
be ko) associations between individual A-words and
B-words by occurrences ((p(BjA) . 0) and non-
occurrences ((p(BjA) ¼ 0) in the output. For natural
language, this assumption does not hold. Syntactical
constraints typically apply to the position of syntactical
categories, in natural languages, not to individual
words belonging to these categories. Every word satisfy-
ing the syntactical constraints of a given word category
(and additional rules for its pairing with a word of
another category, e.g. number agreement in subject–
verb pairings), may occupy the position dedicated to
that word category. Hence, though constraints for relat-
ing a given A word to a given B word partially apply in
semantics (e.g. number agreement), no such constraints
apply to syntax in natural languages; every specific word
of a given (sub)category, in the appropriate form, can be
inserted in a location dedicated to that syntactical cat-
egory. In contrast, typical artificial AnBn grammars put
grammatical constraints on which A (e.g. noun) can leg-
ally precede which B (verb). Thus, the typical grammars
used in experimental research with artificial hierarchical
AnBn grammars seem not to be in line with natural
language. This difference between natural and exper-
imental AnBn grammars may affect the relevancy of
AGL studies for natural language learnability.

In natural language, recursive constructions like centre
embeddings owe their powerful semantic productivity to
the fact that every specific word belonging to one of the
categories can be inserted in a location of that category
word. Therefore, the dog the man chases barks is

http://rstb.royalsocietypublishing.org/
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syntactically as correct as the man the dog chases barks,
though the latter pattern-specific noun–verb pairings
will rarely occur in real-world situations, and therefore
may be expected to be rare in the linguistic input.
How could a learner, then, if all possible AB mapping
are grammatical, induce a centre-embedded grammar
from the input? In a theoretical AGL study, we explore
the possibility that distributional characteristics of the
AB pairings in the input serve as a cue for this learning.
3. THE INFLUENCE OF DISTRIBUTIONAL BIASES
IN THE SIMPLE STRUCTURES FOR LEARNING A
HIERARCHICAL ARTIFICIAL GRAMMAR
In figure 3, the artificial grammar G from figure 1 is
adapted without any grammatical constraints on
specific AB mappings.

It is hard to explain how the centre-embedding
pattern of correspondences between ‘A’s and ‘B’s in
the unconstrained grammar in figure 3 could be learned
from exposure only. On the basis of an input with occur-
rences of every possible AB pairings, learners might only
grasp the principle that sequences always have an equal
number of ‘A’s and ‘B’s. A simple counting algorithm is
enough to detect that regularity. This learning, which
involves detecting and counting A-words and B-
words, has indeed been demonstrated in humans
[7,10,13,20]. However, knowing G requires in addition
knowing its centre-embedding rule inserting new AB
pairs within AB pairs resulting in shifting related A
words and B words one position to the left and to the
right, respectively. Hence, accurately parsing exemplars
of this grammar requires understanding more than
counting and comparing A and B category words.
It requires knowing the hierarchical pattern of corre-
spondences between the ‘A’s and ‘B’s. This part of the
grammar has been shown to be very hard to learn,
even in studies providing cues about which AB pairs
are legal like in the classical AGL studies [10,13,20].
Without such syntactical cues (figure 3) the linking
pattern of specific ‘A’s and ‘B’s can be expected to be
even more difficult, since learners of the grammar in
figure 3 would have no cue about the pattern determin-
ing the positions of associated individual ‘A’s and ‘B’s in
the sentence. If no grammatical constraints on the
Phil. Trans. R. Soc. B (2012)
occurrence of specific A-word and B-word pairings in
natural language can help the learner (the following sen-
tences being both perfectly grammatical: The girl the dog
bites shouts, and The dog the girl bites shouts.) how could
these type of grammars be learned and used?

The hypothesis we explore in the present analysis
is that learners rely on distributional biases in simple
AB structures. Translating these biases to natural
language, consider the following two English sen-
tences: The dog (A) barks (B) and The dog (A) talks
(B). Due to different occurrences in the real world,
reflected in semantic variation in speech, the first sen-
tence will be more probable in the linguistic input of a
natural language learner than the second one. As a
result, the probabilities p(BjA) of AB pairs will be
unequally distributed. Note that many factors may
affect distributional variation of individual word
sequences in natural language, for example, the type of
corpus assumed (e.g. child directed speech versus
adult speech; literature), individual word frequency, ani-
macy or phonology. Here, the focus is on distributional
biases caused by semantic variation, because they may
provide an account of semantic influences on the acqui-
sition of complex syntactical structures in the natural
situation. Indeed, these semantic influences in the real
world may be approximated in a controlled artificial
environment by merely manipulating distributional
features of the input in the artificial environment.

In AGL, semantics are generally avoided. In general,
artificial grammar laboratory studies typically aim at
studying grammar learning in the absence of semantic
influences [12]. Also, semantic influences on grammar
learning have hardly been addressed in studies using
non-natural language learning methodologies. In a
computational study with simple recurrent networks
[23], the influence of semantic biases in an artificial
language was represented in a similar way as proposed
here, by variations in transitional probabilities. Sub-
stantial facilitation of these biases on the model’s
learning was found. In this study, we explore how
transitional probabilities of simple adjacencies in
the language input might affect learning a centre-
embedded AnBn grammar. Learning with inputs
with and without biases is compared in a simple
mathematical simulation model.

http://rstb.royalsocietypublishing.org/
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4. A MODEL FOR THE EFFECT OF
DISTRIBUTIONAL BIASES IN SIMPLE PAIRS
ON GRAMMAR LEARNING
To model the role of semantic biases as distributional
biases in AGL, first measures for semantic bias and
for learning need to be defined. Consider a miniature
AnBn language with two category A words (nouns)
dog and girl, and two category B words (verbs) barks
and loves. The grammar generates an infinite number
of unique sentences with or without embedded relative
clauses: four sentences without embeddings, the dog
barks, the dog loves, the girl loves and the girl barks; 16
unique sentences with one centre-embedded clause,
e.g. the dog the girl loves, barks; 64 sentences with two
levels of embedding, etc. The centre-embedding rule
mapping ‘A’s on ‘B’s is ‘is subject of ’. Furthermore,
assuming that the transitional probabilities of a specific
B-word given an A-word reflect occurrences in the
world of that agent–action combination, in the present
example, a possible distribution would assign
p(BjA) ¼ 0.70 to the dog barks, 0.30 to the dog loves,
0.95 to the girl loves and 0.05 to the girl barks. A neutral
distribution would assign equal probabilities to each
AB transition. In the present example, any p(BjA) ¼
0.50 without any bias. For the purpose of the present
analysis, an artificial grammar was made without
grammatical constraints but with various probability
distributions for individual AB transitions.

The exemplars of the grammar and their probabilities
were generated with a simple computer program GenAu-
tom. The program takes as an input the production rules
describing the grammar. Production rules describe the
grammar’s transitions (indicated by arrows in figure 4)
from state to state, and their corresponding labels
(A or B). The output of the program is n unique exem-
plars of the grammar together with their probabilities
to be generated by G (p(exemplarjG)). The exemplar
probability is the product of path probabilities ‘run
through’ by the exemplar. In figure 4, the artificial gram-
mar G is displayed, based on the grammar in figure 3,
adapted by adding the transitional probabilities pi (p1,. . .

,6) p(BjA) of an A word to be followed by a specific B
Phil. Trans. R. Soc. B (2012)
word. Distributional biases in the AB pairs are defined
by the distribution of p(BjA).

In the present artificial language, we assume that
the paths starting from node S0 to nodes S1–S6 have
all equal probabilities (p ¼ 1/6), resulting in equal fre-
quencies of occurrence of each A-word in the
language. For a given distribution of the transitional
probabilities pi(BjA), the probability of each unique
full string in a random output of the grammar can be
calculated by multiplying the probabilities of all
paths run through to generate that string [24,25].
Note that the distribution of pi applies to all AB
pairs at any level of embedding. Hence, a sequence
with low probable pairs at each level of embedding
will occur less frequently in a sample generated by G
than a sequence with high probable pairs. In this
manner, a distribution of string probabilities can be
specified reflecting the occurrences of exemplars in
the language.

The sum of the probabilities of all unique strings gen-
erated by a grammar adds up to one, or approximates
one for grammars with an infinite number of unique
strings (like the grammar considered here). One impli-
cation of the summed probabilities of an input varying
from zero (for an empty set) to one (for the full
language) is that the summed probabilities of a given
subset of unique sequences reflect the proportion of the
full language output that is generated by that grammar.
This proportion (called here the coverage of the grammar
by the sample [25,26]) may vary over samples with
equal sizes, depending on the probabilities of the
sampled exemplars. Within this framework, the cover-
age of a sample of exemplars reflects how much
information about the grammar is in the sample, and
may be used as a model to predict how much can be
learned about the grammar after training with that par-
ticular sample. In the model of the learning process
proposed here, coverage is indeed taken as an indicator
of how much of the grammar can be learned after
exposure to the particular set of exemplars. Moreover,
coverage is used as a criterion for comparing learning
with input samples having various p(BjA) distributions.

http://rstb.royalsocietypublishing.org/


Table 1. Parameters of the output sets of 1000 exemplars, for grammar G, assuming no versus three levels of p(BjA) biases.

semantic bias in p(BjA) distribution standard deviation coverage

grammar G p1/p2/p3/p4/p5/p6 SD p(string) S p(string)

no 0.166/0.166/0.166/0.166/0.166/0.166 0.0025 0.68

weak 0.450/0.450/0.025/0.025/0.025/0.025 0.0040 0.76
strong 0.900/0.020/0.020/0.020/0.020/0.020 0.0058 0.85
very strong 0.980/0.010/0.0025/0.0025/0.0025/0.0025 0.0064 0.89
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Four simulated input samples generated by a
grammar with and without distributional biases are
compared; i.e. four versions of G are considered with
varying distributions of pi: Gnb, with no bias, Gwb with
a weak bias, Gsb with a strong bias and Gvsb with a
very strong bias (see figure 4). Next, four random
samples of n ¼ 1000 unique exemplars were obtained
with GenAutom, one for each version of G. Random
sampling results in output samples containing the
most probable unique sequences generated by the gram-
mar. As a consequence, small samples will, in general,
consist of relatively higher probability exemplars. Also,
since, in general, short sequences have a higher prob-
ability than long ones and less embeddings, small sets
will contain relatively more zero or low levels of embed-
dings items. The dependency between sequence length
and sequence probability may be loosened however,
with varying p(BjA) distributions assumed. Indeed, a
grammar with a strongly biased p(BjA) might generate
sequences with one level of embedding A1A2B2B1
made of two high probable pairs A1B1 and A2B2
more often than low probable strings with no levels of
embedding (i.e. simple AB strings). This is true for
Gvsb in our example. In analogy, in the example dis-
cussed above with natural language, the sentence the
dog the girl loves barks might occur more often than the
more simple zero level-of-embedding construction
the girl barks.

GenAutom was run with the four versions of G to
produce output samples of n ¼ 1000 unique strings
each. Each version was characterized by the distri-
bution of p1 to p6 (see figure 3). For each sample,
the standard deviation of the string probabilities and
the sample’s coverage were computed (table 1).

The model clearly shows an increase of coverage
with more skewed distributions of AB word-pairs.
Also, variance in the transitional path probabilities in
the grammar correspond with higher variance in the
frequencies of unique strings in the output, as can be
seen in table 1. Under the assumption that coverage
indicates the amount of information about the gram-
mar in a specific input, strongly biased distributions
of the simple AB pairs of a centre embedded grammar
entail more informative input samples about the gram-
mar than weakly biased distributions, for samples of
equal size.

Not only the total coverage after a given number of
exemplars varies with the distribution of ‘AB’s, but
also how the coverage of the grammar develops as the
sample of exemplars ‘grows’ over time. To look at
this development, we need to specify how the exem-
plars are ordered during the period of exposure. If
we assume that the most frequent exemplars in the
language are presented early, a ‘growing’ sample is
Phil. Trans. R. Soc. B (2012)
defined as a sample of exemplars ordered over time
according to their decreasing probabilities. This is
the ‘starting small’ ordering [20]. Assuming a starting
small ordering, the function describing the develop-
ment of the coverage is the cumulative sum of string
probabilities of the sample presented at each point in
time of exposure (figure 5). In figure 5, the input
sets (n ¼ 1000) described in table 1 are used, and
the exemplars displayed on the x-axis ordered over
time according to decreasing string probabilities. For
coverage having value one (which is approximated
but not achieved for the output of unbounded gram-
mars), all information that can be displayed about
the grammar is displayed in the presented exemplars.

Comparing the shapes of the curves, two differences
stand out. Depending on the level of bias, exemplars
with one or more levels of embedding may occur in the
sample. Hence, without bias (equal p(BjA) probabilities),
G first generates all unique zero level-of-embedding
strings (36) followed by 964 (of the 1296 possible
unique) one level-of-embedding strings. For stronger
biases in the distribution of p(BjA), however, higher
levels-of-embedding strings are figuring in the first 1000
exemplars generated. In addition, higher level-of-
embedding strings may come in front of lower level-of-
embedding ones, for more strongly biased distributions.

Secondly, for strongly biased distributions of
p(BjA), the coverage develops faster in the beginning.
For example, after 300 exemplars, 0.55 of the
unbiased grammar is covered, in contrast to 0.86 of
the very strongly biased grammar. Thus, most infor-
mation (as we assumed here to be expressed by the
coverage value of the sample) about the grammar is
provided in an earlier stage of exposure, as the under-
lying grammar has a more skewed distribution of AB
pairs. As the set grows further with more complex
exemplars, biased curves become quickly asymptoti-
cal, suggesting that new exemplars provide little
additional information about G. This characteristic
of the learning situation, i.e. the concentration of cov-
erage in the early stage of exposure, and the decreasing
contribution of later linguistic input, may be important
for infinite grammars that can in principle never be
‘learned’ fully, since not all unique strings can be pre-
sented to the learner. What our analysis suggests is that
this ‘inconvenience’ of limited exposure for inductive
learning is compensated by biasing the distribution
of simple pairs. Exemplars encountered in the first
stage of exposure provide most information, whereas
stimuli presented later add much less, and hence,
matter less for learning. In contrast, more flat distri-
butions of the AB pairs, corresponding to any
possible AB pair in the input being equally ‘plausible’,
will result in a curve that is insensitive to the
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concentration of information in the beginning, suggesting
the necessity of ongoing learning over a longer period of
time. Note that the benefit of early learning for highly
biased sets relies on the presumption that the exemplars
are presented in a starting small fashion.
5. DISCUSSION
This study investigated the role of simple AB struc-
tures in learning a complex hierarchical AnBn

structure. Earlier experimental research showed that
participants could learn such hierarchical structure
only after having been exposed to a large number of
basic AB exemplars. A statistical account of the
impact of distributional biases in these basic structures
for learning the complex grammar is proposed. Distri-
butional biases in simple structures occur in natural
language as a result of, among other factors, semantic
variations related to real-world knowledge. For
example, the noun–verb sequence dogs(A) laugh(B)
is expected to occur less often than dogs(A) bark(B),
hence p(laughjdogs) , p(barkjdogs).

In the analysis proposed, the sum of all unique exem-
plar probabilities in the sample was taken as a measure
of the proportion of the grammar that is covered by
the sample. The sample’s coverage, then, was assumed
to indicate how much could be learned about a gram-
mar from exposure to that sample. This assumption
has been verified previously in our laboratory with
AGL experiments, showing better grammaticality jud-
gement performance after training with input samples
with higher coverage, matched for size [26].

In a mathematical simulation of the learning process,
coverage of the centre-embedded grammar by a sample
was predicted from the distributional biases in the
grammar’s simple AB constructions. The first striking
conclusion is that everything else being equal (equal
sample size and equal structure) grammar coverage is
Phil. Trans. R. Soc. B (2012)
higher for stronger distributional biases in the simple
AB pairs. That is, as the distribution of p(BjA) is more
skewed, more information about the centre-embedded
grammar is displayed in a random output of that gram-
mar. Since one of the major factors affecting this
distribution in natural language is semantics, the impli-
cation of this result is that inductive learning of
hierarchical structures is facilitated by semantic biases.

The second result of our simulation model is that
most information on the grammar is concentrated in
the early phase of exposure to the input, as semantic
biases are stronger. This finding regarding the time
course of information displayed in the input became
apparent when the virtual learner was exposed to a
‘starting small’ training regimen (displaying the basic
structures in the language first, followed by increasin-
gly more complex structures with embedded clauses).
This result conveys an interesting perspective on the
phenomenon of the critical language learning period.
It suggests a concerted action of distributional features
of the early language input—correlating with semantic
features—to give a young learner both very simple and
very informative cues about the complex language
system that is eventually to be mastered.

Though the present proposal makes a first step to a
new understanding of the role of the early linguistic
input on learning complex structure, further theoreti-
cal and empirical research is needed to evaluate its
significance and its limits for natural language learn-
ing. Note, first, that the results are at odds with one
previous conclusion from a computer simulation
study that semantic biases help learning hierarchical
grammars, but starting small does not [23]. In the
model presented here, the effect of semantic biases
on the spreading of the information over time could
be made apparent because a starting small organization
of the input was assumed. The validity of the argument
that semantic biases also operate in natural language
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learning, therefore, relies on whether the natural
language input is actually organized in a starting
small fashion. It is a topic of debate whether children
learning language make use of a restricted type of
language utterances, i.e. child directed speech, or
whether they ‘use’ every language input that reaches
their ears equally [27]. Though recent experiments
evidenced a strong main effect of starting small [20]
in the artificial AGL setting, the implications of this
finding for the natural setting are still speculative.

Other assumptions proposed here might be investi-
gated further empirically. We do not know, for example,
what the statistical coverage measure corresponds to
from a cognitive point of view. The proportion of the
full output of a grammar displayed in a sample might
correlate with proficiency, but this relation remains to
be specified. Learners having seen high coverage samples
might be better at judging the grammaticality of new sen-
tences, or alternatively, at producing new grammatical
sentences. Another related question is whether exposure
to a high coverage sample affects the level of processing of
hierarchical exemplars and insight into the hierarchical
rule. Note also that the present analysis shows parallels
with linguistic ideas on language learning. The coverage
curve approximating 100 per cent quite early under
conditions of strong distributional bias supports the lin-
guistic assumption that learners are fully competent at
the end of the critical learning period.

Another question raised by the coverage measure
[26,28] refers to the paradox that low coverage sets,
in general, contain longer exemplars, and therefore it
might be argued display more discrete information
about the rules of the grammar. If low coverage
input exemplars display more rules of the grammar,
how can they nonetheless lead to poor learning (as
was found in our laboratory [26])? And how can lear-
ners take advantage of short sentences displaying fewer
rules of the grammar? One possible answer is that hier-
archical structures with a basic self-embedding pattern
are better learned in a staged learning process organiz-
ing learning of the basic rule first (short sentences with
high coverage), and after that is learned, the self-
embedding operation is presented to the learner [29].

By using a methodology that reduces complex factors
involved in human natural language learning to simple
manipulations of artificial grammars, the influence of
semantic biases on complex grammar learning could be
traced. Also, the present statistical modelling with artifi-
cial language raised new empirical questions. From a
theoretical point of view, the present study illustrates
the potential benefit of combining into one account
both formal properties of language and cognitive devel-
opmental learning mechanisms [30]. More specifically,
the present results suggest that semantic biases in very
simple linguistic constructions may be one of the many
useful extra-syntactical cues provided at exactly the
right moment in the learning process, to ultimately
acquire the very complex hierarchical rules of language.
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