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Abstract We show that there exists a metric with positive scalar curvature on S2 × S1 and
a sequence of embedded minimal cylinders that converges to a minimal lamination that, in
a neighborhood of a strictly stable 2-sphere, is smooth except at two helicoid-like singular-
ities on the 2-sphere. The construction is inspired by a recent example by D. Hoffman and
B. White.

1 Introduction

Roughly speaking, it is expected that the only two types of singular laminations that can occur
as limits of sequences of closed embedded minimal surfaces in a 3-manifold with positive
scalar curvature are accumulations of catenoids and non-proper helicoid-like limits. Recall
that a lamination is a foliation that does not necessarily fill the entire space; in particular, just
like in a foliation, the leaves of a lamination must be locally parallel graphs. An example of
the first type of limit was constructed by Colding and De Lellis in [5]. Prior to the construction
given here, no non-proper helicoid-like limits were known to exist as limits of closed surfaces.
We construct such a limit in S2 × S1 where two helicoid-like singularities lie on a strictly
stable 2-sphere.

For closed Riemannian manifolds with positive Ricci curvature, combining the work of
Choi and Wang [4] and Yang and Yau [45] gives an area bound for embedded minimal
surfaces that depends only on the lower bound for the Ricci curvature of the manifold and on
the genus of the surface. In particular, constructions such as those in [5] and in this paper are
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726 M. Calle, D. Lee

Fig. 1 A schematic cross-section near one of the helicoid axes of the limit lamination in Theorem 1. The
limit consists of the strictly stable 2-sphere � and four embedded minimal disks joined along the central axis
γ1. �A+ and �B+ lie on one side of � and �A− and �B− lie on the other side. Each of the four spirals
infinitely into �. These surfaces connect to a symmetric configuration around a second axis γ2

not possible in manifolds of positive Ricci curvature as both of these constructions require
sequences of closed minimal surfaces with unbounded area. See also [3], where Choi and
Schoen proved that any limit of closed minimal surfaces in a closed 3-manifold with positive
Ricci curvature must be smooth.

An immersed surface � ⊂ M is said to be proper if the intersection of � with any
compact subset of M is compact. Similarly, a lamination is proper if each leaf is proper. The
study of the properness of minimal surfaces in Euclidean 3-space has a long history; see in
particular the work on the Calabi–Yau conjectures [1,12,18,30,31,39]. For limit laminations
in Euclidean 3-space, many results about properness are known. In particular, Colding and
Minicozzi showed in [13–16] that any sequence of embedded minimal disks in balls of
increasing, unbounded radius in R3 must converge off of a curve to a foliation of planes,
and so non-proper limits are impossible. However, in [8], Colding and Minicozzi construct a
sequence of embedded minimal disks in a fixed ball in R3 with boundaries in the boundary
of the ball that converges to a limit which is not proper; see also [32,33].

Our construction is inspired by a beautiful variational construction by Hoffman and White
[28] of the genus one helicoid; see also the earlier known constructions of the genus one
helicoid [26,27].

We consider the case of a manifold which is topologically S2 × S1, for which we have the
following theorem:

Theorem 1 There exists a metric with positive scalar curvature on M = S2 × S1 and a
sequence of embedded minimal cylinders {�n} with boundary in an unstable 2-sphere that,
in a neighborhood of a strictly stable 2-sphere �, converges to a minimal lamination that is
smooth except at two helicoid-like singularities on �.

Specifically, in a neighborhood � of the strictly stable 2-sphere, �n ∩ �\� converges to
two non-properly embedded minimal surfaces �±, one on each side of �, with �±\�± = �.
Furthermore, away from two axes, �± is the union of two embedded minimal disks �{A,B}±,
each of which spirals into � (see Fig. 1).
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Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds 727

Fig. 2 On the left, two helicoids with opposite orientation glued together. On the right, two helicoids spiral
around the polar axes of S2

The metric in Theorem 1 will be a warped product metric with particular assumptions
about the warping factor. If we instead use the product metric on S2 × S1 (where each
S2 × {z} is minimal but not strictly stable), the same construction will give us a sequence of
embedded minimal cylinders that converges smoothly away from two circles to the smooth
foliation of S2 × S1 by the parallel minimal spheres S2 × {z}. Each surface in this sequence
looks like it is obtained by gluing together two oppositely oriented helicoids. Each helicoid
has a circular axis {x} × S1 and {−x} × S1, which are orthogonal to each 2-sphere S2 × {z}
and are “antipodal” (they go through x and −x , respectively).

In Sect. 3 we will construct the sequence of minimal surfaces �n . The surfaces in our
sequence will be embedded minimal cylinders that spiral an increasing number of times
around two polar axes γ1 and γ2 of the form {x}×S1. They spiral around the axes in opposite
directions with the corresponding layers connected (see Fig. 2). In order to find these surfaces,
we wish to solve Plateau problems in the universal cover �′ of �\(γ1 ∪ γ2), where � is a
neighborhood of a strictly stable 2-sphere �.

After constructing the sequence, in Sect. 4 we will take the limit when n → ∞ and obtain
a minimal lamination. By choosing a sufficiently small neighborhood of the strictly stable
2-sphere, we can assume that � is the only closed minimal surface in �. Thus, this lamination
must consist of the strictly stable 2-sphere and two minimal surfaces, one on each side, that
spiral into it. In particular, these two minimal surfaces will be embedded but not proper.

2 Preliminaries

We parametrize M = S2 × S1 by (φ, θ, z) ∈ [0, π ] × [0, 2π) × (−π, π], where (φ, θ) are
latitudinal and longitudinal coordinates on S2 and z ∈ (−π, π] ∼ S1. We consider a warped
product metric in M given by

g2 = ω2(z)(dφ2 + sin2 φ dθ2) + dz2.

We will assume that ω is a smooth function S1 → R such that:

(i) ω(π) > ω(0) = 1,
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728 M. Calle, D. Lee

(ii) ω(z) = ω(−z),
(iii) ω′′(0) > 0, and
(iv) z = 0, π are the only critical points of ω.

With these assumptions, � = {z = 0} is a strictly stable minimal 2-sphere and {z = π}
is an unstable minimal 2-sphere. We will be working in the neighborhood � = M\{z = π}
of the strictly stable 2-sphere �. Note that the boundary ∂� = S2 × {π,−π} is minimal and
hence weakly mean convex. Recall that ∂� is weakly mean convex if its mean curvature is
H ≥ 0 with respect to the unit normal vector pointing towards �. Also, � is the only closed
minimal surface in �:

Lemma 2 If � is a closed minimal surface in M away from {z = π}, then � = �.

In order to prove this lemma, we will need the following maximum principle of Solomon
and White (see [42]):

Theorem 3 Let � be open and �1 and �2 be connected minimal surfaces in �, and suppose
that �1 is smooth. Further suppose that �1 lies weakly on one side of �2 (that is, �1 is
contained in the closure of one of the components of �\�2). Then the two surfaces either
coincide (i.e., are either the same surface or are each subsets of a single larger minimal
surface) or are disjoint.

The conclusion also holds when �2 is mean-convex, that is, its mean curvature vector
points (where it is not 0) into the component of �\�2 containing �1.

Proof of Lemma 2 First, we observe that each surface �a = {z = a} with a 
= 0, π is strictly
mean convex, with mean curvature vector pointing towards the strictly stable 2-sphere �. If
0 < a < π , consider the unit normal vector �n�a = − ∂

∂z pointing towards �. We can extend

this vector to a vector field X = − ∂
∂z defined on M , and then we can compute the mean

curvature of �a with respect to �n�a as:

H�a = −1

2
divM X

= −1

2

∂

∂z

∣
∣
∣
∣
z=a

(− ln(detg))

= 1

2

∂

∂z

∣
∣
∣
∣
z=a

(ln(ω4(z) sin2(φ)))

= 2
ω′(a)

ω(a)
> 0.

If −π < a < 0, the same argument applied to the unit normal vector �n�a = ∂
∂z shows that

the surface is mean convex.
Suppose now that � is a closed minimal surfaces away from {z = π} and different from

�. Then there is a value 0 < a < π such that � ⊂ {−a ≤ z ≤ a} and either � ∩ �a 
= ∅ or
� ∩ �−a 
= ∅. But this contradicts the maximum principle (Theorem 3), as �±a is strictly
mean convex. ��

The surfaces in our sequence will be embedded minimal cylinders with boundary in
{z = π} that spiral an increasing number of times around the polar axes γ1 = {φ = 0} and
γ2 = {φ = π}. In order to find these surfaces, we wish to solve Plateau problems in the
universal cover �′ of �\(γ1 ∪γ2). In particular, we will use the following theorem of Meeks
and Yau (Theorem 5 of [37]):
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Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds 729

Theorem 4 Let M be a compact Riemannian 3-manifold, and suppose that M can be isomet-
rically embedded in a larger manifold M̃ such that ∂ M is a two-dimensional subcomplex of M̃
consisting of smooth two-dimensional simplexes {
1, . . . , 
k} with the following properties:

(i) Each 
i is a smooth surface in M̃ whose mean curvature is non-negative with respect
to the outward normal.

(ii) Each surface 
i is a compact subset of some smooth surface 
̃i ⊂ M̃ where 
̃i ∩ M =

i and ∂
̃i ⊂ ∂ M̃.

Let N be a compact subdomain of ∂ M such that each homotopically nontrivial closed
curve in N is also homotopically nontrivial in M. Then there is a stable minimal embedding
f : N → M so that f (∂ N ) = ∂ N.

The stable minimal surface constructed in this theorem is, in fact, area-minimizing, as
shown in the proof in [37]. With the help of this theorem, we will construct a sequence of
embedded minimal disks that are smooth in the interior. Then we will apply the following
result of Hardt and Simon to prove regularity of the boundary (Theorem 11.1 in [23]):

Theorem 5 Let U be an area-minimizing surface and ∂U be a connected oriented embedded
C1,α curve. Then U is a connected embedded C1,α hypersurface with boundary.

This construction gives us half of the cylinders�n . Then, we will use the Schwarz reflection
principle (Lemma 7.3 in [40]) to reflect them across the axes γ1 and γ2:

Theorem 6 Suppose � is a minimal surface in a 3-manifold M whose boundary contains
a geodesic segment γ . Suppose additionally that there exists an isometry G in M whose
fixed points include γ . Then � can be extended to a minimal surface � ∪ G(�) symmetric
across γ .

We recall that a codimension one lamination on a 3-manifold M3 is a collection L of
smooth disjoint surfaces (called leaves) such that

⋃


∈L 
 is closed, and such that for each
x ∈ M there exists an open neighborhood U of x and a coordinate chart (U,�) with
�(U ) ⊂ R3 so that in these coordinates the leaves in L pass through �(U ) in slices of the
form (R × {t}) ∩ �(U ). A minimal lamination is a lamination whose leaves are minimal.
Note that any (compact) embedded surface is a lamination. When proving the convergence
of our sequence, we will need the following proposition (Proposition B.1 in [16]):

Proposition 7 Let M3 be a fixed 3-manifold. If Li ⊂ B2R(x) ⊂ M is a sequence of minimal
laminations with uniformly bounded curvatures (where each leaf has boundary contained in
∂ B2R(x)), then a subsequence L j converges in the Cα topology for any α < 1 to a (Lipschitz)
lamination L in BR(x) with minimal leaves.

3 The sequence of embedded minimal surfaces {�n}

We consider �′ the universal cover of �\(γ1 ∪ γ2). We can parametrize this universal cover
as �′ = [0, π] × R × (−π, π). In these coordinates, the metric in �′ is given by the same
expression as the original metric in M . The topological boundary of �′ is ∂�′ = {φ =
0} ∪ {φ = π} ∪ {z = π} ∪ {z = −π}, and the two pieces {z = π} and {z = −π} are
mean-convex.

The main difficulty in applying Theorem 4 is the portion of the boundary corresponding to
γ1 and γ2, as the warped product metric in �′ becomes degenerate as we approach these axes.
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730 M. Calle, D. Lee

In order to apply Meeks–Yau, we will remove small ε-tubes around γ1 and γ2, then smoothly
glue together these new ends. The resulting manifold will be topologically a solid torus and
will only have mean-convex boundary. Thus, we can solve Plateau problems in a sequence
of these manifolds with ε → 0. Subsets of the area-minimizing solutions in this sequence
can be isometrically embedded in �′, and projecting back to � we can get a subsequence
converging to an embedded solution to the original Plateau problem in �′.

The precise construction is as follows.
For each ε > 0, let �′

ε be the universal cover of � minus the ε-tubes around γ1 and γ2.
Thus,

�′
ε = (ε, π − ε) × R × (−π, π) ⊂ �′.

We can isometrically embed �′
ε into the manifold Nε = S1 × R × [−π, π] endowed with

the metric

g2
ε = ω2(z)(dφ2 + α2

ε (φ) dθ2) + dz2,

where αε : S1 = [0, π) → R is a smooth function satisfying:

(i) αε(φ) = sin(φ) for φ ∈ [ε, π − ε].
(ii) α′

ε(φ) > 0 for 0 < φ < π
2 and α′

ε(φ) < 0 for π
2 < φ < π .

(iii) αε(φ) > 0 for all φ ∈ S1.

Conceptually, we imagine αε(φ) as a smooth version of f (φ) = max{sin(φ), sin(ε)}. This
metric glues together the ε-tubes around γ1 and γ2.

We next construct embedded minimal surfaces in Nn,ε = S1×[−nπ, nπ]×[−π, π] ⊂ Nε

with boundary γ3 = {(φ,−nπ,−π)} and γ4 = {(φ, nπ, π)} using Theorem 4. To do this,
we first need to show that the boundary of Nn,ε is mean convex:

Lemma 8 The boundary ∂ Nn,ε satisfies the hypothesis of Theorem 4. In particular, it is
contained in the union of a finite number of minimal surfaces that meet at an angle of π

2 .

Proof First, observe that the boundary of Nn,ε consists of the “horizontal” surfaces 
1 =
{z = −π} and 
2 = {z = π} and the “vertical” surfaces 
3 = {θ = −nπ} and 
4 = {θ =
nπ}, and neither the two vertical pieces nor the two horizontal pieces intersect. Therefore, to
satisfy the intersection requirement, we only need to look at the intersection of a horizontal
surface and a vertical surface.

Let x ∈ 
1 ∩
3. Then ∂
∂φ

∈ Tx (
1 ∩
3), so the angle between the surfaces is the angle

between ∂
∂θ

∈ Tx (
1) and ∂
∂z ∈ Tx (
3). Direct computation shows that these two vectors

are orthogonal, and so the surfaces meet orthogonally. The same argument shows that the
other three pairs of surfaces also intersect orthogonally. In particular, this shows that if we
embed Nn,ε in a larger manifold and extend each 
i , the extension will lie outside of Nn,ε ,
as required in (ii) in Theorem 4.

We will next show that the horizontal surfaces 
1 and 
2 are minimal and thus mean
convex.

The unit normal vector of 
1 that points towards the interior of Nn,ε is �n
1 = ∂
∂z . We can

extend this vector to the coordinate vector field X = ∂
∂z on Nn,ε , and then we can compute
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Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds 731

the mean curvature vector of 
1 with respect to �n
1 as:

H
1 = −1

2
divNn,ε X

= −1

2

∂

∂z

∣
∣
∣
∣
z=−π

ln(detgε)

= −1

2

∂

∂z

∣
∣
∣
∣
z=−π

(ln(ω4(z)α2(φ)))

= −2
ω′(−π)

ω(−π)
= 0

This shows that 
1 is minimal in Nn,ε , and in particular it is mean convex. A similar argument
shows that 
2 is mean convex.

Finally, we will show that the vertical surfaces 
3 and 
4 are minimal in Nn,ε . The
inward-pointing unit normal of 
3 is �n
3 = 1

ω(z)α(φ)
∂
∂θ

, which can be extended to a vector

field X = 1
ω(z)α(φ)

∂
∂θ

in all Nn,ε . Then the mean curvature vector of 
3 with respect to �n
3

is:

H
3 = −1

2
divNn,ε X

= −1

2

∂

∂θ

∣
∣
∣
∣
θ=−nπ

ln(detgε) = 0

since the determinant of the metric does not depend on the θ coordinate. This proves that 
3

is minimal, and a similar calculation shows that 
4 is also minimal.
Therefore, the first hypothesis in Theorem 4 is also satisfied. ��
Consider the circles γ3 = {θ = −nπ, z = −π} and γ4 = {θ = nπ, z = π}: they

bound an annulus in ∂ Nn,ε . Moreover, any homotopically nontrivial curve in that annulus is
also homotopically nontrivial in Nn,ε , so by Theorem 4, there exists a smoothly embedded
area-minimizing annulus �′′

n,ε in Nn,ε whose boundary is γ3 ∪ γ4. These surfaces have the
following non-intersection property:

Lemma 9 Let Rθ0 : Nε → Nε be the isometry θ → θ + θ0, where θ0 
= 0. Then

Rθ0(�
′′
n,ε) ∩ �′′

n,ε = ∅.

Proof of Lemma 9 For θ big enough (for instance, θ > 2nπ), it is clear that Rθ (�
′′
n,ε) ∩

�′′
n,ε = ∅. Let

θ0 = sup{θ > 0 : Rθ (�
′′
n,ε) ∩ �′′

n,ε 
= ∅}.
Then Rθ0(�

′′
n,ε) ∩ �′′

n,ε 
= ∅ and Rθ0(�
′′
n,ε) lies on one side of �′′

n,ε . By the maximum
principle, Theorem 3, this implies that Rθ0(�

′′
n,ε) = �′′

n,ε , which means θ0 = 0. Therefore,
Rθ (�

′′
n,ε) ∩ �′′

n,ε = ∅ for all θ > 0. The same argument applies to θ < 0. ��
Define �′

n,ε to be the portion of �′′
n,ε contained in �′

ε . This discards the portion of our
minimal surface that lies inside of the ε-tubes, where the metric in Nn,ε is different than in �′,
the universal cover of �\(γ1 ∪ γ2). Then �′

n,ε is an area-minimizing surface with boundary
consisting of γ3 ∪ γ4 ∪ δ1

n,ε ∪ δ2
n,ε , where each δi

n,ε is some curve on the cylinder of radius
ε centered on the axes γi . Let �n,ε ⊂ � be the projection of �′

n,ε ⊂ �′ from the universal
cover to the original manifold � ⊂ S2 × S1.
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732 M. Calle, D. Lee

By Lemma 9, �′′
n,ε does not intersect any of its θ -translations. Because a self-intersection

of �n,ε corresponds to the intersection of �′
n,ε ⊂ �′′

n,ε with one of its θ -translations, �n,ε

must be embedded in �. More strongly, the intersection of �n,ε with a plane {φ = const}
must be monotone in the vertical coordinate z.

At this point in our construction, the surfaces �n,ε are essentially embedded minimal
surfaces in � that wrap n times around ε-tubes centered on the axes γ1 and γ2 and whose
boundary is the union of fixed geodesics γ3, γ4, and some curves contained in these ε-tubes.
The next step is to let ε → 0 to create a sequence of minimal surfaces �̃n that wrap n times
around the axes γ1 and γ2 and whose boundaries are ∪4

i=1γi . These surfaces are essentially
“half-helicoids” which we will extend via Schwarz reflection (Theorem 6) into our final
sequence �n .

Specifically, to construct each �̃n , we need area and curvature bounds on �n,ε independent
of ε. First we obtain a curvature bound: let �ε0 be the complement of the ε0-neighborhood
of ∪4

i=1γi . Clearly, ∪ε0>0�ε0 = �\(∪4
i=1γi ). Fix ε0 > 0. Because each �n,ε is isometric to

a subset of the stable minimal surfaces �′′
n,ε , we have the interior curvature bound

sup
�ε0

|A(�n,ε)|2 ≤ C(ε0),

for any ε < ε0/2 and some constant C(ε0) dependent only on ε0.
Similarly, we can obtain a uniform area bound for �n,ε ∩�ε0 . Each �n,ε is the projection

of an area-minimizing surface �′
n,ε ⊂ �′. As before, let �′

ε0
be the universal cover of �ε0 (or

equivalently, �′
ε0

is the complement in �′ of the ε0-neighborhoof of ∂�′). If we construct a
surface consisting of a fixed surface �′

n,ε0
∩�′

ε0
plus the piece of ∂�′

ε0
between ∂�′

n,ε ∩�′
ε0

and ∂�′
n,ε0

∩ �′
ε0

, then this new surface has bigger area than �′
n,ε ∩ �′

ε0
. We can then bound

uniformly the area of �′
n,ε ∩ �′

ε0
by the area of �′

n,ε0
∩ �′

ε0
plus the area of ∂�′

ε0
. Now

since the area of the projection �n,ε is the same as the area of �′
n,ε (because � and �′ are

isometric and �n,ε is embedded, that is, there is no self-intersections), this gives us a bound
of the area of �n,ε uniform in ε.

This area bound combined with the previous interior curvature bound implies that for any
fixed ε0 > 0, we can find a sequence of �n,ε that converges when ε → 0 to a locally area-
minimizing embedded surface in �ε0 . By letting ε0 → 0 and taking a diagonal sequence,
we can extract a subsequence {�n,ε j } that converges to an embedded minimal surface �̃n in
�\(∪4

i=1γi ). Additionally, ∂�n,ε j converges pointwise to ∪4
i=1γi .

So far, we have only shown that �̃n is embedded away from γ1 and γ2. However, consider
the portion of ∂�n,ε j that lies on the cylinders {φ = ε j , π −ε j }. By Lemma 9, the projection
of these portions onto γ1 and γ2 must be monotone (otherwise, �′

n,ε j
would intersect one

of its θ -translations; see Fig. 3). In particular, this implies that �̃n is embedded up to the
boundary ∪4

i=1γi .
To prove that this embedding is non-singular at a point x ∈ γ1 ∪ γ2, choose a small

intrinsic neighborhood U ⊂ �̃n of x . As �̃n is the limit of the area-minimizing surfaces
�n,ε , U will be area-minimizing provided that it is sufficiently small. We can also choose U
to have smooth boundary. Therefore, we can apply Theorem 5 to show that U is C1,α up to
∂U ∩ {γ1 ∪ γ2}.

Thus, the surfaces �̃n have boundary on {z = ±π} ∪ γ1 ∪ γ2. The final step is to use
Theorem 6 to reflect them across the axes γ1 and γ2. In this case the isometry G is the
rotation Rπ : θ �→ θ +π around the polar axes. The new surfaces �n are cylinders in � with
boundary in ∂� = {z = −π} ∪ {z = π}. Observe that �n\(γ1 ∪ γ2) = �̃n ∪ G(�̃n), and
when we lift G(�̃n) to �′ we obtain just a θ -translation of �′

n . By Lemma 9, we can show
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Non-proper helicoid-like limits of closed minimal surfaces in 3-manifolds 733

Fig. 3 If the boundary curve �n,ε j ∩ {φ = ε j , π − ε j } is not monotone, then it intersects its θ -translation,
that is, its rotation around the polar axes

that �̃n ∩ G(�̃n) ⊂ γ1 ∪ γ2, and therefore each �n is a smooth embedded minimal surface
in �.

4 The limit of the sequence �n

We will now finish the proof of Theorem 1 by showing that the sequence �n converges
smoothly to a minimal lamination away from the axes γ1 and γ2 and that the limit lamination
has two helicoid-like singularities on the strictly stable 2-sphere �.

We say that a sequence of surfaces �n ⊂ M is uniformly locally simply connected (ULSC)
if for each x ∈ M , there exists a constant r0 > 0 (depending on x), so that for all r ≤ r0 and
every surface �n each connected component of Br (x) ∩ �n is a disk.

The existence of the limit lamination is given by the following lemma (see [16],
Lemma II.1.2 in [17] and Theorem 4.2 in [9]):

Lemma 10 Let M be a compact three-dimensional manifold with boundary and let �n be
a sequence of compact embedded minimal surfaces in M with ∂�n ⊂ ∂ M. Let

S =
{

x ∈ M : sup
Br (x)∩� j

|A|2 → ∞ for all r > 0

}

and suppose the sequence is ULSC in a neighborhood of S. Then after passing to a subse-
quence, �̊n\S will converge on compact subsets to a lamination L ⊂ M̊\S with minimal
leaves.

Proof For each compact subset K ∈ M\S, there is an open covering of K by finitely many
balls where the curvatures of the � j ’s are bounded uniformly in j in the concentric double
balls (by the definition of S). The claim then follows from Proposition 7 and a diagonal
argument. ��

To apply Lemma 10 to our case, we need to show that {�n} is ULSC in a neighborhood
of the singular set S. Since the “half-helicoids” �̃n are stable, we have uniform curvature
bounds on �n depending only on the distance to the boundary and the axes γ1 and γ2. By
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734 M. Calle, D. Lee

slightly shrinking �, we can obtain uniform curvature bounds away from the polar axes.
Therefore the singular set S must be contained in γ1 ∪ γ2.

A point y in the singular set S is not ULSC if and only if the injectivity radius on the
sequence go to 0 at that point, that is, there is a sequence of points yn ∈ �n with yn → y
and inj(yn) → 0 (see Part IV in [17], Proposition I.0.19 in [15]). If d�n (yn, y) is bounded
away from zero (ie, the sequence yn converges to y extrinsically but not intrinsically), then
standard curvature bounds for stable minimal surfaces (see, for example, Theorem 2.7 of [7])
imply that the injectivity radius of yn is bounded away from zero. Therefore, we only need
to prove a lower bound on injectivity radius for all points in an intrinsic neighborhood of the
axes.

Consider an intrinsic r -neighborhood of the axis Dn
r (γ1)= {x ∈ �n : d�n (x, γ1)< r}. We

can write Dn
r (γ1) = D̃n

r (γ1) ∪ G(D̃n
r (γ1)), where D̃n

r (γ1) is the corresponding
r -neighborhood of γ1 in �̃n , and D̃n

r (γ1) ∩ G(D̃n
r (γ1)) = γ1. Since both �̃n and G(�̃n)

are disks, D̃n
r (γ1)\γ1 and G(D̃n

r (γ1))\γ1 are disjoint disks, and therefore Dn
r (γ1) is topolog-

ically a disk. Thus, in smaller neighborhood D r
2
(γ1), the injectivity radius is bounded below

by r
2 , and this implies that the sequence is ULSC in the axis γ1. The same argument applies

to γ2.
Once we have the minimal lamination L, there are only two possibilities for each leaf;

either the leaf is a closed surface or it spirals infinitely into a closed surface. The only closed
surface in � is the strictly stable 2-sphere �, and so our lamination will consist of � and two
minimal surfaces that spiral into it.

Theorem 11 After passing to a subsequence, the sequence {�n} converges to a lamination
L of minimal surfaces consisting of the strictly stable 2-sphere � and two embedded minimal
surfaces that lie on opposite sides of and spiral into �.

Proof By Lemma 10, a subsequence of {�n} will converge to a minimal lamination L away
from γ1 ∪ γ2. Let � be one of the leaves of L. Define the set {(φ, θ, z) : z = inf(φ,θ,ζ )∈� ζ }.
Because � is embedded and L is a (closed) lamination, this set defines a leaf of L which is
a closed minimal graph over � in M . By Lemma 2, there are no non-trivial minimal graphs
over � in �, which implies that � = � or that � must infinitely spiral into �. In either case,
this shows that � ∈ L.

Because each �n has boundary in both boundary components of �, the lamination L must
contain at least one leaf that does not equal to � and therefore must spiral into �. Since each
�n is connected and crosses � but no leaf of L can cross �, there must be exactly two such
spiraling surfaces, one on each side of �. ��

Theorem 1 now follows immediately.

Proof of Theorem 1 We can calculate the scalar curvature of a warped product on M as

ScalM = −2
ω′′

ω
+ 1 − (ω′)2

ω2 .

In particular, we can choose ω ∈ C∞(S1) satisfying the four properties listed before and
with positive scalar curvature. An example of such a function would be

ω(z) = −1

4
cos z + 5

4
.

��
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